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Abstrakt

Ćılem této práce je navrhnout a naimplementovat dialogovou aplikaci na
základě ontologie Schema.org. Aplikace je schopna vést jednoduchý dialog
s uživatelem, který je založen na poloautomatickém př́ıstupu. Chatbot se
zakládá na ontologii Schema.org, pomoćı které je schopen vyč́ıtat struk-
turovaná i polostrukturovaná data z r̊uzných datových zdroj̊u, kterými
jsou RDF databáze, respektive webové stránky. Ontologie je také využita
chatbotem pro aktivńı orientaci ve zvolené doméně, která je zaměřena
na filmy. Pro implementaci chatbota v programovaćım jazyce Python
využ́ıváme známé NLP algoritmy pro extrakci dat z uživatelského vstupu.
Provedli jsme také integraci námi vytvořeného chatbota do virtuálńıho
agenta Amazon Alexa a do IM platformy Slack. Chatbota vyhodnocu-
jeme na základě reálných konverzaćı s uživateli.

Kĺıčová slova: dialog, chatbot, ontologie, NLP, poloautomatické vytvořeńı,
strukturovaná data, polostrukturovaná data, extrakce dat

Abstract

This thesis aims to design and implement dialog application based on
Schema.org ontology. The application uses a semi-automatic creation ap-
proach to be able to conduct a simple dialog with a user. Schema.org
ontology helps the chatbot to read structured and semi-structured data
from different data sources, namely RDF databases and web pages. Chat-
bot also uses the ontology for active orientation in the given domain which
is in our case focused on movies. For the implementation of the chatbot
in Python we utilized widespread NLP algorithms for data extraction
from a user utterance. Moreover, we have integrated the chatbot into the
smart speaker Amazon Alexa and the IM platform Slack. The chatbot is
evaluated by real dialogs with users.

Keywords: dialog, chatbot, ontology, NLP, semi-automatic creation, struc-
tured data, semi-structured data, data extraction

6



Acknowledgements

I would like to thank my supervisor Ing. Jan Šedivý, CSc. for our
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Chapter 1

Introduction

1.1 Motivation

Creating dialog applications is starting to be a more popular problem in the

AI world. A dialog stands for interactive conversational communication between a

human on the one side and an artificial system on the other side. A dialog applica-

tion means a computer program which is able to imitate human behavior while a

conversation is being conducted.

Already in the second half of the twentieth-century intelligent computer pro-

grams were beginning to be invented. One of the first conversational computer as-

sistants based on pattern matching rules to statements, well-known as ELIZA, was

invented by J. Weizenbaum in the latest 1960s. The program was successful in the

community of people with mental illness because it simulated a Rogerian psychother-

apist1 and the users had a recovery effect.

Then, other similar conversational agents started to appear. Another name for

such computer program assistant is a chatterbot or just a chatbot. The significant

idea of these conversational systems is that a computer is trying to be as intelligent

as a human and to understand the human language. And the crucial long-term aim

of such thinking machines is to help humans in any field of life or just to bring

entertainment into their everyday moments.

The goal of the thesis is to create an entertainment chatbot which would be

able to lead a conversation with a user in a specific domain. To build such chatbot,

we utilize the concept of ontology, which defines entities with their properties and

different relations between them, to provide the semantics of domain information.

We consider domain-specific knowledge graph based on Schema.org ontology. The

knowledge graph could help the chatbot to grasp the conversation topic and to be

capable of driving a dialog with a user.

1Person-centered therapy
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The chatbot also has to deal with multiple NLP tasks. Tasks such as intent

classification and named entity recognition fall into NLU, whereas the task of answer

generation comes under NLG, where both NLU and NLG are subtopics of NLP.

Moreover, Yampolskiy (2013) states that NLU is considered to be AI-hard, because

to solve it means to create AGI, respectively, to make computers think like humans.

To solve, e.g., the intent classification task it is needed to apply algorithms

from ML, specifically, classification algorithms. Such ML algorithms are a type of

supervised learning which means it requires a set of observations along with their

ground-truth annotations. Obtaining appropriate domain-specific training datasets,

which are large enough and capture rich dispersion of a natural language, is a fre-

quently faced issue in ML.

1.2 Thesis Structure

This thesis is organized into three main parts. The first part includes Chapter

2, Chapter 3, Chapter 4, Chapter 5 and focuses on conversational AI technologies.

The second part includes Chapter 6 and describes chosen approach and its imple-

mentation. And the last part includes Chapter 7 in which experiments are performed

and evaluates the overall results.
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Chapter 2

Chatbots and Virtual Assistants

We are living in an era of information technology evolution. The development

of robots or personal assistants is gaining momentum. The purpose of it is an effort

to automatize more things in our daily life.

Some years ago, we started quite frequently to hear the term ”smart home.”

The word means intelligent systems which were invented to secure home comfort and

to make daily human life easier. As Alam et al. (2012) mentioned, these systems are

divided into three main categories: comfort services (e.g., controlling home appliances

and devices), healthcare services (e.g., identifying user health conditions, ensuring

assistive services, or generating local warnings if required) and security services (e.g.,

providing authorized access control to avoid security threats). These smart systems

customarily can respond to a user’s voice or just to a button click. But the func-

tionality is restricted, so voice commands can only correspond to either activating or

deactivating of home appliances or devices. Also, a button click is similarly limited

to turn-on and turn-off toggling. As a consequence, we can conclude that such smart

home assistants help their users by taking over control of some domestic things.

After a few years, virtual assistants have appeared on the IT market. It is a

software agent which is inbuilt into smart devices. The purpose of these assistants

is to perform simple user tasks such as daily individual activity scheduling. These

intelligent personal helpers can receive user’s commands given by voice user inter-

face or text user interface. Devices with voice user interface are commonly named

smart speakers. As an instance of voice-controlled devices, shown in Figure 2.1, can

be mentioned Amazon Echo which is driven by Amazon Alexa virtual assistant and

Google Home which is managed by an intelligent personal agent called Google Assis-

tant. However, the majority of other existing virtual assistants uses rather text user

interface to have an online chat based on IM technology.

Virtual assistants that use textual user interface are frequently called chatbots.

The bots are represented by a computer program which has strong NLU capabilities.

As far as their aims are concerned, different chatbots have miscellaneous purposes.

3



Figure 2.1: Google Home and Amazon Echo smart speakers.1

However, the most relevant goal of a chatbot is to conduct a conversation with a

user and try to understand user’s requests.

Now let’s take a look at the specific classification of such chatbots.

2.1 Chatbots Classification

We would like to start the section with a citation which describes the actual

situation in developing chatbots. Levesque (2017) states that current state-of-the-art

systems are still a long way from being able to have coherent, natural conversations

with humans.

Britz (2016) points out that chatbots can be divided, firstly, according to the

purpose of maintaining a conversation with a user, secondly, according to the response

generation and, finally, according to their capability of information orientation.

2.1.1 Purpose of Maintaining a Conversation

Such conversational agents are divided into two subsequent classes a task-

oriented bot and an entertainment-oriented bot, so-called chatbots.

Task-oriented bots are designed for performing particular tasks from users or

helping users to achieve a certain goal. How Jurafsky and Martin (2014) mention,

1Taken from https://www.xda-developers.com/google-home-amazon-echo-smart-speaker-
market-share/
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such agents have shorts conversations to get information from the user to help com-

plete the task, such as to book a flight, to buy a train ticket, to find a restaurant,

etc.

Ilievski (2018) mentions that the current options of implementing a goal-oriented

chatbot can be divided into two approaches. The first one is called a fully-supervised

approach, in which recurrent neural networks are utilized. Such models require a lot

of annotated dialogs. For example, Bordes and Weston (2016) use a Memory Net-

work to solve goal-oriented dialog tasks, where such a network is utilized for multiple

tasks. Another example is given in Wen et al. (2016), where an end-to-end dialog

system is also implemented by a combination of multiple neural networks.

The second approach for goal-oriented dialog systems is reinforcement learning.

Reinforcement learning methods are overviewed in Young et al. (2013). They use

POMDPs, in which the hidden state is the actual state of the dialog. It is not directly

observable due to the ambiguity of natural language. Also, a policy is learned that

decides which action should be taken. Like the fully-supervised approach, there is

again a significant obstacle in obtaining the dialog data.

The disadvantage of these approaches is described by Serban et al. (2015), who

states that there is a lack of high quality, open-ended, freely available conversational

datasets.

Entertainment-oriented bots are designed for providing people enjoyment in

the way to have an appropriate conversation. In Jurafsky and Martin (2014)’s book

we can find the additional information for such chatbots that they support extended

conversations, often have entertainment value and mimic the unstructured conver-

sational nature of human-human interaction. Furthermore, such bots are able to

keep the conversation interesting for the person they are chatting with. In addition,

(Venkatesh et al., 2018) defines chatbots as one specific type of conversational inter-

face with no explicit goal other than engaging the other party in an interesting or

enjoyable conversation.

2.1.2 Response Generation

For creating generative chatbots, sequence-to-sequence networks are usually

used, which requires a lot of training data. As stated in Kim et al. (2018), such

large data sources are today available only for English and Chinese. Even though,

the issue of the generative methods is that there is less control over the outputs,

so they have more issues with following the rules of grammar when compared with

rule-based methods. Tammewar et al. (2017) tried to combine these approaches in a

hybrid model to make the final model more robust.

Retrieval-based conversational agents use a repository of predefined responses

and some kind of heuristic to pick an appropriate response based on the input and

5



context. The heuristic could be as simple as a rule-based expression match, or as

complex as an ensemble of Machine Learning classifiers. These systems pick a re-

sponse from a fixed set. Pattern matching involves using regex to find patterns in

the incoming text, and classify it into different intents.

2.1.3 Capability of Information Providing

Open domain chatbots, sometimes called horizontal, are trying to maintain

the conversation that has no thematic limits and can go in all possible directions.

The chatbot is destined to retrieve all sorts of information. Such systems don’t try

to achieve any goal. But a large amount of world knowledge is required that the

chatbot returns reasonable responses.

Closed domain chatbots, sometimes called vertical, have restricted conversation

to a specific domain, such systems are customarily trying to achieve a specific goal.

The chatbot is able to produce responses due to a specific domain but is not required

to handle all possible cases, so the user does not expect it to.

2.2 Ontology-based Chatbots

The majority of ontology2-based chatbots are domain-specific. Altinok (2018)

confirms it, an ontology-based conversation is indeed a way of domain-driven con-

versation. Venkatesh et al. (2018) supposes that a domain-driven conversation agent

may be more akin to goal-directed conversations, where the output response space

is bounded.

The relevant idea of using an ontology is that using knowledge helps a chatbot

drive a conversation in the sense of an ontology helps a chatbot to understand in

which direction to continue a conversation with a user and create the appropriate

response.

The widespread example of ontology-based chatbots appears on the web pages

of different business companies to help the customers obtain desired information

which is restricted to the specific company domain.

Altinok (2018) describes an ontology-based chatbot for the banking and finance

domain. Its novel approach uses the ontology to keep the context of the dialog. The

used ontology represents banking products, their attributes, and relationships that

the customer can query. The approach to keeping the current context is based on the

fact that the ontology graph can be viewed as a rooted tree in this case – the products

are organized hierarchically so that each one points to its subproducts and vice versa.

Each element can also have its properties that the user can query too. Now, if the

2The term ”ontology” is described in detail in Section 3.1.
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user wants to know something about a product, its name is extracted from the query,

and a pointer is set to the corresponding node in the ontology. If the user wants to ask

additional information about the previously mentioned product, the pointer keeps

the context, and the chatbot, therefore, knows where to search for such information.

If the product has multiple sub-products (such as types of accounts or mortgages),

the chatbot simply queries the ontology to list the corresponding children nodes

so that the user can choose a sub-product or ask for its attributes (such as interest

rate). If the user does not like a particular sub-product, the bot traverses the ontology

to find a sibling node that was not visited yet – already visited nodes are marked

so. This allows the bot to systematically offer the customer alternatives that were

not mentioned before. This approach seems quite straightforward and promising for

domains whose data structures can be viewed hierarchically (i.e., as a rooted tree)

and does not have too much complexity. We will later in this thesis try to generalize

this procedure for domains with arbitrarily dense graphs with cycles.
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Chapter 3

Knowledge Organization

The term means to organize information into schemes to provide consequential

information management. It also ensures to gain structured data from unstructured

data. This thought is important to a concept of machine-readable data. The purpose

of organizing knowledge is to make possible a computer to process such data.

There is an approach to organize the knowledge with classification schemes.

A classification scheme enables to arrange objects into the organization, frequently

having hierarchical form, structure. Such a structure can be represented by classes

and groups of classes.

The widespread example of a classification scheme which organizes knowledge

information is an ontology.

3.1 Ontologies

One of the first definitions of an ontology is given by Gruber (1993), who defines

it as ”an explicit formal specification of the terms in the domain and relations among

them.” Less formally we can describe an ontology as ”each element from some exist-

ing domain can be described by super-classes/classes/sub-classes/instances. These

classes have its properties/attributes. And finally, all classes are interconnected with

each other, which creates classes relationships.”

The significant purpose of an ontology is to help to convey the meaning of data

among computers and also among people.

An ontology is applied to the specific domain and tries to describe this domain

using classes, groups of classes and relations between them. A class1 represents a set of

entities or ‘things’ within a specific domain and a relation2 describes the interactions

between classes or a class’s properties.

1The term ”class” is interchangeable with the term ”concept” in the interpretation of ontology.
2The alternative used term is a ”relationship.”
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Figure 3.1: Movie class hierarchy.

In Figure 3.1 we can see the hierarchical structure of defined classes within the

specific domain focused on movies. There is a root class owl:Thing which is the most

basic class in OWL world3. The root class contains two classes Movie and Person,

where Person has two sub-classes Actor and Director. We can consider other classes

as instances of their super-classes.

Figure 3.2 presents the movie ontology graph based on the hierarchical structure

described above. On the graph, we can notice a number of edges which represents

various relations between the classes. Yellow arrows denote that a class belongs to

its super-class, whereas blue arrows indicate named relations between classes.

Both examples, the movie class hierarchy and the movie ontology graph, were

created using an open-source collaborative ontology development environment, namely

WebProtege4.

3How Welty et al. (2004) explains, every individual in the OWL world is a member of the class
owl:Thing. Thus each user-defined class is implicitly a subclass of owl:Thing.

4https://webprotege.stanford.edu/
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Figure 3.2: Movie ontology graph.
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3.2 Schema.org

We could define Schema.org5 as a classification scheme which is used to de-

fine entities. How Schema.org states, its existing schema is a set of ’types’6, each

associated with a set of properties, and the types are arranged in a hierarchy. Se-

lected examples of such types are Person7, Movie8, Place9. Schema.org covers several

domains.

Each type has properties that can be used to describe a concrete item in more

detail. For instance, the type Movie, which falls under the category CreativeWork10,

can have the properties ”about”11, ”actor”12, ”director”13, etc.

3.3 Knowledge Graph

Knowledge graph is a knowledge base in the shape of a graph created using a

classification scheme. Such a knowledge graph provides detailed information about

a specific domain or a cluster of domains using structured data and relations among

them.

Figure 3.3 is a classic example of the knowledge graph. The nodes represent

entities, such as Leonardo da Vinci, Mona Lisa or The Louvre and the edges describe

the relationships among them.

The movie ontology graph shown in Figure 3.2 can also be considered to be a

knowledge graph.

3.4 RDF Triple

The Resource Description Framework (RDF) is a general method for data mod-

eling and a conceptual description of information. The standard was developed and

agreed upon by W3C15. The framework can be used to structure, to publish and

interlink data on the Web. RDF standard enables knowledge to be represented in a

machine-readable way.

5https://schema.org/
6This means ’classes’ in the interpretation of ontology.
7http://schema.org/Person
8http://schema.org/Movie
9http://schema.org/Place

10http://schema.org/CreativeWork
11http://schema.org/about
12http://schema.org/actor
13http://schema.org/director
14Taken from https://aws.amazon.com/neptune/
15https://www.w3.org/
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Figure 3.3: Amazon Neptune Knowledge Graph based on different
widespread ontologies.14

We could define an RDF triple16 as the atomic data entity in the RDF data

model, specifically, as a set of three entities that codifies a statement about semantic

data in the form

(Subject, Predicate, Object), (3.1)

where the subject is an IRI or a blank node; the predicate is an IRI; the object

is an IRI, a literal or a blank node shown in Figure 3.4. IRIs, literals and blank

nodes are known as RDF terms. An RDF triple expresses a relationship between two

resources17. Manola et al. (2014) explains, the subject and the object represent the

two resources being related; the predicate represents the nature of their relationship.

