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Abstract

In this work, existing state of quadcopter
drone racing competitions is surveyed,
both human-driven and autonomous ones,
and then several optimal trajectory plan-
ning algorhitms are compared to use in
constrains of these competitions. A math-
ematical model of a quadcopter is created,
with proposed nonlinear closed loop atti-
tude controler and open loop trajectory
following controler. This system is then
tested on trajectories generated by the
proposed optimal planning algorhitm in
set of several different competitions. Im-
plementation of the control and trajectory
planning for ROS is shown, implementa-
tion is then simulated in SITL using ROS-
Gazebo.

Keywords: trajectory planning, UAV,
MAV, quadcopter, drone racing, ROS,
Gazebo, Matlab, control

Supervisor: Ing. Milan Rollo, Ph.D.
Artificial Intelligence Center - FEL
Karlovo nám. 13,
Praha 2

Abstrakt

Práce se zabývá průzkumem existujících
soutěží závodů dronů, vč. lidmi řízených a
autonomních. Je porovnáno několik algo-
ritmů pro plánování trajektorie ve vhod-
nosti pro tyto závody. Je vytvořen mate-
matický moter quadrokoptéry, vč. neline-
árního closed loop regulátoru pro řízení
náklonů a open loop regulátoru pro sledo-
vání trajektorie. Tento systém je testován
na trajektoriích vygenerovaných navrhova-
ným plánovacím algoritmem v rámci růz-
ných soutěží. Je ukázána implementace
řízení a plánování trajektorie pro ROS,
implementace je poté simulována SITL
pomocí ROS-Gazebo.

Klíčová slova: plánování trajektorie,
UAV, MAV, čtyř-rotorová helikoptéra,
závody dronů, ROS, Gazebo, Matlab,
řízení

Překlad názvu: Plánování optimální
trajektorie pro čtyř-rotorovou helikoptéru
pro závody dronů
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Chapter 1

Study of drone racing and rules of existing
competitions

1.1 Introduction

Drone racing, an e-sport which originated from Australia around 2014, has
been steadily gaining on popularity in recent years and resulted in establish-
ment of the Drone Racing League, MultiGP and plenty more lesser leagues,
which aim to compete for audience with other “high velocity” sport leagues,
such as Formula F1. This was made possible by research and development of
compact battery technologies in recent years, which made the devices cheaper
and therefore available to general public. During these human controlled
races, pilots make use of head mounted displays, which provide them with
point of view from drone on-board camera. Due to their both speed and
agility, small quadcopters are used for the racing, which even though being
limited in battery life, reach speeds exceeding 100 kph during the races. Races
are typically taken in indoor environments on previously known courses. The
goal is to navigate a course, which we can assume as a set of gates, through
which the drone has to pass, and sometimes also a set of obstacles, which
the drone has to avoid, in shortest time possible. So far, competitive drone
racing has been human domain, there is however great interest in developing
algorithms and flight AIs which would surpass human pilots using the same
visual data, just because of tremendous potential for application in all aspects
of our life. In recent years, we have seen huge steps in autonomous vehicle
development, as self-driving cars or military drones. Having reliable means
to control UAVs, for example in urban environments or disaster sites would
be invaluable. And because drone racing places great stresses on both speed
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1. Study of drone racing and rules of existing competitions ..................
and reliability (a drone which crashes during the race does not score very
well), it is an interesting benchmark for development of said technologies. In
late 2018, the DRL has announced host an Autonomous Drone Competition
in cooperation with Nvidia and Lockheed Martin during the 2019 season.
This only supports the assumption that autonomous drone racing is gaining
popularity not just for hobbyists but also mainstream audience, since races
are now commonly present on sports TV broadcasts where other robot com-
petitions already have a tradition. Aim of this work is to study the drone
racing from engineering point of view, formulate it in mathematical terms
and to propose and implement trajectory planning and control algorhitms
which would be suitable for autonomous drone racing.

1.2 Autonomous challenges

1.2.1 IROS Autonomous Drone Racing Competition 2016

The first official public race competition for autonomous drones was held
during IROS 2016 conference. Indoor racing track contained several different
scenarios, from straight path for high speed flight to upward spiral or sharp
turns. To make the identification of gates easier, all of the 26 gates were
assigned printed QR codes to them. Two kinds of gates were present, an
open gate which only limited drone from 3 sides and a rectangular closed
gate. Both gates were of side of 1.2 m. The racing track also contained one
dynamic moving gate. There was additionaly a size limit for the drone, being
a cube with side of 1 m. It was allowed and encouraged to use any onboard
sensor data which make no physical contact with surroundings, the drone
however had to be fully autonomous. CAD model of the track, subjected to
some minor differences, was available for download and testing before the
competition took place. It should be noted that only 3 teams managed to
compete in the challenge, none of which have finished the whole track.

1.2.2 IROS 2017

Second installment of IROS Autonomous Drone Racing competition had
similar rules as the previous, with some notable differences in the track design.
The track contained three kind of gates: closed gates, same as in previous
year, were squares with side of 1.4 m, open gates were replaced by tree like
gates for straight flight and rectangular dynamic section with continuously

ctuthesis t1606152353 2



................................ 1.2. Autonomous challenges

Figure 1.1: IROS 2016 track

rotating barrier. Although the competing teams were more successful this
time, the issues with the track itself called for its redesign. Most notably, the
track was still too cluttered with gates for successful recognition, and the
recognition of gates itself was a significant problem.

1.2.3 IROS 2018

The racing track saw significant changes. It was notably shorter, with lesser
amount of gates, but still featuring the dynamic section with rotating obstacle
and furthemore cubic “jungle gate”. Implication is, as cited from ADR
website, that: „autonomous drone navigation is possible if the environmental
information is perfectly known and optic flow works properly. However, such
cases are not realistic in many useful practical applications such as first
responding to disaster sites or autonomous drone taxi in cities.”. Gates were,
after discussing the issue with participating teams, modified with clean white
borderline to make recognition easier. Their position was also randomized,
so there would be more emphasis on recognition and flight planning. This is
a significant shift from previous years, where tracks resembled usual racing,
while this challenge was more focused on environment navigation.

