CzECH TECHNICAL UNIVERSITY IN PRAGUE
FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF MASTER’S THESIS

Title: Software toolkit for side-channel attacks
Student: Bc. Petr Socha

Supervisor: Ing. Vojtéch Miskovsky

Study Programme: Informatics

Study Branch: Design and Programming of Embedded Systems
Department: Department of Digital Design

Validity: Until the end of summer semester 2018/19

Instructions

Implement efficient software platform for side-channel attacks (especially differential power analysis -
DPA) including the measurement and the computational parts. The software should be effectivelly
parallelized and executable on GPU. Use C/C++ programming language. The software should be
multiplatform and distributable under open-source license.

The implementation should include:

- library for oscilloscope measurements (universal - capable of adding interfaces for various oscilloscopes),

- computational library (universal - using various power models, computational and evaluation strategies
etc.),

- library for evaluation and comparison of attack complexity,

- library for graph plotting (feel free to use existing graph plotting tools),

- unified user interface for all the libraries (text, eventually also graphical).

References

Will be provided by the supervisor.

doc. Ing. Hana Kubéatov4, CSc. doc. RNDr. Ing. Marcel Jifina, Ph.D.
Head of Department Dean

Prague October 19, 2017

FACULTY

OF INFORMATION
TECHNOLOGY
CTU IN PRAGUE

Master’s thesis

Software toolkit for side-channel attacks

Be. Petr Socha

Department of Digital Design
Supervisor: Ing. Vojtéch Miskovsky

January 9, 2019

Acknowledgements

I would like to thank my family and all my friends for their support through
my entire life.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive au-
thorization (license) to utilize this thesis, including any and all computer pro-
grams incorporated therein or attached thereto and all corresponding docu-
mentation (hereinafter collectively referred to as the “Work”), to any and all
persons that wish to utilize the Work. Such persons are entitled to use the
Work in any way (including for-profit purposes) that does not detract from its
value. This authorization is not limited in terms of time, location and quan-
tity. However, all persons that makes use of the above license shall be obliged
to grant a license at least in the same scope as defined above with respect to
each and every work that is created (wholly or in part) based on the Work, by
modifying the Work, by combining the Work with another work, by including
the Work in a collection of works or by adapting the Work (including trans-
lation), and at the same time make available the source code of such work at
least in a way and scope that are comparable to the way and scope in which
the source code of the Work is made available.

In Prague on January 9, 2019 L

Czech Technical University in Prague

Faculty of Information Technology

© 2019 Petr Socha. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Socha, Petr. Software toolkit for side-channel attacks. Master’s thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2019.

Abstrakt

Kryptoanalyza postrannich kanalt ptredstavuje vaznou hrozbu pro mmnoho
soucasnych kryptosystému. Utok postrannim kandlem se typicky skladé z
aktivni faze, tj. sbéru dat, a z analytické faze, tj. zkoumdani a vyhodno-
covani dat. V této praci je predstaven softwarovy balicek, jenz obsahuje
podporu pro ovladani kryptografického zarizeni, méreni pomoci osciloskopu,
(pred)zpracovéani dat, statistickou analyzu a pro vyhodnoceni utoku. Bali¢ek
je tvoren neinteraktivnimi textovymi aplikacemi s moduldrni plug-in architek-
turou, a je uvolnén pod svobodnou licenci.

Klicova slova Kryptoanalyza, Utok postrannim kanalem, Bezpecnost ves-
tavnych systémi, Ziskavani dat, Statistickd analyza

Abstract

Side-channel cryptanalysis pose a serious threat to many modern crypto-
graphic systems. Typical side-channel attack consists of an active phase,
where data are acquired, and an analytical phase, where the data get ex-
amined and evaluated. A software toolkit is presented in this thesis, which
includes support for cryptographic device control, oscilloscope data acqui-
sition, data preprocessing, statistical analysis and evaluation of the attack.

vii

The toolkit is composed of non-interactive text-based utilities with a modular
plug-in architecture, and it is released under open-source licence.

Keywords Cryptanalysis, Side-channel attack, Embedded system security,
Data acquisition, Statistical analysis

viii

Contents

Introductionl

(1

Side-Channel Security: The Theory and Related Workl

[1.1 Measuring the Power Traces|.
1.2 Leakage Assessment: Welch’s t-test|.
[1.3 Correlation Power Analysis Attackl
[1.4 Multivariate Higher-Order Analysis[.
[1.5 Univariate Higher-Order Analysis|.
[1.6 Other Analysis Techniques|.
[L.7 Existing Side-Channel Analysis Software|

Toolkit Design|

2.1 SICAK: Slde-Channel Analysis toolKit|.
2.2 Measurement Utility]
2.3 Preprocessing Utility|
[2.4 Statistical Analysis Utility].
[2.5 Correlation Evaluation Utility|.
2.6 Visualisation Utility]
[2.7 Toolkit-Wide Programming Support|

Implementation|

3.1 Command-Tine Utilities]
[3.2 Character Device Plug-ins|
[3.3 Oscilloscope Plug-ing|
3.4 Measurement Scenario Plug-ins|
[3.5 Block Data Preprocessing Plug-ins|
13.6 Statistical Analysis Computation Plug-ins|
3.7 Correlation Matrix Evaluation Plug-ing)
3.8 Keyguess Evaluation Plug-ins|

ix

13
13
15
19
21
24
26
28
31

[3.9 Build, Release and More Information|. 58

[Conclusion 61
|Bibliography| 63
|IA Acronyms| 69
[B Contents of enclosed CDI 71
|IC Example of an Oscilloscope JSON Configuration File| 73

D Example of a Character Device JSON Configuration File| 75

|[E Example Usage of meas Utility| 77
[E.1 Query Available Plug-ing|. 77
IE.2 Launch Measurement|. 78

[Example Usage of prep Utility| 81
IF.1 Query Available Plug-ing|. 81
|[F.2 Create power predictions for CPA attack on AES-128 first round |

L Shox ..o 81

|G Example Usage of stan Utility| 83
|IG.1 Query Available Plug-ing|. 83
|G.2 Create Univariate First-Order CPA context| 83

[confextsl 84

|[H Example Usage of correv Utility| 85
IH.1 Query Available Plug-ing|. 85
|H.2 Evaluate correlation matrices from previous stan example| . . . 85

I Example Usage of visu Utility| 87
IL1__Plot Correlation Iraces 87

List of Figures

1.1 Power consumption ot a device during a part of RSA computa- |
| tion. Image by “Audriusa”, Downloaded in December 2018 from |
| https://commons.wikimedia.org/wiki/File:Power_attack.png/. . . . 3
1.2 Example of a side-channel measurement setup: Oscilloscope with |
| a voltage probe and a shunt resistor placed in the Vdd path.| 5
1.3 Example of an unprocessed power trace (grey) and a t-values trace |

(red) based on 100,000 power traces.| 6
1.4 256 correlation traces (for each key candidate), colored grey, ob- |
| tained when attacking AES-128 using CPA. The right key candi- |
[date’s correlation trace is colored red 8
2.1 Example of data flow in SICAK when performing CPA attack. .. 14
[2.2 Inheritance diagram for toolkit’s data types.|. 29
.1 Example plot containing correlation traces for all the correlation |
| candidates, with the right key candidate’s correlation trace high- |
................................. 87

xi

Introduction

In the past few decades, computers and communication networks have evolved
into an essential part of our everyday lives. Various computing devices are
primary tool for many professionals and are also used in many security-critical
applications, such as those in banking sector or government environment. Our
money has reduced to a number in a computer database, with an easy access to
it: an Internet banking and a debit card. When travelling abroad, our identity
is verified using a passport with our biometric information inside. Nowadays,
even personal cardiac pacemakers are designed as smart devices and thus
may be vulnerable to a cyberattack: former Vice President of the United
States, Dick Cheney, had wireless features disabled in his pacemaker in a fear
of remote assassination [I]. Other IoT devices, such as personal assistants,
smart televisions or lightbulbs make our lives easier, but they also provide yet
another way for an attacker to get into our private space. With more Internet-
connected devices being available and sold every day, and with a smartphone
in every person’s pocket, our sensitive information, our possessions and our
secrets are more endangered than ever and keeping them safe introduces lots
of new challenges [2].

Cryptography, as a way to protect private information, has been evolving
for thousands of years now. It has developed from simple ideas, such as Cae-
sar cipher, into many complex algorithms which we use to protect our privacy
today. Example of such a cipher commonly used in modern security-critical
applications is Rijndael, standardized by National Institute for Standards and
Technology as Advanced Encryption Standard (AES), and proclaimed suit-
able even for confidential information [3]. Expanding market with embedded
devices also calls for more lightweight alternatives, suitable e.g. for RFID key-
chains, such as PRESENT cipher [4]. Alongside cryptography, cryptanalysis
has evolved to analyze existing cryptosystems and to attempt to reveal secret
information without appropriate privileges.

While many of these cipher algorithms may be considered mathemati-
cally secure, their implementations may still be vulnerable to side-channel

INTRODUCTION

attacks, which exploit implementation’s weaknesses rather than the cipher’s
properties, and which represent a significant weak spot for many cryptosys-
tems. This weakness may be even more insidious given the fact that many
embedded cryptosystems operate in unsafe, uncontrolled environment, with
attacker’s direct physical access to them. Side-channel attacks include e.g.
power analysis attacks, which examine leaked secret information in the power
consumption of cryptographic device [5, [6l [7), 8], fault analysis attacks, which
extract secret information by introducing faults to the device [9, 10], timing
attacks [11), 12] and many more.

Side-channel attack may usually be split into different phases: a measure-
ment /active attack phase and an analytical phase. To perform the attack,
appropriate software support is required. While the analytical phase can be
often done using a generic statistical software, the first phase usually require
a custom piece of target-specific software.

A multiplatform open-source software toolkit for side-channel analysis is
presented in this thesis. It offers support for various measurement scenarios
for data acquisition, various data (pre)processing steps, statistical analysis,
attack evaluation and a visualisation tool. Related theoretical background
and state-of-the-art is presented in Chapter [1| Design of the proposed toolkit
is presented in Chapter [2] and it’s implementation is described in Chapter [3}

CHAPTER].

Side-Channel Security: The
Theory and Related Work

Implementing cryptosystems in embedded environment presents many chal-
lenges. Using platforms such as various 8-bit microcontrollers, Smart Cards,
ARM processors, or even FPGAs and ASICs may be convenient in terms of
space, market cost and low power consumption. But unlike universal desk-
top/server CPUs, these platforms usually do not provide any cryptographic
primitives (such as Intel AES-NI instruction set [I3]) and the responsibility
for these algorithms lies on the cryptosystem designer/programmer. Also,
these embedded systems may often run in an uncontrolled environment, with
attacker being able to physically tamper the device, which makes these cryp-
tosystems extremely vulnerable to side-channel cryptanalysis.

One of the side channels, through which device may leak sensitive infor-
mation, is its power consumption [5]. To illustrate this, let us see how RSA
algorithm can be attacked using Simple Power Analysis. Figure depicts
power consumption trace of a cryptographic device during RSA computation,
where square-and-multiply algorithm takes place. By visually examining the

|»,Mw"wﬁ*uv;.”“"fl1lu‘"um‘uw-»-unnufmu'..ﬂ| qr.ﬂ'%i""l""“"’l""'”"f“-*”“'f"’""“"“""W“‘""ﬂ"‘-"’mwml'm.llﬂwm\"v"m"‘”%"'"m‘“"ﬂ
\

J J'w.

bl \L'*"'ﬁn*rﬂ'Lwn",-w'--nunf.w»ﬂnwmwh'. ""W;,w-m-

Figure 1.1: Power consumption of a device during a part of RSA com-
putation. Image by “Audriusa”, Downloaded in December 2018 from
https://commons.wikimedia.org/wiki/File:Power_attack.png

1. SIDE-CHANNEL SECURITY: THE THEORY AND RELATED WORK

power trace, different steps of the algorithm can be recognized. The short
peak on the left side of Figure suggests that only squaring happens, and
thus the key bit is 0. The longer peak on the right side suggests that both
square and multiply steps are being performed, and thus the following key bit
is 1.

Similarly to the power consumption of device, an electromagnetic radia-
tion [I4], which is proportional to the consumption, can be used to extract
secret information.

More complex attacks, which statistically evaluate subtle differences in
power consumption to reveal secret information, and which are even applica-
ble to implementations of block ciphers such as DES or AES, include e.g. Dif-
ferential Power Analysis (DPA) [6] or its enhanced variant Correlation Power
Analysis (CPA) [7, 8], which is described later in Section

The process of power consumption traces measurement is briefly described
in Section Example of a leakage assessment methodology is described in
Section Correlation Power Analysis (CPA) attack is described in Sec-
tion [1.3] Higher-order side-channel analysis is briefly explored in Sections
and [I.5] Section [I.6] presents other notable attacks and finally, existing side-
channel analysis software is presented in Section

1.1 Measuring the Power Traces

To obtain a power trace, such as the one in Figure[l.1} an apropriate measure-
ment must be done. When we talk about power consumption in context of
side-channel analysis, we mean the instantaneous energy consumption progres-
sion, as opposite to an absolute energy consumption over time (as in context
of low-power design) [15].

Usually an oscilloscope is used to measure the power consumption of a de-
vice, with either a current probe, or with a classic voltage probe in combination
with a shunt resistor. Measuring a voltage drop over the shunt resistor works
thanks to the fact that U = I- R. The shunt resistor can be placed in a ground
(GND) path of the device, or in a power supply (Vdd) path [16]. When mea-
suring in the GND path, more unwanted noise may be present, compared to
the Vdd path, which may actually be separated for various chip components.
Example of such a measurement setup is shown in Figure [I.2]

Since we only care for the power consumption progression and for mu-
tually comparable power traces, and given that the oscilloscope setup does
not change between measurements, we usually do not need to know the exact
voltage values (oscilloscope range and offset) and we can work simply with
oscilloscope’s native ADC values [16].

Because the leaked information in power consumption may be very subtle,
certain other conditions must be met for the side-channel attack to be success-
ful [I7, 18]. Typically, all the decoupling capacitors near the examined chip

4

1.2. Leakage Assessment: Welch’s t-test

PC
i(t) R plaintext/ power
[+ ciphertext trace

Cryptographic |trigger .
device/core 4 Oscilloscope

Figure 1.2: Example of a side-channel measurement setup: Oscilloscope with
a voltage probe and a shunt resistor placed in the Vdd path.

need to be removed, since their primary function is to filter-out these power
consumption nuances. A signal amplifier may also be necessary. To deal with
excessive enviromental noise, the oscilloscope bandwidth is commonly limited
to 20MHz [16]. To remove the DC shift from the signal, either an AC 1MQ
oscilloscope mode is used, or a DC blocker is employed and a DC 502 mode
is used [16].

Excessive noise present in the power traces can be a serious obstruction
while attacking either hardware or software cipher implementations [17]. Dif-
ferent approaches to deal with these kind of problems exist [19] 20].

Special care should also be taken when using a trigger signal to capture the
power trace, since the trigger signal itself can cause a noticeable disruption in
the measured power traces. This problem can easily be solved by selecting the
right timing of the trigger signal, so that it won’t disrupt the required sample
points.

1.2 Leakage Assessment: Welch’s t-test

In order to evaluate a cryptographic implementation’s side-channel leakage,
appropriate assessment methodology is required. Our methodology of choice
is a Non-Specific Univariate Welch’s t-test as described in [21I]. Other
possible choices may include e.g. x2-test as described in [22].

The Welch’s t-test is used to examine whether two populations have equal
means, i.e. to test the null hypothesis that samples in both sets were drawn
from the same population (hence two-tailed test). The Welch’s t-test is a
generalization of Student’s t-test for situations when the two populations have
different variances [23]

Let p (resp. p2) be sample means of the two sets, let s? (resp. s3) be
sample variances and n; (resp. mng) cardinalities of the sets. The Welch’s

5

1. SIDE-CHANNEL SECURITY: THE THEORY AND RELATED WORK

10000 60
‘ 40
(
wn 20
1] [
2 ‘ ' WL | 'h 3
2 ‘ g
a
< -10000
-20
-20000 -40
0 375 750 1125 1500
Samples

Figure 1.3: Example of an unprocessed power trace (grey) and a t-values trace
(red) based on 100,000 power traces.

statistic ¢t can be then computed as:

o ML K2 (1.1)
S S
I

(1.2)

The non-specific t-test is selected, as described in [21], to avoid the need
for many different intermediate values as in case of a specific t-test. Non-
specific test categorizes the samples into two sets, where one set contains power
samples obtained while using preselected constant cipher data (plaintexts),
and the other set constains power samples obtained while using random cipher
data (plaintexts) — hence the name “random vs constant t-test”.

