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Abstract

In today's world a big trend of automation of human labor can be observed across many
industries. The thesis explores an opportunity to develop a decision support tool for invest-
ment banks which manage large �nancial portfolios. Thus the goal is to create an algorithm
that can support portfolio manager from an investment bank in his work by monitoring the
stock market and providing him advices about investment opportunities and potential risks.
This algorithm processes historical data for a given stock and predict the future value and
whether or not is pro�table to invest in such stock. Also it keeps track of the potential risk
and recomputes the portfolio if the potential risk get outside the set limit. The goal was to
take into account all practical constraints of portfolio management including trading fees,
portfolio rebalancing and structured risk model etc. We demonstrate on a number of scenar-
ios the added value of the algorithm and its ability to manage the portfolio with signi�cant
pro�ts.

Abstrakt

V dne²ním sv¥t¥ m·ºeme sledovat v mnoha odv¥tvích velký trend automatizace lidské práce.
Tato práce prozkoumává p°íleºitosti k vývoji nástroje pro podporu rozhodování se pro in-
vesti£ní banky, které spravují velké mnoºství �nan£ních portfolií. Cilem této práce je vytvo°it
algoritmus, který bude pomáhat v práci správci portfolia v investi£ní bance tím, ºe za n¥j
bude sledovat akciový trh a hledat investi£ní p°íleºitosti nebo p°ípadné ohroºení investice.
Tento algoritmus na základ¥ historických dat predikuje vývoj ceny akcie a rozhoduje, zda je
výhodné do dané akcie investovat. Správce zárove¬ má moºnost si nastavit limit, jak moc
je ochotný riskovat a tento algoritmu bude hlídat, zda nebyl p°ekro£en tento limit, p°ípadn¥
p°ehodnotí celé portfolio. Cílem je zahrnout v²echna praktická omezení v£etn¥ poplatk·
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za transakci, vyvaºování portfolia a strukturovaný riskový pro�l. Demonstrujeme na n¥ko-
lika scéná°ích p°idanou hodnotu tohoto algoritmu a jeho schopnost spravovat portfolio s
významným ziskem.
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Chapter 1

Introduction

The current trend is portfolio management is automation using arti�cial intelligence. The
bene�t of such automation is that AI can control much larger number of stocks and can
predict changes in price very fast and promptly react to them. The goal is to have AI that
either automatically trades and fully manages the portfolio or is just a robo-advisor which
helps the portfolio manager �nd investment opportunities and warn against possible losses.

The problem is that we have large number of instruments that changes its price every
day and a portfolio manager who can reliably watch over limited subset of these instruments.
The task is to create an algorithm that can watch over the historical data from stock market
and predict which stocks will rise in its value and invest into them.

In this work we will focus on predicting the future values only from the historical data
and try to �nd the optimal portfolio which will result in the higher investment appreciation.
However, the higher the yield is usually the higher the risk is. Therefore we will introduce
risk measure called Conditional value at risk (CVaR) 2.5.2 for which we can de�ne con�dence
level and accepted loss which will the optimizer take in consideration when searching for the
optimal portfolio.

At the end of this work we will show that with this approach we are able to achieve
pro�ts of up to tens of percent while trading only stocks of large technological companies
and even higher pro�ts when we add cryptocurrencies into our portfolio.

In the �rst part we will de�ne the prediction models 2.1 and the risk model 2.5. After
that we will de�ne the optimization problem and construct a linear program describing
our optimization task 4. And �nally evaluate the resulting application against real-world
data 6.4.
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Chapter 2

Methodology

There are several subtasks when �nding the optimal portfolio. First of them is the prediction
of the price of instruments discussed in section 2.1. When knowing historical prices of given
instrument we would like to predict future prices over a speci�ed horizon. But the prediction
is not enough by itself, we need to estimate the probability distribution of the future prices,
in which we can use error of the model. The error of model can be estimated by using
prediction model on older data and comparing the predicted value with the real values 2.2.

By using these probability distributions we can sample scenarios, how the market could
be look after the speci�ed horizon 2.4. These scenarios are key parts of the LP solver, which
does the optimization portion of the problem.

2.1 Price prediction models

There are many ways how to predict values in timeseries from trivial models like linear
regression2.1.1 to more advanced models like ARIMA 2.1.3 and triple exponential smooth-
ing 2.1.6.

We will de�ne timeseries T which contains n equally distributed points

T = {(x1, y1), (x2, y2), . . . , (xn, yn)}

and function Pred(t), which returns the value of the instrument after t time periods after
the last observation (xn, yn).

2.1.1 Linear regression model

Linear regression is one of the simplest models. We are simplifying given timeseries to linear
function in the form of y = βx+ α which minimizes Mean squared error (MSE). The MSE
is computed as average squared error of all points from timeseries:

MSE =
1

n

n∑
i=1

εi =
1

n

n∑
i=1

[yi − βxi + α]2 (2.1)

3



CHAPTER 2. METHODOLOGY

The optimal regression line parameters β̂ and α̂ are then computed by minimizing MSE:

(β̂, α̂) = arg min
β,α

n∑
i=1

(βxi + α− yi)2 (2.2)

And the result:

β̂ =
x̄y − x̄ȳ
x̄2 − x̄2

α̂ = ȳ − β̂x̄
(2.3)

where

x̄y =
1

n

N∑
i=1

xiyi (2.4)

The resulting prediction function is then de�ned as Pred(t) = β(n+ t) + α.

2.1.2 Moving average model

The idea of the Moving average (MA) model is that the observation will be average of last
n points. MA models su�er from lagging behind. If values in the timeseries starts rising
after being constant for long period the model will undervalue them and if they start falling
the model will overvalue them. The more values are taken in account when computing MA
model, the longer it will take for any change in trend to manifest in the model.

We will use our de�ned timeseries T and show how to predict next value in series. The
number of values used in computing MA model is k.

yn+1 =
yn + yn−1 + · · ·+ yn−k+1

k
(2.5)

2.1.3 ARIMA model

ARIMA stands for autoregressive integrated moving average[6]. This model combines the
approach of moving average models and autoregressive models, while using integrated data,
meaning we do not predict the actual value, but we predict the relative change from the
last known point in time.h In this work we will be using signa�o implementation1, which is
written in Java.

2.1.4 Single exponential smoothing

Single exponential smoothing models have the similar idea as MA model, but instead of
computing average from last k points, we compute weighted moving average. The weights
decrease exponentially as the we are taking older data. The basic formula for single expo-
nential smoothing is

Sn = αyn + (1− α)Sn−1 0 < α ≤ 1 n ≥ 2 (2.6)

1https://github.com/signa�o/java-timeseries

4



2.1. PRICE PREDICTION MODELS

where Sn are smoothed values of the timeseries. This model requires to be initialized, because
when we want to compute the �rst available smoothed value S2 we need to have S1, but this
formula does not provide a way, how to get it. Common practice is to take the �rst value y1
or average of �rst L values 1/L

∑L
l=1 yl. We also need to set the parameter α, which controls

how much older data in�uence current observation. The closer α is to 1 the more we rely
on the last observation instead of the computed smoothed values. The value of parameter
α can be set as a constant or by computing smoothed values (S2, . . . , Sn) for many di�erent
values of α and selecting the one, that minimizes MSE.