The relationship is phrased in a directional way, i.e., from subject to object, and is

called a property in RDF.

RDF triples can be expressed in text format by triple languages, e.g., Turtle or

N-Triples. For instance, the sentence ”James Cameron directed the movie Titanic”

16An RDF triple is also known as a semantic triple or an RDF statement.
17Manola et al. (2014) states that anything can be a resource, including physical things, docu-

ments, abstract concepts, numbers, and strings.

12



Figure 3.4: RDF graph.18

can be represented as RDF triple with DBpedia19 URIs in Turtle format, i.e.

< http://dbpedia.org/page/James Cameron >

< http://dbpedia.org/ontology/director >

< http://dbpedia.org/page/Titanic (1997 film) > .

A set of RDF triples creates an RDF graph. The knowledge graph shown in

Figure 3.3 can be transformed into an RDF graph if each node and each edge are

represented by an IRI.

3.4.1 RDF Store

RDF store or Triplestore20 is a purpose-build database management system for

storage and retrieval of any type of data expressed in RDF. Triplestore can be seen

as a subclass of graph databases21. In addition, RDF store supports SPARQL, which

is a query language to retrieve RDF data from triplestores and will be discussed in

Section 3.5.

As Modoni et al. (2014) mentions, a triple store architecture is based on the

NoSQL paradigm because it is more suitable for exploiting the graph form of RDF

data. A graph model based database, which isn’t depending on a rigid schema, fits

more properly to the flexible structure of RDF data.

18Taken from https://cw.fel.cvut.cz/wiki/ media/courses/osw/lecture-02rdfs-s.pdf
19https://wiki.dbpedia.org/
20The interchangeable terms
21The databases that use graph structures (i.e. nodes and edges, where an edge is interpreted as

a relation between two nodes) to represent and store data.
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Figure 3.5: Movie RDF graph based on knowledge taken from DB-
pedia.

The way how data is stored in the RDF database is the following. All triples

are added into a single large table with three columns that correspond to subject,

predicate and object. Indexes are then created for each of the columns.

The widespread examples of RDF databases are DBpedia and Wikidata databases.

DBpedia extracts facts from Wikipedia22 articles and publishes them as RDF triples.

Wikidata is an open knowledge base for storage of structured data. How Vrandečić

and Krötzsch (2014) state, the database was created to manage data from Wikipedia.

Both databases support SPARQL and provide SPARQL endpoint23.

3.5 SPARQL

SPARQL is a query language which is able to retrieve and manipulate data

stored in RDF format. SPARQL queries are executed against RDF datasets, con-

sisting of RDF graphs. For distant retrieving data from RDF stores, a SPARQL

endpoint is used. It accepts queries and returns results via HTTP.

22https://www.wikipedia.org/
23The term is discussed in Section 3.5.
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Assume we are given an RDF graph24 based on knowledge taken from DBpedia

< http://dbpedia.org/page/James Cameron >

< http://dbpedia.org/ontology/director >

< http://dbpedia.org/page/Titanic (1997 film) >;

< http://dbpedia.org/ontology/director >

< http://dbpedia.org/page/Aliens (film) >;

< http://dbpedia.org/ontology/director >

< http://dbpedia.org/page/Avatar (2009 film) >;

< http://dbpedia.org/ontology/birthName >

”James Francis Cameron”@en;

< http://dbpedia.org/ontology/birthDate >

”1954-8-16” .

The graph is also shown in Figure 3.5. We want to retrieve the information from the

given RDF graph such as

”What is the date of birth of James Cameron?”. (3.2)

In this case, we would connect to DBpedia SPARQL endpoint25 and execute a specific

SPARQL query to obtain desired data. Such SPARQL query can look like

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT DISTINCT ?person ?dateOfBirth

WHERE {
?person rdf:type <http://dbpedia.org/ontology/Person >.

?person dbo:birthDate ?dateOfBirth .

?person dbp:name ?name .

?name bif:contains ”’James Cameron’” .

FILTER(REGEX(STR(?dateOfBirth),”[0-9]{4}-[0-9]{2}-[0-9]{2}”))

}.

The SPARQL query syntax, used in the previous example, is slightly similar

to SQL query syntax, but certainly has nuance. So, let’s take a look at the query

structure, which has three main blocks. The first block is so-called prefix declara-

tions which serve for abbreviating URIs. In our example, given prefix means that

24The used syntax is in Turtle format.
25https://dbpedia.org/sparql
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for the URI we use the abbreviation ”rdf”. The second block defines result clause,

i.e., identifies what information to return from the query. Generally, there are four

basic query types, i.e., SELECT, ASK, CONSTRUCT and DESCRIBE, so as shown

above, we use SELECT which returns a binding table with results. The DISTINCT

removes duplicates from returned results. Then, we have two variables starting with

the character ”?”, the variables define which results will be returned. In our case,

we are querying for values of the variable ?person and ?dateOfBirth. Finally, the

third block is called query pattern, which specifies what to query for in the chosen

database. Here, we define variables using their relations as triples. Specifically, in

the first triple the variable ?person is defined as a type Person. The second triple

indicates that the variable ?person has a date of birth, in which we are interested.

And, the third and fourth triples say ”We are interested in values of the variable

person which has the specific name which contains the string ”James Cameron”.

Ultimately, the last row in the query pattern is an option of filtering results, i.e., we

are searching for a value of the variable ?dateOfBirth which would contain the date

in the specific format.

After executing the query defined in (3.2) over the RDF graph, depicted in

Figure 3.5, we would obtain the result table, shown in Table 3.1.

person dateOfBirth

http://dbpedia.org/resource/James_Cameron 1954-08-16

Table 3.1: SPARQL query results returned for (3.2).

We would like to give one more example of querying over the given RDF graph

defined above and also shown in Figure 3.5. We can formulate the query as

”We are interested in all movies directed by James Cameron”. (3.3)

The appropriate SPARQL query will look like

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT DISTINCT ?movie ?movieLabel

WHERE {
?movie rdf:type <http://dbpedia.org/ontology/Film>.

?movie dbo:director ?director .

?movie rdfs:label ?movieLabel .

?director rdf:type <http://dbpedia.org/ontology/Person>.
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?director dbp:name ?directorLabel .

?directorLabel bif:contains ”’James Cameron’” .

FILTER(lang(?movieLabel) = ”en”) .

}.

The results for the executed SPARQL query on the given RDF graph, shown

in Figure 3.5, can be seen in Table 3.2.

movie movieLabel

http://dbpedia.org/resource/Titanic_(1997_film) ”Titanic (1997 film)”@en

http://dbpedia.org/resource/Aliens_(film) ”Aliens (film)”@en

http://dbpedia.org/resource/Avatar_(2009_film) ”Avatar (2009 film)”@en

Table 3.2: SPARQL query results returned for (3.3).
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Chapter 4

Natural Language Processing

Natural language processing is a sub-field of AI which is focused on enabling

computers to understand natural human language. The existing NLP techniques

make efforts to bring computers closer to the understanding of human language.

In this chapter, we overview the issues that are faced in NLP. We describe word-

sense disambiguation, part-of-speech recognition, named-entity recognition, anaphora

resolution and the need of maintaining context of a conversation. We end the chapter

with a look at natural language generation.

4.1 Natural Language Understanding

Natural language understanding is a subtopic of NLP which is focused on ma-

chine reading comprehension, i.e., deals with text processing, e.g., data extraction,

and understanding of data meaning. NLU is considered to be an AI-hard problem.

The main tasks of NLU are information extraction are intent recognition and

named entity recognition.

4.1.1 Intent Classification

As stated in e.g. Hutson (2017), intent is the underlying meaning of an utter-

ance. For example, in the question

”Compare cell phones from Apple with those from Samsung.”

the intent is that the user wants to know a comparison between some elements. It is

not easy to classify intents in general due to their comprehensive expressive power.
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To follow with other examples, observe that in the sentences

”Make me a coffe please.”

”Who is the director of Titanic?”

”Turn the heating on.”

”How is glass manufactured?”

”What do you think about Plato’s Cave?”

the structure of the intent is completely different.

For our purposes, we can restrict ourselves to closed-domain systems. As an

example, Yan et al. (2017) builds a task-oriented chatbot for online shopping. Their

intents come from a pre-defined set – it contains e.g. asking for recommendation,

asking for comparison, asking opinions or querying attributes of products. To form

a whole representation of the understanding of a user query, they use a triple

(I, C,A), (4.1)

where I is the user intent, C are the categories of products that were mentioned

in the query and A is a list of mentioned attributes and their values. Yan et al.

(2017) then approaches the task of classifying these values by a convolutional neural

network.

Bhattacharyya and Hazarika (2016) takes a more theoretical approach to in-

tents and tries to classify a general human intent by a hierarchical finite state ma-

chine.

4.1.2 Named-entity Recognition

Named-entity recognition (NER) is an important sub-task of NLP, which can

be used to extract structured data from unstructured text. In detail, it aims to tag

each word that defines a specific entity by a label from a pre-defined set.

For instance, we might want to label personal names and names of places in

text. Then, for the input string

”Angela Merkel gave a speech at the conference in Munich.”

the tagged entities should be ”Angela Merkel” as a person and ”Munich” as a place.

According to Jurafsky and Martin (2014), the typical approach for NER is to

extract the features of the individual words occurring in the text – such features

could be for instance the part-of-speech tag of the word, its embedding, presence of

a particular suffix or a prefix in the word or the shape of the word. Word embedding

stands for a vector representation of a word that satisfies useful properties. We will

talk about them in detail in Section 5.3. By shape, it is meant which characters in
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the word are upper-case and which are lower-case, the occurrence of numbers and

punctuation. For example, the words ”Munich” and ”Angela” share the same shape,

because they both start with an upper-case letter and continue with 5 lower-case

letters. On the other hand, the words ”John”, ”Ing.” or ”bear” have all different

shapes (the difference between the first two is in the fact that dot is not a lower-case

letter, but a punctuation mark).

There could also be additional features based on lists of possible named entities

– for identifying names of persons, we can use e.g., lists of used names of persons. For

names of places, such list is called a gazetteer, which is a term that is also used as a

general name for such lists of named entities (gazetteer has two possible meanings,

in the following text we will use the second one). If we had multiple gazetteers, we

could add a binary feature for each of them that would mark whether a particular

word occurs in the gazetteer or not. Observe that a single name may be in multiple

lists – for example, Washington is a personal name, a state, and a city. Mikheev

et al. (1999) discusses and shows that large lists of names may not be necessary

for particular types of texts and that a short list with most frequent names may be

sufficient.

Because the given text is viewed as a sequence of words, it is also beneficial

to incorporate some of the features of the neighboring words into the features of

the current word. This means that when we are constructing the features of the

word ”Merkel” from the sentence given in the example above, we also may add the

information concerning the previous word ”Angela” and the following word ”gave”.

Of course, we can also use a wider neighborhood (i.e. consider also the word after

the following word etc.).

As mentioned in Jurafsky and Martin (2014), currently used academical state-

of-the-art approaches for NER are based on an RNN with LSTM cells and/or utilize

conditional random fields, whereas in commercial applications, one can resort to

more simple rule-based methods that rely more on the available gazetteers.

Stanford NER

The Stanford Natural Language Processing Group1 deals with various NLP

tasks and provides high-performing implementations that solve them. One of them

is also their NER tagger, which is based on a CRF classifier. We will briefly discuss

the motivation for using CRF and its usage for NER.

If we are given two sets of random variables X and Y , where X are the ob-

served variables and Y are the unknown (hidden) variables, we might be interested

in modeling the probability distribution p(X, Y ), which can be done in general for

example by a Markov random field. However, we would then want to find for each

1nlp.stanford.edu
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realization x of variables in X the realization y of variables in Y such that the value

of p(Y = y|X = x) is maximal. A novel class of graphical models, called Conditional

Random Fields, which were presented in Lafferty et al. (2001) are focused on model-

ing the conditional probability distribution p(Y |X) directly instead of modeling the

joint distribution.

To be used in NER, the hidden variables Y correspond to the tags that we

want to assign to the words and the known variables X correspond to the words to

be labeled, respectively their features. Then, for given words, a CRF can be used to

find the most probable tags. A more detailed introduction to CRFs can be found for

instance in Sutton et al. (2012) or Sutton and McCallum (2006).

4.1.3 Anaphora Resolution

When holding a conversation, it is common in human communication to re-

member its context. For instance, when a person says

”Yesterday I watched the new movie Arrival. Have you seen it already?”

it is not necessary to repeat the name of the movie in the second sentence, but only

refer to it using a pronoun ”it”, as it is assumed to be deduced from the context

of the previous sentence. Such coreferences are called anaphoras and the process in

which the references are replaced by the original terms is called anaphora resolution.

This is an important and difficult task in NLP, because the computer itself can not

reason about the coreferences. As mentioned in Nemcık (2006), this task itself is

often considered to be AI-complete.

However, anaphora resolution on a single utterance may not be always sufficient

– assume that the dialog started with the previously shown sentence and continues

as follows:

”No, not yet.”

”You should, it was quite good.”

then, the coreference is linked through two exchanges, but one can easily imagine that

it would go through even more. That is why chatbots need to maintain the context

of the conversation even after multiple exchanges in order to correctly understand

given sentences.

4.2 Natural Language Generation

Natural Language Generation is a crucial part of each chatbot, since it is re-

sponsible for producing the actual response of the bot to the user. In NLG in general,

multiple tasks must be addressed to produce a text that is readable for humans. Re-

iter and Dale (2000) lists these tasks as follows:
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• Content determination decides which information should be included in the

response and which should be omitted.

• Document structuring determines in which order the information should be

present.

• Lexicalisation chooses the particular words that will be used in the text and

deals for instance with the choice among synonyms.

• Referring expression generation decides whether a word will be mentioned

by its full name, by description, or just by using a pronoun. For instance, we

would like to produce the text

”Leonardo DiCaprio starred in the movie Titanic. It was made in

1997.”

rather than

”Leonardo DiCaprio starred in the movie Titanic. The movie Ti-

tanic was made in 1997.”

• Aggregation makes sure that if there were some unnecessary repetitions in

the text, they should be put together. For example, instead of

”Leonardo DiCaprio starred in the movie Titanic. Kate Winslet

starred in the movie Titanic.”

we should rather formulate it as

”Leonardo DiCaprio and Kate Winslet starred in the movie Ti-

tanic.”

• Linguistic realisation transforms the results of the above tasks into an actual

text by for example putting the words into the correct form according to the

grammar of the language.

• Structure realisation prepares the already created text into the correct form

based on the system in which it will be presented – it may for example add

tags or annotations to distinguish individual paragraphs of a longer text.

Currently, the most successful approaches for NLG in conversational chatbots,

such as Chen et al. or Pichl et al., are based on text templates that are prepared

in advance. Then, during the conversation, a corresponding template is chosen as a

response, into which additional information may be filled using slots. Template-based

NLG may in fact correspond to various different approaches2, but in its simplest form

it corresponds to having a template sentence, in which some entities may be missing,

for example the template

2It also may not be possible to distinguish it sharply from other approaches (different types of
text templates), as discussed in Deemter et al. (2005)
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”<actor> starred in <movie>.”

produces the sentence

”Leonardo DiCaprio starred in Titanic.”

by the assignment <actor> → ”Leonardo DiCaprio”, <movie> → ”Titanic”.

Except for template-based approaches, there are also methods based on the

formalization of the grammar of a natural language or statistical machine-learning

methods, whose representative is for example Wen et al. (2015) that uses an RNN

to generate natural language output.

Even though template-based NLG may seem to be overly restrictive due to

the large extent of required human labor (teplates must be written manually by the

programmer), Deemter et al. (2005) compares it to the other approaches and comes

to the conclusion that templates should not be viewed as inferior.
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Chapter 5

Machine Learning Algorithms for

NLP

In this chapter, we are first of all going to give a general introduction into fitting

models to training data and estimating the error of models. Then, we describe feed-

forward neural networks and recurrent neural networks. After that, we again focus on

the usage of NNs in NLP, namely for the creation of word embeddings. We conclude

the chapter by introducing the Multi-armed bandit problem, which exemplifies the

exploration-exploitation dilemma that we will also face in our implementation.

