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Abstract
V této diplomové práci se zaměřujeme na možnosti stavby jedné z akceleračních struk-
tur pro metodu sledování paprsku, hierarchie obálek, na CPU. Práce nejprve přináší
úvod do problematiky a shrnutí používaných metod. Přinášíme také kategorizaci me-
tod vytvořenou na tomto základě. V další části práce jsme vybrali 7 metod dosahujících
dobrých výsledků a napříč kategoriemi. Tyto metody jsme následně reimplementovali v
jazyce C++ ve frameworku pro metodu sledování paprsku nanoGOLEM. Pro urychlení
stavby jedné z metod jsme použili vlákna ze standardu C++11. Metody jsme otestovali
na sadě 20 testovacích scén různé velikosti a typu, které se běžně používají v článcích
zabývajících se akceleračními strukturami pro sledování paprsku. V další části práce
přinášíme výsledky naší implementace a porovnání algoritmů. Část uvedených metrik
je nezávislá na míře optimalizace, a proto může být použita pro porovnání s jinými
metodami či pro budoucí verifikaci těchto metod v jiných implementacích. Dále také
přinášíme návrhy o využití testovaných algoritmů.

Klíčová slova
Sledování paprsku, akcelerační struktury, hierarchie obálek
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Abstract
In this diploma thesis we focus on the possibilities of one of the acceleration structures
for ray tracing, the bounding volume hierarchy. First we provide an introduction to
the topics and the review of the state of the art. We also provide a categorization of
the methods based on this. In the next part of our work we chose 7 promising methods
and reimplemented them in C++ into the nanoGOLEM ray tracing framework. For
the acceleration of one of the methods we used the threads from the C++11 standard.
We tested the implemented algorithms on a set of 20 testing scenes of different type
and complexity, which are often used in the scientific papers related to acceleration
structures for ray tracing. In the next part of our thesis we present the results of the
implemented algorithms and their comparison. Some of the reported metrics are also
independent on the degree of optimization and thus can be used for the comparison
with other methods or for future verification in other implementations. Furthermore,
we present suggestions about the usage of the implemented algorithms.

Keywords
Ray Tracing, Acceleration Structures, Bounding Volume Hierarchy
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1 Introduction

When considering the most used rendering methods in contemporary computer graph-
ics, apart from the photo-realistic rendering methods and others, the rasterization and
the ray tracing come to mind. The rasterization still has the undisputable place in
real-time rendering because of its speed. The speed is implied by the simplicity of the
method, because in the very core the method does not work with the interactions of
the objects in the scene (with the except of the visibility computation). Because of that
it is also simple to implement in both software applications and computer hardware.
However, the absence of the interactions is also the disadvantage of the method, as
they (e.g. shadows) need to be computed separately in order to provide more realistic
results.

Ray tracing, on the other hand, is a global illumination method and evaluates
the interactions between the scene objects, namely the mentioned shadows, reflections
and refractions and also implicitly evaluates the visibility. While the main principle
of the ray tracing is also straight-forward, because of the interactions and required
recursive computations the method is computationally expensive. Until recently, the
hardware support for the ray tracing was not as high as for the rasterization. While ray
tracing could be exploited in offline renderers, it could not be fully used in one of the
most important computer graphics applications, the games. This seems to change with
the recent introduction of the Nvidia RTX graphic processing unit series with Turing
architecture that aims to bring the hardware support for the ray tracing to this part of
the commercial sector [18].

It is beyond the scope of this thesis to discuss or predict whether or when such GPUs
will become the standard component of everyone’s personal computer. Without the
extensive hardware support, however, the computational expensiveness of the method
stands and affects both real-time and other applications. The method cannot achieve
sufficiently low rendering times without preprocessing the scene to be rendered. This
phase consists of building an acceleration structure that stores the scene primitives (e.g.
triangles) and thus performs the spatial sorting of these. The acceleration structure
then provides a more convenient data arrangement for subsequent rendering. As the
rendering part of the application renders the resulting image, it traverses the more
convenient acceleration structure instead of the former plain primitive list. This allows
to save computations because of considering only an amount of the primitives really
relevant to a certain part of the rendering (this amount differs based on the acceleration
structure used) and also by determining the relevant primitives fast. As a result, the
rendering times can be reduced significantly.

During approximately thirty past years numerous acceleration structures have been
developed and examined. The most promising of them in terms of rendering times are
grids, k-d trees and bounding volume hierarchies (often abbreviated as BVHs). Each
of these structures have strengths and weaknesses of their own. The grids are very fast
to construct and also provide sufficiently fast rendering times for scene with uniform
primitive distribution. When this condition does not hold, however, the rendering
times become rather high. This is not true for both k-d trees and bounding volume
hierarchies, which adapt to these scenes well. Both of the structures yield sufficiently

1



1 Introduction

low rendering times for both mentioned kinds of the primitive distribution.
The k-d trees have gone through an extensive research, in which fast construction

algorithms, methods for animated scenes, GPU algorithms and other topics have been
examined. The situation of bounding volume hierarchies is similar, but the BVHs have
certain convenient attributes that the k-d trees do not.

In bounding volume hierarchies, a primitive can be stored in exactly one node. This
is different from k-d trees, where a primitive straddling the splitting plane is placed
into two child nodes defined by the plane. We assume the primitives to be stored in the
leaves of the acceleration structures only. Having 𝑛 primitives, the bounding volume
hierarchy can have 𝑛 leaves at most, while this does not hold for k-d trees (some of the
BVHs relax on the rule of storing a primitive in exactly one leaf and these can have
more leaves, such as the Split BVH proposed by Stich et al. [SFD09], but we will not
consider them now). Having 𝑛 leaves, a binary BVH has at most 𝑛 − 1 inner nodes and
2𝑛 − 1 nodes in total. The bounding volume hierarchies therefore have limited memory
complexity. This potentially does not hold for k-d trees. This also implies that when
knowing the exact number of primitives stored per leaf, we can preallocate the memory
used for hierarchy even before construction.

There is also analogy between the bounding volume hierarchies and other principles
and algorithms in the computer science. By storing the primitives the acceleration
structures perform spatial sorting. Unlike k-d trees, which are built top-down, there
are more approaches to construct the BVHs. Three of these approaches are top-down,
bottom-up and by insertion. These are in fact analogy to sorting algorithms, top-
down being analogy to quicksort, bottom-up to mergesort and the insertion principle
to insertionsort. In terms of graph theory, the bounding volume hierarchy is a tree
(binary or with higher arity), in which the bounding volume of an inner node fully
contains the bounding volumes of it’s children. The tree rotations can be applied to
BVHs, restructuring the tree and updating the effected bounding volumes, yielding
another correct hierarchy.

The hierarchies are also able to refit the stored bounding volumes. The refitting is
an update technique which can be exploited when rendering dynamic scenes. When
a part of the dynamic scene (e.g. a computer game) moves or changes size, it may
be unnecessary to construct the whole hierarchy from scratch. Instead, the respective
nodes of the hierarchy can be repositioned or their bounding boxes can be resized. This
approach can be faster than the new construction.

As mentioned before, there are more construction approaches for the BVHs. By
applying tree rotations or different techniques, the hierarchies can be also subjects to
optimization, aiming to reconstruct the hierarchy into one with higher quality which
could provide lower rendering times. Each of these approaches imply a single category
of the bounding volume hierarchy methods. More algorithms with different properties
have been proposed in each of these categories. These algorithms differ in the result-
ing hierarchy quality, construction and rendering times, memory complexity and other
metrics. It makes sense to examine the differences between the BVH methods.

The algorithms were also proposed in different years, implemented in various frame-
works and when reporting the results, not the same metrics were always used, which
make the algorithms difficult or even unable to compare. Unfortunately, the construc-
tion and rendering times, which are reported in all the related works, are not entirely
sufficient for the comparison of the algorithms, because they are dependent on several
properties, such as the degree of optimization, parallelization, vectorization, computer
hardware, operating system, time measurement approach and others.

It is of course beyond the scope of this thesis to compare each of the algorithms,

2



1.1 Aims of the thesis

instead we aimed to choose the ones with interesting properties. We aimed to choose
rather the algorithms proposed in recent years, which are reported to be state of the art
methods, construct high-quality hierarchies, have low construction and rendering times
and are able to run parallely on multi-core CPUs. We reimplemented all the chosen
algorithms from scratch in a single ray tracing framework and evaluated each of them
on the same scenes and using the same metrics. We believe that the comparison can
bring new suggestions about the use of these algorithms.

1.1 Aims of the thesis
One of the aims of the thesis is to bring a review of the construction, optimization and
related bounding volume hierarchy methods and some of the algorithms. The main aim
of the thesis is to provide a thorough comparison of several chosen construction and
optimization algorithms. The comparison is aimed to be repeatable and we therefore
report metrics independent on optimization or computer hardware.

1.2 Thesis structure
The thesis is organized into six chapters. Chapter 2 states the basic principles in
bounding volume hierarchy algorithms and provides the categorization of the construc-
tion algorithms and the related techniques as well as the review of the state of the art.
Chapter 3 describes the algorithms chosen for the implementation and provides the
design details. Chapter 4 brings the implementation details as well as the description
of the verification, testing and comparison of the algorithms. Chapter 5 then brings
the achieved results. The thesis concludes in chapter 6. There are also two appendices
included in the thesis. In the appendix A we present rest of the measured results. In
the appendix B we summarize the content of the provided DVD.

3





2 Theoretical background

This chapter starts by recalling the basic knowledge about the ray tracing method,
the acceleration structures and the surface area heuristic used in the construction.
It continues by focusing on the acceleration structures examined in this theses, the
bounding volume hierarchies, and presents the categorization of the algorithms related
to these. A review of the state of the art in bounding volume hierarchy methods is
provided after that.

2.1 Ray tracing
Ray tracing is a fundamental rendering method in computer graphics. It is a global
illumination method and as such it allows to take light transport interactions between
scene primitives into account when computing scene illumination. The advanced form
of the ray tracing was proposed by Whitted in 1980 [Whi80] and the method is very
well known, so we will only briefly recall it and focus on the facts related to our thesis.

Ray tracing is based on casting rays, which are used to retrieve the information
about the illumination in the scene. The method starts by casting the rays from the
location of the camera center through the pixels in the image plane into the scene. In
the basic form, a single ray is cast through each pixel, but more rays can be cast in
order to apply anti-aliasing. A ray will subsequently return the information about the
illumination (i.e. color) visible from the camera through the assumed pixel.

The ray cast from the camera either does not intersect any primitive in the scene,
in which case predefined background color is used as a result or the color can be re-
trieved from the environment map, or it does intersect a scene primitive. In that case
illumination contributions from all light sources visible from the location of intersection
are calculated and summed. To determine whether a light source is visible from the
intersection location, another ray is cast, this time from the location of intersection to
the light (for simplicity we now assume only point lights). The light is visible if there
are no occluding primitives between it and the intersection. To determine the visibility,
it is sufficient to find only one occluder (and stop the search upon finding it).

After the calculation of the illumination caused by the visible light sources, the
method recurses by casting another types of rays. These will eventually return the
information about the illumination visible in the former intersection point from certain
directions. These contributions will be incorporated in the result calculated so far
(which will be then returned). The process to calculate these contributions is exactly
the same as the one we just described (including recursion). The new rays are:

∙ A reflected ray, which is created by reflecting the former ray in the intersection
point according to the surface of the intersected primitive. The reflected ray is
calculated as the ideal mirror reflection of the incoming ray.

∙ A transmitted (or refracted) ray, which is created from the former ray according
to the Snell’s law.

The contributions from the reflected and transmitted rays are incorporated based
on the coefficients describing the reflectivity and transitivity of the intersected sur-
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2 Theoretical background

Figure 1 An illustration of the ray tracing principle. We can see various types of rays. The
rays are illustrated using the arrows. The black ray is the primary ray, the blue rays are
the reflected ones, the transmitted rays are drawn in green and the shadow rays are drawn
in orange. The sun represents a point light source and the other shapes represent scene
primitives. We can see that the intersection point on the triangle is occluded by the rectangle.

face. The principle described above repeats for the new rays. This could potentially
repeat indefinitely, as the new rays would intersect objects, create new rays and so
on. We can think of the ray shooting as of a recursive principle and therefore certain
depth-of-recursion threshold is used to end the calculations eventually. The calculated
illumination is then returned from the deepest level of the recursion and incorporated
into the results of the previous level. This repeats, until we have the result for the first
level.

The rays cast from the camera through the image plane are called primary rays,
the rays used to determine the visibility of lights from the intersection points are called
shadow rays and the other rays (from all the recursive calls except the other shadow
rays) secondary rays. In each intersection point the same number of shadow rays as
the number of light sources is created, joined by the two more secondary rays. All the
types of the rays can be seen in figure 1 depicting a simple scene.

Assuming only the primary rays, the time complexity of finding the nearest primitive
for each ray is:

𝑂(𝑤 · ℎ · 𝑛) (1)

where 𝑤 is the number of pixels in the row of the image plane, ℎ is the number of
pixels in the column and 𝑛 is the number of primitives in the scene.

In our thesis we focus on this complexity rather than on the illumination calculations
themselves. The complexity is rather high, making the ray tracing computationally
expensive. Analyzing the complexity, we are not able to reduce terms 𝑤 and ℎ describing
the number of pixels (unless would trace more rays at once using the ray packet tracing).
What we are able to reduce is term representing the number of primitives 𝑛 that each
ray must tests in order to find the closest one to the camera. We can achieve this by
using auxiliary acceleration structures. We describe the fundamentals of these in the
next section.

2.2 Acceleration structures

If we examine the complexity of determining the closest intersection for primary rays,
𝑂(𝑤 ·ℎ ·𝑛), it is rather high. In order to lower it, the ray tracing applications exploit ef-
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2.2 Acceleration structures

a) The former cell. b) Spatial subdivision
(k-d tree).

c) Object hierarchy
(BVH).

Figure 2 The example of the partition of a cell. In the left image we can see the former cell and
a splitting plane drawn in red. On the other two images we can see the new child cells. Their
volume differs based on the type of the acceleration structure. The type is stated below each
image.

ficient acceleration structures. These allow to decrease the third term in the complexity
formula. There are also other ways to increase the efficiency of ray tracing, e.g. using
faster ray-primitive intersection calculations or tracing packets of rays at once instead
of a single ray. We will omit the more efficient intersection calculations in this thesis
and mention some techniques of tracing packets of rays in the state of the art section,
2.4 and we will focus on the general description of the acceleration structures now.

The purpose of an acceleration structure is to spatially sort the primitives (or ob-
jects in general) in the scene. The sorted order, stored in the acceleration structure,
is required to be more convenient for the ray tracing application than the original,
unsorted sequence (e.g. the polygon soup stored in a list). At first, the acceleration
structures can be categorized as regular and hierarchical. The regular structures (such
as the uniform grid) partition the whole scene uniformly, while the hierarchical provide
an adaptive partitioning. At the second level, the acceleration structures can be cate-
gorized as spatial subdivisions or object hierarchies. The cells of both types represent
a volume (a part of the scene) and can refer the primitives associated with the volume.
The difference between them is in the construction of the cells.

Assume we have a cell representing a certain volume and referring a set of primitives.
Using the spatial subdivision, we partition the volume (e.g. by defining a splitting
plane), which define volumes for new cells. The primitives referred in the former cell
are then placed into the new cell (or cells) based on the volume (volumes) they belong
to. The construction of cells is volume-driven. Using the object hierarchy, the set
of primitives is partitioned in a convenient way and each subset implies a new cell.
The volumes of the new cells are then determined from the contained objects. The
construction is thus object-driven. The examples of the spatial subdivisions are k-
d trees, octrees and grids, and the example of the object hierarchies is the bounding
volume hierarchy, which is the topic of this thesis. The popular structures for ray tracing
are the grids (in a limited way, will be described below) and k-d trees and BVHs (in
a more extensive way). The example of partitioning a cell in spatial subdivision and
object hierarchy can be seen o figure 2.

The grids can be constructed fast in 𝑂(𝑛), where 𝑛 is the number of primitives
in the scene. For tracing rays, they perform well when the primitive distribution in
the scene is uniform. However, when this is not the case, their performance is rather
inefficient. The k-d trees and BVHs are thus more popular. Both of them allow for
high performance of tracing rays. In the next section, we focus on the bounding volume
hierarchies and describe the differences between them and k-d trees.
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2.2.1 Bounding Volume Hierarchies, differences to k-d trees

The BVH is a hierarchical acceleration structure, more specifically a tree. The arity
(also called branching factor) of a BVH can be two or more. A node of a BVH stores
the bounding volume of its domain. The parent node of two or more child nodes always
tightly encloses the children’s bounding volumes in its own. Though different bounding
volumes can be exploited in the hierarchies, e.g. in the work of Weghorst et al.[WHG84],
the axis-aligned bounding boxes (AABBs) are usually used. They enclose the contained
primitives or nodes sufficiently tight and still provide for fast intersection calculations.
Such bounding box stores the maximum and minimum coordinates in all three axes
(these vectors can be also viewed as two corners of the box). When representing the
bounding box in the computer memory using C++, the usage of the single precision
floating point numbers leads to the memory complexity of 24B (six floats, each has
4B). Although it is usually sufficient to use the bounding boxes in the inner nodes only,
the BVHs have still larger memory requirements per single node than the k-d trees.
The inner BVH node typically has 32B and the k-d tree one can have 8B using several
optimizations. On the other hand, the BVHs usually have a more limited number of
nodes.

Similar to the k-d trees, the BVHs can be constructed in the top-down manner.
They can also be constructed using different approaches, which we examine in detail
in the categorization section 2.3. In the top-down construction, the BVHs also use
the splitting plane such as k-d trees do. However, they treat differently the objects
that straddle the plane. K-d trees place such primitives into both new child nodes
(assuming the arity of 2 for both BVHs and k-d trees). This leads to (primitive)
reference duplication and possibly unlimited memory demands for k-d trees, therefore
another termination criteria must be used in contrast to BVHs, such as the maximum
k-d tree depth. BVHs, on the other hand, usually place the considered primitive into
exactly one of the new child nodes, thus leading to predictable memory complexity.
In particular, when knowing the exact or minimum number of primitives contained in
each hierarchy leaf, the whole BVH can be allocated before the construction itself and
only updated during it (by defining the links between the nodes).

The bounding volumes of the sibling nodes in the BVHs can overlap each other,
whereas in the k-d trees do not. This impacts the design of the traversal algorithm.
In k-d trees, we can traverse to the leaves nearest to the origin of a ray and after
finding the closest intersection in the first leaf, we can terminate the traversal because
we know that this intersection is the closest in the whole tree. This is not possible in
BVHs. Similarly, we can traverse the tree structure to the nearest leaves, but we cannot
terminate upon finding an intersection. We must always finish traversing the subtree
(rooted in a certain inner node) which is intersected by the ray (we do not always need
to traverse all the branches, because we always test, whether the ray intersects them).
This is because the bounding volumes of the subtrees can overlap.

Both of the data structures can be also constructed in 𝑂(𝑛 log 𝑛) (an efficient con-
struction scheme for k-d trees is presented in the work of Wald and Havran [WH06]
and the BVH scheme in the work of Ganestam et al. [Gan+15]). The advantages of
bounding volume hierarchies are the predictable memory complexity, more construction
approaches and possible topology optimizations (these are implied by the analogy of the
BVHs to different algorithms in computer science) and update techniques applicable
for dynamic scenes (such as refitting).

An example of simple bounding volume hierarchy storing 4 primitives can be seen
on figure 3.
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2.2 Acceleration structures

a) The scene containing primitives and
bounding volumes of the BVH.

b) The tree structure of BVH corresponding
to the scene.

Figure 3 An illustration of a simple BVH. We can see the scene containing primitives and
bounding volumes of the BVH (left). The colors of the volumes correspond to the inner
nodes of the BVH (right).

2.2.2 Surface Area Heuristic
The surface area heuristic (abbreviated SAH) is used in many BVH and k-d tree al-
gorithms. It allows to predict the ray tracing performance provided by the structures
and has a significant impact on their quality. The ideas behind the SAH were first de-
scribed in the work of Goldsmith and Salmon [GS87] and the SAH was later formalized
by MacDonald and Booth [MB90]. The SAH makes few assumptions about the scene.
These assumptions usually do not hold in practice, but the results of using the heuristic
are still good. The assumptions made by the SAH are:

∙ The distribution of rays is uniform.
∙ A ray cast through the scene does not hit any primitive (object).
By assuming the previous, the heuristic can describe the probability of a ray hitting

the acceleration structure node using surface area. When used in a top-down con-
struction of the k-d trees and the BVHs, the SAH makes one more assumption: the
examined node is to be split only once (i.e. the node is split, therefore defined as inner
node, two leaves are created and then the top-down construction in both new branches
is terminated), which is usually not the case, but the SAH-based construction leads to
good results even in the top-down construction.

The formulas exploiting the surface area heuristic also exploit the implementation-
specific constants. These are:

∙ 𝑐𝑇 - Traversal constant. Describes the expected cost of a ray traversing the inner
node of acceleration structure.

∙ 𝑐𝐼 - Intersection constant. Describes the expected cost of a ray intersecting a
primitive in a leaf.

During the subdivision in a top-down construction, we can describe convenience of
a subdivision candidate by comparing the expected cost of the possible inner node 𝑁
(after considered subdivision):

𝐶(𝑁) = 𝑐𝑇 + 𝑆𝐴(𝑙𝑒𝑓𝑡(𝑁)) · 𝐶(𝑙𝑒𝑓𝑡(𝑁)) + 𝑆𝐴(𝑟𝑖𝑔ℎ𝑡(𝑁)) · 𝐶(𝑟𝑖𝑔ℎ𝑡(𝑁))
𝑆𝐴(𝑁) (2)

In the equation the 𝑙𝑒𝑓𝑡(𝑁) denotes the left child of the node 𝑁 , 𝑟𝑖𝑔ℎ𝑡(𝑁) denotes
the right child and 𝑆𝐴(𝑁) denotes the surface area of the bounding box of node 𝑁 .
We can also describe the cost of not subdividing the node 𝑁 , thus defining it as a leaf:

𝐶(𝑁) = 𝑐𝐼 · 𝑡𝑁 (3)
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2 Theoretical background

In this equation 𝑡𝑁 is the number of primitives in the leaf 𝑁 .
As mentioned, the SAH can be exploited in the top-down construction of BVHs and

k-d trees this way. We can use it to find a best partition candidate or to determine
whether the subdivision is even convenient (if the expected cost of a leaf is lower than
the one of subdivided inner node, the construction in the respective branch is terminated
is many algorithms).

Apart from the top-down construction, the SAH is exploited in the BVH compaction
algorithm, described in section 3.4.4 and also implemented in this thesis, and to calcu-
late the cost of the whole hierarchy using the formula, which is obtained by derivation
the two formulas above:

𝐶(𝑇 ) = 1
𝑆𝐴(𝑇 ) ·

⎛⎝𝑐𝑇 ·
∑︁

𝑁∈𝑖𝑛𝑛𝑒𝑟𝑛𝑜𝑑𝑒𝑠

𝑆𝐴(𝑁) + 𝑐𝐼 ·
∑︁

𝑁∈𝑙𝑒𝑎𝑣𝑒𝑠

𝑆𝐴(𝑁) · 𝑡𝑁

⎞⎠ (4)

In this formula, the 𝑆𝐴(𝑇 ) is the surface area of the bounding box of the scene (also of
the whole hierarchy). The three formulas in this section are also described in the work
of Bittner et al. [BHH13].

More recently, Aila et al. [AKL13] discussed the discrepancy between the costs
calculated using the SAH and the actual rendering times. In their work, the authors
also proposed two new metrics to be used along the SAH to achieve better results.
However, we have implemented only the original version of the SAH in this thesis.

2.3 Method categorization

When categorizing the bounding volume hierarchies and the related algorithms, there
are more points of view to be considered. The first is implied by the character of the
rendered scene. The scene can be static, remaining unchanged over time, or various
types of changes can happen to the scene primitives. These can be moved, scaled,
destroyed (they can disappear) or new primitives can be added to the scene. Such
scenes are called dynamic (also animated). When considering the algorithms for this
type of scenes, we could find a finer categorization, e.g. by defining the construction
(which would require even finer categorization) and the update algorithms categories.
In this thesis we focus solely on the algorithms for static scenes. Of course, some
algorithms can be used for both types of scenes.

Another point of view would be to divide the algorithms into the CPU and GPU
categories, based on the type of the processing unit they are designed for. Some of
the algorithms could be implemented for both types without significant design changes,
but the others are suited for one of the types only. In general, the GPU algorithms
require a high degree of exploitable parallelism to maximally utilize the many-core
architecture. The parallelism is desirable also in the CPU algorithms, but its degree is
usually lower. In our thesis we review the algorithms from both categories but in the
implementation we focus only on the pure CPU methods or those easily usable for both
types of processing units.

When categorizing the algorithms for static scenes, we could define the first-level
categorization by defining the construction, optimization and related algorithm cate-
gories (consisting of ray traversal algorithms and other methods). In this thesis we
focus mainly on the construction and optimization algorithms. We will omit the ray
traversal algorithms and leave the related category for other methods. We extend the
construction category further by defining a finer subdivision, creating the top-down,
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bottom-up (agglomerative clustering), incremental, linear BVH and hybrid construc-
tion categories. These five are added by the optimization and related categories, leading
to seven categories in total. We define the BVH method categorization using these. In
the next sections, we will provide a more detailed description of the categories and the
algorithms belonging into them.

2.3.1 Top-down construction

The top-down construction algorithms are very popular. The main principle is a subdi-
vision of a BVH node containing primitives into two or more child nodes, each containing
a subset of primitives (in this section we will assume the number of child nodes to be 2).
This approach is very similar to constructing k-d trees, but in the BVHs the considered
set of primitives is split into disjoint subsets (usually; there are exceptions which we
will not consider now). K-d trees, on the other hand, place the primitives straddling
a splitting plane into both respective child nodes, which leads to primitive reference
duplication.

At the start of a top-down algorithm, the initial set of primitives contains all in the
scene. This set corresponds to the root of the bounding volume hierarchy. Construction
starts by evaluating the set (i.e. the possible ways to partition it) and termination
criteria and eventually partitions the set and the root if convenient. This principle
repeats on the possible new BVH nodes. The algorithm thus proceeds from the root
down and constructs the branches of the hierarchy, implying the top-down name.

As termination criteria the algorithms usually use the following two thresholds.
Either of these can indicate to terminate the construction of a BVH branch. The
thresholds are:

∙ Primitive threshold, also referred to as a maximum number of primitives in a
leaf. It terminates the construction when the cardinality of the primitive set is
sufficiently small. It is considered more convenient not to apply the subdivision
principle to a branch as far as possible (i.e. until all the leaves contain one primitive
each), but to create leaves containing more primitives (values 2 or even 6 or 8 are
used in various works).

∙ Cost threshold, based on comparing the expected costs of a possible inner node
and a leaf. If it is more convenient to define a leaf (i.e. its expected cost is lower
than for the inner node), the construction is terminated. The excepted costs for
both types of nodes can be calculated using the surface area heuristic described
in the section 2.2.2.

Eventually, other termination criteria can be added, e.g. a threshold of a node
bounding box in the work of Wald [Wal07] (more specifically, Wald terminates the
construction when a bounding box of the centroids of the primitives in the node is suf-
ficiently small). The construction continues until all branches in the BVH are finished.
A construction in a branch is finished either if indicated by the termination criteria or
if only one primitive remains in the branch.

There are more ways to choose the candidates for a subdivision of a primitive set.
In total, there are 2𝑛 − 2 possible ways to partition a set containing 𝑛 primitives,
which is impossible to evaluate. Therefore a partition candidate is usually obtained by
defining a splitting plane, similar to the k-d trees. Each primitive is then considered
to be placed to the left or right child node based on the coordinates of its significant
point and the plane. As the significant point, the centroid of the bounding box of the
primitive is usually used. Various splitting planes can be considered. The easiest top-
down methods are spatial median and object median. In the spatial median, we directly
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Figure 4 The example of meaningful splitting plane candidates for a node containing three
triangles (in one axis). The first plane (red) implies placing only the red triangle into left
child, while the second one (blue) implies both red and blue triangles placing there.

choose the splitting plane to divide the spatial region of a node into two halves. More
particularly, we choose the coordinate axis with the largest spatial extent and calculate
the center coordinate in this axis. Object median, on the other hand, partitions the set
of primitives into two equal halves.

A more advanced approach evaluates the convenience of more splitting plane can-
didates. A cost of a candidate can be estimated using the surface area heuristic, which
also allows to compare the candidates. We should be interested in the lowest possi-
ble number of candidates (to achieve high performance construction), which are truly
meaningful to evaluate. Since the primitives are usually placed into child sets based on
the centroids, it makes sense to define the splitting plane candidates as those where the
numbers of primitives in the child sets change (by taking a primitive out of one of the
sets and placing it into the other). In a single coordinate axis there are 𝑂(𝑛) mean-
ingful planes for 𝑛 primitives - the ones constructed through the primitive centroids.
A usual approach is to sort the centroids in the respective axis, construct the planes
and sweep from the left to the right to evaluate them. More particularly, the number
of meaningful planes is 𝑛 − 1, since we restrict any of child sets to be empty, splitting
plane with index 1 places only the first object into the left child set, and the plane with
index 𝑛 implies empty right child set. We can see an example of such splitting plane
candidates in the figure 4.

We can evaluate the splitting plane candidates in one or more coordinate axes.
Assuming only one, we can flip the axes regularly in between the successor nodes or use
a random-based selection, e.g. by using the axis with largest spatial extent with the
probability of 0.7 and the regular flip strategy with the probability of 0.3. Alternatively,
we can evaluate the candidates in all three axes. This can be implemented by iterating
through the axes, sorting the centroids, evaluating candidates and choosing the best
candidate through all the axes. This method is called Full Sweep (also Full Sweep SAH)
and allows to construct high-quality hierarchies. It is therefore often used as a reference
method. It main disadvantage is the higher number of evaluations (evaluating all three
axes) and therefore higher construction times. The method is described in the work of
Wald et al. [WBS07].

The top-down construction is the analogy to the quicksort algorithm, where the
splitting plane is used as a pivot. The theoretical lower bound of the construction com-
plexity also comes from the quicksort, more specifically from the complexity of sorting
based on comparisons, which is 𝑂(𝑛 log 𝑛). To reach the lower bound, careful imple-
mentation is needed. The scheme achieving this complexity is described by Ganestam
et al. [Gan+15] (the method sorts the primitives once in each of the coordinate axes
and then maintains sorted sequences). The Full Sweep method as described above
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(with sorting before evaluating each of the axes in each node), on the other hand, yield
a complexity of 𝑂(𝑛 log2 𝑛) The complexity can also be reduced even more at the cost
of approximating the construction, e.g. by not considering all the splitting planes and
evaluating only their subset, as Wald suggested [Wal07].

