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January 9, 2019





Acknowledgements

I would like to thank my supervisor Tom for many helpful discussion about
the topics of this thesis. I would also like to express my thanks to blazewan
for helping me with my poor English, stylization, and wording.





Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on January 9, 2019 . . . . . . . . . . . . . . . . . . . . .



Czech Technical University in Prague
Faculty of Information Technology
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Abstrakt

Ćılem této práce je návrh a zrychleńı datových struktur a algoritmů na modelu
RAM s velkou š́ı̌rkou slova. Zrychleńı se děje zejména za pomoci bitových
paralelńıch instrukćı.

V práci tuto techniku aplikujeme pro zlepšeńı asymptotické složitost vy-
braných algoritmů a struktur.

Studujeme zejména datové struktury, které se zaměřuj́ı na segmentové
operace, kterými jsou např́ıklad počet prvk̊u na intervalu či maximum na
intervalu. Algoritmy, na které se práce zaměřuje jsou pak největš́ı společný
dělitel, Sparse Table a Number Theoretic Transform.

Kĺıčová slova Integer, Datové Struktury, Algoritmy, Segmentový Strom,
NTT, NSD, Bity, Paralelismus, RAM

Abstract

This thesis focuses on speedup and design of algorithms and data struc-
tures on RAM model with the limited size of integer. We use effective bitwise
operations to achieve the speedup.
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The thesis shows the impact of such operations on the asymptotic com-
plexity of selected algorithms and data structures.

The data structures which are being speeded up focuses on segmental
operations such as the number of elements on interval or biggest value on
an interval. This thesis also focusing on greatest common divisor algorithm,
Sparse Table and Number Theoretic Transform.

Keywords Integer, Data Structure, Algorithm, Segment Tree, NTT, GCD,
Bits, Parallelism, RAM
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Chapter 1
Introduction

1.1 Introduction

In this work, we will focus on the RAM model with large word size. We will
take peek into possibilities to speed up multiple data structures and algo-
rithms. The key to achieve the acceleration will be efficient usage of bit tricks
and bit parallelism. To understand this more, this thesis will present several
known techniques and bitwise functions.

We will introduce and discuss a couple of models similar to RAM model
with limited size of integers, such as AC0.

Our research also shows a few basic algorithms and data structures. It
shows the impact of efficient bit tricks and bit parallelism on their asymptotic
complexity. Our research is rather theoretical as it mostly relies on word size,
which might hopefully increase in some time.

1.2 Results of this thesis

The goal of this thesis is to show asymptotic speedup in respect to the word size
of the machine of data structures and algorithms by using bitwise techniques.
We focus on the following problems:

The first problem is finding the number of elements from a given range.
To solve this problem we propose a data structure called Sum-element Tree
which combines the properties of Segment Trees and Word-Encoded B-Trees.
Achieved complexity of operations of this data structure (insertion, deletion
and counting elements) is O(logW/ logn n) (where W stands for the size of the
word and n for the size of the universe) for each query. Afterwards, we propose
an extension to this data structure which solves a slight generalization of the
problem.

Next, we propose data structure called Max-value Tree for searching the
maximum or minimum on a given range. Similarly to the previous data
structure, it is derived from Segment Trees and Word-Encoded B-Trees. The
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1. Introduction

achieved complexity of operations of this data structure (update and maxi-
mum) is O(logW n) for each query. We also discuss this structure under AC0.

In the next part of this work, we focus on bringing some persistence into
the data structures. We also show a simple utilization of persistence of the
Sum-element Tree.

The second half of the work mainly focuses on improving and analyzing
the known algorithms. It is shown how to produce asymptotical speed-up by
using bitwise parallelism.

First of these algorithms is binary gcd algorithm. We show how bitwise
parallelization could be achieved for every operation while not changing the
original asymptotic complexity. We also show how to use this in a simple
Sparse Table data structure.

The last part pf this thesis focuses on bitwise parallelisation of ntt. We
claim we achieved O

(
n log(n) log(m)/W + n+ (logm)2) complexity, where m

stands for modulus used in this algorithm.

1.3 Motivation

The results of this thesis are nowadays mainly theoretical. Yet this does not
mean they cannot come to use later. Most of the work relies on the size of
the word.

The most common size of integers is now 64 bits. Anyway, this number is
slowly but steadily increasing.

We can also refer to AVX which are extensions to the x86 instruction set
architecture. As it can be seen there is already an article by James Rein-
ders [1], describing an instruction set for 512 bits sized integers, called AVX-
512. It isn’t fully implementet and consolidated, yet it is on good way to
extend AVX-256 (instruction set for 256 bits sized integers). The main pur-
pose of AVX-512 is vectorisation of operations over integers, yet it already
includes multiple basic bitwise instructions (such as and, or and xor) and
some very interesting instructions, such as kunpck (instruction for unpack)
or instruction for popcount.

1.4 RAM Model

Definition 1. Random Access Machine as you could see in Mareš [2]
is a family of models. The common attribute of this family is that it works
with discrete numbers and the memory is indexed by integers. Instructions
in program work with operands, which are either constants or memory cells
which are directly or indirectly indexed.

If we allow counting with arbitrarily large numbers in constant time, we
get a very strong parallel computer which could count almost everything in
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1.5. RAM Operations

constant time (neglecting encoding of the input). We have to limit this model
to make it more realistic.

Definition 2. Model limitation could be done in multiple ways:

• Logarithmic price of instructions: The cost of an operation is equal to
the number of bits it works with, including addresses to memory. This
removes absurd situations, yet makes it very hard to estimate time com-
plexity. It usually leads to time which is Θ(logn) times bigger than in
unlimited RAM.

• Limit the size of integers: This method limits the width of integers in
bits to some W and the operations remain O(1). To successfully address
input, we have the following restriction: W ≥ logn, where n stands for
the size of the input. As arithmetic with O(1)-times accuracy could be
simulated with a constant slowdown, we can assume that W = Ω(n),
so we could work with numbers polynomially big in respect to n. These
operations will be mentioned in the previous section.

• AC0-RAM: This model supports any function which is evaluable by a
network of gates of polynomial size and constant depth. The gates could
have any number of inputs. This a cleaner definition, yet it lacks some
important functions such as parity, multiplication, division or modulo.
It can be also proven [3] that parity is not in AC0, which also implies
that multiplication is not in AC0 too.

We will mainly focus on the model with limited size of integers.

1.5 RAM Operations

Definition 3. In RAM model with limited size of integers we use word of size
W . We consider of basic operations in Table 1.1 to only take O(1) time to be
executed:

3



1. Introduction

& Binary AND
| Binary OR
⊕ Binary XOR
+ Addition
− Subtraction
∗ Multiplication
/ Division
% Modulo
∼ Bitwise negation
� Right bit-shift
� Left bit-shift
> Comparison (greater)
< Comparison (lesser)
= Comparison (equal)

Table 1.1: Basic RAM operations

There might be possibly more operations than this chosen set yet we ei-
ther will not use them or they could be derived from these operations. An
example of easily derived operations might be “≥” or “≤”, which are simple
combination of comparisons.

Also, note that 2k could be also obtained in O(1) as “1� k”.
Also note that this definition of O(1) basic functions isn’t as clean as of

AC0. The most troublesome are some arithmetic operations such as ∗, / or %.
It is convention to consider them (see Mareš [2]) to have constant slowdown,
even though it is not possible to achieve a circuit with constant depth (at least
if polynomial size is demanded). Anyway note that all these instructions are
pretty common in programming languages. Also note that the slowdown of
these instructions is currently not that big—see[4].

1.6 Bit Tricks

Definition 4. Let us introduce the concept of buckets. We say we split a
word of size W bits into κ buckets of size t. i-th bucket has assigned bits of
on segment [i · t, (i+ 1) · t− 1].

1.6.1 Simple functions

In Table 1.2 there are several functions, which cost constant time. These
functions are designed as composition of basic operations. You can read about
most of these functions here [2].
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1.6. Bit Tricks

Name Description Realization
erase This function will set all bits of an

integer α between i and j to 0
α = α& ((2i − 1) | ((2W−j − 1)�
(j + 1)))

replicate Replicate m bit integer α, κ times
so it will be concatenated after
each other.

α · (0m−11)κ

sum Sums all components of vector α,
with κ buckets of size b (we assume
it will fit into b bits). The sum of
all buckets will appear in the posi-
tion of last bucket.

α · (0b−11)κ

unpack This function will interlace bits of
integer x by zeroes.

We will replicate x, and it with
proper constant c so that only i-th
bit will remain in i-th bucket. Af-
terwards, we subtract it from con-
stant η in form of (0b−11)κ (where
κ stans for number of buckets),
and it again with the constant and
properly shift.

popcount Finds the number of bits of b-bit
integer with usage of b2 bit inte-
ger. Note that sometime instruc-
tion popcount is available.

We firstly execute unpack and
then sum.

lsb Finds the least significant one-bit
(which is the rightmost one) of in-
teger α.

We call popcount on α⊕ (α− 1).

pack Scratches out all zeroes between
some bits—making it more com-
pact. For instance we could imag-
ine a b bit buckets while we are in-
terested only in last bit (the rest
are 0).

We imagine the buckets to be one
bit shorter and we call sum (and
properly extract the bits).

zr Recognizes buckets (of some vari-
able a) which are filled with 0. The
time complexity of this function is
O(1). Note that for this operation
we have to have an additional bit
for in every bucket (which will be
0 in a).

This can be done by following for-
mula: (c − a) � κ (where c is
an constant filled by 0-bits with
exception of the first bit of every
bucket which is set to 1 and κ is
the size of bucket).

Table 1.2: List of simple bitwise functions

1.6.2 Finding the most significant bit

In this subsection, we are going to discuss the algorithm for finding the position
of the most significant bit, see Demaine [5], of an integer χ in constant
time. Also let us assume for simplicity that W is a square (so for some r,
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1. Introduction

W = r2).
Some processors might have the operation clz which would do this pro-

cedure pretty fast, yet it is not a general possession.

Definition 5. Let us define a constant λ in form of (10
√
W−1)

√
W (the power

means concatenation).

For example for W = 16, it would look like: 1000100010001000.
Now the msb could be found by following these steps:

• Firstly imagine the integer to be split into
√
W buckets of size

√
W . We

would like to find out the empty buckets.

• The first step is the identification of buckets which have first bit set to
1: t1 = χ&λ.

• As next step we will erase those bits from χ:

t2 = χ⊕ t1

• The third step is finding, whether there is a 1 bit in the rest of the
bucket. This can be done by:

t3 = ((λ− t2) &λ)⊕ λ

As we can see, the first step is subtraction. We know that every bucket
of λ is strictly greater than any bucket of t2, since it has set the most
significant bit to 1 (which means the buckets are independent). As we
can see, if the rest of the bucket of t2 is lesser/equal, the 1 will remain
there, otherwise, it will get borrowed. Note that it is lesser/equal only
if it is empty. As we will be interested only to the first bit, we have
to and it with λ (which will get rid of the rest—garbage). Also as we
can see, now it is inverse to what we wanted—there is 1 if the bucket
is empty. It is not desired so we have to convert zeroes to ones (at the
first positions) and vice versa. This could be done by xor with λ.