A specific procedure must be followed while measuring the power traces.
For every power trace measurement, the cryptographic device is randomly fed
either with preselected constant data or with random data. The fact, that
the device is fed either constant or random data in non-deterministic and
randomly-interleaved fashion is important to avoid false positive results [21].

Given that a power trace contains N samples, the ¢, v statistic values need
to be computed N times, for each sample point independently. Example of a
t-values trace obtained from two populations (random vs constant) with total
cardinality 100,000 can be seen in Figure The higher is the t-value, the
higher is the leakage.

6

1.3. Correlation Power Analysis Attack

1.3 Correlation Power Analysis Attack

Correlation Power Analysis (CPA) [§] is a side-channel attack applicable to
block ciphers such as DES or AES, which aims at a part of the cipher key at
a time. It’s an enhanced variant of Differential Power Analysis (DPA) [6] [7].

The CPA attack depends on measuring power consumption of the cryp-
tographic device at operation. It is based on the fact, that an intermediate
value is processed in the implementation, that correlates with power consump-
tion of the device, with the plaintext or ciphertext used, and with a part of
the cipher key. If we are able to predict the intermediate value (given the
plain-/ciphertext) for all possible values of the part of the key, all we need
is to correlate all these power predictions to the actual power consumption.
Since we measure the encryption during a whole operation (because we may
not know the exact time/sample point when correlation appears), we need to
correlate these power predictions to every sample point in our power traces.
That leaves us with matrix S x K of Pearson correlation coefficients, with
S being number of samples per trace and K being number of key candidates
(possible values for the part of the key). With enough random plaintexts and
power traces available, the correlation coefficient distinguishes the right key
candidate. The CPA attack is repeated for every part of the key.

For example when attacking 16 bytes long cipher key of AES-128, CPA
aims at a byte of the cipher at a time (this is thanks to the 8-bit S-box
architecture of AES). That means we need to perform 16 CPA attacks to
obtain the whole cipher key. Number of key candidates for each byte is 2% =
256. The device is fed random plaintexts, power traces are captured using an
oscilloscope and ciphertexts may be received back from the device. After the
measurements are done, 256 power predictions are computed [24], 25] for every
power trace captured, based on the plain/ciphertext used. Then the Pearson
correlation coefficients are computed, between every sample and every key
candidate:

pxy = L) (1.3)

where X is power consumption variable at given sample point, Y is power
prediction variable for given key candidate, ox, oy is a standard deviation of
X,Y respectively, and cardinalities of both sets are same and equal to the
number of measurements taken. Efficient and numerically stable approach to
this computation is presented in [26].

After the correlation computation, the right key candidate is selected either
manually/visually by the attacker, or algorithmically e.g. by searching for
the maximum correlation coefficient or e.g. by searching for the maximum
correlation trace derivative [19]. Example of correlation traces (i.e. correlation
matrix) obtained while attacking AES-128 is shown in Figure

1. SIDE-CHANNEL SECURITY: THE THEORY AND RELATED WORK

0.3

Pearson correlation coeffi...

-0.3
0 500 1000 1500 2000

Samples

Figure 1.4: 256 correlation traces (for each key candidate), colored grey, ob-
tained when attacking AES-128 using CPA. The right key candidate’s corre-
lation trace is colored red.

1.3.1 CPA Countermeasures

There are many different countermeasures to the CPA attack as described
above. The used techniques can be categorized as either hiding or masking.

Hiding techniques try to mitigate the dependence of consumption on the
data. These include e.g. usage of dual-rail precharge logic [27, 28], which
attempts to balance the sensitive data paths in terms of switching activity
so that as little leakage occurs as possible. Other approach is to hide the
dependence in time e.g. by introducing random dummy computations [29].

Masking techniques on the other hand try to break the data dependency
or make it impossible for the attacker to predict any exploitable intermediate
value. A common masking countermesure is based on a random mask being
xor-ed to the data and appropriately altering the algorithm to still produce
valid results [30}, [3I]. Nowadays, threshold implementations [32], which divide
the whole computation into a number of shares, seem as a very promising
countermeasure.

Many existing countermeasures combine both techniques [33]. Promising
countermeasures against both power analysis and fault analysis attacks are
also being built using modern FPGA features, such as dynamic reconfigura-

tion [34} 35].

Many of these countermeasures are effective against Univariate First-Order
Correlation Power Analysis attack as described in Section However, they
may still fail when facing higher-order and/or multivariate statistics [36].

8

1.4. Multivariate Higher-Order Analysis

1.4 Multivariate Higher-Order Analysis

Higher-order analysis [36] is one of the possible ways to overcome imple-
mented countermeasures such as masking. Higher-order DPA is defined by
Kocher et al. [6] as a DPA attack that combines one or more samples
within a single power trace. E.g. second-order attack makes use of two
different samples in the power trace.

It is useful when intermediate values or their shares are processed at dif-
ferent time, e.g. in software implementations. Finding these time points to
combine is a complex task [21].

Different combination functions can be used to combine multiple samples:
the centered (normalized) product [37], the absolute difference [36] or the
sum [38]. Computational aspects of the first-order as well as higher-order
Correlation Power Analysis are well described in [39].

The multivariate higher-order attack/testing may be performed by prepro-
cessing the power traces accordingly and then continuing as in the first-order
case [40]. Whole operation can also be effectively parallelized and performed
in a one pass through the data [41].

1.5 Univariate Higher-Order Analysis

Univariate higher-order analysis [42] [21] is yet another way of processing the
power traces. Unlike multivariate analysis, this time the power traces are
processed at each sample point independently.

It is useful e.g. when intermediate values or their shares are masked by
parallel processing, i.e. they manifest themselves in the same time. Both
approaches can be combined: samples in every power trace can be combined
(see Multivariate Higher-Order Analysis and then the Univariate Higher-
Order Analysis can be performed upon them.

For univariate second-order attack/testing, the power traces are prepro-
cessed by making every sample mean-free squared [21]:

t; = (ti —), (1.4)
where u; is sample mean at given sample point.
In case of d-th-order, d > 2, the samples are usually additionally standard-
ized [41]:

t; —
= (e, (1.5)
St

where p; is sample mean at given sample point, and s; is standard deviation
at given sample point.

Similarly as in case of Multivariate analysis, the preprocessing can be per-
formed on the power traces, or the whole process including e.g. Welch’s t-test
computation or Pearson correlation coefficient computation can be combined
in order to perform the whole operation effectively and parallelly [41].

1. SIDE-CHANNEL SECURITY: THE THEORY AND RELATED WORK

1.6 Other Analysis Techniques

Other notable class of side-channel attacks are collision attacks, which use
side-channel analysis to detect internal collisions in the cipher. For example,
a collision attack against AES was proposed [43], where authors state that
in the best case, only 40 measurements are necessary to determine the entire
128-bit key. This attack exploits key dependent collisions in the Mix Column
transformation of AES.

Enhanced variant of side-channel collision attacks, applicable even to AES
with masking implemented, is Correlation-enhanced power analysis collision
attack [44], which is further generalized into moments-correlating DPA [45].

Different approach, based on Shannon’s entropy theory, is Mutual Infor-
mation Analysis [46]. The embedded device in this attack is considered a
black box and the attack may be successful without any knowledge about the
implementation.

It is noticeable, that these attacks usually relax the CPA requirements for
a power model and power predictions, and thus may seem as an universal
solution. However, when various countermeasures are implemented, higher-
order analysis may provide better results.

1.7 Existing Side-Channel Analysis Software

In this Section, various software options for side-channel analysis are pre-
sented, including both commercial and free solutions.

1.7.1 ChipWhisperer

ChipWhisperer is an open-source toolchain for side-channel power analysis
and glitching attacks [47], maintained by NewAE Technology Inc., written in
Python. It has support for both the measurements and oscilloscopes, and for
the analytical /computational part of the attack. NewAE Technology Inc. also
provides hardware targets and other auxiliary side-channel analysis hardware
and tools.

Given fact, that the whole toolchain is written in Python, the performance
of the computational part is not really satisfactory for complex and time-
demanding attacks.

1.7.2 Riscure Inspector SCA

Inspector Side Channel Analysis is a commercial tool for side-channel anal-
ysis [48] by Riscure. Official website claims that the tool “offers SPA, DPA,
EMA, EMA-RF and RFA for embedded devices or Smart Cards”. The tool
supports both measurements and analytical/computational operations, in-
cluding high-order CPA on ciphers such as 3DES, AES or RSA.

10

1.7. Existing Side-Channel Analysis Software

1.7.3 Jlsca

Jlsca is an open-source set of scripts for computational part of a side-channel
attack [49], written in Julia. It has support for both CPA and MIA compu-
tations and a number of (pre-)processing steps, including support for attacks
on AES, DES or SHA1 implementations.

1.7.4 General-purpose Statistical Software

Various general-purpose statistical/mathematical software can also be used
for side-channel analysis. This includes e.g. R [50], MathWorks Matlab [51]
or Wolfram Mathematica [52].

This software may often offer highly optimized implementations of statis-
tical operations. However, when performing a side-channel attack, we usually
perform these time-demanding statistical functions on a number of samples
at once. Statistical processing in context of side-channel analysis thus brings
another level of data parallelism, which can be only rarely exploited using
these applications, resulting in an uneffective computation.

11

CHAPTER 2

Toolkit Design

A proposed side-channel analysis toolkit should provide support for following
tasks:

e data measurement - acquisition of traces using various oscilloscopes,

e general data (pre-)processing - processing power traces or other
data (e.g. cipher plaintexts in order to create power predictions for
CPA attack),

e statistical data processing - moment based statistics (e.g. t-test,
CPA),

e attack evaluation,
e visualisation (plot e.g. power traces, correlation coefficients,...).

With performance in mind, C/C++ language is chosen as primary pro-
gramming language for the toolkit. Time-demanding operations should be
parallelizable on both CPU and GPU. The toolkit should be multiplaform
and open-source.

2.1 SICAK: Slde-Channel Analysis toolKit

Given the assignment, a plug-in module architecture toolkit was designed,
called SICAK. Most of the toolkit utilities simply provide a non-interactive
text-based Ul and serve as an interface for one or more plug-in modules.

The toolkit is command-line driven in order to allow easy scripting with
toolkit utilities. Input parameters can also be passed to the toolkit utilities via
configuration files (e.g. oscilloscope configuration, measurement /computation
settings, etc.).

It currently consists of following utilities:

13

2.

TOOLKIT DESIGN

visu
power correlation
traces coefficients
meas stan correyv
plain/ciphertext power predictions
prep

Figure 2.1: Example of data flow in SICAK when performing CPA attack.

14

meas: Measurement utility, useful e.g. for controlling a crypto-
graphic device and oscilloscope,

prep: Pre-processing utility, useful e.g. for pre-processing power
traces or e.g. for creating power predictions based on plain-/cipher-text,

stan: Statistical Analysis utility, useful e.g. for correlation-based
(CPA) attacks or t-tests,

correv: Correlation Evaluation utility, useful for algorithmic eval-
uation of the CPA attack,

visu: Visualisation utility, useful e.g. for plotting power/correlation
traces or t-values.

These utilities are moreless interfaces for different types of plug-in modules:

® Imeas

— chardevice: Character device plug-in, useful e.g. for communica-
tion over serial port or with a Smart Card

— oscilloscope: Oscilloscope plug-in, useful for interfacing with an
oscilloscope device, i.e. setting-up oscilloscope channels, trigger,
timing, for arming the oscilloscope and downloading the sampled
power traces

— measurement: Measurement scenario plug-in, which receives in-

stances of chardevice and oscilloscope modules and performs the
measurement itself

2.2. Measurement Utility

e prep

— blockprocess: Block data processing plug-in, useful e.g. for cre-
ating the power predictions when performing the CPA attack

— tracesprocess: Power traces processing plug-in, useful e.g. for
pre-processing the power traces when performing higher-order statis-
tics

e stan

— cpaengine: CPA computation engine plug-in

— ttestengine: t-test computation engine plug-in
e correv

— cpacorreval: CPA matrix evaluation plug-in, e.g. searching for
maximum coefficients in a set of matrices

— cpakeyeval: CPA keyguess evaluation plug-in, which takes the
result of cpacorreval, i.e. array of key candidates (e.g. based on
maximums), and turns it into a cipher key; e.g. reversing last round
key to the cipher key

In Figure [2.1} an example of data flow between the utilities is depicted
when performing a CPA attack using SICAK. Performing a t-test, only meas,
stan and wvisu utilities would be required.

More informations about each utility and it’s plug-in modules and inter-
faces can be found in following chapters.

2.2 Measurement Utility

Measurement utility is called meas. It runs a measurement scenario loaded
from specified plug-in module. Each scenario may produce different output
files, which usually include power traces or plain-/ciphertexts. A JSON file
with information about created files may be produced as well.

The Measurement scenario obtains an Oscilloscope and a Character Device
instances, loaded from specified plug-in modules. Both these plug-in modules
require a Device ID (e.g. VISA address or COM port name) for a succesful
initialization (in some cases, the Device ID can be blank). Both oscilloscope
and character device can be configured using a configuration file. Usage and
format of configuration files is described below.

2.2.1 Usage

Brief usage is also printed when the program is run with -h option. Example
usage can be found in Appendix

15

2. TooLKIT DESIGN

./meas [options] config

2.2.2 Options
2.2.2.1 -I, —id {string}

The ID string will be used in output files’ filenames. Default value is current
datetime.

Exact filenames of output files are measurement scenario dependent, e.g.
“random-traces-ID.bin”. Measurement scenarios implemented in this thesis all
produce a JSON configuration file “ID.json” with information about output
files. All filenames and informations are, however, printed out to the standard
output as well.

2.2.2.2 -Q, —query

Query available measurement, oscilloscope and chardevice plug-in modules
(-M, -0, -C) and available devices (-R, -D).

2.2.2.3 -M, —measurement-module {string}

ID of measurement scenario plug-in module to use. Use -Q or —query to find
available plug-ins.

2.2.2.4 -0, —oscilloscope-module {string}

ID of oscilloscope plug-in module to use. Use -QQ or —query to find available
plug-ins.

2.2.2.5 -R, —oscilloscope-device {string}

ID of oscilloscope device to use. Use -Q or —query to find available plug-in’s
devices.

2.2.2.6 -S, —oscilloscope-config {filepath}

Oscilloscope JSON configuration file. See below for config file format.

2.2.2.7 -C, —chardevice-module {string}

ID of character device plug-in module to use. Use -QQ or —query to find available
plug-ins.

16

2.2. Measurement Utility

2.2.2.8 -D, —chardevice-device {string}

ID of character device to use. Use -Q or —query to find available plug-in’s
devices.

2.2.2.9 -E, —chardevice-config {filepath}

Character device JSON configuration file. See below for config file format.

2.2.2.10 -n, -measurements {positive integer}

Number of measurements to make. This parameter is passed to the measure-
ment scenario.

2.2.2.11 —param {param}

Optional measurement plug-in module parameters. Module specific option.

2.2.2.12 -h, —help

Displays help.

2.2.2.13 -v, —version

Displays version information.

2.2.3 Arguments
2.2.3.1 config

JSON configuration file(s) with Options. The JSON configuration file may
contain key:string pairs, where key is a long option name and string is the
value.

