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Abstract

This work focuses on the design and implementation of the health moni-
toring system of a turbocharger (primarily for passenger vehicles) with the
emphasis on possible deployment of the proposed algorithms in production
vehicles. The solution found in the thesis is ready to be embedded in the
researched concept of Prognostics and Health Management (phm). Possi-
ble turbocharger faults with their cause/effect relations and frequency of
occurrence are investigated. Compressor efficiency drop (for instance, due
to oil fouling) is identified as the only fault worth of further investigation.
An approximate model of compressor efficiency drop due to oil fouling
is proposed by regression on the real, clean and degraded compressor
map data. Based on simulations of a diesel engine with this approximate
model, three symptoms are found to arise when the compressor efficiency
drop is present: increased command to open vanes in Variable Geometry
Turbocharger (vgt), leading to the increased shaft rotational velocity, and
increased compressor outlet temperature. For each of the symptoms, an
indicator is designed, either by using a model, or data mining. At last, the
indicators are employed in the engine simulation environment and their
detection together with prognostics performance, involving prediction of
Remaining Useful Life (rul), is evaluated by simulating a series of emission
driving cycles.

Keywords

turbocharger, diagnostics, prognostics, regression analysis, model-based
design
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Abstrakt

Táto práca sa zameriava návrhom a implementáciou systému na moni-
torovanie stavu turbodúchadla (predovšetkým pre osobné motorové vozidlá)
s dôrazom na možné nasadenie navrhnutých algoritmov do vozidiel v
produkcii. Riešenie nájdené v tejto práci je pripravené na začlenenie do
konceptu Prognostiky. Potenciálne poruchy turbodúchadla so vzťahom
prı́čina-porucha a ich frekvencia výskytu je preskúmaná v literatúre. Pokles
efektivity kompresoru (naprı́klad z dôvodu znečistenia olejovými časticami)
je porucha zvolená na analýzu v ďalšı́ch častiach diplomovej práce. Pri-
bližný model poklesu efektivity kompresoru kvôli zaneseniu olejovými
časticami je navrhnutý regresnou analýzou na reálnych, čistých a zane-
sených kompresorových máp. Na základe simuláciı́ dieselového motora
s týmto odhadnutým modelom sa zistilo, že tri prı́znaky vznikajú pri
prı́tomnosti poklese efektivity kompresoru: zvýšený akčný zásah na otvore-
nie prı́vodných lopatiek v turbodúchadle s variabilnou geometriou vgt,
čo vedie k zvýšeniu rýchlosti otáčania hriadeľa a k rastu teploty vzduchu
na výstupe z kompresoru. Pre každý z týchto prı́znakov je navrhnutý in-
dikátor buď pomocou modelu alebo hĺbkovej analýzy dát. Nakoniec sa
indikátory implementujú v simulačnom prostredı́ motora a ich detekcia
spolu s prognostikou, zahrňujúc predikciu zostávajúceho užitočného života
rul, je ohodnotená simuláciou série emisných cyklov.

Ǩlúčové slová

turbodmychadlo, diagnostika, prognostika, regresnı́ analýza, návrh založený
na modelu
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Introduction

The automotive industry plays a key role in many economies around the
world. Only in the Czech Republic, the automotive industry employs more
than 150,000 people and accounts for more than 20% of both Czech manu-
facturing output and Czech exports1. With passenger car production at 128

vehicles per 1,000 persons, the Czech Republic has maintained its supreme
position among the world, following only the country of Slovakia. However,
the competition in the automotive industry and the legislative agencies
constantly pushes the automotive to produce safer, cleaner, and more com-
fortable vehicles. But, at the same time, the car manufacturers pursue to
offer a differentiated technology to maximize their profits.

One option for the vehicle operators to minimize the operational costs is to
optimize the maintenance process. Since the beginning of this millennium,
the concept of predictive maintenance has been replacing the condition-based
and preventive maintenance. In some industries, such as the manufacturing
plants, or the aerospace, predictive maintenance has proven to offer a more
effective and cost optimizing maintenance process. However, there have
been only a few reports of incorporation of the predictive maintenance in the
automotive vehicle industry. A remarkable effort has been made by General
Motors. In their report2, they discuss the automotive-related prognostics
and explain, for example, the need for advanced diagnosis in the more and
more electrified vehicles.

In this work, we focus on the design and implementation of the health
monitoring system of a turbocharger. The turbocharger is an Internal Com-
bustion Engine’s (ice) component found in almost all passenger vehicles
produced nowadays. A current diagnostic solution is implemented as part

1CzechInvest, 2018.
2Holland et al., 2010.

1



Introduction

of On-Board Diagnosis (obd) to detect faults leading to increased emis-
sions through the observation of overboost and underboost conditions.
Researched literature introduces model-based detection methods while rely-
ing on unmeasured variables and with insufficient failure mode analysis,
whereas the solution presented in the thesis works with the latest knowl-
edge of Prognostics and Health Management (phm) concept, equivalent
to the predictive maintenance. One of the thesis’ goals is to demonstrate
the readiness of using phm for a turbocharger in current passenger vehicle
configuration without physical intervention in the vehicle. Hence, the effort
is made to prepare the software solution ready for embedding into the real,
stringent ice environment.

Outline of the Thesis

In the first chapter, we explain the role of the turbocharger in the ice,
list the related sensors available for monitoring, describe the air pressure
boost feedback loop of the turbocharger and the Electronic Control Unit
(ecu), pinpoint turbocharger’s subcomponents, and define its performance
characteristics.

In the second chapter, we investigate the general prognostics models as
they are reported in the literature. Then, state of the art diagnostics of
the turbocharger is introduced, where the diagnostic methods, used in the
literature, rely on the model-based approach.

The third chapter offers extensive analysis of the turbocharger failure cause
and effect relations. This is a crucial step in the prognostics concept. Based
on the fault occurrence, its severity, and possibility to be observed, we
grouped them into observable and unobservable faults; observable faults
include actuator wear, compressor or turbine efficiency drop, and Low Cycle
Fatigue (lcf) phenomenon, unobservable faults include shaft bearing wear
or Foreign Object Damage (fod). We conclude the third chapter with a
recapitulation of most common faults, and if it is possible, suggest a method
to observe the degradation. The rest of this thesis deals with a compressor
efficiency drop fault modeling and monitoring. This fault has a direct and
predictable impact on the performance of the engine as more power has

2



to be delivered by the turbine to the compressor to deliver same pressure
boost.

In the fourth chapter, we perform a regression analysis on the real, healthy
and faulty compressor map data to find an analytical expression of the
compressor oil fouling, one of the causes of the compressor efficiency drop.
Thanks to the efficiency drop prediction model we produce a degraded
compressor map and verify, in the simulation, that three symptoms appear:
increased command to open vanes in Variable Geometry Turbocharger (vgt),
leading to the increased shaft rotational velocity, and increased compres-
sor outlet temperature. We develop three health indicators, each covering
one symptom mentioned before, by using model-based and data-driven
methods.

In the last, fifth chapter, we discuss the on-board architecture of the health
monitor and its actual implementation. Steps like normalization and filtering
are required before any diagnostic decision is made. Afterward, health
monitor’s performance is evaluated by running a series of legally issued
emission driving cycles World Harmonized Transient Cycle (whtc), Federal
Test Procedure Transient Cycle (ftp). The simulation is performed in the
SimulinkTM environment, where the turbocharged diesel engine model plus
its controller, identified on the real data, are available. Health monitor’s
diagnostic and prognostic capabilities are successfully validated. More
precisely, the prediction of Remaining Useful Life (rul) in the prognostics
approach is made by searching for the vehicles with similar indicator history
in the dataset of apriori simulated vehicles and processing their future
behavior into the rul probability distribution.

3





1 Turbocharger Description

In this chapter, we introduce a brief overview of a turbocharger’s function-
ality. In the beginning, we describe the interaction of the turbocharger with
other air-path loop components. Afterward, it is viewed as a standalone unit.
We offer a more detailed description when we discuss individual failure
modes.

A turbocharger is an engine’s air-path component capable of producing
additional pressure boost hence increases air-mass density swept to cylin-
ders during an intake stroke. Engine’s volumetric efficiency is enhanced1,
and more power can be supplied to a clutch from a flywheel while keeping
the equivalent engine’s displacement volume. This apparent advantage,
however, imposes additional complexity to the whole engine system. And
more complex systems require more advanced diagnostic methods to detect,
isolate, and track the unpermitted changes in the system.

1.1 Turbocharger in the Air-Path Loop

A typical passenger vehicle turbo-charged diesel engine air-path is depicted
in Figure 1.1. This case-study model has been used in extensive work on
model-based diagnosis by Nyberg and Stutte (2004).

Ambient air is drawn into the engine and filtered through the air filter (not
shown in the figure). Kinetic energy acquired from the compressor wheel
rotational velocity is converted to static pressure in a diffuser, called boost
pressure. Afterward, air is cooled by the Charge Air Cooler (cac) to decrease
its volumetric mass density and is passed to the intake manifold, where

1Opposed to naturally-aspirated engines.
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1 Turbocharger Description

Figure 1.1: The Mercedes-Benz OM611 diesel engine layout. Figure adopted from Nyberg
and Stutte (2004).

it is mixed with exhausts recycled via the Exhaust Gas Recirculation (egr)
path. Rest of the exhausts drives the turbine and leaves the engine system
by passing through a series of after-treatment devices to reduce pollutant
emissions (not shown in the figure).

In the scope of the thesis, we consider production engine is equipped with
following (relevant) sensors:

1. Mass Air Flow Sensor (maf). This sensor outputs raw mass flow rate
of air entering the intake manifold. Recent applications show a trend
where mass flow rate is estimated by means of virtual sensor2. One way
or another, it is assumed the fresh air mass flow WHFM is known.

2. Manifold Absolute Pressure Sensor (map). A pressure pinlet measured
at Inlet Manifold where mixed plenum is ready to be drawn into the
cylinders.

3. Charge Air Temperature Sensor. This sensor measures cac outlet
temperature TCAC, before entering the manifold.

4. Ambient Pressure Sensor. This sensor measures atmospheric pressure
pamb.

2Tabaček, 2016.
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1.1 Turbocharger in the Air-Path Loop

5. Ambient Temperature Sensor. This sensor measures air filter inlet
temperature Tamb.

To complement, quantities generally not measured include:

1. Rotational velocity Nt of the shaft connecting compressor and turbine
wheels.

2. Compressor discharge (cac inlet) temperature T2c.
3. Exhaust Manifold temperature T1t and pressure p1t.

Main control-loop involving turbocharger is a boost pressure p2c control.
Electronic Control Unit (ecu) demands p2c set-point based on multiple in-
puts (for example, engine speed Ne, or driver’s torque demand) and handles
it to the underlying feedback control loop. Target boost pressure is achieved
by manipulating an actuator3 influencing the amount of exhaust gas en-
ergy transferred into the radial-flow turbine. However, another control loop
which may involve slight manipulation with the turbocharger’s actuator—
within the air-path—is egr mass flow control. Since the egr control loop is
introduced because of NOx emission reduction, it is not considered relevant
to the turbocharger analysis in the thesis.

Two basic means of controlling the exhaust gas flow are recognized:

Variable-Geometry Turbocharger (VGT) A group of nozzle pivots changes
angle-of-attack on commanded input. vgt optimizes performance over
the different operating ranges, such as a large turbocharger performs
like a small one at low speeds. Its schematic principle is illustrated in
Figure 1.2a.

Wastegate (WG) A wg mechanism acts as a lever which vents exhaust gas,
if needed. An example of wg built in the turbine housing is shown in
Figure 1.2b.

Previously, we focused on the means of the exhaust gas flow control with a
little reference to an actual actuator mechanism; the mechanism, which both
wg and vgt systems are physically connected to, can be implemented in
various ways. According to Ford Motor Company (2016), these include:

3The simplest turbocharger may not contain an actuator. Called free-floating, this type
does not permit limit on boost pressure nor turbospeed.

7



1 Turbocharger Description

(a) The vgt principle schematics. Figure adopted from
Jääskeläinen (2016).

(b) A wg mechanism example.
A “flapper” valve (on the
left) lifts up and leaves the
gases through. Figure adopted
from Honeywell International
(2017a).

Figure 1.2: Two common ways of controlling the boost pressure at the exhaust side of the
turbocharger.

Pneumatic A pneumatic mechanism consists of a diaphragm and a spring.
High pressure applied to the diaphragm4 pushes the spring upwards
and manipulates wg/vgt through a crank arm and rod. The mecha-
nism is placed at the compressor side to isolate it from turbine heat.
ecu controls the amount of pressure at the diaphragm by opening
solenoid valve.