• The fourth step is combining the first bits and the rest together, which
could be simply done as:

t4 = t2 | t3

• The fifth step is to compress the important bits to a single
√
W bucket.

This operation is slightly problematic in general, yet here the positions
are in a regular pattern. As we can see, the i-th (interesting) bit of
our number t4 is on position (i + 1)

√
W − 1. We will now define a

special number m (with respect to W ) with j-th bit set on one: mj =
W−
√
W+1−j

√
W+j. We will multiply t4 by m and see what happens.

6



1.6. Bit Tricks

The first key fact is that multiplication of such integers can be seen as
an addition of powers of important bits (bits which are set on). That
means, we are looking for t4i +mj which is W+(i−j)

√
W+j. As we can

observe, these sums will be distinct for all 0 ≤ i, j <
√
W , which means

there will be no collisions and nothing could go wrong. Also, we shall
observe that t4i +mi is equal to W + i, which means the important bits
got sequentially one after each other in the right order. Even though
they are in some weird position, it is no problem to repair this by doing
a bit shift:

t5 = ((t4 ·m)�W ) & (2
√
W − 1).

• The sixth step will simply replicate the first and only bucket with
appended 1-bit to each of

√
W buckets. This can be simply done by

multiplication with appropriate constant

ζ =

√
W−1∑
i=0

2i·(
√
W+1)

(which is not dependent on the integer so it could be created before this
process)

t6 = (t5 + 2
√
W ) · ζ.

Note that size of buckets is now
√
W + 1.

• The seventh step is the parallel comparison with powers of 2. Again, we
have to create a constant

ρ =

√
W−1∑
i=0

2i � (i · (
√
W + 1)).

As we can see, we also append 0 to each such power (the slot for parallel
comparison). Now if we do:

t7 = ((t6 − ρ) & (ζ � (
√
W − 1)))⊕ (ζ � (

√
W − 1))

We obtain integer, which has the first bit of each (
√
W + 1) bucket set

on, as long as it is lesser than the power of 2 in it.

• The eight step is to find the most significant bit of such integer. This
would yield us the first power of 2 which is lesser than t5, which could
identify the first non-empty bucket of χ. Obviously, we cannot use our
method since it would lead to infinite recursion. Luckily for us, the
integer t7 fulfills two important properties: Firstly, the important bits
are spread in a predictable and regular pattern. Secondly, the number of
the bucket with the most significant bit on is equal to the number of 1-
bits in t7 (as we can observe, there will be only zeroes since the powers of

7



1. Introduction

two will be greater and then there will be just ones). This could be done
by multiplying the number by ζ. We can look at the multiplication as on
addition of integers t7 always shifted by (

√
W+1)·i. As we can see, it will

always shift the important bits into the next important bits which means
that starting by first important bit’s position, there will be the sum of
the previous

√
W important bits. We might also observe, that there

will not be any collisions of such places since O(
√
W ) > O(log

√
W ).

Now we simply take the number in the position of
√
W -th bucket (by

proper shift and and) which can identify the first non-empty bucket’s
position.

• The last few steps are finding the most significant bit of the bucket we
have identified. The size of the bucket is

√
W so we can shift it to the

first bucket and continue with step six.

The process above can be summarized by Algorithm 1:

Algorithm 1 The Most Significant Bit
1: function msb(χ)
2: t1 = χ&λ
3: t2 = χ⊕ t1
4: t3 = ((λ− t2) &λ)⊕ λ
5: t4 = t3 | t1
6: t5 = ((t4 ·m)�W ) & (2

√
W − 1)

7: t6 = (t5 + 2
√
W ) · ζ

8: t7 = ((t6 − ρ) & (ζ � (
√
W − 1)))⊕ (ζ � (

√
W − 1))

9: t′5 = t7 � ((
√
W − 1− sum(t7)

√
W ) & (2

√
W − 1))

10: t′7 = ((t′6 − ρ) & (ζ � (
√
W − 1)))⊕ (ζ � (

√
W − 1)) return (

√
W −

1− sum(t7)
√
W + (

√
W − 1− sum(t′7))

11: end function

Lemma 1. The complexity of msb is O(1).

Proof. Despite the big number of steps, every single of them takes O(1) so
the total complexity is O(1) too.

As we might observe, the similar method might be used for lsb too, the
only thing we would need to change is the behavior of step 8.

Example 1. We provide an example 1 of finding the most significant bit of
integer

χ = 0101000010001101

by the described algorithm.

8



1.6. Bit Tricks

Step Form of number
Let us have an integer χ 0101000010001101
We split the integer to 4 buckets of size 4 0101 0000 1000 1101
Then we find t1 = χ&λ 0000 0000 1000 1000
Afterwards we extract the first bits of every
bucket of χ as t2 = χ⊕ t1

0101 0000 0000 0101

Thereafter we find whether the bucket is
nonempty: t3 = ((λ− t2) &λ)⊕ λ

1000 0000 0000 1000

In the following step we combine the results of
step 1 and step 3: t4 = t3 | t1

1000 0000 1000 1000

The next procedure is to compress the first
bits into a single bucket: t5 = ((t4 · m) �
W ) & (2

√
W − 1)

0000 0000 0000 1011

The further step is to enlarge and replicate
the last bucket: t6 = (t5 + 2

√
W ) · ζ

11011 11011 11011 11011

Now let us have a constant with powers of 2 in
each bucket:

01000 00100 00010 00001

In the subsequent step we do parallel compar-
ison with a constant: t7 = ((t6 − ρ) & (ζ �
(
√
W − 1)))⊕ (ζ � (

√
W − 1))

00000 00000 00000 00000

As the next step we do sum to find there is no
1, so we identified the first bucket, so let us con-
tinue from step 6 with following integer:

0000 0000 0000 0101

So let us follow the step 6: t6 = (t5 + 2
√
W ) · ζ 10101 10101 10101 10101

And so with step 7: t7 = ((t6−ρ) & (ζ � (
√
W−

1)))⊕ (ζ � (
√
W − 1))

10000 00000 00000 00000

Now we will find 1 by sum so we know we the
position is 1-st bit from left (indexed from 0) for
0-th bucket.

0101000010001101

Table 1.3: Example of finding the most significant bit of an integer

1.6.3 Stall

Let us define the stall function. This takes two integers χ and λ. The aim
of this function is to temporarily remove some buckets. The fact, whether the
bucket will be removed depends on whether last bit of the appropriate bucket
of λ is 1 or 0. Also note that we will denote the size of buckets as κ.

We will call first phase stallPhaseIn. We would like to get rid of all
uninteresting bits by the following operation: λ = λ& c (where c is constant
which has only the last bit of each bucket set on 1). Firstly we will make the
appropriate buckets filled by 1’s which could be done as λ = λ · (2κ− 1). Now

9



1. Introduction

we can easily back up the appropriate nodes to variable t as t = λ&χ.
In between these steps we could apply anything, yet it will not affect the

buckets which are phased out.
As last step which we denote as stallPhaseOut we have use our backup:

χ = (χ& ∼ λ) | t. The complexity of this operation is O(1).

1.6.4 Cswap

We would like to define cswap (conditioned swap). It has two parameters x
and y and after this operation for every bucket if it is greater in x then it will
be swapped with the appropriate bucket in y (in fact we do not really care
whether equal elements will be swapped too as some overhead).

Definition 6. Let us define a constant c, as an integer with all bits set to 0
except for the last bit of every bucket.

The pseudocode of cswap looks as follows 2:

Algorithm 2 cswap
1: function cswap((x, y))
2: x | = c� κ
3: stallPhaseIn(x, (x− y)� κ)
4: stallPhaseIn(y, (x− y)� κ)
5: swap(x, y)
6: stallPhaseOut(x, (x− y)� κ)
7: stallPhaseOut(y, (x− y)� κ)
8: end function

Firstly we have to find whether the i-th bucket in x is greater or equal. The
first step is to fill the first bit of x by 1: x = x | (c� κ) (where c is a constant
with last bit of each bucket set as 1 and κ is the size of buckets). Now if we
subtract y from x, the first bit will remain if and only if x is greater/equal
(otherwise we will have to borrow). Since all first-bits of y are empty it is
guaranteed that all buckets are independent of each other. Now we have to
deliver the bit to the position of last bit, which can be simply done by shift:
a = (x − y) � κ. Now we would like to stall by a ⊕ c (for both: x and y).
This will phase out all buckets which are already in the right position. Now
we simply swap x and y (which now works as swapping of bits which were are
not phased out) and then phase back.

Lemma 2. The complexity of cswap is O(1)

Proof. As it could be seen from pseudocode, there are only 6 steps. In each
step, all operations are constant—they are either basic operations or stall,
whose complexity was shown to be O(1) in the previous subsection.
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Chapter 2
Segment Data Structures

2.0.1 Word-Encoded B-Trees

Before we will immerse in segmental data structures, we would like to intro-
duce Word-Encoded B-Trees [6]. Word-Encoded B-Tree is vector variant of
B-Tree. The idea is simple and its structure will be used in multiple following
data structures. This structure is a classical B-Tree with data in leaves (let
us say each leave will have k bits storage). The inner nodes will contain only
auxiliary keys and will have at most β children. The depth of tree will be
denoted as h (note that it could be derived from the number of leaves n and
the branching factor β as h = O(logβ n)).

We use such tree as any B-Tree, yet operations on nodes will be done
vectorally. This simple structure can implement operations such as insert,
delete, find, predecessor, successor or similar.

Example 2. For predecessor/successor we will navigate through the tree while
using lsb/msb functions to find next nonempty subtree. For these operations
the only information we have to store is or of all values in subtree, while
storing only 0 or 1 in leaves, depending on whether the element is inserted or
not.

2.1 Sum-elements

2.1.1 Introduction

Definition 7. The problem which we will denote as sum-elements will be
as follows: This data structure will work over the universe of discrete integers
on the interval [0, n− 1]. Then we will have to handle the following queries:

• sum: Answer the number of elements xi, such that begin ≤ i ≤ end,
which are in the set. This query has begin and end as parameters.

11



2. Segment Data Structures

Empty Set

∅ ∅ ∅ ∅ ∅ ∅

Set after insertions (0, 0), (2, 2), (4, 5)

0 ∅ 2 ∅ 4 5

Query on elements (1, 4)

0 ∅ 2 ∅ 4 5

Set after deleting (4, 4)

0 ∅ 2 ∅ ∅ 5

Query on elements (1, 4)

0 ∅ 2 ∅ ∅ 5

Figure 2.1: Example of sum-elements problem

• del: Delete all elements xi, such that begin ≤ i ≤ end, from the set.
This query has begin and end as parameters.

• insert: Insert all elements xi, such that begin ≤ i ≤ end, into the set.
This query has begin and end as parameters.

Every element of the set might be present at most once. This means that
inserting an element which is already in the set will not do anything.

Example 3. Let us have such problem for n equal to 6 (empty at fist). We can
imagine the set as bit-string of zeroes and ones, where 1 means, that element
is present (and 0 means it is not). Our empty set would look like 000000.
If we execute insertion on numbers {0, 2, 4, 5}, our set will be 101011. If we
would ask for the number of elements within an interval with bounds (1, 4),
the answer shall be 2 (2 and 4 are present on the interval). As we can see, if
we delete number 4 and ask for the same query as we did before, the answer
will be just 1 (since we deleted 4 and only 2 remains on the desired interval).
This is illustrated in Figure 2.1.