The methods from the top-down category are:
∙ The spatial median algorithm, described in the work of Kay and Kajiya [KK86].
∙ The full sweep SAH construction method, described by Wald et al. [WBS07].
∙ The algorithm using the approximation of binning, proposed by Wald [Wal07].
∙ One of the proposed algorithms to construct a multi-BVH (i.e. hierarchy with

higher branching factor than 2) by Wald et al. [WBB08].
∙ The Split BVH (also SBVH) structure, proposed by Stich et al. [SFD09].

2.3.2 Bottom-up construction (agglomerative clustering)
The agglomerative clustering can be thought of as an opposite approach to the top-down
construction. The clustering was adapted to bounding volume hierarchy construction
from other scientific fields, but was long considered inefficient for the use here. The
complexity of the naive solution is 𝑂(𝑛3) and other algorithms proposed yielded 𝑂(𝑛2)
complexity, which was still rather high. First efficient algorithms were shown in the work
of Walter et al. [Wal+08], which brought more interested into the field of agglomerative
clustering construction. Though the construction times of the algorithms were still not
sufficiently low, other works followed and improved them, making the times sufficient.
The interest in the agglomerative clustering methods stands mainly because of the
ability to produce hierarchies of high quality.

In the context of this construction scheme, by using the word clusters we mean
hierarchy nodes (inner ones or leaves). The construction is based on merging clusters
(which correspond to BVH subtrees) together and thus obtaining the larger ones (i.e.
building the hierarchy from bottom to top). The construction starts by creating the
initial set of clusters. These are of size 1 (i.e. it is a set of future hierarchy leaves,
each containing exactly one primitive). The clustering phase is then repeatedly applied
(clustering first the leaves and then also inner nodes into subtrees by creating more
inner nodes), until only one cluster, corresponding to the root of the BVH, remains.
The construction of the BVH using the bottom-up scheme can be seen in figure 5 on a
simple example of scene containing 3 triangles.

Having the set of clusters and proceeding to merge some of them, we must be able to
evaluate the convenience of merge of any two clusters. For this purpose the dissimilarity
function (or also distance function) is used. It allows to describe the convenience by cost
and thus to compare more possible merge candidates. There are more ways to define
the function and it can be even user-defined. However, it must must be symmetric.
A surface area of the bounding box containing both of the two considered clusters
is often used. Another example would be the distance between the two centroids of
the considered clusters. Having the distance function defined, the approach during
clustering is to find the globally most-convenient pair of clusters and merge these into
one. This principle repeats.

When searching for the most-convenient match for a single cluster, we can either
search through the whole scene or limit the search to a neighborhood of the queried
cluster. As the whole scene search is inefficient, this is crucial for the construction
performance. The scene-wide search is also considered not necessary in order to achieve
higher quality of the resulting hierarchy, because the search is more of a local operation,
and the neighborhood of the queried cluster is usually sufficient to search in only. The
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a) Before construction. b) After clustering first
two clusters.

c) After another
clustering operation.

Figure 5 The example of the bottom-up construction on a simple set of objects. In the top we
can see the primitives in the scene and the bounding volumes of the hierarchy that is being
constructed. In the bottom we can see the topology of the hierarchy. In the left image we
can see the scene before the construction, in the middle after clustering first two clusters.
In the right image one more clustering operation is performed, resulting into the complete
hierarchy. The color of the bounding volumes in the top part correspond to the respective
inner nodes in the bottom part.

restriction of the search into the different types neighborhood is examined in various
works and allows to propose algorithms with sufficiently low construction times, while
still achieving high quality of the resulting hierarchy. By the restriction, the time
complexity of the construction can be even lower than 𝑂(𝑛 log 𝑛), for example, Gu
et al. report the complexity of 𝑂(𝑛) while carefully setting the parameters of the
algorithm. The lower complexity than the theoretical lower bound implied by sorting
using comparisons comes from the approximation.

The methods using the agglomerative clustering are described in the following works:
∙ The heap-based and locally-ordered clustering algorithms presented by Walter et

al. [Wal+08].
∙ The Approximate Agglomerative Clustering algorithm, proposed by Gu et al.

[Gu+13].
∙ The Parallel Locally-Ordered Clustering algorithm, proposed by Meister and Bit-

tner [MB18].

2.3.3 Incremental construction

The category of algorithms, that construct the bounding volume hierarchy incremen-
tally, is rather a small one. The main principle is to process the primitives in the scene
sequentially and insert them one by one into a partially-built hierarchy (which is a valid
hierarchy after each of the insertion operations). To be able to insert a primitive into
the BVH, the algorithm must be able to determine the convenient place in the hierarchy
to insert the primitive into. The construction begins by inserting the first primitive (i.e.
defining the root as a leaf and containing the primitive). After that, for each processed
primitive the globally most convenient place to insert it into is found and the primitive
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is inserted there. The process is repeated until all the primitives are inserted, resulting
into the complete hierarchy.

Goldsmith and Salmon [GS87] proposed one of the incremental algorithms, but
it was later shown as inefficient by Havran [Hav00]. Seeming difficult to design, the
incremental algorithms then did not receive much attention and other construction
schemes were prefered. Recently, a more advanced algorithm was proposed by Bittner
et al. [BHH15]. The authors proposed the strategy to find the globally most convenient
place in the hierarchy to insert to and combined the insertion process with phases of
hierarchy optimization to achieve better results. The authors also proposed two parallel
versions of the algorithm, making it more suitable for the modern multi-core CPUs.

The algorithms of this category are:
∙ The algorithm proposed by Goldsmith and Salmon [GS87].
∙ The algorithm proposed by Bittner et al. [BHH15], which combines the insertion

of primitives with periodical topology optimizations.

2.3.4 Linear BVHs
The Linear bounding volume hierarchy was proposed by Lauterbach et al. [Lau+09]
and various works continued to improve it. The main principle of these algorithms is
to reduce the hierarchy construction to sorting. More specifically, linear BVHs reduce
it to a problem solveable by radix sort, which is convenient because of the low time
complexity of radix sort (𝑂(𝑑 · 𝑛), where 𝑛 is the number of elements and 𝑑 is the
number of digits to describe an element).

In order to be able to use a variant of radix sort to sort primitives in the scene, we
need to assign each primitive a number. This is done by calculating a Morton code for
each primitive. The code is constructed based on a significant point of the primitive
such as the centroid. The radix sort of the primitives then implies ordering of the
primitives along the space-filling Morton curve, as can be seen on figure 6 (courtesy
of Lauterbach et al. [Lau+09]). Though there exist also other space-filling curves,
Lauterbach et al. proposed to use the Morton curve because the Morton codes can be
computed easily using bit operations.

To calculate the Morton codes of primitives using 𝑘 bits per dimension, the bounding
box of the scene is divided into the lattice of 2𝑘 · 2𝑘 · 2𝑘 cells, which is illustrated on
figure 7 (courtesy of Vinkler et al. [VBH17]). Each cell can be indexed in all three
coordinate axes and the binary representation of the indices is used in the subsequent
Morton code calculation. To calculate the code for a single primitive, the centroid of the
primitive is first projected into the lattice. It is projected into one of the cells and the
corresponding binary indices are used to calculate the Morton code for the respective
primitive. In other words, the purpose of the lattice is to quantize the coordinates of
the centroids. To be more straight-forward, the projection is usually calculated using
a predefined constants calculated from the scene bounding box and is done for each
of centroid coordinates separately. Having calculated the three binary indices, each of
these is shifted to be able to interleave with the others later. The shifting produces
two zeros in between each of the former digits. The three modified indices are then
interleaved using bit shifts and bit AND operations, resulting into the Morton code.
The code containes of subsequent triples of indices-specific digits interleaved so that
they regularly alternate, i.e. 𝑥1𝑦1𝑧1𝑥2𝑦2𝑧2𝑥3𝑦3𝑧3... .

Having the Morton codes for all primitives calculated, we can then apply the radix
sort to sort them along the Morton curve. When they are sorted, the hierarchy con-
struction part itself begins. The algorithm works in top-down manner, and recursively
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Figure 6 The ordering of the primitives in the scene along the Morton curve implied by their
sorting according to the Morton codes. Courtesy of Lauterbach et al. [Lau+09].

subdividing the set of primitives similarly to the original top-down construction. The
difference is that it always partitions the primitive set based on the Morton codes of
primtives. More specifically, it examines the bits of the Morton codes to determine
whether to place the primitives into left or right child sets. In the root level, it starts
by examining the most-significant bit, placing the primitives with 0 bit values to the
left child set and those with 1 bit values to the right child set. After subdividing the
set, the algorithms continues by evaluating the child nodes and does this by examining
the next (one after the most significant) bit in the Morton codes. The algorithm stops
subdividing a hierarchy branch, when the bits of the Morton codes used in the branch
are spent, or when we have only one primitive in the set.

The determination of the belonging of the primitives to child nodes can be done fast,
since the primitives are sorted according to their Morton codes. Therefore the binary
search algorithm can be used to find the partitioning primitive as the last the sequence
having 0 value in the respective bit. All the primitives prior to the partitioning one in
the sequence are placed into the left child set, and the others are placed into the right
child set.

Since the complexity of constructing the hierarchy is connected to the convenient
one of radix sort, the original linear BVH itself (as described above) achieve high per-
formance construction. On the other hand, the quality of the hierarchy computed solely
by using the such principle is lower compared to the other categories. This follows from
the fact that the ordering of primitives along the Morton curve itself is not sufficiently
convenient for use in ray tracing alone. Therefore the basic construction principle is
combined with other, e.g. with the top-down construction using the surface area heuris-
tic. Part of the hierarchy is then constructed based on the Morton codes while another
part is constructed using SAH. The linear BVH principle can be implemented on both
CPU and GPU, but is used mainly on a GPU, due to the various massively-parallel
algorithms proposed.

In the context of this thesis, we refer to all the BVH algorithms exploiting the basic
linear BVH principle proposed by Lauterbach et al. (and eventually combining them
with other construction approaches) as linear BVHs (also abbreviated LBVHs) The
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Figure 7 The dividion of the scene into a lattice implied by the use of the Morton codes. In this
example, two bits per dimension are used in the code. Courtesy of Vinkler et al. [VBH17].

algorithms from this category are:
∙ The linear BVH algorithm and the hybrid LBVH-SAH algorithm proposed by

Lauterbach et al. [Lau+09].
∙ The HLBVH structure extending the LBVH, proposed by Pantaleoni and Luebke

[PL10].
∙ The optimized version of the HLBVH simplifying the construction using work

queues [GPM11].

2.3.5 Hybrid construction

The hybrid category is defined for the algorithms either working differently from the
previous construction approaches, or for those combining them. An example of such
an algorithm is the Bonsai, proposed by Ganestam et al. [Gan+15]. The algorithm
works in two phases. It first partitions the primitives into smaller groups using the fast
spatial median top-down approach. Then it proceeds by creating a local hierarchy of
each group (called mini tree), using arbitrary approach. A top-level hierarchy is then
built using the local hierarchies as leaves, also by arbitrary approach. Any method from
the categories above can be used for either of the phases of construction (Ganestam et
al. use an optimized implementation of the full sweep SAH), therefore we consider it
as a hybrid.

2.3.6 Optimization algorithms

The optimization algorithms use an already constructed hierarchy as an input. They
perform topology optimizations of the tree structure of the hierarchy and aim to im-
prove its quality beyond the former results of the construction algorithms. As non-
construction ones, these algorithms stand beside the categories above, defining an in-
dependent field of study. The optimizations can be applied to an already constructed
hierarchy when the application has enough time for it. As an example, when the con-
struction algorithm for a dynamic scene is even faster than just matching the frame
rate, the time saved can be used for optimizations to increase the hierarchy quality.

The optimizations can be terminated in various ways. One termination criterion
comes from the example above - the time. The optimization then proceeds for a cer-
tain period of time. Alternatively, we can terminate the optimization when it cannot
increase the quality of the hierarchy further. Such an approach can, however, lead to
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Figure 8 The illustration of optimization proposed by Bittner et al. An unconveniently placed
node (red) is optimized by removing both its child nodes representing whole subtrees (grey)
and reinserting them back at more appropriate places (represented by the green nodes).
Courtesy of Bittner et al. [BHH13].

an optimization ending in the local maximum (of hierarchy quality) and not increas-
ing the quality further. Some algorithms account for that fact, e.g. by using random
sampling in the case of the Insertion-based optimization algorithm proposed by Bittner
et al. [BHH13]. This algorithm is based on removing the unconveniently placed BVH
subtrees and inserting them back into more appropriate placed in the hierarchy. It is
illustrated in the figure 8 (courtesy of Bittner et al. [BHH13]).

The field of the optimization algorithms got the attention after the proposal of the
algorithm by Kensler [Ken08], which applied tree rotations to improve a hierarchy. The
algorithms of this category are:

∙ The algorithm based on tree rotations using the hill climbing and simulated an-
nealing heuristics, proposed by Kensler [Ken08].

∙ The algorithm combining the tree rotations as proposed by Kensler and the refit-
ting for the updates of the animated scenes, proposed by Kopta et al. [Kop+12].

∙ The algorithm based on removing the nodes of a BVH and reinserting them back
to more appropriate locations, proposed by Bittner et al. [BHH13].

∙ The TRBVH algorithm based on restructuring treelets of nodes, proposed by
Karras and Aila [KA13].

∙ The ATRBVH algorithm optimizing the TRBVH by employing the agglomerative
clustering in the treelet restructuring, proposed by Domingues and Pedrini [DP15].

2.3.7 Related techniques

In this category we mention some other methods not described until now. These meth-
ods can be design details in the other methods and can be used in the construction or
optimization categories mentioned above.

Though BVHs differ from the k-d trees in the construction, some of the pub-
lished methods combine their construction principle, thus making a hybrid construction
scheme. In particular, the construction approach from the k-d trees, referred to as to
the spatial splitting, is adapted for the BVHs. The spatial splits, used in the top-down
construction, can be more convenient at some points than the BVH partition approach.
The spatial splits are adapted for the BVHs in the Split BVH (SBVH) structure pro-
posed by Stich et al. [SFD09]. During the partitioning in the SBVH, a choice can be
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made between a spatial split in the spirit of the k-d trees and the usual BVH partition
candidate, selecting the more convenient one. The SBVH has been later parallelized
on a CPU by Fuetterling et al. [Fue+16]. The spatial splits are also exploited in the
work of Hendrich et al. [HMB17], who propose to incorporate them into the proposed
construction algorithm refining an auxiliary BVH.

The BVHs can also have a branching factor more than 2. This is used e.g. in the
work of Wald et al. [WBB08], in which the higher branching factor allows to test a
traced ray against multiple BVH inner nodes. The authors proposed to use the SIMD
instructions to achieve that. Such an approach is an alternative to the usage of the
SIMD instruction in the tracing of packets of rays.

2.4 State of the art

In this section we present a review of methods we have not discussed further in the
previous sections. We also omit the descriptions of the algorithms we chose to implement
in our thesis. These are presented in the next section, 3.

The bounding volume hierarchies were discussed in one of the early works by Kay
and Kajiya [KK86]. The authors first described the use of bounding volumes for ray
tracing. The ray-volume intesrction test is cheaper than the object-volume one, which
can thus be avoided in case on not intersecting the volume first. An efficient design
of volume representation is presented along with the approach to construct bounding
volumes for polyhedra, implicit surfaces and compound objects. The authors then
extended the usage of bounding volumes into the hierarchies (BVHs), which allow for
pruning the entire subtrees of volumes and objects. Two BVH construction approaches
are presented. The first is based on clustering the objects as based on the order they
are stored, aimed to be usable when the objects are stored in spatially coherent fashion.
The second approach is the spatial median top-down method. The authors also describe
the ray traversal algorithm.

Wald et al. [WBS07] presented methods based on the top-down construction scheme.
Their motivation was to propose efficient methods for deformable scenes (i.e. the ones
where only positions and sizes of primitives change). They were also motivated by not
changing the BVH topology as can be done collision detection algorithms and proposed
to only translate the bounding volumes. In their work, they described the full sweep
top-down construction method by extending the surface area heuristic for use in the
BVHs. They also compared this method to the spatial and object median methods.
The second important contribution of the work is the ray-packet traversal method,
which can be a key technique for higher rendering performance (mainly for the primary
rays). Wald et al. proposed to implement this technique using the SIMD instructions
on a CPU. Instead of traversing a single ray at a time, the packet of e.g. 16x16 rays
can be traversed using techniques such as the early hit and the early miss tests. During
the traversal, the rays in the packet are flagged as active or inactive. In the early hit
test, the first active ray is tested for the intersection and the whole packet descends
in the hierarchy if the test returns positive result. In the early miss test, which can
quickly discard the tracing of the whole packet. These two techniques are combined in
an effective scheme.

Wald et al. [WBB08] examined the use of SIMD instructions in an alternative
technique to packet-based ray tracing. Though this technique is efficient for primary
rays (or the coherent ones in general), the proposed methods aimed on the acceleration
of tracing less coherent rays. The core of the work was the construction of the BVHs
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a) Before restructuring. b) After restructuring.

Figure 9 An illustration of the treelet restructuring in the optimization algorithm proposed by
Karras and Aila. The illustrated treelet is of size 𝑛 = 7, having 7 treelet leaves. Courtesy of
Karras and Aila [KA13].

with higher branching factor (more particularly 16) and testing a single ray against 16
BVH nodes or triangles in the same time using the SIMD instructions. The authors
proposed two methods to construct these BVHs, one based on top-down splitting and
the other on the collapsing of a binary BVH into the one with higher branching factor.

Walter et al. [Wal+08] examined another construction approach for the BVHs, the
bottom-up scheme. This scheme was long considered inefficient, which changed after
the work of Walter et al. The authors proposed two advanced bottom-up algorithms,
the heap-based one and the agglomerative clustering. The second technique received
various optimizations in the subsequent works. Walter et al. examined the exact version
of the clustering (with no approaximations), in which the search for the globally most-
convenient pair of clusters to merge was accelerated by an auxiliary k-d tree.

Pantaleoni and Luebke [PL10] followed the work of Lauterbach et al. [Lau+09]
by extending the LBVH structure. They proposed the hierarchical LBVH structure
(HLBVH), which divides the construction principle into two parts, each of which is
performed according to idea of the LBVH. The scene is again processed according to
the Morton codes. In the first part of the construction, this is done in coarser manner,
while in the second part the division is done more finely. The authors also saw the
disadvantage of the proposed method in the lower hierarchy quality which comes from
the LBVH principle. They therefore combined the HLBVH with the full sweep SAH
method by taking the cells of the upper coarser subdivision as input for the full sweep.
The lower part of the SAH-optimized structure is still constructed using the LBVH
principle.

The HLBVH structure was later optimized by Garanzha et al. [GPM11]. In their
work they eliminated the somewhat more complicated computations and proposed a
novel solution based on work queues, running on a GPU. Instead of the full sweep
method originally used for constructing the top part of the BVH, the authors employed
a parallel binning method in the spirit of the work of Wald [Wal07], but also run on a
GPU.

The motivation of the work of Karras and Aila [KA13] was to propose a BVH method
that would run similarly fast to the GPU algorithms based on the Morton codes while
still reaching the hierarchy quality high-quality builders. The authors proposed a GPU-
based massively parallel optimization algorithm (called TRBVH) based on restructuring
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Figure 10 The possible rotations usable for the BVH optimization in the algorithm proposed
by Kensler. Courtesy of Kensler [Ken08].

of treelets. A treelet of a BVH node is a set of its immediate descendants. A treelet also
consists of inner nodes and leaves, which can in fact be BVH subtrees. The optimization
is based on forming the treelets and then restructuring them into more convenient ones
by finding the most convenient subtree for the treelet leaves, which is illustrated on
figure 9 (courtesy of Karras and Aila [KA13]). This is believed to be an NP-hard
problem and the authors therefore use a treelets of highly limited size and dynamic
programming approach with optimizations to achieve faster solution. More specifically,
they propose to construct a lower quality BVH first using the algorithm proposed by
Karras [Kar12] and then perform the optimization phase on multiple treeles in parallel.
Another contribution of the work of Karras and Aila is the improvement of the triangle
splitting algorithm proposed by Ernst and Greiner [EG07] using various heuristics to
estimate better the impacts of the splitting, which can be applied optionally before the
construction of the initial BVH to improve the ray tracing performance.

The TRBVH structure was further improved in the work of Domingues and Pedrini
[DP15]. They improved the treelet restructuring phase by not evaluating each new
possible tree for the set of treelet leaves, but employing the bottom-up agglomerative
clustering with these as input clusters. In general, this method can produce treelets
of lower quality, but it is notably faster and larger treelets than in the work of Karras
and Aila [KA13] can be considered. Because of that, Domingues and Pedrini report
results similar to Karras and Aila while achieving them in in about 30% less time. This
structure is abbreviated as the ATRBVH.

A method different from the others was presented by Kensler [Ken08]. The author
investigated the optimization of an already constructed BVH in order to improve its
quality. The main idea of the proposed method comes from the analogy of the binary
search trees and BVHs and adapts the tree rotations for the BVH optimization. The
situation is slightly different in the BVHs as the rotations boil down to swaps of a
child of a node from the one side with a grandchild from the other side (the sides
depend on the type of the rotation used, these are illustrated on figure 10, which is
the courtesy of Kensler [Ken08]). The authors also propose two optimization schemes
based on the rotations, using the hill climbing and the simulated annealing algorithms.
The first method is greedy in nature and thus tends to end in the local minimum, which
is accounted for by the second one. Kensler propose to combine these two methods,
executing the simulated annealing followed by the hill climbing.

When using the BVHs for animating scenes, rather than rebuilding the entire struc-
ture per frame we can perform the refitting. However, due to the changes to the
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primitives in the scene, the refitting itself can lead to periodical decrease of the BVH
quality. The motivation of Kopta et al. [Kop+12] was to compensate the decrease and
they proposed to achieve that by combining the refitting with the BVH tree rotations,
previously employed as optimization procedure by Kensler [Ken08]. To account for the
fact that triangles in the same BVH leaf can also get far from one another during the
animation, the authors also proposed to perform leaf splitting which can be done triv-
ially for leaves containing 2 triangles and using the binning top-down algorithm [Wal07]
for those containing more of them.
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In this section we present the description of the algorithms we chose to implement.
We chose the methods based on the attributes they are known for (e.g. the speed in
the case of the algorithm using the binning proposed by Wald [Wal07]), but we also
wanted to compare the algorithms from different categories from our categorization
presented in section 2.3. Our task was to implement 6 algorithms. We had added these
by implementing the seventh work, the Extended Morton codes. For the 6 algorithms,
we have chosen these:

∙ The top-down construction using the binning approximation proposed by Wald
[Wal07]. This algorithm provides significantly low construction times on a CPU.
On the other hand, it achieves those by sacrificing some of the resulting BVH
quality.

∙ The Approximate Agglomerative Clustering algorithm proposed by Gu et al.
[Gu+13]. As a bottom-up method, it is known to provide high-quality hierar-
chies while maintaining low construction times on a CPU.

∙ The Bonsai algorithm proposed by Ganestam et al. [Gan+15]. This algorithm
is reported to construct high-quality hierarchies in low construction times. We
placed this algorithm in the hybrid construction category.

∙ The Insertion-based optimization algorithm proposed by Bittner et al. [BHH13].
We have chosen this algorithm from the optimization category since it provides
significant BVH improvements and is designed for a CPU. It is also reported to
be faster than the previous CPU optimization algorithms.

∙ The incremental algorithm proposed by Bittner et al. [BHH15]. This is one of the
few incremental algorithm. It is modern and reported to construct high quality
hierarchies. It is designed for a CPU.

∙ The Parallel locally-ordered clustering algorithm proposed by Meister and Bittner
[MB18]. It is a rather new bottom-up method. As such, we were interested in
the comparison between it and the AAC. The PLOC algorithm is also reported to
built hierarchies of high quality.

Another reason for choosing these algorithms was that they are parallelizable on
a CPU (with the exception of the Insertion-based optimization method). In the end,
we preferred the PLOC algorithm (a bottom-up method) to a method from the Linear
BVH category, from which we did not choose any method. The reasons for that were
that these algorithms generally do not provide as high-quality hierarchies and that they
are often designed for a GPU rather than a CPU. The GPU algorithms are beyond the
scope of our thesis.

3.1 BVH construction using the binning

Due to the high computational cost, the ray tracing was considered too expensive for
real-time applications for a long time. As the computer hardware improved and started
to not being a limitation, the situation started to change. The real-time applications
such as games can be, however, very dynamic, demanding significant changes in the
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acceleration structures. Full, high-quality rebuilds from scratch of the k-d trees and the
BVHs were long considered to be too expensive and update methods were examined
instead. Fast construction techniques based on approximations were also the subject of
research and some of them were applied to the k-d trees at first. Since the BVHs have
convenient attributes, Wald [Wal07] was motivated to adapt the fast builds to them as
well. He also expected the negative impact of the approximations to be smaller than
in the k-d trees. This is because the degree of approximation is not that high for the
BVHs, since they work with the exact bounding boxes of triangle sets during the node
partitioning (as opposed to dividing a volume corresponding to an inner node in a k-d
tree) and perfect splits and split clipping, described by Havran [Hav00] and Havran
and Bittner [HB02], need not to be considered. In his work, Wald adapts the binning
approximation to the construction of bounding volume hierarchies [Wal07].

3.1.1 The use of the binning for BVHs

The binning can be understood as a simplification of the partitioning step performed
by the full-sweep construction algorithm. During the search for the best partition, the
full-sweep method works with a sequence of objects’ centroids subsequently sorted in
all coordinate axes. Though evaluating the SAH-based costs for every possibility and
leading to high-quality hierarchies, this approach is time-consuming. When the binning
is applied, we evaluate the costs of only certain (rather low) number of equidistantly
spaced partitions. This leads to avoiding a significant amount of computations. The
simplified pseudocode of the partitioning step can be seen in pseudocode 1.

Algorithm 1: divideNodeBinning(Node n)
1 if evalTermination(n) then
2 define n as leaf;
3 splitAxis = n.centroidBounds.largestAxis(); // the largest spatial extent
4 calculate leafCost; // cost of not splitting
5 initializeBins(splitAxis); // empties the bins and bins the primitives
6 [split, minCost] = findSplit(); // sweeps over the bins
7 if minCost < leafCost then
8 sortIndices(split); // in-place sorting of primitive indices
9 define n as inner node;

// creates the centroid bounds and primitive sets
10 create n.left and n.right according to split;
11 divideNode(n.left);
12 divideNode(n.right);
13 else
14 define n as leaf;

When the partition of an BVH node is to be determined, the algorithm proposed
by Wald [Wal07] starts by creating 𝑘 bins of the same width. Because the centroids of
objects’ bounding boxes are used during the partitioning, Wald proposed to create bins
by subdividing their bounding box (i.e. centroid bounds) into 𝑘 equal regions (bins)
instead of using the bounding box of the node. This can be seen on figure 11 on an
example of a node containing three triangles.

He also proposed to evaluate the possible partitions in the axis with the largest
spatial extent only as it leads to sufficient results. We use these two approaches. The 𝑘
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Figure 11 The bins constructed from the bounding box of the primitive centroids (𝑘 = 4). The
primitives are placed to the bins according to their centroids.

bins imply 𝑘 −1 splitting plane candidates, which will be evaluated in the same manner
as in the full sweep method. Wald defined the cost of the candidate with neglecting
the intersection and traversal constants and division by the surface area of the parent
node of considered child nodes:

𝐶𝑖 = 𝑆𝐴(𝑙𝑒𝑓𝑡(𝑛)) · 𝑡𝐿 + 𝑆𝐴(𝑟𝑖𝑔ℎ𝑡(𝑛)) · 𝑡𝑅 (5)

However, Wald did not define the corresponding cost of not dividing the node, yet
he proposes to compare these two costs in order to determine whether the best chosen
partition is to be performed at all. We therefore use the original SAH-based cost
formulas for both inner node and leaf costs. To be able to calculate the costs, the bins
store two auxiliary values:

∙ The number of primitives associated with the bin, 𝑛𝑖

∙ The bounding boxes of the primitives associated with the bin, 𝑏𝑏𝑖 (i.e. bin bounds)
The search for the best partition starts by first initializing the bins. The number

of primitives 𝑛𝑖 is set to 0 and the bin bounds 𝑏𝑏𝑖 are set to be an empty box (having
all the minimum coordinates set to ∞ and the maximum coordinates to −∞) for each
bin 𝑖. Each primitive is then associated with the bin into which it’s centroid spatially
belongs. This can be done fast using the following formula for primitive 𝑜:

𝑏𝑖𝑛𝐼𝐷𝑜 = 𝑘(1 − 𝜖)(𝑐𝑜,𝑙 − 𝑐𝑏𝑚𝑖𝑛,𝑙)
𝑐𝑏𝑚𝑎𝑥,𝑙 − 𝑐𝑏𝑚𝑖𝑛,𝑙

(6)

where 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 is a small constant (we use 1 * 10−5), 𝑐𝑜,𝑙 is the coordinate of the
centroid of the object 𝑜 in the axis 𝑙, 𝑐𝑏𝑚𝑖𝑛,𝑙 is the coordinate of the minimum point of
the centroid bouds in the axis 𝑙, and 𝑐𝑏𝑚𝑎𝑥,𝑙 of the minimum. The term (1 − 𝜖) shifts
all the objects slightly to the left and therefore no extra handling of the objects on the
right boundary of the centroid bounds is needed. After simple derivation and defining
two constants 𝑘0 = 𝑘(1−𝜖)

𝑐𝑏𝑚𝑎𝑥,𝑙−𝑐𝑏𝑚𝑖𝑛,𝑙
, 𝑘1 = 𝑐𝑏𝑚𝑖𝑛,𝑙, the formula can be further simplified

into a form allowing to bin the objects in a fast way:

𝑏𝑖𝑛𝐼𝐷𝑜 = 𝑘1(𝑐𝑜,𝑙 − 𝑘0) (7)

When the primitive is associated to the bin 𝑖, the counter 𝑛𝑖 is incremented and
the bounding box of the primitive is included into the respective bin bounds 𝑏𝑏𝑖. This
procedure is done on every object of the considered set.