Vacuum A vacuum mechanism works on the same principle as a pneumatic
actuator except that the medium at diaphragm is vacuum pumped
from the engine; it proposes an advantage of control in all engine’s
operating ranges.

Electric In an electric actuator, a mechanical system is replaced by a DC
motor driven by H-bridge from the ecu. A feedback from actual rod
position is available.

One can come up with various designs of the actuator mechanism depending
on the expected performance, robustness and cost. Several of these will
be discussed in the later analysis, though recent applications favor electric
actuators.

4Source of the pressure is the boost built up at the compressor outlet.
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1.2 Turbocharger as a Component

In turbocharged gasoline engines, the working principle of air flow is
very similar. Primary difference is the placement of Electronic Throttle
(et) right after the compressor outlet to sustain air/fuel ratio λ close
to its stoichiometric level. This step introduces another sensor which
measures directly p2c, complementing already mentioned pinlet sensor.

Even though a throttle can be seen in diesel air-path, its function is to
develop a down-pressure in the manifold to allow egr flow in case of
low engine back-pressure.

Also, throttled air stream requires a pipe connecting compressor outlet
and inlet through a bypass valve. The valve opens up when a boosted air
is restricted to flow (throttle closes down) and surge phenomenon starts
to develop.

Interested reader can find more information about modeling and control of
ice in the book by Guzzella and Onder (2009).

1.2 Turbocharger as a Component

Now when the role of the turbocharger within the air-path system is intro-
duced, it is crucial to understand the turbocharger as a standalone compo-
nent. A cut of the turbocharger is shown in Figure 1.3.

Turbocharger system can be decomposed into two parts:

Center Housing Rotating Assembly (CHRA) A chra supports the shaft
connecting compressor and turbine wheel. It picks up the oil and
lubricates the journal bearings for low-friction rotational movement. The
oil, also, cools down the whole chra. Piston rings seal the assembly
and prevent oil leaking into the wheel area.

Compressor (Turbine) Housing The housing directs the fresh air/exhaust
within the engine air-path. Its ability to house the capacity of flow
is expressed by a/r ratio, where a stands for area of the inlet tube

9



1 Turbocharger Description

Figure 1.3: Garrett GTX3071R turbocharger cut and subcomponent description. An actuator
is not displayed. Figure adopted from Munnell (2011).

surrounding the centroid and r is a distance from the turbocharger cen-
terline to that centroid5. Also, it protects the other engine components
from the wheel bursts.

The common shaft dynamics can be described by an equation of motion6

dNt(t)
dt

=
1
Jt

(
Tt(t)− Tc(t)− Tf(t) + Ta(t)

)
, (1.1)

where Jt is a total shaft’s rotational inertia, Tt is a torque generated by the
turbine, Tc is a torque absorbed by compressor to compress the air, Tf covers
a torque loss due to a shaft viscous friction, and Ta is a torque produced by
an auxiliary source.

5Munnell, 2011.
6Guzzella and Onder, 2009.
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1.2 Turbocharger as a Component

Figure 1.4: A compressor map graph. Figure adopted from Honeywell International (2017b).

1.2.1 Performance Characteristics

Every manufactured turbocharger is tested on a gas stand to obtain its
performance characteristics. At reference temperature Tref and pressure pref,
a discrete map of compressor/turbine response is sampled. For a given
turbocharger speed Nt, air mass flow entering the compressor is varied until
boundary conditions of stable flow are achieved7. At each air mass flow
value mc, pressure ratio Πc =

p2c
p1c

is measured. Also, compressor outlet tem-
perature measurement T2c helps to compute compressor isentropic efficiency
ηc: a ratio of isentropic and actual work done by the system to compress the
air. Turbocharger’s speed is then increased until maximum mechanically-
allowed rotational velocity is approached. A typical compressor map with
indicated characteristics is illustrated in Figure 1.4.

Control design in ice relies on Mean-Value Models (mvm), control-oriented

7Conditions when the mass flow is stalled (surge), or the volume flow at the compressor
blade tips approaches sonic velocity (choke).
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1 Turbocharger Description

models accurate enough to capture transient behavior in temperatures and
pressures, but, simultaneously, not too computationally complex. Since tur-
bocharger manufacturers supply a test cell-measured map, a control design
demands a control-oriented analytical model to be found. This implies
compressor/turbine components to be fitted with functions describing their
behavior continuously with respect to variables Πc, mc, Nt, ηc, p1c, and T1c

8.
Thus two functions Πc = fΠc(mc, Nt, p1c, T1c), ηc = fηc(mc, Nt, p1c, T1c) are
found by one of the methods available in the literature; for example, in
Guzzella and Onder (2009).

1.2.2 Turbocharger Variants

Each car manufacturer expects different performance from the turbocharger
system which may lead to various modifications while increasing the total
cost. Supplementing the subcomponents aforementioned above, there are
few improvements notable within the scope of the thesis.

A known issue with turbochargers is a so-called turbocharger lag. The
larger turbocharger can provide higher boost pressure and increase the
engine’s rated power, but its inertia consumes more energy; thus the time
from power demand to actual power delivery is increased. Their low-end
performance is degraded as well, due to operation near the surge line in low
engine speeds. Katrašnik et al. (2003) proposed adding an electric motor to
the turbocharger’s shaft to speed up the shaft by this motor when needed.
Electric motor’s developed torque corresponds to the term Ta in (1.1).

vgt utilizes functionality to guide the flow at the turbine wheel whereas
Variable Inlet Guide Vane (vigv) has the similar purpose at the compressor
side—manages to lower a/r ratio when needed. It has been found out, by
Uchida (2006), that vigv and the casing treatment raises boost pressure at
low engine speeds thus improving low-end torque. Optimal control can also
be achieved in transient operations, and turbo-lag effect may be minimized
compared to single vane turbocharger. The outcome of the system is similar
to electric boosting and offers alternative to two-stage turbocharging, where

8Values p1c, T1c are used to correct air mass flow and turbocharger speed when there is
difference from reference conditions pref, Tref.
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1.3 Turbocharger Description Summary

a small turbocharger optimizes performance in low air flows before large
turbocharger starts providing high pressure ratio.

Honeywell International (2017a) proposes ball bearings as a replacement
for journal bearings for high-speed applications. They claim resistance to
shaft motion is decreased (term Tf in (1.1)) and, therefore, shaft can spin up
faster. Additionally, less oil is required to lubricate the shaft, and assembly
durability is increased.

Again, Honeywell International (2017a) states their Garrett turbochargers
may be equipped with a water cooling system, supplementing the oil loop.
Following hot-shutdown9 a heat soak begins, eventually causing oil thermal
instability, called oil coking, and degrading the engine oil with residues.
Water-cooled center housing can acquire the heat energy from the system
and prevent the oil from coking.

1.3 Turbocharger Description Summary

A turbocharger is the engine’s air path component increasing the air pressure
at the cylinder intake manifold, allowing the ecu to inject more fuel, hence
produce more torque. The turbocharger is accompanied by several sensors
required by ecu to compute optimal fuel injection properties. Therefore,
the variables compressor pressure ratio Πc, compressor inlet temperature
T1c, air mass flow mc, and charge air temperature TCAC are assumed to be
known.

The ecu controls the level of boost pressure p2c by manipulating the actuator.
Either the vgt system or the wg mechanism can be deployed. The vgt adjusts
vanes in the turbine to change the aerodynamics flow, the wg simply vents
the exhaust gas if the boost pressure has to be decreased. Both mechanisms
are at the turbine side, whereas the actuator is located at the cold compressor
housing. The actuator is connected to the mechanism through a crank arm,
bushings, and a rod. Pneumatic, vacuum, and electric means of actuation
are possible.

9A state where the engine is shut down while the turbocharger is still very hot.
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1 Turbocharger Description

The turbocharger itself is composed of a chra: the assembly of the shaft,
nickel-based turbine wheel, and aluminum-based compressor wheel packed
in the system of oil-lubricated bearings, plus a compressor and turbine hous-
ing. It is shipped together with a compressor (turbine) performance map. A
compressor map links the mc, Nt, Πc, ηc measurements and is obtained at the
laboratory gas test stand. For modeling and control purposes, this discrete
map must be fitted with two functions fΠc(mc, Nt, p1c, T1c), fηc(mc, Nt, p1c, T1c).
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2 Turbocharger State of the Art
Diagnostics and Prognostics

In this chapter, we offer research of general prognostic models, related
definitions, and a summary of current turbocharger diagnostic solutions.
We have chosen two different authors dealing with the diagnostic and prog-
nostic techniques and MATLAB’s recent Predictive Maintenance Toolbox
extensive documentation to support our solution. A current turbocharger
implemented diagnostics is a part of obd that detect faults leading to in-
creased emissions through the observation of overboost and underboost
conditions. Researched literature introduces model-based detection methods
developed from the thermodynamic model of the turbocharger.

2.1 General Prognostic Models

In this section, we should clarify what is the role of this thesis within
a Prognostics and Health Management (phm) concept. This topic covers
a broad spectrum of tools and methods for different engineering fields.
Thus, it is essential to be clear what is the goal of the health monitoring
system proposed in this thesis, how it can be related to current prognostic
techniques performed, and what is not pursued in this work. We begin with
the literature research of the general prognostic models, then we create a
table that summarizes the researched models, and, in the end, we list a short
example from the literature.

A work by Kumar and Pecht (2010) summarizes modeling approaches for
phm implementation. It is noted phm is an approach that enables real-time
health assessment of a system in its actual application conditions by sensing,

15



2 Turbocharger State of the Art Diagnostics and Prognostics

recording, and interpreting environmental, operational, and performance-
related parameters that are indicative of a system’s health. phm can be
further divided into three concepts:

Diagnostics The diagnostics estimates the system’s health condition and
provides fdi capability.

Prognostics The prognostics involves the assessment of system’s health
condition followed by modeling fault progression, health degradation,
and Remaining Useful Life (rul) estimation.

Health Management The health management provides the capability to
make informed decisions about logistic actions based on diagnostics
and prognostics information, available resources, and operational
demand.

The authors grouped researched phm models and algorithms into four
categories, based on system’s operation and data available:

Statistical Reliability-based Approach This approach is suitable for sys-
tems with insufficient sensor network, having short life, are non-
critical, and involve low risk. Weibull distribution is the most appro-
priate statistical distribution which covers life cycle with respect to
operational time.

Life Cycle Load-based Approach This approach consists of damage accu-
mulation models depending on the usage profile. Includes fatigue life
cycle computation as a function of operating conditions.

State Estimation-based Approach This approach takes advantage of the
model already developed for control purposes. A single parameter,
indicating system’s health, can be estimated together with unmeasured
states by means of an observer.

Feature Extraction-based Approach This approach derives a feature from
the system data and assumes the feature varies when a fault is present.

A review of diagnostic and prognostic capabilities, by Vogl, Weiss, and
Helu (2016), comments current phm challenges; business level and human
factor inputs are considered as well. Since phm goal is to optimize the
maintenance process, the approach must be carefully chosen because it is
difficult to evaluate phm cost savings.
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2.1 General Prognostic Models

Regarding measurement techniques, Vogl, Weiss, and Helu (2016) notes
phm designers must be able to use the available measurements placed for
other functional purposes to assess health monitoring. This approach aligns
with the hypotheses formulated in the beginning of the chapter, when list of
available measurements was introduced. Identified phm methods include

Experience-based Approach This approach uses human expertise for anal-
ysis and is the least complex.

Data-driven Techniques These techniques find non-linear relationships
from the available data. Its advantage is that it might be applied
to any system-subsystem-component level. Machine-learning and
statistics-based approaches are counted within data-driven concept.
Large amount of data is required to train the algorithms and prevent
over- and under-fitting. Big data problem must be solved first.

Physics-based Approach This approach uses model-based solution and
physics-of-failure-based failure propagation where accumulated dam-
age is a function of the operating conditions.

The MathWorks, Inc. (2018) introduced in their 2018 releases a Predictive
Maintenance Toolbox offering a set of models, algorithms, and guidelines
to allow users to implement Predictive Maintenance1 in an organized way.
The core of a work-flow introduced by The MathWorks, Inc. (2018) is to
assess the current system condition from the data by deriving a metrics
called condition indicator. A condition indicator is a feature of system’s data
that distinguishes a healthy from a degraded system. Then a condition
monitoring algorithm can perform fault detection and diagnosis based
on current condition indicator value and known fault propagation in the
system.

Prognostics algorithms process condition indicators to predict future behav-
ior and assess most likely rul. Depending on the source and type of the
data available, Predictive Maintenance Toolbox offers three families of rul

models, namely:

Similarity Models These models make use of the available run-to-failure
history of similar systems. Condition indicators show characteristic
behavior as the similar systems degrade.