For example:

{ 7id”:”myMeasurement” }

2.2.4 Oscilloscope configuration file

Utility expects a JSON configuration file, which may contain objects with
key:value pairs as described below.

e channelN object: settings for channel N (N >=1)

— enabled: {true | false}
— coupling: {"AC” | ’DC”}
— impedance: {"50” | "1M”}

17

TOOLKIT DESIGN

rangemV: {integer} (e.g. 1000 sets the oscilloscopes range to
—1V.+1V)

offsetmV: {integer} (i.e. analog voltage that is added to the chan-
nel before sampling)

bwLimit: {"FULL” | "25MHz” | "20MHz"}

e trigger object: trigger settings

enabled: {true | false}
channel: {positive integer} (channel on which to trigger)

level: {float} (Range 0..1, where 0 is the lowest voltage in the
channel’s range and 1 is the highest voltage in the selected range.
E.g. with channel range —1V..1V and zero offset: level 0 is -1V,
level 0.5 is 0V, level 0.75 is 0.5V)

slope: {’rising” | "falling” | "either”}

e timing object: the timebase settings

preTriggerRange: {float} (time range in seconds)
postTriggerRange: {float} (time range in seconds)

samples: {positive integer} (number of samples per power trace;
this value is a best-wish: oscilloscope module may change it to the
reality forced by the oscilloscope/it’s driver, in order to fulfil the
time ranges)

captures: {positive integer} (number of captures to be taken on
one oscilloscope run/arm; this value is a best-wish as well: some
oscilloscopes support only one capture per run)

When an object is defined (e.g. ”"channell”), all it’s settings must be set.
Example of a JSON configuration file for PicoScope 6000 can be found in

Appendix [C]

2.2.5 Character device configuration file

Utility expects a JSON configuration file, which may contain key:value pairs
as described below.

e baudrate: {positive integer} (the value needs to be supported by the
selected character device module)

e parity: {0 | 1| 2} (0 means no parity, 1 means odd parity, 2 means

even parity)

e stopbits: {1 | 2}

18

2.3. Preprocessing Utility

e timeoutms: {positive integer} (time to wait for I/O operation before
throwing an error)

Example of a JSON configuration file can be found in Appendix

2.3 Preprocessing Utility

Data preprocessing utility is called prep. It loads either blocks of (char) data
and processes them using Block Preprocessing Module, or it loads power traces
containing (int16_t) samples and processes them using Traces Preprocessing
Module. Output files (including JSON config) are generated by the plug-in
modules.

This utility is useful e.g. for performing higher-order attacks (preprocess-
ing the traces) or when performing the CPA attack (creating power predictions
based on block data).

2.3.1 Usage

Brief usage is also printed when the program is run with -h option. Example
usage can be found in Appendix [F]

./prep [options] config

2.3.2 Options
2.3.2.1 -I, —id {string}

The ID string will be used in output files’ filenames. Default value is current
datetime.
Exact filenames are plug-in module dependent, similar to the meas utility.

2.3.2.2 -Q, —query

Query available traces and block data preprocessing plug-in modules (-T, -B).

2.3.2.3 -T, —traces-preprocess-module {string}

ID of traces preprocessing plug-in module to use. Select either -T or -B.

2.3.2.4 -B, —block-preprocess-module {string}
ID of block data preprocessing plug-in module to use. Select either -T or -B.

2.3.2.5 -t, —traces {filepath}

File containing -n traces, each of which containing -s samples (int16).

19

2. TooLKIT DESIGN

2.3.2.6 -n, —traces-count {positive integer}

Number of power traces in -t file.

2.3.2.7 -s, —samples-per-trace {positive integer}

Number of samples per trace.

2.3.2.8 -b, —blocks {filepath}

File containing -m blocks of data, each of which -k bytes long.

2.3.2.9 -m, —blocks-count {positive integer}
Number of blocks of data in -b file.

2.3.2.10 -k, —blocks-length {positive integer}

Length of data block in -b file, in bytes.

2.3.2.11 —param {param}

Optional plug-in module parameters. Module specific option.

2.3.2.12 -h, —help

Displays help.

2.3.2.13 -v, —version

Displays version information.

2.3.3 Arguments
2.3.3.1 config

JSON configuration file(s) with Options. The JSON configuration file may
contain key:string pairs, where key is a long option name and string is the
value.

For example:

{ 7blocks—length”:716” }

20

2.4. Statistical Analysis Utility

2.4 Statistical Analysis Utility

Statistical processing utility is called stan.
The utility loads one of the two different types of plug-in modules (CPA,
t-test) and runs one of the tasks:

e CPA
— create: Creates a file with new contexts, based on power traces
and power prediction sets.
— merge: Merges two files with existing non-empty contexts.
— finalize: Creates a file with correlation matrices, based on a con-
texts.
o t-test
— create: Creates a file with new context, based on random data
power traces and constant data power traces.
— merge: Merges two files with existing non-empty contexts.

— finalize: Creates a file with t-values and degrees of freedom, based
on a context.

The reason that CPA and t-test modules are separated is that each task
receives differently typed data: CPA is run upon power traces (int_16) and
power predictions (uint8-t), while t-test is run upon two sets of power traces.

Different CPA /t-test computation plug-in modules may perform different
tasks (univariate/multivariate, first /higher-order,...), and the tasks can be also
implemented differently (e.g. on CPU and/or GPU).

2.4.1 Usage

Brief usage is also printed when the program is run with -h option. Example
usage can be found in Appendix [G]

./stan [options] config

2.4.2 Options
2.4.2.1 -I, —id {string}

The ID string will be used in output files’ filenames. Default value is current
datetime.

21

2. TooLKIT DESIGN

2.4.2.2 -Q, —query

Query available CPA and t-test plug-in modules (-C, -T), platforms (-P) and
devices (-D).

2.4.2.3 -C, —cpa-module {string}
ID of a CPA plug-in module to launch. Select either -C or -T.

2.4.2.4 -T, —ttest-module {string}

ID of a t-test plug-in module to launch. Select either -C or -T.

2.4.2.5 -P, —platform {positive integer}

Platform from which to choose a device (-D). Default is 0.

2.4.2.6 -D, —device {positive integer}

Device from a platform (-P) to run computation on. Default is 0.

2.4.2.7 -F, —function {create | merge | finalize}
Select a function:

e ’‘create’ a new context from traces/predictions,

e 'merge’ existing contexts A,B

e ’finalize’ existing context A.

2.4.2.8 -r, —random-traces {filepath}

File containing -n random data traces, each of which containing -s samples
(int16).

2.4.2.9 -n, -random-traces-count {positive integer}

Number of random data power traces in -r file.

2.4.2.10 -c, —constant-traces {filepath}

File containing -m constant data traces, each of which containing -s samples
(int16).

2.4.2.11 -m, —constant-traces-count {positive integer}

Number of constant data power traces in -c file.

22

2.4. Statistical Analysis Utility

2.4.2.12 -s, —samples-per-trace {positive integer}

Number of samples per trace.

2.4.2.13 -p, —predictions {filepath}

File containing -q power prediction sets, each of which containing -k power

predictions (uint8) for every random trace in -r file.

2.4.2.14 -q, —prediction-sets-count, —contexts-count {positive
integer}

Number of power prediction sets/number of contexts. E.g. attacking AES-128

key, this value would be 16.

2.4.2.15 -k, —prediction-candidates-count {positive integer}

Number of power predictions for each power trace in -p file. E.g. attacking

AES-128 key, this value would be 256.

2.4.2.16 -a, —context-a {filepath}

Context file A, for use in Finalize or Merge functions.

2.4.2.17 -b, —context-b {filepath}

Context file B, for use in Merge function.

2.4.2.18 —param {param}

Optional plug-in module parameters. Module specific option.

2.4.2.19 -h, —help

Displays help.

2.4.2.20 -v, —version

Displays version information.

2.4.3 Arguments
2.4.3.1 config

JSON configuration file(s) with Options. The JSON configuration file may
contain key:string pairs, where key is a long option name and string is the
value.

For example:

23

2. TooLKIT DESIGN

{ 7random—traces—count”:”710000” }

2.4.4 Output

Unlike previous utilities, where plug-in modules are responsible for the output
files, in this case the modules are used simply to perform the computation.
The output files are created by the utility.

stan produces following files:

e cpa create: cpa-ID.Qctx,

e cpa merge: cpa-ID-merged.Qctx,
e cpa finalize: cpa-ID.Qcor,

e ttest create: ttest-ID.ctx,

e ttest merge: ttest-ID-merged.ctx,
e ttest finalize: ttest-ID.tvals,

e ID.json,

where ID is stan given parameter or default, and Q is number of power pre-
diction sets/contexts created (when Q=1, it’s omitted).

.Qcor files contain Q correlation matrices, each SxK large, where Q is
number of power prediction sets, S is number of samples per trace and K is
number of key candidates.

.tvals file contain Sx2 matrix, where S is number of samples per trace,
where in the first row there are t-values, in the second row there are degrees
of freedom.

2.5 Correlation Evaluation Utility

Correlation evaluation utility is called correv. It loads correlation matrices
from a file and evaluates them using specified modules: Correlation matrix
evaluation plug-in module finds a keyguess (i.e. a set of selected key candi-
dates, e.g. the maximum coefficients). Keyguess evaluation plug-in module
evaluates this keyguess, e.g. reverses the last round AES key.

2.5.1 Usage

Brief usage is also printed when the program is run with -h option. Example
usage can be found in Appendix [H]

./ correv [options] config

24

2.5. Correlation Evaluation Utility

2.5.2 Options

2.5.2.1 -Q, —query

Query available CPA correlation matrix evaluation and keyguess evaluation
plug-in modules (-E, -K).

2.5.2.2 -E, —correlations-eval-module {string}

ID of a CPA correlation matrix evaluation plug-in module to use.

2.5.2.3 -K, —keyguess-eval-module {string}

ID of a CPA keyguess evaluation plug-in module to use.

2.5.2.4 -c, —correlations {filepath}
File containing -q correlation matrices, each of which -s wide and -k tall (dou-

ble).

2.5.2.5 -q, —prediction-sets-count, —contexts-count {positive
integer}

Number of correlation matrices. E.g. attacking AES-128 key, this value would

be 16.

2.5.2.6 -k, —prediction-candidates-count {positive integer}

Number of key candidates, i.e. rows of correlation matrix. E.g. attacking
AES-128 key, this value would be 256.

2.5.2.7 -s, —samples-per-trace {positive integer}

Number of samples per trace, i.e. cols of correlation matrix.

2.5.2.8 —param {param}

Optional plug-in module parameters. Module specific option.

2.5.2.9 -h, —help

Displays help.

2.5.2.10 -v, —version

Displays version information.

25

2. TooLKIT DESIGN

2.5.3 Arguments
2.5.3.1 config

JSON configuration file(s) with Options. The JSON configuration file may
contain key:string pairs, where key is a long option name and string is the
value.

For example:

{ 7samples—per—trace”:72000” }

2.6 Visualisation Utility

Visualisation utility is called visu. It allows to plot power traces, correlation
traces or t-values and to show the plot in graphical window or save it in raster
format (jpg, png) or vector format (svg).

2.6.1 Usage

Brief usage is also printed when the program is run with -h option. Example
usage can be found in Appendix [l

./visu [options]| config series

2.6.2 Options
2.6.2.1 -D, —display

Display the chart in a graphical window.

2.6.2.2 -S, —save {filename}

Save the chart to a file.
The output image format is automatically selected by the filename exten-

sion (jpg, png, svg).

2.6.2.3 -W, —width {positive integer}
Width of the saved chart.

2.6.2.4 -H, —height {positive integer}
Height of the saved chart.

2.6.2.5 -T, —title {string}
Chart title

26

2.6. Visualisation Utility

2.6.2.6 -t, —traces {filepath}

File containing -n traces, each of which containing -s samples (int16).

2.6.2.7 -n, —traces-count {positive integer}

Number of power traces in -t file.

2.6.2.8 -r, —traces-real-range {positive integer}

Maximum positive value of a power sample in mV, e.g. 2000 for range -2V to
+2V.

2.6.2.9 -a, —t-values {filepath}

File containing -s t-test values (double).

2.6.2.10 -c, —correlations {filepath}

File containing -q correlation matrices, each of which -s wide and -k tall (dou-
ble).

2.6.2.11 -q, —correlations-sets-count {positive integer}

Number of correlation matrices. E.g. attacking AES-128 key, this value would
be 16.

2.6.2.12 -k, —correlations-candidates-count {positive integer}
Number of key candidates, i.e. rows of correlation matrix. E.g. attacking
AFES-128 key, this value would be 256.

2.6.2.13 -s, —samples-per-trace {positive integer}

Number of samples per trace.

2.6.2.14 -b, —samples-real-range {float number}

Time of a single power/correlation trace. Given sampling period T and -s
samples, this value would be T * (s — 1).

2.6.2.15 -h, —help

Displays help.

2.6.2.16 -v, —version

Displays version information.

27

2. TooLKIT DESIGN

2.6.3 Arguments
2.6.3.1 config

JSON configuration file(s) with Options. The JSON configuration file may
contain key:string pairs, where key is a long option name and string is the
value.

For example:

{ 7samples—real—range”:”3e—6" }

2.6.3.2 series

Time series to plot. For example:

e 7t,25 blue” plots 26th power trace from traces file in blue

e 7¢,0,255” plots 255th correlation trace from the 1st correlation matrix
in automatically selected color

e 7c,1,all,#bbbbbb” plots all correlation traces from 2nd correlation ma-
trix in grey

e "v pink” plots t-values from t-values file in pink

Color is optional. When it is not set, the color is selected automatically.
Hexadecimal RGB codes or Svgl.0 color names are allowed.

2.7 Toolkit-Wide Programming Support

In order for all these utilities and for the following plug-ins to cooperate, and
to make future development easier, a toolkit-wide set of classes and functions
was designed. These include basic data containers (Vector, Matrix), a com-
plex data container (Two-Population Univariate Statistical Context), some
functions to work with these containers (e.g. to save them to a file) and basic
exceptions for the plug-ins to throw.

Inheritance diagram for designed data types is shown in Figure The
data types are briefly explained in following sections. For more detailed infor-
mation, see Programmer’s Guide, which is attached to the source code.

2.7.1 Array Data Types: Vector, Matrix

ArrayType and derived classes are a container class templates, which main
purpose is dynamic memory management (resulting in exception safety) and
logical encapsulation. Common interface includes length(), which returns
number of elements, size(), which returns size of underlying memory (i.e.

28

2.7. Toolkit-Wide Programming Support

DataType
+ ~DataType()
DataType()
ArrayType< T >
StructuredType
+ ~Array Type()
+ Igngth()
: ?i:lz({)ao + ~StructuredType()
+ dataf) # StructuredType()
+ data()
ArrayType()
MatrixType< T >
VectorType< T >
ComputationalContext< T >
+ ~MatrixType()
+ cols() + ~VectorType()
+ rows() + init() ~ -
+ !n!Eg + init() ror) :f”%mputatlonaIContext()
+ini + operator
+ operator()() + operator()) # ComputationalContext()
+ operator()() # VectorType()
MatrixType()
UnivariateContext< T >
m_p1Width
Vector< T > #m_p2Width
1Card
Matrix< T > #m_data # mﬁ?_Ca:d
#m_length #m_mOrder
#m_vector # m_capacity #m esOrder
: m_rc:\.lvss + Vector() #m_acsOrder
— + Vector() #m_piM
+ Matrix() + Vector() #m_p2M
+ Matrix() + Vector() #m_plCS
+ Matrix() + operator=() #m_p2CS
+ Matrix() + ~Vector() #m_p12ACS
+ operator=() + length() + UnivariateContext()
: ;2;1?6"’(0 : ?r:izt{(e)o + UnivariateContext()
+ rows() +init() + UnivariateContext()
= - + UnivariateContext()
: !n!Eg : g”g() + operator=()
ini a .
and 7 more.__ + data() : ;ﬁa\vanate()ontext()
+ operator()() + init()
+ operator()() +ill)
+ reset()
and 19 more...

PowerPredictions< T =

PowerTraces< T >

+ PowerPredictions()
+ PowerPredictions()
+ PowerPredictions()
+ PowerPredictions()
+ operator=()

+ ~PowerPredictions()
+ init()

+ noOfCandidates()
+ noOfTraces()

+ operator()()

+ operator()()

+ PowerTraces()
+ PowerTraces()
+ PowerTraces()
+ PowerTraces()
+ operator=()

+ ~PowerTraces()
+ init()

+ samplesPerTrace()
+ noOfTraces()

+ operator()()

+ operator()()

Figure 2.2: Inheritance diagram for toolkit’s data types.

29

2. TooLKIT DESIGN

length * sizeof(T), where T is scalar type), data() which returns pointer to
the underlying memory, and fill('T), which allows for the initialization of the
array.