The basic formula of single exponential smoothing is recurrent and when we expand it,
we can see where the exponential decrease of weights for older data comes from.

Sn = αyn + (1− α)Sn−1

= αyn + (1− α)αyn−1 + (1− α)2Sn−2

= α
n−2∑
i=0

(1− α)iyn−i + (1− α)n−2S1

(2.7)

With increasing i (going further into past) the exponent of 1 − α gets higher and since
α is from interval (0, 1] the coe�cient of yn−i in the sum decreases exponentially and the
parameter α indicates the speed of the decline.

If we want to predict future values, where we do not have the real observations we cannot
use the formula 2.6, because we do not know the value of yn. What we can do is �xate the
observation(yn) in the equation to the last known observation(ylast) and continue in the same
way as previously:

Sn+1 = αylast + (1− α)Sn

Sn+2 = αylast + (1− α)Sn+1

Sn+t = αylast + (1− α)Sn+t−1

(2.8)

Suppose the x values in our timeseries are subsequent days and we want to predict the value
for next year (t = 365). We can use the previous formula 365 times or by using the same
logic as in 2.7 we can expand the recurrent formula:

Sn+t = αylast + (1− α)Sn+i−1

Sn+t = αylast + (1− α)αylast + (1− α)2Sn+t−2

Sn+t = αylast + (1− α)αylast + (1− α)2αylast + (1− α)3Sn+t−3

Sn+t = αylast

t−1∑
i=0

(1− α)i + (1− α)tSn

(2.9)

The prediction function in this model is then simply Pred(t) = Sn+t. As we can see we only
need to remember the last observation ylast and its smoothed value Sn to make prediction
for any number of days to the future.

2.1.5 Double exponential smoothing

Single exponential smoothing does not provide good results on data with trend. A solution
to this problem is computing of an additional parameter, which controls the trend in the

5



CHAPTER 2. METHODOLOGY

data. This formula was originally formulated by Charles C. Holt [3].

Sn = αyn + (1− α)(Sn−1 + bn−1) 0 < α ≤ 1 n ≥ 2

bn = γ(Sn − Sn−1) + (1− γ)bn−1 0 < γ ≤ 1 n ≥ 2
(2.10)

Similarly to single exponential smoothing we compute Sn and bn for n ≥ 3, therefore we
need to initialize S1 and b1 by other means. How to obtain S1 was already de�ned in
previous section. The b2 value can be computing by taking �rst or average of �rst k points
of integrated timeseries T ′ = (y2 − y1, y3 − y2, . . . , yn − yn−1). An other way how to get b1
is to compute the di�erence between the �rst and the k-th point divided by the distance
between the points b1 = yk−y1

k−1 .

Computing optimal values of α and γ is, however, not as straightforward as it was in
single exponential smoothing. We can still set them as constants, but if we want to get
the optimal values we need to �nd pair (α̂, γ̂) that minimizes MSE. This method requires
non-linear optimization techniques, such as the Marquardt Algorithm [8].

Predicting values can be done using following formula

Pred(t) = Sn + tbn (2.11)

and similarly to single exponential smoothing only the Sn and bn values are required for
prediction, so we do not need to keep the whole timeseries for predictions.

2.1.6 Triple exponential smoothing

Like double exponential smoothing solves the drawback of not taking trends in data into
account, triple exponential smoothing handle the seasonality in the data. We de�ne the
formulas for triple exponential smoothing as Peter B. Winters [13] known as Holt-Winter
algorithm below:

Sn = α
yn
In−L

+ (1− α)(Sn−1 + bn−1)

bn = γ(Sn − Sn−1) + (1− γ)bn−1

In = β
yn
Sn

+ (1− β)In−L

(2.12)

where L is the length of one period and In is the seasonal parameter and the prediction
formula

Pred(t) = (Sn + tbn)In−L+t (2.13)

To be able to compute Sn we need to have value of In−L, therefore it is required for our
timeseries T to have at least L points. The value of In depends on value of In−L, so the �rst
L values of In have to be initialized by other means. However, to properly initialize b1 value
using proposed formula

b1 =
1

L
(
yL+1 − y1

L
+
yL+2 − y2

L
+ · · ·+ yL+L − yL

L
) (2.14)

we will need at least 2 full seasons (N ≥ 2L). To initialize seasonal parameters (I1, . . . , IL)
we will �rst split the timeseries T into set of seasons Season1, Season2, . . . , SeasonS where

6



2.2. MODEL ERROR ESTIMATION

S is the number of seasons contained in the timeseries T . For simplicity we will use in the
initialization only those seasons that are complete, in other words we will ignore the last
season unless N = kL, k ∈ N.

Season1 = (y1, y2, . . . , yL)

Season2 = (yL+1, yL+2, . . . , yL+L)

...SeasonS = (y(S−1)L+1, y(S−1)L+2, . . . , ySL)

(2.15)

Now we can de�ne seasonal mean ¯Seasoni as mean of all points, that are in Seasoni as:

¯Seasoni =
1

L

L∑
k=1

yk+(i−1)L (2.16)

With the previous formula and our simpli�cation we initialize the Ii values using formula

Ii =
1

S

S∑
k=1

yi+(k−1)L
¯Seasonk

i ∈ [1, . . . , L] (2.17)

Setting the parameters α, β and γ is similar to the single and double exponential smoothing.
We can either set them as constants or we can �nd such parameters, which minimizes MSE.
In contrast to previous smoothing models, where we needed only the last observation, the
last smoothed value and the last trend parameter, in triple exponential smoothing model we
will also need the last L seasonal parameters, therefore the size of the model grows linearly
with the number of data point in one period.

2.2 Model error estimation

Price prediction models give us only a single value for given timeseries and for the prediction
date. It does not give us any information about the certainty of the predicted value or about
the probability of error it made. The goal of this section is to model probability distribution
from predicted values of our model and to create a function that will take our predicted value
and return the predicted value with noise sampled from the error probability distribution.

2.2.1 Mean squared error

We will assume, that the model can underestimate and overestimate with the same proba-
bility and the error distribution is Gaussian distribution. The mean of the error distribution
is zero and the only task is the estimation of variance. Let us also assume, that we have
timeseries T as de�ned in section 2.1 with n points, selected model needs at least k points
to learn successfully, we want to predict value after t time periods and we want to measure
the error on at least l points, then n ≥ k + t+ l must hold.