1Phrase Predictive Maintenance covers the same concept as phm but is called differently.
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2 Turbocharger State of the Art Diagnostics and Prognostics

Identified Approach
Available Data Kumar and Pecht, 2010 Vogl, Weiss, and Helu, 2016 The MathWorks, Inc., 2018

Human
Expertise - Experience-based -

Recorded
Lifespan

Statistical
Reliability-based

Data-driven;
statistics-based Survival Models

Lifetime
in Cycles

Life Cycle
Load-based

Physics-based;
physics-of-failure-based Survival Models

Measurement
Data

Feature
Extraction-based

Data-driven;
machine-learning

Similarity and Degradation
Models

Mathematical
Model

State
Estimation-based

Physics-based;
model-based

Degradation and Similarity
Models

Table 2.1: An overview of researched phm approaches and techniques. The first column
keys out assumption on the type of available data from which we want to perform
phm concept. The body of the table lists concrete approaches identified in the
literature.

Degradation Models These models fit condition indicator behavior to a
linear or exponential function. The algorithm extrapolates the fitted
function and searches for a most likely time when the indicator crosses
failure-indicating threshold.

Survival Models These models perform statistical analysis to model time-
to-event data. The models assume only lifetime data of similar systems
(compared to run-to-failure indicator history in Similarity Models) are
available. Working regimes and manufacturing batch may be included
in the algorithm, too.

All of the three sources above made an effort to group their phm knowledge
into few models which can be applied in various systems. We have collected
the methods and approaches proposed by the authors based on the assump-
tions they made on the data availability. We present the overview in Table
2.1.

We will develop health indicators from the mathematical model of the
turbocharger. It may be the case that the directly measured signals will be
insufficient for development of such an indicator. Then, we will need to
use data-driven techniques to combine these measured signals with control
inputs and, based on known turbocharger’s dynamics, derive the indicator
this way. No large datasets of lifespan records are available to us, therefore,
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2.2 Turbocharger State of the Art Diagnostics

our methods should not rely on lifespan records. A possibility of a physics-
of-failure-based approach will be analyzed when we identify turbocharger
failure modes.

2.1.1 An Example of Data-Driven Prognostics Solution

A paper from Prytz et al. (2015) deals with a design of a predictive main-
tenance system that predicts the need for air compressor repair and thus
minimizes commercial vehicle unexpected downtime and generates profit
opposed to losses caused by unplanned stops. The authors present a su-
pervised machine-learning approach that mines logged onboard data and
original maintenance records from a fleet of commercial vehicles over a
lifespan of three years. The solution falls to the second row in Table 2.1.
Firstly, they discuss a problem of feature extraction from large and noisy
data. Afterward, the authors show how feature selection affects accuracy
and resulting profit. Prytz et al. (2015) conclude a motivation for predic-
tive maintenance is cost saving which strongly depends on the real cost of
planned and unplanned repairs, both challenging to estimate.

2.2 Turbocharger State of the Art Diagnostics

A faulty turbocharger will impact the exhaust emissions produced by the
vehicle. This fact makes the turbocharger an On-Board Diagnosis (obd) rele-
vant component, therefore, its proper functionality has to be monitored.

2.2.1 Turbocharger Relevant On-Board Diagnosis

Legislative agencies all over the world demand vehicle manufacturers to
implement Fault Detection and Isolation (fdi) system. Generally applied
regulation for passenger cars is obd in its obd-ii system version. A survey
by Mohammadpour, Franchek, and Grigoriadis (2012) discusses common
practice in designing obd system. The goal of the system is to implement a
fdi strategy for a variety of component, actuator, and sensor faults using
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2 Turbocharger State of the Art Diagnostics and Prognostics

various data-driven and model-based methods. Also, the regulation states
the system is calibrated to detect single component failure.

The paper above comments obd-ii is mainly deployed to ensure emission
standards are followed in the vehicle operation. Even though the article
deals mostly with fuel and after-treatment devices, it is noted sensor systems
and air leaks must be monitored as well. Methods introduced by Nyberg
and Stutte (2004) use a physics-based approach to model faulty air-path
system components, such as map sensor multiplicative bias, egr valve stuck
closed, or manifold air-leakage.

obd documents created by Ford Motor Company (2017) for both diesel
and gasoline engines illustrate implementation of a turbocharger monitor.
Actually, it is a boost pressure control system which is monitored and where
possible turbocharger-related faults manifest themselves. Diesel engine,
containing oil-pressure actuated vgt without position sensor, performs
three monitors on the ecu:

Intrusive The intrusive response monitor executes a sweep (when idling)
of vgt from 85% to 25% with egr valve shut and expects a separation
of > 2 kPa in map readings after 4 seconds. If the separation is
not achieved, a Diagnostic Trouble Code (dtc) “Turbocharger Boost
Control Performance” is set.

Overboost The overboost monitor continuously checks if actual boost pres-
sure and desired boost pressure are not separated by a predefined
threshold for a predefined duration. If so, a dtc “Turbocharger Over-
boost Condition” is set. Cause of the failure may be vgt stuck closed.

Underboost The underboost monitor works similarly as the overboost mon-
itor except that desired boost pressure is now not achieved within a
predefined duration. In addition, monitor checks if control effort in
different operating ranges is not above calibrated threshold. dtc “Tur-
bocharger Underboost Condition” or “Turbocharger Boost Pressure
Low” is set. This failure may be due to air-path or exhaust leaking,
slow response, or vgt stuck open.

Ford gasoline engines, on the other hand, limit boost pressure with wg

actuator only. Multiple options of actual actuator implementations have
been discussed in section 1.1; each of them has its own monitor. Pneumatic
and vacuum systems are monitored only from high-level performance
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2.2 Turbocharger State of the Art Diagnostics

(underboost/overboost); if an actuator pressure sensor is available, low-
level control loop performance is monitored as well. Solenoid regulating
amount of pressure at diaphragm is checked for short/open circuits. Electric
actuators are supplied with position feedback, thus monitoring difference
of desired and actual position is possible. Excessive mechanical wear is
detected when sensor readings are out of operating range.

Ford Motor Company (2017) lists the sensors that must be fault-free to
perform turbocharger monitor in obd. If the conditions are not met, the
monitor can not be performed. We adopt the same assumption; the whole
air-path is working in fault-free operation2, leaving the health monitoring
focused on the turbocharger component alone, in the ecu software layer
above the obd system.

2.2.2 Model-based Turbocharger Fault Detection

A PhD thesis by Ceccarelli (2012) describes a design of adaptive observer
for fault-detection of intake leakage and fault-diagnostics for turbine isen-
tropic efficiency ηt loss. The cause of ηt drop is not discussed in the report.
Ceccarelli (2012) states on-line state estimation algorithms are popular in
domain of diagnostics, but realizes that working with accurate physical
turbocharger model is not feasible on car’s ecu. Even the already simplified
control-oriented mvm models must be approximated further to count with
few production engine sensors. A model used in the work is created by
modifying the equation (1.1), acquiring state-space equation

dN2
t

dt
=

2
Jt
(Pt − Pc), (2.1)

y = N2
t , (2.2)

2No leaks has occurred and sensors are fault-free.

21



2 Turbocharger State of the Art Diagnostics and Prognostics

where Pt, Pc are turbine and compressor powers, related to torques (defined
in (1.1)) by relation Pt(c) = Tt(c)Nt. These powers are computed as

Pt = mtcpηtT1t

[
1−

(
1

Πt

) γ−1
γ
]

, (2.3)

Pc = mccp
1
ηc

T1c

[
Π

γ−1
γ

c − 1
]

, (2.4)

where cp is a specific heat at constant pressure, γ is a ratio of specific heats,
Πt =

p1t
p2t

is a pressure ratio across the turbine, mt is exhaust mass flow, and
mc = WHFM is air mass flow.

Ceccarelli (2012) proposed following observer, where x = N2
t is the state

from state-space equation (2.1),

˙̂x =
2
Jt

(
mtcpη̂tT1t

[
1−

(
1

Πt

) γ−1
γ
]
− Pc

)
+ K(y− x̂), (2.5)

˙̂ηt =
2
Jt

mtcpT1t

[
1−

(
1

Πt

) γ−1
γ
]

Kηt(y− x̂), (2.6)

K, Kηt are tuning scalar constants. In order to compute turbine efficiency
estimate η̂t, assumptions are introduced

1. Tamb = T1c = T2t; compressor inlet/turbine outlet temperature is equal
to ambient temperature,

2. pamb = p1c = p2t; compressor inlet/turbine outlet pressure is equal
to ambient pressure, thus no pressure drop at filter/after-treatment
system is presumed,

3. y = N2
t = aΠc + b; a shaft speed is not measured but is estimated

from pressure ratio Πc measurement and calibrated constants a, b,
4. compressor efficiency ηc is computed from a fitted function, such as

fηc(mc, Nt, p1c, T1c) described in section 1.2.1,
5. turbine mass flow is calculated as mt = mc + mf, where mf is fuel flow

supposed to be known, and
6. T1t, p1t are exhaust manifold’s temperature and pressure, respectively.

These two variables are assumed to be measured and violate our
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2.2 Turbocharger State of the Art Diagnostics

hypothesis introduced in section 1.1, where we state exhaust pres-
sure/temperature reading is not available in production passenger
vehicle.

The work by Ceccarelli (2012) then deals with a design of an adaptive
threshold—threshold dynamically adjusted in different operating points
to prevent false alarm triggering and to count with sensor and modeling
uncertainties. On-line diagnosis algorithm computes residual rηt = η̂t − fηt

3

and compares it with the threshold.

A recent book on model-based ice condition monitoring by Isermann (2016)
deals with the diesel engine turbocharger diagnosis in a similar manner
as Ceccarelli (2012). Model used in the work is the same as in (2.1) but
with bearings friction losses covered by a power loss Pf = cf(Toil)N2

t , where
cf(Toil) is a viscous friction coefficient dependent on lubricating oil tem-
perature. Alternative way to express non-ideal rotational movement of the
shaft is to introduce mechanical efficiency ηm and a new turbine power
Ptm = ηmPt.

Isermann (2016) proposes a model-based symptom generation concept—
residuals are computed as a difference of variable computed from measure-
ments, for example, power Pi, turbocharger speed Nt, or charging pressure
p2c, and the same variable predicted from a calibrated model at actual op-
erating condition4. For vgt turbocharger it is claimed a fault “vgt blocked
middle position” is detected and isolated from power residuals rPi , and
“compressor blades damaged” is observable only in charging pressure resid-
ual rp2c . For wg turbocharger diagnosis is applied only in closed position
where models are simpler. Through the charging pressure residual rp2c

faults “decreased turbocharger efficiency” and “leaky wastegate” can be
detected.

Both of the works from authors Ceccarelli (2012) and Isermann (2016)
focus only on the fault detection, none of them extended their work to
the prognostics concept. Ceccarelli (2012) designed an observer only for
a single fault, a turbine efficiency drop, whereas Isermann (2016) works

3Residual is a difference between observed η̂t and modeled efficiency which is com-
puted from fitted efficiency map fηt(mt, Nt, p1t, T1t, uVGT).

4More precisely, charging pressure is computed from steady-state power balance equa-
tion (2.1). Author expects measurement p1t, T1t are available.
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2 Turbocharger State of the Art Diagnostics and Prognostics

with the parity equation concept to diagnose several turbocharger faults.
Their models rely on the turbocharger power balance model defined in (2.1).
This model takes into the account the turbine, mechanical, and compressor
powers. However, in the production engine, turbine side measurements are
unaccessible. Both authors rely on them but do not address their estimation
nor the error analysis. From our point of view, the accuracy required to
perform the prognostics in the turbocharger can not be attained with the
model counting on the turbine pressure/temperature measurements T1t, p1t
and the turbocharger efficiencies ηt, ηc, and ηm. This approach certainly
lacks redundancy, robustness, and fault isolation properties.
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3 Turbocharger Fault Cause and
Effect Analysis

In this chapter we present an analysis of relations between turbocharger-
relevant fault and its produced effect. It is crucial to understand individual
fault behavior in phm concept to develop tailored features that deviate
as soon as an unpermitted change occurs. Primarily we focus on a set of
observable faults, i.e. faults producing a symptom—visible change in the
nominal behaviour of the system. Although we expect some of the faults–
primarily those related to material fatigue–to be unobservable from their
nature1, we will discuss them as well.

3.1 Failure Modes

Before grouping the faults caused by a similar source or having a similar
effect on the system, we analyze most common failure modes in the field,
reported by largest turbocharger distributors.