12



2.1. Sum-elements

2.1.2 Known solutions

2.1.2.1 Fenwick Tree

Fenwick Tree structure invented by Peter Fenwick [7] allows us to add a value
to an index and then count prefix sum (both in O(logn). This method uses
O(n) memory. As we can see, it easy to bend this structure to solve our
problem. Firstly, query 1 and 2 can be solved by adding 1 and −1 to given
index (it is also easy to find out whether the index is empty or not). To find out
the number of elements on interval (l, r), we simply answer prefixsum(r) −
prefixsum(l − 1).

This method is highlighted since it is very elegant and easy to code. Unlike
the next two methods, the hidden constant here is pretty small.

In fact, there are many more functions than just prefix sum which could
be grafted onto Fenwick tree, yet it is not important for our problem.

2.1.2.2 Segment Tree

This data structure, firstly shown by Jon Luis Bentley [8] is slightly similar to
Fenwick Tree (for our purposes)—at least in sense of asymptotic complexities
(both—execution time of queries and memory).

This structure will be described a little bit more since our new data struc-
ture has multiple similar ideas as Segment Tree. Segment Tree has even more
functionalities then Fenwick Tree, yet we will focus just on the application,
which could solve our problem.

Firstly, imagine a boolean array of size n, with 0 if an element is not present
and 1 otherwise. The size of the array will be without loss of generality (further
as w.l.o.g.) 2dlog2 ne (as we can see, this size is at most two times bigger than
original size n). As we have this, we pair every even element with the next
element and create a new node, which will be parent of both of the elements.
As we have all the parent we recursively do the same thing with them, until
only one node remains—which we will denote as root.

The first and most important observation is, that this structure forms a
full binary tree. This implies that the depth of this structure is going to be
O(logn). We can also easily observe the number of nodes:

n+ n

2 + n

4 + n

8 + · · ·+ 4 + 2 + 1

which sums to 2n− 1 (so O(n)). In each node, we store the sum of elements
in the subtree.

The query of summation on an interval is a little bit more complicated.
We have to travel through nodes (beginning in root) and follow these steps:

• If the whole subtree of the actual node lies inside the desired interval,
return the value summed in the node.

13



2. Segment Data Structures

• If the whole subtree of actual node lies outside the interval, return 0.

• Otherwise (a part of subtree lies in the interval), return the answer of
the left son + the answer of the right son.

The complexity of this method in each node is O(1) and it will travel at
most O(logn) nodes. To fully understand the number of nodes visited, we
have to observe, that third step can be followed by two third-steps at most
one time during the whole query—in all other cases it will be followed by at
least one step 1 or step 2, either in left son or in right son.

Other two queries are very similar—at least the traversal is.

Another advantage is the strength of this structure—it can not only sup-
port many other functions, yet it can convert insertion/deletion operations to
be segment too.

We would recommend the reader to fully understand this part before mov-
ing to the newly designed structure. As little help for understanding, we could
take look at pseudocode of insert 3 and get 4.

Algorithm 3 Insertion of one element to Sum-value Tree
1: function insert(i, b = 0, e = n− 1)
2: if i < b || i > e then
3: return 0
4: end if
5: if b == e then
6: if sum == 1 then
7: return 0
8: end if
9: sum = 1

10: return 1
11: end if
12: tmp = right.insert(i, b, (b+ e)/2) + left.insert(i, (b+ e)/2 + 1, e)
13: sum = tmp+ sum
14: return tmp
15: end function

14



2.1. Sum-elements

Algorithm 4 Get the number of elements on range from i to j.
1: function get(i, j, b = 0, e = n− 1)
2: if j < b || i > e then
3: return 0
4: end if
5: if i ≥ b && j ≤ e then
6: return sum
7: end if
8: return right.get(i, j, b, (b+ e)/2) + left.get(i, j, (b+ e)/2 + 1, e)
9: end function

2.1.2.3 Balanced Binary Tree

Most of Balanced Binary Trees could be modified so it would work in very
similar manner as segment trees. The advantage here is that the complexity
of this solution depends on the number of inserted elements and not on the
size of the universe. This might come to use if the number of present elements
would be asymptotically lesser than the universe of elements. An example
of balanced binary search tree might be Red-Black Tree, which was firstly
derived from the symmetric B-Trees by Guibas and Sedgewick [9].

2.1.3 Sum-element Tree

Operation Complexity
get O(logW/ logn n)
del O(logW/ logn n)
insert O(logW/ logn n)

Table 2.1: Complexities of operations of Sum-element Tree

The complexities in Table 2.1 coulde be obtained from Lemmas 7, 8 and 9.
The structure is similar to β-ary Tree. It has one root and every node has

β children. The root covers all elements. Then the i-th child of root (indexed
from 0) covers all elements between idn/βe and (i + 1)dn/βe (here n stands
for size of subtree). This applies recursively.

This would lead to βk leaves (for some k). Anyway the last βk − n leaves
are not necessary so we would rather allow the last child of each node to
possibly cover fewer elements than each previous child. An example of such
structure could be seen in Figure 2.2.

Lemma 3. The depth of Sum-element Tree is O(logβ n) nodes.

Proof. The size of subtree of every child of node with size n is O(nβ ). This is
an obvious development of logarithm with a base of β.
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2. Segment Data Structures

0-6

0-2 3-5 6-6

0 1 2 3 4 5 6

Figure 2.2: Example of tree with β=3 and 7 nodes

With the advantage of depth, a few complications appear. First one is the
navigation in the tree, which is straightforward, yet a little bit complicated
here. The second problem is the management of the content of nodes: Note
that it is also easy in a binary tree, where simple integer with the number of
elements in the whole subtree is enough there.

Definition 8. Each inner node has an integer size which indicates the size
of its subtree. Every child, except the last one, must have equal size.

Imagine we are in a node and we want to reach i-th leaf. To decide
which child we have to ask, we simply divide i by size of first child: bi/SZc.
Also, we can recursively ask the children, yet note that we have to ask him
for (i mod SZ)-th node (as we just skipped bi/SZc · SZ nodes, where SZ
stands for the size of the subtree of first child).

Example of traversal to 5-th node could be found in Figure 2.3.
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2.1. Sum-elements

5-th

2-nd

target

Figure 2.3: Example of traversal to 5-th node in tree from previous sample
(indexed from 0)

Traversal to an interval of nodes [`,r] looks as follows:

• If the leftmost node of the actual subtree is greater/equal to ` and the
rightmost node of the actual subtree is lesser/equal to r: End in this
node.

• If ` and r are in the same subtree: Traverse to the subtree.

• Otherwise: Visit the child with ` unless it is the first node in the subtree.
Also, visit the child with r unless it is the last node in the subtree.

Observe that with such definition we cannot even visit leaves since they
contain only one node which is always the first and the last node of the subtree.

Lemma 4. With the method above we will visit at most O(logβ n) of Sum-
elements Tree.

Proof. To analyze this, it is key to observe, that 3rd item—which is the only
one allowing traversal to multiple children—could split at most once during
the whole traversal. In the worst case this leads into two paths from root to
nodes above leaves, which is of the same length as the depth of the tree.

Example to traversal for the whole segment could be found in Figure 2.4.
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0-21

0-8 9-17 18-21

0-2 3-5 6-8 9-11 12-14 15-17 18-20 21-21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Figure 2.4: Example of traversal from 4 to 18 in tree with β = 3 and 22 nodes

2.1.4 Node structure

Definition 9. Every node will have a word sum, which will be split into buck-
ets, such that i-th bucket will contain the number of elements in the subtrees
of first i children.

Lemma 5. The size of buckets of root of Sum-elements Tree is at least
dlog2 ne.

Proof. We might observe that the rightmost bucket of root might contain
number n in itself if all elements are filled-in. This means we need dlog2 ne
bits to represent it.

Lemma 6. The depth of Sum-element Tree is O(log W
log n

n).

Proof. The number in buckets dlog2 ne leads to bound of b W
log2 n

c children for
each node. This means it will be a b W

log2 n
c-ary Tree, which means the depth

is O(log W
log n

n).

An example of a partially filled tree could be seen in Figure 2.5.
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2.1. Sum-elements

010/100/101

001/010/010 000/001/010 001

0 1 ∅ ∅ 4 5 6

Figure 2.5: Example of tree with β = 3, 7 nodes, where 0, 1, 4, 5 and 6 are
inserted

Note that the depth could be slightly improved as we observe that size
dlog2 ne bits for buckets is necessary only for root. Obviously, the size of
buckets of a root of a subtree is just dlog2 SZe, where SZ stands for the size of
the subtree. As the branching factor of a node with m elements is W/dlogme,
then the size of the child subtree is approximate O (m · logm/W ). If we would
follow this observation, we could describe the depth by the following recursion:

T (m) = T

(⌈
m logm
W

⌉)
+O(1), T (1) = O(1).

Every node will also possess two integers del and add. Both of the integers
use only β bits (β stands for branching factor), while i-th bit of add means,
that every element of i-th child is in the tree. Likewise, if the i-th bit of del
is 1, then the i-th subtree is empty. The purpose of these two integers is to
enable lazy updates.

2.1.5 Queries

Let us define a simple function buck which would return i-th bucket of some
integer α (for simplicity the size of buckets will be denoted as κ).

In Algorithm 5 it is described how to obtain the content of i-th bucket.

Algorithm 5 Get the content of i-th bucket
1: function buck(α, i)
2: if i < 0 then
3: return 0
4: end if
5: return (α� (κ · i)) & (2κ − 1)
6: end function
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2. Segment Data Structures

If we would travel to any child (in the following subsection), check del and
add first. If any of these bits is set on, do a proper update (which is O(1) so
it will not spoil the complexity) and erase this bit.

The pseudocodes in the following subsection will for simplicity assume the
size of each subtree is equal. As it might not be, it is left as an implementation
detail.

2.1.5.1 Get

A special case of get query is the sum of elements of the whole subtree. This
can be easily done by returning the content of the last bucket. Thus the time
complexity is O(1).

This kind of query asks for sum of elements on an interval. Imagine we
are in a node and we detect the leftmost node of our query is in the i-th child
and the rightmost is in the j-th child:

• If the beginning of the interval is not the leftmost element of the i-th
child, then add to the answer the answer of i-th child and increase i by
1.

• If the end of the interval is not the rightmost element of j-th child, then
add to the answer the answer of j-th child and decrease j by 1. Do this
query only if we did not ask j-th child before (this could have happened
if begin and end belong to the same subtree).

• Find the number of elements of all buckets between i and j and add it
to answer. This can be found if we subtract content of (i− 1)-th bucket
from the content of j-th bucket (in case of i being the 0-th bucket, we
subtract 0 instead). Do this only if i ≤ j.

This procedure could be seen in Algorithm 6.
A content of i-th bucket of sum can be extracted by function buck.

Lemma 7. The complexity of get of Sum-element Tree is O(logβ n), where
β stands for branching factor and is equal to O

(
W

logn

)
.

