
Ing. Karel Klouda, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague August 20, 2018

ASSIGNMENT OF MASTER’S THESIS
 Title: Semantic understanding of natural conversation

 Student: Bc. Petr Lorenc

 Supervisor: Ing. Jan Šedivý, CSc.

 Study Programme: Informatics

 Study Branch: Knowledge Engineering

 Department: Department of Applied Mathematics

 Validity: Until the end of winter semester 2019/20

Instructions

The conversational AI applications are recently gaining customer interest. This project focuses on finding
the best algorithm for semantic understanding of natural utterances in a social bot. The theses will first
define the intent and entity in dialog utterances. Use the definition of the intent and entity for tagging real
conversations supplied by the supervisor. Next, identify and test sequential machine learning algorithms
for intent and entity recognition. The final result of the theses is a detailed comparison of the selected
algorithms regarding accuracy, memory requirements, computational complexity, and speed of
convergence on a tagged training set.

References

Will be provided by the supervisor.

Master’s thesis

Semantic understanding of natural
conversation

Bc. Petr Lorenc

Department of theoretical computer science
Supervisor: Ing. Jan Šedivý, CSc.

January 8, 2019

Acknowledgements

Firstly I would like to thank my family for their support during all my studies
and especially while writing this thesis. Also, I would like to thank to my
supervisor Ing. Jan Šedivý, CSc. for the possibility to work on this thesis and
many thanks also to the team of eClub, especially to Ing. Jan Pichl for advice
and support with this thesis.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive au-
thorization (license) to utilize this thesis, including any and all computer pro-
grams incorporated therein or attached thereto and all corresponding docu-
mentation (hereinafter collectively referred to as the “Work”), to any and all
persons that wish to utilize the Work. Such persons are entitled to use the
Work in any way (including for-profit purposes) that does not detract from its
value. This authorization is not limited in terms of time, location and quan-
tity. However, all persons that makes use of the above license shall be obliged
to grant a license at least in the same scope as defined above with respect to
each and every work that is created (wholly or in part) based on the Work, by
modifying the Work, by combining the Work with another work, by including
the Work in a collection of works or by adapting the Work (including trans-
lation), and at the same time make available the source code of such work at
least in a way and scope that are comparable to the way and scope in which
the source code of the Work is made available.

In Prague on January 8, 2019 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2019 Petr Lorenc. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Lorenc, Petr. Semantic understanding of natural conversation. Master’s the-
sis. Czech Technical University in Prague, Faculty of Information Technology,
2019.

Abstrakt

Tato diplomová práce se zaměřuje na nalezení nejlepšího algoritmu pro sé-
mantické porozumění přirozených konverzací. Výsledný algoritmus lze použít
například u chatbotů. Součástí práce je dataset, který vznikl pro potřeby cha-
tovací aplikace Alquist a který byl vytvořen na základě skutečných konverzací.
Práce prozkoumává sekvenční algoritmy strojového učení pro rozpoznávání
intentu a určování entit. Výsledkem práce je detailní porovnání přesnosti,
požadavků na paměť a rychlosti konvergence vybraných algoritmů. Na zák-
ladě porovnání algoritmů je v práci navrhnut nový model, který se zakládá na
propojení rozpoznávání intentu a určování jmenných entit.

Klíčová slova klasifikace intentu, určování entit, strojové učení, zpracování
přirozeného jazyka

vii

Abstract

This master’s thesis aims to find the best algorithm for semantic understand-
ing of natural dialogs. The result can be used in a conversation AI. A part of
the thesis is also a dataset, based on needs for a chatbot application Alquist
and which was based on real conversations. The thesis also identifies and
examines sequential machine learning algorithms for intent and entity recog-
nition. The result of the thesis is a detailed comparison of the selected al-
gorithms regarding accuracy, memory requirements and computational com-
plexity. Based on the results, a new model which joins intent and entity
recognition together is created.

Keywords intent recognition, entity recognition, machine learning, natural
language processing

viii

Contents

Introduction 1
Motivation and objectives . 1
Structure . 2

1 Natural Language Processing 3
1.1 Chatbots . 4
1.2 Learning algorithms types . 5
1.3 Natural language processing fields 6
1.4 Entity recognition . 7
1.5 Intent recognition . 8
1.6 Metrics . 9

2 Methods 11
2.1 Statistical models . 11
2.2 Neural-based approaches . 14

3 Experiments 29
3.1 Data . 29
3.2 Models . 34

Conclusion 45

Bibliography 47

A Abbreviations 53

B Contents of CD 55

ix

List of Figures

1.1 Predicted fields of chatbot usage[1] 4
1.2 Supervised and Unsupervised learning[2] 6
1.3 Precision and recall[3] . 10

2.1 Approximation of Markov chain[4] 12
2.2 Hidden Markov Model[5], where Walk, Shop and Clean are vis-

ible states and Rainy and Sunny are hidden states 12
2.3 Relationship which can occur after training word2vec model[6] . . 16
2.4 Difference between CBOW and Skip-gram model[6] 16
2.5 Feed-forward neural network with one hidden layer[7] 17
2.6 Long-short term memory[8] . 19
2.7 Bidirectional Long-short term memory, modified[8] 20
2.8 Max-pooling[9] . 20
2.9 Convolutional Neural Networks[9] 21
2.10 Convolutional Neural Networks for Sentence Classification[10] . . . 22
2.11 Named Entity Recognition with Bidirectional LSTM-CNNs[11] -

Recurrent part . 23
2.12 Named Entity Recognition with Bidirectional LSTM-CNNs[11] -

Convolution part . 23
2.13 Networks with Attention[12] . 24
2.14 Character embeddings in ELMo. Each word is a matrix of embed-

ding. There are several CNN with different size of filters which
output is max-pooled. The final word vector is concatenation of
outputs from max-pooled layer. 25

2.15 ELMo architecture for training and also for obtaining vector/em-
bedding. hLMk,j is the output of Long Short Term Memory (LSTM)
for k-th token and j-th layer of LSTM. 25

2.16 Attention-based Recurrent Neural Network (RNN) model for joint
intent recognition and sequence labelling[13] 26

2.17 Dropout in [14] . 27

xi

3.1 Graph used for generating dialog data [15] 32
3.2 Tool for manual labelling . 34
3.3 Model which combine Attention layer with RNN 40
3.4 Model which Combine best model for entity recognition and Intent

recognition (IR) . 41
3.5 Model loss for combined models . 42

xii

List of Tables

3.1 Data for Question Classification 30
3.2 CoNLL 2003 . 31
3.3 CoNLL 2003 entity . 31
3.4 CoNLL 2003 format . 31
3.5 Generated data . 33
3.6 ATIS dataset . 33
3.7 Amazon Web Service EC2 . 35
3.8 Results of entity recognition . 37
3.9 Results of intent recognition . 39
3.10 Results of combined models . 42
3.11 Results on ATIS dataset . 44

xiii

Listings

1.1 Example of dataset for named entity recognition 7
1.2 Example of dataset for intent recognition 8
3.1 Example of request on model REST API 43

xv

Introduction

Motivation and objectives

The usage of conversation AI1 (chatbots) is rapidly growing up, more and
more people are getting used to speaking with conversational devices (Amazon
Alexa, Apple Siri, Google Assistant). The most significant use of conversation
AI is in the call centers. The chatbots are used to cooperate with humans
to fasten the conversation or replace the human for providing time unlimited
service.

The conversation AI system is usually text-based. We do not have to focus
on an outside appearance and hardware of that system (skeleton, microphone,
speaker, . . .). The conversation AI should cooperate with ASR (speech-to-
text) and speech synthesis (text-to-speech). In the NLP module, which is a
central component of the conversation AI system, we classify intent, do named
entity recognition, analyze the sentiment and many more – with the aim to
get as much valuable information from user utterance as possible.