The array types are further distinguished as VectorType and Matrix-
Type. VectorType is designed for one-dimensional arrays, which is con-
sidered by it’s init(size) method, taking only one size parameter, and it’s
operator()(size) accessor method. MatrixType, on the other hand, is
designed for two-dimensional arrays, and so are it’s init(cols, rows) and
operator()(cols, rows) methods.

Vector and Matrix are class templates of the basic implementations of
these containers. Matrix uses Vector in terms of composition (not inheritance)
and simply maps the two-dimensional indexes to the underlying C-style matrix
storage provided by Vector. This approach is selected (opposite to the vector
of vectors) in order to obtain maximum control over memory locality.

All the described containers have their copy constructors and copy assign-
ment operators deleted. On the other hand, move constructors and move
assignment operators are implemented and used by file handling functions.

2.7.2 Structured Data Types: Univariate Statistical Context

UnivariateContext is a container class template usable for two-population
moment-based statistical analysis. It is initialized with first Width, second-
Width; and mOrder, csOrder and acsOrder parameters.

firstWidth and secondWidth parameters determine the widths of first
and second population (e.g. number of samples per trace, and/or number of
key candidates).

The context provides Raw Moment Vectors and Central Moment Sum
Vectors for each population, and Adjusted Central Moment Sum Matrices for
the cartesian product of the populations, for every order up to the orders
specified during initialization (mOrder, csOrder, acsOrder). The order
index starts at 1, with exception for central moment sum vectors, where index
starts at 2 (first-order central moment of any variable is constant 0). Besides
these vectors and matrices, the context stores cardinality of each population.

All the elements are accessible using methods p1Card(), p1M(order),
pl1CS(order) for first population, p2Card(), p2M (order), p2CS(order)
for second population and p12ACS(order), returning either const or non-
const references. Similar to the Vector and Matrix, UnivariateContext has
copy constructors and copy assignment operators deleted as well, while move
constructors and move assignment operators are implemented and preferred.

2.7.3 File Handling Support

A set of function templates was designed, to provide a file handling support
for class templates described above.

30

2.8. Plug-ins

Function template fillArrayFromFile takes an ArrayType reference and
file stream reference as arguments and fills the array with data from given
stream. This means that the array needs to be initialized to the proper size
before call. Function template writeArrayToFile writes specified ArrayType
to the specified file stream.

Function templates readContextFromFile (writeContextToFile, resp.)
read (write, resp.) the above specified statistical context. Statistical context
has its own file format, where metadata are encoded first, followed by the
ArrayTypes. Therefore, readContextFromFile returns the statistical context
(using move semantics), instead of filling an initialized one as in case of fil-
lArayFromFile function template (which is, however, used in implementation
of this template).

All the function templates defined above depend on a correct file stream
position. They do not perform any kind of position-seeking operation. This
allows e.g. for loading more statistical contexts from a single file stream.

Function templates loadPowerTraceFromFile, loadCorrelationTrace-
FromFile, and loadTValuesFromFile are useful for loading a single power,
correlation or t-values trace (i.e. matrix row) from filestream. These function
templates receive necessary offset values (e.g. number of samples per trace)
and return Vector filled with data. Unlike all the previous functions, these
function templates do not depend on a correct file stream position.

2.7.4 Exceptions

To provide a safe mechanism for error handling, two types of exceptions are
defined. First one is RuntimeException, which is preffered for situations
where the user has no direct influence on the error that has occured (e.g.
an error in computation or a timeout during communication). Second one
is InvalidInputException, which is preffered when the error is caused by
invalid user input (e.g. a wrong number of power traces).

Both exceptions are derived from the base class Exception, which is de-
rived from std::exception in order to provide maximum compatibility. Both
exceptions allow for setting a string error message, optionally also with an
error code.

2.8 Plug-ins

In order to provide maximum flexibility, many of the designed utilities basicly
serve as interfaces for various plug-in modules. The plug-in modules adhere
to the abstract base classes, which define the modules’ interfaces. These are
described in following sections.

Common methods implemented in every plug-in module include getPlug-
inName() and getPluginInfo(), which return basic user metadata. Some
of the plug-in modules also implement the queryDevices() method, which

31

2. TooLKIT DESIGN

returns the Platform or/and Device IDs required for plug-in module initial-
ization. Another methods implemented in every plug-in module are init(...),
which must be called before any other method on the plug-in is called (exclud-
ing getPluginName, getPluginlnfo and queryDevices), and deinit(), which
should be called when the module is no longer needed (and which should also
be called by the plug-in’s destructor).

Most plug-ins also receive an external param string, allowing for further
customisation of the initialization procedure.

2.8.1 Measurement Scenario

Measurement scenario plug-in is loaded by the meas Measurement utility. It
contains the measurement semantics itself and it is therefore target-specific.

2.8.1.1 Plug-in interface

class Measurement {
public:

virtual “Measurement () {}

virtual QString getPluginName () = 0;
virtual QString getPluginlnfo () = 0;
virtual void init (const char *x param) = 0;

virtual void delnit () = 0;

virtual void run(const char * measurementld, size_t
measurements, Oscilloscope * oscilloscope , CharDevice
charDevice) = 0;

2.8.1.1.1 run This is the primary method of the Measurement interface.
It receives an ID (set by the utility), number of measurements requested,
and either initialized Oscilloscope and Character Device plug-in modules or
nullptr(s).

The method is also responsible for creating all the output files.

2.8.2 Oscilloscope

Oscilloscope plug-in is loaded by the meas Measurement utility. It serves as
an oscilloscope interface, allowing for setting the oscilloscope channels, timing
and trigger, and for capturing and downloading power traces.

32

NN NN NN
S © 00 N O Utk W N

TR W N =

W W W W W w w w N N

3

2.8. Plug-ins

2.8.2.1 Plug-in interface

class Oscilloscope {

public:

enum class Coupling {
AC,
DC

=

enum class Impedance {
R50,
RIM

e

enum class BandwidthLimiter {
FULL,
F20MHZ,
F25MHZ

b

enum class TriggerSlope {
RISING,
FALLING,
EITHER

b

virtual ~Oscilloscope () {}

virtual QString getPluginName() = 0;

virtual QString getPluginlnfo () = 0;

virtual void init (const char * filename) = 0;

virtual void delnit () = 0;

virtual QString queryDevices() = 0;

virtual void setChannel(int & channel, bool & enabled,
Coupling & coupling , Impedance & impedance, int & rangemV ,
int & offsetmV , BandwidthLimiter & bwLimit) = 0;

virtual void setTrigger(int & sourceChannel, float & level,
TriggerSlope & slope) = 0;

virtual void unsetTrigger () = 0;

virtual void setTiming(float & preTriggerRange, float &
postTriggerRange, size_t & samples, size_t & captures) =
0;

virtual void run() = 0;

virtual void stop() = 0;

virtual size_t getCurrentSetup(size_-t & samples, size_t &

33

2. TooLKIT DESIGN

captures) = 0;

virtual size_t getValues(int channel, PowerTraces<intl6_t> &

traces) = 0;
virtual size_t getValues(int channel, intl6_t x buffer, size_t
len, size_t & samples, size_t & captures) = 0;

2.8.2.1.1 init Oscilloscope’s initialization method accepts a string param-
eter. This is module-specific parameter (it could be e.g. oscilloscope’s 1D)

2.8.2.1.2 setChannel This method sets channel settings, including range
or offset. When a parameter or parameters combination is invalid, the module
sets parameters to the closest satisfactory values and updates the referenced
variables. The rangemV is +- symmetric range of the channel in millivolts,
i.e. rangemV=100 results in -100mV to +100mV channel range. offsetmV is
analog offset that is added to the channel before digitalization.

2.8.2.1.3 (un)setTrigger The method (un)sets the edge trigger on de-
fined channel. The level float parameter sets the trigger threshold, where 0
stands for the lowest ADC (voltage range) value, and 1 stands for the highest
ADC (voltage range) value, on the selected channel.

E.g., with channel’s rangemV=100 and offsetmV=-50, level=0.75 stands
for threshold voltage 0 V.

2.8.2.1.4 setTiming This method accepts pre-trigger range and post-
trigger range float parameters in seconds, and a number of samples per power
trace that the user wishes for. When possible, the module computes and sets
the nearest sampling frequency to satisfy the requested time range settings,
and updates all three referenced variables appropriately. While the time range
is almost always settable, the sampling frequency (thus number of samples)
may be forced by the oscilloscope device. The interface also allows for setting
more captures per oscilloscope run, when the device supports such thing.

2.8.2.1.5 run This method runs the oscilloscope. When triggered, the os-
cilloscope waits for the trigger event to occur and captures the power trace(s).
When not triggered, the digitalization of channels is performed immediately.

2.8.2.1.6 stop This method stops the oscilloscope.

2.8.2.1.7 getCurrentSetup This method returns (using referenced vari-
ables) the current samples per trace and captures per run timing settings.

34

2.8. Plug-ins

2.8.2.1.8 getValues This method waits for the oscilloscope acquisition
to complete (as defined by previous channel, timing and trigger settings) and
then returns the captured power traces, either in generic memory buffer, or in
the referenced PowerTraces variable.

2.8.3 Character Device

Character Device plug-in is loaded by the meas Measurement utility. It serves
for reading and writing to/from character device. It’s interface is specifically
designed for attaching to a terminal device, however, since the terminal pa-
rameters have default values specified, they can be ignored by both user and
the plug-in, allowing to create a character device plug-in e.g. for a Smart
Card.

2.8.3.1 Plug-in interface

w N

NN

SRS
RIS

[\~

class CharDevice {
public:
virtual ~CharDevice() {}

virtual QString getPluginName ()
virtual QString getPluginlnfo ()

0;
0;

virtual void init (const char * filename, int baudrate
int parity = 0, int stopBits = 1) = 0;
virtual void delnit () = 0;

9600,

virtual QString queryDevices() = 0;
virtual void setTimeout(int ms = 5000) = 0;

virtual size_t send(const VectorType<uint8_t> & data) = 0;
virtual size_t receive(VectorType<uint8_t> & data) = 0;

virtual size_t send(const VectorType<uint8_t> & data, size_t

len) = 0;
virtual size_t receive(VectorType<uint8_t> & data, size_t len)
= 0;
virtual size_-t send(const uint8_t * buffer, size_t len) = 0;
virtual size_t receive(uint8_t x buffer, size_t len) = 0;

}s

2.8.3.1.1 init The initialization method receives a string parameter (e.g.
filename or COM port) and the usual terminal parameters (baudrate, parity,

35

2. TooLKIT DESIGN

stopbits). The baudrate must be supported by the underlying hardware. Par-
ity 0 stands for no parity, 1 stands for odd parity and 2 stands for even parity.
Allowed stopbits values are 1 and 2. Since these parameters have default val-
ues, they can be ignored by both user and the module, which can be used for
non-terminal devices as well.

2.8.3.1.2 setTimeout This method sets the communication timeout (time
to wait for any read/write operation to happen), in milliseconds.

2.8.3.1.3 send The send methods send the data out of the referenced
Vector or from a generic memory buffer.

2.8.3.1.4 receive The receive methods receive the data and saves them
into the referenced Vector or into a generic memory buffer.

When the Vector referenece without length versions of the send/receive
functions are used, the amout of data to send/receive is deduced from the
referenced Vector length.

2.8.4 Block Data Processing

Block Data Processing plug-in is loaded by the prep Preprocessing utility. It
allows for generic (pre-)processing of block data, e.g. for creating CPA power
predictions.

2.8.4.1 Plug-in interface

class BlockProcess {
public:
virtual “BlockProcess() {}

virtual QString getPluginName () = 0;
virtual QString getPluginInfo() = 0;

virtual void init (const char *x param) = 0;
virtual void delnit() = 0;

virtual void processBlockData(MatrixType<uint8_t> & data,
const char % id) = 0;

2.8.4.1.1 processBlockData This is the primary method of the Block-
Process interface. It receives a MatrixType<uint8_t> reference (data block
per row) and processes it. The method is also responsible for any output files.

36

2.8. Plug-ins

2.8.5 Power Traces Processing

Power Traces Processing plug-in is loaded by the prep Preprocessing utility.
It allows for generic (pre-)processing of (intl6.t) power traces, e.g. when
performing higher-order analysis.

2.8.5.1 Plug-in interface

class TracesProcess {
public:
virtual “TracesProcess() {}

virtual QString getPluginName() = 0;
virtual QString getPluginInfo () = 0;

virtual void init (const char * param) = 0;
virtual void delnit() = 0;

virtual void processTraces(PowerTraces<intl6_t> & traces,
const char * id) = 0;

2.8.5.1.1 processTraces This is the primary method of the TracesPro-
cess interface. It receives a PowerTraces (i.e. MatrixType, power trace per
row) reference and processes it. The method is also responsible for any output
files.

2.8.6 CPA Computation Engine

CPA Computation Engine plug-in is loaded by the stan Statistical Analysis
utility. It implements context manipulation functions (create a context, merge
contexts, finalize the context) for CPA (int16_t power traces and uint8_t power
predictions).

2.8.6.1 Plug-in interface

class CpaEngine {
public:
virtual “CpaEngine() {}

virtual QString getPluginName() = 0;
virtual QString getPluginlnfo () = 0;

37

NN

2. TooLKIT DESIGN

virtual void init (int platform , int device, size_t noOfTraces,
size_t samplesPerTrace, size_t noOfCandidates, const char
x param) = 0;

virtual void delnit() = 0;

virtual QString queryDevices() = 0;

virtual void setConstTraces(bool constTraces = false) = 0;

virtual UnivariateContext<double> createContext (const
PowerTraces<int1l6_t> & powerTraces, const PowerPredictions
<uint8_t> & powerPredictions) = 0;

virtual void mergeContexts(UnivariateContext<double> &
firstAndOut , const UnivariateContext<double> & second) =
0;

virtual Matrix<double> finalizeContext (const UnivariateContext
<double> & context) = 0;

2.8.6.1.1 init The initialization function takes the ID of platform and de-
vice to perform the computation on, and dimensions of the input data (number
of power traces, number of samples per trace and number of key candidates).

2.8.6.1.2 setConstTraces The CPA create operation is often performed
number of times with different power predictions, but the same power traces.
Setting constant traces using this method signals that the power traces won’t
change during multiple calls to createContext method, thus allowing for fur-
ther optimization of the computation.

2.8.6.1.3 createContext This method returns CPA UnivariateContext
created from given power traces and power predictions.

2.8.6.1.4 mergeContexts This method merges two given CPA Univari-
ateContexts and stores the result in the first operand.

2.8.6.1.5 finalizeContext This method evaluates given UnivariateCon-
text and returns CPA correlation matrix.

2.8.7 t-test Computation Engine

t-test Computation Engine plug-in is loaded by the stan Statistical Analysis
utility. It implements context manipulation functions (create a context, merge
contexts, finalize the context) for t-test leakage analysis (int16_t power traces).

38

19

2.8. Plug-ins

2.8.7.1 Plug-in interface

class TTestEngine {
public:
virtual “TTestEngine() {}

virtual QString getPluginName() = 0;
virtual QString getPluginInfo () = 0;

virtual void init (int platform , int device, size_t
noOfTracesRandom, size_t noOfTracesConst, size_t
samplesPerTrace, const char x param) = 0;
virtual void delnit () = 0;

virtual QString queryDevices() = 0;

virtual UnivariateContext<double> createContext (const
PowerTraces<int16_t> & randTraces, const PowerTraces<
intl6_t> & constTraces) = 0;

virtual void mergeContexts(UnivariateContext<double> &
firstAndOut , const UnivariateContext<double> & second) =
0;

virtual Matrix<double> finalizeContext (const UnivariateContext
<double> & context) = 0;

2.8.7.1.1 init Similar to the CPA engine, this initialization function takes
the ID of platform and device to perform the computation on, and dimensions
of the input data (number of random/constant power traces, number of sam-
ples per trace).

2.8.7.1.2 createContext This method returns t-test UnivariateContext
created from given power traces.

2.8.7.1.3 mergeContexts This method merges two given t-test Univari-
ateContexts and stores the result in the first operand.