Proof. As we already shown in section “Tree structure”, this traversal visits
O(logβ n) nodes. All of the items above could be done in O(1) time, so the
total complexity of this kind of query remains O(logβ n).

2.1.5.2 Delete

A special case of deletion query is the deletion of the whole subtree. This
could be done by setting sum to 0, setting add to 0 and del to 2β − 1 (where
β means the branching factor). As we can observe, the complexity of this
operation is O(1).
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2.1. Sum-elements

Algorithm 6 Get the number of elements on interval
Require: beg ≥ 0 ∧ beg ≤ end ∧ end < size

1: function get(beg, end)
2: SZ = child[0].size
3: ans = 0
4: if beg/SZ == end/SZ then
5: if (del� (beg/SZ)) & 1 then
6: return 0
7: end if
8: if (add� (beg/SZ)) & 1 then
9: return end− beg + 1

10: end if
11: return child[beg/SZ].get(beg%SZ, end%SZ)
12: //End of recursion is implementation detail
13: end if
14: if beg%SZ > 0 then
15: if (del� (beg/SZ)) & 1 then
16:
17: else if (add� (beg/SZ)) & 1 then
18: ans = ans+ SZ − beg%SZ
19: else
20: ans = ans+ child[beg/SZ].get(beg%SZ, SZ − 1)
21: end if
22: beg = beg + SZ − beg%SZ
23: end if
24: if (end+ 1)%SZ > 0 then
25: if (del� (end/SZ)) & 1 then
26:
27: else if (add� (end/SZ)) & 1 then
28: ans = ans+ end%SZ
29: else
30: ans = ans+ child[end/SZ].get(0, end%SZ)
31: end if
32: end = end− end%SZ − 1
33: end if
34: return ans+ buck(sum, end/SZ)− buck(sum, beg/SZ − 1)
35: end function
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2. Segment Data Structures

This kind of query is deletion. Imagine we are in a node and we detect
the leftmost node of our query is in the i-th child and the rightmost node is
in the j-th child.

• If the beginning of the interval is not the leftmost element of i-th child,
update i-th child and increase i by 1.

• If the end of the interval is not the rightmost element of j-th child, then
update the j-th child and decrease j by 1. Update j-th child only if we
have not done this already (this could have happened if i = j).

• Let τ be the sum of all elements in nodes in between i-th and j-th
subtrees (inclusive). This can be found by subtracting content of (i−1)-
th bucket from j-th bucket. As we will delete these elements, we surely
have to erase τ from all buckets after j—which could be done by copying
τ (multiplying it by proper constant, which has 1 in every bucket),
shifting it by (j + 1) · SZ (where SZ stands for the size of first subtree)
and subtract it from sum. The erase all buckets between i and j (for
example by calling erase). Then copy the contents of (i− 1)-th bucket
into all buckets between i and j (0 in case of i being the 0-th bucket).
Also call erase(add, i, j) and set all bits between i and j of del to 1:
del = del | ((2j−i+1 − 1)� i).

This procedure could be seen in Algorithm 7.
The first step in updating i-th subtree is to subtract the number of elements

in i-th subtree from every bucket beyond i (inclusive). Then call update on
the proper subtree. The last step is to add the number of elements of i-th
subtree to every bucket beyond i (inclusive).

Lemma 8. The complexity of deletion query of Sum-element Tree is O(logβ n),
where β stands for branching factor and is equal to O

(
W

logn

)
.

Proof. All operations in the node are O(1) and the number of visited nodes is
at most O(logβ n), so the total complexity of this operation is O(logβ n).

2.1.5.3 Insert
Special case of insert query is insertion of whole subtree. This could be done
by setting del to 0, setting add to 2β − 1 and setting sum to SZ · c (here SZ
stands for size of first subtree). Here c stands for constant, which has i+ 1 in
i-th bucket. Note that the last bucket might be done possibly separately. As
we can observe, the complexity of this operation is O(1).

This kind of query is insertion. Before we will run the query itself, run
deletion on the same segment (we will avoid reinserting an element for the
second time). Imagine we are in a node and we detect the leftmost node of
our query is in the i-th child and the rightmost node is in the j-th child.
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Algorithm 7 Delete all the elements on interval
Require: beg ≥ 0 ∧ beg ≤ end ∧ end < size

1: function del(beg, end)
2: SZ = child[0].size
3: if beg/SZ == end/SZ then
4: if (del� (beg/SZ)) & 1 then
5: return
6: end if
7: if (add� (beg/SZ)) & 1 then
8: add = add⊕ 2beg/SZ
9: child[beg/SZ].add(0, child[beg/SZ].size− 1),update sum

10: end if
11: child[beg/SZ].del(beg%SZ, end%SZ),update sum
12: return
13: //End of recursion is implementation detail (perhaps stop when

covering whole subtree)
14: end if
15: if beg%SZ > 0 then
16: if (del� (beg/SZ)) & 1 then
17: break from all ifs
18: end if
19: if (add� (beg/SZ)) & 1 then
20: child[beg/SZ].insert(0, child[beg/SZ].size− 1),update sum
21: add = add⊕ 2beg/SZ
22: end if
23: child[beg/SZ].del(beg%SZ, SZ − 1),update sum
24: beg = beg + SZ − beg%SZ
25: end if
26: if (end+ 1)%SZ > 0 then
27: if (del� (end/SZ)) & 1 then
28: break from all ifs
29: else if (add� (end/SZ)) & 1 then
30: child[end/SZ].insert(0, child[end/SZ].size− 1),update sum
31: add = add⊕ 2end/SZ
32: end if
33: child[end/SZ].del(0, end%ST ),update sum
34: end = end− end%SZ − 1
35: end if
36: erase(add, beg/SZ, end/SZ)
37: del = del | (2end/SZ−beg/SZ+1 − 1)
38: replicate buck(sum, end/SZ) − buck(sum, beg/SZ − 1) and sub-

tract it (shifted by end+ 1) from all suffix buckets.
39: erase(sum, beg, end)
40: replicate buck(sum, beg/sz − 1), shift it by beg and or it to sum
41: end function
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• If the beginning of the interval is not the leftmost element of i-th child,
update i-th child and increase i by 1.

• If the end of the interval is not the rightmost element of j-th child, then
update the j-th child and decrease j by 1. Update j-th child only if we
have not done this already (this could have happened if i = j).

• We need to update the del by deleting elements between i and j (for
example by calling erase). Then we set all the bits of add to 1—for
example by following formula: add = add | ((2j−i+1 − 1)� i). We also
have to update buckets of sum: Firstly we have to add (k + 1) · SZ to
all (i + k)-th buckets, for all i + k between i and j (inclusive). This
could be done by multiplying SZ with a constant which has i+ 1 in i-th
bucket, erasing all bits beyond first j− i+1 and properly shifting them.
We also have to add (j − i+ 1) · SZ to all buckets beyond j (exclusive),
which could be done by proper copy and shift.

The described procedure could be seen in Algorithm 8.
As we have already deleted all proper elements, the update of i-th subtree

can be done by calling update for the proper subtree and then adding the
number of added elements to all buckets after i (i inclusive). This can be as
usually done by copying and adding.

Lemma 9. The complexity of insertion of Sum-element Tree is O(logβ n),
where β stands for branching factor and is equal to O

(
W

logn

)
.

Proof. The number of visited nodes of insertion is O(logβ n). As we can see,
the complexity in each node is O(1). We also have to count the complexity of
deletion which is also O(logβ n) (so it will not spoil the complexity).

2.2 Sum-values

2.2.1 Introduction

The most general wording of this problem is that every element has assigned a
value, which can be either increased or decreased. We can easily observe that
this problem is very similar to the previous problem and can be converted with
little effort. Yet not that this would have one hole in it—the size of the bucket
cannot be properly detected with such definition (unless done dynamically).

One problem derived from above is providing the answer modulo some 2κ.
This immediately gives us a lower bound onto the size of buckets, which is
κ—but for our purposes, we will use 2κ.

It is a convention to initialize the structure so that every element’s values
is 0 at the beginning.
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Algorithm 8 Insert all the elements on interval
Require: beg ≥ 0 ∧ beg ≤ end ∧ end < size

1: function insert(beg, end)
2: SZ = child[0].size
3: if beg/SZ == end/SZ then
4: if (add� (beg/SZ)) & 1 then
5: return
6: end if
7: if (del� (beg/SZ)) & 1 then
8: del = del ⊕ 2beg/SZ
9: child[beg/SZ].del(0, child[beg/SZ].size− 1),update sum

10: end if
11: child[beg/SZ].insert(beg%SZ, end%SZ),update sum
12: return
13: //End of recursion is implementation detail (perhaps when covering

whole subtree)
14: end if
15: if beg%SZ > 0 then
16: if (add� (beg/SZ)) & 1 then
17: break from all ifs
18: end if
19: if (del� (beg/SZ)) & 1 then
20: child[beg/SZ].del(0, child[beg/SZ].size− 1),update sum
21: del = del ⊕ 2beg/SZ
22: end if
23: child[beg/SZ].insert(beg%SZ, SZ − 1),update sum
24: beg = beg + SZ − beg%SZ
25: end if
26: if (end+ 1)%SZ > 0 then
27: if (add� (end/SZ)) & 1 then
28: break from all ifs
29: else if (del� (end/SZ)) & 1 then
30: child[end/SZ].del(0, child[end/SZ].size− 1),update sum
31: del = del ⊕ 2end/SZ
32: end if
33: child[end/SZ].insert(0, end%ST ),update sum
34: end = end− end%SZ − 1
35: end if
36: erase(del, beg/SZ, end/SZ)
37: multiply SZ by proper constant, shift it by beg and or it to sum
38: replicate buck(sum, beg/SZ−1) and add it to sum (shifted by beg)
39: replicate buck(sum, end/SZ)−buck(sum, beg/SZ−1) and add it

(shifted by end+ 1) to all suffix buckets.
40: end function
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0/5/2

4/7/0 5/7/2 5

4 3 1 5 2 3 5

Figure 2.6: Example of sum of tree with β=3, 7 nodes, and κ=3 (shown in
decimal)

2.2.2 Sum-values Tree

Operation Complexity
sum O(logW/κ n)
add O(logW/κ n)

Table 2.2: Complexities of operations of Sum-values Tree

The complexities in Table 2.2 coulde be obtained from Lemmas 10 and 11.
For our purposes, we would need branching factor to be at most O(

√
W ).

Note that the structure of this tree is very similar to the previous data
structure. It is also a β-ary Tree (here β is equal to bW2κc). This means the
depth of such structure will be O(logβ n), where n stands for the size of the
universe.

In every node, there is alike in the previous data structure, an integer
sum. The i-th bucket in sum means the sum of values of elements from all
subtrees between 0 and i (inclusive) modulo 2κ. Another integer we will need
is add. This integer is similarly divided into buckets of size 2κ. The content of
i-th bucket means the sum of values between 0-th and i-th buckets (inclusive),
which were not added to the proper subtrees. Another integer will be addOne,
which will be also chopped into buckets of size 2κ and content of i-th bucket
means that this value was added to every element in the subtree, but it was
not propagated.