The intent and entity recognition are essential parts of the conversation
AI system because, for example, we have a sentence “I would like to move to
London.” We would like to extract the information that the intent is “change
address” and also recognize, that the entity is “London”. In some cases, for
example in chatbot system Alquist2, we require to catch not only the true
named entities defined here [16] but also pseudo-entities. A good example of
pseudo-entity is “rock music” in a sentence “Let’s listen to rock music.”

All predictions have to be in a real-time. This master’s thesis will focus
on creating a new dataset, based on the original algorithm, which combines
the automatic generation process and manual labeling. Then we will evalu-
ate new techniques of joint intent and entity recognition in comparison with
techniques which are dealing with intent and entity recognition separately.

1Artificial Intelligence
2http://alquistai.com/

1

Introduction

We will implement the prototype of the best model into the chatbot system
Alquist.

Structure
Firstly, the chapter “Natural Language Processing” defines what we call an
entity and intent in the context of the conversational AI system Alquist. The
next chapter “Methods” introduces machine learning principles for used mod-
els. The chapter “Experiments” is about introducing several already existing
algorithms and measure their results on an automatically generated data.
That chapter also describes a process of creation generated data. We intro-
duce the new joint model for entity and intent recognition, and we evaluate its
performance regarding accuracy, speed and computational requirements. The
last part, the conclusion, is focused on the results and possible future work.

2

Chapter 1
Natural Language Processing

Natural Language Processing (NLP) is the scientific field which is getting
more and more important nowadays. It combines probabilistic and machine
learning methods with human interaction. The NLP is very broad and includes
for example question answering, language translation, text summarizing and
also generating a text which describes an image. We can choose three main
approaches for processing text:

• Hand-written rules — This method was very popular at the beginning
of 80’s[17]. It had a big advantage in absolute control over output, so
it was much easier to find a problematic parts and repaired them. On
the other hand, it was exhausting to comprehend all possible conditions.
The typical rule could be written like this: ‘If I found text in a database
then it is an entity.’ or ‘If the text starts with a capital letter then it is
an entity.’

• Statistical approach — With the rise of computation power the algo-
rithms transfer their base computation from humans to computers. It is
the reason why we can use Conditional Random Fields, Perceptron or
neural network[18]. The computation demand for training neural net-
work is limiting. It is also the reason why big companies are focusing on
developing more powerful graphics units, which are used for that task.

• Combination of both — At the beginning of the statistical approach was
very popular to use Decision trees which combines both approaches.
Their output is in the form of “If-then-else rules”, but they are learned
automatically based on data and their labels.

We will focus mainly on the statistical approach, where we are dependent
only on the quality of our data and architecture of a model and more or less
independent of human fine-tuning.

3

1. Natural Language Processing

Figure 1.1: Predicted fields of chatbot usage[1]

1.1 Chatbots

From the beginning of human’s interaction with the computer, there was a
desire to be able to communicate with them with natural language. Between
pioneers, we can count ELIZA [19] which was developed by Weizenbaum in
1960s and was based on a set of hand-written rules. Today’s popularity of
chatbots is getting bigger thanks to the system like Amazon Alexa, Google
Home or Siri in Apple systems which can have more than 100 millions of users
worldwide. The predition of chatbot usage can be seen on Figure 1.1. It is
based on an online survey with thousands of people.

We can divide the usage of chatbots into several categories:

• Task-oriented conversation — The purpose of the conversation is to make
a certain task (reservation of a hotel, book a flight, find a piece of infor-
mation...)

• Chit-chat conversation — The purpose is not much specific, and there
are only a few requirements for that system. Unfortunately, it means
that it is much harder to create that system. The conversation should
be engaging for a human, it should be about whatever topic (or at least
broad spectrum of topics) the user want (the open domain) and it should
also be persistent across conversation turns (for example it should not
say that it likes the band Linkin Park and in the next utterance says
that does not)

4

1.2. Learning algorithms types

According to [20] more than 20 billions of turns of conversation was made
until 2017 on the platform XiaoIce, which is a chatbot released by Microsoft
for Chinese customers. Each conversation has 20 turns on average. It sounds
like very promising data for future development in chatbots’ field.

Usually chatbot gets a query q and system returns a response r. Respond
model has usually two options:

• Generation-based system — Based on Statistical Machine Translation
(SMT) and big amount of data, we can train generating system (Encoder-
Decoder model). Encoding (based on Recurrent Neural Network (RNN))
is a function which take current input xt and previous hidden state ht−1
to produce current hidden state ht. Decoding is in a certain way reverse
process. It takes previous output yt−1 and current hidden state ht to
produce current output yt and next hidden state ht+1.

• Retrieval-based system—Main of this system is searching for a mapping
from q to r. It can be based on similarity between vectors of q and r
(TF-IDF, one-hot or output representation of RNN like Long Short Term
Memory (LSTM) or Gated Recurrent Unit (GRU) and nowadays even
Convolutional Neural Networks (CNN)).

1.2 Learning algorithms types

We can divide learning algorithms into four types based on a dataset we have:

• Supervised learning — The dataset is in a form where we know output
for given input in advance. The supervised learning is a technique to
create a probabilistic model, which can predict probability distribution
over input based on features extracted from it[21].

• Semi-supervised learning — The part of dataset is labeled and the algo-
rithm is trying to apply that knowledge on unlabelled data.

• Unsupervised learning — The dataset is in a form where we know only
input, and we do not know the output.

• Reinforcement learning — We does not have an feedback for a given
input, until end of an experiment. For example, in computer games, we
will make a move (an input), and we get a score (an output) at the end
of the game (an experiment).

Difference between supervised and unsupervised learning can be seen on
Figure 1.2.

5

1. Natural Language Processing

Figure 1.2: Supervised and Unsupervised learning[2]

1.3 Natural language processing fields
The NLP is included in most of today’s system which interacts with humans.
We can utilize it for evaluating semantic (positive or negative attitude) of
comment over a product to know which one is problematic. We can extract
popular topic from news and rewrite them exactly for the need of the con-
sumer. Translation is another very hot topic following by chatbots. It is
impossible to give the full list of all NLP fields, but there are just some of
then which we found in several basic systems:

• Syntax based - Lemmatization, Part-of-Speech (POS), Stemming, Word
segmentation

• Named Entity Recognition (NER)

• Machine translation

• Intent recognition (IR)

• Sentiment analysis

• Question answering

• Natural language generation

• Text summarization

• Text-to-speech and Speech-to-text

6

1.4. Entity recognition

1.4 Entity recognition
Our system has to be incorporated with already created and used system
Alquist, so we have to make some retreats from the common definition of
Named Entity. ‘In the expression “Named Entity”, the word “Named” aims
to restrict the task to only those entities for which there are one or many
rigid designators. Rigid designators include proper names as well as certain
natural kind terms like biological species and substances.’[16] So, in a sentence
“I would like to move to London”, we can extract London as a named entity. It
is useful for searching in knowledge graphs or databases. On the other hand,
if we use that definition in a sentence like “I want to listen to rock band Guns
N’ Roses” we extract only Guns N’ Roses which can be enough in a case
that recognition will be accurate. However, if we imagine a situation where
we have only a small database of rocks band, and there is no record of “Guns
N’ Roses”. Then we have two choices. First is to respond “We don’t know
that band” to the user. The other possibility is to extract also some helpful
information from the sentence like a word “rock”. If a system (and especially
a database/knowledge graph) counts with this possibility then it can search
for all bands which are playing rock music and randomly choose one of them
resulting in a much more pleasant answer: “I am sorry. I don’t know that
rock band but I can play you some other rock band. For example randomly
chosen rock band”. We will call the word “rock” our pseudo-entity.

The approach in the Alquist is much more closer to the latter approach.
Fortunately, all this is mainly based on a given data. We will concern mainly
on supervised machine learning techniques which are resistant for changing
the definition of a named entity as long as we provide new suitable data.
However, we will keep that in mind, while creating our dataset.