By providing our model with only limited data (y1, . . . , yi), i ∈ [k, n − t] we can predict
the value for ˆyi+t for which we also have the real value. Using this strategy we can predict
values for (yk+t+1, yk+t+2, . . . , yn). From computed predicted values ŷ and the real values y

7



CHAPTER 2. METHODOLOGY

we can easily get squared errors and the mean of squared errors will give us the variance σ2

that can be used in our error normal distribution.

σ2 =
1

n− t− k + 1

n−t∑
i=k

(yi+t − Predk(t))2 (2.18)

where Predk(t) is the prediction function de�ned earlier on limited data (y1, . . . , yk). Know-
ing the variance we now have the probability distribution for the error on the given model for
predictions of t time periods. Changing the mean to value of Pred(t) we have the probability
distribution of the predicted value.

2.3 Timeseries transformation

The issue with predictors de�ned in the section 2.1 is that these predictors can predict
arbitrary timeseries, meaning they can predict value to be negative. In case of stocks, if
the company goes bankrupt the shareholders are paid the last and might not get anything,
but cannot lose more than the original investment, therefore the value of the stock is always
non-negative [12]. Similarly for crypto-currency the value of the currency can be as low as
zero, but cannot be negative. When a predictor forecasts a value to be negative (the investor
loses more than the original investment) the excepted output is much worse then what can
actually happen.

To avoid this problem we introduce timeseries transformation tr : R+
0 − > R where

R+
0 = {x ∈ R |x ≥ 0}, that will convert input timeseries T , which contains only non-negative

values x ∈ R+
0 , to transformed timeseries T ′ containing real numbers R.

T ′ = {(x1, tr(y1)), (x2, tr(y2)), . . . , (xn, tr(yn))} (2.19)

We will also de�ne modi�ed predictor Pred′(t), which will predict future values based
on transformed timeseries T ′. To convert the prediction from Pred′(t) we will de�ne back
transformation tr′ : R− > R+

0 . Using transformation tr, modi�ed predictor Pred′(t) and
back transformation we can create prediction that is guaranteed to be non-negative.

ˆPred(t) = tr′(Pred′(t)) (2.20)

Additionally we will constrain transformations tr and tr′ by requiring the following prop-
erties:

tr is monotonic (2.21)

y = tr′(tr(y)) ∀y ∈ R+
0 (2.22)

The property 2.22 implies that applying back transformation on transformed timeseries T ′

will result in the original timeseries T . Another implication is that transformation tr is
injective meaning tr(y1) = tr(y2) => y1 = y2. Also by combining property 2.22 and
property 2.21 we will get that tr is not only monotonic, but strictly monotonic.

8



2.3. TIMESERIES TRANSFORMATION

2.3.1 Identity transformation

Since non-negative numbers are subset of real numbers, we can set the transformation tr as
identity tr(y) = y. As a result the transformed timeseries and the original timeseries are the
same T ′ = T . To ensure condition 2.22 the back transformation tr′ must be identity as well
for all non-negative values. The negative values in prediction means, that the company went
bankrupt. As mentioned before, when company goes bankrupt the payout of the stock can
get as low as zero, but never under zero, so we will set the back transformation for negative
values equal to zero.

Following are the transformation and back transformation formulas:

tr(y) = y (2.23)

tr′(y) =

{
y y ≥ 0

0 otherwise
(2.24)

2.3.2 Box-Cox power transformation

In research made by Proietti and Lütkepohl (2011) [9] was shown that applying transfor-
mation on timeseries may lead to more accurate predictions. Speci�cally they have used
Box-Cox transformation on macro-economics timeseries. Box-Cox transformation is de�ned
as [2]:

trλ(y) =

{
yλ−1
λ λ 6= 0

ln y λ = 0
(2.25)

where ln is natural logarithm. We can easily compute the inverse functions, that will
give us the back transformation:

tr′λ(y) =

{
(1 + λy)

1
λ λ 6= 0

ey λ = 0
(2.26)

However we cannot use any value for parameter λ, because we have de�ned required
properties 2.21 and 2.22. For example if we set λ = 2 then the back transformation tr′ is not
de�ned for negative values, however predictors can predict negative value on transformed
timeseries, therefore this parameter cannot be used.

On the other hand by setting λ = 0 we will get transformations tr(y) = ln y and tr′(y) =
ey. These transformations do satisfy our required properties 2.21 and 2.22, but the problem
is that tr(0) is not de�ned. This will cause issues when the original timeseries contains
zeros. However, if there is zero in the input data, that means that the company went already
bankrupt and we can assume that it will not recover. With this assumption in mind we
can always predict the value of stock to be zero, if there is zero in the input data. Also in
Proietti and Lütkepohl (2011) [9] it was shown that in most cases the optimal parameter λ
equals to zero, therefore we will use natural logarithm ln and exponential function ey as the
transformation and back transformation respectively.
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Figure 2.1: This �gure show the VaR and CVaR (dark gray area) in some probability dis-
tribution chart.

Source: <http://investsolver.com/conditional-value-risk-calculator/>

2.4 Scenarios

Price prediction models and model error estimators provide us with the continuous distri-
bution of the price of given instrument after t time periods. If we want to invest only in
one instrument this would be su�cient, but we need multiple instruments and a way how
to combine them. Furthermore, we would like to replace continuous distributions with dis-
crete scenarios so our optimization problem will be solvable using discrete optimization and
continuous optimization will not be required.

2.4.1 Independent instruments scenarios

When generating these scenarios we are assuming that there is no correlation between in-
struments and that value of each instrument can be modeled independently on other in-
struments. For each instrument we can compute its model and error/price distribution and
for each scenario just sample a value for all instruments. Creating this type of scenarios is
computationally very e�cient.

However, we are introducing a simpli�cation which might lead to scenarios where similar
companies or companies from the same sector will behave di�erently although they all rely
on the same sector or some other factor. On the other hand if the companies are from the
same sector and behaved similarly in the past, then the predictor should predict them behave
similarly in the future as well.

2.5 Risk measurement

2.5.1 Value at risk

Value at risk (VaR) or more precisely α-VaR or VaRα (α ∈ (0, 1)) is a measure of risk of loss.
Its value is the highest loss of given portfolio or instrument with con�dence of 1− α. As an
example let P be a portfolio, which at some time t1 has value v1 = 1000 USD and suppose
we know, that VaR0.05(P ) = 100 USD over the holding period T. Therefore we can say,

10
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2.5. RISK MEASUREMENT

Figure 2.2: Example of two di�erent portfolios, which have the same VaR, but potential
risks are di�erent.
Source: <https://www.risk.net/risk-magazine/technical-paper/1506669/var-versus-expected-shortfall>

that with con�dence of 95% the value v2 of portfolio P at time t2 = t1 + T will be greater
or equal to v1−VaR0.05(P ) = 900 USD. VaRα can be de�ned using cumulative distribution
function (CDF) FX(x) [1]

VaRα(X) = −inf{x | FX(x) > α}
= −inf{x | P[X ≤ x] > α}

(2.27)

where X is random variable, which in our case is the value of single instrument or the whole
portfolio. The only requirement for the portfolio or instrument is, that the CDF is known.

