
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Control Engineering

Master’s Thesis

Open-source and Open-hardware CAN FD
Protocol Support

Bc. Martin Jeřábek

Supervisor: Ing. Jiří Novák, Ph.D.

Study Programme: Open Informatics, Master

Field of Study: Computer Engineering

January 8, 2019

iv

v

Aknowledgements
I would like to thank my supervisor, Ing. Jiří Novák, Ph.D., for supervising my
thesis, reviews, and lending me the USB-CAN adapter; Ing. Pavel Píša, Ph.D.,
for supervising the earlier parts of the project. Together with Ing. Ondrej Ille,
they both have provided many valuable inputs to the projct and without their
advice, many of the problems would remain unsolved. Lastly, I must not forget
to thank my family and friends for their support during writing this thesis.

vi

vii

Declaration
I declare that the presented work was developed independently and I have listed
all sources of information used within it in accordance with the methodical in-
structions for observing the ethical principles in the preparation of university
theses.

Prague, on January 8, 2019 ...

viii

Abstract

This thesis describes three subprojects, each dealing with support of the new
CAN FD standard in open-source CAN controllers. It begins with extending the
free SJA1000-compatible controller from OpenCores to tolerate FD frames on
the bus and in detail describes all the problems that have surfaced during the
implementation, together with their solutions. The second subproject deals with
implementing Linux SocketCAN driver for a new open-source CAN FD soft core
– CTU CAN FD; and finally, the design of an automated testing and verification
framework, with complex result reporting and line coverage.
Keywords: CAN bus, CAN FD, Linux, SocketCAN, Xilinx Zynq, MicroZed,
CTU CAN FD, SJA1000, CAN IP Soft Core, Gitlab, CI, verification, zlogan

Abstrakt
Tato práce popisuje tři subprojekty, z nichž každý se zabývá podporou nového
standardu CAN FD v open-source CAN kontrolérech. Zpočátku pojednává o
rozšiřování volně dostupného kontroléru z OpenCores, kompatibilního s SJA1000,
o tolerování FD rámců na sběrnici a detailně popisuje všechny problémy, které
vyvstaly během implementace, společně s jejich řešeními. Druhý subprojekt se
zabývá implementací ovladače pro linuxový SocketCAN pro nový open-source
CAN FD IP soft core – CTU CAN FD; a konečně pojednává o návrhu automatizo-
vaného testovacího a verifikačního frameworku s komplexním hlášením výsledků
a řádkovým pokrytím (line coverage).

Klíčová slova: CAN bus, CAN FD, Linux, SocketCAN, Xilinx Zynq, MicroZed,
CTU CAN FD, SJA1000, CAN IP Soft Core, Gitlab, CI, verifikace, zlogan

ix

x

Contents

1 Introduction 1
1.1 Availability of CAN FD Cores . 1
1.2 FD-tolerant controller . 2
1.3 Goals of this project . 2
1.4 Project repositories . 2
1.5 Used hardware and software . 3

2 Making OpenCores SJA1000 FD-Tolerant 5
2.1 Basic idea . 5
2.2 The bitrate shift . 6
2.3 Handling errors . 8
2.4 Clock skew . 8
2.5 Non-issues . 9
2.6 Stress-test: degenerate case . 9

2.6.1 Variant A: FD frames are acknowledged 9
2.6.2 Variant B: FD frames are not acknowledged 9

2.6.2.1 Phase 1 . 10
2.6.2.2 Phase 2 . 11
2.6.2.3 Phase 3 . 13

2.6.3 Possible mitigations . 14
2.6.4 Other findings . 15

2.7 Perpetual reset bug . 15

3 SocketCAN Driver for CTU CAN FD 17
3.1 About CTU CAN FD . 17
3.2 About SocketCAN . 18

3.2.1 Device probe . 18
3.2.2 Device tree . 18
3.2.3 Driver structure . 18

3.2.3.1 Platform device driver 18
3.2.3.2 Network device driver 19

3.2.4 NAPI . 21
3.3 Integrating the core to Xilinx Zynq 21

xi

xii CONTENTS

3.4 CTU CAN FD Driver design . 22
3.4.1 Low-level driver . 22
3.4.2 Configuring bit timing . 22
3.4.3 Handling RX . 23

3.4.3.1 Timestamping RX frames 24
3.4.4 Handling TX . 24

3.4.4.1 Timestamping TX frames 25
3.4.5 Handling RX buffer overrun 25
3.4.6 Reporting Error Passive and Bus Off conditions 26

4 Testing 29
4.1 Simulation framework . 29

4.1.1 CTU CAN FD Testcases overview 29
4.1.2 Installing GHDL . 30
4.1.3 Extending the simulation framework 30

4.1.3.1 VUnit . 31
4.1.3.2 The framework 31
4.1.3.3 Running tests 31
4.1.3.4 Automatic waveform layout in GUI mode 32
4.1.3.5 Test results . 33
4.1.3.6 Line coverage . 33

4.2 Automated builds . 34
4.2.1 Pushing to repository from CI job 35
4.2.2 Making Vivado available in the build image 36

4.3 Automated FPGA tests . 36
4.3.1 Updating FPGA bitstream 37

4.3.1.1 Using FPGA Manager from userspace 37
4.3.2 The test suite . 38

5 Extra work 41
5.1 Extending zlogan . 41

5.1.1 Modifications . 41
5.1.2 Usage . 42

5.2 Rewrite of CAN crossbar IP . 42
5.2.1 Driver . 44
5.2.2 Register Overview . 45

5.2.2.1 CAN Configuration Register 45

6 Conclusion 47

Bibliography 49

A Contents of attached CD 53

List of Figures

2.1 Example of failing Bus Idle detection with sampling only in nom-
inal bitrate . 7

2.2 SJA cross TX test, Phase 1 . 10
2.3 SJA cross TX test, model for non-acknowledged FD frame 11
2.4 SJA cross TX test, Phase 2 . 12
2.5 SJA cross TX test, model for non-acknowledged SJA frame 12
2.6 SJA cross TX test, Phase 3 . 14

3.1 CTU CAN FD TXB priority rotation example 25
3.2 TX Buffer states with possible transitions 26

4.1 Example test results from the testing framework. 34

5.1 Example of top-level design with zlogan in Vivado 43
5.2 Structure of can_crossbar . 44

xiii

List of Listings

1 An excerpt from device tree declaring an AMBA bus, to which one
CTU CAN FD core is attached. 19

2 Platform device driver declaration 20
3 Fields of can_bittiming_const 23
4 Example of test suite configuration 32
5 Examples of running simulation tests 33
6 Generating HTML report from test code coverage 34
7 Specifying a volume in config.toml for gitlab-runner 36
8 Preparing the FPGA bitstream for loading via FPGA Manager

interface and compiling the Device Trees. 38
9 Loading the FPGA bitstream via FPGA Manager interface. . . . 39
10 Example of device tree overlay source. 40

xiv

Nomenclature

ACK Acknowledge

AMBA Advanced Microcontroller Bus Architecture

APB Advanced Peripheral Bus

API Application Programming Interface

AXI Advanced eXtensible Interface

BRS Bit Rate Switch [23]

CAN Controller Area Network

CI Continuous Integration

CRC Cyclic Redundancy Check

CTU Czech Technical University

DCE Department of Control Engineering

DMA Direct Memory Access

DOI Data Overrun Interrupt [9]

DOR Data Overrun Flag [9]

DT Device Tree

DTB Device Tree Blob

DTO Device Tree Overlay

EDL Extended Data Length [23]

EOF End of Frame [23]

EPI Error Passive Interrupt [9]

EWLI Error Warning Limit Interrupt [9]

xv

xvi LIST OF LISTINGS

FD Flexible Data Rate

FEE Faculty of Electrical Engineering

FPGA Field Programmable Gate Array

FSM Finite State Machine

HDL Hardware Description Language

IP Intellectual Property

IRQ Interrupt Request

ISR Interrupt Service Routine

NAPI New API [15]

PCI Peripheral Component Interconnect

PSL Property Specification Language

RTL Register Transfer Logic

RXNE RX FIFO Noe Empty [9]

SKB Socket Buffer (Linux)

SOF Start of Frame [23]

SSH Secure Shell

TCL Tool Command Language

TXB TX Buffer

UIO Userspace I/O [13]

USB Universal Serial Bus

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

XML eXtensible Markup Language

XSLT eXtensible Stylesheet Language Transformations

Chapter 1

Introduction

CAN FD (Flexible Datarate), described in ISO 11898-1:2015, is an extension to
the earlier CAN 2.0 specification (ISO 11898-1:2003). It introduces two new main
enhancements:

• Increase of maximum payload length from 8 bytes to 64 bytes.

• Transfer the data on another, higher, bitrate (nominal bitrate is used in
arbitration phase, different one may be used in data phase).

There is further information available about CAN by CiA group, both general
CANbus description [3 , 5] and overview of the FD extension [4 , 17].

1.1 Availability of CAN FD Cores
There are many commercial CAN and even CAN FD IP cores, but not so many
free ones, let alone open source. One notable example of an open-source CAN 2.0
core is a core with SJA1000-like interface [16]. No open implementation of the
CAN FD protocol was found. That is why somewhere around 2015, CTU CAN
FD core originated its life as Ondrej Ille’s Master’s Thesis.

While it is nice to have an IP which “seems to work on the table”, for serious
use it must be optimized, verified and documented; that demands a lot of time and
resources. Fortunately, the project spiked an interest in an unnamed automotive
company, and a project was born to do just that: optimize and verify the core
and create Linux driver for it.

It is worth noting that costs in the IP segment are generally very high, as
in addition to a team of skilled engineers, it must pay for all the commercial
tools. And usually, the core has fees per instance, in addition to a fixed cost. A
full-featured open source IP has the potential to reduce the costs, but of course
requires more time to mature and a lot of cooperation with its potential users.
Using open source tools also significantly reduces the costs for tooling.

1

CHAPTER 1. INTRODUCTION

1.2 FD-tolerant controller
Taking a fresh design and bringing it into production state takes a long time,
but the industrial partner needed a passive FD-compatible solution in the early
phase of the project. A controller which can be present in CAN FD networks
but does not necessarily have to understand the FD traffic. In other words, an
FD-tolerant controller was needed.

For this job, it was decided to use and modify the SJA1000 soft core from
OpenCores [16]. There are several reasons for this choice:

• The core is free (both in price and source code).
• The core works and the author claims that it has been tested against Bosch’s

reference model1 .
• SocketCAN driver is available in mainline Linux kernel.
• At DCE, we already had some experience with the core, as I have been

adapting it for use on Xilinx Zynq for my Canbench Bachelor’s Thesis [11].

1.3 Goals of this project
This thesis describes the multiple stages of the project. The results of extending
the SJA1000-compatible controller to be FD-tolerant, as well as all the encoun-
tered pitfalls, are in detail described in chapter 2 on page 5 .

Chapter 3 on page 17 begins with an overview of the CTU CAN FD core,
followed by an introduction to Linux SocketCAN and device driver structure.
The major part of the chapter is then dedicated to the implementation and design
choices for the CTU CAN FD SocketCAN driver in particular.

As stated at the very beginning of this chapter, the CTU CAN FD core needed
to be well verified and the process needed to be automated and fully transparent to
the developers. The steps of implementing the automated simulation, synthesis,
and FPGA tests are in detail discussed in chapter 4 on page 29 .

During all the development and testing, a number of tools had to be written
or extended. The most notable ones are described in chapter 5 on page 41 .

Finally, an assessment of the project with our current achievements, together
with further goals, is present in the conclusion in chapter 6 on page 47 .

1.4 Project repositories
All the source code is available on CTU FEE’s GitLab server. There is the repos-
itory of CTU CAN FD Core [26], containing the RTL sources of the core itself,

1However, the results are not opensourced due to licensing issues. This is not sufficient for
massive commercial usage but provides a good starting point.

2

1.5. USED HARDWARE AND SOFTWARE

Vivado component file for IP encapsulation, full simulation testbench, documen-
tation, register map, SocketCAN driver and a simple userspace testing applica-
tion.

The FD-tolerant SJA1000 Core repository [27] contains the RTL sources,
Vivado component file and a small number of verification testbenches. And of
course, the top-level project for synthesis on MicroZed board [29], which includes
the abovementioned IP cores as git submodules.

Zlogan, the in-chip logical analyzer, is developed in the Github repository of
its initial author Marek Peca [30]. Finally, sources of this thesis, as well as all the
figures and data logs, are also available in a public git repository [28].

1.5 Used hardware and software
The FPGA project is synthesized for Xilinx Zynq on MicroZed board. As the
daughter board with CAN transceivers, the canbench [11] and mzapo [19 , 20]
boards were used. As a reference CAN FD controller, Kvaser USB-CAN adapter
has been used.