We will also avoid using the gazetteer[22], because of our loose definition
of the entity. The gazetteer is a usually just a list of entities which we use for
searching. In our case, the entity can be for example rock (meaning a music
genre), but with using a gazetteer it will also catch rock (stone).

1.4.1 Data

We will stick with the commonly used format of data and use IOB encoding
(an example on Listing 1.1) according to [21]. I stands for Inside Entity, O
stands for Outside Entity and B means Beginning of Entity.

1 I 0 0
2 l i k e 0 0
3 John B B−ac to r
4 Wayne I I−ac to r
5 . 0 0

Listing 1.1: Example of dataset for named entity recognition

Other options are:

7

1. Natural Language Processing

• IO Encoding — I stands for Inside Entity and O stands for Outside
Entity which leads in loosing information if there will be two entities
next to each other

• BMEWO Encoding[23] — Similar like IOB but add End-of-entity tag,
M id-entity tag and single-token-entity tag (W)

• XML marking — Can be useful to store data in this format because
possibility of adding further information about the entity but not very
usable for evaluating and training models

1.5 Intent recognition

The other way to know about the goals of the user is to recognize his intent.
In the Alquist case (and many others [13] [24][25]) is very useful to know the
intent in a case when we also need to extract entities. For example, in an
sentence “Can you please play some rock music” where we determine that
the intent is play_music, then the entity should be rock. But if we get intent
tell_news in a sentence “What can you tell me about rock music”, then the
entity should be rock music. Because we need to look for further information
about rock music in the knowledge base or the database - and if we look only
for rock we can also get information about a stone.

As in the case of NER we will create methods which can be easily trans-
ferred to the broader range of usage and depends only on data. So, all calcula-
tion will be dependent only on the provided data and more or less independent
on the definition of intent. The independence also has a big advantage in a
way that we can compare algorithms on different datasets.

The intent recognition can also be described as a task of sequence classi-
fication. We get a sequence of words (the order is important), and we want
to make a prediction (assign one label from the final set of possible outputs).
This is very similar to Sentiment analysis because we can easily transfer our
data between these two tasks. One disadvantage is that we need several sep-
arate models for each intent. So we will avoid it. Our typical datasets look
like in Listing 1.2.

1 I want to t a l k rock music . __label__play_music
2 Let ’ s t a l k about p o l i t i c s . __label__tell_news
3 What i s the weather today ? __label__tell_weather
4 . . .

Listing 1.2: Example of dataset for intent recognition

8

1.6. Metrics

1.6 Metrics
Because we are working with sequential data, upon standard metrics, we need
also to include a metric which takes the whole sentence into account. If we
look into common NER dataset we will see that it is usually strongly unbal-
anced. So it is very common that if we predict non-entity everywhere we can
reach even 90% precision with 100% recall for non-entity class. The results are
quite high but the model is useless. We can fight this by looking for precision
and recall for all of the classes and then do micro/macro/weighted average of
scores. This phenomenon usually does not occur in a data for intent recogni-
tion. Next possible solution is to define a new metric which takes into account
the sentence as a whole:

M =
∑s 1 if ∀x ∈ Is, ∀y ∈ Ts : tagx == tagy else 0

sentences (1.1)

where s is the current sentence, Is is a set of correct labels for a sentence s
and Ts is a set of predicted labels for a sentence. This attempt can be useful
when even a little mistake can cause a big troubles.

In our case we will stick with more common practise and measure the
performance for NLP task in F1 Score[26]. The limitation is that it can be
measured only on binary problems (negative/positive, zero/one ...), but it can
be calculated for each class separately and then average them together.

F = 2 · precision · recall
precision + recall (1.2)

where precision and recall are defined:

precision = true positive
true positive + false positive (1.3)

recall = true positive
true positive + false negative (1.4)

where true positive means items where model gives the right answer, false
positive are items where model give an correct answer but should give negative
and false negative is where model give a negative one, but it should be positive.
More on Figure 1.3.

We will use an scikit-learn implementation of weighted F1 Score3 where
each label is weighted by its support.

3https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1score.html

9

1. Natural Language Processing

Figure 1.3: Precision and recall[3]

10

Chapter 2
Methods

2.1 Statistical models

A statistical model represents, often in considerably idealized form, the data-
generating process. Usually thought of it as a pair (S, P) where S is the
set of possible observations (the sample space), and P is a set of probability
distributions over S. Because we cannot get an infinite amount of data, we
are claiming that our model can lead to only a simplification or approximation
of reality[27].

2.1.1 Markov chain

To get to more sophisticated algorithms, firstly we need to define what is
Markov Chain. Markov chain is a model, which is telling us a probability
of certain sequence of states. It can be easily described by graph on Figure
2.1 or with set of states S = (s1, s2, ..., sN), initial state ss (or an initial
probability distribution over states) and a transition probability matrix A =
(a11, a12, ...aN 1, ..., aNN) where aij means probability of transition from si to
sj , so P (si|si−1) = aii−1. There is also a condition that

∑i=n
i=1 ain = 1 for ∀n

and Markov assumption which will be described below.
Markov assumption tells us that process is memory-less which mean that

probability of transition to si is based only on si−1 and not previous states.
We can write:

P (si|s1, ..., si−1) = P (si|si−1) (2.1)

2.1.2 Hidden Markov Model

Hidden Markov models (HMM) are a powerful probabilistic tool for modeling
sequential data. We can assume that from each state we can emit an observa-
tion. The observations are usually modeled as multinomial distributions over

11

2. Methods

Figure 2.1: Approximation of Markov chain[4]

Figure 2.2: Hidden Markov Model[5], where Walk, Shop and Clean are
visible states and Rainy and Sunny are hidden states

a discrete vocabulary, and the HMM parameters are set to maximize the likeli-
hood of the observations. For that we need to defineO = (o1, o2, ..., ot) which is
a set of possible observations and emission matrix E = (e11, e21, .., en1,, ent)
which define probability of observation from O based on state S. We can also
write eij = P (oi|sj). The Figure 2.2 show base of Hidden Markov Model. The
word hidden is used because usually we don’t see states but the observations
is all information which we get. Then we can try to predict most probable
sequence of states based on the observation. The HMM is generative model
which means that a model describing how a series of observations Ot can
probabilistically generate a series of states St.

12

2.1. Statistical models

P (O,S) = P (S,O) =

= P (s1, s2, ..., sN , o1, o2, ..., oT) = P (s1) ·
n=N∏
n=2

P (sn|sn−1) ·
n=T∏
n=1

P (on|sn)

(2.2)

Normally, we will use three function, when we work with HMM:

• Forward algorithm

• Viterbi algorithm - the most probable sequence of states which can emit
given observations

• Baum-Welch algorithm - calculate matrix A and E from given states
and observations

2.1.3 Conditional Random Fields

The HMM was a generative model for sequences, the Conditional Random
fields (CRF) is the discriminative model for sequences. It works in the follow-
ing way. We train our model to predict a set of states directly from a set of
observations. The generative and discriminative models can be converted to
each other by Bayes’s rule[28]. In practice, the approaches are distinct, each
with potential advantages and disadvantages of each approach. The Linear-
chain CRF is kind of restriction of CRF which counts only with current and
previous observations.

General form looks very similar to logistic regression[29]:

P (O|S) = 1
Z(S)

n∏
i=1

φ(oi, oi−1, S)

= 1
Z(S, λ, µ) exp

n∑
i=1

∑
k

λkfk(oi, oi−1,S) +
∑
l

µlgl(oi,S)
(2.3)

where Z(S, λ, µ) is a normalization constant:

Z(S, λ, µ) =
∑
o

exp
n∑
i=1

∑
k

λkfk(oi, oi−1,S) +
∑
l

µlgl(oi,S) (2.4)

and f and g are feature function which return 0 or 1.
The CRF is supervised method so we need a train data of size D in a form

{od, dd}Dd=1. Where od is our d-th observation (sometimes called yd) and sd is

13

2. Methods

our d-th state (sometimes called xd). Learning CRF means find the optimal
parameters λ∗ and µ∗ through gradient updates.