There are, however, also problems with VaR measure. It does not take in account
anything, that has con�dence lower than α and two portfolios which behave the same in
the 1−α con�dence band, but di�er otherwise, will have the same VaRα value even though
the risk of one portfolio can be higher than the other one 2.2.

Let P1 and P2 be portfolios both with current value of 1000 USD. For P1 we have 1%
chance, that we will lose everything, 3% chance of losing 10%, 6% chance of not gaining
anything and 90% chance of gaining 10%. For P2 we have 4% chance, that we will lose
everything, 6% chance of not gaining anything and 90% chance of gaining 13%.

P[loss(P1) = 1000] = 0.01

P[loss(P1) = 100] = 0.03

P[loss(P1) = 0] = 0.06

P[loss(P1) = −100] = 0.90

VaR0.05(P2) = 0

E(P1) = 0.01 · 0 + 0.03 · 900 + 0.06 · 1000 + 0.90 · 1100 = 1077

(2.28)

P[loss(P2) = 1000] = 0.04

P[loss(P2) = 0] = 0.06

P[loss(P2) = −130] = 0.90

VaR0.05(P2) = 0

E(P2) = 0.04 · 0 + 0.06 · 1000 + 0.90 · 1130 = 1077

(2.29)
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In terms of expected value and VaR0.05 the portfolios behave the same, but chance of losing
everything is four-times higher in P2 while the maximal gain increases from 10% to only
13%.

In Artzner et al. (1999) [1] they present four desired properties for measures of risk. One
of them is subadditivity. Some function f has the property of subadditivity if the following
holds for all x and y: f(x+ y) ≤ f(x) + f(y). This property is desired for the risk measure,
because if it does not hold, we can split portfolio into smaller chunks and sum of risks of
these chunks will be smaller than the risk of the original portfolio. Unfortunately VaR does
not have this property which can be shown on their example.

Let us assume, that we have two possibilities how to invest. In the �rst one P1 we need
to invest 1000 USD and if the price of some instrument I will be less than U will will get
1100 USD otherwise nothing. The second one P2 is similar to the �rst one, but we will get
1100 USD only if the price of I will be more than L (L < U) otherwise we lose our initial
investment. The probabilities of losing are in both cases 4% meaning P[price(I) ≥ U ] =
P[price(I) ≤ L] = 0.04. The 5% value at risk is for both cases −100 since the probability of
gaining is 96%.

The problem occurs, when we invest in both P1 and P2 at the same time. We cannot
lose on both investments, because condition for losing are mutually exclusive, the chance of
losing on one of the investments is now 8%. The 5% value at risk for combining P1 and P2

is 1000.

VaR0.05(P1 + P2) � VaR0.05(P1) + VaR0.05(P2)

1000 � −100 + (−100)
(2.30)

The required condition for subadditivity does not hold, therefore VaR does not have the
subadditivity property.

2.5.2 Conditional value at risk

Conditional value at risk (CVaR), also known as expected shortfall or expected tail loss, tries
to solve the drawbacks in VaR risk measure. Before we formally de�ne CVaR let us de�ne
loss function f(P, y), where P is selected portfolio and y ∈ Rm random vector of prices
of individual items in the portfolio (assuming there are m items) with known probability
density function P[y]. CVaR is then de�ned as mean loss, where loss is higher or equal to
VaRα [10]. Note that in the cited article α is de�ned di�erently.

CVaRα(P ) = α−1
∫
f(P,y)≥VaRα(P )

f(P, y)P[y]dy (2.31)

If we know the value of VaRα(P) beforehand, we can create new function Fα(P, β), where
β is the VaRα(P ) computed. Additionally we can subtract β from the loss function inside
the integral and add it back outside without changing the result.

Fα(P, β) = α−1
∫
f(P,y)≥β

f(P, y)P[y]dy

= β + α−1
∫
f(P,y)≥β

(f(P, y)− β)P[y]dy

(2.32)
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We can notice, that f(P, y) − β ≥ 0 if the condition in integral is met and f(P, y) − β < 0
if not. If replace negative values of f(P, y)− β with zero, we no longer need the condition.

Fα(P, β) = β + α−1
∫
y∈Rm

max{f(P, y)− β, 0}P[y]dy (2.33)

As de�ned and proved in Rockafellar, Uryasev (2000) [10] in Theorem 1, CVaRα(P ) can be
computed by minimizing Fα(P, β) with respect to β.

CVaRα(P ) = min
β∈R

Fα(P, β) (2.34)

Using this formula to compute CVaR eliminates the requirement of computing VaR which
can be computationally hard, moreover the value of VaR arises as byproduct.

Unlike VaR, which ignores the values outside con�dence band, CVaR takes into account
all values outside this band and computes their mean value. If we look at the example from
previous section 2.5.1 speci�cally formulas 2.28 and 2.29. The expected values and VaR0.05

had the same values for both P1 and P2. Since we already know the value of VaR we can
use formula 2.33.

CVaR0.05(P1) = 0 + 0.05−1(max{1000− 0, 0} · 0.01 + max{100− 0, 0} · 0.03+

max{0− 0, 0} · 0.06 + max{−100− 0, 0} · 0.9)

= 260

CVaR0.05(P2) = 0 + 0.05−1(max{1000− 0, 0} · 0.04 + max{0− 0, 0} · 0.06+

max{−130− 0, 0} · 0.9)

= 800

(2.35)

We can see CVaR of P2 is higher, because there is higher risk of losing everything, than in
P1 and optimizer using CVaR as risk measure would prefer P1 over P2. Also CVaR has the
property of subadditivity, therefore splitting portfolio into smaller portfolios cannot yield
lower risks.

13



CHAPTER 2. METHODOLOGY

14



Chapter 3

Related work

3.1 Modern portfolio theory

The foundation of portfolio optimization �eld was laid in essay by Harry Markowitz in
1952 [7], where he designed a mathematical framework for selecting portfolio nowadays
known as Modern portfolio theory (MPT). The basic idea of this framework is, that the
investor has a believe about the future performance of the market and considers return of
the portfolio as desired thing and variance of returns an undesired thing.

In his work he de�nes return of portfolio R per invested dollar as a weighted average of
returns on individual instruments Ri, where weights Xi are the portions of portfolio invested
in the instrument. The weights Xi are non-negative since short selling is prohibited. The
return of a instrument Ri is de�ned as a sum of discounted returns

R =
N∑
i=1

XiRi (3.1)

Ri =

∞∑
t=1

ditrit (3.2)

where N is the number of instruments in portfolio, rit return per dollar invested in instrument
i at time t and dit discount factor for instrument i at time t. If we consider a static model,
we can replace discounted returns over time with single expected return of the instrument
Ri = ri. If we want then to maximize the returns we can set Xi = 1 for such i that Ri is
maximal or in case of multiple Rik , k ∈ {1, 2, . . . ,K} are maximal any allocation of Xi such
that

∑K
k=1Xik = 1 yields the same maximal return.