3 ctuthesis t1606152353



1. Study of drone racing and rules of existing competitions ..................
1.3 Major drone racing leagues

1.3.1 MultiGP

First major drone racing league, founded in 2015. It is the usual entry point
league for beginners, since it operates worldwide using local chapters and
enables pilots to use their own equipment during the races. It provides
track gate and drone hardware specifications in multiple size categories, to
which custom drones can be designed. Tracks can be created freely, although
some standard specifications are available like “Universal Time Trial” tracks,
which allow pilots to compete on international leaderboards. Racing tracks
of MultiGP are generally simple, mostly on 2D plane but some variations in
height of gates might appear.

Figure 1.2: MultiGP track example

1.3.2 Drone Racing League

DRL was also founded in early 2015, but is in comparison to MultiGP, is purely
e-sport oriented. It provides its contracted pilots with custom built drones
and equipment, which are not for sale on the market. Aspiring pilots can
qualify through DRL Simulator, a PC game developed by the DRL to broaden
its audience. DRL has, soon after it was launched, started broadcasting on
international sports channels. Tracks in DRL are not generally specified, they
can be laid out with anything including poles, trees or hula hoops and are of
complicated 3D character. Racing however is mostly held indoors.

ctuthesis t1606152353 4



.................. 1.4. Hardware requirements and limitations in drone racing

1.3.3 DR1 Racing

Another e-sport league, DR1 races in comparison typically take place in
outdoor environments. Tracks are therefore very large, featuring triangular
gates. While using a standardized drone for official races, it introduces its
own class of racing drones, which doesn’t limit size or performance.

1.3.4 Drone Championship League

The current biggest live broadcasted drone racing league. In comparison
to other leagues, it provides almost complete freedom of drone design, only
limiting weight. Tracks are also outdoor, however gate specification varies.

1.4 Hardware requirements and limitations in
drone racing

Most obvious limit on the drone platform is its physical size. If we take IROS
competitions for example, the drone has to be able to freely pass through
gates without collision, but there should be some wiggle room kept in case of
altitude or attitude disturbances. IROS specifies maximum of 1m on each axis,
which is by a rule of thumb maximum size which can reliably pass through
the gate safely. The racing leagues are sometimes stricter than that, requiring
machine to be even small and sometimes non-restrictive at all. The DCL
featuring only limits weight between 0.7 to 1kg. Racing drones are usually
limited in performance of motors, power to weight ratio is then dependent
on making the drone as light as possible. The battery life of racing drones is
very short then, but racing courses mostly require below a minute to finish
so that is not of an issue. The biggest difference between racing drone and
autonomous racing drone is the on board equipment. IMU and a gyroscope
are usually present in racing drones, since the drone pilot doesn’t control the
motors directly, but rather provides reference rotation rates. Outdoor flight
localization can be improved with GPS, which is a low-cost solution but might
not be enough assuming the high speeds racing drones typically allow. With
the POV camera already on board of every racing drone, some sort of simple
SLAM (orbslam2 for example) to enhance the localization could be possible.
The supplied cameras are however of low resolution, to reduce the latency of
transmission to pilots FPV goggles. Drone should therefore be equipped with
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1. Study of drone racing and rules of existing competitions ..................
at least a HD capable camera with additional hardware. Because of the fully
autonomous operation, significant computational performance is required,
in form of some embedded solution connected to the autopilot hardware.
For example, IROS 2016 winning drone mounted Nvidia TX2 module on
board, running attitude Kalman Filter and a gate detection for optical flow
path panning. The IROS 2018 winning team mounted Intel Up board on
their drone. It is to be noted that both teams used neural networks for gate
localization [JHSS18]. There are many out of the box solutions on the market
for drone racing, but autonomous racing requires a custom build depending
on specific race and computational load required by control algorhitms. There
are many ROS capable autopilots on the market today, for example Pixhawk
or NAVIO.

1.5 Quadcopter

Quadcopters or quadrotors are VTOL aircraft equiped with four propellers,
each spun by a motor at variable speed. Propeller rotation is opposite in pairs,
to equalize generated torque and rotor blades are typically fixed (although
some variable pitch models exist on the market). Rotor blades are optimized
to give best performance in only one direction of rotation, which makes reverse
spin mode inefficient although not impossible. Quadcopters today find many
uses, due to their both outstanding stability and maneuverability. Since every
rotor is controlled independently, there is a wide variety of possible maneuvers
which would be impossible for conventional helicopter, let alone a fixed wing
aircraft. This makes quadcopters ideal for operation in dense environments,
assuming a skilled pilot is in control or a suitable control algorhitms are
provided, which I will adress later.

1.5.1 Brief history

First experiments with manned quadcopters began as early as in 1907, and
continued for several years, but quadcopters were surprassed by helicopters,
since they were easier to pilot. A helicopter naturally stabilizes itself in
hover while a quadcopter does not. Large clumsy quadcopters were therefore
put aside, and as technology advanced, small remote controlled quadcopters
appeared. With the aid of electronic stabilization and miniaturalization of
electronics, quadcopters came back into favor during first decade of 21st
century and are now subject of innovation in many fields.

ctuthesis t1606152353 6



..................................... 1.5. Quadcopter

Figure 1.3: QAV-R FPV Racing Quadcopter

Figure 1.4: Oemichen 2 quadcopter from 1920

1.5.2 Mathematical model

Formulation of a quadcopter in mathematical terms is fairly straightforward.
From kinematics standpoint, it is a 6 degrees of freedom underactuated
nonlinear system, which is controlled by 4 inputs, which are angular velocities
of motors. Since hover state approximation is not practical in drone racing, we
have to account for nonlinear dynamics. The system is further complicated
by moments of inertia of both frame and rotors, and there is some drag
involved during high speeds, which is however difficult to model since precise
aerodynamics of frame and rotors are unknown. The motor dynamics are
neglected in the general moment, but are included with specific optimization