λ∗µ∗ = arg max
λµ

∏
P (od|sd, λ, µ) (2.5)

Then for inference we used given λ∗ and µ∗:

y∗ = arg max
y

exp(
n∑
i=1

(
∑
k

λkfk(oi, oi−1,S)) +
∑
l

µlgl(oi,S)) (2.6)

The CRF as HMM are very commonly used for a labelling sequences.

2.2 Neural-based approaches

According to [30] we can divide neural networks into several generation:

• Based on perceptrons and threshold approaches with binary output —
for example Hopfield nets and Boltzmann machines

• Based on activation functions — for example feedforward neural net-
works and recurrent neural networks

• Based on spiking neurons — simulating electrical potential in our brains

In this work we will focus mainly on second generation - RNN, which
include LSTM and also on CNN.

2.2.1 Word Representation

If we want to train our model we need to represent our input (text data) to
the model because it cannot classically work with text. All training can be
perceived like an updating specific matrix where each element of that matrix
is a number. The simplest way is one-hot encoding which supposes that we
know the vocabulary in advance or that we limit the number of words we want
to use. Unfortunately we lose all the semantic information and for example
words “queen” and “queens” are not related at all. The other problem is in
wasting the space because we have an array where almost all elements are
zero.

Both problems can be solved by training a language model on a large
corpus of data.

14

2.2. Neural-based approaches

2.2.1.1 Language model

The language model is a statistical model which is telling us the probability
over a sequence of words. It can be used to choose (P (w1, w2, ..., wN)) or
generate (∀q ∈ QNP (q) where QN is set of all possible combination of N-th
words) the most probable sequence of words.

To get a basic idea about compressing word representation firstly, we need
to look at a way for modeling language. The commonly used solution can be
N-gram language model:

P (w|c) = Count(w, c)
Count(c) (2.7)

where w is a word from our vocabulary and c is a context of that word
(previous n words). This model returns probability. Practically the model
has several limitations - assumes exact match on our context words (not suit-
able for morphologically rich languages like Russian or Czech) and the bigger
context we assume, the more possible combinations we get which lead to more
computation and data demanding system[31].

This system models words as atomic units - without the notion of similarity
between words because they are represented as indices in a vocabulary. This
choice has several good reasons - simplicity, robustness and the observation
that simple models trained on huge amounts of data outperform complex
systems trained on less data[6].

2.2.1.2 Word Representation in Vector Space

The current rise of machine learning techniques in recent years leads to one of
the most promising concepts which is a distributed representation of words[32].
That means the representation of words as continuous vectors which are based
on the distributional hypothesis (words with similar context has a similar
meaning). The architecture is known as Skip-gram and Continuous Bag-of-
Words (CBOW) model[31][6]. Both models are shallow neural networks which
try to learn language model for a given corpus. The main difference between
Skip-gram model and CBOW model can be seen on Figure 2.4 and in general
is in assumption what is an input and what should be output.

Training complexity of Skip-gram model is:

O = E · T ·Q = E · T · C · (D +D · log2(V)) (2.8)

Training complexity of CBOW is:

O = E · T ·Q = E · T ·N ·D +D · log2(V) (2.9)

where E is amount of training epoch (between 3-50), T is number of word
in training set (up to 1 billion), C is the maximum distance of words from
which we choose R random words (so from range < 1;C >), V is a size of

15

2. Methods

Figure 2.3: Relationship which can occur after training word2vec model[6]

Figure 2.4: Difference between CBOW and Skip-gram model[6]

vocabulary, D is dimension of embeddings and N is the input size (a common
choice is 10)[6].

The training objective of the Skip-gram model is to find word represen-
tations that are useful for predicting the surrounding words in a sentence or
a document. For a sequence of training words w1, w2, ..., wT we are trying to
maximize the average log probability:

1
T

T∑
t=1

∑
−c≤j≤cj 6=0

log p(wt+1|wt) (2.10)

where c is a function of the center word wt (getting a training context for
that word). The larger value we set the more examples we get, at the expense
of the training time.[33]

For computing p(wt+1|wt) the authors use hierarchical softmax which was
first introduced by Morin and Bengio[34] and decrease the number of needed
evaluation from evaluating W output nodes to approximately log2(W) nodes.

16

2.2. Neural-based approaches

Figure 2.5: Feed-forward neural network with one hidden layer[7]

They also use binary Huffman tree to speed up the calculation for the frequent
words. Another technique for speeding process up is negative sampling (there
are k negative samples for which we want to minimize the probability) and
subsampling of frequent words with the formula:

P (wi) = 1−
√

t

f(wi)
(2.11)

where f(wi) is how many times the word wi occurs and t is heuristically
chosen threshold.

Firstly we do forward propagation for a given input (word) to get a proba-
bility of output words (over vocabulary). We know the correct context, so we
use back-propagation to adjust weights to get more correct probabilities next
time. After training the model, we can see preserved relationship between
words (on Figure 2.3). Then, for example, if we take vector(King) minus
vector(Man) plus vector(Woman) then we get a vector which is very close to
vector(Queen) .

2.2.2 Neural Network

The neural network is trying to simulate what we believe our brain does. Of
course, there are a lot of limitation and unknown areas. So when we talk about
artificial neural networks, we mean certain approximation of our knowledge
about our brain. One significant feature of our brain is the ability to adapt in
a new behavior or ability to learn new skills.

We simulate this process by defining a weight matrix W which represent
one layer in our network. The dimension of W is Ro×i where i is a size of
input and o size of the output. We can stack several layers onto each other to
get a more robust model as can see on Figure 2.5.

17

2. Methods

The basic equation for one layer is:

ol = f(Wlil + bl) (2.12)

where ol is output vector on l-th layer of dimension Ro×1, il is input vector
on l-th layer of dimension Ri×1, f is a non-linear activation function (usually
tanh), bl is bias for l-th layer and Wl is weight matrix for layer l.

The values in the weight matrix have to learn. The usual way for learning
is to use back-propagation algorithm. In general, it means of updating networks
our weights by back-propagating a gradient vector in which each element is
defined as the derivative of an error measure for a parameter. Error signals
are usually defined as the difference of the actual network outputs and the
desired outputs[7].

2.2.3 Recurrent Neural Network

RNN is a type of neural networks which successfully deal with sequential data.
The input is a sequence of (x1, x2, ..., xN) and the output of RNN is a sequence
of hidden states (h1, h2, ..., hN).

ht = f(Wxxt +Whht−1 + bn) (2.13)

Hidden states represent a piece of specific information about the input
sequence (strongly depends on our loss function) and we are entirely free to
calculate. For NER we can use the whole sequence, for we typically use only
last hidden state hN and propagate it to some dense neural network.

Classical RNN fail to learn long dependencies in a sequence and tend to be
biased towards their most recent inputs in the sequence[35]. So we will work
with the improved version called LSTM. They were designed to combat this
problem by adding a memory cell. The memory cell is much more suitable
to extract long-range dependencies[36]. We will follow classic architecture
suggested by Hochreiter and Schmidhuber in 1997:

input gate : it = f(Wixt +Wiht−1 + bi) (2.14)

forget gate : ft = f(Wfxt +Wfht−1 + bf) (2.15)

output gate : ot = f(Woxt +Woht−1 + bo) (2.16)

inner state : ut = tanh (Wuxt +Wuht−1 + bu) (2.17)

memory cell : ct = it × ut + ft × ct−1 (2.18)

18

2.2. Neural-based approaches

Figure 2.6: Long-short term memory[8]

hidden state : ht = ot × tanh (ct−1) (2.19)

where × is element-wise multiplication, xt is d-dimensional input vector
at time t and W are weight matrix which need to be learn. The learning is
based on gradient descent. A common choice is Adaptive Moment Estimation
(Adam) which combines the advantages of several previous algorithms[37].