Xilinx Vivado is used for synthesis. GHDL and VUnit, together with custom
extending framework, are used for simulation; gtkwave then for viewing the wave-
forms. Gitlab with all its infrastructure is used for the project’s management and
versioning, and many Docker images are used for the various Continuous Inte-
gration jobs.

3

CHAPTER 1. INTRODUCTION

4

Chapter 2

Making OpenCores SJA1000
FD-Tolerant

In section 1.2 on page 2 , it was stated that an FD-tolerant controller was needed
until the CTU CAN FD controller was ready and that SJA1000 from OpenCores
was selected as a basis for this purpose. The following chapter describes the
modifications done to the core in order to make it FD-tolerant, together with
some interesting problems encountered on the way.

Solving the problems brought me further understanding of the CAN standard
and made me understand the reasoning behind some particulars of the protocol.
Parts of the standard looking as some random details turned out to be a vital
part of the specification in many corner cases (which may still happen rather
frequently).

The changes to the core may be summed up roughly to these points. The
following sections will discuss the details of them.

• Detection of the borders of an FD frame (especially of its end) and properly
ignoring it.

• Circumventing the FSM during FD ignore period (adding a condition to all
transitions).

• Preventing TX during FD ignore period.
• Fix waiting for bus idle after bus-off to enable going out of reset.

2.1 Basic idea
The idea of making the controller FD-tolerant is fairly simple: If the EDL bit,
indicating an FD frame, is set, ignore the rest of the frame and resume normal
bus participation only after the FD frame is finished.

We thus have to detect two things:

• Beginning of the ignore period

5

CHAPTER 2. MAKING OPENCORES SJA1000 FD-TOLERANT

• End of the ignore period

Finding the beginning is trivial – the received EDL bit is recessive, indicating
an FD frame. The end condition is a bit more complicated. To know the length
of the frame, it would be necessary to understand the CAN FD protocol and to
know the data bitrate – but that way we would end up implementing the FD
support, which is not trivial at all.

Fortunately, the CAN standard is designed in a way that it is possible to
detect when the bus is idle:

• Every frame must be followed by Interframe space – at least 3 recessive bits

• Every data frame ends with an EOF field consisting of 7 recessive bits (+
8th for ACK delimiter)

• Every error (or overload) frame ends with Error delimiter field consisting
of 8 recessive bits.

Remote frames do not have to be considered since remote frames do not
exist in FD format. They are, however, structurally identical to data frames. A
curious reader may wonder why the amount of bits in EOF and Error Delimiter
differs – surely it would seem more sensible to have them the same length, so
that the minimum “space” between frames is the same, regardless of the frame
type. However, upon further inspection of the data frame, one may note that
there is 1 extra recessive bit before the EOF field – ACK Delimiter. This small
detail remained unrecognized at first and had led to several difficulties during
the testing, which were resolved after repeated examination of the CAN protocol
specification.

So for the end condition, it is enough to wait for 8 consecutive recessive bits
and then go to Intermission. This condition may not occur in the middle of
frame because of bit stuffing. The alternative of waiting for 11 consecutive reces-
sive bits instead and then go to Idle is not acceptable – there would arise obscure
problems with Early TX, resynchronization and suspend, which are already be-
ing handled correctly in the Intermission field. See section 2.4 on page 8 for
details.

This again looks simple enough, but in practice, several problems arise.

2.2 The bitrate shift
In FD frames, the data part may be transmitted in a different (higher) bitrate,
but the SJA1000 controller does not process this part of the frame nor does it
detect the bitrate shift. If we sample the bus only in sample point of the nominal
bitrate, we miss some bits. That might deceive the detection of the FD ignore
period.

6

2.2. THE BITRATE SHIFT

Figure 2.1: Example of failing Bus Idle detection with sampling only in nom-
inal bitrate. sp_nom is high in nominal bitrate sample point, sp_dat in data
bitrate sample point. sampled_nom is low when in nominal sample point and
low (dominant) is sampled. On can_rx are recessive data with correct stuffing
in data bitrate. Resolution to 100 ns time quanta, nominal bit time 16 tq (sp in
13/16 ≈ 81.25%), data bit time 11 tq (sp in 9/11 ≈ 81.2%).

Suppose the FD controller is transmitting a 64B frame with data payload
made of 0xFF bytes. The bus is then in recessive state most of the time with
only dominant stuff bits after every 5 recessive bits. It is not hard to imagine
a scenario where the dominant stuff bit (in data bitrate) falls out of the sample
time in nominal data bitrate for at least 11 nominal bit times (see Figure 2.1).

That way, the end of the FD frame is detected prematurely, and the rest of
the frame is treated as a new frame, which will most probably be malformed and
trigger an error condition. That in turn causes Error Frame to be sent on the
bus and the FD frame not to be received by any node, leading to retransmission
and perpetual errors (until the not-so-FD-tolerant node goes error passive or
bus_off).

The solution is again simple. We do not know the data bitrate, but we do have
the undivided peripheral clock available. Instead of sampling the RX signal only
in sample time, it can be sampled at the undivided clock, checking for a recessive-
to-dominant edge between this sample point and the preceding one. This way
the signal levels transitions on data bitrate are captured, and the abovementioned
problem is solved.

One potential drawback of this solution is making the controller more sensi-
tive to short-term glitches during the FD ignore period, but CAN FD controllers
default to single sampling during the bitrate-shifted data phase anyway. More-
over, a dominant glitch is much less likely than a recessive glitch (which is of no
significance in this situation), as the recessive level is weaker. Better solutions
require knowing (or guessing) the actual (or maximal) data bitrate.

This situation may at first glance seem identical to that of a glitch to be
interpreted as SOF due to hard synchronization. However, while it is true that
the hard synchronization is performed on the recessive-to-dominant glitch, the
SOF is sampled only in sample point – and the bus is correctly detected as Idle
if the dominant state is only a short glitch.

7

CHAPTER 2. MAKING OPENCORES SJA1000 FD-TOLERANT

2.3 Handling errors
In the spirit of “perform only minimal, surgical-like changes to the core so that it
works”, the initial design did not stop the main CAN FSM, and only masked TX
for the duration of the FD ignore period. This had some unpleasant implications:

• The core likely goes into error state during an FD frame.

• Error counters are increased.

• When the FD ignore period ends, the core may still be “transmitting” error
frame.

The solution was simple – the whole FSM must be blocked until the end of
FD ignore period. Due to the core design, this required changing every transition
condition.

2.4 Clock skew
Another non-obvious problem occurs if the FD-tolerant receiver’s and the FD
frame transmitter’s clock are not synchronized. This is normally countered by
employing hard synchronization at SOF or resynchronization at every recessive-
to-dominant edge. The problem is that during the data phase, the bitrate may
be shifted and is not in sync with the nominal bitrate. Synchronization of the
FD-tolerant receiver may theoretically be broken so that it is shifted by half
the nominal bitrate in the worst case. That poses a problem if another frame
immediately follows the FD frame. In an earlier version, the end condition for
the FD ignore period was the detection of 11 consecutive recessive bits (in nominal
bitrate), and only in the next bit would the controller rejoin participation on the
bus. If the drift is too large, the SOF of the next frame might be received in
place of the 11th bit of the quiescent state, resulting in the FD ignore period to
be extended over the duration of the next frame.

This problem is not unique to this situation but might also happen in normal
CAN communication. The CAN standard, however, employs 2 counter-measures,
which completely prevent this problem:

• Hard synchronization on SOF

• Transmitter must send SOF only after the 3 bits of Intermission, but the
receiver must interpret the SOF even in the last bit of Intermission.

The second step is already handled by not waiting for 11 recessive bits, but
only for 8 and going to Intermission. However, to further minimize the possible
drift (and, admittedly, for historical reasons), hard synchronization is performed
on every recessive-to-dominant edge during the FD ignore period.

8

2.5. NON-ISSUES

2.5 Non-issues
The Suspend Transmission field of Interframe Space is not an issue, as it
is relevant only if the node is currently a Transmitter, but the node is capable of
only receiving FD frames1

 .
Arbitration loss cannot occur when transmitting a frame simultaneously

with another node sending an FD frame. Even if the transmitted frame IDs were
identical for both nodes, the EDL bit indicating an FD frame is recessive, so
the FD-tolerant (but not FD-capable) node would “win” with its non-FD frame
and cause Bit-Error for the FD-capable node, as the EDL bit is already in
Control Field, and not Arbitration Field.

2.6 Stress-test: degenerate case
Imagine the following stress-test:

• Only one FD-capable device and one FD-tolerant SJA1000 are on the bus.
• The FD-capable device is sending a stream of FD frames with high CAN

IDs (low priority), as tightly packed as possible.
• The FD-tolerant controller is sending a stream of CAN 2.0 frames with low

CAN IDs (high priority). The frames should be packed tightly, but allow
for the occasional transmission of the low-priority FD frame.

The FD-capable node is spamming FD frames, which should be ignored in
the FD-tolerant SJA1000. SJA1000 should also correctly step into the traffic and
send its own high-priority frames.

The waveforms in figures are captured by zlogan (see section 5.1 on page 41)
on FPGA board. The CAN bus is routed internally, and all nodes are on the same
clocks. Nominal bitrate is 500K, data bitrate 5M. FD CAN ID 0x0FF, non-FD
CAN ID 0x0F0. Details may be seen in thesis source in figures/sja_crosstx.

2.6.1 Variant A: FD frames are acknowledged
There is another FD-capable node on the bus, which ACKs the FD frames. Thus
no errors should occur anywhere on the bus, and all the frames from both trans-
mitters should be delivered.

2.6.2 Variant B: FD frames are not acknowledged
There are only the transmitting FD-capable node and the FD-tolerant SJA1000
on the bus. Nobody ACKs the FD frames, which results in an error frame from
the transmitter. The non-FD frames should be delivered successfully.

1Neither will the node transmit an Error Frame in this situation.

9

CHAPTER 2. MAKING OPENCORES SJA1000 FD-TOLERANT

EF SOF ACK

Figure 2.2: SJA cross TX test, Phase 1. Both the SJA and FD-capable (in this
case CTU CAN FD) nodes are error active.

As the FD-capable transmitter fails to receive ACK for its frame, it sends
an error frame and increments its TX Error Counter by 8 ([23], Fault Con-
finement rule 3). The TX Error Counter has no means to naturally de-
crease, and once it crosses 127, the node becomes error passive. From that
moment, the Acknowledgment-Error does not cause the increase of TX
Error Counter (exception 2 from rule 3), but the Bit Error when the SJA
starts to transmit its own frame in the middle of Error Delimiter does. One
of the nodes thus reaches bus_off state, while the other stays error passive and
continues to retransmit its frame forever.

The test has 3 phases:

1. Both nodes are error active.

2. The FD-capable node becomes error passive. SJA1000 remains error active.

3. SJA1000 goes error passive. Both nodes are error passive.

2.6.2.1 Phase 1

The FD-capable controller is transmitting a frame and does not receive Ack.
After the Ack Slot, it sends an Active Error Flag, followed by 8 recessive
bits of Error Delimiter and 3 recessive bits of Intermission.

The FD-tolerant SJA1000 is in FD ignore mode and remains there for the
duration of the whole Error Frame. After the 8 recessive bits of Error
Delimiter, the FD ignore period ends, and the core goes to Intermission.
Both nodes remain in sync.

The non-FD frames from SJA1000 are all delivered successfully.

10

2.6. STRESS-TEST: DEGENERATE CASE

C
R

C
 D

el
im

it
er

A
C

K
 S

lo
t

Error Delimiter Idle
FD FD Frame 1 2 3 4 5 6 * 2 3 4 5 6 7 8 1 2 3 1 2 3 4 5 6 7 8

FD Ignore Period Idle
SJA a) 1 2 3 4 5 6 7 8 1 2 3 1 2 3 4 5 6 7 8

FD Ignore Period Idle
SJA b) 1 2 3 4 5 6 7 8 1 2 3 1 2 3 4 5 6 7 8

Passive
Error Flag

Inter-
mission

Suspend
Transmission

Inter-
mission

Suspend
Transmission

Inter-
mission

Suspend
Transmission

Figure 2.3: SJA cross TX test, model for non-acknowledged FD frame. The
FD-capable node is error passive. The SJA node may be either error active
(Phase 2), in which case it does not transmit the Suspend Transmission field
and may transmit SOF immediately after its own Intermission (blue lines),
or error passive (Phase 3; red lines). In variant (a), the last bit of CRC Se-
quence is dominanta. Variant (b) shows the other extreme when the last 4 bits
are recessiveb.
a Or more precisely, there has been a recessive-to-dominant edge in the nominal bit time pre-
ceding CRC Delimiter.
b FD frames use fixed stuffing. The exact reasoning why this is the maximum is given in
section 2.6.3 on page 14

2.6.2.2 Phase 2

When the FD controller goes error passive, the situation changes. There is no
more the synchronizing Active Error Flag, and the controllers go off sync.
As can be seen in 2.3 , the FD ignore period ends in the middle of the FD-capable
controller’s Error Delimiter, and so does all of SJA’s Intermission.