7 ctuthesis t1606152353



1. Study of drone racing and rules of existing competitions ..................
methods. We follow with definition of the nonlinear system:

Figure 1.5: Forces and moments

ṗ = v

v̇ = Ft
m
R(Φ)zW − gzW

Φ̇ = J(Φ)ω
ω̇ = I−1(−ω × Iω + M)

(1.1)

where p = [x, y, z]T denotes a position vector of the centre of mass, v =
[v1, v2, v3]T a velocity vector of the centre of mass, g denotes a gravitational
constant, m denotes a mass of quadcopter, Ft denotes a total force generated
by propellers, Φ = [θ, ϕ, ψ]T denotes orientation in Euler angles - roll, pitch
and yaw angles respectively, and ω = [p, q, r]T denote angular rotation rates
in the body frame, and M = [Mx,My,Mz]T are the moments of force (or
torques) about respective body axes.

Let us further define matrices:

R(Φ) =

cosϕ cosψ sin θ sinϕ cosψ − cos θ sinψ cos θ sinϕ cosψ + sin θ sinψ
cosϕ sinψ sin θ sinϕ sinψ + cos θ cosψ cos θ sinϕ sinψ − sin θ cosψ
− sinϕ sin θ cosϕ cos θ cosϕ


(1.2)

as a rotational matrix from body to world frame, then:

J(Φ) =

1 sin θ tanϕ cos θ tanϕ
0 cos θ − sin θ
0 sin θ secϕ cos θ secϕ

 (1.3)

ctuthesis t1606152353 8



..................................... 1.5. Quadcopter

as the mapping from body frame ω̇ to world frame Φ̇, and:

I =

Ixx 0 0
0 Iyy 0
0 0 Izz

 (1.4)

as an inertial matrix along three main axes, where components are moments
of inertia.

Not only is the system underactuated, but it is limited by other factors,
most notably the inputs. Since the rotor output thrusts are limited by the
maximum velocities of motors, the maximum drone motion and attitude
dynamics are also limited. Taking these into account and assuming a suitable
angular velocity controller is present to compensate for inertial forces and
tracking of the angular velocity references, we can simplify the quaddcopter
dynamics into a vector-thrust model:

ṗ = v

v̇ = −gzW + Ft
m
R(Φ)zW

Φ̇ = J(Φ)ω

(1.5)

This simplified model becomes is used in some optimization approaches,
since it compromises between system nonlinear dynamics, which happen to
be unstable, and the load put on optimization algorhitms.

1.5.3 Simulation model

The mathematical model of quadcopter in form of differential equations will be
used in optimization process and simple validation of controller, for software
in the loop simulation however we need a different kind of model. For the
purpose of this work, I have chosen to use a simulation model of AscTec
Hummingbird Drone. The reason is that this model has already been used for
research in drone control [WBH+11] and aerodynamics [FBAS16] and serves
as a research platform for aggressive flight research, so the precise values of
dynamic, aerodynamics and even motor parametres are known. Measurement
of those would require extensive experimentation with a real model [CFCH14]
and is out of scope of this work. Therefore, I perform the optimization
on general mathematical model of quadcopter dynamics (where only mass,
inertia and constrains on the states matter) and then evaluate performance of

9 ctuthesis t1606152353



1. Study of drone racing and rules of existing competitions ..................
trajectory tracking controller, which should reliably compensate for missing
dynamics.

Figure 1.6: AscTec Hummingbird drone

Another significant difference of simulation model is presence of simulated
sensors, most notably simulated IMU and position estimation. The motors
of the model are modeled by first order system with the time constant τDC .
The most important model parameters used both during optimization and
during simulation are taken from [WBH+11], and are:

Parameter Symbol Value Unit
Mass m 0.68 kg
Inertia XX Ixx 0.007 kgm2

Inertia YY Iyy 0.007 kgm2

Inertia ZZ Izz 0.012 kgm2

Gravitational acceleration g 9.81 ms−2

Rotor velocity squared to thrust ratio kF 5.710−8 N rpm−2

Rotor velocity squared to moment ratio kM 9.1210−10 N rpm−2m
Rotor arm length L 0.17 m
Rotor drag constant − 8 · 10−5 −
Motor time constant τDC 0.125 s

The model itself is represented in an URDF format.

ctuthesis t1606152353 10



........................ 1.6. Mathematical formulation of drone racing

1.6 Mathematical formulation of drone racing

1.6.1 Race course

Depending on the competition, we can expect very specific constraints on
the form of track. We start with a set of waypoints along the track, like
gates, which should be passed through. Some gates however might be of
logical nature, like passing around an obstacle in specified direction. Gates
themselves too form an obstacle in trajectory formulation case, since they
cannot be passed in arbitrary direction and to be collided with. The tracks
are not usually limited in maneuvering space, but might feature obstacles,
which have to be accounted for. It is practical to formulate a race course as
a set of waypoints, however not ideal to fix a waypoint just to single point
in space. Given that gates are usually very small compared to the size of
the race course, it is a plausible assumption. This becomes versatile during
polynomial formulation of trajectory. Another, approach, is to specify a
waypoint as a constraint in path space. Exact formulation is dependent on
the optimalization method. I presume the whole track profile and obstacle
positions are available before the race. The race course can then be formulated
as a constrained path space, on which some optimal trajectory has to be
planned. The benchmark race course for this work is the MultiGP Universal
Time Trial track.

The waypoints of the track are:

Number X Y
1 0 0
2 56 0
3 28 14
4 56 28
5 -14 14
6 0 0

The flight level is set at 1.5m.