A slightly more dramatic variation on the LSTM is the GRU[38]. It com-
bines the forget and input gates into a single update gate. It also merges
the memory cell state and hidden state and makes some other changes. The
resulting model is simpler than standard LSTM models and has been growing
increasingly popular. We can see basic architecture in Figure 2.6.

2.2.3.1 Bidirectional LSTM

To overcome the limitations of a regular RNN, Schuster[39] propose a bidirec-
tional recurrent neural network that can be trained using all available input
information in the past and future of a specific time frame.

In general, there are two independent LSTM networks in a forward and
backward direction (as shown in Figure 2.7), which are trained independently
(through back-propagation).

• Forward pass

• Backward pass

• Update weights

The output at each timestamp t is a concatenation of ht and h′t. Because
the size of the network is doubled, the quantity of parameters is also doubled.

2.2.4 Convolutional Neural Network

The CNN were specifically designed to deal with the variability of two di-
mensional shapes[40]. There are two essential parts in almost every CNN:

19

2. Methods

Figure 2.7: Bidirectional Long-short term memory, modified[8]

Figure 2.8: Max-pooling[9]

filter/kernel (we will use term filter) and max-pooling layer. We can
imagine filter as matrix W ∈ Rw×h where w and h are chosen by us and says
how big area we should monitor by this specific filter. The max-pooling layer
is non-linear function which picks up the maximum in a certain area defined
by us (usually 2×2 or 3×3). For max-pooling (shown on Figure 2.8 following
formula Xnew

0,0 = max (Xold
0,0 , X

old
0,1 , X

old
1,0 , X

old
1,1) = max (1, 2, 3, 2) = 3) with a

size of 2× 2 on a 2D input of size d× n it would be like:

x11 x12 x13 . . . x1n
x21 x22 x23 . . . x2n
...

...
...

xd1 xd2 xd3 . . . xdn

 =

max (x11, x12, x21, x22) . . .
max (x21, x22, x31, x32) . . .

... . . .

20

2.2. Neural-based approaches

Figure 2.9: Convolutional Neural Networks[9]

so filter W of size 2× 2 would work like this

xnew
11 =

2∑
i=1

2∑
j=1

wij ij

...

xnew
d−1n−1 =

d∑
i=d−1

n∑
j=n−1

wij ij

so it would change the dimension of the original input. If the input was
Rd×n then after applying the filter of size 2 × 2 it would be Rd−1×n−1. We
can fight with this by adding 0 to a border of the matrix (for all of the values
which are not onto input matrix). Then it would be like this:

xnew
11 =

1∑
i=0

1∑
j=0

wij ij

...

xnew
d−1n−1 =

d+1∑
i=d

n+1∑
j=n

wij ij

On Figure 2.9 is shown very basic system where you can see connection
between CNN and acronym-next-pages.

2.2.4.1 Convolution neural networks over sequences

Despite little tuning of hyperparameters, even a simple CNN with one layer
of convolution performs remarkably well in working with sequential data[10].
We can apply CNN over words or characters. Our embeddings of dimension d
for a word of character length L or a sentence of word length L can be written
in the matrix M ∈ Rd×L like:

M =
[
x1 x2 . . . xL

]
(2.20)

21

2. Methods

Neural Networks for Sentence Classification.png

Figure 2.10: Convolutional Neural Networks for Sentence Classification[10]

where xn ∈ Rd or for the illustration we can look at Figure 2.10.
To learn patterns over the embeddings, a convolution operation with a

filter w ∈ Rd×s is applied to a window of s embeddings (can be representations
of characters or words). It results in a feature matrix C. Which can be also
written that each feature ci ∈ C is extracted from a window of embeddings
xi:i+s1 ∈ Rd×s, as follows:

ci = f(w · xi:i+s1 + b) (2.21)

where f is an activation function, e.g. sigmoid or tanh, and v ∈ R is a bias.
We will combine RNN with CNN similar to [11], which showed promising

approach. Their model is described on Figure 2.11 and Figure 2.12.

2.2.5 Attention model

The recurrent model with the attention (see Figure 2.13) can solve certain
problems with long-term dependencies in pure recurrent networks[12].

It is strongly coupled with the recurrent networks and its hidden states hi.
We need to find a suitable combination for an output C:

C =
T∑
t=1

αt · ht (2.22)

where T is number of hidden states h1, h2, ..., hT (for example taken from
LSTM) and αt is a softmax output of learned function a (can be a feed-forward
acronym-next-pages):

et = a(ht) (2.23)

αt = exp et∑T
k=1 exp ek

(2.24)

22

2.2. Neural-based approaches

Figure 2.11: Named Entity Recognition with Bidirectional LSTM-CNNs[11] -
Recurrent part

Figure 2.12: Named Entity Recognition with Bidirectional LSTM-CNNs[11] -
Convolution part

23

2. Methods

Figure 2.13: Networks with Attention[12]

There is also possibility to use pure word embeddings as a hidden states
h1, h2, ..., hT to avoid RNN units.

2.2.6 Deep contextualized word representations

Currently, many teams all over the world are focusing on improving perfor-
mance over many tasks with word embeddings. Combination of previous
methods is one of the state-of-art models which is called ELMo (Embeddings
for Language Models) [41]. They say that they reached new state-of-the-art
results in SQuAD, SNLI, NER or even POS. Their approach works because
the language model learns on a huge amount of monolingual data which are
easy to obtain and then we fine-tuned our model on a specific task like NER
or IR. They also use character embeddings as an input which is dealing with
out-of-vocabulary words by default and then CNN over this char embeddings
to create a vector representation of the word (for more detail see Figure 2.14).
After they obtain a word embedding they use it as an input into bidirectional
LSTM which has to return the probability of next/previous (because of bi-
direction) words. After this training phase we have pre-trained model which
is used to get a word embedding based on the context of the whole sentence.
For example a word “bank” can be used in multiple sentences with different
meaning, so the embedding will differ too. The final embedding is calculated
like a linear combination of outputs of inner RNN, where different RNN catch
a different information (semantic or syntactic). We can see it on the Figure
2.15.

24

2.2. Neural-based approaches

Figure 2.14: Character embeddings in ELMo. Each word is a matrix of em-
bedding. There are several CNN with different size of filters which output
is max-pooled. The final word vector is concatenation of outputs from max-
pooled layer.

Figure 2.15: ELMo architecture for training and also for obtaining vector/em-
bedding. hLMk,j is the output of LSTM for k-th token and j-th layer of LSTM.

25

2. Methods

Figure 2.16: Attention-based RNN model for joint intent recognition and
sequence labelling[13]

2.2.7 Joint intent recognition and sequence labeling

Few works[13][24] are focusing on a combination of a sequence labelling (for
example slot filling4 which is similar to NER) and classification. They are
using different approaches like Encoder-Decoder RNN[24] or a combination of
LSTM with CNN[13]. They are suggesting the model on Figure 2.16 as one
of the most promising. It combines advantages of recurrent neural networks
and attention model.

A bidirectional RNN reads the source sequence in both forward and back-
ward directions. Sequence label dependencies are modeled in the forward
RNN. The hidden state hi at each step is a concatenation of the forward state
and backward state. This hidden state hi is then combined with the context
vector ci produced by the attention model to get the intent distribution. Then
we select the most feasible label.

2.2.8 Overfitting

The overfitting is the common obstacle of large models with thousands of
parameters with combination with a low amount of data. There are two types
of overfitting[42]:

• Big model for a few examples — a model that is more flexible than it
needs to be and sometimes includes irrelevant components or predictors
(quadratic model for only two examples)

4For example, the task is to find a place in a text where should be information about a
flight, destination, time, . . .