The example of a tree could be found in Figure 2.6.
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2.2.3 Queries

2.2.3.1 Sum
Definition: The first kind of query asks for the sum of values of elements on
an interval. Imagine we are in a node and we detect the leftmost node of our
query is in the i-th child and the rightmost is in the j-th child:

• If the beginning of the interval is not the leftmost element of i-th child,
then add to the answer the answer of i-th child modulo 2κ. Also, add
the number of elements of the segment in i-th child multiplied by the
content of i-th bucket of addOne modulo 2κ. Then increase i by 1.

• If the end of the interval is not the rightmost element of j-th child,
then add to the answer the answer of j-th child modulo 2κ. Also, add
the number of elements of the segment in j-th child multiplied by the
content of j-th bucket of addOne modulo 2κ. Then decrease j by 1. Do
this procedure only if we did not ask j-th child before (this could have
happened if i = j).

• To find the sum of elements on the rest of the segment, subtract (i− 1)-
th bucket of sum from j-th bucket modulo 2κ. Also add the subtraction
of (i− 1)-th bucket of add from j-th bucket modulo 2κ. Note that if we
subtracting two numbers in modulo, we must ensure the answer to be
positive. This can be for example achieved by adding 2κ before using a
modulo operation.

This procedure is described by Algorithm 9.

Lemma 10. The complexity of sum of Sum-values Tree is O(logβ n), where
β stands for branching factor and is equal to O

(
W
κ

)
.

Proof. The operations in the node have O(1) complexity and the number of
visited nodes is O(logβ n), so the total complexity is O(logβ n) too.

2.2.3.2 Add

The second kind of query adds (modulo 2κ) some value χ to value of every
node on an interval. Imagine we are in a node and we detect the leftmost
node of our query is in the i-th child and the rightmost is in the j-th child:

• If the beginning of the interval is not the leftmost element of i-th child,
update the i-th child.

• If the end of the interval is not the rightmost element of j-th child,
update the j-th child. Do this procedure only if we did not update j-th
child before (this could have happened if i = j).
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Algorithm 9 Sums the values of elements on interval modulo 2κ
Require: beg ≥ 0 ∧ beg ≤ end ∧ end < size

1: function get(beg, end)
2: SZ = child[0].size
3: ans = 0
4: if beg/SZ == end/SZ then
5: return (child[beg/SZ].get(beg%SZ, end%SZ) +
buck(addOne, beg/SZ) · (end− beg + 1))%2κ

6: //End of recursion is implementation detail
7: end if
8: if beg%SZ > 0 then
9: ans = ans+ child[beg/SZ].get(beg%SZ, SZ − 1)

10: ans = ans+ buck(addOne, beg/SZ) · (SZ − beg%SZ)
11: beg = beg + SZ − beg%SZ
12: end if
13: if (end+ 1)%SZ > 0 then
14: an = ans+ child[end/SZ].get(0, end%ST )
15: ans = ans+ buck(addOne, end/SZ) · (end%SZ)
16: end = end− end%SZ − 1
17: end if
18: ans = ans+ buck(sum, end/SZ)− buck(sum, beg/SZ − 1) + 2κ
19: ans = ans+ buck(add, end/SZ)− buck(add, beg/SZ − 1) + 2κ
20: return ans%2κ
21: end function

• Now we need to update add. Firstly, we have to find out the total sum of
values added to each subtree in modulo, which could be done as follows:
tot = (SZ · χ) mod 2κ (where SZ stands for the size of the subtree
of first child). Then copy this value i + 1 times to i-th bucket—this
could be done by multiplication with a constant c which has i + 1 in
each bucket (obviously cut it to first j − i+ 1 bucket only, which could
be done for example by anding it with 22·κ·(j−i+1)− 1). Shift this value
by 2 · κ · i and add it to sum. Now modulo every bucket. This could be
done by copying 2κ − 1 into each bucket and anding it with sum.

• We also have to update addOne. This could be simply done by copying
value χ (j − i + 1)-times, shifting it, adding it to addOne and proceed
modulo by anding it with the same value as in the previous procedure.

This procedure is also described by Algorithm 10.
If we update i-th bucket, we also have to take care of sum. Firstly we

have to subtract the sum of values of i-th subtree, then update and afterward
add it. The process is similar to previous processes (copying, modulo,. . . ).
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Anyway, note that there are some obstacles. Firstly we have to obtain the
sum of the whole subtree. This could be luckily done very easily by summing
the last bucket of sum and the last bucket of add of the i-th child modulo
2κ. Another problem is subtraction, since overflowing a bucket could ruin our
structure (keep on mind that buckets have to be independent). This could be
solved by adding 2κ to every bucket before subtracting.

Lemma 11. The complexity of add query of Sum-values Tree is O(logβ n),
where β stands for branching factor and is equal to O

(
W
κ

)
.

Proof. As we can see, every operation in a node is O(1) and the number of
visited nodes is O(logβ n), so the total complexity of this process is O(logβ n).
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Algorithm 10 Adds χ to all elements on interval
Require: beg ≥ 0 ∧ beg ≤ end ∧ end < size ∧ χ ≥ 0 ∧ χ < 2κ

1: function add(beg, end, χ)
2: SZ = child[0].size
3: if beg/SZ == end/SZ then
4: child[beg/SZ].add(beg%SZ, end%SZ, χ)
5: sum = sum+ replicate(χ · (end− beg + 1)%2κ)� beg/SZ · 2κ
6: sum = sum&replicate(2κ − 1)
7: return
8: //End of recursion is implementation detail
9: end if

10: if beg%SZ > 0 then
11: child[beg/SZ].add(beg%SZ, SZ − 1, χ)
12: sum = sum+ replicate(χ · (SZ − beg%SZ)%2κ)� beg/SZ · 2κ
13: sum = sum&replicate(2κ − 1)
14: beg = beg + SZ − beg%SZ
15: end if
16: if (end+ 1)%SZ > 0 then
17: child[end/SZ].add(0, end%SZ, χ)
18: sum = sum+ replicate(χ · (end%SZ)%2κ)� end/SZ · 2κ
19: sum = sum&replicate(2κ − 1)
20: end = end− end%SZ − 1
21: end if
22: addOne = addOne + (replicate(χ) & (22κ·(end/SZ−beg/SZ+1))) �

(beg/SZ · 2κ)
23: addOne& = replicate(2κ − 1)
24: add = add+((χ ·SZ%2κ ·ρ) & (22κ(end/SZ−beg/SZ+1)−1))� (beg/SZ ·

2κ)
25: add = add+ replicate((end− beg+ 1) ·χ%2κ)� ((end/SZ+ 1) · 2κ)
26: add& = replicate(2κ − 1)
27: end function

2.3 Max-value

2.3.1 Introduction

Definition 10. In this problem we have n sequentially ordered elements—
initially set to 0. We have two kinds of queries:

• We ask for maximum element on some interval.

• Set value of i-th element to χ.
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Values at the beginning

0 0 0 0 0 0

Values after a few set queries

0 3 2 1 5 3

Query on elements (1,4): Answer is 5

0 3 2 1 5 3

Values after a setting 4-th element to 2

0 3 2 1 2 3

Query on elements (1,4)

0 3 2 1 2 3

Figure 2.7: Example of max-value problem

Definition 11. We will restrict the values of χ on integers from range 0 to
2W 1/3−1. We can obviously increase the upper bound by some constant if we
will chain a few words together, so O(2W 1/3) would probably fit better.

Similar problem min-value could be trivially derived from this problem.
To bend the structure to solve this problem instead, we simply have to insert
µ − χ (here µ stands for maximal possible value) instead of χ, and also let
query number 1 return µ−ANS instead.

This structure can support any range of numbers which is properly long—
one just has to properly shift the numbers before insertion or after harvesting
the answer.

In this problem, we return for simplicity the value of the maximum ele-
ment. A very similar problem might ask for index instead but that would be
a little more complicated.

A small example of this problem is described in Figure 2.7.
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101/101/101
/

110/110/110
/

111/111/111

100/100
/

101/101 101/101
/

110/110 111/111
/

110/110

0 1 1 2 3 2

Figure 2.8: Example of tree with R=3, 6 nodes: The variable q

2.3.2 Max-value Tree

Operation Complexity
max O(logW n)
set O(logW n)

Table 2.3: Complexities of operations of Max-value Tree

The complexities in Table 2.3 coulde be obtained from Lemmas 14 and 15.
This data structure will also have the form of β-ary Tree. Here our branch-

ing factor will be r, which will be set as some power of 2 which is approximately
O(W

1
3 ). The traversal style will be similar to previous data structures—the

only difference will be in the processing of nodes.

Lemma 12. The depth of Max-value Tree is O(logW n).

Proof. As the branching factor isO(W
1
3 ), the depth is going to beO(log

W
1
3
n).

Note that as it is in asymptote, so the complexity is equal to O(logW n).

Definition 12. Every node will posses an integer Q. This integer will be
divided into R buckets (of size r2, which is O(W

2
3 )). Each of those buckets

will be also divided into r mini-buckets, each of size r. The first bit of every
mini-bucket will always be 1. The remaining r − 1 bits of each mini-bucket
will consist of maximum of i-th subtree, where i is the number of the bucket
in which the mini-bucket is.

In the example, the buckets in the middle layer have only 2 mini-buckets.
Even though it is an implementation detail, in fact, it would be best to have
3rd mini-buckets, filled with 0 (except for the first bit, which is 1)
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Definition 13. Every node will also have an integer h. This integer will
consist of one bucket with r mini-buckets of size r (this means we only need
O(W

2
3 ) bits for it). The first bit of every mini-bucket will be 0. All other bits

of i-th mini-bucket will be filled with the maximum of i-th subtree.

001/010/011

000/001 001/010 011/010

0 1 1 2 3 2

Figure 2.9: Example of tree with r=3, 6 nodes: The variable h

The examples of trees and their variables q and h could be seen in following
Figures 2.8 and 2.9.

Definition 14. Let us have constant c, which has 1 as the last bit of every
bucket. This means it is in form of (0r2−11)r, where power means concatena-
tion.

Definition 15. Let us define a constant k, which has 1 at the end of each mini-
bucket and consists of r2 bits (the rest might be for example filled with zeroes).
This means it is in form of (0r−11)r, where power means concatenation.

2.3.3 Queries

2.3.3.1 Maximum of the whole subtree

This query will find the maximum of the whole subtree without traveling to
any of the children.

• As the first step, we do q−h·c. This is a very simple formula yet it is cru-
cial to realize the impact of such a formula. Firstly note that h · c copies
h to each bucket. Afterward, there will be r2 parallel comparisons—one
in every mini-bucket. Since every number in mini-buckets of q is greater
than those in h ·c (notice the first bit), the comparisons are independent.

• Observe, that the first bit of every mini-bucket will be 1 as long as the
remaining bits of the mini-bucket of q will be greater or equal to the
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content of mini-bucket of h · c. We will care only for the first bit of every
mini bucket. To get rid of the garbage, we could shift the result by r− 1
(so that the 1’s move to the last bit of the mini-buckets) and and it
with k · c. Another simple note is that the bucket(s) with the most ones
in it has the maximum of this subtree in it.