Owen (2012) lists following relations: the correct pressurized oil supply in the
bearings must be ensured otherwise quick bearings failure will follow; oil
contamination induces seals and bearing wear; compressor wheel damage results
from injection of a foreign object, or from fine particle impact in the form of
pitted and worn blades, or due to the bearing failure and direct contact with
the housing. Performance loss is produced by carbon and oil contamination
on the volute surfaces of a turbine and a compressor leading to the wheel
efficiency drop; turbine wheel failure results from overheating, over-speeding,
or suction of broken engine parts; boost pressure control malfunction due

1A crack developing at micro-structural level.
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3 Turbocharger Fault Cause and Effect Analysis

to a failed actuator; turbocharger overheating caused primarily by incorrect
fueling.

The distributor BTN Turbo (2012) notes turbochargers are very reliable and
that less than 1% of turbos fail due to a manufacturing fault with the turbo
itself. 95% of turbocharger failures are blamed to be caused by oil starvation,
oil contamination, or foreign object damage, aligning with the report by Owen
(2012). Within the remaining failures, BTN Turbo (2012) states severe oil leaks
past the piston rings can occur when the low pressure at the compressor
side remains for a long time; over-speeding as a consequence of the other
root cause; or electronic actuator malfunction being a common turbocharger
field issue.

3.1.1 Turbocharger Performance Degradation

We define that turbocharger operates with a degraded performance when
the work that has to be done by the system to perform a specific task is
increased compared to the work done to perform the same task at the begin-
ning of turbocharger’s operational life. The degradation is therefore linked
with an efficiency parameter. To recall, we defined compressor isentropic
efficiency ηc as a ratio of isentropic and actual work done by the system
to compress the air. Thus for the degraded turbocharger, more work has
to be delivered to maintain the equal level of boost pressure, resulting in
higher shaft velocity Nt, smaller ηc parameter, and higher compressor outlet
temperature T2c. For the turbine, the working principle is similar but with
“opposite direction”; more work has to be extracted from the exhaust flow
to spin the shaft to equal velocity.

We can reformulate the problem to a compressor and a turbine wheel
efficiency drops ηc and ηt, respectively. We treat both issues independently:
an ηc loss is decoupled from ηt loss. A mechanical efficiency ηm related
to the performance of the shaft-bearing coupling will be discussed in the
bearing issues analysis.

Multiple causes lead to an effect of compressor/turbine efficiency loss. They
may originate from
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3.1 Failure Modes

(a) The oil residues primarily lays in the diffuser, reduc-
ing cross-sectional area. The source of the oil parti-
cles is a Crankcase Ventilation (ccv) system. Blow-
by gases from crankcase, including oil droplets, are
brought back to the compressor inlet. Figure adopted
from Hirano and Decker-Brentano (2017).

(b) A wheel wear caused by small object dam-
age. If the blades are uniformly damaged and
the wheel remains balanced, the turbocharger
may continue in its operation. The material gets
weakened after the impact and fatigue life de-
creases. Figure adopted from Polichronis et al.
(2013).

Figure 3.1: Illustration of various sources of decreased compressor/turbine wheel efficiency.

1. deposit of oil/carbon particles within the flow-carrying ducts (i.e.
diffuser, Figure 3.1a),

2. reduced surface smoothness due to the fine particle impact, and
3. minor blade damage due to the poor air filtration (compressor) or

worn engine debris release (turbine). Effect displayed in Figure 3.1b.

All of the sources contribute to the additional restriction in the flow, eventu-
ally causing irreversible loss of the energy and consequent wheel efficiency
drop. Adamkiewicz (2012) analyses diagnostic relations of marine Diesel
engine turbochargers and states compressor’s diffuser cross-sectional area
can be decreased by 10− 20% because of oil deposits. Although larger en-
gines with turbocharger designed for heavy-duty applications show a more
severe impact of the efficiency drop, it does not exclude passenger vehicles
from victims of performance degradation.

obd detects degraded performance in high-load operations when the
actuator is no longer able to compensate power loss and desired boost
pressure is not achieved. A dtc linked to Underboost is triggered.
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3 Turbocharger Fault Cause and Effect Analysis

3.1.2 Turbocharger Bearing Wear

A recent passenger vehicle’s turbocharger bearing system is equipped with
a thrust bearing supporting the shaft in the axial direction and a couple of
semi-floating journal bearings supporting the shaft in the radial direction.
Zhang et al. (2010) comment that the thrust bearing compensates axial thrust
load caused by pressure differential at compressor and turbine rotors. A
major turbocharger failure occurs when the thrust bearing is no longer able
to withstand the axial load and allows the axial displacement to exceed the
limit, resulting in the turbine’s psychical contact with the housing. Such a
failure is shown in Figure 3.2a.

Semi-floating journal bearings, one at each side of the shaft, allow the lubri-
cant to flow between the bearing housing and the shaft to simultaneously
permit friction-less motion, cool the whole chra, and act as a damper.
Polichronis et al. (2013) blame 75% of all turbocharger failures originating
from lubricating issues, which seems as biased statistics to us. Worn and
damaged bearings may arise from

1. insufficient lubrication flow,
2. lubrication feeding lag during heavy transient operations,
3. oil contamination by foreign particles. These particles are either col-

lected in the oil loop (having degraded oil filter) or developed from a
coking process under excessive oil temperature. Additionally, charred
oil residues block the oil stream and contribute to causes 1. and 2.

In Figure 3.2b an over-heated shaft and worn bearings, due to the lack of
lubrication and consequent metal-to-metal contact, are illustrated.

We can conclude oil quality/quantity and bearing damage relation is cov-
ered by complex behavior. We have not found any proof that worn and
damaged bearing leads to a decreased mechanical efficiency ηm. Instead, the
rotor starts vibrating because of increased shaft-bearing clearance, thus lead-
ing to the reduced radial wheel-housing clearance and eventually causing
turbocharger failure.

Many researchers pursue to develop a method to estimate the shaft motion.
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3.1 Failure Modes

(a) Worn-out thrust bearing, leading to a major tur-
bocharger failure. Figure adopted from Zhang
et al. (2010).

(b) Shaft and bearing wear caused by lack of lu-
brication supply. Blue discoloring results from
over-heating of the shaft due to metal-to-metal
contact. Figure adopted from Polichronis et al.
(2013).

Figure 3.2: Illustration of various turbocharger bearing system cause-effect relations.

A promising non-invasive2 optical technique, introduced by Pastor et al.
(2012), uses a camera and two bolts to detect a shaft whirl when the lubrica-
tion is cut. An increase of maximum shaft’s eccentricity is recorded when
the turbocharger is close to its end-of-life, as illustrated in Figure 3.3.

3.1.3 Foreign Object Damage

A solid object entering the compressor/turbine inlet has a fatal consequence
for the turbocharger. If the energy of the object is sufficiently low, the
wheel blades may get bent, worn, and structurally weakened—but the
turbocharger remains functional with the effect we have discussed in 3.1.1.
When the object is sucked at high speeds, it causes a blade to get broken
and induces collateral damage failing all blades. An obd must quickly react
to prevent further engine damage.

Failure due to a Foreign Object Damage (fod) results from improper engine
maintenance. The fod is an instantaneous process—no transient effect
occurs between fault origin and turbocharger failure. Also, it depends only

2Opposed to accelerometer-based or infrared-camera techniques where significant
modification of the system must be done.
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Figure 3.3: Shaft’s whirl motion recorded when the bearing lubrication was cut. Figure
adopted from Pastor et al. (2012).

on the external conditions. Therefore we rule out fod from our monitoring
analysis.

3.1.4 Actuation Issues

In the section 2.2.1 we have briefly discussed implemented solutions for
detecting actuator malfunction. A chosen fault diagnosis approach strongly
depends on the actuation mechanism applied, and it would be exhausting
for us to analyze diagnostic relations for all the possible components and
subcomponents. A detailed overview of existing vgt systems can be found
in work by Feneley, Pesiridis, and Andwari (2017). The most common
failure mode for vgt mechanisms is vane sticking to the backplate—the vanes
get stuck and do not react to a commanded input. A Rotary Electronic
Actuator (rea) manufacturer, Melett Ltd. (2017), states carbon and sludge
built up at the vanes will cause intermittent sticking which DC motor tries
to compensate. The motor then overheats and fail other components such
as gearbox, or electronics board. Feneley, Pesiridis, and Andwari (2017)
mention metal-to-metal contact, causing sticking, is induced at elevated
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3.1 Failure Modes

(a) Principle of vacuum-actuated vgt mechanism.
Figure adopted from Feneley, Pesiridis, and
Andwari (2017).

(b) Mechanical linkage between the electric actua-
tor (box with the black cover) and the vanes,
highlighted in red color. Figure adopted from
Arbore (2015).

Figure 3.4: A comparison of vgt actuators, focused on the linkage connecting the actuator
and the vanes.

temperatures. Figures 3.4a and 3.4b illustrate pneumatic and electric vgt

actuator implementations.

On the other hand, wg flapper does not suffer from sticking but has to
cope with the high pressure exerted by exhaust gas in a closed position.
The actuator must, therefore, withstand heavy cyclic loading. ANSYS, INC.
(2016) developed a computer-aided design software which is used by Borg-
Warner engineers to predict wear life of the mechanism. Force acting on the
flapper is simulated by 12.8 kg mass. A shaft connecting the flapper and
the actuator, a crank arm, and bushings are the most critical elements that
wear out over the lifetime. The software can predict accumulated wear as a
function of operating cycles resembled by artificial crankshaft rotation in
the test rig. Thus the wear can be extrapolated in the future and component
lifetime estimation in cycles is acquired. The wear accumulated over two
open-and-close cycles is shown in Figure 3.5.

We conclude an actuation mechanism is susceptible to faults of various
sources depending on the actual actuator design. However, every design
contains a mechanical linkage connecting the actuator at cold compressor
side and the flapper or vane assembly at hot turbine side. This linkage
consists of a shaft, crank arms, and bushings that wear out over the cyclic
life of the actuator in a predictable way. From the actuator’s point of view,
the wear is observable as a hysteresis. An existing obd implementation, by
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3 Turbocharger Fault Cause and Effect Analysis

Figure 3.5: Overall accumulated linkage mechanical wear (gray line) and stress acting on
the shaft (produced shaft deflection as a red line) with respect to two open-and-
close cycles. Figure adopted from ANSYS, INC. (2016).

Ford Motor Company (2016), detects worn mechanical linkage through
observation of position sensor feedback in electric actuator. When the rod
travels out of operational range, the ecu triggers corresponding dtc.

3.1.5 Material Fatigue

Floren (2011) discusses turbocharger housing must be designed to protect
the engine when the wheel bursts. The wheel’s rotational kinetic energy has
to be absorbed by the housing thus the debris remains contained within
the turbocharger without harming other components. Floren (2011) states
either blade burst or hub burst occur. A single blade may detach from
the hub when the wheel’s rotational velocity Nt exceeds the maximum
allowed rotational velocity Ntmax where the material’s strength at blade
root section can no longer resist exerted centrifugal force. The cause of a
wheel hub burst is material fatigue; more precisely, a Low Cycle Fatigue (lcf)
phenomenon. Both failure modes affect mostly aluminum-based compressor
wheels because of their lower material strength limits, compared to nickel-
based Inconel turbine wheels. Highest stress region of the compressor wheel
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3.1 Failure Modes

(a) Stress concetration in a wheel spinning
at full speed. Peak is present at bore sec-
tion of wheel. Figure adopted from Floren
(2011).

(b) A wheel hub failure due to lcf phe-
nomenon. Half-moon shaped fatigue
crack is highlighted. Figure adopted from
Engels (2002).

Figure 3.6: lcf cause-effect relation.

is at bore section of the wheel, as illustrated in 3.6a. Engels (2002) further
explains it is low-frequency cycling of the wheel that causes lcf failure. An
accumulation of cyclic deformation leads to micro-structural fatigue cracks
development which most likely starts at the bore section. Then, these cracks
propagate into macro-structural cracks up to the point where the material is
not able to withstand the centrifugal force causing the wheel to fail3. Figure
3.6b shows a cross-sectional view of a failed wheel due to lcf.

The number of cycles compressor wheel undergoes until it fails depend
heavily on the cycle amplitudes and the wheel’s temperature. Expected
lifetime, for a predicted mean vehicle’s duty cycle, is given in kilometers
or hours as a probabilistic distribution. A medium-duty truck, or a bus,
driving in the city has several-times lower expected lifetime than a highway
or country-road driving vehicle. It is a ”full load-brake” driving cycle killing
the wheel fastest. Engels (2002) proposes titanium wheel with lifetime
approaching infinity. To illustrate an example of typical aluminum wheel’s
life expectancy: a probability of failure equal to 2% for a city bus is 98 000

km and for a country road vehicle is 1 012 000 km.