26

2.2. Neural-based approaches

Figure 2.17: Dropout in acronym-next-pages[14]

• Wrong model for our data — a model, includes irrelevant components.
One example can be imagined like using a polynomial of excessive degree
(quadratic model on a linear data)

We should avoid these combinations due to several difficulties which they
can cause:

• Wasting computing resources

• Make a harder prediction for unseen data

• Worse interpretability which leads to worse portability of a model

Because overfitting problem is well-know[14][18][23] there are few attempts
to fight against it (overfitting can happen in all sorts of model but we will focus
on acronym-next-pages):

• Adding Dropout to acronym-next-pages — As shown in Figure 2.17 we
will use a probability distribution to choose which neurons should be
dropped and not used in a computation. A parameter of dropout is the
ratio (means how many neurons we would like to hide)

• Adding Regularization to acronym-next-pages — Adding regularization
term to loss function which will punish models with huger parameters

• Early stopping — Stop training of a model when the loss on the valida-
tion set is getting higher

27

Chapter 3
Experiments

The previous section talks about data sources we will be used. In the practical
part, we will use several models and compare them to each other based on
that data.

3.1 Data

The data is a critical part of every model. We will focus mainly on text data
so there are several important moves which we should consider:

• Tokenization

• Stemming/Lemmatization

• Spelling errors

We will work with word embeddings. First choice would be fastText5

which prove superior over other types of embeddings (like word2vec[33] or
Glove[43]) in several tasks [44]. Because of that we do not have to deal with
stemming/lemmatization or miss-click detection because of the language
modeling technique used for creating word embedding. It deals with that
obstacle out of the box. However, what we should consider is proper tokeniza-
tion.

We will also include ELMo embeddings (described in Section 2.2.6) into
our experiments because of their awareness about the context of a whole sen-
tence and proven strong result over many NLP tasks[41]. There are several
pretrained models6, but we will use a version suitable for library Keras7. The

5Pretrained embeddings available at https://fasttext.cc/docs/en/crawl-vectors.html
6https://allennlp.org/elmo
7Modification of https://github.com/strongio/keras-elmo/blob/master/Elmo%20Keras.ipynb

29

3. Experiments

Name # examples # unique
words

Average
length # intents

Train Set 5452 9448 10.2 50
Test Set 500 1103 7.5 42

Table 3.1: Data for Question Classification

TensorFlow documentation is available8 and provide good source of informa-
tion about the interface. We can train our task specific parameters (which
is used for multiplying the outputs of inner LSTM). The output vector is 1024
big and is created as the weighted sum of the inner layers in both directions.

Both embeddings are publicly available as a pre-trained models.

3.1.1 Datasets for intent recognition

There were several conditions which need to be met. Firstly the dataset has
to be publicly available, then there should also be results based on the dataset
to allow us to compare our results with them and last, but not least it should
be the task which is closely related to the one we want to do in Alquist. Based
on our conditions, firstly, we chose the datasets presented in [45], where is a
comparison of publicly available tool (like RASA9, API.ai10, IBM Watson11

. . .) for intent recognition. Unfortunately, there is no essential information
about models which are used by these tools and another drawback is a very
tiny number of examples in a train and test set (three hundreds). The amount
of data is not enough for training acronym-next-pages so we do not want to
include it in our experiments because of high probability of overfitting the
data. Another data source was chosen based on [46],[10] and [45]. The Ques-
tion Classification dataset created by Xin Li and Dan Roth[47] became
standard for broad spectrum of NLP tasks. The data are publicly available12

and consists of almost 5500 training questions and balanced 500 testing ques-
tion. The question taxonomy13 consists 6 broader categories (such as question
about ABBREVIATION, ENTITY, DESCRIPTION, HUMAN, LO-
CATION and NUMERIC) and 50 subcategories. More information can be
seen on Table 3.1.

8https://tfhub.dev/google/elmo/2
9https://rasa.com/

10https://dialogflow.com/
11https://www.ibm.com/watson/
12http://cogcomp.org/Data/QA/QC/
13http://cogcomp.org/Data/QA/QC/definition.html

30

3.1. Data

Articles # Sentences # Tokens
Training Set 946 14,987 203,621

Developments Set 216 3,466 51,362
Test Set 231 3,684 46,435

Table 3.2: CoNLL 2003

LOC # MISC # ORG # PER
Training Set 7140 3438 6321 6600

Developments Set 1837 922 1341 1842
Test Set 1668 702 1661 1617

Table 3.3: CoNLL 2003 entity

Word POS tag Chunk tag Named entity tag

Table 3.4: CoNLL 2003 format

3.1.2 Datasets for entity recognition

Datasets for entity recognition was chosen based on data which are most
often used in previous works [11]. Dataset is called CoNLL 2003[48] and is
publicly available14. Dataset was introduced at CoNLL-2003 Shared task for
language-independent named entity recognition[26] - it is the reason why there
are two languages included - English and German. Only English was used due
to copyright license. There is only one change to original dataset, and it is
changing spaces in a line to tabs. The change was suitable for reusability code
for other datasets.

3.1.3 Automatically generated dataset

The automatically generated dataset was created from dialogs graph used in
a chatbot system Alquist. The Figure 3.1 shows a graph which is used for a
dialog generation. Each dialog is located in a folder with a name describing
his intent. We used name of the folder for intents. The folder structure
of dialogs is mandatory. Each dialog graph contains nodes, where we can
define text template. It determines sentences which chatbot system or a user
could say. The dialog graph also include entity mark which is placeholder
for substituting words. Base dialog graphs was taken from a chatbot system
Alquist and then manually updated to required format or deleted if there was
no mentions about entities or a place for adding entity mark. The output
looks like:

14https://www.clips.uantwerpen.be/conll2003/ner/

31

3. Experiments

Figure 3.1: Graph used for generating dialog data [15]

• Let’s talk about #Entity#!

• Do you like **#Pseudo_entity#**?

where everything inside hashtags is substituted with entity/pseudo-entity
(for example it would be London and rock music in the illustration above).
The names for entities were taken from knowledge graph based on Microsoft
Concept Graph15 which was updated by Alquist’s team with new data. For
generating the dataset was used 51 models with minimum expansion size set
to 500 (every template should generate at least 500 passes through graph).

The statistics for a generated dataset are shown in Table 3.5.
The generated dataset is unbalanced because of 89% of non-entities. The

reason is that there are low occurrence of entities in a natural text. But we
will use techniques against overfitting to fight problem of unbalanced dataset.

15Available at https://concept.research.microsoft.com/Home/Introduction

32

3.1. Data

Name # Sentences # Examples Average length
of words Unique values

Training Set 63629 X 8.42 4025 words
Training Set

NER X 535967 X 30

Training Set
INTENT X 63629 X 61

Test Set 15880 X 8.40 2951 words
Test Set
NER X 133542 X 30

Test Set
INTENT X 15880 X 61

Table 3.5: Generated data

Name # Sentences # Examples Average length
of words Unique values

Training Set 4978 X 4.45 943
Training Set

NER X 4978 X 129

Training Set
INTENT X 4978 X 26

Test Set 893 X 4.39 943
Test Set
NER X 893 X 129

Test Set
INTENT X 893 X 26

Table 3.6: ATIS dataset

3.1.4 ATIS dataset

The dataset was created by team in Microsoft and is publicly available16. The
dataset (described in Table 3.6) contains spoken utterances classified into one
of 26 intents. Each token in a query utterance is aligned with IOB labels.
Primarly, the dataset is used for intent recognition and slot filling, but the
slot filling and entity recognition are interchangeable.

3.1.5 Manual labeling tool

Because we want to have as much valid data as possible, we created a labeling
tool (which is shown in Figure 3.2) for the purpose of this theses. The labeling
tool uses web interface which loads data in a format specified in config file.
After loading data, they are shown to the user, and he has a possibility to

16github.com/Microsoft/CNTK/tree/master/Examples/LanguageUnderstanding/ATIS

33

3. Experiments

Figure 3.2: Tool for manual labelling

put right labels to right words. The tool was used for manual correction of
generated dataset.