SJA then starts its own transmission, and since the other controller is not
ready for it, it will not be acknowledged – the FD-capable node instead starts to
transmit a Passive Error Frame, which will not be detected by the SJA. That
causes the SJA to send an Active Error Frame, which again synchronizes
the two nodes.

The retransmitted frame from SJA should now be delivered successfully. Af-
ter an FD frame, the situation repeats, and one non-FD frame is sent non-
acknowledged, leading to Error Frame, increase of TX Error Counter,
and then successful retransmission.

The situation changes again when the SJA becomes error passive.

11

CHAPTER 2. MAKING OPENCORES SJA1000 FD-TOLERANT

EF

SOF
Passive EF

Figure 2.4: SJA cross TX test, Phase 2. The CTU CAN FD node is error passive,
while the SJA remains error active.

C
R

C
 D

el
im

it
er

A
C

K
 S

lo
t

Error Delimiter Idle
SJA Frame 1 2 3 4 5 6 * 2 3 4 5 6 7 8 1 2 3 1 2 3 4 5 6 7 8

Passive Error Flag Error Delimiter Idle
FD a) 1 2 3 4 5 6 * 2 3 4 5 6 7 8 1 2 3 1 2 3 4 5 6 7 8

Passive Error Flag Error Delimiter Idle
FD b) 1 2 3 4 5 6 * 2 3 4 5 6 7 8 1 2 3 1 2 3 4 5 6 7 8

Passive
Error Flag

Inter-
mission

Suspend
Transmission

Inter-
mission

Suspend
Transmission

Inter-
mission

Suspend
Transmission

Figure 2.5: SJA cross TX test, model for non-acknowledged SJA frame. Both
nodes are error passive (Phase 3). In variant (a), the last bit of CRC Sequence
is dominant. Variant (b) shows the other extreme when the last 4 bits are reces-
sive. Blue lines indicate the start of retransmission in conformant case, red lines
represent the case when the FD node does not send Suspend Transmission.

12

2.6. STRESS-TEST: DEGENERATE CASE

2.6.2.3 Phase 3

Now both nodes are error passive, and no form of forced synchronization may
occur, except for the bus being Idle long enough for both nodes to become Idle.
However, as this is a stress test, there is no such luxury.

When an FD frame is being transmitted, the situation starts as in the previ-
ous phase. SJA starts sending its own frame in the middle of the other’s node
Passive Error Frame, resulting in SJA Acknowledgment-Error when
no acknowledgment is received for the frame.

However, now the SJA sends a Passive Error Flag. The FD-capable core
has been transmitting its own Passive Error Flag at the time2

 . It depends
on the frame transmitted by SJA when the Passive Error Flag of the FD-
capable node will end. Anything between two border cases may occur – either
the last bit of CRC Sequence field is dominant, or the 4 last bits of it are
recessive3

 .
In all cases, the Transmitter SJA node will reach Idle in the FD-capable

node’s Suspend Transmission, as indicated by the blue lines in fig. 2.5 on the
facing page. The FD-capable node now attempts to retransmit its FD frame. As
the SJA is still in Suspend Transmission, it does not participate in arbitration.
The FD frame is not acknowledged, the FD-capable node sends Passive Error
Frame, into which the SJA starts to send its own frame and the whole cycle
repeats. From this point onwards, no frame will be delivered4

 .
Figure 2.6 on the next page shows a different outcome. At the time of writing,

CTU CAN FD does not transmit Suspend Transmission after the Passive
Error Frame, and starts the retransmission sooner5

 . As is evident from the
red lines in fig. 2.5 on the facing page, two distinct situations may now occur:

• The FD-capable node starts the retransmission in the first two bits of SJA’s
Intermission, which is interpreted as an Overload Frame. That causes
the nodes to synchronize again, and they will both participate in the next
arbitration.

• The retransmission starts in SJA’s Error Delimiter, causing it to start
a new Passive Error Frame. This is exactly what happened before to
the FD-capable controller – their roles are now swapped. The SJA does
transmit Suspend Transmission, and the FD node will start its next
retransmission in this period. The SJA detects the FD frame, and the
cycle starts anew.

2The error passive station waits for six consecutive bits of equal polarity, beginning at the
start of the Passive Error Flag. The Passive Error Flag is complete when these 6 equal
bits have been detected. ([23], 3.2.3)

3If 5 last bits were recessive, a dominant stuff bit would follow.
4As all the frames are retransmissions, there is no option from SW to delay sending the

frames.
5Submitted as issue #225.

13

CHAPTER 2. MAKING OPENCORES SJA1000 FD-TOLERANT

Passive EF

PEF
Overload

SOF

Figure 2.6: SJA cross TX test, Phase 3. Both nodes are now error passive. The
captured waveform differs from the theoretical prediction because CTU CAN FD
fails to transmit Suspend Transmission after the Passive Error Frame.

2.6.3 Possible mitigations
First of all, let it be noted that this whole situation happens only under very
specific conditions – there is no node to acknowledge the FD frames, and there is
no other node (except the FD-capable one) to acknowledge the non-FD frames.
That is not how real-world buses are likely to look. A slightly more likely case is
that all other nodes go bus_off. But in that case, the bus is in a bad condition
anyway, so this does not add too much of a risk. Moreover, as soon as another
node reintegrates, it will ACK one of the frames and the endless cycle will break.

In any case, one way to mitigate this issue is to add some wait states after
ignoring an FD frame, as the initial cause of the problem is the SJA starting
to transmit in the middle of Passive Error Frame. The simplest way is
for the node also to transmit Suspend Transmission field of Interframe
Space if the node was Receiver and did just ignore an FD frame. However,
this would introduce a new set of problems. Calling the new field After-FD
Suspend Transmission, here are the requirements for it (and its differences
from Suspend Transmission at the same time):

• The time to wait has to be 8 + however many end bits of the FD frame CRC
may be recessive. In FD frames, CRC Sequence is stuffed using fixed bit
stuffing – a stuff bit is inserted at the beginning and after every 4 bits. Let
us suppose that the last fixed stuff bit is recessive, and the remaining bits of
CRC Sequence are also recessive. For CRC_15, CRC_17, and CRC_21,
the number of these bits is 3, 1, 1, respectively. The After-FD Suspend
Transmission field thus needs to be 12 bits long.

• It should not unduly delay higher-priority frames. Thus the node transmit-
ting After-FD Suspend Transmission should participate in arbitration
if another node starts transmitting during the period. It will not, however,

14

2.7. PERPETUAL RESET BUG

initiate with SOF on its own until it finishes After-FD Suspend Trans-
mission.

This mitigation would at worst cause 12bit delay of a frame directly following
an FD frame, in a situation that no other node wants to transmit at the time.
At best, it can prevent a “lockup” in one engineered pathologic situation.

This mitigation is not implemented in the extended FD-tolerant SJA1000
controller.

2.6.4 Other findings
This contrived test helped discover a bug in the original SJA1000 core (see next
section), a bug in the CTU CAN FD controller (see Figure 2.6), and an issue
with the SJA’s FD tolerance implementation itself6 . At the time of writing, the
CTU CAN FD issue has an open gitlab issue, and the other bugs are fixed.

2.7 Perpetual reset bug
A rather serious bug was discovered in the SJA1000 core. When SJA1000 goes
to bus_off, it switches to Reset mode [18]. When the driver attempts to reset the
controller and re-enable it by requesting to leave the Reset mode, the controller
first waits for 128 occurrences of 11 consecutive recessive bits, as per specification
[22]. However, due to internal signal duplication and unmatched conditions, the
core remained forever in Reset mode. This was fixed in commit 02c7660645fb
and further improved in 8e13b92c361d.

6As described earlier, the problem was with detecting the end of the FD ignore period for
data frames, where the CRC Delimiter field was ignored. As the result, the core resumed
bus participation one bit time late.

15

CHAPTER 2. MAKING OPENCORES SJA1000 FD-TOLERANT

16

Chapter 3

SocketCAN Driver for CTU
CAN FD

3.1 About CTU CAN FD
CTU CAN FD is an open source soft core written in VHDL. It originated in 2015
as a Master’s project by Ondrej Ille at the Department of Measurement of FEE at
CTU. After a few years, a company became interested in the core and expressed
the desire to be able to synthesize several such cores in FPGA and access them
from Linux via SocketCAN.

This lead to new interest in the project with much higher demand for test
coverage and design reliability. It was necessary to optimize the core and re-
design the register map for easy and safe use from a potentially multi-processor
environment. That was kept on the core’s author, with me and my supervisor as
consultants.

It was also necessary to create the SocketCAN driver and integrate the core
to Xilinx Zynq SoC in our MicroZed board for testing. As the core was being
significantly rewritten, there arose the need to have some form of automated tests
to detect errors soon. These tasks were assigned to me, and they are described
in this and the following chapters.

To sum up, the following tasks were necessary to perform on the core (the
italicized ones were performed by someone else and are out of the scope of this
thesis):

• Optimize the core (resource usage, maximum operating frequency)

• Integrate the core to MicroZed testing platform

• Create SocketCAN driver

• Create an automated verification framework and environment to automa-
tically run the tests

17

CHAPTER 3. SOCKETCAN DRIVER FOR CTU CAN FD

3.2 About SocketCAN
SocketCAN is a standard common interface for CAN devices in the Linux kernel.
As the name suggests, the bus is accessed via sockets, similarly to common net-
work devices. The reasoning behind this is in depth described in [14]. In short,
it offers a natural way to implement and work with higher layer protocols over
CAN, in the same way as, e.g., UDP/IP over Ethernet.

3.2.1 Device probe
Before going into detail about the structure of a CAN bus device driver, let’s
reiterate how the kernel gets to know about the device at all. Some buses, like
PCI or PCIe, support device enumeration. That is, when the system boots, it
discovers all the devices on the bus and reads their configuration. The kernel
identifies the device via its vendor ID and device ID, and if there is a driver
registered for this identifier combination, its probe method is invoked to populate
the driver’s instance for the given hardware. A similar situation goes with USB,
only it allows for device hot-plug.

The situation is different for peripherals which are directly embedded in the
SoC and connected to an internal system bus (AXI, APB, Avalon, and others).
These buses do not support enumeration, and thus the kernel has to learn about
the devices from elsewhere. This is exactly what the Device Tree was made for.

3.2.2 Device tree
An entry in device tree states that a device exists in the system, how it is reachable
(on which bus it resides) and its configuration – registers address, interrupts and
so on. An example of such a device tree is given in listing 1 on the next page.

3.2.3 Driver structure
The driver can be divided into two parts – platform-dependent device discovery
and set up, and platform-independent CAN network device implementation.

3.2.3.1 Platform device driver

In the case of Zynq, the core is connected via the AXI system bus, which does
not have enumeration support, and the device must be specified in Device Tree.
This kind of devices is called platform device in the kernel and is handled by a
platform device driver1

 .
A platform device driver provides the following things:

• A probe function
1Other buses have their own specific driver interface to set up the device.

18

3.2. ABOUT SOCKETCAN

/ {
/* ... */
amba: amba {

#address-cells = <1>;
#size-cells = <1>;
compatible = "simple-bus";

CTU_CAN_FD_0: CTU_CAN_FD@43c30000 {
compatible = "ctu,ctucanfd";
interrupt-parent = <&intc>;
interrupts = <0 30 4>;
clocks = <&clkc 15>;
reg = <0x43c30000 0x10000>;

};
};

};

Listing 1: An excerpt from device tree declaring an AMBA bus, to which one
CTU CAN FD core is attached.

• A remove function
• A table of compatible devices that the driver can handle

The probe function is called exactly once when the device appears (or the
driver is loaded, whichever happens later). If there are more devices handled by
the same driver, the probe function is called for each one of them. Its role is
to allocate and initialize resources required for handling the device, as well as
set up low-level functions for the platform-independent layer, e.g., read_reg and
write_reg. After that, the driver registers the device to a higher layer, in our case
as a network device.

The remove function is called when the device disappears, or the driver is
about to be unloaded. It serves to free the resources allocated in probe and to
unregister the device from higher layers.

Finally, the table of compatible devices states which devices the driver can
handle. The Device Tree entry compatible is matched against the tables of all
platform drivers.