2.8.7.1.4 finalizeContext This method evaluates given UnivariateCon-
text and returns matrix with t-values in the first row, and degrees of freedom
in the second row.

39

14
15

S Ut s WN

oo =

2. TooLKIT DESIGN

2.8.8 CPA Matrix Evaluation

CPA Matrix Evaluation plug-in is loaded by the correv Correlation Evalu-
ation utility. It selects a key candidate and sample based on implemented
metrics (e.g. maximum coefficient or maximum edge)

2.8.8.1 Plug-in interface

class CpaCorrEval {
public:
virtual “CpaCorrEval() {}

virtual QString getPluginName () = 0;
virtual QString getPluginInfo () 0;

virtual void init (const char *x param) = 0;
virtual void delnit () = 0;

virtual void evaluateCorrelations (MatrixType<double> &
correlationMatrix , size_t & sample, size_t & keyCandidate)

= 0;

}s

2.8.8.1.1 evaluateCorrelations This is the primary method of the Cpa-
CorrEval interface. It searches for an element in given correlation matrix,
which maximizes given criteria, and returns this element’s index: sample and
key candidate.

2.8.9 CPA Keyguess Evaluation

CPA Keyguess Evaluation plug-in is loaded by the correv Correlation Eval-
uation utility. It evaluates a Vector of key candidates (i.e. a keyguess) and
returns the cipher key.

2.8.9.1 Plug-in interface

class CpaKeyEval {
public:
virtual ~CpaKeyEval() {}

virtual QString getPluginName () = 0;
virtual QString getPluginInfo() = 0;

40

2.8. Plug-ins

virtual void init (const char * param) = 0;
virtual void delnit () = 0;

virtual Vector<uint8_t> evaluateKeyCandidates(const VectorType
<size_t > & keyCandidates) = 0;

s

2.8.9.1.1 evaluateKeyCandidates This is the primary method of the
CpaKeyEval interface. It receives a Vector of key candidate indexes and eval-
uates it into a cipher key.

41

CHAPTER 3

Implementation

The C/C++ programming language has already been selected in the assign-
ment of this thesis. Additionally, a multiplatform application framework
Qt5 [53] was selected to provide functionality such as dynamic library plug-in
support or command line arguments parsing.

3.1 Command-line Utilities

All the command-line utilities are designed in a similar fashion: first the
command line arguments are parsed. If help, version or query parameter is
set, the appropriate output is printed out and the application quits. When
none of these parameters is set, the application looks for function-determining
parameters such as selection of a plug-in module. When the requested task
is determined, the application looks for other parameters required to perform
this task. When all the parameters are succesfully found and set, they are
saved and the required task is enqueued for Qt’s event loop to process.

Common methods include, besides the command-line parsing, a method
searching for available plug-in modules (in ./plugins/lowercaseinterfacename
directory) and for printing out their IDs (and sometimes also available Device
IDs). Another typically implemented method is for loading the specified plug-
in module according to given Plug-in Module ID.

Both command-line arguments parsing and plug-in handling are imple-
mented using Qt framework.

3.1.1 Measurement Utility

Measurement utility (meas) is fairly simple in the terms of implemented tasks:
only one (but complex) task needs to be done, i.e. load all the specified plug-in
modules, configure them and launch the loaded measurement scenario.

The function-determining parameter here is Measurement Scenario Plug-
in Module. When it is not defined, the application quits with “Nothing to do.”

43

3. IMPLEMENTATION

message. When it is defined, at least a number of measurements must be set as
well. Oscilloscope Plug-in Module and Character Device Plug-in Module may
be specified as well, however they are not required for a generic measurement
scenario. If a task is determined and all the necessary parameters are set (at
least Measurement Scneario and number of measurements), the measurement
procedure is enqueued (Meas::run()) for the event loop to process.

The run() method, and all the other local (Meas) methods it uses, is
maximally verbose. First, the specified Measurement Scenario Plug-in Module
is loaded and initialized. Then the Oscilloscope and Character Device Plug-in
Modules are loaded (if they are specified), initialized and configured according
to the specified JSON configuration files (if they are specified). This is done
by methods initConfigOscilloscope() and initConfigChardevice(), which search
for the configuration and use module’s API to propagate the settings, while
being maximally verbose about the required and real (after setup) parameters.
After this, the Measurement Scneario is finally run. In the end, all the modules
are deinitialized and the application quits.

The oscilloscope configuration (initConfigOscilloscope()) is performed in
three stages, first the channel settings are applied, then the trigger settings
and finally the timing settings (which may depend on channel settings).

3.1.2 Preprocessing Utility

Preprocessing utility (prep) may launch one of the following tasks: block data
preprocessing or power traces preprocessing. These tasks differ primary in the
data types that are being used.

When Power Traces Processing Plug-in Module parameter is set, the power
traces file, number of traces and number of samples per trace must be set
as well. When these conditions are met, the Trace Preprocessing Task is
enqueued. Similarly when Block Data Processing Plug-in Module is set, the
data file, number of block and block lenght must be set. Then the Block
Preprocessing Task is enqueued.

Both these tasks are similar, except for the module they use, and for the
datatypes they work with. First the specified Plug-in Module is loaded and
initialized. Then the power traces/block data memory is allocated and input
files are being read. After this, the loaded data are processed by the loaded
module (which also takes care of the output). In the end, the loaded modules
are deinitialized and the application quits.

3.1.3 Statistical Analysis Utility

Statistical Analysis utility (stan) is probably the most complicated in the
terms of the tasks it may perform. These are CPA Context Create, CPA
Context Merge, CPA Context Finalize, t-test Context Create, t-test Context
Merge and t-test Context Finalize. The first three tasks use CPA Computation

44

3.1. Command-line Utilities

Engine Plug-in Module, while the last three tasks use t-test Computation
Engine Plug-in Module. The reason these tasks are separated the way they
are is because of different input data types used for each task, and because of
effort for maximum performance (thus maximum code optimization).

Only one of the Computation Modules parameters may be set: either a
CPA Computation Module or a t-test Computation Module. When set, one
of the functions is looked for: “create”, “merge” or “finalize” as described in
Toolkit Analysis. Different combinations of Module type and of a function
result in different parameters required for the task to be enqueued. The CPA
Create function requires random traces file, number of traces, number of sam-
ples per trace, power predictions file, number of prediction sets and number
of key candidates. The t-test Create function requires random and constant
traces files, number of random and of constant traces, and number of samples
per trace. Merge functions require two contexts and Finalize functions require
one context, in case of CPA both functions also require number of contexts in
a single file. When the function is determined and all the required parameters
are set, one of the six tasks is enqueued.

All the tasks first load specified computation module and initialize it. Then
the input files are opened, memory is allocated and the data are loaded. After
all the required data are ready, one of the createContext, mergeContexts or
finalizeContext functions is called from computation module’s API. When
creating CPA contexts (one for each predictions set), the power prediction
sets are loaded successively before each createContext call. In the end, the
output is written to the output files, computation module is deinitialized and
the application quits.

3.1.4 Correlation Evaluation Utility

Correlation Evaluation utility (correv) has only one task to perform: evalu-
ate the correlation matrices (the result of a CPA attack) and then evaluate
resulting key candidates to a valid cipher key.

Both Matrix Evaluation and Keyguess Evaluation Module parameters
must be set. Correlation matrices file, number of key candidates, number of
samples per trace and number of correlation matrices in file must be specified
as well.

First, both modules are loaded and initialized. Then the Matrix Evalua-
tion’s evaluateCorrelations function is called as many times as is the number
of correlation matrices, and the obtained key candidates are stored in a Vec-
tor, forming a raw keyguess. This Vector is then evaluated using Keyguess
Evaluation module, which returns uint8_t Vector containing cipher key. This
key is printed to the standard output in hexadecimal ascii format. In the end,
both modules are deinitialized and the application quits.

45

3. IMPLEMENTATION

3.1.5 Visualisation Utility

Visualisation utility (visu) is the only utility in this toolkit which doesn’t
use any custom plug-in modules. It’s task is to generate the specified plot
containing either power traces, correlation traces or t-values (or generally
double values array). This plot is either displayed in a graphical window,
or saved to a file. To implement this functionality, Qt Charts module is used,
along with Qt Widgets (which provide graphical toolkit and raster output
functionality) and Qt Svg (which provides vector output functinality).

To determine a function, at least one of these parameters needs to be set:
display, save. When save is set, the width and height of image must be set
too. Then the application allows to set a power traces file (application then
also requires number of traces and number of samples per trace), a correlation
matrices file (application then also requires number of matrices, number of
samples per trace and number of key candidates) or a t-values file (number of
samples per trace is required then). It is also possible to set real data ranges:
power traces voltage range and time range; and the chart’s title. Then the
time series to plot are parsed and being stored in a list. If no error occurs
(e.g. plotting power traces with no power traces file defined), the createChart
task is enqueued.

When creating a chart, the lists created during parameter parsing are
iterated. Required traces are loaded from defined files, they may get processed
(if real ranges are set) and Qt’s QLineSeries are constructed from them. At
most two vertical axes are created when needed: ADC values (or Voltage)
axis, and a double axis (for correlation coefficients or t-values). Horizontal
axis is shared among all plotted traces.

After the chart is done, it may be saved to a specified file and/or displayed
in a graphical window. When saving a chart, either QPixmap or QSvgGenera-
tor objects are used to produce a compressed or a vector image. The supported
raster formats include all formats supported by platform’s Qt library, which
usually include at least PNG and JPEG.

3.2 Character Device Plug-ins

Character Device Plug-ins are used by the meas Measurement utility. They
are useful e.g. for communication with a cryptographic device

A character device plug-in is implemented in this thesis: Serial Port com-
munication Plug-in.

3.2.1 SerialPort Character Device Plug-in

SerialPort Character Device plug-in module provides an interface for native
operating system terminal device on Windows or POSIX-compatible platform.

46

3.2. Character Device Plug-ins

3.2.1.1 init

For initialization of the module, a filename and terminal parameters are re-
quired. Under POSIX, the filename is terminal device’s filename, e.g. “/de-
v/ttyUSB0”. On Windows, the filename is terminal port name, e.g. “COM1”

or “\\.\COM10".
Supported baudrates are:

e 110,
e 300,
e 600,
e 1200,
e 2400,
e 4800,
e 9600 (this is default value),
e 19200,
e 38400,
e 57600,
e 115200.
Futhermore, on Windows, following baudrates are available:
e 128000,
e 256000,
while on POSIX, following baudrate is also available:
e 230400.

The parity and stopbit settings are implemented as designed by Character
Device interface. Flow control is disabled and no flow control (hardware,
software, Xon) is supported by this module.

The method also sets the terminal in raw mode, i.e. no transformation
whatsoever is performed upon sent/received data.

3.2.1.2 setTimeout

This method sets the timeout for read/write operations, in milliseconds. On
POSIX system, deciseconds are used (the millisecond value gets rounded).

47

3. IMPLEMENTATION

3.2.1.3 send/receive

Send and receive methods are implemented using operating system’s native
calls, POSIX read/write or Windows readFile/writeFile.

3.3 Oscilloscope Plug-ins

Oscilloscope Plug-ins are used by the meas Measurement Utility. They are
suitable for controlling an oscilloscope and downloading the captured data.

Two different oscilloscope plug-ins are implemented in this thesis: Keysight
3000 series [54] oscilloscope and PicoScope 6000 series [55] oscilloscope.

To implement the Keysight Oscilloscope plug-in, a communication layer is
required between an application and the oscilloscope. This layer is provided by
a SCPI Device class, which allows communication with any compliant oscillo-
scope. For the PicoScope plug-in, this layer is provided by the PicoScope SDK.

3.3.1 SCPI Device

Standard Commands for Programmable Instruments [56] (SCPI) is a standard
defining syntax that is used for remote control by many oscilloscopes.

In order to implement any SCPI based oscilloscope module (e.g. Keysight
3000 series Oscilloscope), a communication layer is required, that sends SCPI
commands to the oscilloscope and receives data back from it. This layer
is provided by ScpiDevice class, which on Windows uses Virtual Instrument
Software Architecture [57] (VISA) libraries, on Linux it takes advantage of
native USBTMC class [58] kernel driver.

The ScpiDevice class offers following methods: sendString, receiveString,
queryString, send[EEEBIlock, receivelEEEBIlock, querylEEEBlock and check-
ForInstrumentErrors. There methods are further explained in following sub-
sections.

3.3.1.1 init

The ScpiDevice is initialized either with a VISA address (on Windows) or
with a device filename (on Linux). This is done by either VISA library calls
or POSIX open function.

3.3.1.2 sendString/receiveString

These methods send a string or receive a string from oscilloscope device. Ei-
ther VISA calls (viBufWrite, viScanf) are used, or standard POSIX calls upon
usbtmce device file (read/write) are used.

48

Ut o W N =

N =

3.3. Oscilloscope Plug-ins

3.3.1.3 sendIEEEBIlock/receivelEEEBlock

Besides strings, binary block of data can be transferred to/from oscilloscope
device. The data are sent and received using block data format described in
IEEE-488.2 [59].

3.3.1.4 queryString/queryIEEEBlock

These methods send a string (the query) and then wait to receive either string
response or block of binary data back from the oscilloscope.

3.3.1.5 checkForInstrumentErrors

This function sends a standard SCPI command in order to query the device
for errors:

:SYSTem: ERRor?

and returns either 0 when no errors were found, or the error code of the first
error returned.

3.3.2 Keysight 3000 Series Oscilloscope Plug-in

The Keysight (formerly Agilent) 3000 series Oscilloscope plug-in is imple-
mented using ScpiDevice class, described earlier. This oscilloscope’s supported
commands (and their syntax) are described in [54].

3.3.2.1 setChannel

The oscilloscope’s channels are set using a series of :CHANnel<n> SCPI com-
mands sent to the oscilloscope. For example:

: CHANnell : COUPling DC
:CHANnell : IMPedance FIFTy
: CHANnRell :RANGe 100mV

: CHANnell : OFFSet OmV

: CHANnell : BWLimit 0

After the settings is sent, the parameters are queried back to confirm real
set values, and referenced input variables are updated appropriately.

3.3.2.2 setTrigger

The oscilloscope’s trigger settings is set using a series of :TRIGger SCPI com-
mands. For example:

: TRIGger :MODE EDGE
: TRIGger :EDGE: SOURce CHANnell
: TRIGger :EDGE: SLOPe POSitive

49

W N

[\

gt = W

3. IMPLEMENTATION

3.3.2.3 setTiming

The oscilloscope’s timebase is set using a series of : TIMebase SCPI commands.
For example:

: TIMebase :MODE MAIN

: TIMebase : REFerence CENTer
: TIMebase :RANGe 1e—6

: TIMebase: POSition 0

On this oscilloscope, the user is not able to affect the sampling frequency.
To obtain a number of samples per power trace before any measurements are
done, a dummy measurement must be performed:

: WAVeform : POINts : MODE RAW

: WAVeform : FORMat WORD
:WAVeform: UNSigned 0
:WAVeform: BY Teorder LSBFirst
:STOP; *xOPC?

:SINGle ;: TRIGger : FORCe

After this, the driver needs to wait for the acquisition to complete. This is
done by reading the Operating Status Word Register and checking the 4th
least significant bit of an answer:

:OPERegister : CONDition?

When the acquisition is done, we can finally read the number of samples per
power trace, which apply to the current oscilloscope settings:

:WAVeform: POINts?

3.3.2.4 run, getValues

Arming the oscilloscope (run) with trigger set is done by a SCPI command:

:SINGle

When the oscilloscope module is set as untriggered, trigger is forced right after
the Single command is sent:

:SINGle ;: TRIGger : FORCe

The getValues call downloads captured power trace from the oscilloscope.
First, the method waits for the acquisition to complete by reading the Op-
erating Status Word Register and checking the 4th least significant bit of an
answer:

:OPERegister : CONDition?

When the acquisition is done, the power trace is downloaded by first setting
the source channel and then querying the data. For example:

20

N =

3.3. Oscilloscope Plug-ins

:WAVeform: SOURce CHANnell
: WAVeform :DATA?

The Keysight 3000 series oscilloscope only supports one capture per run.

3.3.3 PicoScope 6000 Series Oscilloscope Plug-in

The PicoScope 6000 series Oscilloscope plug-in is implemented using Pico-
Scope SDK [55] API.