• In the next step, we multiply the result by k. Again, this step is just
a simple formula yet it is important to understand what happens here.
For each mini-bucket, we shift the integer α by r and add it:

r∑
n=0

α� r

As we might observe, in every mini-bucket, there appears the number of
1 which are in the previous r mini-buckets (actual mini-bucket inclusive).
This implies that the leftmost mini-bucket of each bucket will contain
the number of ones in the bucket. Note that each mini-bucket has size
r and we only need dlog2 re bits to represent the sum, so it certainly
cannot overflow.

• It might look like we are in the same situation as at the beginning since
we have to detect the bucket with the biggest number in it (which is in
the last mini-bucket). Anyway as we might observe, we know that the
biggest number will be equal to r, which is a power of 2 (as stated in
the previous subsection). This means that as long as r is let us say in
form of 2b, we know that the b-th bit of the last mini-bucket is 1. We
can and the result with c shifted by r2 + b.

• Now any bucket with a 1 in it has also the maximum in it. The last step
is to detect any position of one-bit, divide the number by r2, and this
will identify the desired bucket. As we have the desired bucket, we can
obtain the maximum from q or h.

• Note that position of the random bit could be done for example by msb
[Most Significant Bit] algorithm or lsb [Least Significant Bit] algorithm—
both of them can be executed in constant time. Note that lsb presented
by us in the Bit Tricks section would needO(W 2) bits, yet we could over-
come this problem by calling pack first, by which it will compress to
O(W

1
3 ) bits only.

This could be also found in Algorithm 11.

Lemma 13. The complexity of max query, asking for whole tree of Max-value
Tree is O(1).

Proof. Each step of the procedure takes constant time and we do not have to
visit any other nodes, so the total complexity is O(1).
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Algorithm 11 Finds the maximum from values of the whole subtree
1: function max
2: tmp = (q − h · c) · k
3: tmp& = c� (r2 + b)
4: return buckmini(h, lsb(tmp)/r)
5: end function

2.3.3.2 Maximum on segment

This kind of query will find the biggest value of elements from a segment.
Imagine we are in a node and we detect the leftmost node of our query is in
the i-th child and the rightmost is in the j-th child:

• If the beginning of the interval is not the leftmost element of i-th child,
then let one of the potential maximum candidates be the answer of i-th
subtree. Then increase i by 1.

• If the end of the interval is not the rightmost element of j-th child,
then let one of the potential maximum candidates be the answer of j-th
subtree. Then increase j by 1. Do this procedure only if we did not ask
j-th child before (this could have happened if i = j).

• For the rest of the segment we might proceed in the same way in sub-
section “Maximum of the whole subtree”, with the exception we
have to properly adjust h and q. To do this, we have to get rid of all
buckets/mini-buckets which are not included between i and j. As they
are consecutive, we can simply use erase to do so. In case of q we also
have to or it with shifted k · c so we will not break our rule with 1 at
the beginning.

The described algorithm could be also found in Algorithm 12.

Lemma 14. The complexity of maximum on segment of Max-value Tree is
O(logW n).

Proof. The complexity in each node isO(1) and we will visit at mostO(logW n)
nodes so the complexity is equal to O(logW n).
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Algorithm 12 Finds the maximal value of elements on interval
Require: beg ≥ 0 ∧ beg ≤ end ∧ end < size

1: function max(beg, end)
2: SZ = child[0].size
3: ans = −∞
4: if beg/SZ == end/SZ then
5: return child[beg/SZ].max(beg%SZ, end%SZ)
6: //End of recursion is implementation detail
7: end if
8: if beg%SZ > 0 then
9: ans = child[beg/SZ].max(beg%SZ, SZ − 1)

10: beg = beg + SZ − beg%SZ
11: end if
12: if (end+ 1)%SZ > 0 then
13: ans = max(ans, child[end/SZ].max(0, end%SZ))
14: end = end− end%SZ − 1
15: end if
16: backup variables
17: erase(h, 0, beg/SZ · r − 1)
18: erase(h, (end/SZ + 1) · r,W − 1)
19: erase(q, 0, beg/SZ · r2 − 1)
20: erase(q, (end/SZ + 1) · r2,W − 1)
21: ans = max(ans,max())
22: use backup
23: return ans
24: end function

2.3.3.3 Update

This kind of query will set the value of any element to some value χ. It must
be in the proper range between 0 and 2r−1.

Definition 16. Let us define m as the maximum of the subtree in which we
updated the value.

We would like to properly adjust variable Q. Firstly, we would like to erase
all bits of i-th bucket (for example with the usage of function erase). Then
take m and prepend a 1 bit before it (could be done by oring with 2r−1). Next
step is to copy this r times (to r − 1 following mini-buckets), which could be
done by multiplying it with k. The last step is to stick this value to q, which
might be done by shifting this by r2 · i and oring it to q (note that addition
would work too since the i-th bucket shall be empty at this moment).

To update h, we first have to erase the i-th mini-bucket (which could be
done for example by erase). Then we simply add m shifted by r · i to it.

These described operations of update could be also found in Algorithm 13.
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Lemma 15. The complexity of update of Max-value Tree is O(logW n).

Proof. If the navigation is done correctly, we only need to visit the leaf-node
itself plus all of its ancestors. This means we will visit O(logW n) nodes.

Note that the update has to be done only if the m really changed its value.
Even though it does not improve the asymptotical complexity, it might lighten
the number of conducted operations in an average case.

Algorithm 13 Sets i-th element to χ
Require: i ≥ 0 ∧ i < size ∧ χ ≥ 0 ∧ χ < 2r−1

1: function set(i, χ)
2: if size == 1 then
3: return
4: end if
5: SZ = child[0].size
6: child[i/SZ].set(i%SZ, χ)
7: m = child[i/SZ].max()
8: //here we could end if maximum have not changed
9: erase(q, i/SZ · r2, (i/SZ + 1) · r2)

10: q | = (replicate(m | 2r−1) & (2r2 − 1))� (i/SZ · r2)
11: erase(h, i/SZ · r, (i/SZ + 1) · r)
12: h = h|(m� (i/SZ · r))
13: end function

2.4 Persistence

2.4.1 Intro

Definition 17. The structures describe above are all ephemeral. That means
that every modification “destroys” the last version of the data structure and
creates a new one so it is always possible to access the last version only.

Definition 18. Unlike ephemeral data structures, persistent [10] data struc-
ture could access all previously modified versions and possibly modify them.
There are multiple levels of persistence. The aim of such a structure is to
minimize its space and time complexities. A version of such persistent data
structure is uniquely identifying the stat of the data structure at the given
moment.

Definition 19. In the partial persistence [11] we may query any previous
version of the data structure, but we may only update the latest version. This
implies a linear ordering among the versions.

Definition 20. In the fully persistent model, both queries and updates are
available to previous versions of the data structure.
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Definition 21. In confluently persistent model, we combine the input of
multiple previous versions to output a new version. These combinations makes
the model a DAG [Directed Acyclic Graph] by its structure.

2.4.2 Partial Persistence

It was shown by Brodal [12] that it is possible to make a data structure
persistent with O(ι + σ) overhead per updated node, where ι stands for in-
degree and σ stands for out-degree of the node. Even though ι is constant for
our data structures σ is not.

A suitable strategy for achieving partial persistence is path copying [13].
The strategy is simple:

• As we would modify a node, we allocate a new node instead which will
be the copy of our node and modify this node instead. Then we return
the pointer of the modified node to its parent and then we will modify
the parent (its values and pointers to modified children).

• As we return the pointer of the root (note that root will be always
modified) we store it in some time-array (or some structure with random
access—yet note that array is perfectly suitable). Now we can observe
that we can easily access the data structure at any time (by looking into
our time-array). We can also observe that as long as we would need
to access some nodes which were not modified in desired time, it will
simply jump into older version of data structure and count the result
from it.

Lemma 16. The complexity of one update of persistent tree will be O(prev+
depth · σ), where prev stands for previous update complexity.

Proof. The number of modified nodes will be the same as the number of nodes
accessed and the time complexity of the update will be O(prev + depth · σ).
The complexity of getting segment answers will remain the same. As we can
see, we can slightly balance the complexity by making a lesser/greater number
of children.

Note that even though the update of a node is O(1) the copying of a node
is O(σ) since it has to hold O(σ) pointers to its children. Even though some of
the structures previously described could do its job without pointers (by some
arithmetic operation—even though it is not necessary). Here we need some
kind of pointers to children because we have to change them during updates.

Obviously, we can make some improvement if we will be able to make some
analysis. If we could estimate some u, such that the number of updates will
be lesser then u we know we will need only O(n+ u · depth) nodes. This also
means that the pointers will range between 0 and O(n+u·depth) which means
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we could represent a pointer by O(log(n+ u · depth)) bits. So in the end, we
could end with δ = O

(
σ·log2(n+u·depth)

W

)
integers in each node. This could be

achieved by having an array of δ integers, splitting them into σ buckets. Each
bucket will be a pointer to a child. We can simply access it in O(1) by making
some ands and shifts.

Example 4. In Figure 2.10 is an example of tree structure after updating
node number 7 and node number 9:

2.4.3 Another Approach

There is also a similar approach which has very very small overhead on both:
query and update. It has pretty much in common with the previous approach.
It is also path copying and the only different behavior is operating with an
array of links to children.

Unlike previous structure, here we will only have a pointer to the array of
children. Obviously, copying of such pointer costs O(1) which is great. The
problem is in updating the structure. We can use persistent arrays proposed
by Milan Straka [14] which could access the array in arbitrary time. Here we
simply update the proper children which would be the only change.

Straka’s persistent arrays achieve the complexity of O(log log(min(σ, q))),
where σ stands for the size of the array, which is the number of children and
q stands for the number of updates. Updates for this approach seems to be
better (at least if W is not enormously large) yet the O(log log(min(σ, q)))
factor will show up in access queries too (note that this factor is very small—
despite that it might be still undesired).

2.5 k-th element of segment

2.5.1 Introduction

Definition 22. In this problem we will get static array with some values.
Then we will have only one kind of queries, asking for k-th element on some
range [b,e] (begin → end), where 0 ≤ k < e − b + 1 (so 0-th element is the
lowest one).

Operation Complexity

initialization O
(
n logn+ n logW/ logn(n) log(n logW/ log n n)

logn

)
kth O(logn logW/ logn n)

Table 2.4: Complexities of operations of Max-value Tree
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0 ∅ ∅ ∅ ∅ ∅

0

1 2 3

4 5 6 7 8 9 10

0 13 ∅ ∅ ∅ ∅

13

1 12 3

4 5 6 11 8 9 10

0 13 16 ∅ ∅ ∅

16

1 15 3

4 5 6 11 8 14 10

Figure 2.10: Example of path copying, while updating nodes number 7 and 9
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The complexities in Table 2.4 coulde be obtained from Lemmas 17 and 18.
This problem might also have a dynamic version which we will not discuss

here.
For further processing, we will use the persistent version of our sum-

elements structure only as a blackbox.

Example 5. In Figure 2.11 is an example of searching k-th element on seg-
ment from 1 to 4 (indexed from 0), in array of {1, 2, 5, 4, 3, 6}, while k = 2.