3.2.3.2 Network device driver

Each network device must support at least these operations:

• Bring the device up: ndo_open
• Bring the device down: ndo_close

19

CHAPTER 3. SOCKETCAN DRIVER FOR CTU CAN FD

/* Match table for OF platform binding */
static const struct of_device_id ctucan_of_match[] = {

{ .compatible = "ctu,canfd-2", },
{ .compatible = "ctu,ctucanfd", },
{ /* end of list */ },

};
MODULE_DEVICE_TABLE(of, ctucan_of_match);

static int ctucan_probe(struct platform_device *pdev);
static int ctucan_remove(struct platform_device *pdev);

static struct platform_driver ctucanfd_driver = {
.probe = ctucan_probe,
.remove = ctucan_remove,
.driver = {

.name = DRIVER_NAME,

.of_match_table = ctucan_of_match,
},

};
module_platform_driver(ctucanfd_driver);

Listing 2: Platform device driver declaration. Only prototypes of the probe and
remove functions are included.

• Submit TX frames to the device: ndo_start_xmit

• Signal TX completion and errors to the network subsystem: ISR

• Submit RX frames to the network subsystem: ISR and NAPI

There are two possible event sources: the device and the network subsystem.
Device events are usually signaled via an interrupt, handled in an Interrupt Ser-
vice Routine (ISR). Handlers for the events originating in the network subsystem
are then specified in struct net_device_ops.

When the device is brought up, e.g., by calling ip link set can0 up, the
driver’s function ndo_open is called. It should validate the interface configuration
and configure and enable the device. The analogous opposite is ndo_close, called
when the device is being brought down, be it explicitly or implicitly.

When the system should transmit a frame, it does so by calling ndo_start_xmit,
which enqueues the frame into the device. If the device HW queue (FIFO, mail-
boxes or whatever the implementation is) becomes full, the ndo_start_xmit
implementation informs the network subsystem that it should stop the TX queue
(via netif_stop_queue). It is then re-enabled later in ISR when the device has
some space available again and is able to enqueue another frame.

20

3.3. INTEGRATING THE CORE TO XILINX ZYNQ

All the device events are handled in ISR, namely:

1. TX completion. When the device successfully finishes transmitting a
frame, the frame is echoed locally. On error, an informative error frame2

is sent to the network subsystem instead. In both cases, the software TX
queue is resumed so that more frames may be sent.

2. Error condition. If something goes wrong (e.g., the device goes bus-off
or RX overrun happens), error counters are updated, and informative error
frames are enqueued to SW RX queue.

3. RX buffer not empty. In this case, read the RX frames and enqueue them
to SW RX queue. Usually NAPI is used as a middle layer (see section 3.2.4).

3.2.4 NAPI
The frequency of incoming frames can be high and the overhead to invoke the
interrupt service routine for each frame can cause significant system load. There
are multiple mechanisms in the Linux kernel to deal with this situation. They
evolved over the years of Linux kernel development and enhancements. For net-
work devices, the current standard is NAPI – the New API. It is similar to classical
top-half/bottom-half interrupt handling in that it only acknowledges the inter-
rupt in the ISR and signals that the rest of the processing should be done in
softirq context. On top of that, it offers the possibility to poll for new frames for
a while. This has a potential to avoid the costly round of enabling interrupts,
handling an incoming IRQ in ISR, re-enabling the softirq and switching context
back to softirq.

More detailed documentation of NAPI may be found on the pages of Linux
Foundation [15].

3.3 Integrating the core to Xilinx Zynq
The core interfaces a simple subset of the Avalon [10] bus as it was originally used
on Alterra FPGA chips, yet Xilinx natively interfaces with AXI [2]. The most
obvious solution would be to use an Avalon/AXI bridge or implement some simple
conversion entity. However, the core’s interface is half-duplex with no handshake
signaling, whereas AXI is full duplex with two-way signaling. Moreover, even
AXI-Lite slave interface is quite resource-intensive, and the flexibility and speed
of AXI are not required for a CAN core.

Thus a much simpler bus was chosen – APB (Advanced Peripheral Bus) [1].
APB-AXI bridge is directly available in Xilinx Vivado, and the interface adaptor
entity is just a few simple combinatorial assignments.

2Not to be mistaken with CAN Error Frame. This is a can_frame with CAN_ERR_FLAG set
and some error info in its data field.

21

CHAPTER 3. SOCKETCAN DRIVER FOR CTU CAN FD

Finally, to be able to include the core in a block diagram as a custom IP, the
core, together with the APB interface, has been packaged as a Vivado component.

3.4 CTU CAN FD Driver design
The general structure of a CAN device driver has already been examined in
section 3.2.3 on page 18 . The next paragraphs provide a more detailed description
of the CTU CAN FD core driver in particular.

3.4.1 Low-level driver
The core is not intended to be used solely with SocketCAN, and thus it is desirable
to have an OS-independent low-level driver. This low-level driver can then be used
in implementations of OS driver or directly either on bare metal or in a user-space
application. Another advantage is that if the hardware slightly changes, only the
low-level driver needs to be modified.

The code3
 is in part automatically generated and in part written manually

by the core author, with contributions of the thesis’ author. The low-level driver
supports operations such as: set bit timing, set controller mode, enable/disable,
read RX frame, write TX frame, and so on.

3.4.2 Configuring bit timing
On CAN, each bit is divided into four segments: SYNC, PROP, PHASE1, and
PHASE2. Their duration is expressed in multiples of a Time Quantum (details
in [22], chapter 8). When configuring bitrate, the durations of all the segments
(and time quantum) must be computed from the bitrate and Sample Point. This
is performed independently for both the Nominal bitrate and Data bitrate for
CAN FD.

SocketCAN is fairly flexible and offers either highly customized configuration
by setting all the segment durations manually, or a convenient configuration by
setting just the bitrate and sample point (and even that is chosen automati-
cally per Bosch recommendation if not specified). However, each CAN controller
may have different base clock frequency and different width of segment duration
registers. The algorithm thus needs the minimum and maximum values for the
durations (and clock prescaler) and tries to optimize the numbers to fit both the
constraints and the requested parameters.

A curious reader will notice that the durations of the segments PROP_SEG
and PHASE_SEG1 are not determined separately but rather combined and
then, by default, the resulting TSEG1 is evenly divided between PROP_SEG
and PHASE_SEG1. In practice, this has virtually no consequences as the

3Available in /driver in CTU CAN FD repository [26]

22

3.4. CTU CAN FD DRIVER DESIGN

struct can_bittiming_const {
char name[16]; /* Name of the CAN controller hardware */
__u32 tseg1_min; /* Time segement 1 = prop_seg + phase_seg1 */
__u32 tseg1_max;
__u32 tseg2_min; /* Time segement 2 = phase_seg2 */
__u32 tseg2_max;
__u32 sjw_max; /* Synchronisation jump width */
__u32 brp_min; /* Bit-rate prescaler */
__u32 brp_max;
__u32 brp_inc;

};

Listing 3: Fields of can_bittiming_const

sample point is between PHASE_SEG1 and PHASE_SEG2. In CTU CAN
FD, however, the duration registers PROP and PH1 have different widths (6 and
7 bits, respectively), so the auto-computed values might overflow the shorter
register and must thus be redistributed among the two4

 .

3.4.3 Handling RX
Frame reception is handled in NAPI queue, which is enabled from ISR when the
RXNE (RX FIFO Not Empty) bit is set. Frames are read one by one until either
no frame is left in the RX FIFO or the maximum work quota has been reached
for the NAPI poll run (see section 3.2.4 on page 21). Each frame is then passed
to the network interface RX queue.

An incoming frame may be either a CAN 2.0 frame or a CAN FD frame.
The way to distinguish between these two in the kernel is to allocate either
struct can_frame or struct canfd_frame, the two having different sizes. In
the controller, the information about the frame type is stored in the first word of
RX FIFO.

This brings us a chicken-egg problem: we want to allocate the skb for the
frame, and only if it succeeds, fetch the frame from FIFO; otherwise keep it there
for later. But to be able to allocate the correct skb, we have to fetch the first
work of FIFO. There are several possible solutions:

1. Read the word, then allocate. If it fails, discard the rest of the frame. When
the system is low on memory, the situation is bad anyway.

2. Always allocate skb big enough for an FD frame beforehand. Then tweak
the skb internals to look like it has been allocated for the smaller CAN 2.0
frame.

4As is done in the low-level driver functions ctu_can_fd_set_nom_bittiming and
ctu_can_fd_set_data_bittiming.

23

CHAPTER 3. SOCKETCAN DRIVER FOR CTU CAN FD

3. Add option to peek into the FIFO instead of consuming the word.
4. If the allocation fails, store the read word into driver’s data. On the next

try, use the stored word instead of reading it again.

Option 1 is simple enough, but not very satisfying if we could do better.
Option 2 is not acceptable, as it would require modifying the private state of
an integral kernel structure. The slightly higher memory consumption is just a
virtual cherry on top of the “cake”. Option 3 requires non-trivial HW changes
and is not ideal from the HW point of view.

Option 4 seems like a good compromise, with its disadvantage being that a
partial frame may stay in the FIFO for a prolonged time. Nonetheless, there may
be just one owner of the RX FIFO, and thus no one else should see the partial
frame (disregarding some exotic debugging scenarios). Basides, the driver resets
the core on its initialization, so the partial frame cannot be “adopted” either. In
the end, option 4 was selected5

 .

3.4.3.1 Timestamping RX frames

The CTU CAN FD core reports the exact timestamp when the frame has been
received. The timestamp is by default captured at the sample point of the last
bit of EOF but is configurable to be captured at the SOF bit. The timestamp
source is external to the core and may be up to 64 bits wide. At the time of
writing, passing the timestamp from kernel to userspace is not yet implemented,
but is planned in the future.

3.4.4 Handling TX
The CTU CAN FD core has 4 independent TX buffers, each with its own state
and priority. When the core wants to transmit, a TX buffer in Ready state with
the highest priority is selected.

The priorities are 3bit numbers in register TX_PRIORITY (nibble-aligned).
This should be flexible enough for most use cases. SocketCAN, however, supports
only one FIFO queue for outgoing frames6

 . The buffer priorities may be used
to simulate the FIFO behavior by assigning each buffer a distinct priority and
rotating the priorities after a frame transmission is completed.

In addition to priority rotation, the SW must maintain head and tail pointers
into the FIFO formed by the TX buffers to be able to determine which buffer
should be used for next frame (txb_head) and which should be the first completed
one (txb_tail). The actual buffer indices are (obviously) modulo 4 (number
of TX buffers), but the pointers must be at least one bit wider to be able to

5At the time of writing this thesis, option 1 is still being used and the modification is queued
in gitlab issue #222

6Strictly speaking, multiple CAN TX queues are supported since v4.19 [21] but no mainline
driver is using them yet.

24

3.4. CTU CAN FD DRIVER DESIGN

TXB# 0 1 2 3
Seq A B C
Prio 7 6 5 4

T H
(a) 3 frames are queued.

TXB# 0 1 2 3
Seq B C
Prio 4 7 6 5

T H
(b) Frame A was success-
fully sent and the priorities
were rotated.

TXB# 0 1 2 3 0’
Seq E B C D
Prio 4 7 6 5

T H
(c) 2 new frames (D, E)
were enqueued. Notice that
the priorities did not have
to be adjusted. txb_head
now contains the value 5
which indicates TXB#0,
but allows us to detect that
all buffers are full.

Figure 3.1: TXB priority rotation example. Empty Seq means the buffer is
empty. Higher priority number means higher priority. H and T mark txb_head
and txb_tail, respectively [9].

distinguish between FIFO full and FIFO empty – in this situation, txb_head ≡
txb_tail (mod 4). An example of how the FIFO is maintained, together with
priority rotation, is depicted in fig. 3.1 .

3.4.4.1 Timestamping TX frames

When submitting a frame to a TX buffer, one may specify the timestamp at which
the frame should be transmitted. The frame transmission may start later, but
not sooner. Note that the timestamp does not participate in buffer prioritization
– that is decided solely by the mechanism described above.

Support for time-based packet transmission was recently merged to Linux
v4.19 [6], but it remains yet to be researched whether this functionality will be
practical for CAN.

Also similarly to retrieving the timestamp of RX frames, the core supports
retrieving the timestamp of TX frames – that is the time when the frame was suc-
cessfully delivered. The particulars are very similar to timestamping RX frames
and are described in section 3.4.3.1 on the facing page.

3.4.5 Handling RX buffer overrun
When a received frame does no more fit into the hardware RX FIFO in its entirety,
RX FIFO overrun flag (STATUS[DOR]) is set and Data Overrun Interrupt (DOI)
is triggered. When servicing the interrupt, care must be taken first to clear the
DOR flag (via COMMAND[CDO]) and after that clear the DOI interrupt flag.
Otherwise, the interrupt would be immediately7

 rearmed.
7Or rather in the next clock cycle

25

CHAPTER 3. SOCKETCAN DRIVER FOR CTU CAN FD

Set Abort

Done

Failed

Set Ready

Empty

TX OK

Aborted

TX Error

Lock
Arb. Lost,

Error

Set Abort

Set Ready

Set Empty

Ready

TX In
Progress

Arb. Lost,
Error

Abort In
Progress

HW Command

SW Command

Buffer is
locked

Buffer is
unlocked

Legend:

Figure 3.2: TX Buffer states with possible transitions [9].