3.3.3.1 init

This module is initialized using a serial number of the oscilloscope. When the
filename/Device ID is left blank, the driver opens first PicoScope oscilloscope
found.

3.3.3.2 setChannel

Channel settings is done by calls to the PicoScope SDK functions. Unlike
the Keysight oscilloscope described earlier, the PicoScope offers quite limited
channel range capabilities (9 different ranges between 50mV and 20V). The
closest equal or bigger available range is selected by this module and all the
input variable references are updated accordingly.

3.3.3.3 setTrigger

The trigger is simply set by a call to the PicoScope SDK, no tricks here.

3.3.3.4 setTiming

On the other hand, unlike Keysight 3000 series oscilloscope, the PicoScope
gives user a great power over sampling frequency and number of samples
captured. It also supports multiple captures (on multiple trigger events) per
oscilloscope run (i.e. rapid block mode).

Based on parameters given by user, a most appropriate available sampling
frequency is selected and the oscilloscope mode is set (either block or rapid
block mode). The input variable references are updated according to the
chosen oscilloscope settings.

3.3.3.5 run, getValues

Running (arming) the oscilloscope is done, once again, simply by a call to the
PicoScope SDK.

Obtaining the power trace(s) is done by waiting for the acquisition to
complete and downloading the power trace(s) from pre-set oscilloscope buffers.

51

3. IMPLEMENTATION

As mentioned earlier, the PicoScope 6000 series oscilloscope supports mul-
tiple captures (at multiple trigger events) per oscilloscope run.

3.4 Measurement Scenario Plug-ins

Two different measurement scenarios are implemented in this thesis, both tar-
geting an AES-128 implementation. Both scenarios require both Oscilloscope
and Character Device modules and when run without them, an exception is
thrown.

Both scenarios also take advantage of oscilloscope possibly being set for
more captures per run. This approach (downloading a larger number of power
traces at a time) may increase the measurement time performance. Along with
output files, both scenarios also generate a JSON file with metadata.

3.4.1 AES-128 CPA scenario

First, when the scenario is run, the oscilloscope setup is obtained (number of
samples per trace and number of captures per oscilloscope run), appropriate
memory (PowerTraces Matrix, plain text Matrix and cipher text Matrix) is
allocated and output files are opened.

Then the “set cipher key” command (0x01) is sent to the cryptographic
device via Character Device module, followed by a preselected 16-byte key.

After this, the oscilloscope is run. Then the “encrypt” command (0x02)
is sent to the device, followed by 16 bytes of random data. The 16-byte
ciphertext is received back from the device. The encryption is performed as
many times, as is the number of captures per oscilloscope run. If requested
number of measurements has not been yet satisfied, the oscilloscope is run
again and the whole procedure is repeated as many times as necessary. After
each oscilloscope run is finished, the power traces are downloaded from the
oscilloscope.

Given this, the number of measurements requested must be divisible by
the number of captures per oscilloscope run.

After the measurements are done, the obtained data are saved to output
files.

3.4.2 AES-128 t-test scenario

The key difference between CPA measurement scenario and t-test measure-
ment scenario is in the data the device is fed. Before each encryption, it is
randomly selected whether to encrypt fresh random data or preselected con-
stant data.

The random data power traces and constant data power traces are saved
into different output files. For the random measurements, the plaintexts and
ciphertexts are saved as well. Therefore, the random traces can be used for

02

3.5. Block Data Preprocessing Plug-ins

CPA attack, and both random and constant power traces can be used for
t-test analysis.

3.5 Block Data Preprocessing Plug-ins

Two block data preprocessing plug-in modules are implemented in this thesis,
both for generating power predictions for CPA attack on AES-128 implemen-
tations.

The 128-bit AES encryption consists of the Key expansion and the initial
(zero) round, followed by 10 rounds. In the Key expansion operation, the
cipher key gets expanded into 11 round keys (first one being the cipher key).
In the initial round, the plaintext gets xored with the cipher key (i.e. first
round key). In the next ten rounds, this value gets further altered using four
consecutive operations: SubBytes (i.e. a non-linear 8-bit substitution, i.e.
S-Box), ShiftRows (i.e. a circular shift), MixColumns (i.e. a linear transfor-
mation) and AddRoundKey (with appropriate round key). In the last round,
the MixColumns operation is skipped. [3], [17]

3.5.1 AES-128 First Round Hamming Weight Power Model

This power model exploits the knowledge of the plaintext used during encryp-
tion [24]. When the plaintext is known, we (the attacker) can easily perform
the initial round, i.e. AddRoundKey operation, for a chosen byte of the plain-
text. With all possible key candidates, this gives us 256 possible values after
the initial round. This value gets further processed using SubBytes operation,
which is usually implemented as a memory look-up. The Hamming weight of
this look-up result is used as a power prediction for software implementations
of AES. [17]

Using this approach, 256 power predictions are created for every measure-
ment done. The whole process is repeated 16 times for different cipherkey
bytes, resulting in 16 power prediction sets, that are saved to a file.

3.5.2 AES-128 Last Round Hamming Distance Power Model

Attacking hardware implementations of AES-128 requires different approach.
The power consumption of the CMOS circuits depends rather on transitions
made (0 to 1 or 1 to 0). This power model exploits the knowledge of the
ciphertext [25] and focuses on the register holding the cipher’s working state.
Given that the cipher text is the value that was stored in the register after last
round, we can perform inverse ShiftRows and inverse SubBytes operation on
a chosen byte, and given 256 possible key candidates, perform AddRoundKey
operation as well, resulting in 256 different values that were possibly stored in
the working register during previous round. Hamming distance between last
and 256 last but one possible values in working register gives us our power

93

3. IMPLEMENTATION

predictions. These are based on a Hamming distance power model based on
transitions on cipher’s working register. [17]

This power model, however, attacks the last round key. This round key
can be easily reversed to the cipher key, e.g. using a Keyguess Evaluation
plug-in from this thesis.

Using this approach, 256 power predictions are created for every measure-
ment done. The whole process is repeated 16 times for different cipherkey
bytes, resulting in 16 power prediction sets, that are saved to a file.

3.6 Statistical Analysis Computation Plug-ins

Statistical Analysis plug-in modules provide a computation engine for stan
utility, including functions to create, merge or finalize computational contexts.
While different plug-ins may implement different functionality, they may also
provide the computation on different devices, e.g. using GPU acceleration,
distributed computation, etc.

Three plug-ins are implemented in this thesis: Univariate First-Order CPA
accelerated on CPU using OpenMP, Univariate First-Order CPA accelerated
using OpenCL and Univariate First-Order Welch’s t-test.

3.6.1 Univariate First-Order CPA

Note that in this thesis, T stands for mean of X, M x stands for second-
order central moment sum of X and C5 g stands for first-order adjusted central
moment sum (covariance sum), as labeled in [60, 26], in contrast to the labeling
used in [41]. n stands for the cardinality of the original set (in interative
formulas), n; stands for cardinality of the first set (in merging formulas).

3.6.1.1 create

The creation of a new computational context in this module is implemented
using incremental approach exactly as described in [26]. For both power traces
and power predictions, means and second central moments, as well as shared
adjusted central moments, are computed using incremental formulas, which
provide both good time performance and numerical stability [60), 26]:

v - Tyl — T 3.1

x T+ nil (.)

My xr = Ma x + (2541 — T) (241 — 27), (3.2)
Cos = Cas + " (i ~) anss ~ D) 3)

The creation of CPA context is by far the most computationally challeng-
ing operation. Above described computations are optimized in the means of

o4

3.6. Statistical Analysis Computation Plug-ins

memory access and parallelized over different power samples using OpenMP
in order to provide maximum time performance. Comparison with different
computational approaches can be found in [26].

3.6.1.2 merge

A CPA context holds means, second central moments and adjusted central
moments and cardinalities of two populations. To merge two contexts means
to create a context holding means and moments of data sets, as if it was
created from both sets that were used for the creation of the two merged
contexts combined.

Formulas provided in [41] are used for the computation of new moments:

___ N1T1 + neT2
== 3.4
2 ny + n2 (34)

T2 —T1

Ms x,, = My x, + M x, + nina()2(n1 + na), (3.5)

n1 + no

na(n1)? + ni(ng)?
(n1+ 712)2

027512 = 02751 + 02752 +

(T2 x —T1.x)(@T2y —T1y). (3.6)

First the adjusted central moment sums are merged, then the central mo-
ment sums and means for both variables are merged.

3.6.1.3 finalize

To finalize the CPA contexts means to create a correlation matrix. Pearson
correlation coefficients are easily computed from moments available in the
context:

rXyYy = G
’ VMo x\/May
Both merge and finalize operations are typically computationally insignif-

icant in comparison with the create operation, since they are performed on
the statistical contexts only.

(3.7)

3.6.2 Univariate First-Order Welch’s t-test
3.6.2.1 create and merge

These two operations are practically identical to the CPA computation, except
that the adjusted central sums matrix doesn’t need to be computed. l.e. only
means and second-order central sums are computed.

Since the covariance (first-order adjusted central moment) sum matrix
computation is by far the greatest bottleneck of the CPA computation, the
t-test takes significantly less time than the CPA attack.

95

3. IMPLEMENTATION

3.6.2.2 finalize

To finalize a t-test context means to compute t-values and degrees of freedom
from available statistical moments. This is easily done using equations [I.1
and The unbiased variance estimator s is obtained from the second-
order central moment sum:

9 1

s§° = Mo (3.8)

n—1

The result is a two-row Matrix, where the first row contains t-values and
the second row constains the degrees of freedom, for each sample point.

3.6.3 OpenCL Accelerated CPA

The most computationally demanding CPA operation is context creation,
which typically needs to process large amounts of data (power traces, power
predictions). Therefore we have decided to accelerate this operation using
GPUs (given it’s parallel nature, where the computation is performed on each
sample point separately). For this purpose, the OpenCL [61] standard for
parallel programming was selected. The version 1.2 was selected in order
to provide maximum compatibility among different vendors (AMD, nVidia,
Intel,...).

In a nutshell, the OpenCL provides support for memory operations be-
tween a host (CPU) and a device (e.g. GPU) and for launching kernels (which
are programs to be launched paralelly on the device). Before the computa-
tion is launched, the kernel code gets compiled during runtime, into the code
for the dynamically selected platform. This provides a general and effective
multiplatform approach to the computation.

Class template OclEngine provides a basic OpenCL layer for further im-
plementations of various algorithms. It is capable of querying all the devices
available (queryDevices) and when initialized with Device and Platform ID, it
creates and holds the OpenCL Context and OpenCL Command Queue useful
for controlling the device.

A derived class template OclCpaEngine provides API to perform the
CPA context creation operation using OpenCL. It is responsible for alloca-
tion of memory buffers on the device, memory transfers and compiling and
launching the computational kernels.

3.6.3.1 loadPredictionsToDevice

This method loads the power predictions to the device buffer. Since we usually
want to perform more CPA attacks using same power traces, but different
power predictions, this method is usually called before each computation is
launched.

o6

3.7. Correlation Matrix Evaluation Plug-ins

3.6.3.2 loadTracesToDevice

This method loads power traces to the device buffer.

3.6.3.3 compute

This method launches appropriate kernels in order to create a CPA context
from the loaded power traces and power predictions. The method accepts
a “sliceSize” parameter, which tells how many measurements should be pro-
cessed at once. This is because when GPU, that is also being used by the OS
for screen rendering, is not responding to the OS for a long time, it is being
resetted by the OS. To avoid this, the long-time running kernels are divided
into slices, so that the GPU becomes available in the meantime.

After the computation is done, the method downloads the data from the
device and saves the CPA context in referenced UnivariateContext.

3.7 Correlation Matrix Evaluation Plug-ins

Correlation Matrix Evaluation plug-ins are used by the correv Correlation
Evaluation utility. They are useful for distinguishing the right key candidate
in a correlation matrix obtained usually as a result of CPA attack. Four matrix
evaluation plug-ins are implemented in this thesis.

3.7.1 Maximum/minimum (absolute) coefficient

Three simple key candidate disinguisher plug-ins based on extreme searching
are implemented, searching either for maximum, minimum or maximum
absolute correlation coefficient value, and returning the key candidate for
which this correlation occurs.

3.7.2 Maximum edge on the correlation trace

Maximum Edge distinguisher searches for the maximum edge on the correla-
tion trace, i.e. largest absolute derivative of the correlation traces. This is
done by first performing a discrete convolution upon all correlation traces (i.e.
rows of the correlation matrix) [19]. The convolutional kernel is an approxi-
mation of the Gaussian derivative [62] [19]:

, X x?

G(z,0)" x po exp(f;), (3.9)
for v € {—|%],...0,...,[4] — 1}, where d is the diameter of the kernel (user
given parameter) and o is the Gaussian parameter (user given parameter).

This key distinguisher may perform better than classical Maximum /mini-
mum searching methods, especially in a noisy environment with power switch-
ing supplies [19].

o7

3. IMPLEMENTATION

3.8 Keyguess Evaluation Plug-ins

Correlation Matrix Evaluation plug-ins are used by the correv Correlation
Evaluation utility. They are useful for evaluation of the keyguess, i.e. a Vector
of key candidates obtained by evaluation of the CPA correlation matrices.

3.8.1 Plain char

This generic plug-in is suitable for attacks aiming at a byte of the cipher key
at a time. The key candidate’s indexes are mapped directly to the cipher key
bytes and the resulting key is returned with no transformation.

3.8.2 Last Round AES-128

This plug-in is suitable when attacking last round key of AES-128. Key candi-
dates are threated as bytes of the cipher key. The last round key gets reversed
to the first round key (e.g. the cipher key), which gets returned.

This is done by performing a series of S-Box substitutions and xor opera-
tions (also using rcons constants) [3] upon the last round key.

3.9 Build, Release and More Information

The whole toolkit takes advantage of Qt’s build system: qmake [63]. The
gmake is a multiplatform tool, which parses .pro files containing project spe-
cific settings and creates a Makefile for the specified platform (current plat-
form, by default).

The toolkit contains plug-ins that require third-party system libraries to
compile against. Path to these libraries is specified in the config.pri file in
project’s root directory.

To build the project under Linux using GNU toolchain, navigate to the
project’s root directory (containing sicak.pro file), and run gmake and make:

$ cd .../sicak
$ gmake
$ make

Similarly, to build the project under Windows using Microsoft Visual C++
compiler, open Qt developer console, e.g. Qt 5.12.0 64-bit for Desktop (MSVC
2017), setup the environment and continue as in Linux case with the exception
of using nmake instead of make:

> cd ...\ Microsoft Visual Studio\...\VC\Auxiliary\Build
> vcvarsall.bat x86_amd64

> cd ...\ sicak

> gmake

> nmake

3.9. Build, Release and More Information

To move all the applications and their plug-ins into an appropriate direc-
tory structure (so that applications are able to find the plug-ins), make the
install target:

$ make install

> nmake install

and check the INSTALL directory in the project’s root directory. For Windows
users to be able to use the compiled utilities, all the Qt’s dependencies may
need to be deployed in the application’s folder (i.e. the INSTALL folder). If
this is the case, see the windeployqt [64] utility.

Similar, unofficial, but very interesting tool exists for Linux, see the [lin-
uzxdeployqt [65] utility, which is capable of packaging the Linux binaries into
an Applmage format, which claims to be sort of a cross-distribution package.

The source codes, along with the User’s Guide, the Programmer’s Guide
and the binary release are available on the enclosed CD or freely on GitHub:
https://petrsocha.github.io/sicak.

99

https://petrsocha.github.io/sicak

Conclusion

This Master’s thesis dealt with a software support for side-channel analysis,
which include a wide range of both measurement and analytical tasks. As a
result, C/C++ toolkit was created, consisting of five utilities with modular
plug-in architecture allowing for plenty various use-cases.

Measurement Utility mesu was created, allowing to run a Measure-
ment Scenario plug-in. Two scenarios were implemented: CPA attack and
t-test leakage assesment, both for AES-128. This utility uses an Oscillo-
scope plug-in allowing for data acquisition; two oscilloscope plug-ins were
implemented in this thesis: Keysight 3000 series oscilloscope and PicoScope
6000 oscilloscope. Another plug-in used by the Measurement utility is Char-
acter Device plug-in, which allows for communication with the device (the
serial port plug-in is implemented).