5.1 Training of Models and Evaluation

We would like to describe the general principles of statistical machine learning,

i.e., a model fitting on data for classification problem, specifically focusing on super-

vised learning. Then, the common methods of its evaluation will be discussed. The

section is based on material from Mohri et al. (2018).

More formally, in a supervised classification problem, we use the following con-

cepts:

• X is a set of input observations/features

• Y is a finite set of hidden states1

• T is a set of data

T = {(xi, yi) ∈ X × Y | i ∈ {1, ...,m}} (5.1)

i.e. pairs of values, where xi is an observation from X and yi is its corresponding

true hidden state from Y

1The hidden values or labels, respectively the values to be predicted.
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• hθ : X → Y is a prediction strategy2 depending on parameters θ which should

be learned

• l : Y × Y → R is a loss function which penalizes wrong predictions, i.e.

l(y, hθ(x)) is the loss for predicting y′ = hθ(x) when y is the true state

In addition, we could assume that X and Y are random variables, their values

can be obtained by, e.g., running an experiment or observing an environment. So,

there could be a probability distribution p that would assign each pair (x, y) ∈ X×Y
a probability of observing it as p(x, y).

The goal of a classification problem is to find a prediction strategy with the

minimal expected risk, where the expected risk can be calculated as

R(hθ) =
∑

(x,y)∈X×Y

l(y, hθ(x))p(x, y) = Ep(x,y)[l(y, hθ(x))]. (5.2)

However, the probability distribution p is usually unknown, so we consider

using testing data

Ttest = {(xi, yi) ∈ X × Y | i ∈ {1, ..., n}}. (5.3)

Now, using (5.3) the empirical risk can be calculated as

RTtest(hθ) =
1

|Ttest|
∑

(x,y)∈Ttest

l(y, hθ(x)) (5.4)

which can be viewed as an approximation for R(hθ).

In the case, when l(y, hθ(x)) is so-called a 0-1 loss function, which can be defined

as

l(y, hθ(x)) =

{
0 if y = hθ(x)

1 if y 6= hθ(x)
, (5.5)

the R(hθ) is called the generalization error or the expected error of a prediction

strategy, and RTtest(hθ) is called the empirical error of a prediction strategy, because

these quantities correspond to the probability of making wrong predictions.

Theoretically, we would like to find a set of classification models for hθ param-

eterized by θ, so the value of R(hθ) would be minimal. Practically, it is usually not

possible to calculate the expected risk, because p(x, y) is unknown, thus we need to

estimate it. The commonly used methods for estimation will be described in the next

section.

2Also known as an inference rule
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5.1.1 Training, Validation, and Testing Datasets

The empirical risk should be calculated using testing data as was described

above. In the case, when the empirical risk is calculated using all available non-

separated data, it can lead to model overfitting. Overfitting means that a model is

performing well on training data, but classifies poorly on unobserved data. We could

say that the risk of overfitting is higher when more flexible models are used.

To avoid overfitting, it is necessary to divide the available non-separated data

T into three pairwise disjoint datasets Ttrain, Tval, Ttest. The Ttrain
3 dataset would be

used for training, i.e. for the estimation of parameters θ of a model. The Tval
4 dataset

would be used to calculate the empirical risk and to find the hyper-parameters5 of a

model. The Ttest
6 dataset, whose data should be unobserved during training, would

be used for evaluating a finally chosen model, i.e., the best performing model on Tval,

to estimate its performance.

5.1.2 Cross-validation

Cross-validation is used in the situation when Ttrain and Tval datasets haven’t

enough data to train a model properly or to make a precise comparison among

hyper-parameters. The most widespread type of cross-validation is a so-called k-fold

cross-validation.

In k-fold cross-validation, the available data is randomly divided into k + 1

pairwise disjoint equal sized subsets

T1, ..., Tk, Ttest. (5.6)

The purpose of Ttest subset is the same, i.e. for evaluation of a finally chosen model,

as was described above.

The k subsets are used for training and validation. We train k models hθ1 , ..., hθk
where the model hθi , i ∈ {1, ..., k} is trained using data from the set⋃

j∈{1,...,k}−{i}

Tj, (5.7)

i.e. data from all sets Tj except for the set Ti. Then, each of these models is evaluated

exactly on the set Ti.

3Training dataset
4Validation dataset
5E.g., the choice of the kernel and its dimension in SVM or the number of hidden layers in an

NN.
6Testing dataset or so-called holdout data
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The overall cross-validation error is thus calculated as

1

k

k∑
i=1

RTi(hθi) =
1

k

k∑
i=1

1

|Ti|
∑

(x,y)∈Ti

l(y, hθi(x)). (5.8)

This criterion can be used for comparison among the hyper-parameters of the

model.

5.2 Artificial Neural Networks

Artificial neural networks are a hugely useful and extraordinarily successful tool

of machine learning in general. In this section, we are going to briefly describe them

– we will start with feedforward neural networks, describe their layers and param-

eter learning while avoiding overfitting. Secondly, we will explain the differences in

recurrent neural networks and in detail look on LSTM cells that are often utilized

in NLP. The section is based on material from Goodfellow et al. (2016).

5.2.1 Feedforward Neural Network

A feedforward neural network can be viewed as a vector function, which means

that it accepts multiple values on its input and also produces multiple outputs. More

formally, it is a function fθ : Rn → Rm that has parameters θ.

Neural networks are usually composed of layers, which can be viewed as simple

intermediate vector functions

f jθj : Rdj → Rdj+1 , (5.9)

so that

fθ = f 1
θ1
◦ f 2

θ2
◦ ... ◦ fhθh , (5.10)

where d1 = n, dh+1 = m and θ contains all the parameters of the intermediate

functions. The first layer is usually called the input layer, the last layer is the output

layer and the ones between them are called hidden layers.

There is a multitude of possible layers that can be used, but simple feedforward

neural networks are usually composed of fully-connected layers followed by a non-

linear activation function, which is again followed by a fully-connected layer, etc. –

the kinds of layers alternate until the last layer is reached. If we want the NN to

perform classification, softmax is commonly used as the last layer.

The fully-connected layer j corresponds to a function in the form

f jA,b(x
′) = Ax′ + b, (5.11)
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where A is a real matrix of size dj+1 × dj and b is a bias vector of length dj+1. The

parameters of such layer are the values in the matrix and in the bias vector.

The layers corresponding to activation functions have the same amount of in-

puts as outputs, because they correspond to element-wise application of a non-linear

function. More formally, if we consider a layer j to be such, it holds that dj = dj+1

and

f j∅ (x
′) =


g(x′1)

g(x′2)
...

g(x′dj)

 , (5.12)

where g : R→ R is an activation function that usually does not have any parameters,

so this activation layer does not have any by itself.

It is important that the activation function is non-linear. Otherwise, it could

be modeled by the directly preceding fully-connected layer and become useless. As

stated for example in Ramachandran et al. (2017), the currently most-successful and

widely-used activation function is ReLU, i.e.

g(x′) =

{
x′ if x′ ≥ 0

0 if x′ < 0.
(5.13)

However, there might appear some issues with this function as it has zero derivative

for all x′ < 0 and its derivative is undefined at x′ = 0. Due to the zero derivative,

the backpropagation algorithm, that will be introduced later, may fail to update

the parameters that are ”behind” this element, which might be a problem in some

architectures. The issue with zero derivative is solved for example by LeakyReLU,

which is defined as

g(x′) =

{
x′ if x′ ≥ 0

αx′ if x′ < 0
(5.14)

for some small positive constant α. There are also other modifications of ReLU, such

as ELU, which was presented in Clevert et al. (2015), SELU, proposed in Klambauer

et al. (2017), and others.

Another activation functions are for instance hyperbolic tangent, defined as

tanh(x′) =
ex

′ − ex′

ex′ + ex′
, (5.15)

or logistic sigmoid function, defined as

g(x′) =
1

1 + e−x′
. (5.16)

In case that we would like to create a neural network for classification, the last
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layer in the network is so-called softmax, which is calculated as

fh∅ (x′) =


r(1, x′)

r(2, x′)
...

r(dh, x
′)

 , (5.17)

where

r(q, x′) =
ex

′
q∑dh

j=1 e
x′j
. (5.18)

This layer does not have any parameters and is used for classification into m classes

so that we identify each of the m (resp. dh = m) classes with a single value of the

vector on the output and then, when an input x is put into the network, we classify

it as the class whose corresponding value on the output of the last layer (i.e. the

softmax layer) has the highest value.

Training of Neural Networks

In the previous section, the structure of feedforward NN was described in gen-

eral, now we would like to show how to train such model. Assume that we are given

training data

T = {(xi, yi) | i ∈ {1, ..., l}}, (5.19)

where xi ∈ Rn, yi ∈ Rm, we would like to find the parameters θ of the neural network

so that it will hold fθ(xi) ≈ yi for all i ∈ {1, ..., l}.

To do so, we need to create an additional layer to the neural network, which

is called the loss layer. The choice of loss layer depends on the task that we want to

model. In the case of regression, the sum of squared errors is used as the loss layer.

This results in a function

f ′θ(T ) =
∑

(x,y)∈T

m∑
j=1

(fθ(x)j − yj)2, (5.20)

where fθ(x)j is the j-th element of the predicted vector for input x and y is the

correct (also called target) vector.

On the other hand, if we perform classification into multiple (let us say m)

classes, the vectors y in the training set are usually encoded as one-hot vectors that

represent an index of the correct class. In such case, one should use categorical cross

entropy as the loss layer, which yields

f ′θ(T ) = −
∑

(x,y)∈T

m∑
j=1

yjlog(fθ(x)j), (5.21)
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where fθ(x)j is the j-th element of the output vector that was created by the softmax

layer.

The learning of the network then corresponds to minimizing the value of f ′θ(T )

concerning the parameters θ. For this task, a method called backpropagation is used.

Because the function f is composed of simple functions, it is easy to calculate its

gradient w.r.t. the parameters θ by chain rule and we can, therefore, do the same

for f ′. We could then apply a gradient descent method to find a minimum. However,

the evaluation for the whole dataset may be time-consuming, so only a small portion

(called batch) is used to calculate the value of the gradient. This approach is called

stochastic gradient descent and is based on iterating over batches of training data –

for each batch, the output of the network and gradient are calculated and then, the

parameters of the network are updated.

Techniques for Improving Generalization

Because neural networks form flexible models, it is necessary to avoid overfit-

ting, which is the case that the model predicts well on the training data set, but has

a large error on data that were not used in training. To avoid this, one can apply

various measures to prevent it and improve generalization; such measures are:

• Using a validation data set that is periodically evaluated while training the

neural network and once the error on the validation data set starts to increase,

it is a sign of overfitting on the training dataset, so the training is stopped.

This procedure is also called early stopping.

• Introducing dropout that ”turns off” some neurons in the neural net with

a given probability. This formally corresponds to setting the value of some

components on the output in the intermediate layers to zero. This procedure

forbids the neural network from, e.g., relying on a single input feature.

• Adding a regularization term to the loss function – this formally corresponds

to minimizing

f ′θ(T ) + α

|θ|∑
i=1

θ2
i (5.22)

in case of L2 regularization, which is more frequently used, or to minimization

of

f ′θ(T ) + α

|θ|∑
i=1

|θi| (5.23)

in case of L1 regularization. In both cases, α > 0 is a regularization constant,

and the added terms assure that the norms of the individual parameters are

small, so no parameter may ”outweigh” the others – again as with dropout,

this forces the neural network to use all the parameters.
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The last method that should be applied to obtain a well-generalizing neural net-

work is hyper-parameter optimization. Whereas the previously mentioned methods

dealt only with the values of the parameters of an NN, hyper-parameter optimiza-

tion chooses the amount and the kind of parameters that the NN should have. These

hyper-parameters could be categorical, such as

• used activation function and

• used optimizer

or numerical, such as

• number of hidden layers,

• the dimensionality of the vectors that the hidden layers process,

• parameters of the optimizer and

• dropout probability.

For each of the desired hyper-parameters, we should first use reasoning based

on professional experience to set up a range of its possible values. For continuous

hyper-parameters or integer hyper-parameters with a large range, the values should

be sampled as it would not be possible or not be useful to evaluate all the values.

Then, we should apply a method of choosing the best combination of them.

Such method could be for example grid search, in which we evaluate all the

combinations of the values of the parameters and then pick the best-performing

one. The disadvantage of this procedure is that there could be exponentially many

combinations with respect to the number of hyper-parameters and that is also why

we should think about sub-sampling the possible values for each hyper-parameter

when using grid search. We should also remember that the evaluation for a single

choice of hyper-parameters is costly because it corresponds to training of a possibly

large neural network with many training data.

Another widely-used option according to Bergstra and Bengio (2012) is called

manual search, in which the tried combinations are manually crafted based on the

results on the previous runs on different combinations.

Bergstra and Bengio (2012) claims that random search is equally or more ef-

ficient than both grid search or manual search. In a random search, we randomly

generate a number of possible configurations and then evaluate them and choose

the best-performing. The results are justified by claiming that usually, only a few

hyper-parameters are important for having good results, but these hyper-parameters

are different for each prediction problem. Therefore, evaluating the combinations of

the unimportant parameters, as grid search does, seems useless.
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Bergstra et al. (2011) also offers other alternatives, namely Sequential Model-

Based Global Optimization. This is a general class of algorithms that are useful in

cases when the evaluation of the criterion function is expensive, which is our case

because the training of a neural netwo is time-demanding. These algorithms use

an approximation of the true criterion function that is estimated using the already

known evaluated values for some hyper-parameter combinations. The values of the

hyper-parameters for the next step are then chosen as the minimizers of the approxi-

mation, which should be computable in a reasonable time. The true criterion function

is then evaluated for these parameters, the approximate function is re-fit using the

newly calculated value and the whole process repeats. Finally, we can choose the pa-

rameters that resulted in the best-found criterion function value. This procedure is

more formally written in Algorithm 1, where the true criterion function that should

be minimized is g, its parameters are denoted by φ, and the domain from which

the parameters come is the set Φ. The approximation function trained on sample

data-pairs

T = {(φ1, g(φ1)), ..., (φn, g(φn))} (5.24)

is denoted as MT and its value at point φ is denoted as MT (φ).

Algorithm 1: Sequential Model-Based Global Optimization of function g
over the domain Φ for s steps.

1 Function SMBO(g , s) is
2 T ← ∅;
3 for i in {1, ..., s} do
4 φi ← argminφ∈Φ MT (φ);

5 calculate g(φi);
6 T ← T ∪ {(φi, g(φi))};
7 return T ;

5.2.2 Recurrent Neural Networks

The previously shown feedforward neural networks only accept inputs of a fixed

length. However, this may be problematic for example in NLP or speech recognition,

where the inputs may vary in length and can not be put into a feedforward NN

separately because there is a dependence between the individual inputs, which would

be lost by their separation.

That is why recurrent neural networks were created – unlike feedforward neural

nets, they have a memory, so that we can input a sequence of vectors into such

network and the dependence between the inputs will be retained. The memory in

RNNs is implemented by sending a part of the output of some layer as an input to
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a previous layer in the network so that its value can be re-used for the next input

value.

However, it was found in, e.g., Bengio et al. (1994) that training an RNN for

long sequences is difficult, so it is necessary to find special kinds of cells or layers

that could be used and would avoid the vanishing gradient problem. Such elements

are for example LSTM cells, which were introduced in Hochreiter and Schmidhuber

(1997), or Gated Recurrent Units that were inspired by LSTMs and are surveyed for

example in Dey and Salem (2017).

Long Short-term Memory

There are multiple variants of the LSTM cells, which are listed in, e.g., Greff

et al. (2015), we will describe the most popular variant with forget gate. This variant

is depicted in Figure 5.1. In the figure, there are three gates (input, output and

forget), block input and the cell that stores the inner state. Both the block output

and the input vector are connected to all the gates and the block input. Following

the notation from Greff et al. (2015), the names of elements in an LSTM cell are

overviewed in Table 5.1.