After all the objects are binned, we can evaluate the plane candidates to find the
one that minimizes the cost. This is done by sweeping - two linear passes over the
bins. The first pass is from the left to the right, and the numbers of objects to the left
of the respective splitting plane as well as their bounding box are accumulated. The

25



3 Analysis and Design

Abbreviation Parameter description
k Number of bins used

Table 1 Parameters of the binning-based algorithm.

second pass is from the right to left, working analogically, but this time we can already
evaluate the split candidates since we have all required values.

When the best partition is determined, the primitives are rearranged according to
the it, implying two disjoint child sets. Wald suggests to perform this rearrangement
in-place and we follow this idea. In the sequential version of the algorithm this can be
implemented without additional copying. To determine to which child set the object
belongs, the binning formula is applied again. Based on the resulting bin and index of
the chosen split we determine the resulting child node.

Wald suggested to use two iterators to perform the sorting. One iterator starts from
left and goes to the right, determining the child nodes for the primitives and stopping
at the primitive belonging to the right one. Second iterator works analogically, but
sweeps from the right to the left and stops at the primitive belonging to the left child.
After both iterators find such primitives, these are swapped. The procedure continues
until the two iterators meet. We have used a slightly different approach that leads to
the same result. Our right iterator starts from the first index in the right half, which
we determine from the number of objects accumulated on the left side of the chosen
plane. This approach is slightly more friendly to caching.

Wald also discussed the number 𝑘 of bins to use. As he recalls, the binning introduces
smaller approximation when used for bounding volume hierarchies than it does for k-d
trees. Therefore lower numbers of bins can be expected to achieve better results when
used for the BVHs. During the experiments, he achieved sufficiently good results with 16
bins. Also, Gu et al. [Gu+13] used the same number of bins in their reimplementation
of the method. We therefore follow these two works and also use 16 bins in each
evaluation. Alternatively, an adaptive approach proposed by Wald can be used, setting
the number of bins based on the number of primitives in the node:

𝑘 = 4 + 2
⌊︀√

𝑛
⌋︀

(8)

where 𝑛 is the number of objects in the considered node. However, the adaptive
approach is stated to bring no appreciable improvement, except for the lower number
of bins in the nodes near the BVH leaves and thus higher performance. On the other
hand, one could expect lower performance in the higher levels of the hierarchy. We
have not attempted this approach. We use 16 bins. Moreover, the parameters of the
algorithm proposed by Wald can be seen in table 1.

To terminate the subdivision Wald proposes to use two standard termination criteria
(primitive and cost thresholds) already mentioned in section 2.3.1. Wald suggests to
use 2 or 4 as the primitive threshold and we follow the suggestion by using 2. He also
proposed to terminate the construction if the centroids bounds become too small. He
did not define this criterion further and we implemented it to hold if the extent of any of
the dimensions of the centroid bounds falls below a constant, more specifically 1 · 10−7.

The rest of the construction is not different from the full sweep method. We have
implemented the method using iteration instead of recursion. We also use our defined
stack for driving the construction which is located on the stack (in terms of computer
memory) for higher performance.
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3.1.2 Parallelization

Wald proposed three different parallelization techniques and combined them into two
different parallelization schemes. These are the mixed horizontal/vertical sceheme and
the grid-based binning. In our work, we have implemented the mixed horizontal/vertical
scheme with slight improvements.

This scheme combines two parallel techniques, named vertical and horizontal. The
horizontal technique is to construct the upper levels of the hierarchy, while the vertical
constructs the lower. The horizontal technique is used when there are not enough tasks
to run different threads independently on. It can be used until reaching certain depth or
until the number of primitives in nodes becomes smaller than a defined threshold. The
construction then switches to the vertical scheme. This scheme is somewhat simpler
and means having distinct threads to construct disjoint BVH subtrees.

In the horizontal scheme, the threads co-operate on a single node subdivision.
Briefly, the principle is the same as the sequential one described above, but the threads
work on disjoint subsets of primitives, each treating in the same manner as in the
sequential construction. The results of distinct threads are then merged and then a
parallel version of the in-place sorting follows.

In the beginning of the subdivision of a node, each thread is assigned a subset of
the primitives contained there. It then performs the binning of these primitives into its
own bins. The binning results from all the threads are then merged. Then only one of
the threads, e.g. thread 0, searches for the best partition candidate using the sweeping
principle.

In our implementation (which is slightly different from the one described by Wald),
after binning the primitives, each thread performs the two sweeps to accumulate the
numbers of primitives on the respective sides of splitting plane candidates. These are
later required during the parallel in-place sorting and we thus store the results into
two arrays - one for the subsequent search for the best candidate performed by thread
0 and the other for the sorting. After the sweeps, we merge the results (accumulated
numbers of objects per bins and the bin bounds). Wald uses the thread 0 to do this,
but we perform the merge using parallel reduction algorithm, which is faster, especially
when using higher thread counts. After the merge, we let the thread 0 to perform the
two sweeps to determine the best partition candidate in the same manner as in the
sequential construction.

After that, the parallel in-place sorting is performed. It starts by employing the
parallel prefix scan to determine to which parts of the array the threads will write the
primitive indices of their portion. For this, the mentioned second array of accumulated
primitive counts is required. The threads are then again assigned a respective portion
of primitive array and now have two values, 𝑁 𝑡

𝐿,𝑖, 𝑁 𝑡
𝑅,𝑖, which determine the beginning

indices of the resulting portions of the primitive indices array to write to. These indices
denote the start of the portions for left and right child node respectively.

By executing only like this, the threads would, however, write to the same parts of
the array as they read the primitives from. Wald uses copying of the respective parts
into an auxiliary array and then has the threads rewrite the primitives back at the
correct indices, which is simpler to implement. We focused on the performance and
therefore avoid the unnecessary copy step by using a primitive array of double length
and maintaining pointers into the currently and previously used part of the array. This
is, however, more difficult to code and debug.

Apart from using the parallel reduction for merging the binning results as described
before, we also use it to calculate the centroid bounds and the scene bounding box, in
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order to maximize the performance. After the primitive sorting, the thread 0 creates
a new hierarchy inner node and recursively continues to process the child nodes. We
add, that these parts of execution must be interleaved with thread barriers used to
synchronize them. We used C++ 11 threads for the parallel construction and since the
standard does not provide a barrier, we wrote our own version of it using two atomic
variables and waiting implemented as while loop. We could alternatively use the Boost
library version of barrier, but this way we managed to keep our code to use only the
C++ standard library.

When a certain threshold of the number of primitives in the respective node set
is reached (i.e. the number is lower than this threshold), the recursive principle stops
in this hierarchy branch. We then pass the node as a task to the vertical algorithm.
As mentioned, the vertical part executes threads to construct disjoint subtrees and
therefore minimal synchronization is required. The process is very similar to sequential
version, except each thread works with its own data structures. The threads are assigned
with tasks dynamically. We drive the assignment using one atomic variable (an index to
the task array), which is the only synchronization mechanism in this construction part.
We also sort the tasks based on the numbers of objects in the subtrees in descending
order, which allows to better utilize the threads, as Wald mentions.

Also, the BVH nodes used for the subtrees must be preallocated (otherwise we would
need further synchronization when creating the nodes), which we can do by knowing
the numbers of primitives in them. However, the construction can leave spaces in the
node array between the respective subtree parts and we thus perform a final array
compaction to get rid of them.

Wald also proposed a second parallelization scheme, called grid-based binning, which
aims to avoid the performance bottleneck implied by the synchronization in the hori-
zontal parallel part mentioned above. This scheme performs a higher number of splits
a priori, resulting into a regular grid. The primitives are then binned into this grid and
the subtrees for each of the grid cells are then constructed in parallel. We have not
implemented this parallelization scheme.

3.1.3 Reported results

Wald evaluated the three versions of the proposed algorithm (the sequential one, the
mixed horizontal/vertical and the grid based one) on a set of five scenes and compared
them with the full sweep method and "BIH-style" (Bounding Interval Hierarchy). He
presented the results of absolute build times, scalability and compared the results to
the k-d trees. He also briefly discussed the quality of the hierarchies, but unfortunately
did not present the costs based on the SAH or other metrics.

He reported the sequential version of the binning to be from 2 to 2.5 times slower in
construction than the BIH but about an order of magnitude faster than the full sweep
method. The sequential version allowed for 12 and 7 builds from scratch (Fairy Forest
and Conference room scenes), while the grid-based parallel version running on 8 cores
allowed for 38 and 48 builds. He also reported the algorithm to be from 4 to 13 times
faster in construction when compared to the k-d trees. He also discussed the scalability
of the algorithm, stating good results for 2 and appreciable for 4 threads, but not that
good for 8 threads.
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3.2 Approximate Agglomerative Clustering (AAC)

The motivation for examining the bottom-up (agglomerative clustering) bounding vol-
ume hierarchy construction algorithms was the quality that these methods are able to
provide. Walter et al. [Wal+08] proposed two advanced agglomerative clustering algo-
rithms (heap based and locally-ordered), but Gu et al. identified several downsides of
the proposed methods. First, their parallelization was rather difficult. As the modern
CPUs are multi-core, the parallelizable BVH construction is very desirable. One of
the goals of Gu et al. was therefore to propose en easily parallelizable construction
algorithm. Second, as Gu et al. [Gu+13] reimplemented and the algorithms proposed
by Walter et al., they were unable to reproduce the results, even after non-trivial ef-
fort. Their motivation was therefore to propose a bottom-up algorithm competitive in
construction speed with the top-down algorithms, such as the algorithm exploiting the
binning proposed by Wald [Wal07].

3.2.1 The algorithm

As the expensive part of the locally-ordered algorithm Gu et al. [Gu+13] identified the
nearest neighbor search. For speeding up the search Walter et al. used k-d tree as an
auxiliary acceleration structure. The k-d tree was required to implement the search and
also insertion operations, which made the implementation somewhat more difficult. Gu
et al. therefore wanted to come up with a similar solution.

The authors based their algorithm on decreasing the nearest neighbor search cost,
which is highest at the first stages of locally-ordered and heap-based clustering. They
proposed to relax on the exact nearest neighbor search and to find only the approximate
one by restricting the search. The approximation is based on scene presorting using
the Morton codes and constrolling the clustering phase using these. By sorting the
primitives and then subdividing the sorted sequence based on the bits in their Morton
codes, the algorithm performs scene subdivision, namely using the spatial median splits.
This subdivision therefore yields an implicit data structure, which Gu et al. name as
the constraint tree. A leaf of the tree contains primitives belonging to the corresponding
scene region (based on the centroids of their bounding boxes).

The key idea of the AAC algorithm is to begin the nearest neighbor search for each
cluster using only the other primitives in the same leaf the cluster is located. After
the clustering in the leaf, a new set of clusters emerges and the algorithm continues
by traversing the constraint tree up. The new set of clusters is combined with the set
emerging from the sibling subtree and another phase of clustering is performed on the
combined set. This repeats until the root of the constraint tree is reached. The set of
clusters corresponding to the root is then clustered until only a single cluster (the root
of the resulting BVH) remains.

Following Gu et al., we begin by computing the Morton codes of the primitives. As
proposed by the authors, we use ⌈𝑙𝑜𝑔4𝑛⌉ bits per dimension (i.e. per single quantized
coordinate), where 𝑛 is the number of primitives in the scene. After that, we sort the
primitives using the radix sort algorithm. Gu et al. used a parallel radix sort based
based on the radix sort described by Shun et al. [Shu+12], but we have not attempted
this method.

The algorithm then enters the main part, in which it first traverses down the implicit
constraint tree. It starts with the initial set of primitives (containing all in the scene)
and repeatedly partitions the set while traversing down. This is done based on the
individual bits of Morton codes, starting from the most significant one. The primitives
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Abbreviation Parameter description
𝛿 Initial set size threshold
𝜖 Variable for reduction function

Setting 𝛿 𝜖

High Quality 20 0.1
High Performance 4 0.2

Table 2 Left: parameters of the AAC algorithm. Right: Settings of the algorithm [Gu+13].

having this bit set to 0 belong to the left set, the ones with 1 to the right. After taking
a step down in the constraint tree, next bit of the Morton codes is used. This principle
repeats. Since the Morton codes are sorted, to distinguish the child nodes means to
find the divisor primitive which is the first one with the corresponding digit 1 in the
Morton code. Similarly to Gu et al., we find it using the binary search.

The traversal of a single branch of the constraint tree ends, when the algorithm
reaches a node containing a sufficiently small number of primitives (we understand it as
a leaf). This number is implied by defining a threshold parameter 𝛿. When the number
of primitives is smaller than 𝛿, the traversal stops. Next, the clustering part begins.
The initial clusters are obtained trivially by creating BVH leaves, each containing one
primitive. The nearest neighbor search is then performed only among the primitives in
the leaf. 𝛿 should be defined small, Gu et al. use values of 4 or 20. Since these values
are low, the authors propose to perform the approximate nearest neighbor search in
brute-force manner with 𝑂(|𝐶|) complexity, where |𝐶| is the size of the set. As the
distance function describing the cost of clustering two candidates Gu et al. propose to
use the same function as in the work of Walter et al. [Wal+08], i.e. the surface area of
the bounding box tightly enclosing these clusters.

When clustering, the algorithm reduces the size of the former cluster set. The
authors propose to control the size using a reduction function. For an integer input, the
size of the former set, the function returns the size of the new one. In the constraint tree
leaves, 𝛿 is used as the input. The authors propose to use functions of form 𝑓(𝑥) = 𝑐𝑥𝛼

(where 𝛼 ∈ [0, 1] and c is a constant) as reduction functions. In particular, they use
𝑐 = 𝛿0.5+𝜖

2 . 𝜖 is another parameter of the algorithm and the authors set it as 0.1 or 0.2.
We follow using this function.

The AAC algorithm performs post-order traversal of the constraint tree. After
finishing the clustering in a leaf (being a left subtree of a node), it performs it in the
sibling (right) subtree. Then steps up, unites the clusters resulting from both subtrees
into a single one and performs the clustering using this set. This principle repeats until
reaching the root of the constraint tree, after which the algorithm performs last stage
of clustering there. Unlike Gu et al. we implemented our version of the algorithm using
iteration instead of recursion, again with our defined stack data structure allocated on
the stack memory.

The AAC algorithm has three parameters: the initial set size threshold 𝛿, the term
𝜖 and the reduction function. We omit the reduction function parameter and describe
the rest in table 2 (left). Apart from the reduction function mentioned above, Gu et
al. propose two settings of the parameters 𝛿 and 𝜖. The first setting is called High
Quality (also abbreviated HQ) and is meant to build BVHs of higher qualities at the
cost of longer construction. The second setting is called High Performance (abbreviated
LQ or AAC-Fast in other works) which aims to optimize the construction time while
decreasing the demands on the hierarchy quality. Both settings can be seen in table 2
(right).
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Figure 12 The results of the sibling subtrees in the constraint tree node are stored adjacent
in the distance matrix (courtesy of Gu et al. [Gu+13]). In their work, the BuildTree(T)
procedure constructs a BVH subtree from the set of primitives T using the AAC algorithm,
TL and TR are the sets of primitives from the child nodes of node containing T in the
constraint tree. CombineClusters procedure performs the clustering part.

3.2.2 Optimizations and parallelization

Gu et al. [Gu+13] also proposed several optimizations of the algorithm and we im-
plemented some of those. To speed up the clustering and the nearest neighbor search
parts, the authors proposed to cache the results from previous phases in a distance
matrix. This matrix stores values of the distance function between any pair of active
clusters. The matrix is symmetric and only one of its halves is used. We implemented
the distance matrix optimization.

When two clusters are combined into new one, there is a need to compute the
distances between in and the rest of the clusters in order to proceed with the clustering.
Also, both of the former clusters are now invalid and have to be excluded from the
computation. To reduce data movements in memory implied by these, the authors
proposed to put the new cluster into the place of the first former cluster. Then, the last
cluster in the set is moved to the place of the second former cluster. This way there
is no more need to care for the invalid clusters and the size of the active part of the
distance matrix decrements by one. After that, distances are calculated for the new
cluster and for those that had one of the two former clusters as their nearest neighbors.
We have also implemented this optimization.

After the clustering phase the part of the distance matrix used for the cluster set
contains valid distances between each pair of clusters. It would be redundant to cal-
culate them again in the next clustering phase corresponding to the parent node in
the constraint tree. Gu et al. proposed to reuse the values. Because of the post-order
nature of the AAC algorithm, this is simple. The clustering shrinks the part of the
distance matrix used for a set of clusters corresponding to a node of the constraint tree.
When putting a new set of clusters into the distance matrix, the values of the clustered
left sibling subtree are already present and placed right before the respective set. After
the clustering the set, the resulting part of the matrix is also adjacent to the left sibling
part. When uniting the sets the only part left to calculate is the one containing the
distances between pairs clusters, where each of which is of distinct former set. The
appropriate moment to calculate this part is exactly during the union, which is what
we do. These principles can be seen on figure 12 (courtesy of Gu et al. [Gu+13]).

Gu et al. also proposed to perform the hierarchy compaction (also called subtree
flatting) according to the SAH in a way similar to that described by Bittner et al.
[BHH13]. We also perform the compaction but in the spirit of Bittner et al., as a post
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processing method. The compaction can be performed also during the construction,
but leads to same results (because the construction of the tree depends solely on the
distance function). When performed during the construction, it would be slightly faster,
but the resulting code would be harder to read. In fact, Gu et al. also performed the
compaction after the construction in their publicly available implementation.

The authors proposed to parallelize the AAC algorithm similarly to the techniques
used in top-down algorithms, by having different threads process different disjoint sub-
trees of the BVH. In the view of the AAC algorithm, this means that different threads
would process different branches of the constraint tree. Gu et al. note, that the op-
timizations using the distance matrix are not simply reusable for the parallel imple-
mentation of the AAC. In fact, the optimization can be used by having each thread
maintain its own distance matrix. In the higher levels of the hierarchy, the results from
distinct threads would need to be merged. Gu et al. did not proposed any paralleliza-
tion usable for calculations withing the single cluster set as they identified the work
to be sufficiently low. However, we have not implemented the parallel version of the
algorithm.

3.2.3 Reported results
Gu et al. evaluated the proposed AAC algorithm on six test scenes, one of which was
an individual object and five were architectural scenes. They evaluated single core
implementation of AAC as well as parallel version run on 32 cores. They tested the
two algorithm settings mentioned in table 2 (right), i.e. the High Quality and High
Performance settings. The authors compared the proposed algorithm to three other
algorithms, namely the full-sweep algorithm, the top-down SAH-based method using
binning proposed by [Wal07] (in particular, the method tested by Gu et al. evaluated
SAH costs using 16 bins along the longest axis while splitting) and locally-ordered
clustering proposed by Walter et al. [Wal+08].

Gu et al. expressed the evaluation of the quality of hierarchies built by AAC algo-
rithm using the costs of tracing rays through the scene. These values (for all algorithms)
have been normalized to those of SAH-based top-down method using binning. Unfor-
tunately, the authors did not report the costs of hierarchies calculated using surface
area heuristic. This makes their results difficult to compare with our implementation.
Therefore we use the results reported in the work of Meister and Bittner [MB18] for
comparison. Meister and Bittner use the the traversal constant 𝑐𝑇 = 3.0 and triangle
intersection constant 𝑐𝐼 = 2.0. Gu et al. report the AAC-HQ setting to produce hierar-
chies of similar quality to those produced by locally-ordered clustering algrotithm and
tracing costs from 15% to 30% smaller than in the case of top-down binning method.
They report lower tracing costs for 5 of 6 scenes for hierarchies built by the HQ set-
ting than for those built by full-sweep top-down method (the only difference being the
Happy Buddha scene). They also report comparable or even better results for AAC-Fast
setting than for full-sweep BVH.

3.3 Bonsai algorithm
When constructing a bounding volume hierarchy to accelerate ray tracing, a speed of
construction as well as the speed of subsequent rendering must be considered. The
rendering speed is implied by the quality of the constructed BVH. The SAH-based full
sweep algorithm constructs high-quality hierarchies and is therefore often used as a
reference method. Ganestam et al. [Gan+15] therefore decided to base their proposed
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algorithm called Bonsai on the full sweep method, described by Wald et al. [WBS07].
The Bonsai algorithm uses an optimized version of the full sweep algorithm applied in
two stages. The proposed algorithm can be parallelized and vectorized.

3.3.1 Optimized full sweep algorithm

To find the best partition of a BVH node the full sweep algorithm goes through all
the relevant possibilities in all three coordinate axes. The axes are evaluated one after
another and a sort is usually exploited before evaluating each of them. This approach
is rather costly and leads to a time complexity of 𝑂(𝑛 log2 𝑛), where 𝑛 is a number of
primitives in the scene. However, the lower bound of BVH construction complexity is
𝑂(𝑛 log 𝑛). This complexity can be achieved by a different, more careful implementa-
tion.

This is based on presorting the primitives, an approach described for the k-d tree
construction by Wald and Havran [WH06] and reused here by Ganestam et al. [Gan+15].
Using this approach, the primitives are sorted only once in all three axes before the con-
struction starts, and the sorted sequences are maintained during the whole construction
in three separate arrays. When searching for the most convenient partition the sweep
algorithm works with already sorted sequences and there is no more need to sort the
primitives.

After choosing the partition in one of the axes, we know that the respective array
is already sorted and there is no need to update it. We only need to update the other
two arrays to keep them sorted. We implement this principle according to the work of
Ganestam et al. When the partition is found, we flag the primitives based on which
child node they belong to. Based on these flags, we reorder the primitives in the two
respective arrays such that they keep the sorted order in the within child sets.

3.3.2 Bonsai algorithm

The Bonsai algorithm proposed by Ganestam et al. [Gan+15] can be exploit any
construction method, but in the spirit of Ganestam et al., we use the optimized full
sweep method described in the previous section. The Bonsai algorithm itself consists
of five phases:

1. Primitive centroids calculation.
2. Mini tree selection. In this phase the sets of primitives are found very fast using

the spatial median algorithm based on the centroids of the primitives. Each of the
sets will be used to construct a mini tree.

3. Mini tree construction. For each of the sets of primitives a local BVH is con-
structed.

4. Mini tree (also Bonsai) pruning. This is an optional step aimed to improve the
quality of the resulting hierarchy by pruning the unconvenient mini trees.

5. Top tree construction. A second-level BVH is constructed using the mini trees as
leaves.

The BVH construction can be seen on figure 13 (courtesy of Ganestam et al.
[Gan+15]). We will now explain the phases in more detail.

First, the centroids are computed as in other methods from the bounding boxes
of the primitives. They are later used in mini tree selection and construction phases.
The selection phase aims to quickly preprocess the scene by creating sets of spatially
coherent primitives. The speed is achieved using an approach based spatial median
method. In our implementation, we simply partition the initial set of all primitives
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Figure 13 The construction phases of Bonsai algorithm [Gan+15]. (a) Mini tree selection. (b)
Mini tree construction. (c) Top tree construction. Courtesy of Ganestam et al. [Gan+15]

while no BVH nodes are created. More specifically, we rearrange the primitive array
in-place according to the method. This is applied until a threshold 𝑁 of number of
primitives is reached. Then the set of primitives is stored, which we do by storing begin
and end indices into the rearranged primitive array. Ganestam et al. proposed to use
512 or 4096 as the possible thresholds, which we follow.

When the primitive sets are determined, the construction itself starts. It is per-
formed in two stages, first of which is the mini tree construction and the second one is
top tree construction. Though any construction algorithm can be used in both stages,
we use the optimized full sweep method similarly to Ganestam et al., because it creates
hierarchies of high quality. The method is applied on each of the primitive sets and
constructs a small BVH, a mini tree. The output of our mini tree construction method
is a set of mini tree roots. We will describe the next stage, mini tree pruning, in the
next section and skip to the description of the top tree construction now.

The top tree construction phase uses the mini tree roots in the same manner in which
the ordinary full sweep method uses the primitives, i.e. it constructs a BVH upon them.
The mini tree roots are treated as leaves during the construction. To evaluate the SAH
in this construction stage more correctly, we store the number of primitives in each
mini tree with the respective root. These are used when searching for the best splitting
plane. We also exploit the fact that we know the number of mini tree roots and we
preallocate the top part of the BVH (𝑚 − 1 inner nodes for 𝑚 roots), only setting the
topology and variables in the node data structure during the construction. We do not
use the preallocation in the mini tree construction, however.

3.3.3 Mini tree pruning

The Mini tree (or also Bonsai) pruning is a method designed to compensate the possible
poor choice of the triangle sets used as an input to construct the mini trees. These are
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chosen fast using the spatial median method, which does not account for the bounding
boxes of primitives and the SAH.

The proposed pruning method traverses those mini trees that have the surface area
larger than a certain threshold and splits each such mini tree in to two or more smaller
mini trees. The threshold is based on the average surface area of the mini trees and a
user-defined constant 𝑇 . These two values are multiplied, which results in the desired
threshold. After calculating the threshold, each mini is checked whether its surface
area is larger than it and is eventually pruned. The authors, in fact, did not describe
this part entirely clearly and two ideas come from their text. Either the threshold is
obtained by the multiplication described above or 𝑇 is used directly as the threshold.
We use the first idea since it is more meaninful. Ganestam et al. suggest to use either
𝑇 = 0.1 or 𝑇 = 0.01 as the threshold.

On those mini trees having the surface area larger than the threshold, the pruning
is applied. This algorithm traverses the mini tree and searches for the first node that
is smaller than the previously used pruning threshold. After finding it, this node is
defined as a root of a new mini tree. All the nodes on the path between it and the
former root (including it) are deleted. This also means that the nodes highest in the
hierarchy, not deleted and already traversed must become the new mini tree roots, too.
The other nodes highest in the hierarchy (not deleted, but also not traversed) have also
the potential to become new mini trees, but must be first checked using the pruning
threshold.

We implemented the algorithm in the sweeping line fashion using iteration and
three stacks allocated on stack memory. The first (traversal) stack, as usual, serves for
traversing a mini tree. The second (roots) stack stores the possible mini tree roots from
the already traversed part of the mini tree. More specifically, in a certain instant, it
contains all the nodes that would eventually become new mini tree roots if the currently
traversed node was found as the new mini tree as well. The third (passed) stack stores
the path from the currently traversed node to the former mini tree root.

In the case a node is found as a new mini tree root, all the nodes from the roots
stack are defined as roots of the new mini trees. Then all the nodes on the traversal
stack are put into the list of nodes to be checked using the pruning threshold. Last, all
the nodes on the passed stack are deleted. The deleting, however, leaves empty spaces
in the BVH node array. Because of that, after the pruning is finished, we perform
compaction of the array.

3.3.4 Parallelization and reported results

The authors implemented the proposed algorithm using multiple threads and vector
instructions. The parallelization using threads is based on creating new threads during
the subdivision in the optimized sweep method. In particular, when the node is sub-
divided, the former thread (that processed the node) continues by processing the right
child, while a new thread is spawned to process the left child. This approach, however,
leads to spawning a high number of threads. The authors added also other suggestions
for the parallelization and vectorization, but we have not attempted these.

For the evaluation of the results, Ganestam et al. used a path tracer, in which the
hierarchies were built on a multi-core CPU while the rendering was executed on both
CPU and GPU (the traversal and intersections were executed on a GPU). The authors
used several BVH construction algorithms for comparison. They used the optimized
full sweep construction algorithm described above, the top-down construction that uses
binning (proposed by Wald [Wal07]), for which they used Intel’s Embree 2.2 implemen-
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Abbreviation Parameter description
N Primitive set size threshold
T Pruning threshold
prune True if the pruning is used

Setting 𝑁 𝑇 prune
Bonsai 512 - false
BonsaiP 512 0.1 true
BonsaiP* 4096 0.01 true

Table 3 Left: parameters of the Bonsai algorithm. Right: settings of the algorithm [Gan+15]

tation. They also used the Approximate Agglomerative Clustering algorithm proposed
by Gu et al. [Gu+13], for which they used the publicly available implementation. This
implementation is using a single thread and Ganestam et al. report the times generated
by dividing the times of this single-core implementation by the number of CPU cores,
which in their case was 4. They tested the two AAC settings proposed by Gu et al., the
HQ and LQ settings. We discuss the AAC as well as the settings in section 3.2. The
Bonsai algorithm was tested in three variants, the plain Bonsai without pruning and
two pruning settings. The parameters of the algorithm are summed in table 3 (left).
The settings of parameters for all the Bonsai variants are listed in table 3 (right).

The authors tested the algorithms on 14 scenes of different complexity, 9 of which
were architectural scenes and 5 were individual models. The authors reported the
absolute construction times and the times of tracing rays relative to the optimized sweep
method. They also reported the absolute SAH-based costs of the hierarchies, and costs,
build times and ray tracing performance relative to the optimized sweep method. For
computing the costs of hierarchies, the authors used the traversal constant 𝑐𝑇 = 2.0
and the intersection constant 𝑐𝐼 = 1.0.

When compared the Bonsai algorithm variants with the optimized sweep algorithm,
Ganestam et al. ray tracing performance from 75% to 95% with the variant without
pruning, from 92% to 105% with an average of 98.5% for BonsaiP, and 97% to 108%
with an average of 101.5% for BonsaiP*. They also report the increase in construction
time because of the use of pruning on the range from very little to nearly double. The
authors discuss that the cause is not the pruning itself, but the increased number of
mini tree roots as an input for the top tree construction, which causes the time increase.
As they also note, the build times are dependent on the primitive set threshold. They
report the value 512 as reasonable based on the evaluation on the test scenes.

3.4 Insertion-Based Optimization
As the computational power of computer hardware increases, the ray tracing is becom-
ing an alternative to rasterization. The efficient acceleration structures are mandatory
in order to achieve sufficiently lower rendering times when using ray tracing. Therefore
there has been (and still is) an extensive research in the context of bounding volume
hierarchy construction algorithms. There are also other techniques to improve the hi-
erarchy quality and rendering times, such as the optimization algorithms. These can
improve the hierarchy quality to be even higher than when using the construction al-
gorithm only. Any improvement in the hierarchy quality can be important to achieve
faster rendering times when using ray tracing. This was the motivation of Bittner et
al. [BHH13].

3.4.1 The algorithm
As an optimization technique, the algorithm proposed by Bittner et al. [BHH13] takes a
built bounding volume hierarchy as an input, constructed by an arbitrary method. The
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Figure 14 Illustration of the removal operation in node 𝑁 . Node 𝑁 , it’s parent 𝑃 and both
children 𝐿 and 𝑅 are removed from the hierarchy. Courtesy of Bittner et al. [BHH13].

main principle of the algorithm is to improve the quality of the hierarchy by reinsertion
of nodes. To describe it briefly, the algorithm consists of two main phases:

∙ The selection phase, when inner nodes convenient for optimization are chosen.
∙ The nodes update phase, which consists of removing the children of selected nodes

from the hierarchy, finding a more appropriate position for them and inserting
them there.