Another known turbocharger-related fatigue phenomenon is High Cycle
Fatigue (hcf). hcf is induced by high-frequency loading of the blades and

3The operating point when the wheel bursts is within designed limits. It is the cycling
that weakened the material, opposed to a blade burst.
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3 Turbocharger Fault Cause and Effect Analysis

becomes significant when the loading frequency matches wheel’s natural
frequency. Because of the flow dynamics in the turbocharger, only the
turbine wheel is affected (see Figure 1.3 where flow direction is illustrated).
During the turbocharger design and engine-matching process designers
ensure that over the whole operating range of the engine these critical
vibration modes are not achieved.

Sheng, Clay, and Allport (2006) discuss a turbine wheel mistuning problem.
Even though the wheel is designed correctly, a manufacturing process4

may cause a shift in wheel’s natural frequencies, and then hcf becomes a
serious issue. Sheng, Clay, and Allport (2006) introduce a method that iden-
tifies mistuning from the wheel’s response. They use a low-order lumped
parameter model of the wheel where the blades are modeled as masses
mj connected to the hub through springs with stiffness k j. The model is
illustrated in Figure 3.7a.

The last type of fatigue is called Thermo-Mechanical Fatigue (tmf). East-
wood and Allport (2007) comment tmf is caused by exhaust temperature
cycling during engine’s operation. Turbine’s housing experiences high ther-
mal gradients in high-load operations cycled with low exhaust temperatures
while idling. Each cycle contributes to thermal stress, and when enough
damage is accumulated, the housing starts cracking. A temperature distri-
bution, predicted by finite element analysis software, is illustrated in Figure
3.7b. The area highlighted in red color is where cracks due to tmf will
start.

We believe a considerable effort is made to develop a turbocharger with
expected fatigue life demanded by a vehicle manufacturer. Specifically, hcf

should not occur because the turbine wheel’s natural frequency does not get
excited. tmf has very long expected lifetime, and if a crack in the housing
happens to develop, it does not lead to a failure. Compressor wheel’s lcf is
a fatigue mode most likely to happen, but with a lifetime long enough the
wheel outlives most of the other engine components (at least in a typical
passenger vehicle).

4Generally, turbine wheels are casted.
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3.1 Failure Modes

(a) Turbine wheel low-order model (opposed to
high-order finite element analysis model) with
blades modeled as masses mj connected to the
hub through springs with stiffness k j. Figure
adopted from Sheng, Clay, and Allport (2006).

(b) Temperature distribution in turbine vo-
lute, predicted by finite element anal-
ysis software (red is the hottest). Fig-
ure adopted from Eastwood and Allport
(2007).

Figure 3.7: An illustration of housing’s temperature model, used in tmf analysis, and
turbine wheel’s lumped parameter model, used in hcf mistuning identification.

3.1.6 Other Turbocharger Issues

In sections from 3.1.1 to 3.1.5, we have systematically grouped failure
modes originated from a similar source or having a similar effect on the
turbocharger. These failure modes were reported to have the highest rate of
occurrence in the field. We close the section by complementing the list of
failure modes to cover the whole turbocharger system. Other turbocharger
issues include manufacturing issues, mismatched operating range, and
improper turbocharger operation and maintenance.

We have already discussed an impact of manufacturing issue when dealing
with hcf. hcf is not a field issue unless a turbine wheel is cast outside of
the process limits. The same applies for each turbocharger’s subcomponent.
High manufacturing process quality must be followed to fulfill the predicted
turbocharger lifetime.

A turbocharger is designed to efficiently work in a variety of operating
conditions characterized by compressor/turbine maps (see compressor
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3 Turbocharger Fault Cause and Effect Analysis

map example in Figure 1.4). Ideally, the operating point should be close
to the peak efficiency. Map boundaries represent physical limits of a tur-
bocharger’s operation. A mistuned controller or incorrect operation that
makes turbocharger surge, choke, or overspeed, will significantly reduce
expected lifetime. Also, for example, exposing the turbine to temperatures
not accounted with in the tmf analysis will impact the thermal durability
of the turbine’s housing.

Since a turbocharger is a subcomponent in the ice system, it is affected
by other components’ behavior as well. Failure modes performance degra-
dation, bearing wear, and fod originate only because the vehicle is not
maintained the way the manufacturer recommends.

We conclude the section with a statement: If a turbocharger is manufactured
according to the demanded standards, properly matched to the engine
and its controller, and the engine and other relevant subcomponents are
maintained regularly, one can expect the turbocharger to work as long as
lcf permits.

3.2 Fault Observability Summary

Turbocharger performance degradation results from a compressor/turbine
efficiency drop caused by either minor fod or oil particle deposit at the
diffusor area. The fod occurs randomly and has an unpredictable effect
since the size and shape of an object entering the compressor is unknown.
On the other hand, oil fouling of the compressor impacts turbocharger’s
performance in a systematic way as the oil droplets accumulate a deposit of
a certain thickness at the diffusor area. Since turbocharger’s performance
is linked with overall engine’s performance, the effect of efficiency drop
produces a symptom in the engine’s response that our health monitor must
acquire and track since then. We will design the health monitor system for
the compressor efficiency drop in the following chapters.

Bearing wear is a frequent and serious issue that leads to a failure of the
turbocharger without a warning. The shaft’s axial and radial displacement,
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3.2 Fault Observability Summary

due to the bearing wear, is not obervable in production vehicles. An ac-
cumulated wear is linked to an oil contamination and delay of sufficient
lubrication especially in transient and high-load operations. An oil quality
sensor or oil pressure feedback (before the turbocharger) is missing which
makes it infeasible to develop models predicting bearing wear from oil prop-
erties. These are the reasons we can not implement bearing wear monitor in
production vehicles at the moment. This issue will no longer be discussed
in the thesis.

Turbocharger’s life expectancy distribution due to lcf is computed in the
design stage to match vehicle manufacturer’s requirements (for predicted
mean vehicle’s duty cycle). Engels (2002) explains the steps to calculate
lifetime are:

1. from the test cell, acquire a Woehler-Curve (S-N-Curve) for each
different type of compressor wheel,

2. from the vehicle’s manufacturer, collect the turbo speed measurement
from the expected mean vehicle’s duty cycle,

3. use rain-flow method for statistical counting of the load cycles, and
4. use Miner’s rule for linear damage accumulation.

lcf failure mode can be modeled by Life Cycle Load-based or Physics-
of-failure-based approach, described in Table 2.1, in phm approach. We
could collect the actual load cycles on-board and perform steps 3 and 4 to
update the damage accumulated and correct for real driving cycle difference
from the expected one. However, lcf has no direct impact on the engine’s
performance. Thus, we leave it for future work.

Actuator’s mechanical linkage is subject to wear as well. One option to
predicted the linkage wear is to use the load cycle model (an example of
cycle-to-wear model is illustrated in Figure 3.5). Then the phm approach is
similar to lcf life expectancy model. If the turbocharger contains an electric
actuator (rea), a position measurement from the mechanism is received,
and accumulated wear can be predicted directly from this feedback mea-
surement. For example, having an electric wg actuator in the turbocharger,
one can sample the rod position when wg is closed (flapper sits down) and
fit it with a function of time to extrapolate the behavior. We expect that
the measurement when flapper is closed will vary as the wear increases.
A real actuator’s mechanical wear is essential to predict because the ecu
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3 Turbocharger Fault Cause and Effect Analysis

must compensate the hysteresis to maintain the same performance over
the whole life of the engine. To conclude, a fatigue model and sensors
available depend strongly on the actuator configuration. We do not possess
any concrete actuator data; hence the actuator monitor wear is left for future
work.
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4 Monitoring of Compressor
Efficiency Drop

From now on, we will deal only with the compressor performance degra-
dation failure mode. That is, we propose a model of the fault and then
introduce an architecture of our health monitor that detects and tracks
the level of performance drop. Performance (efficiency) drop due to oil
fouling issue is an excellent candidate to model because the effect (efficiency
drop) is predictable and once the fouling process has started, the deposit
accumulates over a time-span long enough to perform the prognostics.

4.1 Modeling of Compressor Efficiency Drop due
to Oil Fouling

We were provided a set of four compressor map pairs; each pair consists
of a fouled and a clean compressor map. These compressors come directly
from the field operation; the level of fouling was high enough that the lack
of performance was registered either by a driver or by an ecu. After the gas
stand measurement (to obtain fouled map characteristics), the oil deposits
had been washed away, and a clean compressor’s map was collected. There-
fore we can now evaluate diagnostic relation of a fouled-clean compressor. It
was also demonstrated that a cleaned compressor has identical performance
characteristics as a new one of the same type.

39



4 Monitoring of Compressor Efficiency Drop

Figure 4.1: A normalized pressure ratio as a function of turbocharger rotational velocity
and mass air flow for an example turbocharger’s fouled and clean map, plus a
model identified by non-linear regression on the sampled compressor data. The
normalized pressure ratio 1 means maximum pressure ratio for this particular
map.

4.1.1 Compressor Maps and Models

These provided four pairs of compressor maps include medium-size wheel
diameters from 59 mm to 76 mm, used in both diesel and gasoline engines. A
measured pressure ratio Πc for a selected fouled-clean map pair is scattered
in Figure 4.1.

Figure 4.2 illustrates acquired and normalized compressor efficiency ηc
from the same compressor map. We can see the measurement point is
described by tuple (Nc, mc) and that Nc remains same for fouled-clean
pair but mc differs. The whole map of the fouled compressor is shifted
towards the smaller values of mass air flow mc because of change in flow
aerodynamics due to oil deposit. Since we want to evaluate the difference of
pressure/efficiency, an operating point tuple (Nc, mc) for both maps must be
the same. This leads us to fitting of a clean compressor map with continuous
functions fΠc , fηc , and then sampling it in fouled map tuples (Nc, mc).
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Figure 4.2: A normalized isentropic efficiency as a function of turbocharger rotational
velocity and mass air flow for an example turbocharger’s fouled and clean map,
plus a model identified by non-linear regression on the sampled compressor
data. Some turbocharger speed curves were omitted for better readability, but
the quality of the fit is comparable. The normalized efficiency 1 means maximum
efficiency for this particular map.

A systematic approach to modeling of the compressor is discussed in mas-
ter’s thesis by Tabaček (2016). Inspired by this thesis, we define an em-
pirically derived pressure ratio model Πc(Ñt, m̃c) and efficiency model
ηc(Ñt, m̃c) as

Πc(Ñt, m̃c) =
A(Ñt, m̃c)

B(Ñt, m̃c)
, (4.1)

ηc(Ñt, m̃c) = c0 + c1Ñ−1
t m̃c + c2Ñ−2

t m̃2
c + c3Ñ−3

t m̃3
c + c4Ñ−4

t m̃4
c (4.2)

+ c5Ñt + c6m̃c + c7Ñ−1
t m̃2

c + c8Ñ−2
t m̃3

c + c9Ñ2
t

+ c10Ñtm̃c + c11m̃2
c + c12Ñ3

t + c13Ñ2
t m̃c + c14Ñ4

t ,
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where

A(Ñt, m̃c) = a0Ñt + a1m̃c + a2Ñ2
t + a3Ñtm̃c + a4Ñ3

t (4.3)
+ a5Ñ2

t m̃c + a6Ñ4
t + a7Ñ3

t m̃c + a8Ñ5
t + a9Ñ4

t m̃c,
B(Ñt, m̃c) = b0Ñt + b1m̃c + b2Ñ2

t + b3Ñtm̃c + b4Ñ3
t (4.4)

+ b5Ñ2
t m̃c + b6Ñ4

t + b7Ñ3
t m̃c + b8Ñ5

t + b9Ñ4
t m̃c,

ai, bj, ck are coefficients found by solving non-linear regression problem on
sampled compressor map data, and Ñt, m̃c are corrected rotational velocity
and corrected air mass flow for compressor inlet conditions p1c, T1c different
from compressor map reference conditions pref, Tref, defined as

Ñt =

√
Tref

T1c
Nt, (4.5)

m̃c =
p1c

pref

√
T1c

Tref
mc. (4.6)

We verified that polynomial B(Ñt, m̃c) 6= 0 for each tuple (Ñt, m̃c) in eligi-
ble operating condition range. Modeled Πc(Ñt, m̃c) for clean and fouled
compressor maps is included in Figure 4.1, ηc(Ñt, m̃c) is included in Figure
4.2.