Symbol Meaning
N ∈ N number of LSTM blocks
M ∈ N size of input
xt ∈ RM input vector at time t
zt ∈ RN block input at time t
yt ∈ RN block output at time t
it ∈ RN input gate at time t
f t ∈ RN forget gate at time t
ot ∈ RN output gate at time t
ct ∈ RN cell value at time t

Wz,Wi,Wf ,Wo ∈ RN×M input weights (matrices with parameters)
Rz, Ri, Rf , Ro ∈ RN×N recurrent weights (matrices with parameters)

bz, bi, bf , bo ∈ RN bias weights (vectors with parameters)

Table 5.1: Notation of the used symbols in equations (5.25)-(5.30)

Using these elements, we can define the processing of an LSTM cell by the

following discrete dynamic equations:

zt = tanh(Wzx
t +Rzy

t−1 + bz) (5.25)

it = σ(Wix
t +Riy

t−1 + bi) (5.26)

f t = σ(Wfx
t +Rfy

t−1 + bf ) (5.27)

ct = zt � it + ct−1 � f t (5.28)

ot = σ(Wox
t +Roy

t−1 + bo) (5.29)
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yt = tanh(ct)� ot, (5.30)

where σ is the logistic sigmoid function applied element-wise and tanh is also applied

element-wise. The hyperbolic tangent in (5.25) and (5.30) may also be replaced

by ReLU, as stated in Dey and Salem (2017). The symbol � is the element-wise

multiplication of two vectors, it can be also generalized to matrices, where it is

called Hadamard product.

Figure 5.1: Block schema of LSTM cell.

5.3 Word Embedding

Many ML algorithms and deep learning architectures, such as RNN, are not

capable of processing sentences in a natural language, i.e., strings or plain text in

their raw form. In this case, word embedding can help.

Word embedding is a widespread technique in NLP, which maps the words from

a dictionary W , where W ⊆ Σ+, to a vector space in a specified dimension.

More formally, we would like to find a mapping f that assigns each word w ∈ W
a real-valued d-dimensional vector f(w) ∈ Rd, i.e.

f : W → Rd. (5.31)

Besides, a mapping f should satisfy useful characteristics, such as words with

similar meaning have a similar vector representation; synonyms can be clustered,

etc. It helps to capture semantic and syntactic words relations.
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5.3.1 Word2vec

Word2vec is a technique used to produce word embeddings. This task was

already discussed by Dhillon et al. (2011), but a current state-of-the-art approach is

invented by Mikolov et al. (2013a).

The approach is a group of models that use shallow neural networks which are

utilized to find a mapping f .

Mikolov et al. (2013a) mentions two model architectures, both are based on

sequences of words in a sentence and can be sped up by using negative sampling and

hierarchical softmax.

Denote a single sentence with k words as a sequence {wi}ki=1 of words from W .

The first model, CBOW tries to predict the middle word in the (2n+ 1)-gram based

on the surrounding 2n words. More formally, we use the words

wi−n, wi−n+1, ..., wi−1, wi+1, ..., wi+n, (5.32)

i.e., a bag of words, to predict wi. The second model, skip-gram performs the opposite

procedure. wi is given, and it is trained to predict the 2n surrounding words.

Both model architectures return comparable results. The precision of the found

mapping f depends on the amount of training data and the dimension d of the vector.

The mapping f found by the models has valuable properties, which are in detail

discussed in Mikolov et al. (2013b), the vector representation maintains the semantic

and syntactic words relations. For instance, if there are three words w,w′, y ∈ W ,

we are searching for a fourth word y′ ∈ W such that y is in the same relation to y′

as w is to w′. Formally, we formulate it as

y′ = argmin
x∈W

DC(f(y) + f(w′)− f(w), f(x)), (5.33)

where DC is the cosine distance and f(w′)−f(w) can be interpreted as the ”relation

vector”. The example results for word y′ can seen in Table 5.2 taken from Mikolov

et al. (2013a).

Relationship type w w′ y y′

Plural form mouse mice dollar dollars
Antonym possible impossible ethical unethical

Capital city of state Athens Greece Oslo Norway
Man-woman brother sister grandson granddaughter

Table 5.2: Examples of preserved relationships.
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5.3.2 GloVe

GloVe is a model for distributed word representation. It includes the overall

structure of word frequencies, i.e., it uses a square matrix X of size |W |×|W |, whose

elements Xi,j contain the number of occurrences of a word wi is in the context of word

wj. The matrix X, so-called the word-word co-occurrence, can be used to estimate

P (wj|wi), which is the probability of a word wj to be in the context of wi, as

P (wj|wi) =
Xi,j∑|W |
k=1Xi,k

. (5.34)

The ratios of these probabilities are relevant in estimating the relations between

words. For example, the words ”beverage” and ”food” might occur with the same

(but high) probability in the context of ”refreshment”, i.e.

P (”food”|”refreshment”)

P (”beverage”|”refreshment”)
≈ 1, (5.35)

but also occur with the same (but lower) probability in the context of ”car”, i.e.

P (”food”|”car”)

P (”beverage”|”car”)
≈ 1. (5.36)

Using such observation, Pennington et al. (2014) concluded that the context words,

which give significantly different conditional probabilities, are important, e.g. for

context words ”eat” and ”drink”, i.e.

P (”food”|”eat”)

P (”beverage”|”eat”)
> 1, (5.37)

P (”food”|”drink”)

P (”beverage”|”drink”)
< 1. (5.38)

Pennington et al. (2014) formulates assumptions of the vector representations

of individual words, e.g., partial interchangeability of a context word and a query

word or a symmetry of the X matrix. Using these assumptions, they would like the

word representations of words pairs f(wi) and f(wk) to satisfy

f(wi)
Tf(wk) + bi + bk = log(Xi,k), (5.39)

where bi and bk are bias terms corresponding to words wi and wk. The conditions

defined by (5.39) are not strict, thus a weighted least squares method is used, which

produces the criterion function, i.e.∑
wi,wk∈W

τ(Xi,k)
(
f(wi)

Tf(wk) + bi + bk − log(Xi,k)
)2

(5.40)
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that should be minimized. The weight corresponding to a word pair is defined by

a non-decreasing function τ which filters the frequently non-co-occuring word pairs,

i.e. τ(0) = 0, which also avoids the issue of evaluating log(0).

After optimizing the criterion function (5.40), the result word representations

f(w) show to be more accurate in the relations between the vectors7 than the results

of CBOW model or skip-gram model described in Section 5.3.1 .

5.3.3 FastText

The methods described above, Word2vec and GloVe, assumed that words are

stand-alone elements of sentences and are not structured themselves. This assump-

tion is an issue in the case of inflected languages, where the same word can take

multiple forms based on its context. To capture these properties without the need

to increase training data, it is required to include the structure of words.

Bojanowski et al. (2016) proposed a different method based on mapping the

character n-grams to vectors. The overall vector for a given the word is calculated

as a sum of its character n-grams. More precisely, the n-grams are not chosen for

a single fixed n, but for all 3 ≤ n ≤ 6. Additionally, the method also distinguishes

whether a particular character n-gram is located at the beginning of a word, in the

middle, or at the end, which allows mapping prefixes or suffixes differently.

This novel approach is also capable of creating vector representations for words

that were not present in the training set because the already trained character n-

gram vectors can be used even for previously unobserved words to determine their

representation. The benefits of this method can be seen in languages that use a

multitude of compound nouns, such as German.

5.4 Multi-armed Bandit problem

The multi-armed bandit problem is an exemplification of the exploration-

exploitation trade-off dilemma from reinforcement learning. We could introduce the

definition of the problem as there are k slot machines and each has a different un-

known probability distribution of rewards8, i.e., each slot machine has a different

expected value of rewards. The task is to choose a slot machine to play to maximize

the overall cumulative reward.

There are a few approaches on how to play on slots machines. The first straight-

forward approach is to play in the first round on each slot machine once, in next

7”Find y′ such that y is in the same relation to y′ as w is to w′ for given words y, w,w′ ∈ W .”
Then, the accuracy is measured by the amount of correctly guessed y′. Reference datasets are
available and listed in Pennington et al. (2014).

8Positive reward means to win money, negative reward means to lose money.
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rounds always play on the slot machine which returned the highest reward in the

first round. However, the strategy used in this approach can fail, because if in the

first round the slot machine with the indeed highest average reward unluckily returns

a low reward, and oppositely, the slot machine with the truly lowest reward luckily

returns a high reward. Thus, using this strategy, the player would always choose a

slot machine with a low average reward.

The next possible approach can be more explorative. The idea is that the player

would perform a lot of trials on each slot machine. And after that will choose the

slot machine with the highest average reward. The disadvantage of this strategy is

wasting trials on slot machines with an evidently low average reward.

This example illustrates the exploration-exploitation dilemma, in which we

should balance between a greedy strategy that would exploit the options with highest

estimated reward and exploring strategy that will try even less-promising alternatives

that nevertheless may show to be of higher quality.

To be able to describe more advanced algorithms, we should introduce formal

notation. Recall that there are k possible options. Then, for each option i ∈ {1, ..., k}
we should have two scalar values, ni ∈ N0 and r̄i ∈ R, where ni stores the number

identifying how many times option i was chosen and r̄i stores the average reward

among those trials, i.e.

r̄i =

∑ni

j=1 r
i
j

ni
, (5.41)

where ri1, ..., r
i
ni

are the actual rewards from the individual trials of option i. The

average reward might serve as an estimate of the expected value of the underly-

ing unknown distribution of rewards. If ni = 0, r̄i is customarily defined as ∞ for

implementation purposes, so that each option is initially tried at least once.

5.4.1 Strategies

Epsilon-greedy Strategy

Vermorel and Mohri (2005) evaluates that a simple ε-greedy strategy works

reasonably well. This strategy has a parameter ε ∈ (0, 1) which balances between

exploration and exploitation. With probability ε, we choose randomly among all

the k options with the uniform probability distribution. With probability 1 − ε, we

should choose an option from the options with the highest average reward, again with

the uniform probability distribution. More formally, an option i with non-maximal

average reward r̄i < maxkj=1 r̄j is chosen with probability

ε

k
, (5.42)
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whereas an option i that has maximal average reward r̄i = maxkj=1 r̄j is chosen with

probability
ε

k
+

1− ε
|A|

, (5.43)

where |A| is the number of options with the maximal average reward, i.e.

A =
k

argmax
j=1

r̄j. (5.44)

In this ε-greedy strategy, the value of ε is fixed during the run of the whole

algorithm, but it is natural to decrease its value as the sampling progresses, i.e.

introduce a non-increasing sequence {εi}∞i=1 defined, for example, as εt = min{1, ε0
t
},

where ε0 is some positive constant. Such strategies are called ε-decreasing.
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Chapter 6

Implementation

In this chapter, we would like to present our implementation of a chatbot whose

implementation can be re-used to any domain (or even for multiple domains at the

same time), but we have implemented it for the domain of movies. First of all, we

will describe the high-level ideas and the overall architecture that is decomposed into

individual modules. Second, we will talk about each module in detail. After that, we

will mention some specific implementation details and explain how it was integrated

into both Amazon Alexa and Slack. Finally, we will mention the used datasets.

6.1 Architecture Overview

On the highest level of abstraction, the chatbot can be viewed as a black-

box that accepts written user text on input and produces some text output as a

reply to the user query. Additionally, this black-box has internal memory so that

it may produce different replies to the same query in the same conversation. To be

used in an application for replying to speech, it is necessary to use some already

existing techniques to convert the user speech to text and also create speech from

the chatbot’s reply.

In more detail, there are 6 main modules that together form the chatbot. The

overall architecture in which they are arranged is shown in Figure 6.1.

First of all, when a user text is obtained, it is necessary to preprocess it before

further evaluation. There are different ways of preprocessing based on into which

module will the preprocessed text be sent next. One of the modules that accepts the

user input is the intent classification module whose task is to determine what is the

content of the user query on high level – for instance, what kind of information does

the user want, whether he/she agreed to some offered information from the chatbot

etc.
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Figure 6.1: Architecture Overview.

When the intent is already known and we need to extract some information

from the user query (e.g. if the user asks for the date of birth of a person, then we need

to extract the person’s name), the user query is sent into the information extraction

module along with a list of entities that need to be extracted. The entities throughout

the whole implementation are unified to use the Schema.org1 nomenclature.

As mentioned previously in the chapter describing NLP, it is necessary to also

remember the context of the conversation. Context has its own module that remem-

bers what entities are currently being discussed in order for the chatbot to be able

to respond to questions from the user that use e.g. coreferences.

Now, when the intent of the user query is known and all necessary entities were

recognized, we can search for the data that the user wanted in a knowledge base.

Knowledge base is a part of the architecture that provides access to data sources, e.g.

databases. The individual sources of data are called data providers and are unified

under a single interface.

At this point, we do not have only the information from the user, but also

the information that the user asked for. Based on these data, we can guess what

other information (or attributes) would the user like to know and offer it to him/her.

These decisions are also driven by the history of user queries and are managed by

1https://schema.org/
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the attribute choice module.

Finally, we already have all the data and also some additional reply for the

user to keep the conversation fluent. These data are given to the answer generating

module that forms them into a natural language response which is sent back to the

user.

6.2 Single Building Blocks Description

We now continue with a detailed description of each module – for each of them,

we will be more specific about the form of the values on the input and the output.

Of course, we will also be more precise about the inner functionality of each building

block.

6.2.1 Intent Classification Module

As the name suggests, this module is given the user-query, and its task is to

determine what is the user’s intent based on the query. To do this, a recurrent neural

network is utilized.

The user-written text is first converted into an appropriate form – the text is

tokenized into a sequence of separated words, which are then normalized to be lower

case. After that, the individual words are mapped to their vector embedding repre-

sentations. For this, we have used pre-trained GloVe vectors created by the procedure

outlined in Section 5.3.2. These vectors are then put into our RNN, whose last layer

is softmax, so it is able to predict one of the pre-set intents. Using already trained

vector embeddings is equivalent to transfer learning, in which learned parameters

are taken from another already trained network and then set as fixed parameters of

another one. The architecture that was chosen is described later, in Section 7.2 and

is depicted in Figure 7.4 with the choice of parameters DDLD3.

For our purposes, it is enough to consider only intents in which the user wants

to obtain some information which is interconnected with other information in the

input sentence.

Each intent is defined by two lists of entities – the first list contains what infor-

mation the user gave or what is known and the second list contains what information

is required by the user, in other words, what the user wants to know. For example,

if the user poses the question

”Who acted in the movie Alien?”

then, the intent should be classified as that the user wants to know the entity
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Schema.org/actor2 for a given Schema.org/Movie3. Of course, the movie may not

be given explicitly, because the user can ask the question

”Who acted in it?”

if he/she discussed the movie with the chatbot earlier. In such case, the intent is the

same and does not depend on whether the information was given explicitly.

As mentioned above, there may not be only one given entity or one required

entity, there can be more of both. For example, if the user asks a more general query,

for example

”Tell me something about the movie Avatar.”

then, the required data should be a list of multiple basic attributes of a movie.

There is also an additional intent, called confirmation intent, that indicates the

fact that the user is interested in the information that the chatbot offers, e.g., if the

chatbot’s reply was

”Would you like to know how old is this actor?”

then, we should be able to detect a confirmation answer from the user. This intent

is a special one because it is further processed in a slightly different way than the

intents that correspond to the questions posed directly by the user. If it is detected,

we ask the attribute choice module, about which we will talk in detail later, but at

this point, it is important that it stores the intent of the question previously offered

by the chatbot.

6.2.2 Information Extraction Module

Information extraction module is responsible for retrieving specified informa-

tion from the user input. Usually, the task is to find the given entities in the input.

The list of the given entities is already known – it was determined by the intent

classification module. The task of this module is to extract each user-given entity

from the input user sentence if possible.

For instance, recall the example where the user asked for an actor that appeared

in a specified movie. Then, the information extraction module is given the question

and the information that it should search for the entity Schema.org/Movie.

As shown before, it is possible that not all the entities are given in the text –

for example if the user used a coreference or just agreed to obtain the information

that was offered by the chatbot. In such cases, we ask the module that is responsible

for context for these things. This module will be described in the next section.

2Shortened canonical URL for the entity actor from Schema.org ontology
3Shortened canonical URL for the entity movie from Schema.org ontology
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The implementation of an information extraction module is flexible in the sense

that one can easily exchange the method of extraction, which should implement a pre-

defined interface. We have implemented two choices for possible use in our chatbot –

the first one is the Stanford NER tagger that was trained for detecting the individual

entities that are required and the second one is our approach based on a list of named

entities.