Note: During development, it was discussed whether the internal HW pipelin-
ing cannot disrupt this clear sequence and whether an additional dummy cycle is
necessary between clearing the flag and the interrupt. On the Avalon interface,
it indeed proved to be the case, but APB being safe because it uses 2-cycle trans-
actions. Essentially, the DOR flag would be cleared, but DOI register’s Preset
input would still be high the cycle when the DOI clear request would also be
applied (by setting the register’s Reset input high). As Set had higher priority
than Reset, the DOI flag would not be reset. This has been already fixed by
swapping the Set/Reset priority (see issue #187).

3.4.6 Reporting Error Passive and Bus Off conditions
It may be desirable to report when the node reaches Error Passive, Error Warn-
ing, and Bus Off conditions. The driver is notified about error state change by
an interrupt (EPI, EWLI), and then proceeds to determine the core’s error state
by reading its error counters.

26

3.4. CTU CAN FD DRIVER DESIGN

There is, however, a slight race condition here – there is a delay between
the time when the state transition occurs (and the interrupt is triggered) and
when the error counters are read. When EPI is received, the node may be either
Error Passive or Bus Off. If the node goes Bus Off, it obviously remains in the
state until it is reset. Otherwise, the node is or was Error Passive. However,
it may happen that the read state is Error Warning or even Error Active. It
may be unclear whether and what exactly to report in that case, but I personally
entertain the idea that the past error condition should still be reported. Similarly,
when EWLI is received but the state is later detected to be Error Passive, Error
Passive should be reported.

27

CHAPTER 3. SOCKETCAN DRIVER FOR CTU CAN FD

28

Chapter 4

Testing

4.1 Simulation framework
The core already included a set of simulation testbenches together with a set of
simple TCL scripts for Modelsim to run them. Together with saved waveform
layouts, this was perfect for debugging or semi-automated testing, but as more
and more changes were performed in the core, it became apparent that a fully
automated testing workflow would benefit us immensely.

Although Modelsim’s debugging capabilities are indisputable superior, it was
decided to use an open-source simulator – GHDL [7], for the automated testing.
The reasons behind this decision include:

• GHDL’s simulation speed is better than that of free Modelsim edition

• Possible license issues with Modelsim usage

• Support for line coverage

• Support for functional coverage via PSL

Since the core repository is hosted on the university Gitlab [26], it is only
natural to leverage Gitlab’s Continuous Integration.

4.1.1 CTU CAN FD Testcases overview
The core includes an extensive set of verification tests. The tests may be divided
into several groups, based mainly on the test interface:

• Unit tests

• Feature tests

• Sanity test

• Reference test

29

CHAPTER 4. TESTING

The unit tests generally verify the individual small entities, whereas the fea-
ture tests check the behavior of the core as a whole in various scenarios. The
sanity test instantiates multiple instances of the core, connected in a specified
topology with simulated transceiver and bus delay, and has them communicate
with each other. The reference test replays the bus traffic logged from a reference
CAN FD controller and checks that the core receives all the frames correctly.
The tests are in detail described in the core documentation [9] in chapter 5.

4.1.2 Installing GHDL
GHDL compiles the simulation sources to a machine executable binary. The code
generation may be performed by 3 different backends: GCC, LLVM or mcode.
While the gcc-flavoured ghdl is the most complicated to build, it is the only
one that is able to provide a basic code coverage functionality. Although the
code coverage works almost “by accident”, for basic line coverage, this is fairly
accurate. While it is undoubtedly true that professional IPs get tested while
observing expression coverage, toggle coverage and many more, the free tools in
the area of digital design do not possess these advanced capabilities.

Gcc-flavoured GHDL has requirements on the version of gcc which is building
it and on the version used to compile the testbenches. Moreover, if it is desired
to use the code coverage feature, the version of the GCOV library used during
compilation and when running the tests must be the same. The manual process
of setting up all the dependencies is rather complicated and fragile. Fortunately,
this complexity and inter-dependency are eliminated by containerizing it all in
Docker.

Docker is a tool for lightweight “virtualization”, implemented via operating
system containers. Most instruction files to build a typical docker image share
common patterns: based on a specific distribution image (e.g., debian stable),
install some packages, build an application, copy over some user-supplied files
and package it all in a ready-to-use image. This image is then later used as a
base to run a container executing the desired command.

Moreover, GHDL has set up their own CI/CD and the most recent docker
images, with prebuilt ghdl, are published on Docker Hub. Using Docker is thus
very convenient in this instance. Docker images are also the most common way
to use custom build environment in Gitlab CI.

4.1.3 Extending the simulation framework
In addition to the testbenches and simulator, it is necessary to:

• build the sources
• run the testbenches, with configurable parameters
• collect test results and show a summary

30

4.1. SIMULATION FRAMEWORK

This is a non-trivial amount of work to do; however, the requirements are not
very special. A suitable simulation framework was searched for to use as a basis,
and eventually it was decided to use VUnit.

4.1.3.1 VUnit

VUnit is a complex HDL simulation framework. It is written in Python, with
the HDL support libraries written in VHDL. It also supports a lot of simula-
tors, including GHDL and Modelsim. So as a bonus, it is still possible to open
the simulation in Modelsim and use the prepared weveform layouts to diagnose
problems quickly, with modelsim-specific code kept to the minimum.

It implements both the running part (compile, run, collect results) and the
VHDL part (error reporting, logging library, setting up test timeout, and many
more).

4.1.3.2 The framework

The test framework is located in the CTU CAN FD repository in /test/testfw,
with its entry point /test/run.py. It is a command line Python application,
whose primary purpose is to run the desired tests. All the compiling and running
functionality comes directly from VUnit. What the framework adds is mainly
unified configuration and the ability to set up waveforms in GUI mode automa-
tically.

The framework supports several types of tests, grouped by common interface:
unit tests, feature tests, sanity test, and reference test.

The configuration is hierarchical, with values from the default section being
inherited by the particular tests if not overridden. That enables both fine-grained
configurability and concise test definition if no special treatment is needed.

As there is a lot of unit tests and feature tests, it is quite possible that when
adding a new one, the implementor forgets to add it to the configuration. Fortu-
nately, the framework detects such unconfigured tests and prints a clearly visible
warning.

Most of the configuration options are passed to the VHDL test case as generics
of the top-level entity. GHDL does not support passing composite types (arrays,
records, vectors) in this way, some values have to be serialized on the Python side
and again deserialized on VHDL side.

More information about the particular tests may be found in CTU CAN FD
documentation [9].

4.1.3.3 Running tests

Running the tests requires Python 3 and dependencies specified in /test/testfw/
requirements.txt, as well as at least one HDL simulator. All simulators sup-

31

CHAPTER 4. TESTING

unit:
default:

log_level: warning
iterations: 50
timeout: 100 ms
error_tolerance: 0
randomize: false
seed: 0 # use to reconstruct results from randomized runs

tests:
bit_stuffing:

iterations: 10
wave: unit/Bit_Stuffing/bsdt_unit.tcl

apb:
iterations: 1

bus_sync:
wave: unit/Bus_Sampling/bsnc_unit.tcl

feature:
default: {...}
tests:

abort_transmittion:
arbitration:
fault_confinement:

Listing 4: Example of test suite configuration

ported by VUnit are supported, but it has been only tested (and optimized for)
Modelsim and GHDL.

In case no simulator is set up on a computer, one may use the prepared
Docker image with all the dependencies and GHDL. A convenience script to run
the tests in the docker image is included as /run-docker-test in the CTU CAN
FD repository.

4.1.3.4 Automatic waveform layout in GUI mode

When debugging with a test case, one generally wants to observe a given set of
internal signals and preserve this view between runs. Each test case has its own
specific set of useful signals, and this layout may be saved in a file and attached
to the test case in configuration, as may be seen in listing 4 .

At the time of writing, the layout files are only supported when simulating
in Modelsim, because they originated as Modelsim-specific TCL files. There is,
however, a development version1

 , which may either specify native gtkwave layout

1That might be found in branch gtkw-gui in the CTU CAN FD repository

32

4.1. SIMULATION FRAMEWORK

Print help for the test subcommand
$./run.py test --help

Run all tests from tests_fast.yml
$./run.py test tests_fast.yml

Print help for VUnit; you may specify VUnit options after --
$./run.py test tests_fast.yml -- --help

List all tests
$./run.py test tests_fast.yml -- --list

Read configuration from tests_fast.yml, but run just one test
$./run.py test tests_fast.yml lib.tb_feature.retr_limit

Run all feature tests (configured in tests_fast.yml)
$./run.py test tests_fast.yml 'lib.tb_feature.*'

Force using a specific simluator. Read more in VUnit documentation.
$ VUNIT_SIMULATOR=modelsim ./run.py test tests_fast.yml

Run a test in GUI mode
$./run.py test tests_fast.yml lib.tb_feature.retr_limit -- -g

Listing 5: Examples of running simulation tests

files, or attempt to create them from the Modelsim TCL file. To be reasonably
usable, it requires patching VUnit and still has some minor problems. Therefore,
it has not been merged yet.

4.1.3.5 Test results

The test results are printed to the terminal, with a summary at the end, but
also gathered in a JUnit-compatible XML file, which may then be rendered in an
HTML browser using a shipped XSLT stylesheet.

4.1.3.6 Line coverage

As mentioned above in section 4.1.2 on page 30 , GHDL with GCC backend sup-
ports generating line and function2

 coverage using GCOV. This is achieved by
specifying GHDL flags -fprofile-arcs -ftest-coverage during the analyze

2Not to be confused with functional coverage, which is also supported, but via different
means.

33

CHAPTER 4. TESTING

▶ lib.tb_apb_unit_test.all 1.7

▶ lib.tb_bit_stuffing_unit_test.all 0.8

▶ lib.tb_bus_sync_unit_test.all 11.0

▶ lib.tb_crc_unit_test.all 1.4

Summary

Tests: 46
Errors: 0
Failures: 0
Skipped: 0

Passed tests

Figure 4.1: Example test results from the testing framework. After clicking on a
test case name, its output is shown.

$ lcov --capture --directory build --output-file code_coverage.info
$ genhtml code_coverage.info --output-directory code_html

Listing 6: Generating HTML report from test code coverage

phase and -Wl,-lgcov -Wl,--coverage -Wl,-no-pie during the elaboration
phase.

During the compilation, one part of profile data is generated by the compiler
(the .gcno files) and when the tests are run, the second part of the profile data
is generated in the form of .gcda files. All the profile data are then processed by
commands lcov and genhtml, as seen in listing 6 .

The necessary compile options for GHDL are enabled in the testing framework
in /test/testfw/test_common.py and the generating of HTML coverage report
is handled in the supplied Makefile3

 . A link to the report for the most recent core
version is available on the project’s gitlab page [26].

4.2 Automated builds
For automated testing on actual hardware, it is desirable to be able to build the
FPGA bitstream automatically from the freshest sources. In addition, as the

3/test/Makefile

34

4.2. AUTOMATED BUILDS

synthesis takes a rather long time (around 20 minutes), it would be wasteful to
rebuild the image after every change. Before delving into the particulars of the
system setup, you might want to revise the project structure and repositories in
1.4 . The following requirements were gathered:

• Before the build, submodules should be automatically updated to the newest
version.

• The build should run only if the sources changed (including submodules).

• The build should run only once a day, ideally at night when the build server
is free.

This is a tricky combination for Gitlab’s CI, as it may trigger the pipeline on
push (changes) or periodically (at night), but not on their combination. Another
difficulty comes with updating the submodules – but that actually presents a nice
solution.

Every night:

• The master branch is merged into an autobuild branch.

• Submodules are updated in the autobuild branch.

• The autobuild branch is pushed to the repository.

Finally, on a push to any autobuild branch, the build job (and subsequent
tests) is triggered. The build may also be triggered manually by creating a
pipeline for the autobuild branch4

 . For the future, there are planned multiple au-
tobuild branches, each for different stability phase of the submodules (i.e., stable,
bleeding edge, etc.). The detailed CI configuration may be found in the top-level
repository in /.gitlab-ci.yml.

4.2.1 Pushing to repository from CI job
Unfortunately, gitlab does not yet provide read-write deploy tokens for CI jobs,
and thus an alternative approach must be used. A dedicated SSH key pair is
generated for the CI. The public key is registered into Gitlab (under some user)
and the private key is made available to the job runner.