4.1.2 Efficiency Drop Prediction

At the moment, we are not able to express the fouling effect using an
analytical expression. The only asset we have is the fouled-clean measured
compressor map. Thus, we need to extract the useful information only from
the map data available. Sinha (2013) explains this process is called Data
Mining and that a concept of regression is used for this purpose. Regression
analysis is composed of four different stages: identification of dependent and
independent variables; identification of the nature of the relationship among
the variables; computation of regression equation; and error analysis.
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We model pressure drop as Second-order Multivariate Polynomial

∆Πci(Πc, mc, Nt) = β0 + β1Πci + β2Nti + β3mci + β11Π2
ci

(4.7)

+ β12Πci Nti + β13Πci mci + β22N2
ti
+ β23Nti mci

+ β33m2
ci

,

where ∆Πci is the ith observed pressure drop computed as

∆Πci = Πcclean(Ntfouled , mcfouled)−Πcfouled , (4.8)

Πcclean(Ntfouled , mcfouled) is a model identified on the clean compressor map
sampled in fouled map point tuple (Ntfouled , mcfouled), Πcfouled is a measured
pressure ratio taken from the fouled map, β j are regression parameters,
and variables with subscript i in (4.7) represent the map operating point at
which the pressure ratio drop is investigated. We have chosen a parabolic
relationship because of the “eyebrow” shape visible in Figure 4.1 and 4.2.

In Figure 4.3a we depict normalized estimated fouled Πc compared with
fitted Πc(Nt, mc) on the fouled map data. We apply same steps to produce
the fouled efficiency prediction algorithm; therefore, we do not repeat the
procedure. An illustration of normalized estimated fouled ηc compared with
fitted ηc(Nt, mc), on the fouled map, is depicted in Figure 4.3b.

From the Figures 4.3a and 4.3b we can infer that the accuracy of the pre-
diction model is reasonable. To improve the algorithm robustness, a more
extensive training set is required. The largest error is produced at the clean
map choke line, which is decreased in the fouled compressor. Besides, our
goal is to develop a compressor map model that resembles a physics-based
fault for any given clean compressor map and allows us to create and verify
performance drop-related health indicators, since emulating the fault at the
test-stand is time and cost consuming.

4.1.3 Efficiency Drop Prediction Algorithm Summary

We present the summary of our degraded compressor map prediction
algorithm. The algorithm is trained as follows:
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(a) A normalized pressure ratio as a function of tur-
bocharger rotational velocity and mass air flow for
an example turbocharger’s fouled and clean map. Di-
amond marker points are estimated Πcfouled points
from the given clean compressor map; dashed line is
the modeled Πc identified on acquired fouled com-
pressor map.

(b) A normalized isentropic efficiency as a function of
turbocharger rotational velocity and mass air flow
for an example turbocharger’s fouled and clean map.
Diamond marker points are estimated ηcfouled points
from the given clean compressor map; dashed line
is the modeled ηc identified on acquired fouled com-
pressor map.

Figure 4.3: A comparison of fouled Πc, ηc—predicted and fitted, on the fouled map.

1. receive compressor map measurements of both, clean and fouled
turbochargers. The fouled compressors come from the real operation,

2. find the pressure ratio Πc(Ñt, m̃c) and efficiency ηc(Ñt, m̃c) models of
the clean compressor map, as defined in (4.1),

3. resample clean compressor map’s pressure ratio and efficiency to the
fouled map operating point tuple (Nc, mc) and compute the observed
pressure ratio/efficiency drop, as defined in (4.8),

4. solve second-order multivariate polynomial regression to get coeffi-
cients β j of second-order multivariate polynomial that predicts pres-
sure ratio and efficiency drops ∆Πc, ∆ηc.

The algorithm is then applied as follows:

1. get a discrete, clean compressor map with unknown efficiency drop
pattern,

2. apply the pressure ratio drop ∆Πc and efficiency drop ∆ηc to the given
map at its original operating point tuples (Nc, mc).
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4.2 Engine Simulation Environment

4.2 Engine Simulation Environment

To design and validate the algorithms we have a calibrated engine model,
coupled with a controller, available in the Simulink environment. The ar-
chitecture of the Simulink model is shown in Figure 4.4. Block Driving
Cycle specifies the simulation operating conditions: engine speed Ne and
fuel injection quantity per stroke q̇inj. Block Diesel Engine is a turbocharged
diesel control-oriented engine model, having 2.0 l engine displacement, four
cylinders, and egr and vgt actuators1. The parameters of the model are
calibrated on the test cell-measured data. Block Engine Control is the con-
troller ensuring that the engine stays in the operating conditions specified
by the driving cycle, by commanding uEGR and uVGT, while optimizes fuel
consumption, emissions, and driving comfort. The model and the controller
are calibrated and designed in software package OnRAMPTM2. Our de-
veloped block Turbocharger Health Monitor acts as a turbocharger health
observer; it collects the actuator commands and sensor measurements and
then computes health indicators.

4.2.1 Health Degradation

A fouling fault can be introduced to perturb the nominal turbocharger
model3. The fouling prediction model from (4.7) is applied to the original
compressor map. We produce ten levels of fouling by scaling of (4.7), that
is

∆Πcα = α∆Πc, (4.9)

where α = 0.1, 0.2, ..., 1.

1Such as the OM611 model illustrated in Figure 1.1
2GARRETT MOTION INC., 2018.
3The original turbocharger can provide maximum pressure ratio equal to 3 at 193 krpm.

The diameter of the wheel is 52 mm.
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Figure 4.4: The architecture of our engine simulation environment. We specify the driving
cycle which controller ensures to follow. Our health monitor observes the
turbocharger by collecting actuator commands and sensor measurements.

4.2.2 Calibration Sequence

For further indicator calibration we generate engine’s response by adjusting
calibrating driving cycle such that the whole operating range of the engine
is covered. Specifically, for each engine speed step

Ne ∈ [1000, 1250, 1500, ..., 2500, 2750, 3000] rpm (4.10)

we set fuel injection quantity to

q̇inj ∈ [10, 12.5, 15, ..., 55, 57.5, 60] mg per stroke. (4.11)

4.3 Health Indicator Design

We swap the original turbocharger with the degraded one (based on modi-
fied compressor map from (4.9)), thus we obtain system’s response to the
faulty condition. The controller compensates the energy loss but generates
following symptoms:
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1. to follow equal boost pressure setpoint, turbocharger’s shaft velocity
Nt increases,

2. command to open vgt uVGT increases, and
3. temperature after the compressor T2c increases.

We proceed to the design of health indicators for efficiency drop fault. We
use system and fault dynamics knowledge while developing the indicators.
Each of the symptoms, listed above, guides us to the health indicator
implementation. First, increased turbocharger speed Nt can be tracked
when redundancy information is available in the system. That is, we develop
analytical expression to estimate Nt, and we compare it with the measured
Nt, loosely following residual concept by Isermann (2016). Even though
we have already stated that Nt measurement is not currently available in
production passenger vehicles, we consider this indicator as a baseline for
other indicators. Furthermore, Nt is measured in soon to be appearing
vehicles with an electric motor assisted turbochargers, or in commercial
vehicles. Second, in vgt, the controller produces increased uVGT command to
achieve desired setpoint (in other words, controller adjusts uVGT to increase
Nt by extracting more exhaust energy). We can use data mining method to
train the state of health model that captures this relationship. Last, due to
reduced efficiency, wasted energy heats the air mass, thus the compressor
outlet temperature T2c gets increased. We investigate a possibility to observe
this symptom through approximated compressor efficiency formula.

4.3.1 Turbocharger Shaft Velocity Residual

Similar to pressure ratio and efficiency models, introduced in 4.1.1, we
define a corrected turbocharger shaft velocity model Ñt(Πc, m̃c) (taken from
Tabaček (2016))

Ñt(Πc, m̃c) = d0 + d1m̃c + d2Πc + d3m̃2
c + d4m̃cΠc + d5Π2

c (4.12)
+ d6m̃3

c + d7m̃2
cΠc + d8m̃cΠ2

c + d9Π3
c ,

where Πc is a measured compressor pressure ratio, m̃c is a corrected mea-
sured mass air flow, and coefficients di are found by non-linear regression
on compressor map data.
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Figure 4.5: Measured and modeled turbocharger speed response to the calibration sequence,
defined in 4.2.2, with step length T = 50 s.

In Figure 4.5 we display measured and modeled turbocharger speed re-
sponse to the calibration sequence, defined in 4.2.2, with step length T = 50
s. The estimation of Nt is biased; the bias however varies with the operating
condition. Speed transients are captured accurately by the model.

We construct the turbocharger shaft velocity residual as a difference of the
measured and predicted signal

rNt = Ntmeas − Ñt(Πc, m̃c). (4.13)

4.3.2 State of Health Regression

Now we assume turbocharger speed is not measured. We need to replace
information coming from this measurement with other source, such as
actuator command uVGT. Again, we use data mining technique to link
information-carrying, measured variables Πc, m̃c, and uVGT. In other words,
we use supervised learning to train the function that maps input variables
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Πc, m̃c, and uVGT to output variable indicating the state of health of the
compressor.

We define a variable, health indicator, SOHk that represents health of the
system with respect to efficiency drop, i.e. SOH1 = 1 when original tur-
bocharger model is present, SOH0.5 = 0.5 when 50% efficiency drop is
present, and SOH0 = 0 when maximum of effiency drop is applied. We
generate calibration sequence (4.2.2) response to 0%, 50%, 100% fouled com-
pressor model and record variables Πck , m̃ck , uVGTk . Then we build a set of
equations  SOH1

SOH0.5
SOH0

 =

 PSOH(Πc1 , m̃c1 , uVGT1)
PSOH(Πc0.5 , m̃c0.5 , uVGT0.5)

PSOH(Πc0 , m̃c0 , uVGT0)

 (4.14)

and solve fourth-order multivariate polynomial regression problem to get
coefficients of fourth-order multivariate polynomial PSOH(Πc, m̃c, uVGT).
The state of health indicator is then computed, from available on-board
measurements and vgt command, as

SOH = PSOH(Πc, m̃c, uVGT). (4.15)

4.3.3 Compressor Efficiency Computation

A difference between the healthy and degraded compressor is the increased
compressor outlet temperature T2c when a compressor efficiency drop is
present. A relationship that links the temperature and the health of the
turbocharger is the efficiency formula itself. We can ask ourselves why do
we not compute efficiency directly when we want to observe the efficiency
drop. The International Council on Combustion Engines (2007) answers
the real turbocharger efficiency can not be reconstructed on the engine. It
requires controlled laboratory conditions where straight pipes are fitted, a
high-quality set of sensors is equipped, and steady air flow is produced.
None of these occurs in the real turbocharged running engine. However,
our goal is to observe a difference from the nominal condition, and an
approximated efficiency formula can be handy for this task; next, we will
introduce one.
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4 Monitoring of Compressor Efficiency Drop

The symptom of reduced efficiency is increased compressor outlet tempera-
ture T2c, thus we must begin with estimation of this temperature from the
available mass air flow measurement mc and intercooler outlet temperature
TCAC. We use the heat exchanger model, introduced by Tabaček (2016)

TCAC − T2c =
e0 + e1T

2c

e2 + e3mc
, (4.16)

where coefficients ei are identified by regression on the generated data.
T2c prediction is accurate when the mass air flow mc through the inter-
cooler cac is high enough, intercooler’s efficiency decreases, and allows
the flow to “carry” the information about increased temperature before the
intercooler.

Afterward, we compute approximated isentropic efficiency, according to
Isermann (2016), as

ηc(Πc, T2c, T1c) =
Π

κ−1
κ

c − 1
T2c
T1c
− 1

, (4.17)

where κ ≈ 1.4 is the air specific heat ratio.

We expect that equation (4.17) may serve as a health indicator; during the
high-load operations, the same pressure ratio is accompanied by higher
outlet temperature which can be observed through the temperature after the
intercooler measurement. We note that the flow thermodynamic condition
must be in steady-state.

To conclude, we do not expect that the computed ηc(Πc, T2c, T1c) will match
the true compressor efficiency ηc but for the same engine operating con-
ditions, computed ηc(Πc, T2c, T1c) will deviate when the efficiency drop is
present.

Sensitivity Analysis

In Figure 4.6, we illustrate computed ηc(Πc, T2c, T1c), perturbed in T2c, in
steady-state. If we want to observe a difference of 5% in ηc(Πc, T2c, T1c), we
must observe the difference of 5 K in T2c, too.
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Figure 4.6: Computed compressor efficiency, from (4.17), T2c perturbed about the real value
by ±10 K. Steady-state flow conditions, Πc = 2.2.