3.2 Models

The models are trained and evaluated on data described above. The number
of parameters is taken from the summary output provided by library Keras17,
which was chosen mainly for a possibility of fast creating and testing models.
The time consumption is based on a tool directly provided by Jupyter Note-
book18 and RAM consumption is measured by a tool ipython_memory_usage19,
which monitor usage of RAM with system memory profiler. Each model was
trained and measured in a fresh environment on Amazon Web Service EC2
G320 (details in Table 3.7). The server GPU is based on graphics card Tesla
M60 which can be monitored by a tool nvidia-smi21. The measurements are

17https://keras.io
18https://ipython.readthedocs.io/en/stable/interactive/magics.htmlmagic-time
19https://github.com/ianozsvald/ipython_memory_usage
20https://aws.amazon.com/ec2/instance-types/g3/
21The NVIDIA System Management Interface, more information available at

https://developer.nvidia.com/nvidia-system-management-interface

34

3.2. Models

Name GPUs vCPU RAM (GiB) GPU Memory (GiB)
g3.4xlarge 1 16 122 8

Table 3.7: Amazon Web Service EC2

based on average from 10 different runs and confidential interval are calculated
with 95% confidence assumes that the samples are drawn from a Gaussian dis-
tribution.

3.2.1 Entity recognition

In this part, we will be working with sequence input and sequence output.
We need that the model will predict a label for each word. In an experiments
below we were using fastText and ELMo embeddings. CRF was one of the
most effective approaches for NER, it achieved excellent performances on sev-
eral tasks, including NER[49]. The disadvantage is a need for defining quality
features functions (for example orthographic features). The orthographic con-
vertor is a basic function with the set of rules rewriting the text to series of
marks (for example chars in uppercase to C, the lowercase to c and numbers
to n). However, we can substitute the manual creation of feature function by
connecting an output of acronym-next-pages as an input to CRF.

35

3. Experiments

The approach was following:

• (1) Use forward and backward RNN + fastText

• (2) Use forward and backward RNN + fastText + CRF

• (3) Use forward and backward RNN + ELMo

• (4) Use forward and backward RNN + ELMo + CRF

• (5) Combine CNN over word-based and char-based input + fastText

• (6) Combine CNN over word-based and char-based input + fastText +
CRF

• (7) Combine CNN over word-based and char-based input + ELMo

• (8) Combine CNN over word-based and char-based input + ELMo +
CRF

The main aim was to find best algorithm and compare embeddings. The
model “Combine CNN over word-based and char-based input” was based on
Section “Convolution neural networks over sequences”. The model “Use for-
ward and backward RNN” was based on Section “Bidirectional LSTM”.

From the result in Table 3.8 we can see that using CRF is better in a
manner of the result but also adding more power requirements for training.
The next conclusion is that ELMo is better in entity recognition task than
fastText but add next power intensive layer and broadly increase the number
of parameters because the size of the output vector is 1024 (instead of 300) in
available pre-trained model.

36

3.2. Models

M
od

el
T
ra
in

V
al
id
at
io
n

ac
cu

ra
cy

F
1
sc
or
e

#
P
ar
am

et
er
s

A
vg

.
G
P
U

m
em

or
y/

po
w
er

us
ag
e

A
vg

.
T
im

e
A
vg

.
R
A
M

us
ag
e

(1
)

0.
98

43
±

0.
00

09
0.
96

99
±

0.
00

05
0.
95

41
±

0.
00

05
44

1,
86

6
39

/6
%

7m
in

1s
18

1.
65

M
B

(2
)

0.
98

67
±

0.
00

08
0.
97

15
±

0.
00

07
0.
95

61
±

0.
00

06
47

3,
60

2
36

/5
%

8m
in

21
s

19
2.
98

M
B

(3
)

0.
99

87
±

0.
00

02
0.
97

96
±

0.
00

04
0.
96

44
±

0.
00

06
1,
18

3,
24

6
90

/4
9%

8m
in

36
s

17
00

.1
4
M
B

(4
)

0.
99

91
±

0.
00

03
0.
98

08
±

0.
00

04
0.
96

59
±

0.
00

04
1,
18

3,
36

6
88

/5
1%

11
m
in

20
s

22
73

.5
0
M
B

(5
)

0.
99

13
±

0.
00

06
0.
98

57
±

0.
00

06
0.
97

00
±

0.
00

02
48

1,
54

4
45

/9
%

8m
in

48
s

12
1.
20

M
B

(6
)

0.
99

30
±

0.
00

01
0.
98

56
±

0.
00

04
0.
96

98
±

0.
00

10
48

1,
66

4
39

/1
0%

16
m
in

48
s

13
6.
28

M
B

(7
)

0.
99

65
±

0.
00

04
0.
98

51
±

0.
00

06
0.
97

02
±

0.
00

06
1,
22

2,
92

4
86

/4
7%

10
m
in

57
s

20
37

.3
0
M
B

(8
)

0.
99

74
±

0.
00

09
0.
98

57
±

0.
00

08
0.
97

04
±

0.
00

08
1,
22

3,
04

4
80

/4
0%

14
m
in

53
s

23
53

.8
9
M
B

Ta
bl
e
3.
8:

R
es
ul
ts

of
en
tit

y
re
co
gn

iti
on

37

3. Experiments

3.2.2 intent recognition

intent recognition (in opposite to NER) is classification task. We output one
label for a given sequence of text. In an experiments below I was using fastText
and ELMo embeddings. The approach was folowing:

• (1) Use forward RNN + fastText

• (2) Combine forward and backward RNN + fastText

• (3) Combine forward and backward RNN + ELMo

• (4) Combine word-based and char-based CNN + fastText

• (5) Use Attention layer + fastText

• (6) Use Attention layer + ELMo

• (7) Combine Attention layer with RNN + fastText

• (8) Combine Attention layer with RNN + ELMo

The principal purpose was to find the best algorithm and compare em-
beddings. Results in a given task can be seen in a Table 3.9. All models use
full memory (8 GiB) of GPU, but the difference was in memory/power usage.
The values in a table are from measurements with random shuffle where the
training set is 4906 big and validation set is 546. The training was terminated
if the validation loss was worse for 3 consecutive runs.

As results we can say that ELMo embeddings are superior to fastText em-
beddings for the intent recognition task. On the other side, there is a drawback
in power requirements and worse integration to Keras (which I hope get better
soon). The Figure 3.5 show model loss for most promising architectures with
the best curve for (6).

38

3.2. Models

M
od

el
T
ra
in

V
al
id
at
io
n

ac
cu

ra
cy

F
1
sc
or
e

#
P
ar
am

et
er
s

A
vg

.
G
P
U

m
em

or
y/

po
w
er

us
ag
e

A
vg

.
T
im

e
A
vg

.
R
A
M

us
ag
e

(1
)

0.
90

2
±

0.
01

9
0.
77

3
±

0.
01

3
0.
77

4
±

0.
00

9
24

2,
61

0
38

/5
%

42
s

32
.6
4
M
B

(2
)

0.
91

3
±

0.
01

1
0.
77

1
±

0.
00

7
0.
77

3
±

0.
00

6
47

8,
64

2
36

/6
%

58
s

56
.5
6
M
B

(3
)

0.
94

2
±

0.
00

9
0.
78

7
±

0.
00

7
0.
78

4
±

0.
00

6
1,
19

3,
52

6
87

/4
8%

2m
in

25
s

21
24

.7
1
M
B

(4
)

0.
93

4
±

0.
01

2
0.
78

5
±

0.
00

8
0.
77

9
±

0.
00

5
48

8,
90

6
66

/1
7%

21
.2
s

54
.5
0
M
B

(5
)

0.
93

4
±

0.
00

9
0.
78

1
±

0.
00

6
0.
77

7
±

0.
00

4
11

8,
97

2
40

/7
%

1m
in

2s
68

.3
2
M
B

(6
)

0.
96

2
±

0.
00

5
0.
79

4
±

0.
00

3
0.
81

9
±

0.
00

5
13

7,
78

3
92

/5
6%

2m
in

9s
20

29
.0
3
M
B

(7
)

0.
93

1
±

0.
00

8
0.
77

8
±

0.
00

5
0.
77

5
±

0.
00

4
45

4,
71

6
39

/7
%

53
s

89
.1
6
M
B

(8
)

0.
99

8
±

0.
00

1
0.
81

8
±

0.
00

8
0.
81

9
±

0.
00

4
1,
22

0,
15

1
90

/6
0%

1m
in

53
s

21
53

.0
8
M
B

Ta
bl
e
3.
9:

R
es
ul
ts

of
in
te
nt

re
co
gn

iti
on

39

3. Experiments

Figure 3.3: Model which combine Attention layer with RNN

3.2.3 Combined intent and entity recognition

In this part, we will work only with the ELMo embedding because of their
superior results over fastText (see Table 3.8 and Table 3.9).