The private key may be passed to the runner via Gitlab CI secret variables,
but since we have our own runner anyway, it is possible to keep the private key
only on the build server, in a docker volume, and specify that the volume should
be mounted in the project’s runner.

4Or the master branch, in which case the autoupdates and pushes are performed.

35

CHAPTER 4. TESTING

[[runners]]
...
executor = "docker"
[runners.docker]

volumes = ["/cache", "/opt/xilinx:/opt/xilinx:ro",
"depkey_cantop:/depkey:ro"]

Listing 7: Specifying a volume in config.toml for gitlab-runner

4.2.2 Making Vivado available in the build image
A nice thing about docker images is that they are self-contained and may run
everywhere. It is thus convenient to upload the built image to Docker Hub and
let whichever runner download it. That is not possible with the synthesis tools,
as they are not free and must not be distributed.

One solution is to create a private image on Docker Hub or use our own Docker
Registry5

 . Unfortunately, the synthesis tools also take a lot of disk space.
Taking inspiration from the solution with deploy keys (see the previous sec-

tion), the Vivado synthesis tools are made available to the runner as a bind
mount. That way, we are limited on our one runner, but we do not have to
be concerned about gigabytes of licensed software traveling around the network.
The configuration may be seen in listing 7 .

4.3 Automated FPGA tests
While most hardware problems should be caught in simulation, it is still desirable
to perform at least some simple tests on real hardware, for several reasons:

• There might be problems introduced by synthesis.
• Simulation is slow and can only perform that many tests.
• It is an opportunity also to test the driver.
• It is an opportunity also to test interoperability with different controllers.

After every automated build (described in section 4.2 on page 34):

1. The FPGA bitstream, CTU CAN FD driver, and the whole test suite is
uploaded to the MicroZed testing board.

2. The new bitstream is loaded into the FPGA (see section 4.3.1 on the facing
page).

3. The new kernel driver is loaded.
5Self-hosted backend of Docker Hub

36

4.3. AUTOMATED FPGA TESTS

4. The test suite is run (see section 4.3.2 on the next page).
5. The results are collected and downloaded to the job runner.

4.3.1 Updating FPGA bitstream
The FPGA bitstream may be updated in 3 distinct ways:

1. via U-Boot on boot (requires restart)
2. via /dev/xdevcfg (requires Xilinx-flavored kernel)
3. via kernel FPGA Manager interface

For the purposes of automated testing on HW, variant 3 was chosen for this
project as it is the most elegant one. The FPGA Manager subsystem finally
got into the mainline kernel in v4.4 with significant upgrades later on. Unlike
the previous vendor-specific implementations, the FPGA Manager approach ad-
dresses the fact that when the bitstream is updated, the hardware changes. Old
devices disappear, and new ones appear. That means the old devices must be
deinitialized before the update and new devices must be probed afterward. Even
if the uploaded bitstream is identical to its predecessor, the hardware is reset,
and the drivers needs to reinitialize it.

The question is how to tell the kernel which devices will appear or disappear.
Traditionally, there is one monolithic Device Tree Blob (DTB) which is loaded at
boot time, and it contains definitions of both Hard Core peripherals and Soft Core
peripherals implemented in FPGA. Alternatively, the Device Tree may be divided
into a base image and one or more Device Tree Overlays. This elegantly solves the
problem, as the FPGA image is paired with a DTO, describing the peripherals
implemented by the bitstream. When a bitstream is loaded, the DTO is applied
afterward and the kernel probes the newly appeared device. Similarly, when the
bitstream is about to be removed (or replaced), the DTO is unloaded and the
disappearing devices are correctly deinitialized (together with all bookkeeping
data structures in the kernel).

4.3.1.1 Using FPGA Manager from userspace

The FPGA Manager interface is directly available only from the kernel itself.
For some reason, the mainline kernel does not provide any method to access this
interface from user space. Fortunately, there exists an external module dtbocfg6

 .
It creates a directory hierarchy under ConfigFS, which may be accessed using
standard shell commands.

Full explanation and description of how to pack the bitstream, configure the
kernel, set up the device tree, and finally apply the overlay are given in [24 , 12].
A very brief summary is also given in listings 8 , 9 , and 10 .

6Available at https://github.com/ikwzm/dtbocfg

37

https://github.com/ikwzm/dtbocfg

CHAPTER 4. TESTING

Wrap the BIT bitstream as BIN
system.bif contains just "all: {system.bit}"
bootgen -image system.bif -w -process_bitstream bin

Copy the bitstream into /lib/firmware
cp system.bit.bin /lib/firmware/system.bit.bin

Compile the base Device Tree
dtc -O dtb -b 0 -@ -o base.dtb base.dts

Compile the Device Tree Overlay
dtc -O dtb -b 0 -@ -o overlay.dtbo overlay.dts

Listing 8: Preparing the FPGA bitstream for loading via FPGA Manager inter-
face and compiling the Device Trees.

4.3.2 The test suite
The tests are written in Python using the Pytest framework and pycan for CAN
bus communication. The sources are located in the top-level repository in /ci/
cantest. This is an ongoing effort as more tests may always be added. The
progress may be observed in the top-level project’s issue #1.

Tests:

• Check that all the required CAN interfaces are present (sanity test).
• Run CTU CAN FD’s regtest tool, which checks the IP integration (word,

halfword, and byte reads and writes work correctly, identification register
contains expected value).

• Series of communication tests, with one transmitter and one or more re-
ceivers.

Unstable tests in development:

• RX FIFO Overrun test.
• Series of communication tests with multiple transmitters.

For the communication tests, both CTU CAN FD and SJA1000 FD-tolerant
controllers are tested. The tests have variants based on which of the controllers
is the transmitter (CTU CAN FD or SJA1000) and on the communication mode
(only CAN 2.0 frames, ISO FD frames, non-ISO FD frames).

To reliably test the handling of RX FIFO Overrun, the particular test requires
a special debug ioctl in the device driver to disable or re-enable handling of RX
frames in the driver.

38

4.3. AUTOMATED FPGA TESTS

Load the module
modprobe dtbocfg

Create new overlay under ConfigFS. The name is not important.
cd /sys/kernel/config/device-tree/overlays
mkdir fpga-overlay
cd fpga-overlay

Load the DTBO file contents
cat overlay.dtbo >dtbo

Activate the DT overlay
echo 1 >status

Listing 9: Loading the FPGA bitstream via FPGA Manager interface.

For the communication tests with multiple transmitters, care must be taken
when randomly generating the CAN IDs. If multiple nodes try to transmit a frame
with identical CAN ID (but different payload) at the same time, the mismatch
in Data Phase will be interpreted as a Bit-Error instead of Arbitration-
Loss. This fact was overlooked at first, and the core was thought to contain a
bug – which is not the case in this instance; the behavior is consistent with the
CAN specification.

During the tests, the kernel message log (dmesg) is monitored, and if a message
with severity Warning or above appears during a test, the test fails. Also, the
network interface error counters are checked and must be zero; otherwise the test
fails.

39

CHAPTER 4. TESTING

/dts-v1/;
/plugin/;
/ {

fragment@0 {
target-path = "/fpga-full";

__overlay__ {
#address-cells = <1>;
#size-cells = <1>;

firmware-name = "system.bit.bin";
};

};

fragment@1 {
target-path = "/amba";
__overlay__ {

/* new devices */
};

};
};

Listing 10: Example of device tree overlay source.

40

Chapter 5

Extra work

5.1 Extending zlogan
Zlogan1

 is an in-chip logical analyzer originally developed by Marek Peca. It
captures its input signals and streams all changes via AXI-Stream to a FIFO,
from where it is read by DMA to an application and saved into a file.

The analyzer has been an essential component during testing both the modi-
fied SJA1000 and CTU CAN FD in hardware.

5.1.1 Modifications
The base operation remains unchanged, but the following changes had to be
made:

• Encapsulate zlogan as Vivado IP.
• Create register map and APB interface.
• Fix the IP to be able to handle a (theoretically) arbitrary number of input

signals.
• Extend the streaming application to

– Allow for reading more data than the DMA engine’s maximum transfer
size.

– Allow to abort the stream while saving already transferred data.
– Detect and report errors.
– Use a portable way to allocate buffer for DMA (via udmabuf driver).

The updated version may be found in the original github repository in branch
zlogan-component.

At the time of writing, there are several (unstable) changes in a development
branch, including:

1Available at https://github.com/eltvor/zlogan

41

https://github.com/eltvor/zlogan

CHAPTER 5. EXTRA WORK

• Separating parts of the IP into different entities

• Creating unit tests for the core entities

• Correctly resetting registers on zlogan enable and flushing all buffers at
disable.

5.1.2 Usage
The zlogan IP requires additional components (on Zynq):

• AXI DMA

• AXI4-Stream Data FIFO

• AXI-APB Bridge

An example top-level design (except the actual analyzer inputs) is depicted in
fig. 5.1 on the facing page. At the moment, the whole design (from la_inp to
AXIS FIFO) is synchronous to one clock. If sampling on higher frequency is
desired, the AXIS FIFO may be made asynchronous, and the whole core may
operate on a higher frequency than PS’s AXI.

On the SW side, at the moment everything runs in userspace. In the rxla
program, modify the config file hw_config.h and set zlogan registers address,
AXIS DMA registers address, and width of the DMA transfer length register2

 .
Now it is ready to be compiled. In addition, the udmabuf module has to be
compiled and loaded, to provide a memory region safe for DMA transfers to
userspace.

The rxla application transfers data from the analyzer and saves them into a
file, until either the given maximum number of bytes is transferred or the program
is interrupted (via Ctrl+C).

5.2 Rewrite of CAN crossbar IP
During the testing, it was necessary to test the various CAN controllers connected
to either an external CAN bus or more simply to an in-chip internal bus. To
avoid having to rebuild the whole FPGA image for every possible configuration,
the can_crossbar IP exists.

The basic idea is that there are N in-chip controllers and M external buses.
Each of these may be connected to exactly one of L lines, which facilitate the N:M
mapping of controllers to buses. Multiple buses or controllers may be attached
to each line, the driving signals merged by logical AND.

2It is recommended to set it as high as possible/reasonable in the DMA IP configuration.
While the stream is fetched using multiple DMA transfers if needed, there might be some
glitches on transfer boundaries.

42

5.2. REWRITE OF CAN CROSSBAR IP

D
M

A
_
A

X
I_

S

L
A

_
IN

P
[3

1
:0

]

Z
L
O

G
A

N
_
A

X
IS

_
M

P
S

_
G

P
_
A

X
I_

M

a
xi

_
a
p

b
_
b
ri

d
g
e
_
0

A
X

I
A

P
B

 B
ri

d
g
e

A
X

I4
_
L
IT

E

A
P

B
_
M

s_
a

x
i_

a
c
lk

s_
a

x
i_

a
re

se
tn

c_
c
o
u
n
te

r_
b

in
a
ry

_
0

B
in

a
ry

 C
o
u
n
te

r

C
L
K

Q
[6

3
:0

]

cl
k

fif
o
_
d
a
ta

_
c
o
u
n
t_

w
r[

3
1
:0

]

fi
fo

_
re

s
e
t_

n
_
0

p
s
7
_
0

_
a

xi
_
p
e

ri
p
h

A
X

I
In

te
rc

o
n
n
e

c
t

S
0
0
_

A
X

I

M
0
0

_
A

X
I

M
0
1

_
A

X
I

A
C

L
K

A
R

E
S

E
T

N

S
0
0
_

A
C

L
K

S
0
0
_

A
R

E
S

E
T

N

M
0
0

_
A

C
L
K

M
0
0

_
A

R
E

S
E

T
N

M
0
1

_
A

C
L
K

M
0
1

_
A

R
E

S
E

T
N

re
se

t_
rt

l

rs
t_

p
ro

c
e
ss

in
g
_
sy

st
e
m

7
_

0
_
1
0
0

M

P
ro

c
e
ss

o
r

S
ys

te
m

 R
e
se

t

sl
o
w

e
st

_
sy

n
c_

c
lk

e
xt

_
re

se
t_

in

a
u
x_

re
se

t_
in

m
b
_
d

e
b
u
g
_
sy

s_
rs

t

d
cm

_
lo

c
ke

d

m
b
_
re

se
t

b
u
s_

st
ru

c
t_

re
s
e
t[
0
:0

]

p
e
ri

p
h
e

ra
l_

re
se

t[
0
:0

]

in
te

rc
o
n
n
e
c
t_

a
re

se
tn

[0
:0

]

p
e
ri

p
h
e

ra
l_

a
re

se
tn

[0
:0

]
zl

o
g
a
n
_
c
a
p
t_

0

zl
o
g
a
n
_
c
a
p
t_

v1
.0

 (
P

re
-P

ro
d
u
c
tio

n
)