To support generic preprocessing of the measured data, Preprocessing
Utility prep was created, which loads either Block Data Processing plug-in
or Power Trace Processing plug-in. Two plug-ins suitable for creating CPA
attack power predictions using either Hamming weight or Hamming distance
were implemented.

Statistical Analysis Utility stan is useful for moment-based statisti-
cal tasks including e.g. correlation-based attacks (CPA) or leakage analysis
(t-test). Computational plug-ins performing First-Order Univariate CPA
attack and Non-Specific Welch’s t-test were implemented. The CPA attack is
additionally implemented using OpenCL framework, allowing for the compu-
tation to be accelerated using GPUs.

To evaluate the results of the CPA attack, Correlation Evaluation Util-
ity correv was created. This utility uses Correlation Matrix Evaluation
plug-in, which selects a key candidate based on a specified criteria (plug-ins
searching for maximum/minimum (absolute) coefficient and for maximum cor-
relation trace edge were implemented), and Keyguess Evaluation plug-in,
which computes the cipher key (a basic byte-attack plug-in and plug-in per-
forming AES round key inversion were implemented).

61

CONCLUSION

Finally, the Visualisation Utility visu is useful for plotting the power
traces, the correlation traces or generic double values (e.g. t-values) and either
displaying the plot or saving it using raster or vector format.

All the utilities are non-interactive and text-based. Their parameters can
be set either directly or using JSON configuration files. Configuration files
are also generated alongside the output files of presented utilities, allowing for
simple and user-friendly chain usage and scripting.

A comparison of Pearson correlation coefficient computation approaches
produced while working on this thesis was published in [26]. A novel approach
to the correlation matrix evaluation based on edge detection was published
in [I9]. All the work presented in this thesis is released under a copyleft
open-source licence and is available online including source codes.

62

Bibliography

Vaas, L. Doctors disabled wireless in Dick Cheney’s pacemaker
to thwart hacking. Naked Security, Oct 2013. Available from:
https://nakedsecurity.sophos.com/2013/10/22/doctors-disabled-
wireless-in-dick-cheneys-pacemaker-to-thwart-hacking/

Sicari, S.; Rizzardi, A.; et al. Security, privacy and trust in Internet of
Things: The road ahead. Computer networks, volume 76, 2015: pp. 146—
164.

Daemen, J.; Rijmen, V. The design of Rijndael: AES-the advanced en-
cryption standard. Springer Science & Business Media, 2013.

Bogdanov, A.; Knudsen, L. R.; et al. PRESENT: An ultra-lightweight
block cipher. In International Workshop on Cryptographic Hardware and
Embedded Systems, Springer, 2007, pp. 450-466.

Messerges, T. S.; Dabbish, E. A.; et al. Investigations of Power Analysis
Attacks on Smartcards. Smartcard, volume 99, 1999: pp. 151-161.

Kocher, P.; Jaffe, J.; et al. Differential Power Analysis. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 1999, ISBN 978-3-540-48405-9, pp. 388—
397, doi:10.1007/3-540-48405-1_25.

den Boer, B.; Lemke, K.; et al. A DPA attack against the modular reduc-
tion within a CRT implementation of RSA. In International Workshop
on Cryptographic Hardware and Embedded Systems, Springer, 2002, pp.
228-243.

Brier, E.; Clavier, C.; et al. Correlation power analysis with a leakage
model. In International Workshop on Cryptographic Hardware and Em-
bedded Systems, Springer, 2004, pp. 16-29.

63

https://nakedsecurity.sophos.com/2013/10/22/doctors-disabled-wireless-in-dick-cheneys-pacemaker-to-thwart-hacking/
https://nakedsecurity.sophos.com/2013/10/22/doctors-disabled-wireless-in-dick-cheneys-pacemaker-to-thwart-hacking/

BIBLIOGRAPHY

[14]

[15]

[16]

[17]

18]

[19]

[20]

64

Biham, E.; Shamir, A. Differential fault analysis of secret key cryptosys-
tems. In Annual international cryptology conference, Springer, 1997, pp.
513-525.

Tunstall, M.; Mukhopadhyay, D.; et al. Differential fault analysis of the
advanced encryption standard using a single fault. In IFIP international

workshop on information security theory and practices, Springer, 2011,
pp- 224-233.

Koeune, F.; Quisquater, J.-J.; et al. A timing attack against Rijndael.
1999.

Osvik, D. A.; Shamir, A.; et al. Cache attacks and countermeasures: the
case of AES. In Cryptographers’ Track at the RSA Conference, Springer,
2006, pp. 1-20.

Rott, J. Intel® Advanced Encryption Standard Instructions (AES-
NI). Feb 2012. Available from: https://software.intel.com/en-us/
articles/intel-advanced-encryption-standard-instructions-
aes-ni

Quisquater, J.-J.; Samyde, D. Electromagnetic analysis (ema): Measures
and counter-measures for smart cards. In Smart Card Programming and
Security, Springer, 2001, pp. 200-210.

Mangard, S.; Oswald, E.; et al. Power analysis attacks: Revealing the
secrets of smart cards, volume 31. Springer Science & Business Media,
2008.

Moradi, A. Advances in side-channel security. Habilitation, Ruhr-
Universitdt Bochum, 2015.

Socha, P.; Brejnik, J.; et al. Attacking AES implementations using
correlation power analysis on ZYBO Zyng-7000 SoC board. In 2018
7th Mediterranean Conference on Embedded Computing (MECO), IEEE,
2018, pp. 1-4.

Mazur, L.; Novotny, M. Differential power analysis on FPGA board:
Boundaries of success. In Embedded Computing (MECO), 2017 6th
Mediterranean Conference on, IEEE, 2017, pp. 1-4.

Socha, P.; Miskovsky, V.; et al. Correlation Power Analysis Distinguisher
Based on the Correlation Trace Derivative. In 2018 21st FEuromicro Con-
ference on Digital System Design (DSD), IEEE, 2018, pp. 565-568.

Liu, W.; Wu, L.; et al. Wavelet-Based Noise Reduction in Power Analysis
Attack. In Computational Intelligence and Security (CIS), 2014 Tenth
International Conference on, IEEE, 2014, pp. 405-409.

https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni

Bibliography

[21]

[22]

Schneider, T.; Moradi, A. Leakage assessment methodology. Journal of
Cryptographic Engineering, volume 6, no. 2, 2016: pp. 85-99.

Moradi, A.; Richter, B.; et al. Leakage Detection with the x2-Test. JACR
Transactions on Cryptographic Hardware and Embedded Systems, volume
2018, no. 1, 2018: pp. 209-237.

Welch, B. L. The generalization of student’s’ problem when several dif-
ferent population variances are involved. Biometrika, volume 34, no. 1/2,
1947: pp. 28-35.

Schuster, A.; Oswald, E. Differential power analysis of an AES imple-
mentation. Institute for Applied Information Processing and Communi-
cations, Graz University of Technology, Tech. Rep. IAIK-TR, volume 6,
2004: p. 25.

Alioto, M.; Poli, M.; et al. A general power model of differential power
analysis attacks to static logic circuits. IEEE transactions on very large
scale integration (VLSI) systems, volume 18, no. 5, 2010: pp. 711-724.

Socha, P.; Miskovsky, V.; et al. Optimization of Pearson correlation co-
efficient calculation for DPA and comparison of different approaches. In
Design and Diagnostics of Electronic Circuits & Systems (DDECS), 2017
IEEE 20th International Symposium on, IEEE, 2017, pp. 184-189.

Sokolov, D.; Murphy, J.; et al. Design and analysis of dual-rail circuits
for security applications. IEEE Transactions on Computers, volume 54,
no. 4, 2005: pp. 449-460.

Popp, T.; Mangard, S. Masked dual-rail pre-charge logic: DPA-resistance
without routing constraints. In International Workshop on Cryptographic
Hardware and Embedded Systems, Springer, 2005, pp. 172-186.

Jerabek, S.; Schmidt, J.; et al. Dummy Rounds as a DPA countermea-
sure in hardware. In 2018 21st Furomicro Conference on Digital System
Design (DSD), IEEE, 2018, pp. 523-528.

Blémer, J.; Guajardo, J.; et al. Provably secure masking of AES. In In-
ternational Workshop on Selected Areas in Cryptography, Springer, 2004,
pp- 69-83.

Rivain, M.; Prouff, E. Provably secure higher-order masking of AES. In
International Workshop on Cryptographic Hardware and Embedded Sys-
tems, Springer, 2010, pp. 413-427.

Moradi, A.; Poschmann, A.; et al. Pushing the limits: a very compact and
a threshold implementation of AES. In Annual International Conference

65

BIBLIOGRAPHY

33]

[40]

[41]

66

on the Theory and Applications of Cryptographic Techniques, Springer,
2011, pp. 69-88.

Yu, W.; Kose, S. A lightweight masked AES implementation for securing
IoT against CPA attacks. IEEE Transactions on Circuits and Systems I:
Regular Papers, volume 64, no. 11, 2017: pp. 2934-2944.

Mentens, N.; Gierlichs, B.; et al. Power and fault analysis resistance in
hardware through dynamic reconfiguration. In International Workshop
on Cryptographic Hardware and Embedded Systems, Springer, 2008, pp.
346-362.

Sasdrich, P.; Moradi, A.; et al. Achieving side-channel protection with
dynamic logic reconfiguration on modern FPGAs. In 2015 IEEE Inter-
national Symposium on Hardware Oriented Security and Trust (HOST),
IEEE, 2015, pp. 130-136.

Messerges, T. S. Using second-order power analysis to attack DPA re-
sistant software. In International Workshop on Cryptographic Hardware
and Embedded Systems, Springer, 2000, pp. 238-251.

Chari, S.; Jutla, C. S.; et al. Towards sound approaches to counteract
power-analysis attacks. In Annual International Cryptology Conference,
Springer, 1999, pp. 398—412.

Standaert, F.-X.; Veyrat-Charvillon, N.; et al. The world is not enough:
Another look on second-order DPA. In International Conference on the

Theory and Application of Cryptology and Information Security, Springer,
2010, pp. 112-129.

Bottinelli, P.; Bos, J. W. Computational aspects of correlation power
analysis. Journal of Cryptographic Engineering, volume 7, no. 3, 2017:
pp- 167-181.

Gilbert Goodwill, B. J.; Jaffe, J.; et al. A testing methodology for side-
channel resistance validation. In NIST non-invasive attack testing work-
shop, volume 7, 2011, pp. 115-136.

Schneider, T.; Moradi, A.; et al. Robust and one-pass parallel compu-
tation of correlation-based attacks at arbitrary order. In International
Workshop on Constructive Side-Channel Analysis and Secure Design,
Springer, 2016, pp. 199-217.

Moradi, A.; Mischke, O. How far should theory be from practice? In
International Workshop on Cryptographic Hardware and Embedded Sys-
tems, Springer, 2012, pp. 92-106.

Bibliography

[43]

[44]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

Schramm, K.; Leander, G.; et al. A collision-attack on AES. In Inter-
national Workshop on Cryptographic Hardware and Embedded Systems,
Springer, 2004, pp. 163-175.

Moradi, A.; Mischke, O.; et al. Correlation-enhanced power analysis col-
lision attack. In International Workshop on Cryptographic Hardware and
Embedded Systems, Springer, 2010, pp. 125-139.

Moradi, A.; Standaert, F.-X. Moments-correlating DPA. In Proceedings
of the 2016 ACM Workshop on Theory of Implementation Security, ACM,
2016, pp. 5-15.

Gierlichs, B.; Batina, L.; et al. Mutual information analysis. In Inter-
national Workshop on Cryptographic Hardware and Embedded Systems,
Springer, 2008, pp. 426-442.

ChipWhisperer® by NewAE Technology Inc. Available from: https:
//wiki.newae.com/Main_Page

Riscure Inspector Side Channel Analysis. Available from: https://
www.riscure.com/security-tools/inspector-sca/

Cees-Bart Breunesse, 1. K. Jlsca Side-channel toolkit in Julia. Available
from: [ttps://github.com/Riscure/J1lsca

The R Project for Statistical Computing. Available from: https://
wwWw.r-project.org/

MathWorks MATLAB. Available from: https://www.mathworks.com/
products/matlab.html

Wolfram Mathematica: Modern Technical Computing. Available from:
http://www.wolfram.com/mathematica/

The Qt Company. @t Documentation: Qt 5.12. Available from: http:
//doc.qt.i0/qt-5/index.html

Keysight Technologies, Inc. Keysight InfiniiVision 3000T X-
Series Oscilloscopes Programmer’s Guide. Available from:
https://www.keysight.com/upload/cmc_upload/A11/3000_series_
prog_guide.pdf

Pico Technology Ltd. PicoScope 6000 Series Programmer’s Guide. Avail-
able from: https://wuw.picotech.com/download/manuals/picoscope-
6000-series-programmers—guide.pdf

SCPI Consortium, IVI Foundation. SCPI-1999 Specification. Available
from: http://www.ivifoundation.org/docs/scpi-99.pdf

67

https://wiki.newae.com/Main_Page
https://wiki.newae.com/Main_Page
https://www.riscure.com/security-tools/inspector-sca/
https://www.riscure.com/security-tools/inspector-sca/
ttps://github.com/Riscure/Jlsca
https://www.r-project.org/
https://www.r-project.org/
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
http://www.wolfram.com/mathematica/
http://doc.qt.io/qt-5/index.html
http://doc.qt.io/qt-5/index.html
https://www.keysight.com/upload/cmc_upload/All/3000_series_prog_guide.pdf
https://www.keysight.com/upload/cmc_upload/All/3000_series_prog_guide.pdf
https://www.picotech.com/download/manuals/picoscope-6000-series-programmers-guide.pdf
https://www.picotech.com/download/manuals/picoscope-6000-series-programmers-guide.pdf
http://www.ivifoundation.org/docs/scpi-99.pdf

BIBLIOGRAPHY

[57]

[58]

[59]

68

VXIplug&play Systems Alliance, IVI Foundation. VISA Specifications.
Available from: http://www.ivifoundation.org/specifications/
default.aspx

USB Implementers Forum, Inc. Universal Serial Bus Test and Measure-

ment Class, Subclass USB488 Specification (USBTMC-USB488).

IEEE Standard Codes, Formats, Protocols, and Common Commands
for Use with IEEE Std 488.1-1987, IEEE Standard Digital Interface for
Programmable Instrumentation. IEEE Engineering Management Society,
1992.

Pébay, P. Formulas for robust, one-pass parallel computation of covari-
ances and arbitrary-order statistical moments. Sandia Report SAND2008-
6212, Sandia National Laboratories, volume 94, 2008.

The Khronos Group Inc. OpenCL 1.2 Reference Pages. Available
from: https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/
man/xhtml/

Canny, J. A computational approach to edge detection. IEEE Transac-
tions on pattern analysis and machine intelligence, , no. 6, 1986: pp.
679-698.