1 2 5 4 3 6

1 2 5 4 3 6

1 2 5 4 3 6

Figure 2.11: Example of k-th element problem

2.5.2 Initialization

The input for initialization is an array α (of length n) full of some values. The
initialization will work in following steps:

• We transform such array into an array of pairs where the first element
is the value and the second one is the index into the array.

• The next step is to sort such array. To make it a little easier, we simply
omit the index (it still has to be there yet we do not care what is the
order of elements with the same value).

• The third step is to insert the elements into our data structure. We do
this in order from left to right according to our sorted array. We insert
element on the position of the second value of the pair (we do not care
about the original value of the element).

Lemma 17. The complexity of initialization for k-th element problem will be:

O
(
n logn+ n logβ(n)

log(n logβ n)
logn

)
.
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Proof. To make the analysis simple, we will do so with the structure before
branching factor improvement. As we can see, there will be exactly n queries
and each of them will affect O(logβ n) (where β stands for branching factor
and is equal to O (W/ logn)) nodes (note that the number of affected nodes is
almost accurate since it will always be just path from the root to leaf—nothing
else). For each such affected node the biggest overhead will be in making a
new copy and so the complexity will reach

O
(
β · log(n logβ n)

W

)
,

which shall be

O
(

log(n logβ n
logn

)
.

So in the end the total complexity of initialization will reach:

O
(
n logn+ n logβ(n)

log(n logβ n)
logn

)

.

In the second step, we sorted the array. If we know nothing about the
values there is nothing to deal with: The sort will take O(n logn) time. As
long as the values will be integers (or actually some of many other data types
with information—such as strings), we can get a little improvement for this
part. Specifically for integers, we could use Radix Sort.

The example of this procedure could be found in Figure 2.12.

1 2 5 4 3 6

{1,0} {2,1} {5,2} {4,3} {3,4} {6,5}

{1,0} {2,1} {3,4} {4,3} {5,2} {6,5}

0 1 4 3 2 5

Figure 2.12: Example of the first two steps of initialization

The pseudocode of this procedure could be found in Algorithm 14.
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Algorithm 14 Initialize structure for searching k-th element
1: function ini(α, n)
2: b← new array of pairs(n)
3: τ ← new persistent sum− elements(n)
4: for i : 0→ n− 1 do
5: b[i] = pair(α[i], i)
6: end for
7: sort(b)
8: for i : 0→ n− 1 do
9: τ.insert(b[i].second)

10: end for
11: end function

2.5.3 Query

Before we will discuss the query on k-th element we will take look on another
kind of query: What is the number of element lesser/equal than i-th lowest
element on input?. In fact, this is pretty easy with what we have: We simply
ask for the number of elements on the segment in i-th time (meaning we ask
root whose pointer is on i-th position in our time-array). As we have discussed
before, this query takes O(log W

dlog ne
n).

Now if we would have some guess, we could verify the number of elements
on the interval which is lesser than the number. So basically we have to find
the index of an element for which the number of elements is greater than
k and the index − 1 (unless the index is 0) is equal to k. This could be
achieved by binary search by the answer. The whole process could be found
in Algorithm 15.

Lemma 18. Complexity of query in k-th element problem is O(logn logβ n),
where β stands for branching factor and is equal to O (W/ logn).

Proof. As we used binary search on the method mentioned in the first para-
graph, the complexity will be O(logn) times higher than the complexity of the
method which was mentioned in the paragraph. This leads to O(logn logβ n)
complexity.

This might be even better if the number of distinct elements will be asymp-
totically lesser than O(n).
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Algorithm 15 Finds the k-th element on interval
Require: beg ≥ 0 ∧ beg ≤ end ∧ end < size ∧ k ≥ 0 ∧ k < end− beg + 1

1: function kth(beg, end, k)
2: b← 0
3: e→ end− beg
4: while b < e do
5: if τ.get(beg, end, time = (b+ e)/2) < k then
6: b = (b+ e)/2 + 1
7: else
8: e = (b+ e)/2
9: end if

10: end while
11: return b
12: end function

2.5.4 Second approach of persistence

We have discussed multiple kinds of persistence. We will show the impact of
the second approach of persistence onto the complexity.

Lemma 19. The complexity of initialization of k-th element problem with the
second approach is:

O(n logβ n log log logβ n+ n logn),

where β stands for branching factor and is equal to O
(

W
logn

)
.

Proof. As we can see, the only additional factor apart from the confluent
data structure is factor resulting from Straka’s persistent arrays is triple log-
arithm (which has very slow development). Thus the complexity will reach
O(n logβ n log log logβ n+ n logn).

Lemma 20. The complexity of query of k-th element problem with second
approach is:

O(logn logβ(n) log log logβ n)

Proof. This complexity is a multiplication of three factors: Binary Search,
Confluent Sum-Elements-Tree and Straka’s Persistent Arrays. Thus the com-
plexity will reach:

O(logn logβ(n) log log logβ n)

.

As we might observe, the query of the second approach will be strictly
slower than a query with the previous version (at least asymptotically).

44



Chapter 3
Algorithms

The first goal of this chapter is to parallelize an algorithm for greatest common
divisor in such a way that it will calculate several pairs of integers at once.
This result is achieved by bitwise parallelization. In the next section, a simple
application is shown.

Next, we discuss the usage of operation multiplication.
We also design a circuit for the maximum which could be applied in Max-

value Tree if it would be done under AC0.
Last part of this chapter focuses on bitwise parallelization of Number The-

oretical Transform. We design a parallel modulo operation to achieve so.

3.1 GCD

3.1.1 Introduction

In this section, we are going to take peek onto gcd [Greatest Common Divi-
sor]. There are multiple ways how to proceed with such operation on a pair
of two integers (of size κ bits) such as comparison of prime factors or Eu-
clidean algorithm (which can do so in 5 · log10(κ) steps as stated in Lamé’s
theorem [15]).

The algorithm we will be interested in is Stein’s Algorithm, published
by Josef Stein [16], also known as Binary GCD Algorithm. The number
of steps is O(log κ) which is asymptotically same as Euclidean Algorithm.

Even though gcd(0, 0) is not defined, we traditionally return 0 as result,
which we will keep up too.

Our intention is to do some bit parallelism, which means doing multiple
gcd’s at once (depends on how many integers of length κ fits into the word of
lengthW ) with as similar asymptotic complexity (to classical gcd) as possible.
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3.1.2 Stein’s algorithm

As we will discuss this algorithm to detail, we have to introduce it a little bit
more. There are several ways how to make such algorithm—for our purposes
we have chosen a simple iterative method which is described in Algorithm 16.

Algorithm 16 Pseudocode of Stein’s Algorithm
1: function gcd(u, v)
2: if u == 0 then
3: return v
4: end if
5: if v == 0 then
6: return u
7: end if
8: shift = 0
9: while (u | v) & 1 == 0 do

10: u�= 1
11: v �= 1
12: + + shift
13: end while
14: while u& 1 == 0 do
15: u�= 1
16: end while
17: while v 6= 0 do
18: while v& 1 == 0 do
19: v �= 1
20: end while
21: if u > v then
22: swap(u, v)
23: end if
24: v = v − u
25: end while
26: return u� shift
27: end function

3.1.3 Parallelism

As can be seen, there are several operations which have to be discussed. Simi-
larly to previous algorithms, we have to split the word to bW/(κ+1)c buckets.
Each bucket will consist of κ + 1 bits: The last κ bits of each bucket will be
used to represent numbers while the first bit will be used in our algorithm.

Definition 23. We will define a constant c which is filled by 0-bits with ex-
ception of the last bit of every bucket which is set to 1.
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The algorithm modification takes the following steps:

• We would like to store (in the end) our answer in u so we start with
cswap(v, u). With this property, we know we are done if the number
of 1-bits of zr(v) is equal to the number of buckets. Also, note that we
shall stall on all buckets for which zr(v) is true during each operation
since we already know the answer for such buckets. It is always just
O(1) overhead yet for sake of simplicity we will not mention this in the
rest of the subsection. Also, note that we solve the first two ifs by this
since we are not able to end the function here (unless zr(v) would be
true for all buckets).

• Now let us peek on shift. Obviously, we have to have such variable in our
algorithm yet it is not that simple since it has to behave independently
for each bucket. The definition of our shift will be following: If the
shift of i-th integer would be r, our shift will have 2r − 1 in i-th bucket
(observe that r cannot be greater than κ so no problem can appear
with such definition). Now until we will not stall every bucket (we
would stall an integer with all 1 bits of c on), we stall (u | v) & c for
words u, v and shift. We apply right shift on u and v while we apply
shift = (shift � 1) | c (note that there are some bits added wrongly,
yet the stall function will get rid of them). This phase will have at
most O(κ) steps which are all O(1).

• The next loop will be very similar: we stall by u& c while shifting to
the right. The asymptotic complexity is the same as of the previous
operation.

• The next loop which is presented in pseudocode has three steps:

– The first step is similar to the loop we discussed above.
– The second step is a simple call of cswap.
– The third step can be left as it is.
– All steps have O(1) complexity and the number of such cycles is

same as in original algorithm (in fact it is equal to maximum among
the numbers of steps for all buckets). The loop ends when zr(v) is
equal to c.

• Last operation is u� shift. It could be done by a loop which goes while
shift is not equal to 0. In each step it stalls all buckets which have last
bit empty: shift⊕c. It shifts u (the buckets which are not stalled) and
also updates shift as shift = (shift & ∼ c)� 1 which erases the last
bits of shift and shifts shift to right. This is the only operation which
does not have the same number of steps as in the original algorithm:
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It was O(1) but now it is O(κ). Luckily it will not endanger the total
complexity of the function.

To sum it up, we made a gcd function which works in O(κ) as the original
version (obviously only if κ ≤W ) yet now it can find the answer for O(W/κ)
integers at once.

3.2 Sparse Table

3.2.1 Introduction

Definition 24. Sparse Table is very simple static data structure which ini-
tializes from an array in O(Ψn logn) time, and answers the result of an oper-
ation on segment in O(Ψ) time where Ψ stands for time of operation (an ex-
ample of operation might be min or max). This structure occupies O(n logn)
space.

Sparse Table consists of 2D table where first dimension has O(log2 n) levels
while the second has n levels. The element on position ij-th position is the
result of operation on segment between j and j + 2i − 1 (inclusive). Any
field of table can be filled simply in O(Ψ) by checking field on [i − 1][j] and
[i− 1][j + 2i−1]. The method for initialization could be seen in Algorithm 17.

Algorithm 17 Pseudocode for initialization of data structure
1: function init(input, n)
2: init(Table[log2 n][n])
3: for i : 0→ n− 1 do
4: Table[0][i] = input[i]
5: end for
6: for k = 0 : 2k ≤ n do
7: for i : 0→ n− 2k − 1 do
8: Table[k][i] = operation(Table[k− 1][i], Table[k− 1][i+ 2k−1])
9: end for

10: end for
11: end function

The result for segment from begin to end can be obtained in O(Ψ) (while
` is the greatest power of 2 lesser than e − b + 1) by taking operation on
[`][begin] and [`][end − 2` + 1]. As we can observe, the intervals intersect
which might be problematic for operation for which x(operation)x is not x
(for any x) such as addition, xor or similar (anyway luckily those operations
could be usually solved by prefix sum which is even easier). Anyway for many
operations this structure is fine: such as min, max, gcd, and, or, etc. . . It
also relies on getting the greatest power of 2 which might not be simple (to
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obtain it in O(1)) but we can (in worst case) precompute an array in O(n)
during initialization and the simply look up the answer as could be seen in
Algorithm 18.