We further expect, that investor's believes about return of instruments Ri are probabili-
ties rather than single values. If Ri are random variables, then R which is weighted average
of Ri is random variable as well. Let µi be the expected value of Ri and σij be the covariance
between Ri and Rj or variance of Ri if i = j. We can compute the expected value of the
whole portfolio E:

E =
N∑
i=1

Xiµi (3.3)
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Figure 3.1: E�cient frontier (red) forming a curve along the edge of the edge os the set of
attainable portfolios [7]

and its variance V :

E =
N∑
i=1

N∑
j=1

σijXiXj (3.4)

σij = E[(Ri − E[Ri])(Rj − E[Rj ])] (3.5)

For �xed (µi, σij) we will get set of attainable pairs (E, V ). Since we want the the
expected value E as high as possible and at the same time we want variance V as low as
possible many of those pairs (portfolios) will be outperformed by others. If there are two
portfolios X and X̄ with their expected values and variances (E, V ) and (Ē, V̄ ) respectively
and V ≤ V̄ , E ≥ Ē holds, then we say, that X outperforms X̄. We call portfolio X e�cient,
if there is no other portfolio X̂ that outperforms X. If the set of attainable results forms
continuous space, the set of e�cient portfolios forms a curve along the edge os the set of
attainable results as shown in �gure 3.1. This curve is called e�cient frontier and optimal
portfolios in terms of high expected returns and low variance will be on the e�cient frontier.
By selecting portfolio from the e�cient frontier we have a guarantee, that there is no other
portfolio with higher expected return that does have lower or equal risk and if we want higher
yield we need to accept higher risk.
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The drawback of this approach is that using variance as the measure of a risk. High
variance does not necessarily mean, that there is high risk of loss, rather it signals that there
higher chance of price change, although it might be to our bene�t. Variance is computed
by deviation from mean, but does not re�ect in which direction this deviation is. Another
drawback is, that we need to compute covariance for every pair of instruments in the portfolio
and computing n(n+ 1)/2 covariances can be computationally di�cult.

3.2 Scalable Capital

Scalable Capital is a company providing investment and robo-advisory service, where client
can specify his investment universe and tolerance for risk and the service will provide ad-
vice what trades should the client do or can itself manage the portfolio and do the trades
completely without the client. Its main focus is on trading Exchange-traded funds (ETFs),
which are funds tradable on exchanges similarly to stock. ETFs are investment companies
that o�er its clients to invest into fund that invests in stocks, bonds and other assets [11].

The robo-advisor �rst creates optimal portfolio for the client based on his choice of
instruments in portfolio and his risk tolerance. Then monitors the portfolio whether the
portfolio complies with the requests from the client. When the robo-advisor �nds out, that
some constraints are violated, then it starts rebalancing process.

Since investors generally do not want to limit possible income, but want to limit losses
using variance as a risk measure is not preferred as it is symmetrical. To measure risk of loss
other methods need to be used. Scalable Capital uses three di�erent measures [5]: Value
at risk (VaR), Expected shortfall (ES) (also known as CVaR) and Maximum Drawdown
(MDD). VaR and CVaR were already de�ned in sections 2.5.1 and 2.5.2 respectively. MDD
is expected maximal loss and can be also expressed as 100% − VaR. Note that we expect
that MDD will never be crossed.
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Chapter 4

Technical approach

4.1 Problem de�nition

We have de�ned set of N − 1 instruments (stocks, crypto currencies, etc.) in which we
are willing to invest our money and one bank account for which we de�ne, there are no
transaction fees, zero risk, but also zero interest. Other instruments have de�ned transaction
fee as a percentage of the cost of the transaction (for simplicity we expect buy and sell has
the same fee). Each instrument also has limit, how much can be invested in. This limit is
de�ned as percentage of current value of the portfolio and helps keeping the portfolio diverse,
therefore less sensitive, when one of the instruments in the portfolio reports loss. For each
instrument in the portfolio we also have the data, how it performed in the history.

Our task is then to �nd such portfolio, that maximizes pro�t under speci�c constraints.
These constraints are the risk of the portfolio in the horizon of one year cannot exceed
given threshold with de�ned con�dence. On top of that we want our algorithm to regularly
reevaluate the portfolio and suggest trades to further increase the expected return and/or
lower the risk under the de�ned threshold, when the market performs worse than expected
by previous run of the algorithm.

4.2 Solution overview

Computing the optimal portfolio consists of several sub-tasks creating a processing chain.
Our goal is to maximize outcome, therefore we need to know expected value of each in-
strument after one year. We also need to keep risk under given threshold with de�ned
con�dence. We will use previously de�ned CVaR 2.5.2 as risk measure. The formula for
computing CVaR 2.33 contains integration over random vector y describing possible states
of market and having integral in optimization program constraints will make optimization
di�cult. Therefore, we need to discretize y, which can be done by sampling di�erent scenar-
ios.
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4.2.1 Prediction of future market state

In this part we will assume, that all instruments in our portfolio are independent of each
other, therefore we can model each instrument independently. Our price prediction mod-
els 2.1 can only give us one value as prediction, but does not give us estimation of the
prediction error. However, we can train these models on older data and predict a value
for which we already know the real value. This way we get the errors, that selected model
generates on this instrument and can create probability distribution of the future price. As
a predictor model we will use triple exponential smoothing or ARIMA, because stock data
in general have trends and seasonality and predictions using single or double exponential
smoothing or linear regression will not perform well on this type of timeseries.

4.2.2 Discretization

Now we have the random vector y of the future prices of instruments, but we would like to
generate discrete scenarios from the distributions. Since we have made an assumption, that
instruments in the portfolio are independent, for each scenario we just sample a price for
every instrument. The CVaR formula is then modi�ed as follows:

CVaRα(P ) = min
β∈R

Fα(P, β) = min
β∈R

[β + α−1
∫
y∈Rm

max{f(P, y)− β, 0}P[y]dy] (4.1)

CVaRα(P ) = min
β∈R

[β + α−1
J∑
i=1

πi max{f(P, yi)− β, 0}] (4.2)

where J is the number of generated scenarios and πi is probability of given scenario.

4.3 Portfolio optimization program

Now that we have prepared scenarios and have de�ne con�dence (1 − α), accepted loss
and maximum value of each instrument we can assemble the optimization program. Since
we cannot buy fraction of a stock linear program will not be enough for us, because some
variable have to be integers. Now let us de�ne the parts of the program. This part is based
on Krokhmal et al.(2002) [4].

4.3.1 Objective function

Our main goal is to maximize returns, so in the objective function we are maximizing the
sum of instrument volume xi multiplied by expected value of the instrument E[yi].

max
x

N∑
i=1

xiE[yi] = min
x
−

N∑
i=1

xiE[yi] (4.3)
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4.3.2 Risk constraints

We have de�ned formula for computing CVaR over given set of scenarios 4.2 as minimum
of some function F̂x. However, we do not actually compute the minimum, since our only
concern is to keep the CVaR under some threshold. The threshold is de�ned as a percentage
of current value of the portfolio ω.