These two phases repeat, until the optimization is to be terminated. When exam-
ining the formula for calculating the cost of a bounding volume hierarchy 4, the main
idea of the algorithm is to decrease the sum of the surface area of the inner nodes.

3.4.2 Node reinsertion

Since it is slightly more straight-forward, we will first describe the node reinsertion
algorithm, similarly to Bittner et al. We will describe how to select the nodes for
the optimization in the next section. Having the node to be optimized, the method
starts by removing both its child nodes from the hierarchy. These are then processed
sequentially. For both of them the globally most convenient position in the hierarchy
is found and then the nodes are inserted there.

Assume we want to optimize the node 𝑁 . As mentioned, we will remove both its
children, 𝐿 and 𝑅 from the hierarchy. Moreover, we will remove the node 𝑁 itself and
its parent 𝑃 . While the node 𝐿 and 𝑅 will be reinserted at more convenient positions,
𝑁 and 𝑃 will be used to link them with the rest of the hierarchy. After the removal of
these four nodes, the hierarchy must be repaired on the affected place, i.e. the links in
the hierarchy must be updated to be valid. This is illustrated on the figure 14, which is
the courtesy of Bittner et al [BHH13]. As we can see, we must update the appropriate
child index in the grandparent node of 𝑁 to the index of the sibling of 𝑁 .

Our inner node data structure (which is used by all our implemented BVHs) stores
only the indices to both child nodes, which allows to keep its memory footprint low.
On the other hand, in order to remove the four nodes, we must be able get them and
in the beginning of the operation we are given only the index of 𝑁 . In order to get
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Figure 15 Illustration of reinsertion of node 𝐿 to the most-convenient place in the hierarchy,
represented by node 𝑋𝑏𝑒𝑠𝑡. The node 𝑁 is used to link 𝐿 to the rest of the hierarchy. Courtesy
of Bittner et al. [BHH13].

the index of 𝑃 we could traverse the tree from the root until finding it. However, this
would result in low performance.

A simple way is to store the indices to the parent nodes. This is required for all the
nodes. One way would be to modify the node data structure and add the index to the
parent node to it. In C++, this would results to the increase of the size of the node
data structures by 4 bytes and result to sizes, which would not be a power of 2 (which
is the current size). However, this is convenient for the cache memory. Moreover, other
implemented construction algorithms (with the exception of the incremental one) do
not require the indices to the parents. We have thus chosen to store the indices in a
separate array, which is allocated before the optimization and is deallocated upon its
termination.

Being able to reach all four previously described nodes, we can remove them. We
also update the array of up-indices accordingly. We also take care for the extra cases.
If we were to remove a child 𝑁 of the BVH root, we define the sibling of 𝑁 as the new
root. Next, the bounding boxes of all inner nodes on the path from grandparent of 𝑁 to
the root must be updated, since we have just removed a subtree from the BVH. Having
the up-indices, this is rather simple, we simply traverse up, and for each traversed node
we obtain the bounding boxes of both its children and create their union to obtain the
new box for the node.

The reinsertion itself is similar to the removal and we thus describe it now. Assume
we found the globally most-convenient place in the hierarchy to insert a node 𝐿 into.
This place is represented by another node 𝑋𝑏𝑒𝑠𝑡 (can be inner or leaf). The algorithm
starts the insertion by first inserting one of the linking nodes, 𝑁 into the place of the
𝑋𝑏𝑒𝑠𝑡. Both 𝐿 and 𝑋𝑏𝑒𝑠𝑡 are then inserted into the BVH as children of 𝑁 . We follow
the work of Bittner et al. and define 𝑋𝑏𝑒𝑠𝑡 as the left child and 𝐿 as the right one.

In the subsequent ray traversal algorithm we can traverse the nearer BVH subtrees
first and therefore this can have an impact on it. We compensate for that fact after the
optimization by iterating through the nodes and setting the order of the child nodes.
For a node, we do this by subtracting the centroids of the bounding boxes of its child
nodes, choosing the largest-value coordinate and then comparing the centroids in the
same axis. The one with the lower coordinate is set as the left child, the other as right.

The process of reinsertion is illustrated on the figure 15 (courtesy of Bittner et al.
[BHH13]). Similarly to the removal of nodes, the links of the hierarchy must be updated
(including the up-indices) and the bounding boxes of all inner nodes on the path from
the linking node 𝑁 to the root must be refitted, using the bottom-up traversal again.

The remaining part of the node reinsertion procedure is the search for the globally
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most-convenient place in the hierarchy for a query node 𝐿. The return value of the
search method is a hierarchy node 𝑋𝑏𝑒𝑠𝑡 corresponding to the most-convenient place.
For the search Bittner et al. proposed to use a branch and bound algorithm driven by
a cost describing the convenience of insertion.

For this purpose the authors proposed a cost metric. The cost has two components
defining it in combination, the direct cost 𝐶𝐷(𝐿, 𝑋) and the induced cost 𝐶𝐼(𝐿, 𝑋).
Both of these components together represent the impacts (increases of the bounding
boxes of the affected inner nodes) of the merge of the node 𝐿 to be inserted with the
examined (possibly the best convenient) node 𝑋. The direct cost is simply the surface
area of the bounding box tightly enclosing both 𝐿 and 𝑋 nodes. The induced cost is
the accumulated increase of the surface in all nodes on the path between the parent of
𝑋 to the hierarchy root.

The branch and bound algorithm is implemented using priority queue. The queue
item is a pair of values: node 𝑋 from the hierarchy and the induced cost 𝐶𝐼(𝐿, 𝑋).
The priority of the item is inversely proportional to the induced cost 𝐶𝐼(𝐿, 𝑋), i.e.
the nodes with the lowest induced cost are taken first from the priority queue. The
algorithm thus traverses the BVH branches with the lowest induces cost first. The
algorithm is designed so that the branches having higher induced cost than the best
solution 𝑋𝑏𝑒𝑠𝑡 found so far will not be examined (they are pruned). Moreover, the whole
search can be terminated when the branch on the top of the priority queue cannot bring
any improvement against 𝑋𝑏𝑒𝑠𝑡.

For an item popped from the priority queue, the lower bound of induced cost in
the respective branch is calculated. When the lower bound is higher than the best
solution with the induced cost 𝐶𝑏𝑒𝑠𝑡 corresponding to 𝑋𝑏𝑒𝑠𝑡 found so far, the branch
is not searched in. Otherwise the true induced costs for both children of the tested
node 𝑋 are evaluated. If any of these is lower than 𝐶𝑏𝑒𝑠𝑡, the child nodes are put into
the priority queue. This implies that the algorithm searches in the most convenient
branches first, ignores all the unconvenient branches as soon as possible and even ends
the whole search is better solution than the one found so far cannot be found.

When discussing the algorithm with my supervisor and one of the authors, prof.
Vlastimil Havran, Ph.D., we mentioned, that the branch and bound algorithm often
generates nodes with induced cost equal to 0 in the levels near the root of the hierarchy.
Pushing all such nodes into the ordinary priority queue would not be as efficient, so
we implemented our own priority queue consisting of two internal data structures: an
ordinary priority queue, into which the items with non-zero priority are pushed, and a
linear array, which is used to store the ones with zero priorities. When popping this
compound priority queue, it returns a node from the linear array, if there is any, or
pops the inner priority queue eventually. This allows for a more efficient storing and
obtaining of zero values without using the ordinary priority queue.

The branch and bound algorithm proposed by the authors is also used to drive
the insertion of primitives in the incremental BVH construction, also proposed by the
authors [BHH15].

3.4.3 Selecting nodes for optimization, optimization termination

The first phase of the optimization procedure is to select the nodes to be reinserted.
This could be done using random node selection, but the authors propose to accelerate it
based on various metrics. The purpose of these is to pick the nodes that cause the largest
overhead in the BVH surface area and to optimize these first. The authors proposed
three node inefficiency measures and eventually combined them into the fourth. The
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three metrics account for various situations that cause the surface area overhead in the
hierarchy.

The first measure, denoted 𝑀𝑆𝑈𝑀 (𝑁), describes the relative increase of the surface
area of node 𝑁 with respect to the average surface area of it’s children. The values of
the measure are therefore high, when the children having a lot of space between them
should be contained in 𝑁 . This could happen for e.g. children with small bounding
boxes which are, however, very distant. The second measure, 𝑀𝑀𝐼𝑁 (𝑁), is similar, but
the surface area of 𝑁 is related to the surface area of that child of 𝑁 , which has the
surface area lowest. This measure is aimed to detect the situations when the children
have significantly different surface area. The third measure, 𝑀𝐴𝑅𝐸𝐴(𝑁), is simply equal
to the surface area of the node 𝑁 . This implies selection of the nodes having largest
surface area first. The three measures have the following definitions:

𝑀𝑆𝑈𝑀 (𝑁) = 𝑆𝐴(𝑁)
1

|𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑁)| ·
∑︀

𝑋∈𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑁) 𝑆𝐴(𝑋)
(9)

𝑀𝑀𝐼𝑁 (𝑁) = 𝑆𝐴(𝑁)
min𝑋∈𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑁) 𝑆𝐴(𝑋) (10)

𝑀𝐴𝑅𝐸𝐴(𝑁) = 𝑆𝐴(𝑁) (11)

The authors then combined these three inefficiency measures into one by multiplying
them, resulting in the combined inefficiency measure, 𝑀𝐶𝑂𝑀𝐵(𝑁):

𝑀𝐶𝑂𝑀𝐵(𝑁) = 𝑀𝑆𝑈𝑀 (𝑁) · 𝑀𝑀𝐼𝑁 (𝑁) · 𝑀𝐴𝑅𝐸𝐴(𝑁) (12)

This measure thus aims to detect all of the situations described above and Bittner
et al. [BHH13] also report this combined measure to have the largest impact on the
optimization, leading to the fastest optimization. We have implemented all four of these
measures and decided to use the combined one, following the work of Bittner et al.

The optimization algorithm works is designed to work in iterations. In each iteration
a fraction of nodes is optimized. The authors propose to optimize 1% of nodes in each
iteration, which we follow. This correspond to 𝑘 nodes, which should be optimized. We
perform the selection using a linear pass over the array of nodes, allowing only the inner
nodes to be processed, which is slightly faster than using a depth-first traversal, where
we would need to maintain and use a stack or recursion. As described by the authors,
we calculate the inefficiency for all inner nodes and then select the 𝑘 most inefficient
ones, which will be then optimized in the decreasing order based on their inefficiency
(i.e. the most inefficient nodes will be optimized first).

First we implemented our own fixed-size priority queue for this task. Later we
optimized this part by storing the inefficiency values with the respective nodes into
an array. The values are then processed using the n-th element algorithm the C++
standard library, quickly reorganizing the array in 𝑂(𝑛) (where 𝑛 is the number of inner
nodes), followed by the library sort executing in 𝑂(𝑘 log 𝑘). Alternatively, the partial
sort algorithm from the library can be used.

The algorithm achieves the largest improvements in the first iterations and then the
cost of the hierarchy converges, oscillating around a certain value. During the opti-
mization, the cost can be also increased for a certain period of time and then decreased
again. The authors therefore proposed to base the termination criterion based on these
facts. Instead of terminating the optimization immediately after any cost increase, the
algorithm always performs a few iterations before deciding whether to terminate. This
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Abbreviation Parameter description
iboFrac Fraction of nodes to be optimized
pT # iterations for the inefficiency sampling
pR # iterations for the random sampling

Table 4 Parameters of the Insertion-based optimization algorithm.

also speeds up the optimziation process, because the cost is not computed after each
iteration, but after the number of these. This number is a parameter of the algorithm,
denoted as 𝑝𝑇 , and the authors propose to use 𝑝𝑇 = 10, which we follow. After the
algorithm would decide to terminate, the authors also propose to perform a last stage
of iterations using the random sampling to select the nodes to be optimized. The ter-
mination in this stage happens in the same manner as in the previous one. The number
of iterations in this stage, 𝑝𝑅 is another parameter of the algorithm and the authors
propose to set 𝑝𝑅 = 5. Alternatively, the optimization could be terminated after a
certain period of time, which is, however, not our case.

In the table 4 we sum the parameters of the algorithm.

3.4.4 The compaction algorithm

Bittner et al. [BHH13] also described a hierarchy compaction algorithm, which aims to
decrease the hierarchy cost furthermore. When constructing a hierarchy, the branches
can be built until single primitive remains in all leaves. It is, however, more convenient
to construct hierarchies with more than one primitive per leaf. A hierarchy with only
one primitive per leaf can be thus compacted using the algorithm proposed by Bittner
et al. based on the surface area heuristic. In their work, the authors first let the con-
struction algorithm to construct the branches as far as possible, then use the proposed
optimization method and then the compaction algorithm.

The compaction is a post-order traversal algorithm, and as such processes both child
nodes before processing their parent. It thus first traverses to the leaves, counts the
numbers of primitives stored there, and then returns upwards and tests the convenience
of compacting the subtrees. In each such examined node, the cost of the actual fully
built subtree is compared to the cost of the possible leaf in this position (which would
contain all the primitives contained in the subtree). If the cost of the leaf is lower,
the subtree is compacted. The compaction does happend on the way up and can also
happen more times in a branch.

We have implemented the compaction algorithm as iterative one using three stacks.
The first is used for the hierarchy traversal. The second stores the results of the subtree
left to the one, which is currently traversed. The third stack stores the nodes on the
way to the root. These are later used for traversing up. We store these whenever going
to any right child (because we will eventually traverse back up soon). The hierarchy
compaction is sometimes also referred to as to the subtree flatting and is used also in the
Approximate Agglomerative Clustering (AAC) and Parallel Locally-Ordered Clustering
(PLOC) algorithms, which we have also implemented in this thesis. We therefore
implemented the algorithm in the common predecessor of these classes. In fact, we can
thus compaction on any of our BVHs. The algorithm also requires the raversal and
intersection constants, 𝑐𝑇 , 𝑐𝐼 , for which Bittner et al. use the values 𝑐𝑇 = 3.0 and
𝑐𝐼 = 2.0.
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3.4.5 Reported results

The authors evaluated the proposed optimization algorithm on a set of 14 test scenes
(5 individual objects and 9 architectural scenes). The distinguished between these two
categories when reporting the results. They reported the results of optimizing the BVHs
initially built with the full sweep and the spatial median method. They discussed the
reduction of the cost of the hierarchies, which for the individual objects and full sweep
method almost none (with the exception of the 5% decrease in cost on the Hairball
scene), since the method constructs high-quality hierarchies. The BVHs built using the
spatial median are reported to be optimized to the level of the those constructed using
the full sweep method. For the spatial median, the time needed for the optimization
is reported to be up to 25 times faster than when using the tree rotations driven by
the simulated annealing proposed by Kensler [Ken08]. On the architectural scenes, the
proposed algorithm reduces the cost from 4% to 24% for the hierarchies built using the
full sweep. The improvement in the cost is also reported to be larger than when using
the method proposed by Kensler.

3.5 Incremental algorithm

The vast majority of bounding volume hierarchy construction methods requires the
whole scene to be known before the construction. However, there are applications
where this is not possible. These could use an incremental construction algorithm,
which would not require the whole scene to be known in advance. The incremental
algorithms were, however, considered to create BVHs of lower quality, providing higher
rendering times. Because of that, the incremental construction was not much used. The
motivation of work of Bittner et al. [BHH15] was to tackle these topics and propose an
efficient incremental BVH construction algorithm leading to high-quality hierarchies. In
their work, Bittner et al. also presented two parallelization approaches for the proposed
algorithm and a example application of ray tracing a scene streamed over the network.

3.5.1 Insertion-based construction with global hierarchy updates

The algorithm proposed by Bittner et al. [BHH15] follows the previous work of the au-
thors [BHH13], which proposed an insertion-based optimization algorithm for improving
the quality of already built BVHs beyond the results of the construction algorithms.
The proposed incremental algorithm processes the primitives by creating a leaf for each
of them first and then inserts them into the partially-build BVH.

In our implementation, we preallocate both the leaves and the inner nodes of the
hierarchy before we start construction. We are able to do this, because we know the
number of primitives in the scene and the desired number of these in leaf (one) in
advance. Though this can be in a slight contradiction with the motivation of the
authors, our application is different and we chose to optimize our implementation this
way. Alternatively, the node allocation could be done in a lazy fashion.

After the allocation, each leaf containing a primitive is inserted into the hierarchy
sequentially, one by one. The selection of the place in the hierarchy, where the leaf is
to be inserted, is crucial for the resulting hierarchy quality. The authors proposed to
exploit the cost-driven branch and bound algorithm formerly designed for the hierarchy
optimization (proposed in their previous work [BHH13]) for the search. Because we
intended to implement this optimization algorithm as well, we designed the search
algorithm such that both method can exploit it. The description of the algorithm can
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Abbreviation Parameter description
batch Size of the primitive insertion batch
oFrac Fraction of nodes to be optimized
coh Coherence threshold

Table 5 Parameters of the incremental algorithm.

be found in section 3.4.2. For linking the inserted leaves with the rest of the hierarchy,
we use the preallocated inner nodes.

As Bittner et al. noted, though the search algorithm would be able to find the
globally most convenient place to insert each of the leaves into, this position would
reflect only the actual state of the hierarchy. Therefore it does not account for the
primitives inserted after each considered one. The authors proposed to resolve this
fact by incorporating series of global optimizations in the spirit of the Insertion-based
optimization method. More specifically, the insertion algorithm alternates insertion of
primitives with global updates: after inserting a batch of primitives, the optimization
phase is executed (a single iteration in spirit of description provided in section 3.4). We
use the combined inefficiency measure for the optimization phase.

The optimization phase uses a cache of nodes for selecting the nodes to be optimized
(node update cache). While inserting the primitives into the hierarchy, only some
branches are often modified and others do not. The authors propose to optimize only
the inner nodes from the affected branches. The nodes from these are stored in the
node update cache. We have implemented the cache as a linear array of flags of the
size equal to the number of inner nodes (𝑛 − 1 in the case of 𝑛 primitives). We then
consider only the nodes having the appropriate flags for the optimization.

Bittner et al. have also proposed two optimization for their new incremental algo-
rithm. One of the optimizations is a post-processing optimization phase exploiting the
Insertion-based optimization method. Any of our BVHs can exploit this method and
we evaluate the use on the incremental algorithm in our results. The second optimiza-
tion proposed by the authors is to cluster the subsequent two primitives if convenient
and eventually insert them into the hierarchy together. This optimization accounts for
the fact that the primitives can be provided in spatially coherent way. For a pair of
subsequent primitives, a coherence test is applied and eventually these are clustered
using a single inner node. Such a small subtree is then inserted into the BVH (i.e. the
inserted node is the inner one). The coherence test is defined as a comparison test of a
predefined coherence threshold against the ratio of surface area of union of two leaves
against the sum of the surface areas of both leaves, i.e.:

𝑅𝑐𝑜ℎ(𝑥, 𝑦) = 𝑆𝐴(𝑥 ∪ 𝑦)
𝑆𝐴(𝑥) + 𝑆𝐴(𝑦) (13)

The 𝑥 and 𝑦 are the leaf nodes to be clustered eventually. If the result of this
formula is lower than the threshold 𝑅𝑚𝑎𝑥, the primitives in the leaves are considered
spatially coherent and the leaves are clustered before the insertion. The authors used
𝑅𝑚𝑎𝑥 = 1.5, which we follow. This optimization is reported to have up to 30% speedup
on some of the scenes by Bittner et al. We have implemented this optimization in our
thesis. In the table 5 we sum the parameters of the algorithm.
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3.5.2 Parallelization schemes and reported results

Bittner et al. [BHH15] have also proposed two parallelization approaches for their
incremental algorithm. The incremental construction is different from the top-down
or bottom-up ones and therefore requires different kind of parallelization. Both of the
approaches exploit the parallelism in batch primitive processing.

The first approach, called parallel search, executes the search for the most convenient
position to insert a leaf into for several leaves in parallel using multiple threads. A
batch of leaves is processed, and the search is performed for each of the leaves in the
batch. To prevent conflicts upon eventually inserting in the same place, the insertion
is performed sequentially. Due to this sequential part, the algorithm does not provide
a linear speedup. The authors therefore proposed a second method, in which the
primitives are divided into larger batches than in the case of the first method and a
local BVH is constructed for the primitives in each batch in parallel. These local BVHs
are given to another thread when ready and it does insert them into the resulting
BVH. For both of these phases the authors propose to use their incremental algorithm.
However, we have not attempted these parallel methods.

3.5.3 Reported results

The authors evaluated the proposed algorithm and the parallel versions on a set of 9
test scenes, 4 of which were individual objects and the other 5 architectural scenes.
They reported the costs of the hierarchies in charts, which also describe the progress of
the insertion. They compared their results to the full sweep method and spatial median
method. They evaluated the versions of the incremental algorithm with and without
the Insertion-based optimization and the two parallel versions.

They reported the sequential incremental method to be significantly faster in con-
struction than the full sweep algorithm. They also compared the proposed methods,
reporting the parallel search version to be from 15 to 50% faster than the sequential
version using the optimization algorithm. The block parallel method is reported to be
up to 5 times faster than the respective sequential version. The authors also report
the cost of the sequential method with updates to be usually about 10% lower than
using the full sweep method. On the other hand, for some scenes with more regular
structure such as the Happy Buddha or Armadillo scene, the algorithm is reported to
yield slightly higher costs when compared to the full sweep.

3.6 Parallel Locally-Ordered Clustering (PLOC)

The bottom-up BVH construction algorithms have the potential to build hierarchies of
high quality. The methods described by Walter et al. [Wal+08] and Gu et al. [Gu+13]
use the exact and approximate agglomerative clustering respectively. The algorithm of
Walter et al. [Wal+08] is difficult to parallelize and the AAC is suitable for multi-core
parallelization on a CPU. The motivation of the work of Meister and Bittner [MB18]
was to apply the agglomerative clustering on a many-core GPU, which has different
properties and requires a different approach than the multi-core CPU algorithms. They
proposed a novel parallel agglomerative clustering algorithm exploiting a higher degree
of parallelism than the AAC and more suitable for a GPU.
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Figure 16 The approximate nearest neighbor search with radius 2. Courtesy of Meister and
Bittner [MB18].

3.6.1 The algorithm

The proposed algorithm is based on two core principles. First, the locally-ordered
clustering is applied on high number of clusters in parallel. This means that the set of
clusters is divided in chunks and each chunk is processed by a single thread on a GPU.
Second, the search for the closest cluster is approximate, which decreases the 𝑂(𝑛2)
complexity of the exact search and allows it to be faster.

The approximate search proposed by Meister and Bittner exploits the sorting of
primitives using the Morton codes. Since the primitives are sorted along the Morton
curve, the algorithm searches for the closest cluster for the query one in its neighborhood
on the curve. More specifically, the search is done in a neighborhood defined by certain
radius, which is a parameter of the algorithm. This principle can be seen on figure 16,
taken from [MB18].

For each query cluster an approximate nearest neighbor is found by minimizing the
distance function. We recall that various distance functions can be used (if they obey
the non-decreasing property), but Meister and Bittner [MB18] use the surface area of
the union of the two clusters’ bounding boxes, which we follow.

After the approximate nearest neighbor search, the proposed algorithm merges the
clusters that are found as mutual nearest neighbors. A question rises, whether such
a pair of clusters always (i.e. after each approximate nearest neighbor search phase)
exists. For any cluster 𝑥 the nearest neighbor procedure finds the closest cluster 𝑦 with
respect to the distance function. Three situations may occur after that, which all are
implied by the non-decreasing distance function. First, cluster 𝑥 will be found as the
closest cluster for 𝑦, in which case these will be clustered. Second, a different cluster 𝑧
will be found as closest to 𝑦, in which case these situations will relate to 𝑦 and 𝑧 (and it
means that 𝑥 is further than 𝑧 with respect to the distance function). Or third, cluster
𝑧 will be found as the nearest neighbor of 𝑦 and the distance between them will be the
same as between 𝑥 and 𝑦. In this (rather rare) situation, the authors propose to cluster
the two clusters with smaller indices in the cluster array to solve this conflict. This and
the definition of the distance function imply that there will always be at least one pair
of mutual nearest neighbors in the iteration. This is also more described in the work of
Meister and Bittner [MB18].

When the mutually corresponding clusters are clustered, the new cluster is inserted
into the cluster buffer on the place of one of the former lower index. As the authors
describe, the place for the new cluster could be also found by searching for its position
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Abbreviation Parameter description
r Nearest neighbor search radius

Table 6 Parameters of the PLOC algorithm.

in the sorted cluster sequence (according to the Morton code). They propose not to do
it, as this search could be expensive and inserting the new cluster on the place of the
first index provides sufficient results.

The PLOC algorithm starts by computing the Morton codes of the primitives using
the centroids of their bounding boxes. The radix sort algorithm is run after that.
The subsequent core of the algorithm consists of three main phases that are executed
iteratively. The first one is the approximate nearest neighbor search initiated for every
currently existing cluster. The merging phase as described above comes after that. The
merging conflicts (i.e. situations, where two different threads are to cluster the same
pair of clusters) are avoided by having the thread processing the cluster with smaller
index in buffer execute the merge. The new cluster is put into the position of the first
former one and the second former one is marked as invalid.

Described as such, the algorithm would leave the cluster buffer with invalid clusters,
which would make the next nearest neighbor search impossible or at least difficult to
deal with. That is why the third (and last) phase of the algorithm performs the cluster
buffer compaction. It moves the clusters into the new places in the cluster buffer such
that there will not be empty spaces (i.e. invalid clusters). The algorithm calculates an
exclusive prefix scan on all currently existing clusters to determine their new positions.
The subsequent write to the new positions would not be possible without making a
temporary copy of the cluster buffer, which would be inefficient. Therefore the authors
use two cluster buffers, one for the clusters that existed before each iteration and one
for the new set of clusters (that are result of the iteration). The buffers are swapped
after each iteration. We follow this solution and store the two arrays of clusters in the
one array of double length.

The algorithm runs in the iterations as described above until only one cluster (the
root of the BVH) is left. The three phases (approximate nearest neighbor search, merg-
ing and compaction) are executed in parallel and are separated by barriers. After the
execution of the core of the algorithm, the authors propose to execute the compaction
of the BVH. The compaction has been described by Bittner et al. [BHH13] and Meis-
ter and Bittner [MB18] describe their GPU implementation of the compaction. We
describe the compaction proposed by Bittner et al. [BHH13] in section 3.4.

We can see that the principles described in the work of Meister and Bittner [MB18]
are suitable for both GPU and CPU. Though the authors implemented the proposed al-
gorithm for the GPU using CUDA, the multi-core CPU implementation is also possible.
We have implemented the PLOC algorithm for a CPU.

Similarly to other described methods, we sum the parameters of the algorithm in
table 6.

3.6.2 Reported results

Meister and Bittner [MB18] implemented the PLOC algorithm in CUDA 7.5. They
evaluated three settings of the algorithm with regards to the radius 𝑟 used for the
approximate nearest neighbor search, namely 𝑟 = 10, 𝑟 = 25 and 𝑟 = 100. They also
used the compaction algorithm after the core of the PLOC algorithm has been executed.
As reference methods, they used LBVH proposed by Karras [Kar12], HLBVH proposed
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by Garanzha et al. [GPM11], ATRBVH propsed by Domingues and Pedrini [DP15]
and AAC. They used 30-bit Morton codes for both LBVH and HLBVH methods.

For the computation of the costs of BVHs, they used the traversal constant 𝑐𝑇 = 3.0
and the ray-triangle intersection constant 𝑐𝐼 = 2.0. They evaluated the algorithm as
well as the referenced algorithms on nine scenes, three of which were individual objects
and six were architectural models.

Meister and Bittner [MB18] report lower BVH costs and higher trace speeds for six
of the nine scenes compared to the ATRBVH method., which itself has lower BVH costs
than the other reference methods for all nine scenes. In particular, the PLOC algorithm
achieved the lower costs mainly for the architectural scenes with large numbers of
triangles, i.e. above 4305k triangles (including; Manuscript scene).

The construction times of the PLOC algorithm were faster than ATRBVH times in
seven of nine scenes for the 𝑟 = 10 and 𝑟 = 25 configurations. The authors also report
that the BVH costs based on the radius stabilize very quickly even for small values of
𝑟.

The authors have also compared the proposed PLOC algorithm to the AAC method.
They used the publicly available implementation of AAC, which is sequential. The build
times they reported were originally produced by the sequential method and then divided
by the number of the cores of the computer that was used to measure on (the number of
cores was 4). The times therefore represent the hypothetical AAC implementation with
linear speedup. The authors report very similar BVH costs, but the proposed PLOC
algorithm was significantly faster in the hierarchies construction, the only exception
being the AAC-Fast setting for Conference scene.

3.7 Extended Morton Codes
The use of the Morton codes is a part of many state of the art BVH construction
algorithms. Recall that the Morton codes induce a spatial sorting along the space-
filling Morton curve and that such sorting of scene primitives is done by sorting the
Morton codes generated from every primitive centroid. The use of the Morton codes
thus provides an fast approximate to sort the primitives. This technique is used in the
two of the algorithms we chose to implement, namely the Aproximate Agglomerative
Clustering (AAC, Gu et al. [Gu+13]) and Parallel Locally-Ordered Clustering (PLOC,
Meister and Bittner [MB18]), but also in e.g. LBVH (Lauterbach et al. [Lau+09]) and
HLBVH (Garanzha et al. [GPM11]).

The sorting based on Morton codes has a direct impact on the quality of the resulting
bounding volume hierarchy constructed by the respective algorithms. In the case of
poor coherency of the primitives in the sorted sequence the BVH quality is lower. The
improvement of the Morton codes such that the sorting based on them would yield
primitive sequences with higher coherency of the subsequent elements and thus lead to
higher BVH quality was the motivation of Vinkler et al. [VBH17].

3.7.1 Extending the Morton codes
They identified several situations when the coherency induced by the Morton codes
could be increased and proposed appropriate improvements that are used in the gen-
eration of Extended Morton codes. The undeniable advantage of their technique is
that it aims to increase the BVH quality by modifying the Morton code based sort-
ing part of the algorithms only, leaving the construction part unchanged. Namely, the
modification is to compute a slightly different codes, which also does not increase the
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3 Analysis and Design

Figure 17 The splitting using coordinate axes and primitive sizes. Courtesy of Vinkler et al.
[VBH17].

computation time significantly and is easy to implement and incorporate to the existing
BVH construction algorithms.