11 ctuthesis t1606152353



1. Study of drone racing and rules of existing competitions ..................

Figure 1.7: Specifications of race track

1.6.2 The race

Having established both vehicle and environment, we can formulate the drone
race as a trajectory planning problem. The suitable trajectory (x(t),u(t))
(note that x here represents states of the system), which takes a drone along
the race track, is constrained by the underactuated nature of quadcopter
system ie. is subject to the quadcopter dynamics, should take the drone
along the track in shortest time possible, therfore the cost J = T is the total
time taken. I will not consider presence of other vehicles on the track for the
purpose of this work, since it obviously cannot predict their trajectories. The
race can then be formulated as a generation of time optimal trajectory which
satisfies the drone and environmental constraints:

x,u,T
min T

subject to ẋ = f(x(t),u(t))
x(0) = x0

lbxi <= xi <= ubxi

lbuj <= ui <= ubuj

x(T ) ∈ XT

(1.6)

where x0 is the initial state, followed by constrains on trajectory states and
inputs and a final constrained.

ctuthesis t1606152353 12



Chapter 2

Trajectory optimalization

There have been many approaches proposed for trajectory optimization of
quadcopters in recent years, each suited for different application. In drone
racing, we require the trajectory to pass through multiple waypoints in
continuous fashion, which removes a wide array of point-to-point planning
algorithms. We additionaly need to satisfy the system dynamics and constrains
and environmental constrains, so some sort of feasible path search is in order.
Some trajectory planning approaches also come with a quadcopter controller
in mind. I will now follow with most practical trajectory generation algorhitms
for drone racing, and compare their performance later.

2.1 Polynomial trajectory

Proposed in [MK11], generation of snap minimizing polynomials p to represent
drone trajectories for aggressive maneuvering takes advantage of important
propery of quadcopter nonlinear system, which is its differential flatness
[vNM96]. In this approach, the states of the nonlinear system and its outputs
can be written as an algebraic function of four flat outputs, which are σ =
[σ1, σ2, σ3, σ4] = [x, y, z, ψ] and finite number of their derivatives. Trajectory
is then defined as a smooth curve σ(t) being a function of time [MMR03].
System states can be easiy computed from σ, as is explained in [MK11].
Important fact to be noted however is than the computation does not depent
on the derivatives of σ, which means it can be chosen arbitrarily. This becomes
useful for example if we want to follow the trajectory with the camera facing
forward.

13 ctuthesis t1606152353



2. Trajectory optimalization................................
2.1.1 Differential flatness

Lets first consider the equation of motion of the center of mass with use of
body coordinates:

mp̈ = mv̇ = ma = FtzB −mgy3 (2.1)

where a = [a1, a2, a3]T denotes vector of acceleretion of the mass point in
world frame. From there we can define first body axis vector zB dependence
on trajectory:

zB = R(Φ)zW = ma +mgzW
Ft

= t
‖t‖ (2.2)

where t = ma + mgzW = [σ̈1, σ̈2, σ̈3 + g]T denotes total acceleration. Also
note that m ‖t‖ = Ft. Given the yaw angle ψ, we can define a vector
xyB = [cosψ, sinψ, 0] on the world frame plane [1, 1, 0]. Then by vector
multiplication, we receive remaining body frame vectors:

yB = zB × xyB
‖zB × xyB‖

, (2.3)

xB = yB × zB. (2.4)

We can also specify rotation matrix R from the flat outputs:

R = [xB,yB, zB] . (2.5)

We follow the same way with angular velocity, but now using the first derivative
of motion:

mȧ = ḞtzB + FtżB = ḞtzB + ω × FtzB, (2.6)

and since Ḟt = zB ·mȧ we can write:

ω × zB = m

Ft
(ȧ − (zB · ȧ)zB). (2.7)

where ω × zB is once again projection. Components of ω are then computed
as:

p = −(ω × zB)yB, (2.8)

q = (ω × zB)xB, (2.9)

r = ψ̇zW · zB. (2.10)

Last remaining are the angular acceleration rates ω̇. We start with:

mä = F̈tzB + ḞtżB + ḞtżB + Ftz̈B, (2.11)

and since F̈t = zB ·mä we can write:

mä =(zB ·mä)zB + (zB ·mȧ)(ω × zB) + (zB ·mȧ)(ω × zB)+
+ Ft((ω̇ × zB) + (ω × (ω × zB)),

(2.12)
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................................. 2.1. Polynomial trajectory

ṗ = −(ω̇ × zB)yB, (2.13)

q̇ = −(ω̇ × zB)xB, (2.14)

ṙ = ψ̈zW · zB. (2.15)

The moments of force can then be computed from Eulers equation. The
important conclusion here is, that all states and inputs of the system can
be expressed through 4th derivative of the position ä = j̇ = s, which we call
snap (which is the derivative of jerk), and the 2nd derivative of the yaw.

2.1.2 Controller from polynomial trajectory

The proposed nonlinear controller [LLM10] for quadcopter using differential
flatness is defined by quations:

Ft = (−kxerx − kverv +mgzW +maref ) · zb (2.16)

M = −kRerR − kωerω + ω × Iω − I(ω̂RTRrefωref −RTRref ω̇ref ), (2.17)

where kx, kv, kR, kω are the control gains and R = R(Φ) known rotation
matrix. The ω̂ is the hat map angular velocity vector mapping the vector to
skew symmetric matrix:

ω̂ =

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

 . (2.18)

While errors of position erp = p − pref and velocity erv = v − vref are
easily found, errors of rotational matrix erR and angular velocity are more
complicated:

erR = 1
2(RTrefR−RTRref )∨, (2.19)

whrere ∨ denotes the vee map which is an inverse operation to the hat map,
and:

erω = ω −RTRrefωref = ω −RTRref (RTref Ṙref )∨. (2.20)

All remaining terms can be computed using differential flatness. Last problem
to solve is to map the control force and moments to true quadcopter inputs,
which are the motor conrols. I assume existence of direct mapping of required
angular velocity (or produced thrust) to the voltage of the motor, so we don’t
have to account for motor input uDC(ωDC). The relations between motor
angular velocities and the reference inputs then are:

Ft
Mx

My

Mz

 =


kF kF kF kF
0 kFL 0 −kFL

−kFL 0 kFL 0
kM −kM kM −kM



ω2
DC1
ω2
DC2
ω2
DC3
ω2
DC4

 , (2.21)
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2. Trajectory optimalization................................
where kF is ratio of produced force produced by motor depending on angular
velocity, kM the ratio of moment and L is the distance of motor from the
center of mass. We assume non negative motor velocities ωDC >= 0. Our
model does not operate with motor velocities but with rotor thrust, the
relation of force and moments to thrust however stays simmilar, just with
different constants. It is worth mentioning that there has been effort put
into incorporating quadcopter aerodynamics into control using differential
flatness. In [FFS18] for example, it is shown how this controller can directly
compensate for rotor drag. I have tested the performance of implemented
controller on quadcopter model in Matlab before implementing it for ROS.
The position tracking is nearly perfect except for slight vertical disturbances
caused by trajectory sampling rate of 100Hz. The time of trajectory was
19.49 s.
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Figure 2.1: Evaluation of controller performance

2.1.3 Generation of polynomial trajectory

Since the system dynamics is dependent on jerk of the trajectory, it is
reasonable to assume that by minimizing the jerk, we will minimize the
energy spent by the quadcopter. This will then enable us to perform very
agressive maneuvers. From the differential flatness property, we can make use

ctuthesis t1606152353 16



................................. 2.1. Polynomial trajectory

a fact that trajectory in each dimension (x, y, z) can be optimized separately.
We will make use of Quadratic Programming. We seek to minimize the cost
function of position x (on a single axis):

J = 1
2

∫ T

0
(x[4](t))2dt = pTQ(T )p, (2.22)

where the notation x[i] means ith derivative of the position with respect to
time. Final time T has to be specified beforehand. We also assume the
initial state x0 =

[
x

[1]
0 , x

[2]
0 , x

[3]
0

]
and final state xT =

[
x

[1]
T , x

[2]
T , x

[3]
T

]
to be

known. Let us now adopt a different notation, as the position x(t) = p(t) is
represented by a polynomial of order N in time:

p(t) = p0 + p1t+ p2t
2 + ...+ cN t

N . (2.23)

The Hessian matrix Q(T ) comes from differenetiating the squared polynomial
by its respective coefficients, as is closer explained in [RBR12]. Since we will
be planning trajectory over multiple waypoints, more general description is
in order since it will be contstructed from M polynomial segments:

Jtotal =

 p1
...

pM


T Q1(T1)

. . .
QM (TM )


 p1

...
pM

 , (2.24)

where Q1...QM are Hessian matrices of polynomial cost with their respective
durations T1...TM . What remains is to determine the order of the polynomial.
We solve this using Euler-Langrange function:

J = 1
2

∫ T

0
(x[4](t))2dt = L(t, x[4](t)), (2.25)

and from the condition of optimality:

∂L(t, x[4](t))
∂x[4](t)

= 0, (2.26)

we can determine:
x[8](t) = 0, (2.27)

therefore, we require a polynomial of 7th order (N = 7) for minimizing snap.
The joint optimization of multiple segments in addition has to be constrained
in order to enforce continuity of polynomials and their derivatives by equality
constrains. We enforce general equality constrains in form of:

ATm,mpm = bm, (2.28)

where m is the polynomial segment number. The initial derivatives for the
first segment and final derivatives for final segments are known, as are initial
and final positions for all the segments, so only required continuity constrains

17 ctuthesis t1606152353



2. Trajectory optimalization................................
are on the 1st, 2nd and 3rd derivative of a segment to match the same
derivatives of the next segment:

ATm,mpm = A0,m+1pm+1. (2.29)

This is the solved using a suitable QP solver. I myself have used the OPTI
Toolbox for Matlab [CW12], which provides several solvers under BSD li-
cense. I have found it to be a very practical free alternative to Mathworks
Optimization Toolbox.

2.1.4 Reformulation to unconstrained optimization

Before following with time optimality, we need to adress an important issue of
this approach, which is its numerical instability. With 7th degree polynomials
and multiple waypoints, we approach inversions of matrices with values to so
small they are nearly singular. The issue is further discussed in [RBR12], and
I have reached simmiliar results. Practical way to circumvent this issue is to
reformulate the constrained optimization into unconstrained one and solve a
mean square problem instead of quadratic programming one. Sadly, we have
to give up the corridor constrains proposed in [MK11] with this approach.
We do this by solving for endpoint derivatives of polynomial segments rather
than for polynomial coefficients. We reformulate the polynomial cost function
as:

J =

 b1
...

bM


T A1

. . .
AM


−T Q1

. . .
QM


A1

. . .
AM


−1  b1

...
bM

 ,
(2.30)

and then reorder the derivatives into group of fixed bF and unspecified bp
variables with use of permutation matrix C: b1

...
bM

 = CT
[
bF
bP

]
, (2.31)

and then substitute to previous equation to obtain:

J =
[
bF
bP

]T
CA−TQA−1CT

[
bF
bP

]
=

[
bF
bP

]T [
RFF RFP
RPF RPP

]T [
bF
bP

]
. (2.32)

Important fact to be noted for successful implementation is that the matrices
Am for each polynomial segments do not contain continuity constrains in
unconstrained optimization, but only the equality constrains as if the values
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................................. 2.1. Polynomial trajectory

of derivatives in matrix b were known. The final cost of unconstraned
optimization is the determined as:

J = bTFRFFbF + bTFRFPbP + bTPRPFbF + bTPRPPbP . (2.33)

The minimum of J can be found by equating derivative to zero and we receive
well known mean square solution:

b∗P = −R−1
PPR

T
FPbF . (2.34)

The values of polynomials are then computed using matrix C for each segment.