β + α−1
J∑
j=1

πi max{f(P, yj)− β, 0} ≤ ω
N∑
i=1

qix
0
i (4.4)

where qi is current price of instrument i and x0i is the initial volume of the instrument.
But now we have function max inside our constraint. We will introduce auxiliary variables
z1, z2, . . . , zJ , where zj = max{f(P, yj)− β, 0} and since we want zi as small as possible, we
can set zj ≥ max{f(P, yj)− β, 0} without changing the the result. Now we have de�ned zj
to be greater than maximum of two values, therefore we can split the condition into two.

zj ≥ max{f(P, yj)− β, 0} (4.5)

zj ≥ f(P, yj)− β
zj ≥ 0

(4.6)

Next we need to de�ne the loss function f(P, yj), where P = (x1, x2, . . . , xN ) and we know
x0i and qi.

f(P, yj ;x
0, q) =

N∑
i=1

x0i qi − xiyji (4.7)

This gives us set of constraints for CVaR:

ζ +
1

α

J∑
j=1

πjzj ≤ ω
N∑
i=1

qix
0
i (4.8)

zj ≥
N∑
i=1

(qix
0
i − yjixi)− ζ, zj ≥ 0, j ∈ {1, 2, . . . , J} (4.9)

4.3.3 Maximal instrument value constraint

Next set of constraints is for limiting how much of a portfolio can be invested in particular
instrument. For each instrument we have value vi, de�ned as percentage of total value of
portfolio.

qixi ≤ vi
N∑
k=1

qkxk (4.10)

4.3.4 Transaction cost constraint

Each instrument has property ci which is the transaction cost in percent. The cost of a
transaction is then computed as ciqi|xi−x0i |. Similarly to having max function in constraint,
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we do not want to have function absolute value. For each instrument we will add two auxiliary
variables u+i ≥ 0 and u−i ≥ 0, where |xi− x0i | = u+i − u

−
i . In optimal solution only u+i or u−i

can be non-zero, otherwise we would be buying and selling the same instrument, which only
increases expenditures, but will not bring any gain. Now we need to add a constraint that the
value of portfolio before optimization has to equal value of the portfolio after optimization
plus transaction fees.

N∑
i=1

qix
0
i =

N∑
i=1

ciqi(u
+
i + u−i ) +

N∑
i=1

qixi (4.11)

xi − x0i = u+i − u
−
i , i ∈ {1, 2, . . . , N} (4.12)

u+i ≥ 0, u−i ≥ 0, i ∈ {1, 2, . . . , N} (4.13)

4.3.5 Stock volume constraints

Since our model does not support short selling of stocks, we require xi ≥ 0 for each instru-
ment. Moreover we cannot buy fractions of stock, therefore we need to add constraint, that
if instrument i is stock, the value of xi has to an integer. For bank account and crypto-
currencies we do not requires such constraints and the value of xi can be real number.

xi ≥ 0, i ∈ {1, 2, . . . , N} (4.14)

xi ∈

{
Z, if xi is stock item

R, otherwise
i ∈ {1, 2, . . . , N} (4.15)

4.3.6 Final optimization program

Now we just simply add together all previously de�ned constraints and get the �nal mixed
integer linear program.
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min
x,ζ
−

N∑
i=1

E[yi]xi (4.16)

subject to

ζ +
1

α

J∑
j=1

πjzj ≤ ω
N∑
i=1

qix
0
i (4.17)

zj ≥
N∑
i=1

(qix
0
i − yjixi)− ζ, zj ≥ 0, j ∈ {1, 2, . . . , J} (4.18)

qixi ≤ vi
N∑
k=1

qkxk, i ∈ {1, 2, . . . , N} (4.19)

N∑
i=1

qix
0
i =

N∑
i=1

ciqi(u
+
i + u−i ) +

N∑
i=1

qixi (4.20)

xi − x0i = u+i − u
−
i , i ∈ {1, 2, . . . , N} (4.21)

xi ≥ 0, u+i ≥ 0, u−i ≥ 0, i ∈ {1, 2, . . . , N} (4.22)

xi ∈

{
Z, if xi is stock item

R, otherwise
i ∈ {1, 2, . . . , N} (4.23)
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Chapter 5

Implementation

Part of this work is implementation of an optimizer. This section provides information about
the structure of the application and technologies used to achieve the result.

5.1 Technology stack

5.1.1 Kotlin

Kotlin is JVM-base programming language that combines Object-oriented programming
(OOP) and functional programming. It is very similar to Java, but unlike Java Kotlin
has nullable and not-null types. Kotlin is fully compatible with Java, therefore we can use
all libraries that are written in Java, one example of such library is the implementation of
ARIMA predictor.

5.1.2 Spring Boot

Spring Boot is great tool for Dependency injection (DI) and building webservers. Since
Spring Boot 2.0 and Spring 5.0 Kotlin is one of three o�cially supported languages for
Spring together with Java and Groovy. Spring Boot and its dependency injection engine
helps to divide our application into independent modules that can be swapped without
changing other parts of the application.

Our application is split into following parts:

• Data provider

• Value predictor

• Scenario generator

• Optimizer

The bene�t of having independent modules is when we want to replace our ARIMA
predictor with triple exponential smoothing predictor, we can just swap these modules and
the rest of the application is unaware of this change. This results in a framework where one
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needs to provide these four modules and the whole system is ready to optimize. It is also
very easy to add more complex predictors or change the optimizer from Gurobi to other one,
which has free license.

5.2 Data providers

Our approach to optimize portfolio is based on predicting future values of stock based on
historical data, therefore we will need data sources, that can provide us information about
historical prices of di�erent stocks.

5.2.1 AlphaVantage

AlphaVantage is a great data source which provides realtime and historical data for free.
Our concern is only about historical data, since the optimizer is for long term investments.
The only downside of this API is low request rate (5 request per minute, 500 per day),
however, since we only need historical data which does not change very often, we can bypass
this limitation by introducing local cache. AlphaVantage has data for most large companies
as well as cryptocurrencies.

5.3 Mathematical solvers

Since we have de�ned the optimization problem as a linear program, we will need a LP
solver. In following sections there are examples of such solvers that are either free or they
provide free academic license. Since we have used Kotlin as our main programming language,
we will focus on those solvers that can be used from JVM-based language.

5.3.1 Gurobi Optimizer

Gurobi Optimizer is a tool for solving many optimization tasks including Linear Programs
(LP), Quadratic Programs (QP), Quadratically Constrained Programs (QCP), Mixed-Integer
Programs (MIP), Mixed-Integer Linear Programs (MILP), Mixed-Integer Quadratic Pro-
grams (MIQP), and Mixed-Integer Quadratically Constrained Programs (MIQCP).