The introduction of our approach was motivated by the following facts:

• Running the Stanford NER tagger on a personal computer on a given sentence

with at most ten words can take up to approximately 3 or 4 seconds, which

we viewed as slow because the user of the chatbot would need to wait for the

reply at least for this time. We are therefore aiming for faster calculation.

• There is a lack of training data with possible user queries that would also

have entities tagged by labels. For instance, if someone wanted to use our

architecture for books, it is enough to provide a list of book titles that could

be downloaded from already existing databases. On the other hand, to train

Stanford NER, it would be necessary to find or create a list of possible user

queries considering books that would also have tagged entities.

• Stanford NER may also tag elements that do not correspond to real entities.

For example, if the user makes a typo and asks

”Who directed Shawshank Redempion?”

Stanford NER may tag ”Shawshank Redempion” as the movie in the sentence

(if it is trained on a large-enough dataset previously). However, some databases

may have trouble with wrongly written names of entities, that is why we would

like our approach to be robust against such situations and always return an

existing entity name without typos.

• Proper capitalization of named entities is also important for the Stanford NER

CRF classifier, so it may lead to erroneous behavior in the case that the user

would not, e.g., capitalize the name of an actor or the title of a movie. To

name another example, if the chatbot would be used in Amazon Alexa, the

recognized text that is formed from user’s speech may not be capitalized at all.

There are multiple ways of matching exact keywords in a sentence – for instance

DFA whose graph corresponds to trie containing the words with additional transitions

that are used in case that a character cannot be matched (in such case, we go to the

state that corresponds to the longest suffix of the word represented by the current

state). On the other hand, there are also fast algorithms for approximate comparison

of a single string to another string – so-called Levenshtein automaton, which is an

NFA. These procedures are described for example in Melichar et al. (2005). Running
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multiple automata (that correspond to matching individual names) might be too

time-consuming. That is also why we have designed a custom approach, in which

we search for a substring of the user-given string and a name such that it has the

minimum Levenshtein distance concerning all substrings and all names.

User Utterance Preprocessing

When extracting information from user utterance, it is beneficial to remove the

so-called stop words, which are words that frequently occur in a language and are

therefore of low importance for categorization. E.g., in English, it might be articles

or prepositions. We use a list of stop words4 before performing the actual extraction.

The stop words should also be removed from the different named entities in the

corresponding entity lists.

To further improve the entity recognition, it is possible to extend the list of

stop words by ”domain-specific” stop words – in our case, we have extended the list

of stop words by frequently used terms in the movie domain. For example, it is not

likely that the name of an actor would contain the words ”act” or ”played” or that

a movie title would contain the word ”directed”5.

After filtering stop words, the text is then normalized to contain only lower-

case letters, which is also performed on the list of given named entities. Of course,

we keep copies of the original unchanged words next to the altered ones so that if

we find a match among the changed words (i.e., with the removed stop words and

in lower case), we return the original unchanged one.

Proposed Method

First of all we should more formally and generally state the problem. We are

given a dictionary of keywords6 D that are already preprocessed. Also we have an

original user utterance t′ which is preprocessed to text t by the previously described

procedure. Then, we would like to find a keyword k∗ from D such that

k∗ ∈ argmin
k∈D

min
s∈δ(t)

L(s, k), (6.1)

4The actual list is taken from https://kb.yoast.com/kb/list-stop-words/
5In fact, there exists a movie with title ”Directed By” and was made in 2012 (IMDb webpage:

https://www.imdb.com/title/tt2499206/), but as we have tested, even commercial chatbots
such as Amazon Alexa are not capable of dealing correctly with such movie titles.

6For the purpose of description of our algorithm, we will use the common term ”keyword” to
denote the words we are interested in instead of the NLP term ”named entity”.
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where δ(t) are all possible n-grams7 of t, i.e.

δ(t) = {t[i : j]|1 ≤ i ≤ j ≤ |t| ∧ (i = 1 ∨ P (t[i− 1])) ∧ (j = |t| ∨ P (t[j + 1]))}, (6.2)

where P is a predicate on characters. Formally, P : Σ→ {true, false} satisfies

P (c) =

{
true if the character c is a word delimiter

false otherwise
. (6.3)

The following example denotes this concept

t′ = ”Do you think you can say what movies does Naomie Harris

appear in, please?”

t = ”think can say naomie harris appear please”

δ(t) = { ”think”,

”think can”,

”think can say”,

”think can say naomie”,

”think can say naomie harris”,

”think can say naomie harris appear”,

”think can say naomie harris appear please”,

”can”,

”can say”,

”can say naomie”,

”can say naomie harris”,

”can say naomie harris appear”,

”can say naomie harris appear please”,

”say”,

”say naomie”,

”say naomie harris”,

”say naomie harris appear”,

”say naomie harris appear please”,

”naomie”,

”naomie harris”,

”naomie harris appear”,

”naomie harris appear please”,

”harris”,

”harris appear”,

”harris appear please”,

”appear”,

”appear please”,

7A contiguous sequence of n items from a given sample of text or speech. In our case, it is a
sequence of n words from the text t, where we take all n ∈ {1, ..., |t|}.
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”please”

}.

Additionally, we require that the optimal value mins∈δ(t) L(s, k∗) should not be

higher than a given maximum distance d. The reason for this is that it would not

make sense to match words with too high distance, so we should rather in such case

report that there is no keyword in D that could be matched in t.

To solve this in a reasonable time, we utilize the so-called trie structure that

is able to store a dictionary of words efficiently. A trie is depicted in Figure 6.2. We

assume that a trie T has a root node T.root and each node in the trie (including the

root) has the following functionalities:

• node.children() – returns the possible transitions (characters) to children nodes

• node.child(c) – returns the child node that is reached by transition (character)

c from the node

• node.has word() – returns whether the node stores a keyword

• node.word() – returns the stored keyword8 in a node (if it stores a keyword)

• node.has child(c) – returns whether there is a child node of the current node

that is reachable by transitioning c (corresponds to querying whether c ∈
node.children())

The trie in Figure 6.2 contains seven keywords in total, namely Allied, Alien,

Aliens, Titanic, Titans, Tomb Raider, Tombstone – notice that it is also possible to

store keywords with spaces. Grey nodes satisfy the predicate has word(), and the

transitions are written on the corresponding edges.

Such trie is used by Algorithm 2, which traverses the trie. The algorithm solves

a subproblem of (6.1) – for a given text t, it searches for the keyword in trie T with

the lowest Levenshtein distance to t such that the distance is not higher than d. If

there are multiple words with minimal distance, then we are interested in all of them.

The algorithm uses a priority queue (min-heap) q that contains triples (d, s,

node), which correspond to search from the given node while we have already made

d edit operations in the string, and the remaining part of the string that should be

processed from the node is s. The key by which the priority queue is ordered is the

distance d. The queue is initialized to contain distance 0, the whole input string t

and to start searching from the root node. Then we proceed iteratively – until the

8Observe that this function may, in fact, return the original unchanged keyword before prepro-
cessing and not the actual sequence of characters that is given by the path from the root to this
node.
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Figure 6.2: Movie titles stored in trie structure.
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Algorithm 2: Algorithm that finds the closest keywords in trie T to a given
string t so that the Levenshtein distance is at most d.

1 Function find closest keywords(t ,T , d) is

2 best distance← d+ 1;
3 best keywords← ∅;
4 q ← queue init();
5 q.insert(0, t, T.root);
6 while not empty(q) do
7 (d, s, node)← q.pop();
8 if d > best distance then
9 return best distance, best keywords;

10 if |s| = 0 then
11 if d < best distance and node.has word() then
12 best distance← d;
13 best keywords← {node.word()};
14 else if d = best distance and node.has word() then
15 best keywords← best keywords ∪ {node.word()};
16 else if d+ 1 ≤ best distance then
17 for transition char in node.children() do
18 q.insert(d+ 1, s, node.child(transition char));

19 continue;

20 if node.has child(s[1]) then
21 q.insert(d, s[2 :], node.child(s[1]));

22 if d+ 1 ≤ best distance then
23 for transition char in node.children() do
24 q.insert(d+ 1, s, node.child(transition char));
25 if transition char 6= s[1] then
26 q.insert(d+ 1, s[2 :], node.child(transition char));

27 q.insert(d+ 1, s[2 :], node);

28 return best distance, best keywords;

49



queue is not empty or a termination condition is not met, we pick a triple from the

queue, process it and continue.

The variable best keywords stores the set of keywords with the currently min-

imal Levenshtein distance (which is stored in best distance). If we pick a triple from

the queue with a distance larger than the currently best, we can terminate the search

with the current result (which is optimal), because the queue contains only higher

values of distance and we would also put only higher values into it.

If we have processed the whole word, then we can possibly update the currently

best distance or the set of best-matching words if the current node represents a word.

If it does not, we put the children nodes of the current node into the queue with

distance higher by one and the same empty string – this is on line 18 in Algorithm 2

and corresponds to insert operation at the end of the word.

If we have not processed the whole word yet, we can have a look at the first

character of the processed string (i.e., s[1]) and if the current node has a transition

denoted with this character, then we can match the characters and put the rest

of the string without the first node on the queue with the child of the node and

no increase in distance – this is on line 21 in the pseudocode and corresponds to

matching characters (i.e., no edit operation required).

However, we can also try edit operations if the distance would not get too high

(d + 1 ≤ best distance). In such case, we can also try traversing to the child node

while not changing the current string s – that corresponds to insert operation to the

input string and is on line 24. We can also replace the currently first character in s

by the possible transition characters that differ from it, which is on line 26. The last

possible edit operation is on line 27, which represents delete of s[1] – it stays in the

current node, but skips the first character of s.

Eventually, when the while loop is left, we either return the optimal (minimal)

distance and the corresponding keywords or return an empty set if there were no

keywords with distance lower or equal to d.

The reason for introducing the bound d is to avoid searching a for a keyword

in a place where it is not – introducing a time bound that would terminate the while

loop after some available time has passed would have a similar effect in practice.

Now, to solve the original task (6.1), we apply Algorithm 2 on each substring in

δ(t) of the preprocessed text t. Also, to increase the efficiency of evaluation on very

long texts, we can filter-out too long substrings – for instance, it is not necessary to go

through substrings that would be longer than the longest keyword in the dictionary.

This procedure is shown in Algorithm 3.

If there are multiple keywords that have a minimum distance, we resort to

using a heuristic, which is in our case taking the longest matched word.

50



Algorithm 3: Algorithm that finds the closest keyword in trie T to a space-
delimited substring of a text t (again subject to limited maximum Leven-
shtein distance d).

1 Function find closest keywords in substrings(t ,T , d) is

2 best distance← d+ 1;
3 best keywords← ∅;
4 for substring in δ(t) do
5 if |substring| > threshold then
6 continue;

7 distance, keywords ← find closest keywords(substring, T, d)
8 if distance < best distance then
9 best distance← distance;

10 best keywords← keywords;

11 else if distance = best distance then
12 best keywords← best keywords ∪ keywords;

13 return best distance, best keywords;

Expected Output

In the text above, we outlined the functionality of our information extraction

module. Not depending on whether we use our approach or Stanford NER to detect

the entity values, the information extraction module should return a mapping of the

entities to their respective values.

6.2.3 Context Module

As already indicated at the beginning of the previous section, a given entity

may not always be present in the user text. For example, if the user answers with a

confirmation intent9, then the user text is not analyzed by the information extraction

module at all, and we try to derive the named entities by context. Similarly, if the

user used a coreference or an anaphora, e.g.,

”Who acted in the movie?”

or

”Who acted in it?”

the information is then not present; context is queried to provide it.

Context module stores the recently mentioned named entities. Context gets

updated by all the information that is extracted from the user input and also by

9Confirmation intent corresponds to the user accepting the information offered by the chatbot,
as already mentioned in Section 6.2.1.
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the information that the chatbot provides to the user. To each stored entity, context

remembers how many conversational turns ago it was last mentioned. This counter is

reset after any mention of the given entity, which could also be for example corefer-

ence, and increased after each turn. We have also implemented forgetting submodule

which is a part of context module, which means that named entities that were not

used for some long time get removed from context.

Context can be therefore viewed on a high-level as a look-up table that assigns

values to mentioned named entities and removes those table entries that were not

queried or updated for a long time.

6.2.4 Knowledge Base Module

Knowledge Base in this architecture is a module that is capable of providing

information that can be obtained by combining multiple data sources. First of all,

it stores a list of data providers that implement a common interface. This interface

requires these providers to be able to respond whether they can provide some required

data for a set of given entities. And if a data provider is capable of providing such

data, it can be queried to obtain them.

For example, we might want to know the movie (i.e. the required entity) for

a given name of actor. These entities are represented in the Schema.org format, so

the query for a particular data provider dp whether it can find these data might be

formulated as

dp.can provide(given = [Schema.org/actor]

required = Schema.org/Movie).

And if the answer is true, then we can pass a dictionary that assigns each given

entity its value and query the data provider for the required entity, for example

dp.provide data(given = [Schema.org/actor : ”Brad Pitt”],

required = Schema.org/Movie).

Let us remark that there could be more given entities in a single query, such as asking

for the director of a particular movie, for which we know its title and the year when

it was released. This would correspond to the queries

dp.can provide(given = [Schema.org/Movie,

Schema.org/dateCreated],

required = Schema.org/director).
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and

dp.provide data(given = [Schema.org/Movie : ”Titanic”,

Schema.org/dateCreated : ”1997”],

required = Schema.org/director).

However, such queries with multiple given entities are not detected among the pos-

sible intents due to lack of possible training data. If such data were provided, our

implementation would make it possible to run such queries.

To sum it up, in each query for the data provider, we might offer multiple given

entities, but we will always require only a single one. This approach allows us to utilize

the data providers more flexible – it is possible that one data provider will be able

to produce one of the required entities and another one of the remaining entities. In

this manner, we can gradually iterate over the data providers and firstly ask whether

they can assign such entities and secondly query for the value and continue until the

value of the required entity is not known. In this manner, we gradually obtain the

values of all the required entities if they are available and return them.

Since this approach is fairly general, we are able to implement such API for

any database, because the actual querying of the data can be hidden behind it. We

have implemented data providers for the IMDb10, DBpedia11 and Wikidata12. The

last two mentioned databases are RDF databases that were queried using SPARQL

queries, whereas for IMDb, we have used a Python API13. Additionally, we have also

created a data provider for prices of movies that is based on reading the data from

Amazon web page directly.

In the next section, we will describe how the data were extracted from Amazon.

Semi-structured Data Extraction

A straightforward web page was used as a representant of the semi-structured

data. For this purpose we used Amazon web site14. This website provides information

about movies. Specifically, we were interested in the movie sale distribution on DVD

and its price.

The goal was to find a particular web page on Amazon website using Google

search engine and then extract specific information from a web page which contains a

record of a DVD price for a given movie title. The procedure is divided into two main

blocks. The first block deals with Google searching and returning a link to a particular

10https://www.imdb.com/
11https://wiki.dbpedia.org/
12https://www.wikidata.org/
13The package and its documentation can be found on https://imdbpy.sourceforge.io/.
14www.amazon.com
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web page. The second block focuses on data extraction from web page content. Each

block also consists of following steps. As far as the first block is concerned, firstly,

the Google query with an inserted movie title was constructed. Secondly, the query

was executed using standard Python external module for opening URLs and reading

search results page content. Thirdly, for search results page content parsing, the

content is in HTML format, the Python library, called Beautiful Soup15, was used.

And finally, after parsing a link to the desired Amazon web page was returned.

We allow making one thematic digression to describe an URL structure for

Amazon product links. Because we would like to extract and use some particular

part of such product URL, the understanding of its structure is substantial. The

certain example of Amazon product link structure can be seen in Table 6.1. The link

https://www.amazon.com/dp/B00000JLWW refers to the web page which contains

basic information of the movie ”Titanic” including sale price on DVD.

Part of URL Meaning

https:// HTTPS protocol

www.amazon.com Amazon hostname

/dp ”detail product”16

/B00000JLWW ASIN17, a product ID

Table 6.1: Single parts of Amazon URL

The second block tries to extract and return specific information, in particular,

a movie price on DVD, from Amazon product web page. For this purpose, we would

need to obtain the last part of an Amazon URL which is returned by the latest step

in the first block. This last part, so-called ASIN, uniquely identifies the product.