M
0
0
_

A
X

IS

s
_
a

p
b

la
_

in
p

[3
1

:0
]

fi
fo

_
d
a
ta

_
c
o
u

n
t_

i[
3

1
:0

]

fi
fo

_
w

r_
d
a
ta

_
c
o

u
n
t_

i[
3
1
:0

]

fi
fo

_
rd

_
d
a
ta

_
c
o
u
n
t_

i[
3
1
:0

]

fi
fo

_
re

s
e
t_

n
tim

e
st

a
m

p
[6

3
:0

]

a
c
lk

a
rs

tn

m
0
0
_

a
x
is

_
a
c
lk

m
0
0
_

a
x
is

_
a
re

s
e
tn

D
M

A
_
A

X
I_

S

Z
L
O

G
A

N
_
A

X
IS

_
M

a
xi

_
sm

c

A
X

I
S

m
a
rt

C
o
n
n
e
c
t

S
0
0
_

A
X

I

M
0
0
_

A
X

I
a
c
lk

a
re

se
tn

a
xi

_
d
m

a
_
0

A
X

I
D

ir
e
c
t
M

e
m

o
ry

 A
c
c
e
ss

S
_
A

X
I_

L
IT

E

M
_
A

X
I_

S
2

M
M

S
_
A

X
IS

_
S

2
M

M

s_
a

xi
_
lit

e
_
a
c
lk

m
_
a

xi
_
s2

m
m

_
a
c
lk

a
xi

_
re

s
e
tn

s2
m

m
_
p
rm

ry
_
re

se
t_

o
u
t_

n

s2
m

m
_
in

tr
o
u
t

p
ro

c
e
ss

in
g
_
sy

st
e
m

7
_

0

Z
Y

N
Q

7
 P

ro
c
e
ss

in
g
 S

ys
te

m

G
P

IO
_
0

D
D

R

F
IX

E
D

_
IO

S
_
A

X
I_

H
P

0
_
F

IF
O

_
C

T
R

L

M
_
A

X
I_

G
P

0

S
_
A

X
I_

H
P

0

M
_
A

X
I_

G
P

0
_

A
C

L
K

S
_
A

X
I_

H
P

0
_
A

C
L
K

IR
Q

_
F

2
P

[3
:0

]
F

C
L

K
_

C
L
K

0

F
C

L
K

_
R

E
S

E
T

0
_
N

a
xi

s
_
d
a
ta

_
fif

o
_
0

A
X

I4
-S

tr
e
a
m

 D
a
ta

 F
IF

O

S
_
A

X
IS

M
_
A

X
IS

s_
a

xi
s_

a
re

s
e
tn

s_
a

xi
s_

a
c
lk

a
xi

s
_
d
a
ta

_
c
o
u
n

t[
3

1
:0

]

a
xi

s_
w

r_
d
a
ta

_
c
o
u
n
t[
3
1
:0

]

a
xi

s
_
rd

_
d
a
ta

_
c
o
u
n
t[
3
1
:0

]

rs
t_

p
s
7
_
0
_

1
0
0
M

P
ro

c
e
ss

o
r

S
ys

te
m

 R
e
s
e
t

s
lo

w
e
st

_
sy

n
c_

c
lk

e
x
t_

re
se

t_
in

a
u
x
_
re

s
e
t_

in

m
b
_
d

e
b

u
g

_
sy

s
_
rs

t

d
c
m

_
lo

c
ke

d

m
b
_
re

s
e
t

b
u
s
_
s
tr

u
c
t_

re
s
e
t[
0

:0
]

p
e
ri

p
h
e

ra
l_

re
s
e
t[
0
:0

]

in
te

rc
o
n
n
e

c
t_

a
re

s
e
tn

[0
:0

]

p
e
ri

p
h
e

ra
l_

a
re

se
tn

[0
:0

]

D
D

R

c
lk

P
S

_
G

P
_
A

X
I_

M

F
IX

E
D

_
IO

re
s
e
t_

rt
l

fif
o
_
w

r_
d
a
ta

_
c
o
u
n
t[
3
1
:0

]

Figure 5.1: Example of top-level design with zlogan in Vivado

43

CHAPTER 5. EXTRA WORK

DST2

LINE1

LINE2

SRC1

SRC2

SRC3

SRC4

DST1

DST3

(a) One half of can_crossbar, instantiated
with 4 sources, 3 sinks and 2 lines

1
LINEn_TX

LINEn_TX_SIG

OE

OE

LINEn_RX_SIG
LINEn_RX

(b) Output Enable function

Figure 5.2: Structure of can_crossbar

While the can_crossbar IP was already available from my Bachelor’s thesis
[11], it was not tested and even I, the author of the IP, doubted about its func-
tionality (and didn’t like its naive structure). Since it is a very simple IP, it was
decided to rewrite it, this time properly and with testbenches3

 .
The structure is simple. For each line, merge all unmasked sources as its

input, and connect each sink to its selected line. RX and TX directions are
handled independently, so there are independent RX and TX channels of a line.
The masking is done by demultiplexers with non-selected outputs driven to logical
1 (recessive state). An example of this structure may be seen in fig. 5.2a .

Lastly, each line may either be connected to external buses (which are assigned
to the line) or looped into itself (line’s TX channel is connected to its RX channel),
in which case the TX channel of the assigned external buses is driven high.

The new IP interfaces the system via APB instead of the much more heavy-
weight AXI-Lite. The number of controllers, buses, and lines is configurable for
the underlying component, but it is fixed for the whole IP as to simplify the
register map design.

5.2.1 Driver
There is no Linux driver for the IP. Its register map may be accessed either
directly via /dev/kmem (and command-line utility devmem) or via Userspace I/O
driver (UIO). The UIO driver takes information about the register map from
device tree and offers applications to mmap(2) the registers into the application’s
address space. [13 , 8]

3The old IP may be found in the toplevel design repository at /system/ip/can_crossbar_
1.0, the new one at /system/ip/can_crossbar_2.0

44

5.2. REWRITE OF CAN CROSSBAR IP

5.2.2 Register Overview
All registers are 32bits wide and should only be accessed by 32bit words.

5.2.2.1 CAN Configuration Register

Address offset: 0x000
Reset value: 0x00000000

Register 5.1: CCR (0x000)

Rese
rve

d

0

31 28

OE_LIN
E4

0

27

OE_LIN
E3

0

26

OE_LIN
E2

0

25

OE_LIN
E1

0

24

BUS4
_LIN

E

0 0

23 22

BUS3
_LIN

E

0 0

21 20

BUS2
_LIN

E

0 0

19 18

BUS1
_LIN

E

0 0

17 16

CTRL8_
LIN

E

0 0

15 14

CTRL7_
LIN

E

0 0

13 12

CTRL6_
LIN

E

0 0

11 10

CTRL5_
LIN

E

0 0

9 8

CTRL4_
LIN

E

0 0

7 6

CTRL3_
LIN

E

0 0

5 4

CTRL2_
LIN

E

0 0

3 2

CTRL1_
LIN

E

0 0

1 0

Reset

OE_LINEn LINEn Output Enable. If set to 1, the line is con-
nected to its assigned external bus. If set to 0, the line
TX signal is looped to its RX signal, and the external
bus is disconnected. This effectively connects all CAN
controllers attached to the line together.

BUSn_LINE Specifies which line is the external bus connected to:
00: The external bus is connected to LINE1
01: The external bus is connected to LINE2
10: The external bus is connected to LINE3
11: The external bus is connected to LINE4

CTRLn_LINE Specifies which line is the CAN controller connected
to:
00: The CAN Controller is connected to LINE1
01: The CAN Controller is connected to LINE2
10: The CAN Controller is connected to LINE3
11: The CAN Controller is connected to LINE4

45

CHAPTER 5. EXTRA WORK

46

Chapter 6

Conclusion

The goals of this project were to extend the OpenCores SJA1000 Core to be
FD-tolerant, implement a SocketCAN driver for CTU CAN FD, implement au-
tomated testing and verification for CTU CAN FD, and to document the whole
solution.

The FD-tolerant SJA1000 core was extensively tested in various worst-case
scenarios – 0xFF frames with BRS bit set, or stress test with only one FD-capable
node. The various shortcomings encountered during implementation were fixed,
or mitigations have been proposed (2.6.3). The core behavior corresponds with
the constructed theoretical model. Unfortunately, the industrial partner did not
provide us with additional feedback.

The SocketCAN driver for CTU CAN FD has been implemented and is avail-
able in the CTU CAN FD GitLab repository [26]. It has been tested in the
FPGA tests, which are discussed in section 4.3 on page 36 , and also manually
with other CAN controllers, such as the in-chip FD-tolerant SJA1000 or external
Kvaser USB CAN adapter.

At the time of writing, the core contains a few known corner-case bugs, which
are mapped out in the project’s issue tracker, together with additional planned
features. It is our intention with the core’s author, Ondrej Ille, to further work on
the core and eventually pass the certification according to ISO 16845-1 and bring
the core to production quality. Despite the core’s immaturity, some additional
parties have already shown interest in the CTU CAN FD core [25]. The driver
is also planned to be extended to support retrieval of HW timestamp of received
and transmitted frames, or support placement of the device on different buses,
such as PCI. After some adjustments and cleanups, the driver will be submitted
for inclusion to mainline Linux kernel.

The automated testing, both in the form of design simulation and behavioral
tests on real hardware, have been implemented and are in detail described in
chapter 4 on page 29 . The high-level overview of the framework is described in
this thesis and will be used in the project documentation. The commands usage
is available via the tool’s help command, and the developer documentation is

47

CHAPTER 6. CONCLUSION

included in the sources in the form of comments.
All of the relevant parts are open-source, available in git repositories men-

tioned in the introduction. While not yet being ready to be used in critical
systems, both the cores are more than usable for hobbyists or non-safety-critical
systems. The progress made in the previous year is significant, and there are high
hopes of the development continuing.

48

Bibliography

[1] ARM. AMBA APB Protocol Specification v2.0. https://developer.arm.
com/docs/ihi0024/latest/amba-apb-protocol-specification-v20

[Online; accessed 2019-01-06].

[2] ARM. AMBA AXI and ACE Protocol Specification AXI3, AXI4, and
AXI4-Lite, ACE and ACE-Lite.
https://developer.arm.com/docs/ihi0022/latest/
amba-axi-and-ace-protocol-specification-axi3-axi4-axi5-ace-and-ace5

[Online; accessed 2019-01-06].

[3] CAN in Automation. CAN data link layers.
http://www.can-cia.org/can-knowledge/can/can-data-link-layers/

[Online; accessed 2019-01-06].

[4] CAN in Automation. CAN FD – The basic idea.
https://www.can-cia.org/can-knowledge/can/can-fd/ [Online;
accessed 2019-01-05].

[5] CAN in Automation. CAN physical layer. http://www.can-cia.org/
can-knowledge/can/systemdesign-can-physicallayer/ [Online;
accessed 2019-01-06].

[6] J. Corbet. Time-based packet transmission. LWN, Mar 2018.
https://lwn.net/Articles/748879/ [Online; accessed 2019-01-06].

[7] T. Gingold. GHDL: VHDL 20018/93/98 simulator.
https://github.com/ghdl/ghdl [Online; accessed 2019-01-06].

[8] J. Gray. How to Design and Access a Memory-Mapped Device in
Programmable Logic from Linaro Ubuntu Linux on Xilinx Zynq on the
ZedBoard, Without Writing a Device Driver — Part Two, May 2013.
http://fpga.org/2013/05/28/
how-to-design-and-access-a-memory-mapped-device-part-two/

[Online; accessed 2019-01-06].

49

https://developer.arm.com/docs/ihi0024/latest/amba-apb-protocol-specification-v20
https://developer.arm.com/docs/ihi0024/latest/amba-apb-protocol-specification-v20
https://developer.arm.com/docs/ihi0022/latest/amba-axi-and-ace-protocol-specification-axi3-axi4-axi5-ace-and-ace5
https://developer.arm.com/docs/ihi0022/latest/amba-axi-and-ace-protocol-specification-axi3-axi4-axi5-ace-and-ace5
http://www.can-cia.org/can-knowledge/can/can-data-link-layers/
https://www.can-cia.org/can-knowledge/can/can-fd/
http://www.can-cia.org/can-knowledge/can/systemdesign-can-physicallayer/
http://www.can-cia.org/can-knowledge/can/systemdesign-can-physicallayer/
https://lwn.net/Articles/748879/
https://github.com/ghdl/ghdl
http://fpga.org/2013/05/28/how-to-design-and-access-a-memory-mapped-device-part-two/
http://fpga.org/2013/05/28/how-to-design-and-access-a-memory-mapped-device-part-two/

BIBLIOGRAPHY

[9] O. Ille and M. Jeřábek. CTU CAN FD IP Core Datasheet.
http://illeondr.pages.fel.cvut.cz/CAN_FD_IP_Core/Progdokum.pdf

[Online; accessed 2019-01-06].