2.1.5 Time optimality and input constrains

Optimization of polynomial trajectory in time is straightfoward. Since time
allocated for each segment is specified before the optimization, we can first
optimize with initial guess (square of distance between waypoints works well),
and then proceed with simple gradient descent. The [vNM96] proposes to
include the time cost into general cost function, which is the sum of costs of
all trajectories (as each dimension is optimized separately):

J = Jx + Jy + Jz + kT
m

∑
Tm, (2.35)

with use of some weight constant kT . Note that when using cost 2.33 in
optimization, the magnitude of cost is different from orignal 2.24, so in
contrary to values proposed in [vNM96] I have found kT ∈ [0.1, 0.7] to work
well for generating trajectories with reference motor thrust of magnitude of
101 for a quadcopter with weight with magnitude of 100. Important fact to
point out here is that while total time will converge to some value depending
on the kT , the ratio between final segment times will reach the same optimum
for every value of kT . It therefore makes sense to start with some small value
of kt, find optimal segment ratios and optimize further by decreasing total
time. We can also keep normalizing the total time during optimization to
keep it fixed until we find the optimal ratio and then decrease it. I have
reached the same results with both. Since the values of control inputs can
be directly computed for trajectory at any moment, we can lower the total
time until we hit some constrain on the inputs. This will however still not be
optimal, since required thrust tends to peak out during longest segments, so
care has to be taken to keep the segment waypoint distance simmilar for best
performance.
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2. Trajectory optimalization................................

2.1.6 Results

By using the unconstrained formulation and gradient descent, I have achieved
results simmilar to those in [RBR12]. Even a complex trajectory with 20
waypoints can be reliably optimized using 7th degree polynomial. Gates were
represented as waypoints. The yaw was set to 0 to further reduce controller
effort. The controller effort was limited by maximum thrust of the motors.

0 2 4 6 8 10 12 14 16
Time [s]

-30

-20

-10

0

10

20

30

40

50

60

V
al

ue
s

Trajectory generated by UQP

px [m]
py [m]
vx [m/s]
vy [m/s]

Figure 2.2: Results of UQP 1

The manufacturer specifies maximum thrust of 5N per rotor, so the value
was capped at 4N to leave some margin for error correction.

The final time of polynomial trajectory was 16.38 s. This, while far from
the record of 8.82 s by a human pilot, is still quite competitive. Even more
so when we take into account that we are by not using a quadcopter fully
optimized for drone racing and are starting from initial hover at 1.5m. The
values of Z axis are not specified, since the flight is assumed to be level, there
is nothing to optimize for.

One extra waypoint was added, since there are no contrains on the final
velocity, to get better results. This way quadcopter does not come to a
full stop at the finish line. In conclusion, this trajectory planning method
proved to be the most reliable, requiring less tuning by hand compared to
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Figure 2.3: Results of UQP 2

the other methods, and since it optimizes for control effort directly, produces
easiest to follow trajectories. It is not ideal for drone racing though, since
the unconstrained nature and optimization for every dimension separately
does not allow to specify constrains.

2.2 Frame path trajectory

Another approach to trajectory optimization proposes use of so called framed
path [SNBF16][SN18]. The main idea is to represent the race track as an arc-
length parametrized locally non intersecting curve in space pf (s),∀s ∈ [0, L]
where L is the total length of curve, and the trajectory along the track
as states in a Serret-Frenet frame. By deriving the position vector pf (s)
according to arc-length s, we receive:

t(s) = dpf (s)
ds

n(s) = 1
k(s)

d2pf (s)
ds2

b(s) = t(s)× n(s)

, (2.36)

which are tangent, normal and binormal vectors of the path respectively and
k(s) is the curvature. We denote τ(s) = n(s)db(s)

ds as torsion. By mapping
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the position vector to the closest position on path by orthogonal projection:

sf (t) = arg
s

min ‖p(t)− pf (s)‖2 . (2.37)

2.2.1 Transverse dynamics

We can describe position along the path using transverse coordinates:

w1 := n(sf )(p(t)− pf (sf ))
w2 := b(sf )(p(t)− pf (sf )).

(2.38)

Using approach described in detail in [SNBF16], we can derive formulation
of previously shown simplified thrust vector model dynamics in transverse
coordinates, if we state that:

t(sf ) = 1− k(sf )w1(sf )
t(sf ) · v(sf ) = 1

ṡf
, (2.39)
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.................................2.2. Frame path trajectory

ie. all variables which are functions of time only depend on it through sf in
the transverse coordinates. The transverse dynamics are then:

ẇ1 = n · v 1
ṡf

+ τw2

ẇ2 = b · v 1
ṡf
− τw1

v̇ = (−gzW + Ft
m
R(Φ)zW ) 1

ṡf

Φ̇ = J(Φ)ω 1
ṡf
,

(2.40)

since derivative of any function α(t(sf )) by sf will be α̇(t(sf ))ṡf . The
advantage of this approach to trajectory formulation is that we can specify
some arbitrary path along the race track, and then limit the space of possible
trajectories by putting contrains on states w1 and w2. We can enforce limits
on gate and obstacle safety in the same way. The dynamic constrains are
satisfied by constrains of system inputs Ft and ω.

2.2.2 Cost and constrains

Since we seek to minimize time, we define the funtional as:

Jt = T =
∫ T

0
1dt =

∫ sf (T )

sf (0)
t(s)ds =

∫ L

0

1
ṡf
ds (2.41)

, ie. we minimize the total length of the trajectory by maximizing the velocity
along path. To enforce path and dynamic constrains, we will apply the
barrier fuction approach introduced in [HS06]. This consists on relaxing the
constrains by including them in the cost function to be minimized. General
constraint function cf (x(sf )) of some state or input x(sf ) is:

cf (x(sf )) = (2x(sf )− (xmax + xmin)
xmax − xmin

)2 − 1 ≤ 0, (2.42)

and in cases where xmax = xmin (angle and angular rate limits):

cf (x(sf )) = ( x(sf )
xmax))2 − 1 ≤ 0. (2.43)

The cost of constraint would then be computed using logarhitm. However,
this implies that the trajectory has to be feasible. In order to optimize on
both feasible and infeasible trajectories (initial guess for example might not
be feasible), we make use of the barrier function in form:

βl(cf ) :=
{
− log(cf ), for x > l

− log(l) + 1
2((x−2l

l )2 − 1), for x ≤ l
. (2.44)
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2. Trajectory optimalization................................
The final cost functional and optimization problem is then:

x,u
min

∫ L

0

1− kw1
t · v + ε

j

∑
βν(cf,j(x(sf ),u(sf )))ds+ εfin

i

∑
βνfin(−cf,i(x(L)))

subject to ẋ = f(x(s),u(s))
x(0) = x0

cf (x(L)) ≤ 0
cf (x(sf ),u(sf )) ≤ 0, ∀sf ∈ [0, L] ,

(2.45)
where ε, εfin, ν, νfin are the weights of constrains and will be explained later.
Also note that cost functional is strongly convex. Having estabilished trans-
verse dynamics, cost function and contrains, we can proceed to the optimiza-
tion.