The desired Amazon web page of a product can be found using this number. After

obtaining the correct product web page with the required information, the page

content can be extracted. Before parsing, we have examined the page structure and

its HTML code. We have found the nodes we are interested in, such as the tag

identifying a movie title and the tag identifying the DVD price. To scrape these

values from a web page, we have utilized XPath query language. XPath considers

each HTML document to be a tree and exploits node-by-node paths.

For the detailed explanation of parsing via XPath let’s take a look at the par-

ticular HTML snippet for movie title in Listing 6.1. To parse the title value from

the code, we should define a location path to the desired object. This searching path

15https://pypi.org/project/beautifulsoup4/
16Amazon specific link prefix
17Every product on Amazon site has its own unique code/number to identify it.
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can look like "//h1[@id="title"]//text()" and is processed as a query. So we are

searching for <h1> tag from the tree root node18, where the tag has the attribute

[id="title"]. After that children nodes of <h1> tag are examining, and text nodes

with its values are only selected, i.e., in our case it is <span> tag. As a result of this

procedure, the movie title with value ”Titanic” will be returned.

<div id=” t i t l e f e a t u r e d i v ” class=” f e a t u r e ” data−f ea ture−name=”

t i t l e ”>

<div id=” t i t l e S e c t i o n ” class=”a−s e c t i o n a−spacing−none”>

<h1 id=” t i t l e ” class=”a−s i z e−l a r g e a−spacing−none”>

<span id=” productT i t l e ” class=”a−s i z e−l a r g e ”>

Titan i c

</span>

</h1>

<div id=” expandTit leToggle ” class=”a−s e c t i o n a−spacing−
none expand aok−hidden ”></div>

</div>

</div>

Listing 6.1: HTML snippet for the movie title

The next snippet in Listing 6.2 represents a part of HTML code, where there is

information about DVD price for a movie. Scraping of the price value was performed

in the same manner as the movie title value described above. Just the location

path had slightly different form "//span[@class="a-size-base a-color-price

a-color-price"]//text()".

<span class=”a−button−i nne r ”>

<a href=” j a v a s c r i p t : void (0 ) ” class=”a−button−t ex t ” r o l e=”

button ”>

<span>DVD</span>

<br>

<span class=”a−co lo r−base ”>

<span class=”a−s i z e−base a−co lo r−p r i c e a−co lo r−p r i c e ”

>

$11 .00

</span>

</span>

</a>

</span>

Listing 6.2: HTML snippet for the movie price on DVD

18Tree root node is not a part of HTML document itself, it is a parent of the main document
element node <html>.
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6.2.5 Attribute Choice Module

The input to the attribute choice module are the two lists of named entities

– the entities that were given by the user and the required entities. Based on these

entities and the knowledge of the relations between them and their attributes, we

should choose attributes or entities that will be present in an additional question

that will help to maintain the conversation fluently.

For example, assume that the user asked for the name of the director of a

particular movie, then the chatbot should not only return the name but also offer

some additional information, for example,

”Titanic was directed by James Cameron. Would you like to know

what the movie is about?”

”Titanic was directed by James Cameron. Would you like to know

some other movies from this director?”

The output of the module is a chosen entity and its particular attribute. This pair

defines a question in the already shown form mentioned in Section 6.2.1 where there

is one given entity and one required entity19.

The attributes of entities that will be offered are again based on Schema.org

ontology. For implementation purposes, we have selected only a subset of the at-

tributes, because for each of them, we need a data provider. For instance, for the

entity20 Schema.org/Movie, we chose e.g. the attributes21

• Schema.org/actor

• Schema.org/author

• Schema.org/director

• Schema.org/about

• Schema.org/dateCreated

• Schema.org/genre

• Schema.org/keywords

• Schema.org/inLanguage

where the attributes actor and director are properties of Schema.org/Movie whereas

about, dateCreated, genre, inLanguage, keywords and author are inherited from its

super-class Schema.org/CreativeWork.

19In fact, it is a particular attribute for the given entity. We use the terms ”attribute” and ”entity”
interchangeably, e.g., an actor can be an attribute of the entity movie and also a movie can be an
attribute of the entity actor.

20In the Schema.org ontology, such element is called a concept or class.
21Schema.org calls these attributes ”properties”.

56



History Submodule

A straightforward approach for the choice of attributes would be to choose

randomly uniformly among all of them, but there could appear unwanted situations

in which the chatbot would offer an already known or discussed attribute, which

would not be useful for the user. In the most extreme case, it could happen that the

chatbot would form the following response:

”Titanic was directed by James Cameron. Would you like to know

the director of Titanic?”

which is unwanted.

That is why it is necessary to remember the history of all the answered at-

tributes for particular named entities and also all the offered attributes that the user

was not interested in. To be more clear, if the user was, e.g., not interested in the

director of a particular movie, the chatbot will not offer it as an additional question

again, but if the conversation later leads to a different movie, the chatbot may offer

its director.

We also had to deal with the fact that not all entities are in real life disjoint in

the sense that a director may also be an actor and as people, they may have shared

attributes. For instance, if an answer contained Tom Hanks as a named entity of

director and the user was not interested in his date of birth, we should not offer his

date of birth if he is mentioned again in the role of an actor. This was resolved by

matching the named entities.

Let us also remark that storing a pair of the value of the entity and its attribute

in history does not forbid the user to ask for it himself or herself at a later point of

time even if the user was not interested in the attribute before. The chatbot will not

offer it, but if the user asks such question, the bot will answer it.

Choice among the Remaining Attributes

At this point, we already know which attributes should not be chosen because

they already appeared for the given named entity before and the task is to choose

among the remaining ones. We are going to model the attribute choice using the

Multi-armed bandit problem that was introduced in Section 5.4.

The options are the attributes of the individual entities, and the rewards are

binary – there will be a reward equal to 1 if the user confirms that he/she is interested

in the attribute and reward equal to 0 if the user is not interested. It follows certainly

that we would like to offer the attributes that the user is usually interested in – i.e.,

have a high average reward.

More formally, there is a set of named entities E and each named entity e ∈ E
has its set of attributes, which is denoted by A(e). From the history submodule, we
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know for each named entity e its set of already mentioned attributes H(e), H(e) ⊆
A(e). The task corresponds to choosing an element from the set

{(f(e), a)|e ∈ E, a ∈ A(e)−H(e)}, (6.8)

where f(e) is the entity of the named entity e. The choice will depend on the previ-

ously observed rewards for each entity g and its attribute a, i.e.

r
(g,a)
j =


1 if user was interested in knowing the value of attribute a

for entity g when it was offered for j-th time

0 otherwise

(6.9)

but we only store the average reward

r̄(g,a) =

∑n(g,a)

j=1 r
(g,a)
j

n(g,a)

(6.10)

and n(g,a) that stores how many times the attribute a was offered in combination

with the entity g.

The already introduced exploration-exploitation dilemma, in this case, trans-

lates to the trade-off between trying different attributes to improve our estimate of

the attributes in which the user is interested and offering the so-far most successful

attributes.

We have implemented the well-performing ε-greedy strategy to make the choice

of the offered entity-attribute pair based on the average reward.

As a closing remark, also observe that if the user wants to know everything

about a particular thing or a person, we will eventually run out of attributes to choose

from. In such a case, the attribute choice module does not choose any attribute, and

a general question that is not linked to any particular entity is produced to keep the

conversation flowing.

6.2.6 Answer Generating Module

The task of this module is to produce an answer in natural language that would

contain the values that were obtained from the previously described modules, i.e.

• the given named entities that were retrieved by the information extraction

module or from context,

• the required named entities that were obtained from the knowledge base based

on the given named entities,
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• the entity-attribute pair that we are going to offer in the additional question.

All of these objects correspond to Schema.org entities and come in a structured form

into the answer generating module.

To create such answer of the chatbot, we utilize the concept of Probabilistic

Context-Free Grammars to produce so-called answer templates that can be filled by

the actual known information.

Probabilistic Context-Free Grammars

Recall for example from Collins (2011) that a PCFG is defined by a set N

containing non-terminal symbols, set T with terminal symbols, a start non-terminal

symbol S ∈ N and a set R of production rules with assigned probabilities.

A production rule should be in the form

α→ β1β2 · · · βn, (6.11)

where α ∈ N , n ∈ N0, and βi ∈ N ∪ T for all i ∈ {1, ..., n}. The probabilities of

production rules for an arbitrary given non-terminal α should form a probability

distribution, which can be interpreted as a conditional probability given the non-

terminal α.

An example of such grammar is in Table 6.2 that defines the production rules.

The non-terminal symbols start with a dollar sign $ and are found in the left column.

The set of terminal symbols can be deduced in a straightforward way. Following this

example, if S = $r actor Movie, then we could generate for example the following

responses using this grammar:

”For instance in the movie called #Movie.”

”#actor appeared e.g. in the movie #Movie.”

”This person appeared e.g. in #Movie.”

These strings (called template answers) are then altered by replacing the enti-

ties tagged by the # sign by their actual values that were retrieved from the knowl-

edge base. These tags correspond to the Schema.org ontology entities.

In the grammar which we created, there are 65 non-terminals that can in total

produce 2377 individual sentences. These sentences are then further combined. For

example, assume that the user asked in which movie an actor starred and as an
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α → β1...βn
$r actor Movie → $Actor optional substitution $acted synonyms ...

... $for example in $movie optional prefix #Movie.
$r actor Movie → $For example in $movie optional prefix #Movie.

$Actor optional substitution → #actor
$Actor optional substitution → This actor
$Actor optional substitution → This person

$acted synonyms → played
$acted synonyms → appeared
$acted synonyms → starred

$for example → for example
$for example → for instance
$for example → e.g.
$For example → For example
$For example → For instance

$movie optional prefix → the $movie synonyms
$movie optional prefix → the $movie synonyms called
$movie optional prefix → ε (empty word)

$movie synonyms → movie
$movie synonyms → film

$q Movie aggregateRating → $Would you like to know synonyms the ...
... rating of $movie optional substitution ?

$Would you like to know synonyms → Would you $also optional like to know
$Would you like to know synonyms → Are you $also optional interested in
$Would you like to know synonyms → Would you be $also optional interested in

$also optional → also
$also optional → ε (empty word)

$movie optional substitution → it
$movie optional substitution → the $movie synonyms
$movie optional substitution → #Movie
$movie optional substitution → $movie optional prefix #Movie
$movie optional substitution → this $movie synonyms

...
...

...

Table 6.2: Table with examples of production rules α→ β1...βn.
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additional question, we will offer the rating of the found movie. This corresponds

to combining the strings produced by $r actor Movie combined with the strings

produced by $r Movie aggregateRating, which gives, for example, these responses:

”This person appeared for instance in the movie #Movie. Would

you be interested in the rating of #Movie?”

”#actor appeared, e.g., in the film #Movie. Would you be

interested in the rating of #Movie?”

”This person appeared for example in #Movie. Are you also

interested in the rating of this film?”

Of course, such grammar does not need to be defined for each response com-

pletely independently, the used non-terminals and their production rules can be

re-used for different responses.

Used Text Templates

As indicated in Table 6.2, there are two important subsets of the non-terminals.

First, those that generate an answer to a posed question by the user22, these start

with $r followed by identifiers of entities. Second, those that generate additional

questions – these start with $q again followed by the identifiers of entities that define

the question. Except for these non-terminals, there are also helper non-terminals that

improve the flexibility of the responses (e.g., $acted synonyms) and non-terminals

that are used in special cases – for example if there are no attributes to choose from,

or when the knowledge base did not provide the data required by the user.

This approach of text generation belongs to the group of semi-automatic meth-

ods, because the rules for the grammar, respectively the templates require human

labor to be created, but their usage and filling with data is fully automated.

6.3 Implementation Details

The chatbot is implemented in Python 3.6. The implementation is modular in

the sense that the required functionalities are divided into classes so that each class

is responsible for a single individual purpose or for decomposing a functionality and

delegating its parts to multiple classes.

22Following on the previously shown example, $r actor Movie generates answers to the question
”In which movie did a specific actor star?”.
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The modularity of the code allows any other developers that would like to

extend or alter a single functionality to simply replace or re-implement an individual

class while maintaining its interface and thus customize the bot. The code follows

PEP 8 style guide for Python code and is adequately commented in all sections.

6.3.1 Integration to Other Systems

Our chatbot has a simple API that sends responses to the user messages. The

design of its interface makes it easy to be integrated into various systems such as

Amazon Alexa virtual assistant or IM platform Slack. The only requirement is to be

able to redirect the messages from the users to our chatbot and then reproduce the

chatbot’s answer back to the users.

Amazon Alexa Integration

As a proof-of-concept, we have integrated our chatbot into Amazon Alexa. To

do this, we created an Alexa Skill23 in the Alexa Skill Kit24 called MovieChatBot

that we have connected to an AWS Lambda Function25 created by us.

Amazon Alexa accepts written or spoken input – in case of spoken input, it is

transformed into its written form and further processed in the same manner. After

our skill is invoked (for example, by the user saying ”run MovieChatBot”), the user

inputs are processed by intents26. The intents are usually identified by hand-written

sample queries that serve as a template for what the user might say to invoke a

particular intent. This usually requires a comprehensive list of possible requests. If

we wanted to implement our chatbot in Alexa, we would, for example, need to define

a AskForDirectorOfMovieIntent with the following user queries defined:

Who directed {Movie}?
Who is the director of {Movie}?

Could you tell me who directed {Movie}?
Would you know the director of {Movie}?

where {Movie} is called a slot that can take various pre-defined values and is returned

to be processed further along with the categorized intent.

This is however not necessary in our case, because we have already implemented

such categorization. For us, it is only necessary to define a single slot, which we called

23An Alexa Skill can be roughly viewed as a conversational programme for Alexa.
24The developer webpage for Alexa Skill Kit is developer.amazon.com, where one can create

the, for example, the intents and custom slots or additionally build and test a created skill.
25The webpage where lambda functions can be set-up is console.aws.amazon.com
26These intents are intents in the Amazon Alexa nomenclature and our implementation do not

correspond to our previously mentioned classes of intents.
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Figure 6.3: Amazon Alexa Integration Schema.

{Query} and is of type AMAZON.SearchQuery. This type of slot can match an arbitrary

phrase, which in our case will be the user query27.

The content of the user query is then forwarded to our Lambda Function, which

just extracts it from the obtained JSON, calls the API of our chatbot to produce

a response and send an answer that contains the response again in the JSON form.

Alexa then processes this response and shows the answer to the user either in text

mode or as a speech, depending on the mode of conversation.

Slack Integration

We have also integrated our chatbot into Slack by creating a Slackbot in our

Slack App. We have then created functionality that serves as a client that responds

to user queries if the chatbot is mentioned at the beginning of the query as usual

in Slack. For readers that do not know Slack, this means sending, for example, the

message

”@MovieChatBot who directed Titanic?”

Our chatbot can be added into multiple channels at once and will keep the

contexts separated for each channel. Each time it is added to a new channel, it will

greet its users.

27Let us remark a little implementation detail – Alexa Skill Kit does not allow only a slot to be
present as a template for some intent, at least one fixed word needs to be present too. This can be
overcome by, e.g., calling the chatbot by its name in each query. The retrieval of the whole actual
user query given to Alexa is more complicated.
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6.3.2 Keras

To implement the neural network, we have used the Python implementation of

Keras package that offers a wide variety of options for modeling a neural network

and its learning. We have modeled our RNN architectures using this package that

was also used for training.

6.4 Datasets Description

Throughout this implementation, we make use of multiple datasets that allowed

us to implement different parts of the chatbot. On top of the datasets from other

parties, we have also created our data as an extension of the currently existing

datasets.

Movie Dataset

This dataset is from HPI (2017), which is a dataset extracted from IMDb that

consists of lists of many structured movie information, e.g., list of movie titles, list of

actor/director/author names, list of movie keywords. From this dataset, we use the

lists of movie titles, actors, actresses, directors, writers and keywords. We extract

the data and preprocess so that they can be used for named entity recognition by

the previously presented procedure in user-written queries.

WikiMovies Dataset

To train our intent classifier to predict the category of user’s question and also

for Stanford NER training, we used the WikiMovies Dataset, which is a part of the

bAbI project28. This dataset contains a list of questions and their corresponding

answers that can be divided into 13 categories. From these datasets, we use only the

questions.