Algorithm 18 Pseudocode for operation on interval
1: function rmq(begin, end)
2: k = log2(end− begin+ 1)
3: return operation(Table[k][begin], Table[k][end− 2k + 1])
4: end function

Even though this structure is not the fastest one, the results are fine and
it is pretty easy to code.

3.2.2 Bitwise Parallelisation

Even though the asymptotic complexity of query part is hard to improve
(without n2 table: which could do so from O(Ψ) to O(1)), there is still space
for improvement during initialization part.

As long as κ (number of bits to represent a number) would be significantly
lesser than W (size of the word), we can have set of n buckets in each level
(instead of n words we would need only O(n·κW ) words).

Now instead of finding out the result of every cell separately, we could
always take the previous level, shift it by κ2i−1 and apply our operation onto
the previous level and our shifted previous level.

Here not only the time complexity improved to O(n·κW ) yet same happened
with space complexity. Obviously note that the complexity can get better
than O(log2 n), yet such a case would not probably matter anyway.

We also have to know how to proceed the bitwise parallel operation. The
operation even has to be trivial (as bitwise operations like & or |) or we have
to come up with one (as in the case of gcd).

3.3 Operations

3.3.1 Multiplication

Some instruction set systems do not have operations as multiplication (such
as AC0). In our structures, this operation has key importance. One example
of usage is to copy bucket b to κ following buckets in O(1).

A very naive way might obviously be copying of the bucket to each of the
κ buckets one by one with help of a few shifts in O(κ). This is indeed very
slow, yet it is not a problem to improve this approach. First copying will
remain the same. The second one will copy both of the last two buckets and
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shift it by two times the size of the bucket. Now as we have filled four buckets
already, we can fill eight by a similar operation.

As we can see, we can grow the integer to 2blog2 κc in O(log2 κ) steps. The
last step (if necessary) is a simple shift by the size of unfilled buckets and oring
those two integers to itself. As we can see, or operation will not corrupt the
bits which overlap. The total complexity of this detour is O(log2 κ)

If this would be designed as AC0 (circuit with constant depth and poly-
nomial size) operation, it would be simply wiring of the first bucket to each
other bucket.

Another usage is to copy bucket b to i-th bucket exactly (i + 1) times.
This was done by multiplying b to a constant which has (i+ 1) in i-th bucket.
Here we could use a very similar approach as before. Firstly we will do the
previous step, so let us have an integer A which has b copied in every bucket.
Then, for each possible bit, in j-th step, we will add b shifted by j. This could
be done by shifting integer α by j and adding it to result.

We already discussed the first step has O(log κ) complexity. Then the
number of steps, which is each O(1) is at most dlog2 κe so the total complexity
is at most O(log κ).

Anyway, note that for some data structures the size of the bucket is at
most O(logn), which means at most O(n) possible values. We can do a table
of size O(n), while under i-th index it will be stored the bucket properly
multiplied with given constant. This will take time of an operation for every
index which means O(n log κ) during initialization, yet then there will be no
overhead afterward.

3.3.2 Maximum

Definition 25. An interesting task is to propose operation maximum from
buckets as AC0 operation. Let us denote an integer of size W filled with κ
buckets, each of size h bits. Let us denote integer in i-th bucket as mi.

Firstly let us make a circuit which yields 1 if i-th bucket is one of the
buckets which has the maximum in it (0 otherwise). The first step is a set
of circuits which yields carry of subtraction of two elements (which is not a
basic operation of AC0 but it is known). For each j from 0 to κ − 1 let us
lead i-th and j-th bucket into such circuit so mi −mj would yield 0 if mi is
greater/equal to mj . We lead the results to an or bucket. If we would lead
negation from this bucket, we would already have what we came for.

If we would need only maximum itself, we could simply wire these circuits
to each position of the bucket (so they would either make 0 or 2h − 1). The
we will and this with original value mi. If we would or the results from each
bucket, it would yield us maximum.

If we would need the index of maximum (instead of maximum itself) we
could simply use the first step (1 if maximum), chain them one after another
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m0 m1 m2 . . . mk−1

m0 −m1 m0 −m2 . . . m0 −mk−1

OR

NOT

AND

Figure 3.1: Circuit which returns m0 if it is maximal

and find the most significant bit. This might be for example done by the
following process: For each bit, we can or all previous bits, negate this and
and this with the bit on the actual position. This will result in only one bit.
Now if we and each bit with copied dlog2 κe times with i. As we or all the
results together, we will get the index of the most significant bit.

This operation could be used in max-value trees if they would be done in
AC0. This could lead to significant complexity improvement and also milder
demands on the size of values.

The part of the circuit which returns m0 if it is one of the maximums could
be found in Figure 3.1.

3.4 Number Theoretic Transform

3.4.1 Introduction

Definition 26. Number Theoretic Transform (further as NTT) is a kind of
Discrete Fourier Transformation. Modular arithmetic (in some modulo q) is
used to calculate such transformation, so all integers of input/output vector
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are calculated in modular arithmetic. The advantage of NTT is avoidance of
rounding errors.

To transform vector of size n = 2k, we have to find the vector

[g0, g1, g2, . . . , gn−1],

where g is 2n-th root of unity in modulo q. According to Michael Scott [17],
such g could be found easily if we choose q such that q = 1 mod n. As we
have g, our vector could be generated in O(n) by simply making gi = gi−1 · g.
To proceed with our algorithm, we also have to sort the elements of vector
g by its powers as if they would be bitwise reversed. This could be done
for example by simple recursion generating all integers (bit by bit) while also
generating such integers from backward (in i-th step try to set i-th bit to 0
and then 1. Do the same for (k − 1 − i)-th bit for the second integer). This
recursion has 2n steps.

3.4.2 Parallel modulo

Probably the most important operation of modular arithmetic is modulo itself.
It is indeed bad news that this operation is kinda problematic to be done
by bitwise parallelism. We would like to present a method, which could do
such operation bitwise parallel yet sadly with some non-constant slowdown.
Imagine we would like to do parallel modulo, where the numbers might have
up to b bits (note that b is probably bigger than log2m since otherwise, we
could do such operation quickly by subtracting the m), where m stands for
modulus (which is operand of modulo operation). Firstly, we shall possess
buckets which are slightly bigger than the maximal number of bits we need to
represent numbers (by a constant: 3 additional bits shall be enough).

Before we will introduce the approach, we shall adopt a few constants.
Firstly it is c, which is m copied to all buckets. Secondly, it is constant `
which has 1 at the end of every bucket. Then it is the difference between the
representation size of the number and of modulo k: where k = b− dlog2me.

The approach itself will happen for each bit between 0 and k (for each
bucket at once). Starting by i = k (descending down to 0) we create a tempo-
rary variable t as sum of result and c shifted by i to left: t = result+ (c� i).
Now we detect all the buckets in which t is bigger than the input. The de-
tection could be done by an above-mentioned trick with oring ` shifted by
bucket size -1 to t and subtracting input. Now we can simply stall result and
adding (c � i) to buckets which were not greater. By this approach, we will
create the biggest multiple of m which is lesser/equal to input (in each bucket
separately). Now simple input − result would do the same job as moduling
every bucket.

Lemma 21. The complexity of parallel modulo is O(b− logm).
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3.4. Number Theoretic Transform

Proof. There is a constant step for each bit greater than the highest bit of
m.

3.4.3 Pseudocodes

The NTT algorithm has to proceed not only the transformation itself but
also the inverse transformation [17]. There is Algorithm 19 for ntt and Al-
gorithm 20 for intt.

Algorithm 19 Pseudocode of NTT Algorithm
1: function ntt(x, n)
2: t = n/2
3: m = 1
4: while m < n do
5: k = 0
6: for i : 0→ m− 1 do
7: s = g[m+ i]
8: for j : k → k + t− 1 do
9: u = x[j]

10: v = x[j + t] · s%q
11: x[j] = (u+ v)%q
12: x[j + t] = (u− v)%q
13: end for
14: k = k + 2t
15: end for
16: t = t/2
17: m = t ∗ 2
18: end while
19: end function

3.4.4 Parallel NTT

Good news for us is that the only thing we are concerned about is the most
inner loop since operations in outer loops will be executed at most O((logn)2)
times.

As we can see, obtaining variables u and v is a simple question of shifts.
The addition is also easy as long as the buckets size is at least log2 q + 1.
The subtraction is somehow a catch since we cannot afford it to go negative

(which would overflow a bucket). Luckily, this has an easy solution, which is
adding c to u before subtraction.

We also need multiplication to be executed. This seems to be a pretty
tough problem since multiplication is not bucket-independent operation. Any-
way, note that we already have to do O(logm) operations during modulo so
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Algorithm 20 Pseudocode of inverse NTT Algorithm
1: function intt(x, n)
2: t = 1
3: m = n/2
4: while m > 0 do
5: k = 0
6: for i : 0→ m− 1 do
7: s = g−1[m+ i]
8: for j : k → k + t− 1 do
9: u = x[j]

10: v = x[j + t]
11: x[j] = (u+ v)%q
12: w = (u− v)%q
13: x[j + t] = w · s%q
14: end for
15: k = k + 2t
16: end for
17: t = t ∗ 2
18: m = m/2
19: end while
20: end function

another O(logm) operations will not spoil asymptotic complexity. Instead of
multiplication, we add the number shifted by all i, such that i-th bit is on
in s. Another good news is, that s is same for all buckets so we do not need
stall operation. Obviously, this is somehow problematic since we could add
number shifted by blog2 qc, so we need to make the buckets bigger. Anyway
it is enough to make them 2 · blog2 qc+ 3, which is still O(log q).

Lemma 22. The total complexity of ntt will reach:

O
(
n log(n) log(m)

W
+ n+ (log2m)2

)
Proof. The complexity of operations, unless multiplication and modulo will
remain same so the complexity will be the multiplication of NTT’s original
complexity and the maximum of complexities of modulo and multiplication
(which are same—O(log q)).
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Chapter 4
Future work

There are several more questions related to this work which were not answered
in this paper:

• What is the exact complexity of Sum-elements Tree’s queries with de-
scribed optimization?

• It it possible to construct Sum-values Tree with general modulo and no
additional overhead?

• Is it possible to design Max-value Tree with the same complexities yet
a better range of numbers on RAM model with limited size of integers?

• Could the NTT algorithm be designed without the overhead of modulo
and multiplication?
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Appendix A
Acronyms

GCD Greatest Common Divisor

NTT Number Theoretic Transform

DAG Directed Acyclic Graph

MSB Most Significant Bit

LSB Least Significant Bit

w.l.o.g. Without Loss On Generality

AVX Advanced Vector Extensions
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Appendix B
Contents of enclosed CD

root
segment.pdf
segment.tex
mybibliographyfile.bib
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