2.2.3 PRONTO optimization

Projection Operator Newton Descent Optimization [Hau02] approach to
trajectory optimization has been known for nearly two decades, yet has
lately seen revival in trajectory planning for autonomous vehicles[KLM+17].
I refer interested reader to the textbook [FPN18], and will only outline
basic principles of the algorhitm. The Matlab implementation developed
for the purpose of this work is available too. Let us define the projection
operator P : ξ → η as a mapping from some bounded state control curve
ξ = (α(sf ), µ(sf )) to a feasible (from the standpoint of system dynamics)
system trajectory η = (x(sf ),u(sf )) for s ≥ 0. This is done by continuously
integrating nonlinear feedback system:

ẋ = f(x,u)
u = µ(sf ) +K(sf )(α(sf )− x),

(2.46)

where x(0) = x0 and f(x,u) are the system dynamics. State feedback
gain K(s) can be computed in fashion of finite horizon LQR controller for
time varying system using linearized dynamics (gain scheduled LQR) along
the control trajectory by solving the Riccati diff. equation backwards in
arc-length. Using the projection operator, we can perform unconstrained
optimization, since the cost of trajectory is g(η) = h(P(η)) where h(η) =∫ L

0
1−kw1

t·v + ε
j

∑
βν(cf,j(x(sf ),u(sf )))ds+ εfin

i

∑
βνfin(−cf,i(x(L))). Newton

descent direction ζi for current trajectory iterate ξi is obtained from first and
second Fréchet differentials DP(ξ) and D2P(ξ):

ζi = arg
ζ

minDh(ξi) + 1
2D

2g(ξi), (2.47)
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.................................2.2. Frame path trajectory

and the trajectory is updated:

ξi+1 = P(ξi + γζi), (2.48)

where γ is some positive constant obtained for example by line search. We
repeat this iterative algorhitm until solution converges to some local minimum.
That is bound to happen, since the cost functional, which is also part of Frechét
derivatives is strongly convex and has strictly positive second derivative. The
search direction can be neatly found by backward and forward integration
(solving LQ problem), if analytical second derivatives of dynamics and cost
functional are known. We also recompute feedback gain K(s). As a first step,
we obtain some initial trajectory ξ0. Lets repeat that trajectory is defined as
states and controls of the system ξ = (x(.),u(.)). This can easily be done by
polynomial optimization. Then we proceed with PRONTO algorhitm. After
solution converges to some local minimum, we reduce the tuning parameters
ε, εfin, ν, νfin (for example by half), and repeat the PRONTO. This will place
lower weight on constrains and more on original cost Jt, and the trajectory
will converge to the optimum while respecting constrains. Strength of this
approach is that each subsequent iteration is performed on tangent trajectory
manifold.

Figure 2.5: PRONTO optimization algorhitm from [Hau02]

2.2.4 Results

Although I have implemented frame path optimization with PRONTO in
Matlab, I have not been successful in running it. There are issues not
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2. Trajectory optimalization................................
adressed in the [SNBF16], which is very vague about some parts of the
implementation, for example of the feedback gain K which fails to reliably
stabilize the transverse dynamics for ‖v‖ 6= 1, and discretization of trajectory
(although the PRONTO algorhitm is continuous, trajectory ξ is saved in form
of discrete states and control inputs in memory). One significant issue is that
the second derivative of the system dynamics is not positive definite along
the trajectory, so the search direction can not be found - the Riccati diff.
equation is not numericaly stable. There has been significant effor put into
understanding the approach and implementing it, and the reader is invited
to inspect the implementation.

2.3 Nonlinear programming trajectory

Approach through nonlinear optimization is fundamentally different. We no
longer make use of the differential flatness, but of the entire the system model,
since performing black-box optimization through shooting approach would
be nearly impossible. There is variety of tools for nonlinear optimization, I
myself have used the freely available FALCON.m [RBG+] toolbox for Matlab,
which provides interface to the IPOPT [WB06] solver. Although this aproach
has been described as unreliable and unstable in various literature, it appears
to be working just fine and yields truly time optimal trajectory.

2.3.1 Description of algorhitm

As before, we seek to minimize the total time of trajectory, or rather sum of
segment times J =

∑
Tm. We keep the term of segments, however this time

the segments are not represented by polynomials connecting waypoints in
time, but discrete state and control grids. The segments are connected by
constrains simmilar to those used in polynomial optimization, to enforce state
continuity. We begin with implementation of the mathematical model 1.1 in
Matlab. We include the motor dynamics in the model with the time constant
τDC = 0.2 s for safety. The model knowledge is important, since IPOPT uses
the knowledge of the model analytical derivatives in optimization. While
this can be done by hand as is shown in frame path optimization [SN18],
we can make use of FALCON.m implementation of Symbolic Toolbox and
Coder Toolbox which compiles the derivatives and discretization into a mex
file, which makes the optimization process significantly faster. The segments
between waypoints are described as phases during the optimization proces. We
begin with initial guesses on the segment times (squared waypoint distances
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........................... 2.3. Nonlinear programming trajectory

as before). We can specify initial guess for system states, although the
framework can construct it by itself either through interpolation or simulation
of dynamics.

2.3.2 IPOPT solver

I would like to make a quick remark here about limits of the IPOPT algorhitm.
Since the algorhitm is gradient based, it makes use of system derivatives
and in theory only provides solution in form of some local minimum, which
is dependent on the initial trajectory. I have however found the resulting
optimal trajectory to be the same for both generated initial guess and initial
guess from polynomial optimization.