The categories are the following:

• to an actor/actress assign a movie in which he/she starred

• to a director assign a movie that he/she directed

• to a movie assign an actor that acted in it

• to a movie assign its director

• to a movie assign its genre

28The dataset can be downloaded here: https://research.fb.com/downloads/babi/.
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• to a movie assign its IMDb rating

• to a movie assign how many people have rated it

• to a movie assign its language

• to a movie assign its screenwriter

• to a movie assign its release date

• to a keyword assign a corresponding movie

• to a screenwriter assign a movie written by him

• to a movie assign its tags

Testing Datasets

To be able to test the approaches on previously unseen data, we have also

extracted the same lists of named entities from Wikidata by SPARQL queries, except

for a list of keywords that are not available on Wikidata, so they were taken from

MovieKeywords (2018).

Our Generated Dataset

After using the WikiMovies dataset, we have concluded that it may not be

sufficient enough and that the listed questions do not generalize too much in practice.

That is why we decided to extend this dataset initially containing 149 question

templates (which we had to extract manually) by additional 61 templates created by

us to improve the performance of not only the intent classifier but also the trained

Stanford NER implementation. We have also introduced a new text classification

category for the confirmation of the questions offered by the chatbot and exchanged

the last category for a general question on the information about a movie because

they had significant semantic overlap.

Moreover, we have also created several possible introductions texts that can be

combined with almost any question, such as ”Could you tell me” or ”Tell me.” This

has also added more variance to the length of the possible inputs. This created in

total 2400 unique templates from which we created the actual training dataset for

our RNN by replacing the template words by randomly generated entities from the

Movie Dataset. For training Stanford NER, only 2388 unique templates were used as

we omit the question confirmation category, where no entity extraction is performed.
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Chapter 7

Experiments

In this chapter, we first evaluate the proposed methods – i.e., compare two

mentioned methods of NER and also present our experimental results of intent clas-

sification based on LSTM. Second, we show examples of the dialogs of the chatbot

with users.

7.1 NER comparison

To compare the two implemented named-entity recognition systems, we needed

to create two separate datasets – one with training data and one with testing data.

These two datasets must be created carefully to avoid disadvantaging one system as

compared to the other – especially in this case because the output of the method

based on the trie is mainly determined by the list of named entities given to it,

whereas the Stanford NER trains from the structure of whole tagged sentences.

7.1.1 Train and Test Setting

That is why we utilized multiple different datasets during training and testing.

First of all, the user question templates were divided into four folds which will be

used for cross-validation. Then, we filled the missing slots in the sentences in the

folds by two different procedures:

• if the fold is to be used in training, the source of all named entities is IMDb

• if the fold is to be used in testing, the source of the named entities is Wiki-

data, except for the set of keywords that was taken from a different source, as

discussed in Section 6.4.
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In both cases (i.e., training and testing folds), the generated sentences are not always

properly capitalized, because as said before, we can not rely on capitalized input.

Therefore, in 50 % of the sentences, the named entities are properly capitalized,

whereas, in others, they are not. The same holds for the capitalization of the first

letter of the sentence.

So, unlike classic k-fold cross-validation that uses only k sets of data, we need

to use 2k sets of data. The reason for this is that the trie method will be trained

on whole lists of named entities from IMDb, whereas Stanford NER classifier will

always be learned from some three folds of annotated training data which contain

user questions with named entities from IMDb. Then, to test both approaches, they

are both given the same sentences from the fourth fold of testing data. For Stanford

NER, it is important that the templates on which it is tested are different, because

it learns the structures of sentences, therefore they can be viewed as unobserved. For

trie method, it is important that the named entities contained in the testing fold are

taken from different dataset than from which it was trained.

The sizes of the individual training sets in cross-validation for Stanford NER are

in Table 7.1, where we by ”Original templates” mean the number of templates before

various introductions or endings are applied to them. Templates with introductions

and endings are called ”Extended templates” in which the slots were filled by different

entities to obtain the overall amount of training sentences. The sizes of the datasets

used to create the tries for individual entities are in Table 7.2.

The sizes of the individual testing folds are in Table 7.3 which follows the same

notation as Table 7.1.

Entity Original templates Extended templates Sentences
actor 17–18 204–216 40800–43200

author 9–10 108–120 21600–24000
movie 103–104 1236–1248 61800–62400

director 12-13 144–156 28800–31200
keywords 6 72 14400

Table 7.1: Overview of characteristics of the training data for Stan-
ford NER (for each fold).

Entity Number of named entities
actor 1018040

author 194996
movie 1361188

director 151635
keywords 236625

Table 7.2: Overview of characteristics of the given lists of data to
the trie.
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Entity Original templates Extended templates Sentences
actor 5–6 60–72 1200-1440

author 3–4 36–48 720–960
movie 34–35 408–420 1224–1260

director 4–5 48–60 960–1200
keywords 2 24 480

Table 7.3: Overview of characteristics of the testing data (for each
fold).

7.1.2 Results

The named entity recognition systems were trained and tested on each required

entity separately because the information extraction module is queried already with

the knowledge of the entity that should be searched. Training Stanford NER for all

entities at once may disadvantage it as it would also try to tag different entities.

The results are shown in Table 7.4. The table also contains the overall amount

of sentences on which it was tested (when all testing samples overall folds are aggre-

gated).

Entity Cumulated test set size Trie method Stanford NER
actor 5520 0.94 0.89

author 3120 0.83 0.85
movie 4968 0.69 0.79

director 4080 0.90 0.88
keywords 1920 0.69 1.00

Table 7.4: Comparison of two methods for NER by their perfor-
mance.

The performance of each model was calculated as the ratio of correctly identified

named entities over the size of the test set. To decide whether the found named entity

corresponds to the ground truth, we did not care about

• whether the definite article ”the” was used or not, e.g., if the original question

was ”Who directed The Avengers?”, we accept ”Avengers” as correct recogni-

tion.

• whether the name was correctly capitalized or not, e.g., an answer ”avengers”

would also be correct to the previous example.

• whether the name contained punctuation, e.g. the keyword ”CIA” will also be

accepted as ”C.I.A.”

• white space characters
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Additionally, to neglecting these details, we also allow a single edit operation, so that

we allow the Levenshtein distance between ground truth and the recognized entity to

be at most 1. This is for the purposes of possible different spellings or almost identical

keywords (e.g. ”Miloš Forman” vs ”Milos Forman” or ”doctor” vs ”doctors”).

On the entities actor, author, and director, both methods achieved similar

and good results whereas, for movie and keywords entities, Stanford NER achieved

significantly better results.

In keywords, the poor performance of the trie method was caused by the fact

that any word or a combination of words can become a keyword. That is why it was

hard to match it to the already existing ones. However, mistakes were often caused

by tagging only a part of the keyword, e.g., tagging ”chinese” instead of ”chinese new

year” or ”sledding” instead of ”dog sledding”. On the other hand, Stanford NER did

not make any mistakes on this dataset – we believe that it was caused by too small

amount of templates that could be resolved even by a simple rule-based algorithm.

In movies, the lowered performance was caused by the fact that words used in

movie titles may commonly appear as usual words in a text. We could also explain

this from the other point of view. That is, why the names of the people performed

well. We think that it is because names of people are not strings of characters that

would be in a text and not denote a person. That is why the error on the names of

people was low.

In general, the kinds of mistakes of both classifiers were significantly different

in the structure of the wrongly classified sentences. In the case of Stanford NER, it

sometimes happened that it systematically tagged a wrong additional word into the

named entity, e.g., in the sentences

”can you tell me which language can I hear in Fight Club”

”Can you tell me which language can i hear in buffy the vampire slayer”

”Tell me how would people rate iron man”

it detected the words

”I hear in Fight Club”

”i hear in buffy the vampire slayer”

”rate iron man”

as the named entities. Another issue of Stanford NER was that it sometimes did not

match any word in the sentence as the actual named entity.

On the other hand, the trie method had a different kind of errors – it tagged a
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different part of the sentence to be the actual named entity, e.g., in the sentence

”can you tell me when was The Blob made please”

it recognized ”please”. Or, it tagged only a part of the whole movie name, e.g., it

detected ”star wars” in the sentence

”Tell me when was star wars episode iii: revenge of the sith made please”

but the tagged named entity should have been ”star wars episode iii: revenge of the

sith”.

7.1.3 Runtime

The number of tested sentences was limited mainly by the runtime of Stanford

NER, which was not so fast in classifying them. The average runtime for each entity

during the testing phase is overviewed in Table 7.5.

Entity Trie method Stanford NER
actor 0.084 sec. 1.5 sec.

author 0.091 sec. 1.2 sec.
movie 0.056 sec. 2.7 sec.

director 0.076 sec. 1.3 sec.
keywords 0.070 sec. 0.77 sec.

Table 7.5: Comparison of two methods for NER by their average
runtime per tagged sentence.

7.2 Intent Classification

Recall from Section 6.2.1 that for intent classification, we use a recurrent neural

network. For purposes of testing and choosing the right hyper-parameters, we have

created the training, validation and testing sets in the following manner:

1. divide all the original templates into three sets that will later correspond to

training, validation and testing

2. for each set separately, extend the templates by introductions and endings as

in the previous section.

3. instantiate the sentences by filling slots by named entities
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We approach the last step similarly as in the previous case of NER. For training and

validation, the named entities are sampled from a different data source than in the

testing set. Based on the complexity of the network, we designed five architectures

that differ by the number of layers. In each of them, LSTM cell was present. The

sizes of datasets are shown in Table 7.6.

Dataset Original templates Extended templates Sentences

Training 152 1724 18240

Validation 38 446 4560

Testing 20 240 2400

Table 7.6: Sizes of datasets for NN training and evaluation.

In this case, as opposed to NER experiments, we also incorporate the confir-

mation templates. But, these can not be used with the general introductions, so we

have only repeated them to have an approximately same amount of samples from

all classes throughout the sets. Without doing this, the trained NN showed worse

results for the confirmation class.

In each case, we trained the network on the generated training data and used

early stopping calculated on the validation data to avoid overfitting. The accuracy

was evaluated after each training epoch. With networks that contained fully con-

nected (dense) layers, we also applied dropout.

Simple LSTM cell

First of all, we tried the most simple architecture, which is depicted in Figure

7.1. In this architecture, each word on the input is mapped to its vector representation

using pre-trained Glove vectors1, which is directly sent to the LSTM cell. Part of the

output of the cell is then sent back to it with the next word etc. With the last word,

we put the output of the LSTM cell into the softmax layer that classifies among the

14 possible intents.

We have evaluated five networks of this form that differed by the dimension of

Glove vectors on the input and also by the used activation function in the LSTM.

The parameters of the models are in Table 7.7.

1The vectors were downloaded from https://nlp.stanford.edu/projects/glove, where
datasets with vector dimensions of 50, 100, 200 and 300 are available.
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Model id DE AL Validation accuracy

L1 200 tanh 0.848

L2 200 ReLU 0.796

L3 100 ReLU 0.761

L4 50 tanh 0.800

L5 300 tanh 0.792

Table 7.7: Results on simple LSTM cells depicted in Figure 7.1.

Model id DE AL DL D VA

LD1 200 tanh 50 0.5 0.902

LD2 200 tanh 20 0 0.871

LD3 100 ReLU 40 0.5 0.871

LD4 50 tanh 100 0.25 0.814

LD5 300 tanh 150 0.75 0.939

LD6 300 ReLU 150 0.75 0.893

Table 7.8: Results on LSTM cells followed by dense layer depicted
in Figure 7.2.

Model id DE A D1 DL D VA

DLD1 100 tanh 100 50 0.5 0.928

DLD2 200 ReLu 150 150 0.5 0.932

DLD3 200 ReLU 250 100 0.25 0.929

DLD4 300 ReLU 200 75 0.5 0.940

DLD5 300 tanh 200 150 0.75 0.927

DLD6 300 ReLU 200 150 0.75 0.944

DLD7 300 tanh 200 75 0.5 0.927

DLD8 100 ReLU 100 50 0.5 0.935

DLD9 200 ReLU 100 75 0.75 0.939

Table 7.9: Results on architecture depicted in Figure 7.3.

Model id DE D1 D2 DL D VA

DDLD1 200 150 100 100 0.5 0.953

DDLD2 300 280 180 220 0.75 0.952

DDLD3 200 100 100 50 0.25 0.960

DDLD4 300 300 300 300 0.5 0.953

DDLD5 300 250 100 150 0.25 0.940

Table 7.10: Results on architecture depicted in Figure 7.4.
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Figure 7.1: Simple LSTM cell variant.

Model id DE D1 D2 DL D3 D VA

DDLDD1 200 100 100 100 50 0.25 0.941

DDLDD2 300 200 150 100 75 0.5 0.962

DDLDD3 300 200 100 75 100 0.5 0.966

DDLDD4 200 250 200 150 75 0.25 0.942

DDLDD5 200 150 100 300 150 0.75 0.903

Table 7.11: Results on architecture depicted in Figure 7.5.

Shallow RNN with Dense Layer Before Output

Because the previous results were not convincing enough, we decided to add a

layer between the LSTM cell and the softmax. This allowed changing the dimension

of the inner state of LSTM. We have also added dropout between the LSTM and

dense layer, as depicted in Figure 7.2. We evaluated 6 models listed in Table 7.8.

From the results, we concluded that even for a small classification problem

like ours, it might be beneficial to use larger models. Also, we noticed the inferior

behavior of ReLU as compared to tanh when used in LSTM cell. That is why in

further experiments, we will only use tanh. We have also ruled out using only 50-

dimensional Glove vectors.
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Figure 7.2: Shallow RNN with dense layer.
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Figure 7.3: RNN with two dense layers.
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Figure 7.4: RNN with three dense layers.
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Figure 7.5: RNN with four dense layers.
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Figure 7.6: Accuracy of chosen models on a validation set during
training.

RNN with Dense Layers on both Input and Output

In this case, we have also added one fully connected layer with an activation

function (and also with dropout) before the LSTM cell. We considered tanh and

ReLU activation functions and tested 5 different models whose parameters are listed

in Table 7.9 and correspond to Figure 7.3.

We observed that tanh activation function is inferior to ReLU when used after

the fully connected layer2 and that the larger models still yield good results.

RNN with Multiple Following Dense Layers

Eventually, we have also tried to have two fully connected layers with ReLU

activation functions followed by an LSTM cell behind which is a third fully connected

layer. This architecture is depicted in Figure 7.4 and the corresponding results are

in Table 7.10.

Because this architecture again improved the validation accuracy, we decided to

add one more dense layer, as depicted in Figure 7.5. The results of this architecture

2This is why tanh is not considered in the next models.
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Figure 7.7: Accuracy of chosen models on a training set during train-
ing.

are in Table 7.11 and it can be seen that there has been only little improvement as

compared to the previous architecture.

Thus, we conclude that it may already be too large for our classification prob-

lem and return to the previous architecture, where the best-performing model was

DDLD3. We tested this model on the previously unused testing data and reached

accuracy 0.910.

In Figure 7.6 we can see accuracy on the validation set and in Figure 7.7 –

accuracy on the training set for the best model from each architecture with respect

to current epoch.

7.3 Simple Dialog Examples

In this section, we present simple dialogs that were conducted with users. While

performing the dialogs, we stored a log that captured the whole process in the back-

ground – e.g., the result of intent classification, NER, knowledge base querying,

attribute choice and the process producing an NL response. Using this log, we can
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evaluate the dialogs after they were already performed to detect possible causes of

misunderstandings.

In all cases, the users of the chatbot were informed which information it can

provide along with the assumption on its usage. This means that the user is assumed

to be constructively cooperative and remain in the domain of movies. The user can:

• ask one of the possible expected questions,

• ask for general information considering a movie,

• accept the information that the bot is offering,

• decline the information that the bot is offering but ask another question instead.

On the other hand, the user can not ask questions outside the domain or be uncoop-

erative in the sense that the user would for example decline what the bot is offering

and not say what he/she is interested in.

The first four dialogs were conducted using the trie method whereas the fifth

dialog uses Stanford NER method. We will now list the full dialogs and comment on

their mistakes.

7.3.1 Dialog 1

1: Chatbot: Hello there, I am your chatbot for movies. What would you like to

know?