The Qt Company. gmake Manual. Available from: http://doc.qt.io/
qt-5/gmake-manual.html

The Qt Company. Qt for Windows - Deployment. Available from: http:
//doc.qt.io/qt-5/windows-deployment.htm

probonopd. [linuxdeployqt. Available from: https://github.com/
probonopd/linuxdeployqt

http://www.ivifoundation.org/specifications/default.aspx
http://www.ivifoundation.org/specifications/default.aspx
https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/
https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/
http://doc.qt.io/qt-5/qmake-manual.html
http://doc.qt.io/qt-5/qmake-manual.html
http://doc.qt.io/qt-5/windows-deployment.htm
http://doc.qt.io/qt-5/windows-deployment.htm
https://github.com/probonopd/linuxdeployqt
https://github.com/probonopd/linuxdeployqt

APPENDIX A

Acronyms

AES Advanced Encryption Standard

ARM Acorn RISC Machine

ASIC Application-Specific Integrated Circuit
CPA Correlation Power Analysis

CPU Central Processing Unit

CRT Chinese Remainder Theorem

DPA Differential Power Analysis

FPGA Field-programmable Gate Array
GNU GNU’s Not Unix

GPU Graphical Processing Unit

IVI Interchangeable Virtual Instrumentation
JPEG Joint Photographic Experts Group
PNG Portable Network Graphics

RFID Radio-Frequency Identification

RISC Reduced Instruction Set Computer
RSA Rivest—Shamir—Adleman

SCA Side-Channel Analysis

SCPI Standard Commands for Programmable Instruments

SPA Simple Power Analysis

69

A. ACRONYMS

SVG Scalable Vector Graphic

USB Univeral Serial Bus

VISA Virtual Instrument Software Architecture
VME Versa Module Europa

VXI VME eXtensions for Instrumentation

70

APPENDIX B

Contents of enclosed CD

readme . tXT .. oiii i CD contents description
o= === S release executables
S o o PP source codes
SiCaAK ..ttt ittt toolkit source codes and documentation
thesis covviiinn i TEX source codes of the thesis

I v« =Y = = T thesis text
LDP,Socha,Petr,2019.pdf thesis text in PDF format

16
17
18
19

W N = O

Tt

W W W W W N NN NN NDND NN N
b N)

=W N =

APPENDIX C

Example
JSON

of an Oscilloscope
Configuration File

”channell”: {
7enabled”: true,
”coupling”: "DC”,
”impedance”: 7”507,
"rangemV”: 50,
7offsetmV7”: 0,
?bwLimit”: ”25MHz”

}a

”channel2”: {
7enabled”: false ,
?coupling”: "DC”,
”impedance”: 71M”,
"rangemV”: 50,
7offsetmV7”: 0,
?bwLimit”: "FULL”

}a

"channel3”: {
7enabled”: true,
”coupling”: "DC”,
”impedance”: 71M”,
"rangemV”: 1000,
7offsetmV7”: 0,
?bwLimit”: "FULL”

}a

”channeld”: {
7enabled”: false ,
7coupling”: "DC”,
”impedance”: 71M”,
"rangemV”: 50,

73

C. EXAMPLE OF AN OSCILLOSCOPE JSON CONFIGURATION FILE

35 7offsetmV”: 0,

36 ?bwLimit”: ”FULL”

37 1,

38

39 Vtrigger”: {

40 7enabled”: true ,

41 ”channel”: 3,

12 7level”: 0.7,

43 7slope”: ”rising”

ul oy,

15

46 7timing”: {

47 "preTriggerRange”: 0.0,
48 ?postTriggerRange”: 3.2e—6,
19 ”samples”: 2000,

50 7captures”: 1

51 }

52

53| }

74

APPENDIX D

Example of a Character Device
JSON Configuration File

|}

HH

”baudrate”:

"parity”: 0,

?stopbits”:

115200,

1

75

16
17
18
19

APPENDIX E

Example Usage of meas Utility

E.1 Query Available Plug-ins

$./meas —Q
Found following measurement scenario plug—ins:

* Plug—in ID: ’random128co’, name: ’'AES—128 random (command
oriented)’
Description: ’Sends 0x01 followed by cipher key, then N times
{0x02 followed by 128 bits of random data}, receives back
every cipher text, and captures the power consumption.’

* Plug—in ID: ’ttest128co’, name: ’'AES—128 t—test (command
oriented)’

Description: ’'Sends 0x01 followed by cipher key, then N times
{0x02 followed by 128 bits of either random or constant
data}, receives back every cipher text, and captures the
power consumption’

Found following oscilloscope plug—ins:

* Plug—in ID: ’keysight3000’, name: ’'Keysight 3000 series
oscilloscope (formerly Agilent)’
x Device ID: ’FILEPATH’, where FILEPATH is path to a usbtmc
device, e.g. 7/dev/usbtmc0”
Make sure you have permissions to access the file , and the
usbtmc module loaded.

* Plug—in ID: ’ps6000’, name: ’PicoScope 6000 series oscilloscope’
x Device ID: ’SERIALNO’, where SERIALNO is a serial number of
the oscilloscope. Leave empty to let driver automatically

select first device found.
On Linux, make sure you have permissions to access the device

(/dev/usb/...).

7

NN N NN
g = W oN

= W N

ot

NONONN N
TR W N =

SoWw W W W W W NN NN
W=k O © ® 3 O

S Ut R W

E. ExXaMPLE USAGE OF MEAS UTILITY

3| Found following character device plug—ins:

* Plug—in ID: ’serialport ’, name: ’'Win32/POSIX Serial Port’
* Device ID: ’FILEPATH’, where FILEPATH is path to a terminal
device, e.g. 7/dev/ttyUSB0”

E.2 Launch Measurement

This command launches the ttest128co measurement scenario using keysight3000
oscilloscope and serialport character device modules.

$./meas —1 id -M ttest128co —O keysight3000 —R /dev/usbtmc0 —S ./
conf.json —C serialport —D /dev/ttyUSBO —E ./conf.json —n 1000

SICAK MEASurements 1.0

* 20.12.2018 18:25:01 Starting ...

* Measurement scenario module loaded: ’AES—128 t—test (command
oriented)’

x Oscilloscope module loaded: ’'Keysight 3000 series oscilloscope (

formerly Agilent)”’

Oscilloscope successfully opened: ’/dev/usbtmcO’

* Oscilloscope configuration file found: ’./conf.json
* Requesting oscilloscope channel settings:

Channel: ’1°

Enabled: ’true’

Coupling: ’DC’

Impedance: ’50’

Range: —+4’50mV’

Offset: ’'OmV’

Bandwidth Limit: ’25MHz’

* Real oscilloscope channel settings (after setup):

Channel: ’1°

Enabled: ’true’

Coupling: ’'DC’

Impedance: ’50’

Range: —+’50mV’

Offset: ’'OmV’

Bandwidth Limit: ’25MHz’

* Requesting oscilloscope channel settings:

Channel: '3’

Enabled: ’true’

Coupling: ’'DC’

Impedance: ’1M’

Range: —+’1000mV’

Offset: ’'0mV’

Bandwidth Limit: ’FULL’

* Real oscilloscope channel settings (after setup):

Channel: ’3’

Enabled: ’true’

Coupling: ’DC’

Impedance: 1M’

*

)

* X ¥ X ¥ X ¥ ¥ X X X X X ¥

* X X X X X ¥

* ¥ ¥ %

78

16

E.2. Launch Measurement

* Range: —+’1000mV’
* Offset: 0mV’
*+ Bandwidth Limit: ’'FULL’
* Requesting oscilloscope trigger settings:
* Enabled: ’true’
* Source channel: '3’
* Trigger level: ’0.7’ for channel range 0..1
x+ KEdge slope: ’either’
x Real oscilloscope trigger settings (after setup):
*+ Enabled: ’true’
* Source channel: ’3’
* Trigger level: ’0.7’ for channel range 0..1
* Edge slope: ’either’
* Requesting oscilloscope timing settings:
* Pre—trigger time range: ’'0s’
* Post—trigger time range: ’3.2e—06s’
* Samples: 2000’
* Captures per run: ’100’
* Real oscilloscope timing settings (after setup):
* Pre—trigger time range: ’'0s’
* Post—trigger time range: ’3.2e—06s’
x Samples: 30000’
* Captures per run: ’'1°
* Character device module loaded: 'Win32/POSIX Serial Port’
x Character device configuration file found: ./conf.json
* Character device successfully opened: ’/dev/ttyUSBO’

* Using following settings:

*+ Baudrate: ’115200’
* Parity: ’no parity’
* Stop bits: ’one’
x Character device timeout set: ’5000ms’
x Launching 1000 measurements ...
0% done... remaining time not yet available

E.2.1 conf.json: (input)

“channell”: {
7enabled”: true,
?coupling”: ”DC”,
”impedance”: 7”507,

"rangemV”: 50,
7offsetmV?”: 0,
?bwLimit”: ”25MHz”

IS

”channel3”: {
”enabled”: true,
”coupling”: ”DC”,
7impedance”: 71M”,

"rangemV”: 1000,
7offsetmV?”: 0,

79

TG = W N =

~

©

E. ExXaMPLE USAGE OF MEAS UTILITY

"bwLimit”: ”FULL”
}

trigger”: {
7enabled” :true ,
”channel”: 3,
7level”: 0.7,
7slope”: ”either”

s

7timing”: {
"preTriggerRange”: 0.0,
"postTriggerRange”: 3.2e—6,
?samples”: 2000,
”captures”: 100

}

?baudrate”: 115200,
?parity”: 0,
?stopbits”: 1

E.2.2 id.json: (output)

”blocks—count”: 76437,
”blocks—length”: 7167,

?constant—traces”: ”constant—traces—id.bin”,

"constant—traces—count”: 73577,

"random—traces”: ”random—traces—id.bin"”,

"random—traces —count”: 76437,
”samples—per—trace”: 730000”

80

N =

Ut s W

Bow N

ut

APPENDIX F

Example Usage of prep Utility

F.1 Query Available Plug-ins

$./prep —Q

Found following traces preprocessing plug—ins:

x* No traces preprocessing plug—in found!

Found following block data preprocessing plug—ins:

* Plug—in ID: ’predictaesl28back’, name: ’Create AES—128 byte
power predictions using last round working register Hamming
distance’

* Plug—in ID: ’predictaes128front ’, name: ’'Create AES—128 byte

power predictions using first round S—Box Hamming weight’

F.2 Create power predictions for CPA attack on
AES-128 first round S-box

$./prep —B predictaesl28front —b ciphertext—id.bin —m 100000 —k
16 -1 id

SICAK PREProcessing 1.0

Preprocessing block data...

100% done... 3s elapsed.

Created 16 power prediction sets, each containing 256 power
predictions for each of 100000 data blocks,

ijland saved to ’aesl28front—id.16prd’.

F.2.1 id.json: (output)

81

T W N =

F. EXAMPLE USAGE OF PREP UTILITY

{
"prediction —candidates—count”: 72567,
?prediction —sets—count”: 7167,
"predictions”: "aesl128front—id.16prd”,
"random—traces —count”: ”7100000”

}

82

APPENDIX G

Example Usage of stan Utility

G.1 Query Available Plug-ins

1|$./stan —Q

2

3| Found following CPA plug—ins, platforms and devices:
|

x Plug—in ID: ’cpa’, name: ’First Order Univariate CPA’
6 x Platform ID: ’0’, name: ’localcpu’
* Device ID: ’0’, name: ’localcpu’

9% Plug—in ID: ’oclcpa’, name: ’'OpenCL accelerated First Order
Univariate CPA’

10 * Platform ID: ’0’, name: ’'Intel(R) OpenCL’ (OpenCL 1.2 LINUX)

11 * Device ID: ’0’, name: ’Intel(R) Core(IM) i5—3230M CPU @
2.60GHz’

12

13
14| Found following t—test plug—ins, platforms and devices:
15
16| * Plug—in ID: ’ttest’, name: ’First Order Non—Specific Univariate
Welch’s t—test’

17 * Platform ID: ’0’, name: ’localcpu’

18 * Device ID: ’0’, name: ’localcpu’

G.2 Create Univariate First-Order CPA context

1|$./stan —I ug —C cpa —F create —r random—traces—id.bin —n 10000 —
s 2000 —p aesl28back—10k.16prd —q 16 —k 256

2| SICAK STatistical ANalysis 1.0

3| Creating new CPA contexts ...

1| 100% done... 1m, 19s elapsed.

5/ Created 16 new CPA contexts using

6| * 10000 power traces with 2000 samples per trace, from ’random—

traces—id.bin’,

83

[\

TR W N =

-~

U= W N

=~

G. ExXAMPLE USAGE OF STAN UTILITY

x 16 prediction sets containing 256 power predictions for each of
these power traces, from ’aesl28back—10k.16prd’
and saved to ’cpa—ug.l6ctx’

G.2.1 ug.json: (output)

{
”context—a”: "cpa—ug.l6ctx”,
?contexts—count”: 7167,
?prediction —sets—count”: ”716”
}

G.3 Create correlation matrices from Univariate
First-Order CPA contexts

$./stan —I ugc —C cpa —F finalize ug.json
SICAK STatistical ANalysis 1.0

Finalizing CPA context ...

100% done... 1s elapsed.

Created 16 correlation matrices (2000x256) using
x 16 contexts based on 10000 from ’cpa—ug.l6ctx’
and saved to ’cpa—ugc.l6cor ’.

G.3.1 ugc.json: (output)

?contexts—count”: 7167,
?correlations”: ”cpa—ugc.l6cor”,
7correlations —candidates—count”: 72567,
?correlations —sets—count”: 716”7,
?prediction —candidates—count”: 7256”7,
?prediction —sets—count”: 7167,
”samples—per—trace”: 72000”

84

APPENDIX I I

Example Usage of correv Utility

H.1 Query Available Plug-ins

$./correv —Q

Found following CPA correlation matrix evaluation plug—ins:

TR W N =

* Plug—in ID: ’'maxabscoef’, name: ’'Maximum absolute value
correlation coefficient’

6| * Plug—in ID: ’maxcoef’, name: ’Maximum correlation coefficient ’

7| * Plug—in ID: ’maxedge’, name: ’'Maximum correlation trace
derivative (param="d;sigma”, e.g. param="23;8.0")"

g8l * Plug—in ID: ’mincoef’, name: ’Minimum correlation coefficient ’

10| Found following CPA keyguess evaluation plug—ins:

12| * Plug—in ID: ’aesl28back’, name: ’AES—128 last round CPA key
evaluation: last round key gets reversed to the cipher key’
3 * Plug—in ID: ’plainchar’, name: ’Simple key evaluation for byte—
based CPA: no transformation after correlation evaluation (e.g

. AES first round)’

H.2 Evaluate correlation matrices from previous
stan example

$./correv —E maxcoef —K plainchar ugc.json

SICAK CORRelations EValuation 1.0

Evaluating CPA correlation matrices...

100% done ... <ls elapsed.

Obtained key (hex): ’36d024461d84b8375fc0f9c04cbab6bb’

N =

1’$./ correv —E maxcoef —K aesl28back ugc.json

85

[\

gt = W

H. ExXaMPLE USAGE OF CORREV UTILITY

SICAK CORRelations EValuation 1.0

Evaluating CPA correlation matrices...

100% done... <ls elapsed.

Obtained key (hex): ’00112233445566778899aabbccddeeff’

86

w N

APPENDIX I

Example Usage of visu Utility

1.1 Plot Correlation Traces

$./visu —c cpa—ugc.l6cor —q 16 —k 256 —s 2000 c¢,0,all ,grey c¢,0,54
—S plot.png -W 600 —H 400

SICAK VISUalisation 1.0

File successfully saved.

I.1.1 plot.png:

0.242891

0.121168

- o

-0.122278

Pearson correlation coefficient

0 500 1000 1500 2000

Samples

Figure 1.1: Example plot containing correlation traces for all the correlation
candidates, with the right key candidate’s correlation trace highlighted.

87

	Introduction
	Side-Channel Security: The Theory and Related Work
	Measuring the Power Traces
	Leakage Assessment: Welch's t-test
	Correlation Power Analysis Attack
	Multivariate Higher-Order Analysis
	Univariate Higher-Order Analysis
	Other Analysis Techniques
	Existing Side-Channel Analysis Software

	Toolkit Design
	SICAK: SIde-Channel Analysis toolKit
	Measurement Utility
	Preprocessing Utility
	Statistical Analysis Utility
	Correlation Evaluation Utility
	Visualisation Utility
	Toolkit-Wide Programming Support
	Plug-ins

	Implementation
	Command-line Utilities
	Character Device Plug-ins
	Oscilloscope Plug-ins
	Measurement Scenario Plug-ins
	Block Data Preprocessing Plug-ins
	Statistical Analysis Computation Plug-ins
	Correlation Matrix Evaluation Plug-ins
	Keyguess Evaluation Plug-ins
	Build, Release and More Information

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD
	Example of an Oscilloscope JSON Configuration File
	Example of a Character Device JSON Configuration File
	Example Usage of meas Utility
	Query Available Plug-ins
	Launch Measurement

	Example Usage of prep Utility
	Query Available Plug-ins
	Create power predictions for CPA attack on AES-128 first round S-box

	Example Usage of stan Utility
	Query Available Plug-ins
	Create Univariate First-Order CPA context
	Create correlation matrices from Univariate First-Order CPA contexts

	Example Usage of correv Utility
	Query Available Plug-ins
	Evaluate correlation matrices from previous stan example

	Example Usage of visu Utility
	Plot Correlation Traces