2.3.3 Results

Although computationaly quite heavy, the algorhitm converges to optimum
(or in this case, 10−5 constrain error) in about 50 seconds on conventional PC.
The resulting trajectory is very interesting, and emulates flight trajectories of
professional pilots. Since the NLP optimization can make use of full dynamics,
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2. Trajectory optimalization................................
it inherently tries to maximize thrust over time. Energy, which does not
transfer directly to motion between gates is saved in height. The limits on
height are [0.5, 2.5] which complies with size of the gates. For the sake of
comparison with other methods, I have kept the waypoint representation
of race track, but it is possible to add any constrains. The importance
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Figure 2.7: Results of NLP 1

of including motor dynamics is obvious from rotor thrust graph. Since the
optimization tries to keep the total thrust at maximal value, the control signal
would not be continuous. The thrust was limited at 4N to give controller
some safety margin. Final time of the trajectory is 16.83 s, which is quite
good. Of course, the flight time could further be improved by removing safety
margins, but I have found the controller unable to cope with such agressive
trajectories.
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Chapter 3

Simulation

To test the performace of proposed algorhitms and trajectories, I have decided
to simulate races using Gazebo simulation environment [KH] and implement
control using Robot Operating System [QCG+09] (Gazebo 7 with ROS Kinetic
running at Ubuntu 16.04 VM).

3.1 ROS enviroment

Creating an autopilot software from a scratch would be a huge undertaking,
so I decided to implement the controller using a suitable existing framework,
which there are several to choose from. I have chosen the RotorS [FBAS16]
MAV simulator, which provides compact interface from ROS to Gazebo sim-
ulator and supports Hardware In the Loop, if we later decided to test the
performance on real hardware. ROS provides means of communication be-
tween computers, sensors and acutators in (most notably) the field of robotics.
Separate parts of the system (nodes) communicate over some unspecified
physical, datalink and transport network layer, while negotiation of specific
protocol and communication details between them like bandwidth is handled
by the ROS core node. A notable ROS package (extension, implementation
of some function) used in the simulation is MavRos, which implements the
MavLink protocol. This is a protocol designed for communication of ground-
station and MAV, and is supported by majority of commercial autopilots.
This enables direct communication of our quadcopter with ROS.
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3. Simulation......................................
3.1.1 Quadcopter controller

There already is an existing implementation of cotroler in RotorS, which is
based on the controler proposed in [LLM10]. It is however not suitable for
the fully specified discrete trajectory represented as state and control grids
or a polynomial trajectory. I have therefore extended it with capability to
follow complete reference. Note that the reference used by the controller does
not have to come from differential flatness, but can be provided directly. The
overall structure is a quadcopter controller node subscribing to odometry
and waypoint messages and publishing motor inputs. The odometry is
provided from the simulation or state estimator, and the waypoint messages
are generated by a publisher from provided trajectory file, which contains the
discretized trajectory at 100Hz. These are published by groundstation node,
which controls switching between flight modes (hover, trajectory following)
and publishes motor inputs at the frequency of about (but is not limited to)
50Hz. The attitude controller is initiated not by current position reference,
but by odometry which is published at the rate of 100Hz, however due to
computational load (caused by either controller, Gazebo or ROS delay itself),
is slowed to 50Hz. This is however reliable rate at which odometry and
controls can be computed.

3.1.2 Sensor model

There are two possibilities how to obtain sensory data in Gazebo environment.
We can either extract precise odometry straight from the simulation, the
ground truth data, or we can implement a simulated sensor through the
URDF model of the quadcopter and define its properties. I have used the
RotorS an implementation of IMU with added uncertanities, coupled with
a state estimator. The controller has however shown large sensitivity and I
have failed to finish a race using it.
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................................... 3.2. Simulated races

3.2 Simulated races

3.2.1 Polynomial trajectory

The simulation of fully modeled quadcopter with ROS controller on the
polynomial trajectory produced acceptable results. The final time of the
race was 16.75 s. The delay is caused mainly by the ROS control system,
as the state reference output and control algorhitm output have to travel
by ROS messages. This issue would be circumvented on real hardware by
implementing the attitude control loop directly on the drone autopilot. Here
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Figure 3.1: Simulation of UQP trajectory - profile

we can compare the position values for reference and simulation. Perfect
tracking was not expected due to incomplete model, however excluding the
delay, the position profile matches the reference profile quite well.

3.2.2 NLP trajectory

Just as with polynomial trajectory, the trajectory control was delayed and
the final time was 13.15 s. From general shape of simulated trajectory, we can
see that we have reached limits of the controller, which struggled to follow
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Figure 3.2: Simulation of UQP trajectory - position

the Z axis reference. The other references however were followed quite well,
albeit with constant disturbance. It is also useful to inspect the profile of
simulated trajectory. Here, the deviation is more rampant, yet still under
2m at the waypoints, which is the safety margin.
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Chapter 4

Conclusion

In this work, I have presented the idea of quadcopter drone racing, how it can
be approached from the engineering point of view and how can autonomous
drone race trajectory planning control be tackled. I have presented simulation
using in the industry estabilished control methods for drone operation. The
span of topics discussed in this work was quite broad, and all of them are
further discussed and proven in the cited literature. I have shown that it can
be entirely possible to develop complex algorhitms and simulations purely in
simulation and test their performance without requiring real hardware. Most
of the tools required to reproduce this work can be obtained for free under
GPL or simmilar license, although Matlab, which was used for trajectory
planning and development of quadcopter controller requires academical or
commerical license. I have not been able to simulate the races simulated
sensors coupled with a state estimation, which will require more development.
The ROS RotorS framework can be further improved upon, as the nonlinear
trajectory planning algorhitm is only limited in quality of trajectories by our
constrains, and those are imposed to keep the quadcopter with controller
stable. Reimplementation of the controller on the UAV and general refinement
of the communicaiton structure is in order.
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