[10] Intel Corporation. Avalon® Interface Specifications.
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/
literature/manual/mnl_avalon_spec.pdf [Online; accessed 2019-01-06].

[11] M. Jeřábek. FPGA Based CAN Bus Channels Mutual Latency Tester and
Evaluation. Bachelor’s thesis, Czech Technical University in Prague,
Faculty of Electrical Engineering, 2016. https://rtime.felk.cvut.cz/
can/F3-BP-2016-Jerabek-Martin-Jerabek-thesis-2016.pdf [Online;
accessed 2019-01-06].

[12] I. Kawazome. Device Tree Blob Overlay Configuration File System.
https://github.com/ikwzm/dtbocfg [Online; accessed 2019-01-06].

[13] H.-J. Koch. The Userspace I/O HOWTO, Dec 2006. https:
//www.kernel.org/doc/html/v4.18/driver-api/uio-howto.html

[Online; accessed 2019-01-06].

[14] Linux Foundation. Linux SocketCAN.
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.
git/tree/Documentation/networking/can.txt [Online; accessed
2019-01-06].

[15] Linux Foundation. NAPI.
https://wiki.linuxfoundation.org/networking/napi [Online; accessed
2018-12-10].

[16] I. Mohor. SJA1000-compatible CAN Protocol Controller IP Core.
Opencores.org. https://opencores.org/projects/can [Online; accessed
2019-01-06].

[17] A. Mutter. CAN FD and the CRC issue. CAN in Automation Newsletter,
Mar 2015. https://can-newsletter.org/uploads/media/raw/
604de101b0ecaed387518831d32b044e.pdf [Online; accessed 2019-01-05].

[18] Philips Semiconductors. SJA1000 Stand-alone CAN controller Data Sheet,
Jan. 2000. https://www.nxp.com/documents/data_sheet/SJA1000.pdf

[Online; accessed 2019-01-06].

[19] P. Píša. MicroZed APO Board. https://cw.fel.cvut.cz/b172/courses/
b35apo/documentation/mz_apo/start (in Czech) [Online; accessed
2019-01-07].

50

http://illeondr.pages.fel.cvut.cz/CAN_FD_IP_Core/Progdokum.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf
https://rtime.felk.cvut.cz/can/F3-BP-2016-Jerabek-Martin-Jerabek-thesis-2016.pdf
https://rtime.felk.cvut.cz/can/F3-BP-2016-Jerabek-Martin-Jerabek-thesis-2016.pdf
https://github.com/ikwzm/dtbocfg
https://www.kernel.org/doc/html/v4.18/driver-api/uio-howto.html
https://www.kernel.org/doc/html/v4.18/driver-api/uio-howto.html
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/networking/can.txt
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/networking/can.txt
https://wiki.linuxfoundation.org/networking/napi
https://opencores.org/projects/can
https://can-newsletter.org/uploads/media/raw/604de101b0ecaed387518831d32b044e.pdf
https://can-newsletter.org/uploads/media/raw/604de101b0ecaed387518831d32b044e.pdf
https://www.nxp.com/documents/data_sheet/SJA1000.pdf
https://cw.fel.cvut.cz/b172/courses/b35apo/documentation/mz_apo/start
https://cw.fel.cvut.cz/b172/courses/b35apo/documentation/mz_apo/start

BIBLIOGRAPHY

[20] P. Píša and P. Porazil. MicroZed APO Board Schematics and PCB Layout.
http://cmp.felk.cvut.cz/~pisa/apo/mz_apo/ [Online; accessed
2019-01-07].

[21] Robert Bosch GmbH. can: enable multi-queue for SocketCAN devices.
https://lore.kernel.org/patchwork/patch/913526/ [Online; accessed
2018-12-10].

[22] Robert Bosch GmbH. CAN Specification, Version 2.0.
http://esd.cs.ucr.edu/webres/can20.pdf [Online; accessed
2018-12-10].

[23] Robert Bosch GmbH. CAN with Flexible Data-Rate Specification, Version
1.0, Apr 2012. https://can-newsletter.org/uploads/media/raw/
e5740b7b5781b8960f55efcc2b93edf8.pdf [Online; accessed 2019-01-06].

[24] Xilinx Inc. Solution Zynq PL Programming With FPGA Manager.
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/
18841645/Solution+Zynq+PL+Programming+With+FPGA+Manager [Online;
accessed 2019-01-06].

[25] H. Zeltwanger. CAN FD core as an open source project. CAN in
Automation Newsletter. https://can-newsletter.org/uploads/media/
raw/58bba6274be7d31a50a69cf92211b0f5.pdf [Online; accessed
2019-01-05].

[26] Repository for CTU CAN FD core.
https://gitlab.fel.cvut.cz/illeondr/CAN_FD_IP_Core .

[27] Repository for FD-tolerant SJA1000 core.
https://gitlab.fel.cvut.cz/canbus/zynq/sja1000-fdtol .

[28] Repository for this thesis.
https://gitlab.fel.cvut.cz/jerabma7/canfd-thesis .

[29] Repository with toplevel design for Zynq, with CTU CAN FD and
FD-tolerant SJA1000 cores.
https://gitlab.fel.cvut.cz/canbus/zynq/zynq-can-sja1000-top .

[30] Repository for zlogan core, the in-chip logical analyzer.
https://github.com/eltvor/zlogan .

51

http://cmp.felk.cvut.cz/~pisa/apo/mz_apo/
https://lore.kernel.org/patchwork/patch/913526/
http://esd.cs.ucr.edu/webres/can20.pdf
https://can-newsletter.org/uploads/media/raw/e5740b7b5781b8960f55efcc2b93edf8.pdf
https://can-newsletter.org/uploads/media/raw/e5740b7b5781b8960f55efcc2b93edf8.pdf
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841645/Solution+Zynq+PL+Programming+With+FPGA+Manager
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841645/Solution+Zynq+PL+Programming+With+FPGA+Manager
https://can-newsletter.org/uploads/media/raw/58bba6274be7d31a50a69cf92211b0f5.pdf
https://can-newsletter.org/uploads/media/raw/58bba6274be7d31a50a69cf92211b0f5.pdf
https://gitlab.fel.cvut.cz/illeondr/CAN_FD_IP_Core
https://gitlab.fel.cvut.cz/canbus/zynq/sja1000-fdtol
https://gitlab.fel.cvut.cz/jerabma7/canfd-thesis
https://gitlab.fel.cvut.cz/canbus/zynq/zynq-can-sja1000-top
https://github.com/eltvor/zlogan

BIBLIOGRAPHY

52

Appendix A

Contents of attached CD

/
+-- canfd-thesis
� +-- DtsLexer
� +-- figures
� +-- utils
� � +-- find-abbreviations
� � +-- mkdtb
� � \-- package-build-for-extmodules
� +-- contents.tex
� +-- Jerabek-thesis-2019-canfd.tex
� +-- Makefile
� +-- README.md
� +-- reference.bib
� +-- 10-intro.tex
� +-- 20-sja1000.tex
� +-- 30-ctucanfd-driver.tex
� +-- 40-testing.tex
� +-- 50-zlogan.tex
� +-- 60-conclusion.tex
� \-- 97-appendices.tex
\-- zynq-can-sja1000-top

+-- ci
� +-- cantest
� +-- fetch_ctucanfd_driver.py
� +-- requirements.txt
� +-- test_can.yml
� \-- upload_and_run.sh
+-- modules
� +-- CTU_CAN_FD
� � +-- doc
� � +-- driver
� � +-- scripts

53

APPENDIX A. CONTENTS OF ATTACHED CD

� � +-- spec
� � +-- src
� � +-- synthesis
� � +-- test
� � � +-- feature
� � � +-- lib
� � � +-- others
� � � +-- reference
� � � +-- sanity
� � � +-- testfw
� � � +-- unit
� � � +-- Makefile
� � � +-- run.py
� � � +-- tests_debug.yml
� � � +-- tests_fast.yml
� � � +-- tests_nightly.yml
� � � +-- tests_reference.yml
� � � \-- xunit.xsl
� � +-- tools
� � +-- LICENSE
� � +-- README.md
� � +-- run-docker-mkdoc
� � \-- run-docker-test
� +-- device-tree-xlnx
� +-- sja1000
� � +-- drivers
� � +-- hdl
� � +-- testbench
� � +-- tests
� � \-- component.xml
� +-- udmabuf
� \-- zlogan
� +-- hw
� � \-- zlogan_capt
� � +-- hdl
� � \-- component.xml
� +-- sw
� � +-- rxla
� � +-- zlo.h
� � \-- zlo2vcd.c
� +-- udmabuf
� +-- LICENSE
� \-- README.md
+-- scripts
+-- system
� +-- ip

54

� � +-- can_crossbar_1.0
� � +-- can_merge
� � +-- CTU_CAN_FD_1.0 -> ../../modules/CTU_CAN_FD/src
� � +-- sja1000_1.0 -> ../../modules/sja1000
� � \-- zlogan_capt_1.0 -> ../../modules/zlogan/hw/zlogan_capt
� +-- script
� � +-- build.tcl
� � +-- dist.tcl
� � +-- gendevtree.tcl
� � +-- mkfsbl.tcl
� � +-- recreate.tcl
� � \-- top.tcl
� +-- src
� � +-- constrs
� � \-- hdl
� � \-- top.vhd
� \-- system.bif
+-- AUTOBUILDS.md
+-- Makefile
\-- README.txt

383 directories, 909 files

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

420017Personal ID number:Jeřábek MartinStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Control Engineering

Open InformaticsStudy program:

Computer EngineeringBranch of study:

II. Master’s thesis details

Master’s thesis title in English:

Open-source and Open-hardware CAN FD Protocol Support

Master’s thesis title in Czech:

Open-source a Open-hardware podpora pro CAN FD

Guidelines:
Design and implement an open source/hardware support for CAN FD in Linux:
a) Modify SJA1000 soft IP core from OpenCores to tolerate CAN FD traffic on the bus.
b) Implement and test Linux SocketCAN driver for CTU CAN FD soft IP core controller.
c) Implement and document automated testing via continuous integration for CTU CAN FD.
d) Document all components.

Bibliography / sources:
Etschberger, K.: Controller Area Network, IXXAT Press 2001, ISBN 3-00-007376-0
ISO 11898-1:2015, Road vehicles -- Controller area network (CAN) -- Part 1: Data link layer and physical signalling
ISO 16845-1:2016, Road vehicles -- Controller area network (CAN) Conformance Test Plan -- Part 1: Data link layer and
physical signalling
Linux Kernel and Driver Development Training, https://bootlin.com/doc/training/linux-kernel/linux-kernel-slides.pdf

Name and workplace of master’s thesis supervisor:

doc. Ing. Jiří Novák, Ph.D., K 13138 - katedra měření

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 08.01.2019Date of master’s thesis assignment: 27.09.2018

Assignment valid until: 19.02.2020

prof. Ing. Pavel Ripka, CSc.

Dean’s signature
prof. Ing. Michael Šebek, DrSc.

Head of department’s signature
doc. Ing. Jiří Novák, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

	Introduction
	Availability of CAN FD Cores
	FD-tolerant controller
	Goals of this project
	Project repositories
	Used hardware and software

	Making OpenCores SJA1000 FD-Tolerant
	Basic idea
	The bitrate shift
	Handling errors
	Clock skew
	Non-issues
	Stress-test: degenerate case
	Variant A: FD frames are acknowledged
	Variant B: FD frames are not acknowledged
	Phase 1
	Phase 2
	Phase 3

	Possible mitigations
	Other findings

	Perpetual reset bug

	SocketCAN Driver for CTU CAN FD
	About CTU CAN FD
	About SocketCAN
	Device probe
	Device tree
	Driver structure
	Platform device driver
	Network device driver

	NAPI

	Integrating the core to Xilinx Zynq
	CTU CAN FD Driver design
	Low-level driver
	Configuring bit timing
	Handling RX
	Timestamping RX frames

	Handling TX
	Timestamping TX frames

	Handling RX buffer overrun
	Reporting Error Passive and Bus Off conditions

	Testing
	Simulation framework
	CTU CAN FD Testcases overview
	Installing GHDL
	Extending the simulation framework
	VUnit
	The framework
	Running tests
	Automatic waveform layout in GUI mode
	Test results
	Line coverage

	Automated builds
	Pushing to repository from CI job
	Making Vivado available in the build image

	Automated FPGA tests
	Updating FPGA bitstream
	Using FPGA Manager from userspace

	The test suite

	Extra work
	Extending zlogan
	Modifications
	Usage

	Rewrite of CAN crossbar IP
	Driver
	Register Overview
	CAN Configuration Register

	Conclusion
	Bibliography
	Contents of attached CD