51





5 Health Monitor Implementation
and Evaluation

In the preceding chapters, we converged from turbocharger failure mode
analysis to the design of health indicators based on the physics of failure.
In this chapter, we will discuss the implementation of the indicators into
the engine environment. Health indicators must be processed and filtered
before we make any decision. To verify indicators’ performance, we execute
an emission driving cycle simulation with fault injection. We offer a short
phm analysis, as well.

5.1 Health Indicator Processing

The indicators, described in sections 4.3.1, 4.3.2, and 4.3.3, are functions of
measurements and commands with one output, the indicator. The functions
are evaluated at ecu clock ticks when enough processing power is available.
Collected variables from the ecu are

z =
[
Nt, mc, Πc, TCAC, uVGT

]
(5.1)

and the produced raw indicators are1

y =
[
rNt , SOH, ηc

]
. (5.2)

The architecture of the health monitor is illustrated in Figure 5.1. After
obtaining vector y we check if the value is feasible, resample it to common

1For the sake of brevity, we drop using ηc(Πc, T2c, T1c) for computed approximated
compressor efficiency and use only shortened ηc in the rest of this thesis.
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Figure 5.1: A structure of the on-board part of the turbocharger health monitor.

indicator sampling time Ts, and apply low-pass filtering. Normalization
and Enable Logic actions make sure the health monitoring is not affected by
operating condition variation. Decision logic is applied only after the health
indicator is processed.

From now on, we consider the filtered value to be the health indicator as
only after processing it becomes a standalone value that holds information
about the system’s health. We mark filtered values with the bar,

y =
[
rNt , SOH, ηc

]
. (5.3)

5.1.1 Value Check & Resample

Purpose of value check is to validate that incoming data y are within
predefined limits. It also serves as a protection to the external faults.

Raw indicator data are resampled to common sampling time Ts = 1 s. This
ensures that

1. data incoming to the filter input are uniformly spaced, independent
of ecu sampling time. Filter calibration and post-processing rely on
the equal sampling time in the data;

2. indicator data size is compressed. Dynamics of the health degradation
is very slow compared to engine dynamics, thus we can decrease
memory requirements of the health monitor by increasing sampling
time.
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5.1 Health Indicator Processing

5.1.2 Normalization & Enable Logic

We normalize generated turbocharger shaft velocity residual, as

rNt,n =
rNt − rNt,0(Ne, q̇inj)

s
, (5.4)

where rNt,0(Ne, q̇inj) is the nominal, operating condition-dependent residual
bias obtained from the calibration (Figure 4.5), and s is the residual sample
standard deviation.

For indicators ηc and SOH we propose a concept of enabling; the indicators
are computed only when conditions suitable for indicator computation
are met. We have already mentioned before that efficiency ηc calculation
requires steady-state flow. This is rather stringent constraint as the real
steady-state can not be achieved due to the flow pulsation. In addition,
engine is equipped with high-inertia temperature sensors, having time
constant of several seconds. We must search for conditions that do not
limit indicator processing too much but also that minimize false alarm
rate. However, the “steady-state” is not the only constraint; a minimum
amount of power at the compressor must be present, too. That is, when the
sensitivity from fault-affected variable to the indicator is high, such as the
ηc sensitivity on T2c illustrated in Figure 4.6.

A simple enable logic, using the compressor power Pck evaluated at sample
k, can be implemented as

enablek = Pck > Pc,min ∩ |Pck − Pck−1 | < Pc,diffmax. (5.5)

5.1.3 Filtering & Fault Detection

A raw indicator yk, observed at sample k, can be viewed as the individual
observation from a random process. There are few control schemes available
that can detect a change in the process, for example, Shewhart, Cumulative
Sum (cusum), or Exponentially Weighted Moving Average (ewma). Lucas
and Saccucci (1990) describes ewma properties and shows ewma to be useful
for detecting small shifts in the mean of a process, it is easy to interpret
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5 Health Monitor Implementation and Evaluation

and implement, and its control limits and Average Run Length (arl) can be
analytically computed.

The ewma is based on the statistic

yk = λyk + (1− λ)yk−1, 0 < λ ≤ 1, (5.6)

together with Upper Control Limit (ucl) and Lower Control Limit (lcl).
The process is considered out of control whenever yk falls outside the range
of ucl and lcl. When the change in the process occurs, the average number
of samples that filter needs to trigger out-of-control, is the arl value.

Lucas and Saccucci (1990) further explains very small values of λ allows
ewma to detect small shifts in the process at the expense of long arl. For our
application, this property is desired as our goal is to observe the performance
degradation before it reaches the maximum permitted value and we do not
mind longer arl because the degradation dynamics is very slow as well.
The filtered value yk is tracked even after it crosses the threshold. The level
of fault severity is of our interest, but the information when the degradation
has begun is essential in phm concept.

Filter Calibration

The filter calibration involves determination of limits {lcl,ucl}, weighting
coefficient λ, and Target values of y. Target value is the value that filter is
expected to hold in fault-free case. In addition, the initial value y0 is com-
monly set as the Target value. We set Target values as rNt0

= 0, SOH0 =
1, ηc0

= 0.74.

The weighting coefficient λ determines weight of the current observation
sample yk in the filtered value computation. We found an optimal value of
λ = 0.01 to match our expected filter performance. Such a small λ allows
small shifts in the mean of the process to impact the filter trend.

To compute ewma limits, Lucas and Saccucci (1990) propose: when yk are
independent and identically distributed with common variance σ2

y , the
variance of the control statistic converges to σ2

y = λ
2−λ σ2

y . The control limits
are then based on the asymptotic standard deviation of the control statistic
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5.1 Health Indicator Processing

as lcl = Target−Lσy and ucl = Target+Lσy. L can be found in the tables
provided by Lucas and Saccucci (1990). However, the assumption that yk
are independent and identically distributed does not hold in our case. The
dependency of the indicator on current operating condition is not completely
eliminated by normalization and enabling (5.1.2). Therefore, we could not
compute robust limits {lcl,ucl}. Instead, we find the limits empirically
so that they are not crossed by the indicators y for broad range of driving
cycles.

5.1.4 Health Indicator Algorithm Summary

In this subsection we offer a short summary of the design and computation
of the health indicators.

Turbocharger Shaft Velocity Residual

Main source of the information about the fault is coming from increased
turbocharger shaft velocity Nt. The algorithm is trained as follows:

1. find an analytical model of the turbocharger shaft velocity Ñt(Πc, m̃c),
defined in (4.12),

2. obtain nominal, operating condition-dependent residual bias rNt,0(Ne, q̇inj),
from the calibration (Figure 4.5),

3. obtain sample standard deviation s of the residual cleared from the
bias rNt − rNt,0 , from the response to the test cycle.

The algorithm is computed on-board as follows:

1. collect the turbocharger shaft velocity measurement Ntmeas ,
2. estimate turbocharger shaft velocity from the pressure, temperature,

and mass air flow measurements as Ñt(Πc, m̃c),
3. compute the raw residual rNt = Ntmeas − Ñt(Πc, m̃c),
4. apply normalization, defined in (5.4),
5. check the value of normalized residual rNt,n , resample to common

sampling time Ts, and pass to ewma filter.
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State of Health Regression

Main source of the information about the fault is coming from increased
vgt actuator command uVGT. The algorithm is trained as follows:

1. create a set of degraded compressor maps, by applying fouling level
α = 0%, 50%, 100% in (4.9),

2. record the response of variables Πcα , m̃cα , uVGTα
to the calibration se-

quence (4.2.2),
3. solve fourth-order multivariate polynomial regression to get coeffi-

cients of fourth-order multivariate polynomial PSOH(Πc, m̃c, uVGT),
defined in (4.14).

The algorithm is computed on-board as follows:

1. collect the measurements Πc, m̃c and commanded input uVGT,
2. compute the raw state of health indicator SOH = PSOH(Πc, m̃c, uVGT),
3. check the value of the indicator, resample to common sampling time

Ts, and when enabling conditions are met (defined in (5.5)), pass the
indicator value to ewma filter.

Compressor Efficiency Computation

Main source of the information about the fault is coming from increased
compressor outlet temperature T2c. The algorithm is trained as follows:

1. train the cac model, defined in (4.16), on the calibration data,
2. verify, from the sensitivity analysis in Figure 4.6, what is the desired

accuracy of T2c estimation and if it is feasible to achieve.

The algorithm is computed on-board as follows:

1. collect the measurements Πc, T1c, mc, TCAC,
2. estimate compressor outlet temperature T2c from the charge air cooler

model, defined in (4.16),
3. compute the raw approximated compressor efficiency ηc(Πc, T2c, T1c),

defined in (4.17),

58



5.2 Monitor Performance Evaluation

4. check the value of the indicator, resample to common sampling time
Ts, and when enabling conditions are met (defined in (5.5)), pass the
indicator value to ewma filter.

5.2 Monitor Performance Evaluation

In this section, we will validate our health indicators in the simulation.
Simulated turbocharged engine model, with the boost pressure controller,
is identified on the real, measured data. We emulate the fault by replacing
the original compressor model with the faulty one. This faulty compressor
model is produced by applying the efficiency drop algorithm, described in
4.1.2, on the original compressor model. Then we evaluate the performance
of the health monitor by running a series of emission test cycles on the
engine. We note that these driving cycles are different from the training
driving cycle which we created to calibrate the health indicators. The simu-
lations are performed in the SimulinkTM environment. The block structure
of the engine model is displayed in appendix Figure 5.7, the block structure
of our health monitor is displayed in appendix Figure 5.8, and the overview
of the SimulinkTM model is displayed in appendix Figure 5.9.

5.2.1 Test Cycle Description

Emission test cycles we have selected for testing are World Harmonized
Transient Cycle (whtc)2 and Federal Test Procedure (ftp) Transient Cycle3.
whtc is issued worldwide for heavy-duty engines, ftp is issued by the
United States for heavy-duty vehicles—the test resembles driving in New
York and Los Angeles. Both tests are characterized by multiple transients
to high-load regions, which is rather the case for heavy-duty vehicles, but
they can serve as a baseline for worst case passenger vehicle driving as well.
Time series of variables {Ne, q̇inj} defining whtc is shown in Figure 5.2a,
ftp is shown in Figure 5.2b.

2DieselNet, 2007.
3DieselNet, 1999.
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(a) whtc emission test cycle.
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(b) ftp emission test cycle.

Figure 5.2: Emission test cycles, issued by legislative agencies, used for engine driving cycle
simulation and health monitor validation.

5.2.2 Basic Test

First test serves to verify crucial indicators’ property, if the indicator statistic
deviates when the fault is present. We perform standard whtc and ftp tests
with the maximum efficiency drop fault injected in the half-time of the cycle.
The response of the indicators y is displayed in Figure 5.3. Turbocharger
speed residual indicator rNt , which uses normalization so the indicator is
enabled for the whole duration, crosses the threshold ucl in < 20 s in both
tests. On the other hand, indicators SOH and ηc uses operating condition-
dependent enabling which leads to higher run length until the threshold
lcl is crossed and degradation is detected. In the beginning, we can see a
delay between cycle start and first filter enable. When the fault is injected,
the run length is in order of 100 s for these indicators. However, we notice
that from time 1500 s in whtc run, where favored operating conditions
are met, a significant indicator trend is visible. Apparently, this basic test
suggests that the proposed indicators are applicable for turbocharger fault
detection.
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5.2 Monitor Performance Evaluation

Figure 5.3: whtc and ftp test cycle run. The indicators follow the expected statistic when
no fault is present. At half-time of the cycle a maximum efficiency drop fault is
applied. The indicators deviates from its expected value when there is the fault
present in the turbocharger.

5.2.3 Continuous Degradation

Second test involves multiple cycle duration and continuous application of
the efficiency drop. whtc and ftp cycles are repeated five times, but every
cycle is slightly different. Operating condition {Ne, q̇inj} is perturbed around
the nominal condition with zero-mean normal distributed noise.

The test starts with the clean compressor map. After completing first cycle,
the degradation starts at a random time during the duration of second cycle.
Then, the duration of individual levels of efficiency drop varies randomly,
until the maximum of efficiency drop is applied and kept until the end of the
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simulation. Response of the health indicators to this scenario is displayed in
Figure 5.4. We make two main observations:

1. the health indicators are sensitive enough so even the smallest change
in the compressor model (efficiency drop) affects the filter statistic,
and

2. residual indicator rNt firstly decreases and increases only afterwards
(as in the first test, Figure 5.3). The reason is that real turbocharger
speed Ntmeas increases, due to efficiency drop, reaching the modeled
value, and then rises further (residual, before calibration, is shown in
Figure 4.5). Therefore, the filtered residual reaches negative values in
the beginning, so we implement bottom control limit—lcl.