Gurobi Optimizer o�ers APIs for many languages including Java and many other (c++,
python, .NET). The Java API treats all parts of problem de�nition (variables, constraints,
. . . ) as Java objects which �ts very well into our application and keeps the source code clean.
The license, however, is not free, but there is free academic license.

5.3.2 IBM ILOG CPLEX Optimizer

IBM ILOG CPLEX Optimizer ("CPLEX") is another solver for LP, MIP, QP and QCP
tasks. In contrast to Gurobi Optimizer, the models are not Java object, but rather plain
arrays and matrices. This ways of setting linear programs is memory e�cient, however
the readability of the code is worsened. Another di�erence from Gurobi Optimizer is that
CPLEX provide free community version as well as free academic and full version.
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5.3.3 GLPK

GNU Linear Programming Kit (GLPK) is representative of free open-source optimization
tool for solving LP and MIP. It is part of GNU project and is published under GNU GPL
license. It is written in ANSI C as callable library. GLPK doesn't have any Java interface,
but there is a standalone project GLPK for Java, which enables using GLPK from Java
application using Java Native Interface (JNI).
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Chapter 6

Evaluation

We will divide the evaluation into several steps. First, we want to �nd, which predictor works
the best on stock prices. In the section 6.1 we will test predictors against real-world values
and measure its error in prediction. Next we will prepare portfolio and using predictors
based on their error from section 6.1, we will optimize the portfolio by generating scenarios
as de�ned in section 2.4 and then we will �nd the optimal distribution of our funds between
the items in the the portfolio, so we maximize our return while keeping the risk low. Lastly
we will use our optimizer to reevaluate the portfolio every month to take in account the
changes on the market and modify the portfolio to keep the expected return maximal.

6.1 Predictors evaluation

The �rst experiment is to predict the value of the stock of Alphabet Inc. (GOOGL). We will
de�ne the time range for the experiment from 1.1.2015 to 1.1.2018. We will also de�ne our
prediction horizon as one year, therefore the predictions will be in range from 1.1.2016 to
1.1.2019. The selected predictors are ARIMA as de�ned in section 2.1.3 and triple exponen-
tial smoothing as de�ned in section 2.1.6. We will use the predictor both on the raw historical
data and historical data transformed using Box-Cox transformation (see section 2.3.2).

As we can see in the �gure 6.1 ARIMA predictor su�ers from lagging behind. On the
other hand triple exponential smoothing predictor does not seem to su�er from lag as much
as ARIMA predictor. In the �gure 6.2 we can see the absolute error the predictors made.
In addition to that we have table 6.1, where is for each predictor the mean squared error for
predictions in our testing time range. The most accurate prediction for this stock was made
by triple exponential smoothing predictor on raw data, however the di�erence between triple
exponential smoothing and ARIMA predictor regardless the transformation.

To compare these results with predictions on other stocks, we will do the same experiment
for Intel Corporation (INTC) and Apple Inc. (AAPL).

From table 6.2 we can see that for INTC stock the di�erence in errors between ARIMA
and triple exponential smoothing predictors is several orders of magnitude in favor for
ARIMA predictor. Also the combination of triple exponential smoothing and Box-Cox trans-
formation produces large errors as can be seen on INTC and AAPL stock.
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(a) ARIMA predictor
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(b) ARIMA predictor with Box-Cox transforma-
tion
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(c) Triple exponential smoothing predictor
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(d) Triple exponential smoothing predictor with
Box-Cox transformation

Figure 6.1: Predictions of stock prices of GOOGL stock with one year horizon. Blue line is
the actual value, red line denotes the prediction.
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Figure 6.2: Errors in predictions of stock prices of GOOGL stock with one year horizon.
ARIMA predictor is denoted as a red line, ARIMA predictor with Box-Cox transformation
is denoted as a green line, triple exponential smoothing predictor is denoted as a blue line
and triple exponential smoothing predictor with Box-Cox transformation is denoted as a
black line.
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Mean squared error

ARIMA 36283.16
ARIMA with BoxCox transformation 35422.80
Triple exponential smoothing 31186.94
Triple exponential smoothing with BoxCox transformation 35225.29

Table 6.1: Mean squared error for all predictors for value of GOOGL stock.

GOOGL INTC AAPL

ARIMA 36283.16 79.61 1544.64
ARIMA with BoxCox transformation 35422.80 90.25 1545.19
Triple exponential smoothing 31186.94 14178.65 1734.66
Triple exponential smoothing with BoxCox transformation 35225.29 1.855e7 1.287e11

Table 6.2: Mean squared error for all predictors for value of GOOGL, INTC and AAPL
stock.

6.2 Single step optimization

In this experiment we will de�ne a portfolio. Following are the items of which is the portfolio
made:

1. Bank account

2. Apple Inc. (AAPL)

3. Microsoft Corporation (MSFT)

4. Intel Corporation (INTC)

5. Advanced Micro Devices, Inc. (AMD)

6. Facebook, Inc. (FB)

7. Alphabet Inc. (GOOGL)

8. Tesla Inc. (TSLA)

9. General Motors (GM)

10. Twitter Inc. (TWTR)

At the start of the experiment we will assume we have $100,000 USD in our bank account.
We will also assume that current date is 1.1.2015 (we do not know about what happened
after this date). We will set the transaction cost equal to 1% of the traded value and limit
the maximal value invested in one stock to be 20% of the total value of the portfolio. Our
risk limits are with probability of 80% our loss will be less than 20% of the portfolio value
(with one year horizon).
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Figure 6.3: Value of portfolio, if it was optimized only at the start. ARIMA predictor is
denoted as a red line, ARIMA predictor with Box-Cox transformation is denoted as a green
line, triple exponential smoothing predictor is denoted as a blue line and triple exponential
smoothing predictor with Box-Cox transformation is denoted as a black line.
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Figure 6.4: Value of portfolio, if it was optimized every month. ARIMA predictor is denoted
as a red line, ARIMA predictor with Box-Cox transformation is denoted as a green line, triple
exponential smoothing predictor is denoted as a blue line and triple exponential smoothing
predictor with Box-Cox transformation is denoted as a black line.

In this experiment we will optimize the portfolio only at the start and watch how the
value of the portfolio changes in time, if we keep the portfolio the same (the only trades can
be done at the start, after that no trades are done).

As we can see in �gure 6.3 the errors made by triple exponential smoothing predictor are
so big, that the optimizer does not make any trade, since all of them are considered as high
risk. Another point to make here is that the value of the portfolio is higher han the initial
investment at the beginning, but as the time progress the value fell under the initial value.
This is because we did not allowed the portfolio to reevaluate during the experiment.

6.3 Continuous portfolio optimization

In this experiment we will reuse the previously de�ned portfolio, but this time we will force
the portfolio to reevaluate at the beginning of each month. In this case when one company's
stock start falling, the optimizer will move assets to di�erent stock.