Vinkler et al. [VBH17] identified four situations in which the Morton codes could be
improved and proposed these improvements in their Extended Morton codes generation
algorithm. The first improvement is not to encode only the 3D coordinates of the
centroids but the size of the respective objects as well. This follows the situation in
which two objects with spatially coherent centroids are clustered, but their bounding
boxes are of highly different size. In this case, it would be more convenient to cluster
the smaller object with another spatially coherent one with a bounding boxes of similar
size as is the objects’. In other words, by clustering objects based also on the sizes, the
bounding boxes of the respective BVH nodes can be also smaller. The authors proposed
to use the length of the diagonal of the primitive’s bounding box when encoding it’s size.
They proposed to normalize the length by the length of the diagonal of the bounding
box of the scene. The simplest form of extending the Morton codes is to interleave
4 quantized coordinates (x, y, z, s), where s encodes the primitive size, instead of 3,
i.e. (x, y, z). In this way, the first three splits of the code sorting are based on the
coordinates and the fourth is based on the primitive sizes. The principle can be seen
on figure 17, taken from [VBH17]. As can be seen, the third split is based on the size,
inserting the smaller primitives to the left child and the larger to the right one.

The second improvement proposed by the authors is not to stay with the regular
alternation of the split axes (x, y, z, s), but to split using the size axis s fewer times
than using the coordinate axes x, y and z. This would allow to count for the subdivision
based on the size while prefering the subdivision based on the spatial coherency a bit
more. The authors propose to inject the size bits only every seventh bit instead of every
fourth.

The third improvement proposed by Vinkler et al. [VBH17] is to adapt the axis order
to the actual dimensions of the scene, i.e. not to interleave the quantized coordinates
in the original (x, y, z, s) order but sort the axes based on the scene dimensions in the
descending manner. This means that the primitives are subdivided using the axes with
the largest spatial extent first during the hierarchy construction.

In their fourth proposed improvement the authors further generalize the axes order
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as they propose to use a variable number of bits for each axis. They also propose
to interleave the resulting code in such order that every bit leads to a subdivision in
the currently largest axis. As a result, the axes do not need to alternate in the code
regularly. The authors also note that the resulting code using this fourth improvement
is no longer a Morton code as the axes do not alternate regularly. They also propose
to combine this approach with injecting the size bit every fourth or seventh bit.

Choosing the axis for every bit in the code according to the largest extent can be
more convenient for scenes that extent mainly in two dimensions such as terrain scenes
or even in one dimension, imagine e.g. a scene with a single long street. The decision
of choosing the largest axis for the bits other than size bits comes from maintaining a
auxiliary bounding box and computing the axis of largest extent of this box. The box is
initialized as a copy of the scene bounding box and for every bit (not including the size
ones) the axis of largest extent is computed, written as the axis for the code bit, and
then the box is halved in this axis. Alternatively, one can use a three dimensional vector
encoding the scene dimensions computed from the scene bounding box and maintain
this vector by just using the coordinate with the largest value as the desired axis and
then halving this coordinate.

The authors also provided two pseudocodes, each describing a different 64-bit ex-
tended Morton code. The first code, also named EMC-64-sort, uses the improvements
of encoding primitive size every fourth bit (first improvement) as well as to adapt axis
order to the scene extent (third improvement). The second code, named EMC-64-
var, encodes the primitive size every seventh bit (second improvement) and use the
adaptive axis order and the variable bit count as well (fourth improvement). We have
implemented both codes although we used a slightly different and more straight-forward
approach for implementing the EMC-64-var code than in the pseudocode. In our imple-
mentation, the final bit shifts of respective parts of the code are not necessary, because
the shifting for the quantized coordinates is already incorporated in their generation.

3.7.2 Reported results
Vinkler et al. [VBH17] tested the two variants of extended Morton codes described
above (EMC-64-sort and EMC-64-var) and compared them to the standard 64-bit Mor-
ton code. They evaluated the use of extended Morton codes in several algorithms that
use Morton codes, namely LBVH, HLBVH, ATRBVH and AAC. They tested the algo-
rithms on nine test scenes, eight of which were architectural and one was an individual
object. They evaluated construction and rendering times as well as the SAH costs of
the constructed BVHs. They also reported the actual layout of the EMC-64-var code
for the tested scenes, so the actual axis order is observable. The authors also evaluated
the generation times of the extended Morton codes on the CPU (single core), which for
both codes described above were sufficiently small. For computing the costs of BVHs,
they used the triangle intersection constant 𝑐𝐼 = 1.0 and node traversal cost 𝑐𝑇 = 1.2.

For LBVH improved with extended Morton codes the costs improved from 0% to
52% with an average of 20%. For ATRBVH, the improvements in the costs were from
-2% to 26% with an average of 7%. For AAC the costs improvements are is 11% on
average and for HLBVH 16% on average. The authors also discuss that the improve-
ments described in their work and also above are not orthogonal and therefore do not
yield the same quality improvements on all scenes, but these are scene dependent.
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4 Implementation and testing

In this chapter we will describe the implementation details of our thesis and then the
testing strategy.

4.1 Implementation
We implemented the thesis in C++. We also tried to focus on the modern traits of
C++ as much as possible given to our C++ knowledge. The thesis thus requires the
C++17 standard and exploits also traits from the C++14 and C++11. The most
modern trait we use are the structured bindings. The work thus requires at least the
following versions of compilers:

∙ GCC, version 7.
∙ Clang, version 4.
We have also tested the implementation with Microsoft C++ compiler of version

19.16.27023.1. We have tested the successful compilation and application run with
the Microsoft C++ compiler (in MS Visual Studio 2017) on MS Windows and GCC
(version 7.3.0) and Clang (version 6.0.0) compilers on Linux (Ubuntu 18.04 LTS). The
source code is thus portable between these two operating systems. We developed the
thesis under MS Windows, but measured the results under Linux. We profiled the
implementation on MS Windows using the in-built profiler in the Visual Studio.

The most of the thesis is implemented on single core and we implemented also the
parallel version of the BVH using the binning approximation, for which we used C++11
threads. We implemented the hierarchies in the nanoGOLEM framework, a ray tracing
framework initiated by prof. Ing. Vlastimil Havran, Ph.D., developed mostly by him
and also by his former students. nanoGOLEM is a private software and thus it is not
a part of our thesis submission.

4.1.1 Other minor contributions
nanoGOLEM also uses ASSIMP library for the .obj files loading. However, the ASSIMP
tends to be slow when loading the scenes. It applies various kinds of post-processing
procedures on them and found out that some of the scenes unfortunately require these.
We therefore implemented the binary storing and loading of the post-processed objects,
which is significantly faster. This approach is used instead of the ASSIMP whenever
the appropriate file is present. We provide these files on the DVD only.

We also wrote a script for the export of the camera from the Blender modeling
software in the work required for the nanoGOLEM. We provide the script in our sub-
mission.

We also wrote a small number of measurement Bash scripts, which we used to mea-
sure our results on Linux. These run the implemented BVHs in all the configurations
and also generate Latex tables from the measured results. An arbitrary BVH imple-
mented in our thesis can be given to the main script as an argument and also more
BVHs and those of various types (basic, using the Insertion-based optimization or the
parallel binning) can be given as parameters, which allows to measure more easily.
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Figure 18 The architecture of our implementation.

The total number of measurements needed to be done was almost exactly 5000 (when
measuring all only once), and the measurement scripts were therefore mandatory.

4.1.2 Architecture

The nanoGOLEM framework is designed to be easily extended by various types of accel-
eration structures. New structure is thus expected to inherit from the CASDS_BB class
(abstract acceleration structure predecessor). The architecture of our implementation
can be seen on figure 18.

The implementation is designed to reuse as much of code as possible and not to
repeat it. The purpose of the classes is as follows:

∙ The BVHTemplate class is the base class of our BVHs. It contains the code needed
by all our hierarchies and as such defines the basics of BVH data structures, allows
to measure construction and rendering times and other metrics and provides a
number of common methods such as the SAH calculation or hierarchy compaction.

∙ The IBOBVH class defines an optimizable hierarchy using the Insertion-Based
Optimization algorithm [BHH13]. It defines the methods for this algorithm as
well as for the similar Incremental construction algorithm [BHH15]. It also allows
to measure the optimization time and metrics. This design also provides the ability
of executing the optimization algorithm to all our hierarchies.

∙ The MortonCodeBVH class defines the methods related to usage of Morton codes,
such as their calculation and radix sort. It also allows to calculate Extended
Morton Codes [VBH17].

∙ Other classes implement the specific BVH construction algorithms. BinnedBVH
implements both sequential and parallel versions of the binning-based construction
proposed by Wald [Wal07], AACBVH implements the AAC algorithm proposed
by Gu et al. [Gu+13], BonsaiBVH the Bonsai algorithm proposed by Ganestam
et al. [Gan+15], IncrementalBVH the incremental construction proposed by Bit-
tner et al. [BHH15], PLOCBVH the Parallel-locally ordered clustering algorithm
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4.2 Test scenes

Scene name #triangles
Serapis 88 040

Armadillo 345 944
Angel 474 048

Dragon (Chinese) 871 414
Happy Buddha 1 087 716
Turbine Blade 1 765 388

Hairball 2 880 000
Asian Dragon 7 219 045
Sponza Small 76 102

Sibenik Cathedral 80 479

Scene name #triangles
Power Plant sec. 9 121 862

Fairy Forest 174 117
Sponza Large 262 267

Conference Small 282 755
Conference Large 331 179

Power Plant sec. 16 365 970
Soda Hall 2 169 132

Pompeii Ten 5 642 728
San Miguel 7 838 406
Power Plant 12 759 246

Table 7 Numbers of triangles in the scenes. The first 8 scenes (from Serapis to Asian Dragon)
are individual objects, the other (from Sponza Small to Power Plant) are architectural scenes.

proposed by Meister and Bittner [MB18] (however, we have implemented only
the sequential version of it) and SweepBVH implements the reference Full Sweep
construction method as described by Wald et al. [WBS07].

4.2 Test scenes

One of the goals of this thesis is to compare the chosen hierarchies among themselves.
For this purpose, we have used 20 test scenes of different complexity (i.e. numbers
of triangles). 8 scene contain individual objects, while the rest of them (12) are of
architectural type. The numbers of triangles in the scenes can be seen in table 7. The
first 8 scenes are individual models, the other 12 are architectural scenes. The snapshots
of scenes, rendered using primary rays only, are in figure 19.

We have tried to find as many scenes used for evaluating of the chosen methods as
possible in order to be able to compare our results with the respective works. We have
added several other scenes. Most of the scenes are therefore often used for evaluation
of data structures for ray tracing and they are publicly available. In particular, we
have used scenes from the following archives: The Stanford 3D Scanning Repository
[Uni], Morgan McGuire’s Computer Graphics archive [McG17] and Georgia Institute
of Technology [TM].

4.3 Verification of the methods

We have verified our implemented hierarchies in two steps. First, we examined the
images of the rendered scene using our hierarchies. This verification step alone is,
however, not sufficient, as it tells only that each of the rays finds the correct closest
primitive, but it does not tell anything else about the topology of a BVH. In other
words, the hierarchy can be built differently from the original method described in the
author’s work. Therefore a second verification step must be done, which allows to verify
the topology.

This can be done using the costs of the hierarchies based on the SAH. We calculate
the cost using the formula 4. A more thorough verification would be using the sums of
surface areas of inner nodes and leaves, averages of traversal steps and intersection tests
done while traversing a ray and other metrics, but unfortunately, the works usually do
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a) Serapis
88 040

b) Armadillo
345 944

c) Angel
474 048

d) Dragon
871 414

e) Happy Buddha
1 087 716

f) Turbine Blade
1 765 388

g) Hairball
2 880 000

h) Asian Dragon
7 219 045

i) Sponza Small
76 102

j) Sibenik Cathedral
80 479

k) Power Plant sec. 9
121 862

l) Fairy Forest
174 117

m) Sponza Large
262 267

n) Conference Small
282 755

o) Conference Large
331 179

p) Power Plant sec. 16
365 970

q) Soda Hall
2 169 132

r) Pompeii
5 642 728

s) San Miguel
7 838 406

t) Power Plant
12 759 246

Figure 19 The rendered images of the scenes (using the primary rays only). Under each of the
images, the name of the scene is on the first line and the number of triangles in the scene
is on the second line. The images were rendered using the hierarchy built with the PLOC
algorithm with radius 10.54



4.3 Verification of the methods

Algorithm variant Abbreviation Parameters
Full Sweep FSW -
Full Sweep + IBO FSWO -
BVH using binning BIN k=16
AAC-HQ AHQ 𝛿=20, 𝜖=0.1
AAC-LQ ALQ 𝛿=4, 𝜖=0.2
Bonsai BP0 N=512, T=0.1, prune=false
BonsaiP BP1 N=512, T=0.1, prune=true
BonsaiP* BP2 N=4096, T=0.01, prune=true
Incremental INC batch=8000, oFrac=0.01, coh=1.5
PLOC10 PL1 radius=10
PLOC25 PL2 radius=25
PLOC100 PL3 radius=100

Table 8 The algorithm variants with their abbreviations and parameters. These are used in
all phases of measurement results. The FSWO abbreviation is used only in the verification
results to distinguish between the method with and without applying the Insertion-based
optimization (IBO). In other results (optimization, parallel and Extended Morton codes),
the abbreviations describe algorithms having the appropriate attribute (e.g. using the opti-
mization algorithm or EMCs). Moreover, the description of parameters can be seen in tables
1 (binning), 2 (AAC), 3 (Bonsai), 5 (Incremental) and 6 (PLOC).

not report these. We report these in our results section 5, so that they can be used for
this purpose in the future.

Moreover, some of the papers proposing the methods we implemented do not even
report the costs of the hierarchies. They report only the construction and rendering
times, which, however, also do not claim anything specific about the hierarchy topology.
This makes the results in the works incomparable and unfollowable. We therefore
compared our results with other works, which implemented the considered methods for
the comparison or as a reference. More particularly, this problem is the case of the
binning-based algorithm and the AAC. We have therefore compared the results with
the results in the work of Ganestam et al. [Gan+15] (the binning) and Meister and
Bittner [MB18] (the AAC). Moreover, we compared the full sweep method with the
results in the work of Bittner et al. [BHH13]. The other algorithms were compared
with the results in the works that proposed them.

Throughout the following verification results and our measurement results in the
next sections, we use abbreviations of the methods in tables. These are described
in table 8. The results of our implementation can be seen in table 4.3. The costs
were calculated using the constants 𝑐𝑇 = 3.0 and 𝑐𝐼 = 2.0 for the full sweep method,
its version optimized by the insertion-based algorithm, the AAC and the PLOC. We
calculated the costs for the binning and the Bonsai algorithm using the constants 𝑐𝑇 =
2.0 and 𝑐𝐼 = 1.0.

If we look into the related works, we can see that our costs corresponds almost
entirely with the original results of the full sweep method, its optimized version, the
incremental algorithm and the PLOC.

The AAC algorithm also corresponds almost entirely with an exception of the Pom-
peii scene and the AAC-LQ algorithm variant. Our implementation construct a BVH
with higher cost. On the other hand, when using the EMC64VAR extended Morton
code for the method (which is the part of our measurement), the increase in the cost
disappears and the variant is close in cost to the AAC-HQ algorithm. Also, Meister and
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Scene FSW FSWO BIN AHQ ALQ BP0 BP1 BP2 INC PL1 PL2 PL3
Armadillo 85.0 81.9 - - - - - - 96.9 - - -
Dragon 145.5 136.7 - - - - - - - - - -
H. Buddha 165.5 155.1 - 181.4 181.8 - - - 233.7 175.7 174.9 177.5
Blade 190.5 179.6 - - - - - - - - - -
Hairball 1416.4 985.6 645.1 1113.0 1137.2 644.2 614.5 617.7 1460.4 1094.5 1089.0 1084.2
Sibenik 82.4 62.1 - - - - - - 73.3 - - -
P. Plant s. 9 59.2 32.6 - - - - - - - - - -
Fairy Forest - - 60.6 - - 51.9 51.1 50.3 - - - -
Sponza L. - - 135.9 - - 139.7 119.6 124.7 - - - -
Conference S. 130.9 83.9 - - - - - - - - - -
Conference L. - - 84.7 84.3 85.8 68.6 61.5 59.3 - 87.3 85.5 85.2
P. Plant s. 16 93.7 60.6 - - - - - - - - - -
Soda Hall 216.4 140.4 - 176.5 178.1 - - - 180.0 175.5 173.1 175.7
Pompeii 256.2 158.8 - 189.7 240.5 - - - 228.7 186.0 181.9 176.2
San Miguel - - 119.5 139.1 142.2 115.6 108.5 105.1 157.0 147.1 141.4 137.9
Power Plant 115.7 68.4 - 77.6 79.0 - - - 103.4 80.6 78.0 77.4

Table 9 Costs of the hierarchies on the respective reference scenes used in the works.

Bittner suggested a bug in the AAC algorithm source code when evaluating their results
(they used the publicly available implementation). The bug caused the cost result of
the Power Plant scene to be higher, but our cost is sufficiently close to other algorithms
(for example the PLOC). It is unusual that such a high result for the Pompeii scene as
ours would be correct, but we spent massive effort to find a bug in our implementation,
comparing it with the publicly available one and did not found any. On the other hand,
for the other scenes the algorithm seems to work correctly.

When comparing the Bonsai algorithm, the costs of our implementation without the
pruning correspond. The costs of the first pruning variant (BP1, BonsaiP in the work
of Ganestam et al.) correspond on 3 of the 5 scenes, on the 2 other they are slightly
higher. The costs of the second pruning variant (BP2, BonsaiP*) correspond on the
Conference Large and the Fairy Forest scene. Again, we spent non-trivial effort to find a
bug in our implementation, but did not find any. The Bonsai pruning algorithm is also
described briefly in the work of Ganestam et al., but in fact more complex algorithm
must be designed and used (which we did) to achieve the principles stated in the work.
Also, when describing the pruning threshold, the authors state both that the threshold
itself is used for the pruning as well as that it is multiplied by the average surface area
of the mini trees, which cannot hold at the same time. We present the results with the
second idea described, which we think is the correct way. We believe that the difference
in the costs can be caused by these two reasons.

We did not use the Asian Dragon and the Sibenik Cathedral scene in the verification,
because the results were significantly different (higher in the case of the Asian Dragon
and lower in the case of the Sibenik Cathedral) not only for the Bonsai algorithm, but
the full sweep and the AAC as well. This is probably due to the fact, that the scenes are
not the same (they could be retessellated or edited) - they also have different numbers
of triangles. We also did not use the rest of the scenes used in the work of Ganestam
et al., because we were unable to find them.

The costs of the binning-based algorithm do not correspond with the costs reported
by Ganestam et al., who, however, used the implementation from the Embree 2.2 ray
tracing framework. This implementation use a modified binning algorithm, which con-
structs hierarchies with branching factor 4 and also combining with the spatial splits.
In our implementation, we also made change from the original method by using the
original SAH formulation when calculating the costs of split planes and leaves (instead
of neglecting the implementation-specific constants), and we also stop the construction
upon reaching a set of 2 triangles (i.e. we define a leaf for those). These can be the
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reasons for the difference in the costs. The verification of the binning method proved to
be difficult because surprisingly we found no other work which would report the costs
of the hierarchies built using the method (including the original work of Wald [Wal07]),
only several works reporting the construction and rendering times. Even here, we spent
non-trivial effort debugging and testing the method, but did not find a mistake.

To sum up the verification, the full sweep algorithm, the insertion-based optimiza-
tion, the PLOC and the incremental algorithm seem to be implemented the same as the
original methods. The Bonsai and binning algorithms may have slight different design
details. The AAC works correctly with the except of the Pompeii scene and using the
AAC-LQ variant, which is, however, compensated by using the EMC64VAR extended
Morton code.

4.4 Measurement strategy
For the comparison of the implemented BVH algorithms, we have done a four-phase
measurement. The phases were:

1. Construction algorithms (single core implementations). We measured all parame-
ter configurations described in the works proposing them.

2. Insertion-based optimization algorithm executed on several chosen hierarchies (built
with specific construction algorithms). We have chosen the full sweep, binning-
based and incremental algorithms.

3. Parallel construction algorithms. In this section we measured the construction
times of the parallel binning-based algorithm.

4. Impact of the Extended Morton codes on the BVH construction (the EMCs relate
to AAC and PLOC construction algorithms only).

The first phase was measured on three different types of rays: only primary rays
(ray casting), primary and shadow rays, random rays. We measured construction and
rendering times (and for the Insertion-based optimization algorithm also the optimiza-
tion times) as well as the other metrics. We measured real and user times and report
both of them. All the times reported in the next section are obtained by averaging 5
time measurements. We will now outline all the metrics considered for the measure-
ment, but not all of these are reported for all of the measurement phases. The metrics
for construction algorithms are:

∙ Cost of the hierarchy based on surface area heuristic, calculated according to the
formula 4.

∙ Number of references to triangles per single leaf averaged to all the leaves.
∙ Number of traversal steps performed by a ray in average to all the cast rays.
∙ Number of intersection tests performed by a ray in average to all the cast rays.
∙ Sum of the surface area of inner nodes divided by the surface area of the whole

scene.
∙ Sum of the surface area of leaves multiplied by the numbers of triangles they

contain (we calculate surface area of a leaf and multiply it by the number of
contained objects) divided by the surface area of the whole scene.

In the first measurement (single core construction) phase we report all the metrics as
well as the construction and rendering times. In the third phase (parallel construction)
we report only the construction times. In the fourth measurement (impact of the
Extended Morton codes) we report all the metrics as well as the construction and
rendering times. The second phase evaluates the Insertion-based optimization and
here we report the numbers of: traversal steps and intersection tests as well as the
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rendering times (same as for other phases) plus the following metrics measured after
the optimization: hierarchy costs, numbers of references per leaf, sums of surface areas
(both for inner nodes and leaves) and the time needed to execute the optimization. Some
of the results are presented in the appendix A and we refer to it in the appropriate parts
of the text.

For the calculation of all hierarchy costs reported in this thesis as well as all the
parts using the SAH, we used the traversal constant 𝑐𝑇 = 3.0 and the intersection
constant 𝑐𝐼 = 2.0.

For the shadow rays, we always construct one light source in the scene above the
camera.

We have constructed the random rays using the algorithm proposed in the work of
Havran et al. [HPP00] using a slightly modified version of the authors’ source code.
The algorithm generates points uniformly distributed on a bounding sphere enclosing
the scene and creates the rays using pairs of these points. The center of the sphere is
the center of the bounding box of the scene and the radius is set such that all centroids
of the bounding boxes of the triangles in the scene are contained in the sphere. We
used 10 bands partitioning the bounding sphere.

The results were measured by shooting 800x800 primary (or random) rays (and
eventual other shadow rays). We have measured the results on a computer with Intel
core i7-4500U CPU (running at base frequency of 1.8GHz with 2.4GHz turbo boost)
with two physical cores and hyper-threading. The RAM capacity was 16GB. The
measurement was done in Ubuntu 18.04LTS operating system. The application version
used for measurement was compiled using GCC compiler of version and using a -O2
flag.
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5 Results

We will now present the results measured according to the strategy presented in the
previous chapter. The results are divided into four respective sections - the basic
results, the results of applying the Insertion-based optimization method, the results of
the parallel binning method and the results of applying the Extended Morton codes in
the BVH construction.

5.1 First phase - basic measurement
In the first phase, we measured the basic metrics for all construction algorithms using
three types of rays (primary, primary and shadow, random). We used the parameter
settings of the algorithms as proposed in the respective works, which leads to eleven
different algorithm-variants in total. More specifically, the settings of the respective
algorithms can be seen in table 8.

The top-down algorithms (full sweep, binning-based) and Bonsai can terminate
the construction in an arbitrary branch also based on the surface area heuristic. The
bottom-up methods (AAC, PLOC) use the compaction algorithm also based on the SAH
after the construction. The resulting BVHs thus do not contain exactly one triangle
per leaf. We have therefore used the compaction algorithm also on the Incremental
algorithm proposed by Bittner et al., which would otherwise store only one triangle per
leaf. The purpose of this is to have a similar construction strategy for all the methods.

The costs based on the SAH of all the BVHs can be seen in table 10. In the tables
11 and 12 we report the construction times (real and user). The following results are
obtained by using the primary rays only. In the tables 13 and 14 we can see the real
and user rendering times, in table 15 we can see the average number of traversal steps
per ray, in table 16 the average number of intersection tests per ray. Next results are
presented table 17 (average number of references per leaf), 18 (the sum of the surface
area of inner nodes divided by the surface area of the whole hierarchy) and in table 19
(the sum of multiplying the surface area and the number of primitives in each leaf, also
divided by the surface area of the whole hierarchy). We also present the bar charts of the
costs, construction and rendering real times on San Miguel and Happy Buddha scenes.
The results in charts are relative to the respective worst result in the measurement. We
also measured the respective metrics using the primary+shadow rays and the random
rays. The results of these can be seen in the appendix A.

5.1.1 Individual objects

In general, the top-down methods and the Bonsai algorithm yield lower costs for the
scenes containing individual objects than the bottom-up methods. However, the top-
down methods higher lower costs on architectural scenes. The Incremental algorithm
yields costs similar or higher than the bottom-up methods on the individual objects.
More specifically, the results are similar for 4 scenes (Serapis, Armadillo, Angel and
Hairball) but significantly higher for the other 4 scenes (Dragon, Happy Buddha, Tur-
bine Blade and Asian Dragon).
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a) BVH costs. b) Construction real times.

Figure 20 Relative results on the San Miguel scene.

a) BVH costs. b) Construction real times.

Figure 21 Relative results on the Happy Buddha scene.

a) Rendering real times. b) Rendering real times.

Figure 22 Relative results of the rendering real times on chosen scenes.
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5.1 First phase - basic measurement

Scene FSW BIN AHQ ALQ BP0 BP1 BP2 INC PL1 PL2 PL3
Serapis 129.5 135.5 147.9 148.3 133.7 133.0 132.1 151.0 143.7 145.3 146.4
Armadillo 81.3 85.0 94.3 92.1 84.1 83.4 83.6 93.4 91.2 92.2 92.8
Angel 78.9 83.1 87.9 87.9 81.3 80.8 80.4 86.8 86.0 87.0 88.0
Dragon 138.2 144.8 160.0 158.4 143.7 142.1 141.4 197.5 154.0 155.8 156.1
H. Buddha 156.7 166.3 181.4 181.8 162.7 160.9 160.4 226.0 175.7 174.9 177.5
Blade 178.9 199.1 225.0 212.4 188.7 185.9 185.1 420.5 205.9 211.2 218.9
Hairball 1057.4 1088.2 1113.0 1137.2 1086.7 1041.9 1042.1 1092.8 1094.5 1089.0 1084.2
A. Dragon 90.5 96.2 104.9 102.4 93.2 92.7 92.6 148.1 101.3 101.5 103.6
Sponza S. 188.1 218.0 183.4 184.0 210.7 191.3 192.6 174.1 182.8 181.0 181.4
Sibenik 71.8 85.0 66.4 69.4 81.8 83.0 85.3 64.6 67.0 66.9 66.6
P. Plant s. 9 40.3 43.5 33.5 33.9 42.6 37.9 37.3 33.9 33.9 34.2 34.1
Fairy Forest 80.4 101.4 86.0 83.4 83.1 81.9 80.6 92.2 84.1 85.8 85.8
Sponza L. 198.5 218.9 167.8 172.2 222.6 195.0 199.9 170.7 174.9 168.7 166.8
Conference S. 111.2 144.1 89.8 90.4 114.4 107.8 108.3 88.1 92.2 92.2 91.3
Conference L. 92.6 136.1 84.3 85.8 109.1 95.7 94.8 84.1 87.3 85.5 85.2
P. Plant s. 16 74.6 97.8 69.8 72.4 84.2 73.8 73.5 66.0 71.4 70.3 69.8
Soda Hall 189.1 222.8 176.5 178.1 214.8 192.3 192.3 154.7 175.5 173.1 175.7
Pompeii 191.3 212.3 189.7 240.5 208.2 193.6 192.6 169.7 186.0 181.9 176.2
San Miguel 160.0 187.4 139.1 142.2 181.5 169.6 165.4 136.1 147.1 141.4 137.9
Power Plant 85.9 120.6 77.6 79.0 94.7 85.7 85.1 75.3 80.6 78.0 77.4

Table 10 Costs of the BVHs based on the surface area heuristic. The abbreviations of the
methods can be seen in table 8.

Scene FSW BIN AHQ ALQ BP0 BP1 BP2 INC PL1 PL2 PL3
Serapis 0.467 0.090 0.191 0.074 0.133 0.144 0.172 0.347 0.326 0.659 2.336
Armadillo 2.367 0.363 0.755 0.294 0.509 0.549 0.670 2.156 1.163 2.176 7.204
Angel 3.856 0.580 1.046 0.410 0.757 0.807 1.002 3.182 1.835 3.560 12.442
Dragon 5.807 0.889 1.966 0.747 1.211 1.358 1.569 3.851 3.595 7.178 24.998
H. Buddha 7.161 1.091 2.520 0.979 1.496 1.684 1.963 4.691 4.652 9.424 32.719
Blade 10.774 1.421 3.865 1.411 2.234 2.486 3.026 6.544 5.123 10.196 34.868
Hairball 22.801 2.432 7.021 2.649 3.332 3.893 4.993 13.717 9.670 18.093 61.253
A. Dragon 63.153 7.575 16.254 6.235 9.916 11.122 13.432 38.653 21.451 41.700 140.895
Sponza S. 0.264 0.060 0.173 0.059 0.092 0.098 0.115 0.160 0.251 0.513 1.808
Sibenik 0.323 0.064 0.188 0.062 0.099 0.103 0.122 0.227 0.279 0.596 2.527
P. Plant s. 9 0.499 0.083 0.284 0.090 0.142 0.143 0.170 0.328 0.402 0.841 2.904
Fairy Forest 0.962 0.167 0.389 0.136 0.243 0.254 0.294 0.518 0.603 1.300 4.817
Sponza L. 1.540 0.246 0.619 0.220 0.362 0.384 0.440 0.776 0.875 1.771 6.215
Conference S. 1.359 0.252 0.660 0.222 0.357 0.368 0.444 1.288 0.835 1.769 6.724
Conference L. 1.720 0.272 0.730 0.250 0.421 0.430 0.523 1.619 0.899 1.917 7.133
P. Plant s. 16 1.520 0.195 0.859 0.273 0.399 0.411 0.494 0.906 1.125 2.327 8.140
Soda Hall 14.140 1.812 5.455 1.880 2.770 2.895 3.462 7.397 7.104 14.857 54.273
Pompeii 39.693 5.297 13.967 4.841 7.567 7.777 9.171 24.531 19.772 41.357 149.326
San Miguel 79.849 8.107 19.809 6.958 10.783 11.065 13.003 45.742 28.275 58.376 215.727
Power Plant 114.059 11.363 32.087 10.365 16.148 16.662 19.374 80.893 33.299 69.240 242.036

Table 11 Construction, sequential, real time [s]. The abbreviations of the methods can be seen
in table 8.