5.2.4 Approach to Prognostics

In the last test, we assess the current unknown health of the vehicle by
predicting its Remaining Useful Life (rul). That is, we are interested in
estimate how long our vehicle will operate until the maximum fault is
present. We look back at the prognostics models overview, in Table 2.1,
where we see few possibilities how to perform rul estimation.

One option is to fit the health indicator with a model that describes the
evolution of the faulty indicator and then extrapolate the model to see when
it reaches the threshold defining End of Life (eol). In our turbocharger
application, the health indicator value is a function of the fault and the
operating condition. This would require a set of models and thresholds,
each suitable for different driving cycle.

Second option to predict rul is to combine the statistics, current indicator
value, and the information about similar vehicles—the fleet. This leads us
to a prognostics solution, inspired by Similarity model introduced by The
MathWorks, Inc. (2018), where rul estimation is based on known behavior
of similar machines. Specifically, a dataset of vehicles with indicator run-to-
failure history is available. That is, the history of the indicators from the start
of degradation to the vehicle eol. When we query a rul for the vehicle with
unknown health status, we search for k vehicles in the dataset that have
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Figure 5.4: Five times consecutive whtc and ftp test cycle run with additive random
operating condition variation. Level of fault indicates current applied efficiency
drop fault. Value 1 means no efficiency drop is present, 2 stands for 10% of
maximum drop (α = 0.1 in (4.9)), and so on.

similar indicator pattern and estimate the rul from these vehicles’ known
future degradation.

For any prognostics model chosen, its output, the rul, is a random variable.
Thus, it is described by a Probability Distribution Function (pdf). In the
data-driven, statistics-based prognostics solution which we discussed in
subsection 2.1.1 the authors assessed the likelihood of turbocharger failure
occuring before the next service visit. We adopt this idea but scale it to our
test cycle scenario. Besides an estimate of rul, it is the probability of failure
within a specified time horizont that the fleet operator or vehicle owner are
interested in.
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We run the same test scenario as in the continuous degradation test, but
after each whtc cycle, we evaluate the probability that the maximum effi-
ciency drop fault occurs in the next cycle. We reformulate the problem to
computation of probability

P(RUL < TWHTC), (5.7)

where RUL is the expected Remaining Useful Life after the whtc cycle
and TWHTC = 1800 s is the cycle duration. The steps of our prognostics
algorithm are:

1. check that the indicators crossed the thresholds and the degradation
process has begun,

2. transmit the time series of the indicator to Off-Board Processing part
(see architecture of the indicators in Figure 5.1). It can be a remote
server that collects data from the fleet of the vehicles, has high compu-
tational power, large storage capacity, and holds run-to-failure indica-
tor history of a set of vehicles—these are the properties not found on
car’s ecu,

3. fit the time series of the indicator with second order polynomial to
obtain ŷ,

4. compute Euclidean distances di = ||ŷ− ŷi||2, where ŷi is the second
order polynomial fit of the vehicle from set i with known indicator
history and eol,

5. choose k-closest vehicles by selecting k smallest distances from di,
6. compute individual RULj for these k-closest vehicles as RULj =

EOLj − Teval, where Teval is the time of the evaluation and EOLj is
the jth vehicle’s associated eol. RULj are samples from a probability
distribution RULk,

7. estimate the rul for the vehicle with unknown health status as median
of the rul samples, i.e. R̂UL = median(RULk),

8. compute probability of eol event in the next cycle as defined in (5.7).
This step requires finding the pdf of RULk distribution by fitting a
normal distribution on RULj data by estimating distribution’s mean µ

and variance σ2 with minimum variance unbiased estimator. At last,
the probability of eol in the next cycle is computed from Cumulative
Distribution Function (cdf) of distribution RULk as

Φµ,σ2(TWHTC) = P(RUL < TWHTC). (5.8)
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We apply proposed prognostics algorithm in the five times whtc test,
specified in 5.2.3. Only whtc driving cycle and residual indicator rNt are
processed, but we have verified that the algorithm has same performance
for each combination of the cycle and the indicator. A set of n = 200 vehicles
with run-to-failure indicator history is loaded. Algorithm searches for k = 25
closest neighbors.

After completing first whtc cycle, there is no efficiency drop; thus, the
threshold is not crossed and degradation is not detected. After complet-
ing second whtc cycle, the fault detection part detects crossed lcl at
time Tfault = 3422 s. We find ŷ, a second order polynomial fitted to the
data rNt from time Tfault to time of evaluation Teval = 3600 s. Then, we
search for k-closest vehicles from the n vehicles with known degradation
and computes the distribution RULk. Evolution of the indicator rNt and
the history of selected k-closest vehicles is shown in Figure 5.5a (blue are
25-closest vehicles, cyan are 26-to-50-closest, out of total n = 200 vehi-
cles.). A histogram RULk samples, normalized to pdf, and the Gaussian
pdf fitted on the RULk data (estimated µ, σ2) is shown in Figure 5.5b. Pre-
dicted rul, the median of the distribution is R̂UL = 3972 s, true rul is
RULtrue = 4399 s. Both Figures 5.5a and 5.5b illustrate R̂UL in yellow color
and RULtrue in black. Finally, the probability of eol event in the next cycle
is Φµ,σ2(TWHTC) = P(RUL < TWHTC) = 0%.

After the third cycle, at time Teval = 5400 s, we repeat the same procedure.
The relative error of rul prediction remains RULtrue−R̂UL

RULtrue
= 10% as in the

previous case, but in Figure 5.5c we can see that when the longer history of
the indicator is available, vehicles having more similar indicator pattern are
selected. We believe this is a crucial property of any prognostics algorithm.
Figure 5.5d illustrates pdf of RULk; the probability of eol event in the fourth
cycle is Φµ,σ2(TWHTC) = P(RUL < TWHTC) = 19%. This is key information
for the Health Management system within phm concept to make informed,
operation and cost-optimizing decision.

After completing fourth cycle, at time Teval = 7200 s, the efficiency drop fault
is close to its maximum. In Figure 5.5e, it is visible from the absolute value
of the residual indicator rNt that it is approaching a cluster of eol values. If
we have a look at the pdf in Figure 5.5f and compute the probability of eol
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in the fifth cycle, we confirm that with 100% probability the eol event, with
respect to efficiency drop, will occur in the next Twhtc = 1800 s.

5.2.5 Monitor Performance Evaluation Summary

Our goal was to detect and track the compressor efficiency drop fault. This
fault causes the compressor to deliver less power compared to the nominal
condition. Driving cycles were chosen to represent official issued emission
transient cycles. In the basic test, we successfully verified that the health
monitor serves as a diagnostic tool—when the compressor model affected
by the efficiency drop fault was injected, all the three indicators deviated
from their nominal, bounded values (Figure 5.3). Then, in the continuous
degradation test, we simulated compressor degradation by scaling the
applied efficiency drop (Figure 5.4). Our observation confirmed that the
indicators responded in the early stages of the fault development, long
before the maximum efficiency drop (with the magnitude of approximately
8%) was present. Of course, we do not expect detection of the efficiency drop
1% in the real engine application, but we are confident that our monitor can
capture the deviation earlier than the current solutions. This early detection
is crucial in the concept of prognostics; observing the degradation as soon
as possible leads to computation of rul probability (Figure 5.5) which helps
the health management to optimize the repair or exchange process and
avoid unexpected downtimes.

The architecture of the health monitor we developed consists of a set of three
indicators. Its advantage is the ability to isolate the fault and protect the
monitor against other faults. The indicators ηc and rNt rely on the measure-
ments from the compressor side of the air path, but the SOH indicator takes
into account also the turbine’s vgt command input. Therefore, a turbine
efficiency drop fault, or an uncompensated vgt actuator hysteresis will
impact only the SOH indicator. For the fault detection, a concept of voting
can be established: at least two out of three indicators must agree on the
diagnosis (healthy or faulty compressor). When one of them does not agree,
an implication can be made: for example, there is a high probability of a
turbine/actuator issue when SOH drifts away, cac wear when ηc deviates,
or the turbocharger shaft speed sensor bias when rNt diverges.
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(a) History of rNt at Teval = 3600 s. Performance degra-
dation is detected when the indicator crosses the
lcl. We can see a higher variation of selected ve-
hicles’ indicator history as only a short indicator
sample is available for comparing.

(b) pdf of RULk distribution sampled from avail-
able k-closest vehicles’ history, at Teval = 3600 s.
P(RUL < TWHTC) = 0%.

(c) History of rNt at Teval = 5400 s. We are now able
to select more similar vehicles and estimate more
robust RUL when we have longer indicator history
at hand.

(d) pdf of RULk distribution sampled from avail-
able k-closest vehicles’ history, at Teval = 5400 s.
P(RUL < TWHTC) = 19%.

(e) History of rNt at Teval = 7200 s. The vehicle is close
to its eol.

(f) pdf of RULk distribution sampled from available k-
closest vehicles’ history, at Teval = 7200 s. P(RUL <
TWHTC) = 100%. Now, the vehicle should not pro-
ceed in its operation.

Figure 5.5: Overview of our prognostics algorithm test. The idea is to assess the current
unknown health of the vehicle after each of the five whtc cycles. That is, we
find an estimate of rul and evaluate the probability that the vehicle finishes the
next cycle without having maximum efficiency drop fault. The algorithm makes
use of the similar vehicles’ known degradation history available at off-board
processing part.





Conclusion

In this thesis, we designed and implemented the health monitoring system
of a typical turbocharger found in passenger vehicles with the stress on
applicability in the production unit. That is, the proposed algorithms are
feasible under the stringent conditions imposed by common ecus and
respect the configuration of the engine and its sensor network. This is where
the main contribution of this thesis lies as other published diagnostic and
prognostic methods rely on the commonly unavailable measurements or
data.

We explored the prognostic models and methods reported in the litera-
ture and summarized them; none of the methods complies with available
processing power and measured signals in production ecus.

To design a turbocharger health monitoring system, we carefully identified
and grouped all the possible failure modes based on the fault occurrence rate,
fault cause/effect relation, and fault observability. We classified the faults
into five groups: a turbocharger performance degradation, turbocharger
bearing wear, fod, actuation issues, and material fatigue. For each of the fault
group we examined the possibility to observe the fault in the production
vehicle and proposed a prognostic approach to monitoring the degradation,
if possible. We chose the compressor efficiency drop due to oil fouling as
the only fault worth of further analysis as this seems to be the only fault
with an observable and predictable impact on engine’s performance. We
collected four clean-fouled compressor map pairs directly from the field
operation and applied polynomial regression to these maps to obtain an
analytical model describing the loss of turbocharge’s performance based on
the level of the oil fouling.

We proposed a health monitor consisting of a set of three indicators: tur-
bocharger shaft velocity residual, state of health regression, and approxi-
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mated compressor efficiency formula. These indicators were designed to
capture the physics of the efficiency drop fault by either defining a model
or training the indicator. The proposed health monitor implementation and
performance evaluation were carried out in the SimulinkTM environment on
the diesel engine model coupled with the controller, identified on the real
data and created in the OnRAMPTM software package. Running a series of
official whtc and ftp validated key prognostic properties of the proposed
health monitor: it serves for onboard fault detection and isolation, provides
a robustness thanks to the indicator triplet, and is ready to be embedded in
the phm framework. Also, we proposed and validated a similarity prognos-
tic model estimating the Remaining Useful Life (rul) based on the so-called
similarity model approach. This model relies on a dataset of lifetime records
of vehicles of the same type and estimates the rul based on the most similar
vehicles (with the most similar indicator history) to the vehicle at hand.

In Figure 5.6, a flow of the development of a prognostic application, as
pictured by The MathWorks, Inc. (2018), is displayed. The output of this
thesis is closing the “Develop Detection or Prediction Model” phase. The
future steps are to deploy & integrate the algorithms into the engine’s ecu.
Afterward, we use the control theory’s feedback principle to improve the
proposed health monitor: a discovered health monitor’s error accumulated
from the modeling uncertainties will be corrected by recalibrating the algo-
rithms on the new sensor data coming when the algorithms get integrated,
as the Figure 5.6 illustrates.
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Figure 5.6: The prognostics feedback. Picture taken from The MathWorks, Inc. (2018).
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Figure 5.7: A SimulinkTM environment where the OnRAMPTM Model is implemented.
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Figure 5.8: A SimulinkTM environment where our health monitor is implemented.
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Figure 5.9: A high-level overview of the SimulinkTM engine model, its controller, and our
implemented health monitor.
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