From �gure 6.4 we can see, that forcing portfolio to reevaluate every month has very
positive e�ect on the value of portfolio. In this example the portfolio is optimized based on
at maximum one month old data. In the previous single step optimization experiment after
three years the value of the portfolio was close to the initial value. However in this
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Figure 6.5: Value of portfolio containing Bitcoin, if it was optimized every month. ARIMA
predictor is denoted as a red line, ARIMA predictor with Box-Cox transformation is denoted
as a green line, triple exponential smoothing predictor is denoted as a blue line and triple
exponential smoothing predictor with Box-Cox transformation is denoted as a black line.

6.3.1 Continuous portfolio optimization with cryptocurrencies

In the last years a new trend in investments appeared, investing in cryptocurrencies. Al-
though cryptocurrencies exists for many years already, in 2017 investments in cryptocurren-
cies became interesting, when the value of Bitcoin (BTC) rocketed from about $500 USD for
BTC to more than $19,000 USD in December 2017. To illustrate how this optimizer would
behave, if the portfolio contained Bitcoin we will use the portfolio from previous section and
add Bitcoin to it.

As we can see in �gure 6.5 the optimizer took the advantage of Bitcoin increasing its
value with high speed and in three years managed to get from $100,000 USD to about
$240,000 USD
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Chapter 7

Conclusion

In this work we have created a framework for optimizing portfolios. We have proposed
several predicting algorithms, most importantly ARIMA predictor as de�ned in section 2.1.3
and triple exponential smoothing as de�ned in section 2.1.6. We have also showed how these
predictors perform on real-world data and how transforming the raw data might in�uence
the precision of prediction.

Furthermore we have proposed an algorithm that from given set of scenarios can �nd the
optimal distribution of our assets to maximize the expected return while keeping the risk
level below given threshold. We have proposed an approach how to generate scenarios from
distribution of future value of the stock which we can obtain by predicting a value using one
of our predictor and keeping track of the errors that the predictor made in the past. We
have shown that this approach can yield returns up to 20% per year.

This framework is possible to run in production environment, however the model does
not count with taxes, the only fee considered in this model is the transaction fee for every
trade made. On the other hand holding stock can also yield another income in a form of
dividends, which lowers the impact of taxation.

Since this work was written as a framework it is easy to add new predictors, scenario
generators or even di�erent optimizer. Currently all instruments are modeled independently
on the others and this might lead to better prediction thus more accurate risk models and
higher expected returns. Another way to improve this framework in the future is to create
a predictor which does not su�er from lag.

37



CHAPTER 7. CONCLUSION

38



Bibliography

[1] Philippe Artzner, Freddy Delbaen, Jean-Marc Eber, and David Heath. Coherent mea-
sures of risk. Mathematical �nance, 9(3):203�228, 1999.

[2] George EP Box and David R Cox. An analysis of transformations. Journal of the Royal

Statistical Society. Series B (Methodological), pages 211�252, 1964.

[3] CC Holt. Forecasting trends and seasonals by exponentially weighted averages. carnegie
institute of technology. Technical report, Pittsburgh ONR memorandum, 1957.

[4] Pavlo Krokhmal, Jonas Palmquist, and Stanislav Uryasev. Portfolio optimization with
conditional value-at-risk objective and constraints. Journal of risk, 4:43�68, 2002.

[5] Scalable Capital Limited. The scalable capital investment process. White paper,
November 2016. URL <https://uk.scalable.capital/assets/3x3i7a9xgm11/
1ypERGd2JmUmOcsGsCe4uE/91d5745c007641f72fb5b293b30c039b/WhitePaper_

ScalableCapital_UK.pdf>. [Online; accessed 07-May-2018].

[6] Spyros Makridakis and Michele Hibon. Arma models and the box�jenkins methodology.
Journal of Forecasting, 16(3):147�163, 1997.

[7] Harry Markowitz. Portfolio selection. The journal of �nance, 7(1):77�91, 1952.

[8] National Institute of Standards and Technology. Nist/sematech e-handbook of statistical
methods. URL <https://www.itl.nist.gov/div898/handbook/>. [Online; accessed
07-May-2018].

[9] Tommaso Proietti and Helmut Lütkepohl. Does the box�cox transformation help in
forecasting macroeconomic time series? International Journal of Forecasting, 29(1):
88�99, 2013.

[10] R Tyrrell Rockafellar, Stanislav Uryasev, et al. Optimization of conditional value-at-
risk. Journal of risk, 2:21�42, 2000.

[11] U.S. Securities and Exchange Commission. Exchange-traded funds (etfs),
. URL <https://www.investor.gov/introduction-investing/basics/
investment-products/stocks>. [Online; accessed 24-December-2018].

[12] U.S. Securities and Exchange Commission. Stocks, . URL <https://www.sec.gov/
fast-answers/answersetfhtm.html>. [Online; accessed 07-May-2018].

39

https://uk.scalable.capital/assets/3x3i7a9xgm11/1ypERGd2JmUmOcsGsCe4uE/91d5745c007641f72fb5b293b30c039b/WhitePaper_ScalableCapital_UK.pdf
https://uk.scalable.capital/assets/3x3i7a9xgm11/1ypERGd2JmUmOcsGsCe4uE/91d5745c007641f72fb5b293b30c039b/WhitePaper_ScalableCapital_UK.pdf
https://uk.scalable.capital/assets/3x3i7a9xgm11/1ypERGd2JmUmOcsGsCe4uE/91d5745c007641f72fb5b293b30c039b/WhitePaper_ScalableCapital_UK.pdf
https://www.itl.nist.gov/div898/handbook/
https://www.investor.gov/introduction-investing/basics/investment-products/stocks
https://www.investor.gov/introduction-investing/basics/investment-products/stocks
https://www.sec.gov/fast-answers/answersetfhtm.html
https://www.sec.gov/fast-answers/answersetfhtm.html


BIBLIOGRAPHY

[13] Peter R Winters. Forecasting sales by exponentially weighted moving averages. Man-

agement science, 6(3):324�342, 1960.

40



Appendix A

Nomenclature

CDF cumulative distribution function

CVaR Conditional value at risk

DI Dependency injection

ES Expected shortfall

ETFs Exchange-traded funds

GLPK GNU Linear Programming Kit

JNI Java Native Interface

LP Linear Programs

MA Moving average

MDD Maximum Drawdown

MILP Mixed-Integer Linear Programs

MIP Mixed-Integer Programs

MIQCP Mixed-Integer Quadratically Constrained Programs

MIQP Mixed-Integer Quadratic Programs

MPT Modern portfolio theory

MSE Mean squared error

OOP Object-oriented programming

QCP Quadratically Constrained Programs

QP Quadratic Programs

VaR Value at risk
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Appendix B

CD content

Directory name Description

�gures �gures used in this thesis.
src Kotlin source codes, con�g �les and scenarios used in evaluation.
thesis thesis sources in latex and pdf format
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