For the individual objects, the best results are constantly achieved by the full sweep
construction with the exception of the Hairball scene. However, we are interested
mainly in the other algorithms and, as expected, the full sweep method achieves these
results in significantly higher construction times compared to the other methods. Apart
from the full sweep, the best costs on these scenes are continuously achieved by the two
variants of Bonsai algorithm with pruning. More specifically, the BP1 variant achieves
the best costs on two scenes (Armadillo and Hairball), while the BP2 variant achieves
the best costs on the other 6 scenes. The results of the Bonsai variants with pruning
are interesting even more, because the construction times are lower than the times of all
the PLOC variants and the AAC-HQ while achieving the lower costs. When compared
to the AAC-LQ, the construction times of the Bonsai variants with pruning are higher
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5 Results

Scene FSW BIN AHQ ALQ BP0 BP1 BP2 INC PL1 PL2 PL3
Serapis 0.465 0.087 0.184 0.071 0.132 0.141 0.168 0.343 0.322 0.655 2.331
Armadillo 2.357 0.358 0.721 0.276 0.498 0.537 0.658 2.141 1.142 2.158 7.189
Angel 3.845 0.565 1.010 0.387 0.745 0.787 0.988 3.155 1.806 3.542 12.415
Dragon 5.790 0.864 1.894 0.700 1.188 1.330 1.542 3.810 3.551 7.143 24.957
H. Buddha 7.126 1.060 2.431 0.920 1.461 1.642 1.923 4.642 4.587 9.361 32.652
Blade 10.732 1.373 3.714 1.321 2.173 2.425 2.957 6.453 5.035 10.102 34.757
Hairball 22.711 2.367 6.730 2.442 3.239 3.804 4.899 13.582 9.451 17.895 61.045
A. Dragon 62.933 7.359 15.515 5.702 9.627 10.785 13.116 38.304 20.919 41.155 140.348
Sponza S. 0.262 0.056 0.167 0.058 0.086 0.098 0.113 0.157 0.246 0.509 1.802
Sibenik 0.321 0.063 0.183 0.058 0.095 0.098 0.119 0.221 0.272 0.593 2.520
P. Plant s. 9 0.497 0.079 0.272 0.083 0.134 0.138 0.166 0.326 0.394 0.840 2.900
Fairy Forest 0.959 0.162 0.368 0.131 0.235 0.249 0.289 0.507 0.592 1.294 4.807
Sponza L. 1.532 0.238 0.597 0.205 0.350 0.370 0.430 0.764 0.864 1.757 6.192
Conference S. 1.356 0.247 0.631 0.209 0.349 0.360 0.434 1.271 0.817 1.752 6.710
Conference L. 1.709 0.264 0.700 0.234 0.410 0.418 0.515 1.601 0.879 1.899 7.120
P. Plant s. 16 1.514 0.185 0.830 0.254 0.379 0.400 0.479 0.891 1.106 2.303 8.119
Soda Hall 14.057 1.767 5.228 1.716 2.695 2.825 3.394 7.286 6.942 14.697 54.104
Pompeii 39.498 5.149 13.362 4.404 7.355 7.538 8.959 24.234 19.326 40.923 148.882
San Miguel 79.594 7.896 19.027 6.392 10.499 10.735 12.680 45.352 27.705 57.791 215.174
Power Plant 113.471 11.069 30.733 9.340 15.622 16.088 18.803 80.227 32.253 68.228 240.980

Table 12 Construction, sequential, user time [s]. The abbreviations of the methods can be
seen in table 8.

Scene FSW BIN AHQ ALQ BP0 BP1 BP2 INC PL1 PL2 PL3
Serapis 0.385 0.415 0.526 0.492 0.416 0.401 0.397 0.518 0.490 0.512 0.506
Armadillo 0.288 0.307 0.403 0.372 0.311 0.299 0.298 0.400 0.389 0.431 0.385
Angel 0.273 0.285 0.353 0.351 0.292 0.277 0.277 0.372 0.327 0.378 0.348
Dragon 0.300 0.327 0.475 0.426 0.328 0.316 0.318 0.537 0.392 0.442 0.422
H. Buddha 0.235 0.259 0.342 0.325 0.259 0.250 0.249 0.418 0.345 0.337 0.355
Blade 0.290 0.335 0.583 0.446 0.328 0.314 0.315 0.703 0.439 0.440 0.493
Hairball 1.365 1.534 2.155 2.379 1.575 1.425 1.455 2.052 1.694 1.768 1.858
A. Dragon 0.476 0.557 0.695 0.629 0.515 0.524 0.519 0.938 0.657 0.686 0.739
Sponza S. 1.173 1.460 0.881 1.075 1.057 1.088 1.187 0.972 0.868 0.932 0.880
Sibenik 0.878 1.184 0.958 0.991 1.343 1.363 1.182 0.926 0.931 0.925 0.942
P. Plant s. 9 0.243 0.391 0.227 0.222 0.300 0.253 0.242 0.216 0.235 0.231 0.228
Fairy Forest 0.585 1.331 0.627 0.604 0.651 0.634 0.584 0.792 0.638 0.615 0.640
Sponza L. 1.721 1.831 1.597 1.685 1.853 1.603 1.589 1.551 1.859 1.538 1.649
Conference S. 0.737 1.184 0.684 0.717 0.799 0.734 0.710 0.690 0.705 0.682 0.682
Conference L. 0.604 0.946 0.586 0.567 0.728 0.651 0.630 0.598 0.575 0.628 0.585
P. Plant s. 16 1.329 2.359 1.575 1.551 1.753 1.337 1.361 1.455 1.496 1.489 1.561
Soda Hall 1.237 1.357 1.588 1.571 1.369 1.248 1.295 1.127 1.328 1.266 1.478
Pompeii 1.345 1.580 1.581 2.131 1.512 1.516 1.421 1.474 1.746 1.782 1.606
San Miguel 2.083 2.495 1.957 1.964 2.371 2.363 2.197 1.997 2.194 2.074 2.085
Power Plant 1.947 3.719 2.886 2.584 2.460 2.124 2.049 1.920 2.894 2.106 2.717

Table 13 Rendering, primary rays, real times [s]. The abbreviations of the methods can be
seen in table 8.

on 7 out of 8 scenes (the exception being the Angel scene).
When comparing the results of the binning-based algorithm and the Bonsai variant

with better results (in terms of cost; taking Bonsai variant as the reference method)
throughout the individual objects, we can see that the costs of the binning-based method
are greater up to 3.9% for 6 scenes, but also greater even more for the Turbine Blade
and Hairball scenes. The advantage of the binning-based method over all three Bon-
sai variants is the construction speed. Another interesting result of the binning-based
method is that the costs are constantly lower 7 of 8 individual objects (with the ex-
ception of the Hairball scene) than when using the bottom-up methods, the AAC and
the PLOC, while achieving lower construction times than all the PLOC variants and
the AAC-HQ. However, the binning is slower in construction than the AAC-LQ on 7
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5.1 First phase - basic measurement

Scene FSW BIN AHQ ALQ BP0 BP1 BP2 INC PL1 PL2 PL3
Serapis 0.384 0.413 0.526 0.492 0.415 0.400 0.397 0.517 0.491 0.511 0.505
Armadillo 0.288 0.306 0.403 0.371 0.308 0.299 0.297 0.400 0.389 0.431 0.385
Angel 0.273 0.285 0.352 0.350 0.291 0.277 0.277 0.372 0.326 0.377 0.348
Dragon 0.300 0.327 0.474 0.426 0.326 0.315 0.317 0.534 0.391 0.441 0.421
H. Buddha 0.235 0.259 0.341 0.324 0.259 0.250 0.249 0.417 0.345 0.336 0.355
Blade 0.290 0.336 0.582 0.445 0.328 0.313 0.314 0.702 0.438 0.440 0.492
Hairball 1.363 1.533 2.154 2.379 1.574 1.424 1.455 2.051 1.694 1.766 1.858
A. Dragon 0.475 0.557 0.695 0.629 0.512 0.524 0.518 0.938 0.657 0.685 0.739
Sponza S. 1.172 1.459 0.881 1.074 1.056 1.088 1.186 0.971 0.868 0.932 0.879
Sibenik 0.877 1.182 0.957 0.991 1.343 1.362 1.182 0.926 0.931 0.925 0.942
P. Plant s. 9 0.241 0.390 0.226 0.222 0.299 0.254 0.242 0.216 0.233 0.231 0.228
Fairy Forest 0.585 1.327 0.627 0.603 0.651 0.633 0.584 0.791 0.638 0.615 0.639
Sponza L. 1.721 1.829 1.596 1.685 1.853 1.603 1.589 1.550 1.858 1.537 1.649
Conference S. 0.737 1.183 0.684 0.717 0.799 0.733 0.709 0.690 0.704 0.681 0.681
Conference L. 0.604 0.946 0.586 0.567 0.727 0.650 0.630 0.598 0.574 0.628 0.585
P. Plant s. 16 1.328 2.357 1.574 1.551 1.753 1.336 1.361 1.454 1.496 1.488 1.561
Soda Hall 1.237 1.357 1.588 1.570 1.369 1.248 1.294 1.127 1.328 1.265 1.478
Pompeii 1.345 1.579 1.580 2.130 1.512 1.515 1.419 1.474 1.745 1.782 1.605
San Miguel 2.082 2.492 1.956 1.963 2.369 2.361 2.196 1.997 2.194 2.072 2.085
Power Plant 1.947 3.717 2.884 2.584 2.459 2.124 2.048 1.919 2.894 2.106 2.716

Table 14 Rendering, primary rays, user times [s]. The abbreviations of the methods can be
seen in table 8.

Scene FSW BIN AHQ ALQ BP0 BP1 BP2 INC PL1 PL2 PL3
Serapis 23.2 24.1 33.6 30.9 24.4 24.0 23.7 29.1 30.2 30.7 31.5
Armadillo 17.2 17.9 24.7 22.9 18.6 17.9 18.0 20.8 23.0 24.4 23.1
Angel 14.7 15.2 19.3 19.0 15.4 15.1 15.0 16.8 17.0 18.8 18.9
Dragon 17.1 18.0 27.5 25.1 18.4 17.9 17.8 27.0 21.6 22.9 23.4
H. Buddha 12.0 12.5 17.6 16.8 12.7 12.5 12.4 19.5 16.5 15.3 17.3
Blade 16.4 16.6 31.6 24.7 17.9 17.4 17.2 38.0 22.7 23.2 26.2
Hairball 58.9 61.4 86.2 90.2 64.5 59.0 59.5 78.9 66.0 69.8 73.8
A. Dragon 22.6 23.6 31.3 28.8 23.5 23.3 23.3 37.8 27.6 28.5 30.8
Sponza S. 79.5 98.8 69.1 84.4 87.7 87.8 80.1 72.5 69.3 73.4 74.1
Sibenik 76.4 84.9 84.0 81.0 115.7 115.2 103.1 78.2 74.5 74.7 75.7
P. Plant s. 9 14.8 17.9 12.2 12.3 18.8 13.9 13.6 11.2 12.6 12.5 11.9
Fairy Forest 45.9 46.0 50.6 46.7 50.8 48.3 45.8 61.3 49.6 45.8 49.2
Sponza L. 131.8 145.9 110.2 130.7 158.6 125.3 129.0 107.9 142.9 114.6 113.2
Conference S. 51.2 59.1 42.5 43.4 55.8 49.3 49.3 38.8 42.7 42.0 40.3
Conference L. 43.3 54.7 36.2 36.1 53.8 41.5 41.7 35.7 36.0 39.6 36.2
P. Plant s. 16 102.4 115.4 123.8 122.4 132.7 95.4 103.7 97.7 117.0 116.5 117.2
Soda Hall 91.8 104.0 144.7 142.1 131.6 108.0 121.4 94.5 118.0 116.7 131.2
Pompeii 72.9 80.7 79.9 118.2 87.1 75.4 74.2 65.5 84.7 87.2 76.2
San Miguel 181.4 188.2 150.5 149.6 205.8 187.8 182.0 125.0 164.4 153.4 150.8
Power Plant 174.4 168.2 220.4 196.8 225.7 185.6 181.8 135.0 220.8 174.2 207.6

Table 15 Average number of traversal steps per ray using the primary rays. The abbreviations
of the methods can be seen in table 8.

individual objects (the exception being the Hairball scene).

5.1.2 Architectural scenes

The results of the algorithms are different for the architectural scenes than they were
for the individual objects. While for the individual objects the best results (in terms
of the costs) were constantly achieved by the full sweep method followed by one of
the variants of Bonsai algorithm using pruning, this does not hold on the architectural
scenes. The full sweep method achieves the best cost only on the Fairy Forest scene (1
of 12 architectural scenes).

At first, there are two phenomenons observable on this type of the scenes. First, the
bottom-up methods (AAC and PLOC) achieve better costs than the top-down methods
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5 Results

Scene FSW BIN AHQ ALQ BP0 BP1 BP2 INC PL1 PL2 PL3
Serapis 4.6 4.9 5.8 5.6 4.7 4.7 4.7 5.7 5.2 5.0 5.1
Armadillo 2.0 2.6 2.7 2.8 2.1 2.1 2.1 2.6 2.6 2.8 2.4
Angel 2.0 2.1 2.5 2.8 2.1 2.1 2.1 2.4 2.3 2.5 2.3
Dragon 2.5 2.8 3.7 3.6 2.6 2.5 2.5 4.2 2.9 3.0 3.0
H. Buddha 1.8 2.1 2.3 2.4 1.9 1.9 1.9 3.2 2.4 2.1 2.4
Blade 1.9 3.6 3.4 2.8 2.0 1.9 1.9 6.5 2.5 2.4 2.7
Hairball 44.8 48.0 56.1 66.1 46.8 43.6 45.1 64.5 47.0 47.4 48.4
A. Dragon 2.7 5.9 3.3 3.3 2.7 2.7 2.7 4.6 3.0 3.0 3.1
Sponza S. 41.7 46.1 19.2 23.4 16.7 16.3 36.0 19.9 15.9 19.3 14.6
Sibenik 12.4 30.8 13.5 16.7 20.0 20.5 18.3 11.0 15.9 13.7 15.6
P. Plant s. 9 7.7 21.0 8.3 7.6 9.7 8.0 8.1 7.9 8.6 8.4 8.6
Fairy Forest 9.3 90.4 9.3 9.6 9.4 9.1 9.2 13.5 9.4 9.3 9.4
Sponza L. 39.0 26.4 41.4 30.6 21.4 23.6 26.3 30.2 30.5 27.6 36.5
Conference S. 20.5 57.0 20.7 21.9 19.4 18.7 18.5 23.9 20.7 20.5 20.9
Conference L. 14.1 36.4 16.2 15.4 14.4 16.2 16.1 17.4 16.0 17.4 16.6
P. Plant s. 16 34.1 118.5 35.3 35.2 39.4 35.9 36.2 39.1 32.6 32.6 36.8
Soda Hall 37.3 34.9 21.2 25.3 21.7 23.7 21.1 17.7 19.7 17.1 21.8
Pompeii 45.1 56.5 49.4 56.1 47.0 49.7 49.1 57.5 56.5 58.3 54.2
San Miguel 19.1 40.0 23.0 25.2 23.8 24.4 22.4 33.7 27.2 26.5 29.8
Power Plant 19.1 203.5 36.8 43.3 19.0 18.6 18.0 33.9 33.3 22.3 36.1

Table 16 Average number of intersection tests per ray using the primary rays. The abbrevia-
tions of the methods can be seen in table 8.

Scene FSW BIN AHQ ALQ BP0 BP1 BP2 INC PL1 PL2 PL3
Serapis 2.4 2.3 2.3 2.3 2.4 2.4 2.4 2.3 2.3 2.3 2.3
Armadillo 2.1 2.5 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.1 2.1
Angel 2.3 2.3 2.3 2.2 2.3 2.3 2.3 2.2 2.3 2.3 2.3
Dragon 2.4 2.6 2.3 2.3 2.4 2.4 2.4 2.3 2.3 2.3 2.3
H. Buddha 2.4 2.6 2.3 2.2 2.4 2.4 2.4 2.2 2.2 2.3 2.3
Blade 2.2 3.5 2.2 2.2 2.2 2.2 2.2 2.3 2.2 2.2 2.2
Hairball 5.8 5.7 5.9 5.5 5.7 5.7 5.8 7.2 5.7 5.8 6.0
A. Dragon 2.3 2.2 2.3 2.2 2.4 2.4 2.4 2.1 2.3 2.2 2.2
Sponza S. 2.8 3.2 2.7 2.7 2.8 2.8 2.8 2.6 2.7 2.7 2.7
Sibenik 2.4 3.1 2.3 2.3 2.4 2.4 2.4 2.3 2.3 2.3 2.3
P. Plant s. 9 2.9 5.0 2.7 2.8 2.9 2.9 2.9 2.5 2.7 2.7 2.8
Fairy Forest 2.6 2.7 2.5 2.4 2.6 2.6 2.6 2.4 2.5 2.5 2.5
Sponza L. 2.3 2.5 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3
Conference S. 2.5 3.1 2.4 2.4 2.5 2.5 2.5 2.3 2.5 2.5 2.5
Conference L. 2.5 3.1 2.4 2.2 2.6 2.6 2.5 2.3 2.4 2.5 2.5
P. Plant s. 16 2.9 8.6 2.7 3.0 2.9 2.9 2.9 2.7 2.7 2.7 2.7
Soda Hall 2.6 3.5 2.6 2.5 2.6 2.6 2.6 2.5 2.5 2.6 2.6
Pompeii 2.8 3.0 2.6 2.4 2.8 2.8 2.8 2.6 2.7 2.7 2.7
San Miguel 3.0 3.1 2.9 2.8 3.0 3.0 3.0 2.9 2.9 2.9 3.0
Power Plant 2.6 3.8 2.7 2.6 2.6 2.6 2.6 2.6 2.5 2.6 2.7

Table 17 Average number of references per leaf. The abbreviations of the methods can be seen
in table 8.

and Bonsai. Second, the incremental algorithm, which yielded rather higher costs on the
individual objects, yields much better results here. More particularly, the incremental
algorithm achieves the best costs of all tested methods on 9 of 12 architectural scenes.
On the Soda Hall scene, the cost achieved by the incremental algorithm is notably lower.
In the costs, the incremental algorithm is in general followed by the AAC or the PLOC
variants. The costs of the AAC-HQ directly follow the incremental method on 4 of 12
scenes. On two other scenes (Power plant and San Miguel) the incremental algorithm
is followed by the PL3 PLOC variant and then by the AAC-HQ, which is, however,
significantly faster on these scenes than the PL3. The other PLOC variants already
yield larger costs on these two scenes, while the construction times of the AAC-HQ are
still lower. The situation is similar also for the Sponza Large scene.
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5.1 First phase - basic measurement

Scene FSW BIN AHQ ALQ BP0 BP1 BP2 INC PL1 PL2 PL3
Serapis 36.8 38.7 43.1 43.0 38.2 38.0 37.7 43.7 41.8 42.4 42.8
Armadillo 24.4 24.9 28.7 27.8 25.4 25.1 25.2 28.3 27.7 28.0 28.3
Angel 23.1 24.4 26.2 26.1 23.9 23.7 23.6 25.7 25.6 26.0 26.3
Dragon 40.3 42.1 47.8 47.1 42.2 41.6 41.4 59.7 45.8 46.4 46.5
H. Buddha 45.4 48.1 53.9 53.8 47.4 46.9 46.7 68.2 52.0 51.8 52.7
Blade 53.1 53.8 68.6 64.1 56.4 55.5 55.2 133.1 62.2 64.0 66.6
Hairball 196.6 206.6 214.2 222.3 206.8 191.8 191.7 199.5 209.5 207.4 205.5
A. Dragon 27.1 28.8 32.0 31.0 28.0 27.8 27.8 46.4 30.8 31.0 31.8
Sponza S. 46.7 51.5 45.1 45.9 55.0 48.5 48.2 42.2 45.2 44.6 44.6
Sibenik 17.9 20.5 17.0 17.9 21.5 21.9 22.8 16.2 17.0 17.1 16.8
P. Plant s. 9 7.9 8.3 5.9 6.0 8.8 7.3 7.0 6.1 6.1 6.1 6.1
Fairy Forest 20.4 20.4 22.3 21.3 21.3 20.9 20.5 24.3 21.6 22.2 22.2
Sponza L. 49.1 53.9 39.1 40.6 57.7 48.5 50.0 39.6 41.3 39.6 39.1
Conference S. 29.0 27.9 21.8 22.0 30.1 27.9 27.9 20.9 22.6 22.7 22.3
Conference L. 23.1 26.4 20.4 21.0 28.6 24.2 24.0 20.1 21.4 20.8 20.7
P. Plant s. 16 18.4 20.1 17.0 17.6 21.6 18.2 18.0 15.5 17.5 17.1 17.0
Soda Hall 51.5 56.5 47.7 48.1 60.4 52.9 52.7 39.9 47.5 46.6 47.5
Pompeii 41.8 46.1 42.2 59.0 47.8 43.0 42.3 34.6 40.7 39.4 37.5
San Miguel 42.7 49.4 36.1 37.0 50.1 46.1 44.7 34.2 38.7 36.8 35.6
Power Plant 19.6 20.3 16.9 17.2 22.6 19.6 19.3 16.1 18.0 17.1 16.9

Table 18 Sum of the surface area of inner nodes divided by the surface area of the whole BVH.
The abbreviations of the methods can be seen in table 8.

Scene FSW BIN AHQ ALQ BP0 BP1 BP2 INC PL1 PL2 PL3
Serapis 9.6 9.7 9.2 9.6 9.5 9.5 9.5 10.0 9.2 9.1 9.0
Armadillo 4.0 5.1 4.1 4.3 4.0 4.0 4.0 4.2 4.1 4.0 4.0
Angel 4.8 4.9 4.6 4.9 4.8 4.8 4.8 4.8 4.6 4.6 4.5
Dragon 8.6 9.3 8.3 8.6 8.6 8.6 8.6 9.2 8.3 8.3 8.2
H. Buddha 10.2 11.0 9.8 10.2 10.2 10.2 10.2 10.7 9.8 9.8 9.7
Blade 9.8 18.8 9.6 10.0 9.7 9.7 9.7 10.5 9.6 9.5 9.5
Hairball 233.8 234.3 235.2 235.2 233.2 233.2 233.5 247.1 233.1 233.4 233.9
A. Dragon 4.6 4.9 4.4 4.6 4.6 4.6 4.6 4.4 4.4 4.3 4.1
Sponza S. 24.1 31.8 24.0 23.2 22.8 22.8 23.9 23.7 23.6 23.7 23.8
Sibenik 9.1 11.8 7.8 7.9 8.7 8.7 8.4 8.0 8.0 7.8 8.1
P. Plant s. 9 8.3 9.3 7.9 8.0 8.1 8.1 8.2 7.9 7.9 7.9 7.9
Fairy Forest 9.6 20.2 9.6 9.8 9.6 9.6 9.6 9.6 9.7 9.6 9.6
Sponza L. 25.7 28.7 25.3 25.1 24.7 24.7 24.9 26.0 25.5 24.9 24.8
Conference S. 12.1 30.2 12.2 12.2 12.1 12.1 12.3 12.6 12.2 12.1 12.2
Conference L. 11.6 28.4 11.5 11.5 11.6 11.6 11.5 11.9 11.6 11.5 11.5
P. Plant s. 16 9.7 18.7 9.4 9.8 9.7 9.7 9.7 9.8 9.5 9.5 9.4
Soda Hall 17.3 26.6 16.7 16.9 16.8 16.8 17.1 17.5 16.5 16.6 16.6
Pompeii 32.9 37.0 31.5 31.7 32.4 32.4 32.9 32.9 32.0 31.9 31.9
San Miguel 15.9 19.7 15.3 15.6 15.6 15.6 15.7 16.7 15.5 15.5 15.5
Power Plant 13.6 29.9 13.4 13.7 13.5 13.5 13.6 13.5 13.3 13.3 13.3

Table 19 Sum of the surface areas of leaves multiplied by the number of triangles per leaf,
divided by the surface area of the whole BVH. The abbreviations of the methods can be seen
in table 8.
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5 Results

The main disadvantage of the incremental algorithm is the construction speed on
large scenes containing more than 5 million triangles (Pompeii, San Miguel and Power
Plant scenes). On these, the construction times of the variants of the AAC and PLOC
algorithms are notably lower. On the other hand, the incremental algorithm is faster
in construction than the fastest PLOC variant (PL1) on 6 of the other 9 architectural
scenes (i.e. the scenes of low and moderate complexity). When comparing the construc-
tion speed of the incremental algorithm to the variants of the AAC, we can see, that the
AAC-HQ variant (the slower of the two AAC variants) is faster than the incremental
method on 11 of 12 architectural scenes, the exception being the Sponza Small scene.
The AAC-HQ is also faster on all architectural scenes than both the fastest PLOC
variant (PL1) and the PLOC variant achieving the best cost (differs throughout the
scenes).

We would also like to sum up the results of the Bonsai algorithm, which achieved
interestingly good results on the individual objects. However, the results of the algo-
rithm on the architectural scenes are not that good. Bonsai achieves better cost than
the AAC and the PLOC variants only on the Fairy Forest scene. It is true, that both
Bonsai variants with pruning achieve lower construction times than the AAC-HQ and
all three PLOC variants on all architectural scenes, but they are slower than the AAC-
LQ on them. Moreover, the AAC-LQ produces hierarchies with lower costs on 10 of 12
scenes, the exceptions being the Fairy Forest and the Pompeii scenes.

Another interesting fact comes from the comparison of the binning-based top-down
method and the AAC-LQ. The binning truly achieves high performance when com-
pared to other BVHs also on architectural scenes. However, the AAC-LQ is faster
in construction than the binning method on 10 of 12 scenes while achieving (some-
times even significantly) better costs (with the exception of the Pompeii scene). When
the high performance construction is needed for the architectural scenes, the AAC-LQ
seems to be a better choice than the binning-based construction.

5.1.3 Summary

So far we have not discussed the rendering times. From the tables containing the
values of the rendering times (real and user, respectively) using the primary rays, 13
and 14, we can see, that the rendering times do not exactly correspond to the costs
of the hierarchies. This can can be caused by three facts implied by the use of the
surface area heuristic, which is present in some form in all tested methods (driving
the construction itself or the compaction of the resulting hierarchy). First, the SAH
assumes that the rays traversing the scene do not intersect primitives, which does not
hold. Second, we have used the traversal and intersection constants, 𝑐𝑇 and 𝑐𝐼 , as
proposed in various works (e.g. by Bittner et al. [BHH13], 𝑐𝑇 = 3.0 and 𝑐𝐼 = 2.0).
These were, however, not estimated on the hardware we used for the measurement. The
rendering times can thus be influenced by this fact. The solution would be to estimate
new constants.

There can also be a third possible influence, which was also discussed in the work
of Aila et al. [AKL13]. They identified that the surface area heuristic in the original
version does not predict the performance of the ray tracing perfectly, which can lead
to discrepancy between the SAH-based costs and the rendering times. This can have
the impact on the results presented here as well. Since the rendering times also depend
on the degree of optimization of ray tracing application, we are thus more interested in
the costs of the hierarchies and we will sum the results mainly based on these.

We would like to mention, as already discussed in several previous works, that

66



5.2 Second phase - Insertion-based optimization

different results can be achieved for the scenes containing individual objects and the
architectural ones. As implied by our results, these two types of scenes could demand
different approaches. While the top-down methods and the Bonsai algorithm (which
use also a top-down construction but in two phases) yielded better costs on individual
objects than the bottom-up methods, the situation is inverse on the architectural scenes.

On the individual objects, based on our results, we see the Bonsai algorithm (more
particularly either of the two variants using pruning) as promising. It yielded low costs
of the hierarchies while still constructing them in low times compared to the other
methods. When willing to trade the hierarchy quality for construction speed (i.e. to
construct faster), one could also use binning-based algorithm for the individual objects.
On the individual objects, the binning still achieves lower costs than the bottom-up
methods (the AAC and the PLOC). Our results also imply, that the incremental al-
gorithm is not that convenient for this type of scenes, leading to higher costs and in
higher construction times than the binning and the Bonsai.

On the architectural scenes, however, bottom-up methods and the incremental
method achieve better costs. When aiming for the costs, one could use the incre-
mental algorithm, which yields the best costs on most architectural scenes but at the
cost of longer construction. The other two options are the AAC and the PLOC algo-
rithms. Of these two, the AAC allows for faster constructions (both the AAC-HQ and
the AAC-LQ variants). The PLOC algorithm constructs hierarchies in higher times.
When being able to trade the quality for the construction speed, the choice can be
the AAC-LQ method, which allows for high performance construction. Based on the
costs, both the binning method and the Bonsai algorithm yield worse results than the
previously mentioned ones.

5.2 Second phase - Insertion-based optimization
In the second phase of the measurement we evaluated the results of applying the
Insertion-based optimization algorithm on some of the hierarchies constructed by var-
ious algorithms. More particularly, we chose the full sweep and the incremental algo-
rithm. Using these we have built the hierarchies such that each of the leaves contain
exactly one triangle, as suggested in the work of Bittner et al. [BHH13]. We have also
added the binning-based construction, which, however, can terminate the branches of
the hierarchy earlier based on the SAH. To get the picture about the results against
the non-optimized versions of the algorithms, we present the results relative to these
in table 20. The absolute values can be seen in the appendix A. We also present the
bar charts of the optimized costs of the three examined algorithms in figures 23 (Full
sweep method), 24 (the binning) and 25 (the Incremental algorithm).