2: User: hey tell me smth about se7en

3: C: Se7en was made by David Fincher in the year 1995 and has an exciting

plot . Two detectives, a rookie and a veteran, hunt a serial killer who uses the

seven deadly sins as his motives. Would you also like to know the genre of Se7en

?

4: U: yeah

5: C: That is a crime. Are you also interested in who starred in it ?

6: U: hm ok

7: C: For instance Morgan Freeman. Would you like to know the rating of this

film ?

8: U: yes

9: C: Se7en has rating of 8.6. Would you like to know the price of this film ?

10: U: ok

11: C: You can purchase this movie on Amazon for $16.77. Would you like to

know the language of it ?

12: U: no tell the genre of se7en

13: C: This film is a crime. Would you also like to know the screenwriter of it ?

14: U: no tell me other movies where morgan freeman acted
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15: C: This person played e.g. in the movie called 10 Items or Less. Would you

like to know who made the movie ?

16: U: yeah tell me about it

17: C: The movie Sepah: The Movie was made by Rosli in the year 2012 and

has an exciting storyline . Three best friends gamble with one another to take a

challenge to win over a beautiful girl that works in an electronic industry. Would

you be interested in some other movies made by this director ?

18: U: no tell me other movies where morgan freeman acted

19: C: For instance in Attica. Are you interested in when was Morgan Freeman

born?

20: U: yea

21: C: Morgan Freeman was born on 1937-06-01. Would you also like to know

something else ?

22: U: tell other movies with morgan freeman

23: C: This person starred for example in the film called Fight for Life. Would

you also like to know the genre of the movie Fight for Life ?

24: U: no tell other movies with morgan freeman

25: C: This person played e.g. in Edison. Are you interested in the screenwriter

of it ?

26: U: no tell other movies with morgan freeman

27: C: Morgan Freeman played e.g. in the movie Olympus Has Fallen. Would

you be also interested in the rating of the movie ?

28: U: yes

29: C: Rating of the film called Olympus Has Fallen is 6.5. Would you be inter-

ested in the price of Olympus Has Fallen ?

30: U: no tell more about this movie

31: C: Olympus Has Fallen was made by Antoine Fuqua in the year 2013 and

has an exciting plot . Disgraced Secret Service agent (and former presidential

guard) Mike Banning finds himself trapped inside the White House in the wake

of a terrorist attack; using his inside knowledge, Banning works with national

security to rescue the President from his kidnappers. Would you also like to know

when was this director born?

32: U: yes

33: C: Antoine Fuqua was born on 1965-05-30. Would you also like to know some

other movies directed by this director ?

34: U: ok

35: C: This director made for instance the film The Replacement Killers. Would

you like to know the screenwriter of it ?

36: U: yes

37: C: This film is based on a screenplay from Ken Sanzel. Are you interested in

some other movies written by this screenwriter ?
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38: U: ok

39: C: Ken Sanzel wrote for example the script for the film NYC 22. Would you

like to know when was this screenwriter born?

We evaluate this dialog as mainly successful with the only error in understand-

ing the user query on line 16 where the chatbot misclassified the intent of the user

utterance and classified it as general information about a new movie. The movie title

was extracted from the user input also by mistake.

7.3.2 Dialog 2

1: Chatbot: Hello there, I am your chatbot for movies. What would you like to

know?

2: User: Hello, Sir, could you tell me something about the movie Last Stand?

3: C: The movie was made by Lloyd A. Simandl in the year 2000 and has an

interesting plot . A small band of desperate freedom fighters must topple a vicious

dictator before he destroys mankind’s last hope. Would you be interested in the

screenwriter of the film ?

4: U: Yes, please.

5: C: This film is based on a screenplay from Chris Hyde. Are you interested in

who starred in the film ?

6: U: Why not!

7: C: Kate Rodger starred in it . Are you also interested in the rating of it ?

8: U: Sure.

9: C: Rating of the film Last Stand is 3.6. Would you like to know how many

people have rated the movie ?

10: U: No, the movie is not good. Could you tell me whether Terminator is good?

11: C: The film Terminator has rating of 8.0. Would you be also interested in

the price of Terminator ?

12: U: No, tell me its plot, please.

13: C: Rating of Please is 6.9. Would you be also interested in its plot ?

14: U: No. I want to know what is Terminator about.

15: C: I am sorry, we did not find the required data in our system. Are you also

interested in the genre of the movie If You Want to Know Who We Are ?

16: U: No. Tell me finally something about Terminator!

17: C: Terminator was directed by James Cameron in the year 1984 and has an

engaging storyline . A seemingly indestructible android is sent from 2029 to 1984

to assassinate a waitress, whose unborn son will lead humanity in a war against

the machines, while a soldier from that war is sent to protect her at all costs.

Would you like to know the language of Terminator ?

Even in this second dialog misclassification of the user input happened. On line
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12 the chatbot detected a wrong intent again with with a wrong movie title. The

user tried to correct the chatbot, but was unsuccessful until the third try.

7.3.3 Dialog 3

1: Chatbot: Hello there, I am your chatbot for movies. What would you like to

know?

2: User: Lets talk about Gran Torino. What can you tell me about it?

3: C: Gran Torino was directed by Clint Eastwood in 2008 and has an fascinating

plot. Disgruntled Korean War veteran Walt Kowalski sets out to reform his

neighbor, a Hmong teenager who tried to steal Kowalski’s prized possession: a

1972 Gran Torino. Are you also interested in the rating of the movie ?

4: U: yes please

5: C: Rating of Gran Torino is 8.1. Would you like to know who starred in this

movie?

6: U: Sure

7: C: Christopher Carley appeared in Gran Torino. Would you like to know when

this person was born?

8: U: No. Which other movies were directed by Clint Eastwood?

9: C: Clint Eastwood directed for example Breezy. Would you like to know the

screenwriter of this movie?

10: U: No, but could you tell me more about this movie?

11: C: Breezy was directed by Clint Eastwood in 1973 and has an exciting plot.

Breezy is a teen-aged hippy with a big heart. After taking a ride with a man who

only wants her for sex, Breezy manages to escape. She runs to hide on a secluded

property where stands the home of a middle-aged divorced man, Frank Harmon.

Frank reluctantly takes Breezy in only to fall, unexpectedly, in love with her.

Would you like to know the genre of this movie?

12: U: yes

13: C: Breezy is a drama. Would you like to know how many people have rated

this movie?

14: U: no, i would rather know its rating

15: C: Rating of I Would Rather is 8.5. Would you like to know who directed

this movie?

16: U: no, who directed breezy

17: C: It was Clint Eastwood’s work. Would you like to know when was Clint

Eastwood born?

18: U: no i want to know who acted in it

19: C: I am sorry, we did not find the required data in our system. Would you

like to know its plot?

20: U: no, what is the rating of this movie?
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21: C: Rating of Breezy is 7.0. Would you like to know who starred in this movie?

22: U: absolutely

23: C: For example, William Holden starred in Breezy. Would you like to know

some other movies with William Holden ?

24: U: maybe

25: C: William Holden appeared for example in Texas. Would you like to know

who directed Texas ?

26: U: yes, tell me that

27: C: Michael Gordon directed Texas. Would you like to know some other movies

directed by this person?

28: U: tell me something about Mr. & Mrs. Smith

29: C: Mr. & Mrs. Smith was directed by Doug Liman in 2005 and has an exciting

plot. A bored married couple is surprised to learn that they are both assassins

hired by competing agencies to kill each other. Would you like to know who

starred in this movie?

30: U: yes please

31: C: Vince Vaughn appeared in Mr. & Mrs. Smith. Would you like to know

the rating of this movie?

32: U: Who else starred in it?

33: C: Jack O’Connell appeared in Starred Up. Would you like to know when

this person was born?

The dialog performed well, until the line 14, where the chatbot detected a wrong

movie title in the user utterance, but was able to return to the original context after

a few dialog turns. A similar mistake happened on line 32, where the intent was

classified correctly, but a wrong named entity was detected.

7.3.4 Dialog 4

1: Chatbot: Hello there, I am your chatbot for movies. What would you like to

know?

2: User: Tell me a movie that was written by Christopher Nolan.

3: C: This screenwriter wrote for example the script for the film The Dark Knight.

Would you like to know the rating of The Dark Knight ?

4: U: Yes.

5: C: Rating of the movie called The Dark Knight is 9.0. Would you be also

interested in who made it ?

6: U: No. What is language of movie?

7: C: The language of The Dark Knight is English. Would you also like to know

its storyline ?

8: U: Sure.
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9: C: When the menace known as the Joker emerges from his mysterious past,

he wreaks havoc and chaos on the people of Gotham. The Dark Knight must

accept one of the greatest psychological and physical tests of his ability to fight

injustice. Would you also like to know the price of it on Amazon ?

10: U: No. Who is its director?

11: C: Christopher Nolan directed The Dark Knight . Would you also like to

know when the movie called The Dark Knight was filmed ?

12: U: Maybe

13: C: The Dark Knight was shot in the year 2008. Are you also interested in

how many people have rated it ?

14: U: Absolutely yes!

15: C: The Dark Knight has 2004684 ratings. Would you be interested in the

genre of it ?

16: U: No, what is rating of movie?

17: C: Rating of the movie The Dark Knight is 9.0. Would you like to know

something else?

18: U: Who acted in it?

19: C: For instance Heath Ledger. Would you like to know some other movies

with Heath Ledger ?

20: U: Yes.

21: C: This actor appeared for instance in Clowning Around. Would you like to

know when was this person born?

22: U: No, could you tell me about the film Twilight?

23: C: Twilight was made by Catherine Hardwicke in 2008 and has an amazing

storyline . Bella Swan moves to Forks and encounters Edward Cullen, a gorgeous

boy with a secret. Are you interested in some other movies made by this director

?

24: U: No, what is its genre?

25: C: It is a drama. Are you also interested in who played in Twilight ?

26: U: Yes, tell me.

27: C: Matt Bushell played in this movie . Would you be also interested in some

other movies with this actor ?

28: U: No, tell me rating of the film.

29: C: Rating of the film Twilight is 5.2. Are you interested in the price of

Twilight on Amazon ?

We evaluate the last dialog only positively as there are no misunderstandings

and the chatbot was able to answer all the user requests correctly.

7.3.5 Dialog 5
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1: C: Hello there, I am your chatbot for movies. What would you like to know?

2: U: Hi, what can you tell me about Twilight?

3: C: Twilight was made by Catherine Hardwicke in the year 2008 and has an

interesting storyline . Bella Swan moves to Forks and encounters Edward Cullen,

a gorgeous boy with a secret. Would you like to know the price of DVD with the

movie called Twilight ?

4: U: no, who acted in it?

5: C: For example Sarah Clarke appeared in this film . Would you be also inter-

ested in how many people have rated Twilight ?

6: U: no, what is its genre?

7: C: That is a drama. Would you be also interested in the screenwriter of Twi-

light ?

8: U: Home Alone, tell me something about it.

9: C: I am sorry, we did not find the required data in our system. Would you be

also interested in the genre of Home Alone tell me something ?

10: U: No, i want to know who acted in Home Alone.

11: C: I am sorry, we did not find the required data in our system. Would you

be interested in its storyline ?

12: U: Do you know in which movies did Jack Nicholson act?

13: C: For instance in the film The Evening Star. Are you interested in the lan-

guage of the film called The Evening Star ?

14: U: In which year was this film released?

15: C: The Evening Star was shot in 1996. Are you also interested in who di-

rected The Evening Star ?

16: U: yes

17: C: It was Robert Harling’s work. Would you like to know who played in this

movie ?

18: U: no, what is its genre?

19: C: The movie called The Evening Star is a comedy. Would you also like to

know the rating of The Evening Star ?

20: U: no, what is the rating of Catch me if you can?

21: C: Rating of Catch me if you can is 8.1. Would you be interested in when

the film called Catch me if you can was created ?

22: U: no, who acted in that film?

23: C: For instance Christopher Walken starred in it . Would you be also inter-

ested in some other movies with this actor ?

24: U: no, whe else acted in it?

25: C: Christopher Walken starred for instance in the movie called The Dead

Zone. Are you interested in when was this actor born?

26: U: no, would you recommend this movie?

27: C: Rating of the movie called The Dead Zone is 7.2. Would you be interested
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in how many people have rated this movie ?

28: U: sure

29: C: The film has 53155 ratings. Are you interested in who made this movie ?

30: U: no, when was the movie filmed?

31: C: I am sorry, we did not find the required data in our system. Are you

interested in who made filmed ?

32: U: What do you know about 2012?

33: C: I am sorry, we did not find the required data in our system. Are you also

interested in how many people have rated this movie ?

34: U: what do you know about 2012?

35: C: 2012 was directed by Roland Emmerich in the year 2009 and has an en-

gaging storyline . A frustrated writer struggles to keep his family alive when a

series of global catastrophes threatens to annihilate mankind. Would you be also

interested in some other movies made by Roland Emmerich ?

For conducting this dialog, Stanford NER was used in information extraction

module. Similarly, as before there were misclassifications. On line 8 the chatbot did

not correctly recognize the movie title and therefore was not able to find it in a

database. In the following turn on line 10, a similar mistake happened – NER tagged

”i want to know Home Alone” as a movie. The dialog then continued correctly until

line 24 where the intent was misclassified. Eventually, there were two additional

misclassifications of NER – on line 30 the recognized movie title was ”filmed” and

on line 32 the detected movie title was ”What do you know 2012”.

7.3.6 Summary

To sum up our experience based on the shown dialogs, we conclude that there

are no issues with the provided data or a choice of offered attributes and also the

language of the chatbot is proper. Also, the misclassifications of intent and NER are

not frequent and, moreover, the chatbot is able to recover from them.

The RNN used for intent classification had an overall accuracy of 0.96 in the

shown dialogs which correspond to the results shown previously. On the other hand,

the Stanford NER accuracy on the dialogs seems to be comparable to trie method.
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Chapter 8

Conclusion

In this thesis, we have introduced the topic of chatbots and virtual assistants.

We classified chatbots concerning their functionalities and purposes and also com-

mented on how ontologies can be utilized to help chatbots in driving a conversation

through a domain.

We followed with a broad description of knowledge organization and why is

it necessary. We have also explained the concept of ontologies and their primary

purpose to structure information. Then, we took a look at RDF databases and their

ability to store a large amount of data in a structured form. And finally, we described

the tool for retrieving structured data from such databases.

After that, we listed important tasks of NLP that we divided into two parts

– first, natural language understanding, where we described intent classification,

named entity recognition and anaphora resolution. Second, we listed the essential

properties of natural language generation.

The last chapter that deals with related work begin with the problem of machine

learning and evaluation of models in general which is followed by the description of

the well-known neural networks with detailed information on frequently used LSTM

cells in NLP. We also describe the reasons why the usage of word embeddings is

crucial and list possible approaches for their creation. Throughout these chapters,

we have overviewed the state-of-the-art conversational AI technologies.

Then, we describe our semi-automatic design of the ontology-based chatbot

that uses multiple data sources to provide information to the user, including DBpe-

dia and Wikidata. The whole chatbot is divided into six individual modules that serve

different purposes so that the overall architecture works well. Due to the decomposi-

tion of the implementation, it allows modularity in the sense of changing a particular

implementation. We also use a scraper to extract semi-structured data from a web

page. The chatbot does not only use the nomenclature given by Schema.org ontology

but it also actively uses it in offering related information to what the user queried be-

fore. As a by-product, it learns which attributes are important for the user for next
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rounds of conversation. We have also integrated this chatbot into Amazon Alexa

and Slack, and additionally discussed how it could easily be done in general with the

simple API of our chatbot.

In the previous chapter, we have experimented with two methods of NER that

we wanted to compare and choose from. Our proposed approach performed reason-

ably on personal names based on the data that were available. On the other entities,

Stanford NER performed significantly better. We have also experimented with the

design and hyper-parameters of the RNN that we use for intent classification, which

yielded good results. Eventually, we have tested our application with multiple users

by performing short dialogs.

Throughout the whole implementation, we have battled the issue of lack of

labeled data. We believe that with more comprehensive labeled datasets the results

and capabilities would get improved.
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Appendix A

Attached Files

Attached files contain source codes of the movie chatbot, source files of the
LATEX file and the master thesis in PDF format. The structure of the directories is
described in the following table.

Directory/File Description/Content

/code source codes of the movie chatbot in Python

/latex LATEX source files

thesis.pdf master thesis in PDF format

Table A.1: Description of attached files
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