5.2.1 Individual objects
When comparing the impact of the optimization on the hierarchies on the scenes con-
taining individual objects, we can see that the costs after the optimization are roughly
the same throughout the optimized methods. The algorithm profiting the most from the
use of the optimization is the incremental one. Without optimization, this algorithm
yielded higher costs when compared to the full sweep method, sometimes significantly.
The costs of BVHs constructed by the incremental method and later optimized are
now similar to the costs of the full sweep method. The cost reduction of the BVHs
constructed with the incremental method ranges from 8,6% to 55% with an average
of 24%. The full sweep method, on the other hand, does not profit much from the
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5 Results

Scene FSW BIN INC
Serapis 100.5 98.5 86.9
Armadillo 100.7 99.2 89.9
Angel 99.4 95.7 91.4
Dragon 98.9 97 70.7
H. Buddha 99 95.3 69.9
Blade 100.4 96.6 45
Hairball 93.2 91.3 91.2
A. Dragon 101.0 97.7 63.1
Sponza S. 84.8 77 92.1
Sibenik 86.5 77.3 94.6
P. Plant s. 9 80.9 81.4 97.3
Fairy Forest 94.7 92.3 83.9
Sponza L. 77.6 73.5 89.3
Conference S. 75.4 78.3 95.3
Conference L. 86.3 78.8 95.1
P. Plant s. 16 81.2 77.3 92.9
Soda Hall 74.2 70 90.5
Pompeii 83 78.9 93.2
San Miguel 77.4 70.3 91.2
Power Plant 79.6 80.3 90.4

FSW BIN INC
107 103.4 84.3

105.2 113.7 90.3
108.1 111.2 90.3
117.7 104.6 68
112.3 101.2 69.3
110.7 101.5 56.7
114.8 92.9 87.8
114.1 100.2 73.5

61 59.7 84.1
97.3 99.2 99.6
91.3 84.6 101.4
97.3 132.1 79.1
81.2 80.5 81.3
90.8 69 96.4

105.6 82.1 102.3
92.6 75.6 86.7
69.7 76.6 78.3
97.1 86.4 85.1
76.8 68.9 83.4
79.9 144.1 95.5

FSW BIN INC
100.8 97.7 85.8
100.8 98.8 89.4
99.6 94.7 90.7
99.3 96 68.7
99.3 94.2 67.6

100.6 95.7 42.5
87.2 82.6 87.7

101.1 97.2 60.6
77.3 67.4 86.5
87.2 67.3 94.4
70.9 66.3 95.1
92.6 86.8 79.8
69.9 63.6 86.4
68.3 62.7 94.7
81.8 63.3 94.0
75.5 63.2 91.0
68.9 60 88.5
75.8 66.8 91.0
72.6 61.5 90.4
70.9 60.6 85.7

Table 20 Relative results of the Insertion-based optimization. Left: BVH cost, middle: ren-
dering, user time [s], right: sum of the surface area of inner nodes. The values are relative to
the values of the BVHs without running the optimization. The abbreviations of the methods
can be seen in table 8.

- FSW BIN INC
From -0.99 0.82 8.64
To 6.79 8.74 55.01
Average 0.87 3.6 24

FSW BIN INC
5.35 7.69 2.65

25.75 29.98 16.05
18.19 22.03 7.84

Table 21 BVH costs, the summary of relative results using the Insertion-based optimization.
Left: individual objects, right: architectural scenes.

- FSW BIN INC
From -17.67 -13.73 9.68
To -5.21 7.11 43.3
Average -11.24 -3.58 22.49

FSW BIN INC
-5.63 -44.09 -2.34
38.99 40.30 21.74
13.29 11.78 10.57

Table 22 Rendering user times, the summary of relative results using the Insertion-based
optimization. Left: individual objects, right: architectural scenes.

- FSW BIN INC
From -1.11 1.2 9.34
To 12.77 17.38 57.48
Average 1.41 5.39 25.88

FSW BIN INC
7.35 13.24 4.92

31.72 40 20.16
24.02 34.21 10.21

Table 23 Sum of the surface area of inner nodes, the summary of relative results using the
Insertion-based optimization. Left: individual objects, right: architectural scenes.
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5.2 Second phase - Insertion-based optimization

Figure 23 The costs of the full sweep method after optimization relative to the cost before
optimization.

Figure 24 The costs of the binning-based method after optimization relative to the cost before
optimization.

optimization with the exception of the Hairball scene (cost reduction of 6,8%), which
is similar to the results reported by Bittner et al. [BHH13]. The slight increase in
the cost is caused by the oscillation, which happens already in the beginning of the
optimization. More particularly, we do not save the best hierarchy (at least at some
points of the optimization) but use the final one. Using the stored better hierarchy
would resolve the cost increase. In the binning-based method, the results on this type
of scenes are similar even though the hierarchy contains more than one triangle per
leaf. The cost reduction ranges from 0.8% to 8.7% with an average of 3.6%.

The decrease of the costs of hierarchies built by the incremental algorithm is signif-
icant on some scenes (Turbine Blade, Happy Buddha, Dragon and Asian Dragon), but
this type of BVH takes also the longest times to optimize (mainly on the Turbine Blade
and Asian Dragon scenes). The hierarchies built using the binning are the fastest to
optimize on 5 of the 8 individual objects, on the 3 other the fastest are the hierarchies
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5 Results

Figure 25 The costs of the incremental algorithm after optimization relative to the cost before
optimization.

built using the full sweep. The costs of those hierarchies (built with the binning and
then optimized) are also the highest throughout the tested methods with the exception
of the Hairball scene.

5.2.2 Architectural scenes

The situation is different on the architectural scenes. First, all tested hierarchies do
benefit from the optimization, including the ones constructed using the full sweep.
Second, the costs after the optimization are now similar throughout the scenes only for
the hierarchies built using the full sweep and the incremental method, while the ones
built using binning remain at sometimes even significantly higher costs (Power Plant,
Fairy Forest and both Conference scenes). We think that this follows the fact, that the
hierarchies constructed with the binning contain more than one triangle per leaf. In
their work, Bittner et al. suggested to construct the hierarchies such that exactly one
triangle is contained in a leaf, which thus seems to be true. On the other hand, even
our tested hierarchies based on the binning do benefit from the optimization, but the
final costs are worse than for the other methods (even though the binning benefits from
the optimization even more than the other methods).

More particularly, the cost reduction for the full sweep method ranges from 5.3% to
25.7% with an average of 18.2%, for the incremental algorithm from 2.7% to 16% with
an average of 7.8% and for the binning from 7.7% to 30% with an average of 22%.

Interestingly, though the cost decrease is smaller in hierarchies built using the incre-
mental method than those using the full sweep method, the time needed to optimize the
first ones is higher on 8 of the 12 scenes. The time needed to optimize the hierarchies
built using the binning method is the lowest on 9 of the 12 scenes (the exceptions being
the Sibenik Cathedral, Fairy Forest and the Soda Hall scenes), but as mentioned, the
resulting costs are the highest among the methods.

5.2.3 Summary

To sum the results up, they are again different through the individual objects and the
architectural scenes. On the individual objects there is not much point in applying the
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5.3 Third phase - Parallel construction

Scene Real Time Rel.
Serapis 52.22
Armadillo 52.34
Angel 49.31
Dragon 48.03
H .Buddha 49.13
Blade 50.53
Hairball 48.40
A. Dragon 50.40
Sponza S. 53.33
Sibenik 54.69
P. Plant s. 9 54.22
Fairy Forest 49.70
Sponza L. 50.41
Conference S. 45.64
Conference L. 51.10
P. Plant s. 16 54.87
Soda Hall 49.23
Pompeii 48.48
San Miguel 47.82
Power Plant 50.80

Real Time [s]
0.047
0.190
0.286
0.427
0.536
0.718
1.177
3.818
0.032
0.035
0.045
0.083
0.124
0.115
0.139
0.107
0.892
2.568
3.877
5.722

User Time [s]
0.163
0.676
1.030
1.533
1.929
2.563
4.234

13.825
0.111
0.117
0.154
0.294
0.437
0.410
0.497
0.368
3.204
9.297

14.117
20.533

Table 24 Results of the parallel binning. Left: Construction real time relative to the sequential
version, middle: construction real time [s], right: construction user time [s].

optimization on the full sweep method, since it seems to construct the hierarchies well
enough. The quality of the hierarchies built using the binning is somewhat lower due to
the quality-speed tradeoff, and the method can benefit from the optimization. The best
improvement is achieved in the hierarchies built using the incremental algorithm, which
is, however, paid in long optimization times. On the individual scenes, the hierarchies
also reach similar costs when the optimization is applied.

The situation is different on the architectural scenes. Though all the methods benefit
from the optimization, the higher relative improvements are achieved on the hierarchies
built using the full sweep and the binning algorithm. The relative improvement in the
hierarchies built using the incremental algorithm is lower, but the costs were already
lower compared to the other methods. On this type of scenes, the costs throughout the
methods do not reach the similar values, as the quality of the hierarchies built using
the binning algorithm remains lower.

5.3 Third phase - Parallel construction

In this section we present the results of our implementation of the parallel version of
the binning-based algorithm. This parallel version yields exactly the same costs of
hierarchies as the sequential one, because it does not change the construction principle.
We have verified that the costs yielded by our implementations are the same. The
results can be seen in table 24. Since the only change to the sequential version is the
construction time, we present only these results. In the left part of the table, we can
see the real times of the construction relative to the sequential version, in the middle
part the absolute construction real times and in the right part the absolute construction
user times.

We can see that the construction using the parallel implementation lasts approxi-
mately half of the time of the sequential one for all the scenes. More specifically, the
relative rendering times range from 45,6% to 54,9% of the corresponding times of the
sequential version. This means that the speedup is around 2 for all the scenes. We
measured the results on a CPU with 2 physical with HyperThreading and comparing
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5 Results

Scene AHQ ALQ PL1 PL2 PL3
Serapis 100.3 97 99.4 99.7 100.4
Armadillo 98.4 100.7 99.7 100.9 100.8
Angel 99.7 99.8 100 99.3 99.1
Dragon 99.8 99.1 100.8 99.9 100.8
H. Buddha 100.1 98.7 98.9 100 100.2
Blade 99.6 99.1 100 100.6 100.2
Hairball 100 99.9 100.2 99.9 100.2
A. Dragon 99.8 99.6 99.4 100.1 99.8
Sponza S. 100.6 100.9 103.3 101.8 102.1
Sibenik 99.4 98 101 102.1 100.2
P. Plant s. 9 100 99.4 100.9 99.1 98.5
Fairy Forest 96.9 97 97.5 95.8 97.3
Sponza L. 99.8 98.1 98.9 102.4 100.4
Conference S. 99.3 98.1 98.5 97.6 98.8
Conference L. 99.5 97.9 99.1 98.7 98.9
P. Plant s. 16 99.1 99.3 99.2 99.6 99.9
Soda Hall 100.8 101 100.8 101.8 99
Pompeii 90.4 74.5 93.4 94.6 96.6
San Miguel 99.3 99.4 97.6 99.2 101.5
Power Plant 98.8 99.6 98.8 99.9 99.5

AHQ ALQ PL1 PL2 PL3
113 131 106.5 102 99.1

115.5 134.4 107.5 101.7 99.7
113.5 133.3 107.4 102.8 99.9
113.8 134.6 106.5 102.2 99.8
112.1 129 105.6 101.1 99.9
112.8 132.2 108.7 104.2 100.5
111.5 128.8 108.5 104.2 100.8
110.7 129.4 109.9 104.7 100.3
112.6 132.8 106.1 100.6 98.3
111.5 137.9 109.9 103.5 93.6
111.4 138.6 112.2 105.5 104.2

116 136.6 115 106.6 101.3
113.6 135.6 109.5 103.4 98.8
113.6 137.8 113.5 105.4 97.6

118 139.7 123.4 114.5 110.6
110.7 143.7 109 102.2 97.4
110.4 133 115.8 106.8 99.2
117.4 138.2 115.8 108.9 102.8

111 132.3 119.8 112.5 104.5
110.4 135.3 128.9 115.4 106.1

Table 25 The results of applying the EMC64VAR code to BVH construction. The values are
relative to the values when the original Morton code is used (in percents). Left: costs of the
BVHs, right: construction, sequential, user times.

to the results of Wald [Wal07] (using 4 threads), we achieve similar speedup for the
Fairy Forest and the Conference Small scene. On the Turbine Blade scene (which is
larger than the previous two scenes), Wald achieves better speedup than we do.

One of the reasons can lie in the absence of the SIMD instruction usage in our code.
The other reason can lie in the parallelization schemes switching (for which Wald in fact
does not provide any values). We tuned the switching to achieve the best results across
the scenes and tried two approaches - switching based on the number of primitives in
the nodes and also on the depth in the hierarchy (which is aimed to generate a number
of tasks for the vertical scheme that is a multiple of the number threads). In the end,
we ended up with the first approach (which is also the one described by Wald in his
work), because it provided more balanced results throughout the scenes and we present
these results.

5.4 Fourth phase - Extended Morton codes

In this phase of the measurement we examined the effect of using the Extended Morton
codes on the construction of several of our implemented hierarchies. We compared the
impacts of the extended codes to the codes the methods use as they were proposed.
These methods are the AAC and the PLOC. We examined the the impacts of both of
the extended codes proposed in the work of Vinkler et al. [VBH17], EMC64SORT and
EMC64VAR. From these two codes, the first (which uses less of the ideas proposed in the
work) did not bring us any appreciable results. The more advanced code, EMC64VAR,
on the other hand, brought improvements to the hierarchies. We therefore present and
further discuss the results of the EMC64VAR code only.

We present the results of using the EMC64VAR code relative to the original methods
(using the codes and lengths originally proposed). The new costs of hierarchies and the
construction user times can be seen in table 25 and the rendering user times in table
26. We also present the absolute results in the appendix A. These are absolute values
of costs, construction and rendering times, but also all the other metrics considered in
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5.4 Fourth phase - Extended Morton codes

Scene AHQ ALQ PL1 PL2 PL3
Serapis 95.2 96.1 98.4 96.1 97
Armadillo 98.8 98.4 90.2 90.3 107.8
Angel 98.3 94.9 99.7 91 100.3
Dragon 92.6 96.7 106.9 96.4 99.8
H. Buddha 97.4 93.8 89.6 98.5 91.8
Blade 89.7 98 94.3 108.9 101
Hairball 104.5 87.8 106.6 98.8 101.7
A. Dragon 101.3 108.3 104.3 97.4 94.5
Sponza S. 101.1 83.3 109.1 94.4 95.2
Sibenik 103.3 96.5 102.9 109 106.2
P. Plant s. 9 100.4 101.4 98.3 100.9 100
Fairy Forest 96.8 100.3 96.2 101.1 103.3
Sponza L. 99.2 110.9 104.7 116.4 94.2
Conference S. 102 96.8 99.4 101.2 99.3
Conference L. 97.8 98.4 104.5 90.8 101.7
P. Plant s. 16 101.6 102.6 98.2 100.3 102.9
Soda Hall 75.1 85.4 106.9 127.6 99.1
Pompeii 92.6 72.9 85.8 80 89.6
San Miguel 102.1 103.2 97.1 101 96.5
Power Plant 99.8 96.7 121.4 112.1 85.7

Table 26 Rendering, user times, when using EMC64VAR code for BVH construction. The
values are relative to the values when the original Morton code is used (in percents).

- AHQ ALQ PL1 PL2 PL3
From -0.27 -0.65 -0.84 -0.87 -0.83
To 1.59 2.97 1.08 0.69 0.91
Average 0.3 0.78 0.19 -0.05 -0.2

AHQ ALQ PL1 PL2 PL3
0.79 -0.95 -3.34 -2.37 -2.09
9.59 25.49 6.56 5.39 3.41
1.34 3.06 0.92 0.62 0.61

Table 27 BVH costs, the summary of relative results using the EMC64VAR code. Left:
individual objects, right: architectural scenes.

- AHQ ALQ PL1 PL2 PL3
From -15.53 -34.57 -9.94 -4.68 -0.81
To -10.71 -28.83 -5.62 -1.10 0.90
Average -12.86 -31.60 -7.61 -2.85 0.00

AHQ ALQ PL1 PL2 PL3
-18.00 -43.7 -28.88 -15.41 -10.60
-10.39 -32.34 -6.10 -0.59 6.39
-13.05 -36.80 -14.90 -7.12 -1.19

Table 28 Construction user times, the summary of relative results using the EMC64VAR code.
Left: individual objects, right: architectural scenes.

- AHQ ALQ PL1 PL2 PL3
From -4.55 -8.27 -6.91 -8.86 -7.79
To 10.31 12.23 10.43 9.74 8.17
Average 2.77 3.26 1.26 2.85 0.76

AHQ ALQ PL1 PL2 PL3
3.34 -10.86 -21.42 -27.59 -6.16

24.94 27.14 14.21 20.03 14.32
2.34 4.31 -2.06 -2.89 2.20

Table 29 Rendering user times, the summary of relative results using the EMC64VAR code.
Left: individual objects, right: architectural scenes.

this thesis. In this section we also present the summary of results divided between the
individual objects and architectural scenes. The summary for BVH costs can be seen
in table 27, for construction real times in table 28 and for rendering real times in table
29.

From our results we can see small improvement in the costs of the hierarchies for the
AAC variants (14 out of 20 scenes for the AAC-HQ and 17 out of 20 for the AAC-LQ).
The costs also improve for the PLOC algorithm (more specifically on 12 for PL1, on
12 for PL2 and on 10 for PL3). The costs improve for all algorithm variants for the
Fairy Forest and the Pompeii scenes. This is because these scenes span mainly in two
dimensions and the variable axis order of the EMC64VAR code accounts for that. For
the AAC-LQ variant, which had the cost higher for the Pompeii, the cost is now similar
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5 Results

to the AAC-HQ variant.
While the construction times increased in our implementation (which could be,

however, further optimized), interesting are the results of the rendering times. While
on some scenes we observe an increase in the rendering time, on others the times are
notably lowered. The rendering times are lower than when using the original codes on
12 scenes for the AAC-HQ, on 14 scenes for the AAC-LQ, on 12 for the PL1, on 10 for
the PL2 and on 11 for the PL3. Significant reduction an be seen for the Pompeii scene
(mainly for the AAC-LQ, PL2 and PL1), again, and somewhat lower for the Happy
Buddha and Serapis scenes. For the AAC methods, there is also notable decrease of
costs on the Soda Hall scene and on the Armadillo scene for the PL1 and PL2 PLOC
variants. On the other scenes, there is a decrease for some of the methods, e.g. for the
individual objects for the AAC methods.
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6 Conclusion

In this thesis we examined the algorithms for the construction of an acceleration data
structure, the bounding volume hierarchy, for the use in the ray tracing method. In
our work we mainly focus on the algorithms designed for a CPU rather than a GPU.
We presented the introduction to the topic, where we described the main attributes of
the BVHs, the motivation of using them and their differences to k-d trees. After that
we presented a categorization of the methods and described each of the principles upon
which the respective category is based. We also recalled some of the state of the art
algorithms and included them in the respective categories.

In the next part of our thesis, we selected 6 BVH algorithms (5 construction ones
and 1 optimization algorithm), which we saw as promising in the context of the CPU
methods. We reimplemented these algorithms in the nanoGOLEM framework using
the C++ programming language. We focused on the design to be meaningful. We
also focused on the modern traits of the C++ language and the coding style. We also
added the description and the reimplementation of the Extended Morton codes. The
hierarchies constructed by any of the methods can be subsequently optimized using the
Insertion-based optimization method.

We evaluated the implemented methods on a set of 20 scenes, from which at least 14
scenes are publicly available and often used when evaluating the acceleration structures
for the ray tracing. For the evaluation we used the primary, shadow and randomly
generated rays. We present the results of our implementation by reporting not only
construction and rendering times and the costs of the hierarchies, but also other met-
rics, which are independent on the optimization and generally more suitable for the
comparison with other algorithms. Because of that, they also allow to verify the other
implementations of these methods. We summed the achieved results and compared
the convenience of using the methods while distinguishing between the scenes contain-
ing individual objects and the architectural scenes. Based on our results, we also add
suggestions about the examined methods.

Apart from that, we also implemented one of the methods to run in parallel using
the threads from the C++11 standard. Initially, we expected that we would implement
all the methods in such manner or even using the SIMD instructions. In the end, we
were unfortunately unable to achieve that. This is mainly because we spent much larger
amount of time on verifying our implemented methods than we initially expected. It
was easy to implement the methods to correctly construct the hierarchies that allow
for correctly rendered images, while not running unsufficiently long. However, it was
harder to tune the implementation to yield the costs of the hierarchies based on the
surface area heuristic same to the results reported in the respective works. This was
mainly because of the small details in the algorithms, which, however, had impact on
the costs if implemented different from the original methods. To present valid results,
the verification was, however, more important than the optimization.

Nevertheless, the results of our thesis can be used for comparing the algorithms with
others, future verification of other implementations of the same algorithms and also to
compare the implemented algorithms among themselves.
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Appendix A

Other results

In this appendix we present additional results of our measurement.

A.1 First phase - primary and shadow rays, random rays
These are the results rendering the scenes using other than primary rays, in particular
primary rays added by shadow rays and random rays generated using the algorithm
proposed in the work of Havran et al. [HPP00]. For using the combination primary
and shadow rays, the rendering times are presented in tables 30 (real) and 31 (user),
the average number of traversal steps per ray in table 32 and of the intersection tests
per ray in table 33. For the rays generated using the random scheme, the rendering
times are presented in tables 34 (real) and 35 (user), the average number of traversal
steps per ray in table 36 and of the intersection tests per ray in table 37.

A.2 Second phase - Insertion-based optimization, absolute
values

In this section we present the absolute values of the results achieved in the second
phase of our measurement. The costs of the hierarchies after the optimization together
with the real and user times of the optimization procedure are presented in table 38,
the sum of the surface area of inner nodes divided by the surface area of the hierarchy
together with the sum correponding to the leaves and the average number of primitive

Scene FSW BIN AHQ ALQ BP0 BP1 BP2 INC PL1 PL2 PL3
Serapis 0.521 0.544 0.707 0.663 0.541 0.542 0.538 0.696 0.670 0.669 0.678
Armadillo 0.341 0.365 0.478 0.447 0.370 0.361 0.360 0.477 0.464 0.485 0.462
Angel 0.395 0.410 0.505 0.499 0.410 0.413 0.413 0.551 0.480 0.516 0.510
Dragon 0.305 0.319 0.483 0.434 0.320 0.322 0.323 0.515 0.402 0.420 0.429
H. Buddha 0.240 0.251 0.348 0.331 0.251 0.257 0.257 0.423 0.346 0.324 0.362
Blade 0.358 0.392 0.686 0.539 0.395 0.384 0.383 0.836 0.518 0.527 0.588
Hairball 2.307 2.446 3.371 3.616 2.491 2.437 2.503 3.395 2.880 2.917 2.979
A. Dragon 0.546 0.594 0.801 0.719 0.567 0.579 0.588 1.047 0.748 0.769 0.834
Sponza S. 1.680 2.053 1.441 1.686 1.602 1.520 1.725 1.468 1.409 1.501 1.390
Sibenik 1.366 1.744 1.545 1.522 1.966 1.893 1.754 1.456 1.491 1.439 1.451
P. Plant s. 9 0.293 0.459 0.265 0.260 0.356 0.294 0.286 0.254 0.276 0.273 0.271
Fairy Forest 0.761 1.494 0.797 0.801 0.871 0.799 0.765 0.970 0.834 0.786 0.815
Sponza L. 2.652 3.027 2.881 2.763 2.845 2.377 2.459 2.317 2.741 2.581 2.658
Conference S. 1.066 1.504 0.963 0.957 1.137 1.000 0.983 0.975 0.961 0.984 0.914
Conference L. 1.032 1.508 0.936 0.942 1.247 1.075 1.038 0.974 0.950 1.012 0.984
P. Plant s. 16 2.052 3.502 2.408 2.358 2.637 1.993 2.126 2.153 2.306 2.247 2.320
Soda Hall 2.266 2.371 2.540 2.529 2.376 2.059 2.242 1.931 2.251 2.155 2.420
Pompeii 1.757 2.000 2.063 2.658 2.024 1.881 1.891 1.897 2.211 2.296 2.067
San Miguel 2.960 3.438 2.911 2.926 3.527 3.264 3.109 2.881 3.163 3.022 3.030
Power Plant 3.098 5.715 4.028 3.817 3.986 3.249 3.249 2.779 4.110 3.346 3.896

Table 30 Rendering, real time, primary and shadow rays [s].
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Scene FSW BIN AHQ ALQ BP0 BP1 BP2 INC PL1 PL2 PL3
Serapis 0.521 0.542 0.707 0.662 0.540 0.542 0.536 0.695 0.668 0.669 0.678
Armadillo 0.341 0.365 0.477 0.447 0.370 0.361 0.360 0.477 0.463 0.485 0.462
Angel 0.394 0.409 0.505 0.499 0.409 0.412 0.413 0.551 0.480 0.515 0.510
Dragon 0.305 0.319 0.482 0.434 0.319 0.321 0.322 0.515 0.402 0.420 0.428
H. Buddha 0.240 0.249 0.348 0.330 0.249 0.256 0.257 0.424 0.346 0.324 0.362
Blade 0.359 0.391 0.685 0.539 0.394 0.384 0.382 0.835 0.518 0.525 0.587
Hairball 2.307 2.444 3.370 3.615 2.491 2.436 2.503 3.393 2.880 2.915 2.979
A. Dragon 0.546 0.594 0.802 0.719 0.567 0.579 0.586 1.047 0.748 0.769 0.834
Sponza S. 1.679 2.051 1.440 1.685 1.602 1.517 1.725 1.467 1.408 1.501 1.389
Sibenik 1.366 1.742 1.544 1.522 1.964 1.892 1.753 1.455 1.490 1.439 1.449
P. Plant s. 9 0.293 0.458 0.264 0.260 0.355 0.293 0.284 0.253 0.276 0.273 0.271
Fairy Forest 0.760 1.492 0.797 0.800 0.870 0.798 0.765 0.970 0.834 0.786 0.813
Sponza L. 2.652 3.027 2.880 2.762 2.844 2.377 2.457 2.317 2.740 2.580 2.657
Conference S. 1.066 1.502 0.962 0.956 1.135 0.999 0.982 0.974 0.960 0.984 0.914
Conference L. 1.031 1.508 0.936 0.942 1.246 1.075 1.038 0.973 0.950 1.012 0.984
P. Plant s. 16 2.051 3.501 2.408 2.358 2.634 1.992 2.126 2.152 2.306 2.247 2.320
Soda Hall 2.266 2.370 2.540 2.529 2.374 2.059 2.241 1.930 2.249 2.155 2.419
Pompeii 1.757 1.999 2.063 2.657 2.024 1.880 1.890 1.895 2.210 2.295 2.066
San Miguel 2.959 3.436 2.910 2.925 3.524 3.263 3.109 2.879 3.162 3.022 3.029
Power Plant 3.097 5.714 4.028 3.816 3.983 3.249 3.248 2.778 4.109 3.345 3.896

Table 31 Rendering, user time, using the primary and shadow rays [s].

Scene FSW BIN AHQ ALQ BP0 BP1 BP2 INC PL1 PL2 PL3
Serapis 34.1 35.5 48.5 44.6 36.0 35.4 34.9 42.6 44.5 45.0 45.6
Armadillo 22.9 24.0 32.2 29.9 24.9 23.8 23.8 27.4 29.7 31.2 30.4
Angel 22.4 23.0 28.3 27.6 23.5 23.0 22.9 25.5 25.2 27.6 27.9
Dragon 17.1 18.0 27.5 25.1 18.4 17.9 17.8 27.0 21.6 22.9 23.4
H. Buddha 12.0 12.5 17.6 16.8 12.7 12.5 12.4 19.5 16.5 15.3 17.3
Blade 22.7 23.3 41.0 33.0 24.6 23.9 23.6 49.5 30.3 31.3 34.7
Hairball 81.2 84.5 114.4 115.6 88.0 81.2 81.7 104.6 90.6 95.5 99.1
A. Dragon 28.1 29.5 38.8 35.8 29.3 28.9 28.9 45.0 34.2 35.3 37.9
Sponza S. 113.1 138.2 110.4 129.8 130.9 125.6 115.7 105.1 108.8 115.8 114.3
Sibenik 122.1 128.2 137.5 128.1 168.0 165.2 152.7 123.9 124.6 121.6 119.8
P. Plant s. 9 19.2 22.2 14.9 15.2 23.1 17.3 17.2 13.6 15.5 15.5 14.9
Fairy Forest 60.9 63.4 65.5 62.0 69.7 64.7 61.2 76.1 65.6 61.1 64.4
Sponza L. 207.8 266.6 208.2 229.6 250.8 196.9 208.4 167.0 212.5 205.3 191.7
Conference S. 74.1 84.0 61.7 59.2 82.8 72.0 72.5 57.8 59.3 62.9 55.8
Conference L. 77.7 101.7 65.4 66.0 99.1 76.7 75.9 63.5 63.4 68.3 65.8
P. Plant s. 16 168.1 191.8 198.1 196.5 218.0 155.7 170.8 158.0 191.3 189.9 184.5
Soda Hall 164.0 189.5 242.6 236.7 234.2 191.0 209.7 168.5 208.1 201.4 222.0
Pompeii 105.9 116.2 115.0 160.9 125.3 108.9 107.4 95.2 121.4 123.6 108.8
San Miguel 254.5 265.3 219.3 218.1 299.5 266.2 258.4 182.1 235.5 222.4 217.2
Power Plant 296.7 294.3 342.6 327.9 390.3 316.1 309.6 219.4 356.6 301.0 334.6

Table 32 Number of traversal steps per single ray while using primary and shadow rays.

references per leaf are presented in table 39. The average number of intersection tests
and traversal steps per ray using the optimized hierarchies can be seen in table 40.
Table 41 shows the rendering real and user times achieved when using the optimized
hierarchies. All these results are achieved using the primary rays only.

A.3 Fourth phase - Extended Morton codes, absolute values

We present the results of using the EMC64VAR extended Morton code in BVH con-
struction in this section. In the table 42 we can see the user times of the construction
using the code as well as the average number of primitive references per leaf. In the ta-
ble 43 real and user times of the rendering using the BVHs built using the EMC64VAR
code are shown. The average numbers of traversal steps and intersection tests per ray
can be seen in table 44 and the sums of the surface areas of inner nodes and the leaves
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A.3 Fourth phase - Extended Morton codes, absolute values

Scene FSW BIN AHQ ALQ BP0 BP1 BP2 INC PL1 PL2 PL3
Serapis 5.7 6.1 6.9 6.8 5.8 5.8 5.8 7.0 6.3 6.1 6.1
Armadillo 2.1 2.7 2.8 2.9 2.2 2.1 2.1 2.6 2.7 2.8 2.4
Angel 3.1 3.3 3.6 4.0 3.2 3.1 3.1 3.6 3.4 3.5 3.3
Dragon 2.5 2.8 3.7 3.6 2.6 2.5 2.5 4.2 2.9 3.0 3.0
H. Buddha 1.8 2.1 2.3 2.4 1.9 1.9 1.9 3.2 2.4 2.1 2.4
Blade 2.0 3.8 3.4 2.9 2.1 2.0 2.0 6.9 2.6 2.5 2.7
Hairball 62.3 66.8 73.1 83.9 64.4 60.3 62.4 84.7 64.7 64.6 65.3
A. Dragon 2.8 6.2 3.4 3.4 2.9 2.8 2.8 4.8 3.2 3.1 3.2
Sponza S. 54.1 65.3 28.5 33.4 24.9 23.4 51.2 29.7 25.4 32.0 21.7
Sibenik 19.6 48.7 21.4 24.4 31.2 31.5 28.3 18.0 24.5 20.1 23.0
P. Plant s. 9 8.6 25.9 9.2 8.4 10.8 8.9 9.1 8.7 9.5 9.4 9.6
Fairy Forest 11.6 94.0 11.3 11.6 11.9 11.7 11.8 16.0 11.4 11.3 11.4
Sponza L. 57.3 40.0 70.3 40.4 31.1 35.4 38.8 42.9 41.9 40.2 57.0
Conference S. 26.6 71.8 27.9 28.0 25.1 23.6 23.2 31.6 27.0 27.7 27.0
Conference L. 23.8 52.5 24.7 24.8 23.5 27.0 25.6 27.2 26.0 27.4 26.1
P. Plant s. 16 47.6 174.3 47.7 47.7 55.6 50.3 50.7 54.1 45.9 45.2 49.3
Soda Hall 74.5 68.0 31.0 35.2 31.6 38.7 39.4 30.7 33.8 31.0 33.2
Pompeii 53.9 67.1 58.5 65.4 55.9 59.6 59.0 68.8 67.7 69.2 65.7
San Miguel 25.5 56.1 32.7 34.9 32.6 34.1 30.8 44.4 35.6 37.6 39.7
Power Plant 24.1 310.2 42.7 60.2 23.6 22.9 22.2 42.9 40.3 29.8 43.9

Table 33 Number of intersection tests per single ray while using primary and shadow rays.

Scene FSW BIN AHQ ALQ BP0 BP1 BP2 INC PL1 PL2 PL3
Serapis 0.618 0.660 0.684 0.645 0.619 0.621 0.598 0.813 0.683 0.705 0.673
Armadillo 0.059 0.056 0.059 0.082 0.056 0.056 0.057 0.058 0.076 0.055 0.061
Angel 0.059 0.051 0.061 0.059 0.053 0.055 0.056 0.065 0.066 0.057 0.059
Dragon 0.520 0.487 0.715 0.736 0.454 0.461 0.488 1.042 0.588 0.672 0.638
H. Buddha 0.035 0.032 0.040 0.040 0.033 0.033 0.033 0.049 0.037 0.044 0.040
Blade 0.055 0.057 0.087 0.076 0.056 0.056 0.057 0.120 0.076 0.082 0.082
Hairball 2.279 2.205 3.457 2.942 2.350 2.233 2.385 3.053 2.819 2.694 3.277
A. Dragon 0.523 0.548 0.642 0.615 0.560 0.558 0.557 0.868 0.654 0.642 0.697
Sponza S. 0.724 1.047 0.735 0.852 0.736 0.813 0.870 0.650 0.854 0.851 0.852
Sibenik 0.518 0.694 0.573 0.656 0.664 0.685 0.695 0.522 0.504 0.523 0.496
P. Plant s. 9 0.223 0.819 0.248 0.239 0.276 0.214 0.213 0.217 0.233 0.259 0.292
Fairy Forest 0.660 0.598 0.605 0.622 0.542 0.531 0.530 0.608 0.635 0.617 0.581
Sponza L. 1.157 1.075 1.158 1.128 1.599 1.270 1.227 1.017 1.097 1.018 0.987
Conference S. 0.729 1.030 0.681 0.707 0.862 0.785 0.752 0.615 0.772 0.717 0.671
Conference L. 0.107 0.140 0.097 0.101 0.125 0.111 0.101 0.092 0.107 0.103 0.098
P. Plant s. 16 0.196 0.291 0.260 0.230 0.246 0.207 0.204 0.200 0.220 0.242 0.211
Soda Hall 0.638 0.802 0.685 0.640 0.647 0.636 0.596 0.773 0.790 0.633 0.792
Pompeii 1.078 1.285 1.185 1.279 1.179 1.124 1.195 0.997 0.950 1.049 1.015
San Miguel 1.335 1.508 1.511 1.760 1.615 1.587 1.501 1.442 1.632 1.764 1.535
Power Plant 0.778 1.327 0.810 0.831 1.031 0.834 0.814 0.713 0.919 0.884 0.932

Table 34 Rendering, real times, using the random rays [s].

in the same spirit as in the previous sections can be seen in table 45.
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Scene FSW BIN AHQ ALQ BP0 BP1 BP2 INC PL1 PL2 PL3
Serapis 0.617 0.659 0.684 0.644 0.619 0.621 0.598 0.813 0.682 0.704 0.672
Armadillo 0.058 0.056 0.059 0.082 0.056 0.056 0.057 0.058 0.076 0.055 0.061
Angel 0.059 0.050 0.061 0.058 0.053 0.055 0.056 0.065 0.066 0.057 0.059
Dragon 0.519 0.487 0.715 0.736 0.453 0.461 0.488 1.042 0.588 0.672 0.638
H. Buddha 0.034 0.031 0.039 0.039 0.032 0.033 0.033 0.047 0.038 0.044 0.040
Blade 0.056 0.057 0.087 0.076 0.056 0.056 0.057 0.121 0.076 0.082 0.081
Hairball 2.279 2.204 3.457 2.941 2.350 2.233 2.384 3.053 2.819 2.694 3.277
A. Dragon 0.522 0.548 0.641 0.615 0.560 0.558 0.556 0.868 0.654 0.642 0.697
Sponza S. 0.724 1.046 0.735 0.852 0.736 0.813 0.870 0.650 0.853 0.851 0.852
Sibenik 0.518 0.694 0.573 0.656 0.664 0.685 0.695 0.522 0.504 0.523 0.496
P. Plant s. 9 0.223 0.820 0.248 0.238 0.276 0.214 0.214 0.217 0.233 0.259 0.292
Fairy Forest 0.659 0.597 0.606 0.622 0.542 0.531 0.530 0.608 0.635 0.617 0.581
Sponza L. 1.157 1.075 1.158 1.127 1.599 1.270 1.227 1.017 1.097 1.017 0.986
Conference S. 0.729 1.030 0.681 0.707 0.862 0.785 0.752 0.615 0.772 0.717 0.672
Conference L. 0.107 0.140 0.097 0.101 0.125 0.111 0.101 0.092 0.107 0.103 0.098
P. Plant s. 16 0.196 0.291 0.260 0.230 0.246 0.206 0.204 0.199 0.220 0.242 0.211
Soda Hall 0.638 0.802 0.685 0.640 0.647 0.635 0.596 0.772 0.790 0.633 0.792
Pompeii 1.078 1.285 1.185 1.278 1.178 1.123 1.195 0.997 0.950 1.049 1.015
San Miguel 1.335 1.508 1.511 1.760 1.614 1.586 1.501 1.441 1.632 1.763 1.535
Power Plant 0.777 1.327 0.810 0.830 1.031 0.833 0.814 0.713 0.918 0.883 0.931

Table 35 Rendering, user time, using the random rays [s].

Scene FSW BIN AHQ ALQ BP0 BP1 BP2 INC PL1 PL2 PL3
Serapis 48.5 52.2 57.1 50.4 51.3 50.4 48.2 60.8 54.1 54.7 53.6
Armadillo 4.0 3.9 3.8 7.2 4.0 3.8 4.2 3.2 6.7 3.6 4.6
Angel 4.0 3.4 4.1 3.9 3.7 3.9 4.0 4.0 5.2 3.6 4.0
Dragon 41.4 39.0 61.0 59.7 37.3 37.9 40.1 78.7 47.9 55.5 52.3
H. Buddha 0.8 0.7 1.0 1.0 0.8 0.8 0.8 1.3 0.9 1.2 1.0
Blade 2.5 2.3 4.0 3.6 2.6 2.6 2.6 5.6 3.7 3.9 4.0
Hairball 107.9 114.4 180.1 148.7 115.6 107.0 112.7 144.2 135.3 136.2 155.0
A. Dragon 40.5 43.1 51.5 50.0 44.4 42.5 43.7 59.7 50.3 47.9 52.4
Sponza S. 61.0 70.6 68.9 72.6 62.1 69.0 70.9 47.6 71.4 72.2 70.4
Sibenik 43.5 50.3 47.7 51.6 57.9 58.0 58.6 44.3 41.3 44.7 42.5
P. Plant s. 9 19.1 33.8 23.5 20.3 25.4 18.4 17.7 18.5 21.1 20.5 21.9
Fairy Forest 56.6 46.1 46.3 50.3 43.9 41.6 43.8 46.1 50.1 50.6 45.6
Sponza L. 89.6 87.9 81.4 87.7 139.3 102.9 89.0 70.6 79.7 79.6 75.5
Conference S. 57.1 69.9 48.0 45.2 74.4 58.9 59.5 38.5 50.9 46.6 46.2
Conference L. 6.1 7.7 5.2 5.7 8.4 6.3 6.2 5.2 5.7 5.1 5.0
P. Plant s. 16 17.4 23.5 24.3 21.0 22.2 18.6 18.0 16.3 19.1 21.8 18.2
Soda Hall 58.2 45.3 57.6 52.6 57.1 55.3 50.9 53.4 57.8 49.7 60.1
Pompeii 88.8 99.8 92.6 104.9 103.4 92.5 91.8 75.0 74.1 79.2 81.2
San Miguel 115.4 126.5 118.7 131.3 139.4 134.3 128.5 97.3 125.9 133.1 118.3
Power Plant 74.5 94.8 74.0 73.6 101.5 80.3 76.9 58.9 81.0 83.6 85.4

Table 36 Numbers of traversal steps per single ray when using the random rays.
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A.3 Fourth phase - Extended Morton codes, absolute values

Scene FSW BIN AHQ ALQ BP0 BP1 BP2 INC PL1 PL2 PL3
Serapis 11.6 14.2 11.5 13.0 12.5 12.5 11.9 14.6 12.1 11.7 11.0
Armadillo 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Angel 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0
Dragon 6.7 7.2 8.2 10.6 6.4 6.5 6.7 12.4 6.9 7.3 7.1
H. Buddha 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1
Blade 0.3 0.6 0.4 0.4 0.3 0.3 0.3 0.6 0.3 0.4 0.3
Hairball 114.8 106.5 134.7 125.1 114.3 113.1 118.8 138.5 119.4 109.7 133.8
A. Dragon 5.1 5.1 4.8 5.0 5.2 5.2 5.2 8.2 5.0 5.1 5.2
Sponza S. 17.4 44.0 10.9 18.5 17.6 19.1 22.3 17.3 18.4 17.6 20.9
Sibenik 12.2 22.3 12.4 15.6 14.2 15.3 14.2 8.1 10.6 8.8 9.1
P. Plant s. 9 4.6 66.3 4.0 4.0 5.4 3.8 4.8 4.0 4.0 6.1 9.3
Fairy Forest 11.0 16.7 11.9 12.6 11.5 11.5 10.0 13.3 11.9 11.2 11.6
Sponza L. 34.0 27.0 33.7 26.7 32.0 27.8 34.7 28.5 27.5 23.4 23.9
Conference S. 20.4 38.9 21.3 25.1 19.3 21.7 19.8 21.8 24.9 24.3 21.5
Conference L. 3.2 5.4 2.0 2.1 3.0 3.2 2.2 1.9 2.4 2.6 2.4
P. Plant s. 16 2.1 6.6 2.1 2.1 2.7 2.1 2.3 2.3 2.9 2.2 2.1
Soda Hall 11.0 40.9 12.8 13.2 11.0 10.6 11.6 19.2 18.5 14.1 17.9
Pompeii 22.3 35.2 21.1 19.8 19.7 20.5 30.8 17.9 18.2 20.1 18.1
San Miguel 19.8 26.3 25.0 32.9 26.5 26.7 24.0 31.0 25.8 26.1 26.5
Power Plant 7.9 43.5 8.7 11.2 8.5 8.7 8.3 8.1 9.1 8.6 9.3

Table 37 Numbers of intersection tests per single ray when using the random rays.

Scene FSW BIN INC
Serapis 130.1 133.5 131.2
Armadillo 81.9 84.3 84.0
Angel 78.4 79.5 79.3
Dragon 136.7 140.4 139.7
H. Buddha 155.1 158.5 157.9
Blade 179.6 192.3 189.2
Hairball 985.6 993.1 996.5
A. Dragon 91.4 94.0 93.4
Sponza S. 159.6 167.9 160.4
Sibenik 62.1 65.7 61.1
P. Plant s. 9 32.6 35.4 33.0
Fairy Forest 76.1 93.6 77.4
Sponza L. 154.1 161.2 152.4
Conference S. 83.9 112.9 84.0
Conference L. 79.9 107.2 80.0
P. Plant s. 16 60.6 75.6 61.3
Soda Hall 140.4 156.0 140.0
Pompeii 158.8 167.6 158.2
San Miguel 123.8 131.8 124.1
Power Plant 68.4 96.8 68.1

FSW BIN INC
0.521 0.682 3.716
2.233 2.072 10.421

10.796 10.511 20.996
35.258 13.496 45.582
31.372 18.388 51.994
12.446 22.407 200.830

221.301 46.862 235.713
38.190 73.355 562.322
1.518 0.932 2.018
1.293 1.365 2.201
2.361 0.434 2.033
1.016 1.187 3.175
8.957 1.230 5.789
7.361 1.575 4.572
4.002 2.032 7.341

12.600 1.992 7.608
28.819 28.950 32.612

136.439 65.271 181.245
375.857 129.199 449.883
340.905 188.276 499.551

FSW BIN INC
0.520 0.681 3.716
2.224 2.069 10.412

10.786 10.508 20.985
35.237 13.484 45.562
31.361 18.371 51.969
12.426 22.386 200.806

221.241 46.827 235.661
38.067 73.220 562.145
1.517 0.930 2.015
1.292 1.363 2.200
2.360 0.434 2.028
1.015 1.186 3.174
8.953 1.227 5.783
7.360 1.570 4.565
3.999 2.031 7.330

12.592 1.990 7.603
28.783 28.923 32.569

136.336 65.203 181.142
375.702 129.100 449.709
340.665 188.124 499.313

Table 38 Left: cost after optimization, middle: optimization, real time [s], right: optimization,
user time [s].
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Scene FSW BIN INC
Serapis 37.1 37.8 37.5
Armadillo 24.6 24.6 25.3
Angel 23.0 23.1 23.3
Dragon 40.0 40.4 41.0
H. Buddha 45.1 45.3 46.1
Blade 53.4 51.5 56.6
Hairball 171.5 170.7 175.0
A. Dragon 27.4 28.0 28.1
Sponza S. 36.1 34.7 36.5
Sibenik 15.6 13.8 15.3
P. Plant s. 9 5.6 5.5 5.8
Fairy Forest 18.9 17.7 19.4
Sponza L. 34.3 34.3 34.2
Conference S. 19.8 17.5 19.8
Conference L. 18.9 16.7 18.9
P. Plant s. 16 13.9 12.7 14.1
Soda Hall 35.5 33.9 35.3
Pompeii 31.7 30.8 31.5
San Miguel 31.0 30.4 30.9
Power Plant 13.9 12.3 13.8

FSW BIN INC
9.5 10.0 9.3
4.0 5.2 4.0
4.7 5.1 4.7
8.3 9.6 8.3
9.9 11.3 9.9
9.7 18.9 9.7

235.6 240.5 235.8
4.7 5.0 4.5

25.7 31.9 25.5
7.7 12.1 7.6
7.9 9.4 7.8
9.6 20.2 9.7

25.6 29.1 24.8
12.3 30.3 12.4
11.6 28.5 11.7
9.5 18.8 9.5

16.9 27.2 17.1
31.9 37.6 31.9
15.5 20.3 15.6
13.3 30.0 13.4

FSW BIN INC
2.4 2.5 2.4
2.1 2.6 2.2
2.3 2.4 2.3
2.4 2.7 2.4
2.4 2.7 2.4
2.2 3.5 2.2
6.2 6.6 6.2
2.4 2.3 2.3
2.7 3.3 2.7
2.4 3.2 2.3
2.7 5.2 2.7
2.6 2.8 2.5
2.3 2.5 2.3
2.5 3.2 2.4
2.6 3.3 2.5
2.8 8.9 2.8
2.6 3.6 2.6
2.8 3.2 2.8
3.0 3.3 3.0
2.6 4.0 2.6

Table 39 Left: Sum of surface area of inner nodes, middle: sum of surface area of leaves, right:
number of references per leaf.

Scene FSW BIN INC
Serapis 4.8 5.1 4.8
Armadillo 2.1 3.1 2.2
Angel 2.1 2.4 2.2
Dragon 2.6 3.0 2.6
H. Buddha 1.8 2.1 1.9
Blade 2.0 3.8 2.3
Hairball 44.4 45.2 48.6
A. Dragon 2.8 3.6 3.1
Sponza S. 17.4 27.1 19.0
Sibenik 9.9 38.5 12.6
P. Plant s. 9 7.9 22.7 8.0
Fairy Forest 9.5 150.6 9.8
Sponza L. 31.2 39.5 23.5
Conference S. 20.8 44.7 21.8
Conference L. 19.2 38.1 18.8
P. Plant s. 16 31.2 88.9 32.5
Soda Hall 18.9 32.3 17.3
Pompeii 48.6 55.4 47.1
San Miguel 22.6 32.0 22.8
Power Plant 20.7 352.2 25.6

FSW BIN INC
24.3 24.6 25.0
18.0 19.3 19.5
15.0 15.7 15.7
18.1 18.3 19.1
12.4 12.5 13.1
16.8 16.6 19.8
56.3 55.7 63.8
23.6 24.3 26.2
48.2 56.0 56.7
71.4 76.0 75.5
11.2 10.7 11.5
41.3 35.7 48.4
89.5 90.1 86.6
38.3 34.9 37.4
37.5 33.9 36.8
85.6 85.0 85.4
63.6 66.0 66.8
58.2 58.9 56.6

106.9 106.8 111.6
114.8 133.9 127.2

Table 40 Left: number of intersection tests per ray, right: number of traversal steps per ray.
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A.3 Fourth phase - Extended Morton codes, absolute values

Scene FSW BIN INC
Serapis 0.412 0.428 0.437
Armadillo 0.303 0.348 0.360
Angel 0.295 0.317 0.337
Dragon 0.354 0.343 0.364
H. Buddha 0.265 0.262 0.289
Blade 0.321 0.341 0.399
Hairball 1.565 1.424 1.801
A. Dragon 0.543 0.558 0.690
Sponza S. 0.715 0.872 0.817
Sibenik 0.853 1.172 0.922
P. Plant s. 9 0.220 0.331 0.219
Fairy Forest 0.570 1.753 0.627
Sponza L. 1.398 1.472 1.262
Conference S. 0.669 0.817 0.665
Conference L. 0.639 0.777 0.612
P. Plant s. 16 1.231 1.782 1.262
Soda Hall 0.861 1.039 0.882
Pompeii 1.306 1.363 1.255
San Miguel 1.600 1.718 1.668
Power Plant 1.556 5.357 1.833

FSW BIN INC
0.411 0.427 0.436
0.303 0.348 0.361
0.295 0.317 0.336
0.353 0.342 0.363
0.264 0.262 0.289
0.321 0.341 0.398
1.565 1.424 1.800
0.542 0.558 0.689
0.715 0.871 0.817
0.853 1.172 0.922
0.220 0.330 0.219
0.569 1.753 0.626
1.397 1.472 1.260
0.669 0.816 0.665
0.638 0.777 0.612
1.230 1.781 1.261
0.862 1.039 0.882
1.306 1.364 1.254
1.599 1.717 1.665
1.556 5.356 1.832

Table 41 Rendering [s], left: real time, right: user time.

Scene AHQ ALQ PL1 PL2 PL3
Serapis 0.208 0.093 0.343 0.668 2.310
Armadillo 0.833 0.371 1.228 2.194 7.165
Angel 1.146 0.516 1.940 3.642 12.397
Dragon 2.156 0.942 3.783 7.298 24.916
H. Buddha 2.724 1.187 4.845 9.464 32.629
Blade 4.188 1.747 5.475 10.523 34.934
Hairball 7.502 3.146 10.258 18.648 61.541
A. Dragon 17.176 7.376 22.999 43.079 140.715
Sponza S. 0.188 0.077 0.261 0.512 1.771
Sibenik 0.204 0.080 0.299 0.614 2.359
P. Plant s. 9 0.303 0.115 0.442 0.886 3.022
Fairy Forest 0.427 0.179 0.681 1.380 4.869
Sponza L. 0.678 0.278 0.946 1.817 6.115
Conference S. 0.717 0.288 0.927 1.847 6.546
Conference L. 0.826 0.327 1.085 2.174 7.875
P. Plant s. 16 0.919 0.365 1.205 2.354 7.904
Soda Hall 5.771 2.283 8.039 15.700 53.694
Pompeii 15.684 6.086 22.374 44.568 152.978
San Miguel 21.128 8.459 33.179 65.043 224.766
Power Plant 33.926 12.640 41.569 78.739 255.741

AHQ ALQ PL1 PL2 PL3
2.3 2.3 2.3 2.3 2.3
2.2 2.2 2.2 2.1 2.1
2.3 2.2 2.3 2.3 2.3
2.3 2.3 2.3 2.3 2.3
2.3 2.3 2.3 2.3 2.3
2.2 2.2 2.2 2.2 2.2
5.9 5.5 5.7 5.8 5.9
2.3 2.2 2.3 2.2 2.2
2.7 2.7 2.7 2.7 2.7
2.3 2.3 2.3 2.3 2.3
2.7 2.7 2.7 2.7 2.7
2.5 2.5 2.5 2.5 2.5
2.3 2.3 2.3 2.3 2.3
2.5 2.5 2.5 2.5 2.5
2.5 2.5 2.5 2.5 2.5
2.7 3.3 2.7 2.7 2.7
2.6 2.6 2.6 2.6 2.6
2.7 2.7 2.7 2.7 2.7
2.9 2.8 2.9 2.9 3.0
2.6 2.6 2.6 2.6 2.6

Table 42 Statistics using the EMC64VAR code. left: construction, sequential, user times[s],
right: number of references per leaf.

87



Appendix A Other results

Scene AHQ ALQ PL1 PL2 PL3
Serapis 0.503 0.474 0.484 0.492 0.491
Armadillo 0.399 0.367 0.352 0.389 0.415
Angel 0.346 0.333 0.326 0.344 0.350
Dragon 0.440 0.412 0.418 0.425 0.420
H. Buddha 0.332 0.304 0.309 0.331 0.326
Blade 0.523 0.436 0.414 0.480 0.497
Hairball 2.254 2.089 1.806 1.744 1.890
A. Dragon 0.703 0.681 0.685 0.667 0.699
Sponza S. 0.893 0.896 0.947 0.881 0.837
Sibenik 0.989 0.956 0.960 1.009 1.000
P. Plant s. 9 0.229 0.224 0.230 0.233 0.229
Fairy Forest 0.607 0.605 0.614 0.622 0.660
Sponza L. 1.584 1.868 1.947 1.789 1.554
Conference S. 0.699 0.694 0.701 0.689 0.677
Conference L. 0.572 0.558 0.600 0.570 0.595
P. Plant s. 16 1.599 1.592 1.469 1.492 1.607
Soda Hall 1.193 1.340 1.420 1.614 1.464
Pompeii 1.465 1.553 1.498 1.426 1.439
San Miguel 1.998 2.029 2.134 2.093 2.012
Power Plant 2.879 2.501 3.515 2.360 2.328

AHQ ALQ PL1 PL2 PL3
0.501 0.473 0.483 0.491 0.490
0.398 0.365 0.351 0.389 0.415
0.346 0.332 0.325 0.343 0.349
0.439 0.412 0.418 0.425 0.420
0.332 0.304 0.309 0.331 0.326
0.522 0.436 0.413 0.479 0.497
2.252 2.088 1.806 1.744 1.890
0.704 0.681 0.685 0.667 0.698
0.891 0.895 0.947 0.880 0.837
0.989 0.956 0.958 1.008 1.000
0.227 0.225 0.229 0.233 0.228
0.607 0.605 0.614 0.622 0.660
1.584 1.868 1.946 1.789 1.554
0.698 0.694 0.700 0.689 0.676
0.573 0.558 0.600 0.570 0.595
1.599 1.591 1.469 1.492 1.607
1.192 1.340 1.420 1.614 1.464
1.463 1.552 1.497 1.425 1.438
1.997 2.026 2.131 2.092 2.012
2.878 2.499 3.514 2.361 2.327

Table 43 Rendering times using hierarchies built using the EMC64VAR code. Left: real time
[s], right: user time [s].

Scene AHQ ALQ PL1 PL2 PL3
Serapis 31.2 30.0 30.0 30.2 31.0
Armadillo 23.4 22.9 21.0 23.6 24.9
Angel 18.4 18.1 17.1 18.1 18.7
Dragon 24.9 23.9 23.4 23.5 23.9
H. Buddha 16.5 15.7 14.9 16.0 16.2
Blade 27.9 24.2 22.0 25.1 26.6
Hairball 89.8 83.5 70.4 69.8 77.3
A. Dragon 31.0 30.2 28.3 28.6 29.7
Sponza S. 72.3 72.5 75.8 67.6 68.4
Sibenik 85.1 78.4 81.8 84.4 85.1
P. Plant s. 9 12.3 12.2 12.3 12.6 12.3
Fairy Forest 46.6 46.1 44.7 46.9 51.4
Sponza L. 118.4 143.5 146.6 131.5 115.8
Conference S. 43.2 42.4 41.4 40.9 40.4
Conference L. 36.1 35.4 37.1 35.9 36.8
P. Plant s. 16 122.7 115.1 112.6 113.8 116.6
Soda Hall 113.9 118.2 129.4 146.3 136.1
Pompeii 71.5 74.9 71.3 68.8 70.8
San Miguel 149.1 144.9 156.3 159.5 145.7
Power Plant 213.7 195.5 255.5 188.0 183.6

AHQ ALQ PL1 PL2 PL3
5.0 5.3 5.2 5.0 4.8
2.6 2.7 2.3 2.5 2.6
2.4 2.5 2.2 2.3 2.3
3.1 3.4 3.1 3.1 2.9
2.2 2.3 2.1 2.2 2.1
2.8 2.7 2.4 2.7 2.7

56.7 58.7 50.5 47.6 49.1
3.3 3.6 3.2 2.9 2.9

16.2 16.7 16.8 18.8 15.6
12.7 16.1 13.1 14.5 11.7
8.4 7.8 8.5 8.3 8.2
9.6 9.7 9.5 9.6 9.8

30.2 34.5 34.0 32.9 25.6
21.5 21.2 21.6 21.7 20.8
16.3 15.2 17.0 15.8 16.3
35.9 37.8 31.9 33.0 40.4
15.6 19.1 21.2 19.9 18.3
50.7 50.9 51.3 50.0 48.9
25.9 28.1 26.8 25.7 25.1
41.5 35.8 52.9 28.5 28.6

Table 44 Metrics of hierarchies built using the EMC64VAR code. Left: traversal steps per ray,
right: intersection tests per ray.
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A.3 Fourth phase - Extended Morton codes, absolute values

Scene AHQ ALQ PL1 PL2 PL3
Serapis 43.3 41.6 41.5 42.2 43.0
Armadillo 28.2 28.0 27.6 28.3 28.5
Angel 26.1 26.0 25.6 25.8 26.0
Dragon 47.7 46.6 46.2 46.3 47.0
H. Buddha 54.0 53.0 51.4 51.8 52.8
Blade 68.3 63.5 62.3 64.5 66.8
Hairball 214.2 222.1 210.1 207.2 206.4
A. Dragon 31.9 30.9 30.7 31.1 31.8
Sponza S. 45.7 46.6 47.4 45.9 46.0
Sibenik 16.8 17.4 17.2 17.4 17.0
P. Plant s. 9 5.9 5.9 6.1 6.0 5.9
Fairy Forest 21.3 20.4 20.9 21.0 21.4
Sponza L. 39.2 39.6 40.6 40.8 39.2
Conference S. 21.6 21.4 22.1 21.9 22.0
Conference L. 20.3 20.4 21.1 20.4 20.5
P. Plant s. 16 16.8 17.2 17.3 17.1 17.0
Soda Hall 48.2 48.7 48.0 47.7 46.9
Pompeii 35.9 38.2 36.6 36.0 35.5
San Miguel 35.7 36.7 37.7 36.6 36.5
Power Plant 16.7 17.1 17.7 17.1 16.8

AHQ ALQ PL1 PL2 PL3
9.2 9.6 9.2 9.1 9.0
4.1 4.3 4.1 4.0 4.0
4.6 4.9 4.6 4.6 4.5
8.3 8.6 8.3 8.3 8.2
9.8 10.1 9.8 9.8 9.7
9.6 10.0 9.6 9.5 9.5

235.3 235.1 233.1 233.5 233.9
4.4 4.6 4.4 4.2 4.1

23.8 23.0 23.3 23.2 23.6
7.8 7.9 8.1 8.1 7.8
7.9 8.0 7.9 7.9 7.9
9.6 9.9 9.7 9.6 9.6

24.9 25.1 25.6 25.1 24.8
12.2 12.3 12.2 12.2 12.2
11.6 11.5 11.6 11.6 11.5
9.4 10.1 9.4 9.4 9.4

16.7 16.8 16.5 16.5 16.5
31.9 32.4 32.1 32.0 31.9
15.5 15.6 15.2 15.3 15.3
13.4 13.7 13.3 13.3 13.3

Table 45 Metrics of the hierarchies built using the EMC64VAR code. Left: sum of the surface
area of inner nodes divided by the surface area of the whole hierarchy. Right: sum of the
surface area of leaves multiplied by number of triangles contained in them.
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Appendix B

DVD Content

In this appendix, we describe the contents of the DVD added to the printed version of
this thesis. There are several folders on the DVD:

∙ scenes - this folder contains the 20 testing scenes we used for our measurement.
The scenes are provided in .obj format. It also contains the scenes in binary
format. We implemented the application to load the scenes using these files (if
available) rather than the .obj files, because it is significantly faster. This folder
also contains the camera definition files we used for our measurement and the
rendered images of the scenes.

∙ text - contains a folder with all the latex files and images we used and created
while writing the text. It also contains the PDF version of our thesis.

∙ documentation - contains the documentation of our source code generated using
the Doxygen software.

∙ src - contains the source codes of our implemented methods and the nanoGOLEM
ray tracing framework. Also contains the MS Visual Studio project we used during
the development.

∙ bin - contains the executables for MS Windows and Ubuntu.
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