There will be four models. First two are just the best model on each task
trained on dialogs data.

Then we will work with a model (number 3) based on “Attention-Based Re-
current Neural Network Models for Joint Intent Detection and Slot Filling.”[13]
Because we need to reproduce their example in a real application and there is
not a sample implementation of it, we will re-implement their model, which
is a combination of RNN and Attention layer. From our previous results on
NER task, we can also conclude that CRF can be a reasonable extension of
NERs part. The architecture is shown in Figure 3.3.

Another model (number 4) will be based firmly on previous results. The
best entity recognition approach was “Combine CNN over word-based and
char-based input + ELMo + CRF” and best IR approach was “Combine
Attention layer with RNN + ELMo”. Our approach will be to connect these
two models together. Unfortunately, it will inevitably lead to making some
assumption about the connected model, so to optimize it, we will propose
another model which will use only the best features from each of them. The
intent part will be very similar to model 3, with using Attention layer which
will make a weighted selection over RNN output. The most significant change
in the architecture will be in RNN part where we will use char-embeddings
and also the case information for the input. We will use CRF because of
superior results over plain RNN[25]. The architecture is shown in Figure 3.4.

40

3.2. Models

Figure 3.4: Model which Combine best model for entity recognition and IR

The testing process will be following:

• (1) Measure best model for IR on generated data

• (2) Measure best model for entity recognition on generated data

• (3) Combine best model for entity recognition and IR

• (4) Combine Attention layer with RNN + ELMo - similar to [13]

41

3. Experiments

M
od

el

T
ra
in

ac
cu

ra
cy

(N
E
R
)

(I
N
T
E
N
T
)

V
al
id
at
io
n

ac
cu

ra
cy

(N
E
R
)

(I
N
T
E
N
T
)

F
1
sc
or
e

(N
E
R
)

(I
N
T
E
N
T
)

#
P
ar
am

s

A
vg

.
G
P
U

m
em

or
y

po
w
er

us
ag
e

A
vg

.
T
im

e
A
vg

.
R
A
M

us
ag
e

(1
)

X
0.
83

49
8
±

0.
00

24
8

X
0.
80

02
5
±

0.
00

12
8

X
0.
80

00
8
±

0.
00

13
0

1,
22

1,
82

8
74

/5
3%

21
m
in

23
s

10
93

.2
2
M
B

(2
)

0.
99

93
9
±

0.
00

00
3

X
0.
99

86
9
±

0.
00

01
8

X
0.
99

90
1
±

0.
00

00
6

X
1,
22

9,
82

6
89

/5
9%

47
m
in

3s
16

06
.1
3
M
B

(3
)

0.
99

88
8
±

0.
00

00
7

0.
83

53
1
±

0.
00

25
1

0.
99

70
3
±

0.
00

01
6

0.
80

40
2
±

0.
00

19
7

0.
99

80
5
±

0.
00

01
6

0.
80

80
1
±

0.
00

26
5

1,
26

6,
88

2
87

/4
8%

28
m
in

5s
11

24
.7
1
M
B

(4
)

0.
99

93
8
±

0.
00

00
5

0.
83

89
3
±

0.
00

01
6

0.
99

74
3
±

0.
00

01
6

0.
80

45
3
±

0.
00

10
6

0.
99

81
4
±

0.
00

00
6

0.
80

87
7
±

0.
00

07
8

1,
21

6,
37

4
82

/5
4%

24
m
in

49
s

13
11

.0
2
M
B

Ta
bl
e
3.
10

:
R
es
ul
ts

of
co
m
bi
ne

d
m
od

el
s

(a
)
M
od

el
lo
ss

fo
r
(1
)

(b
)
M
od

el
lo
ss

fo
r
(2
)

(c
)
M
od

el
lo
ss

fo
r
(4

-N
E
R
)

Fi
gu

re
3.
5:

M
od

el
lo
ss

fo
r
co
m
bi
ne

d
m
od

el
s

42

3.2. Models

From the results in Table 3.10 we can see that combination of entity recog-
nition and IR is convenient. The results confirm common opinion [13][24][25]
to combine it. The results in entity recognition are worse by a relative de-
creasement 0.008% in F1 score but there is 0.9% increasement in F1 score
for IR. We should also take into account that the combined model is faster
in training, would be easier to maintain and requires only the half size of
RAM and GPU memory. The model also supports today’s trend to make one
general model for several connected tasks.

To support our statement over joint model we evaluated our algorithm
even on ATIS dataset. We focused only on classic metrics like accuracy and
F1 score. The result can be seen in Table 3.11.

1 $ cu r l − i −H "Content−Type : app l i c a t i o n / j son " −X POST −d ’ {" t ex t
" : [" Lets " , " l i s t e n " , " to " , " rock " , " music " , " from " , " bob " , "
dylan " , " . "] } ’ http :// l o c a l h o s t :5000/ p r ed i c t

2 {
3 " p r ed i c t i on s_ in t en t " : "#Art i s t_Favor i t e#" ,
4 " p red i c t i ons_ner " : [
5 { " ner_labe l " : " 0 " , "word " : " Lets " } ,
6 { " ner_labe l " : " 0 " , "word " : " l i s t e n " } ,
7 { " ner_labe l " : " 0 " , "word " : " to " } ,
8 { " ner_labe l " : "B−gene r i cp s eudoen t i t y " , "word " : " rock " } ,
9 { " ner_labe l " : " 0 " , "word " : " music " } ,

10 { " ner_labe l " : " 0 " , "word " : " from " } ,
11 { " ner_labe l " : "B−gene r i cp s eudoen t i t y " , "word " : " bob " } ,
12 { " ner_labe l " : " I−gene r i cp s eudoen t i t y " , "word " : " dylan " } ,
13 { " ner_labe l " : " 0 " , "word " : " . " }] ,
14 " su c c e s s " : true ,
15 " t ex t " : [" Lets " , " l i s t e n " , " to " , " rock " , " music " , " from " , " bob " ,

" dylan " , " . "]
16 }

Listing 3.1: Example of request on model REST API

Because of simpler input (which take as an input only sequence of words
where the only necessary pre-processing step is tokenization) and also more
simpler model with less parameters, less memory requirements and less train-
ing time, we implemented model number 4 (Combination of Attention layer
with RNN). The implementation was based on a REST API22 architecture
and JSON23 output, where a prediction model is loaded when a server starts
and communication is provided with standard POST24 request. Then, if we
start it on the server, it can be used in different applications and especially in
Alquist. The example input and output from a server can be seen on Listing
3.1.

22Representational State Transfer Application Programming Interface
23JavaScript Object Notation
24Server accept data and return response

43

3. Experiments

M
et
ri
c

A
lg
.
(1
)

A
lg
.
(2
)

A
lg
.
(3
)

A
lg
.
(4
)

C
N
N

T
ri
C
R
F
[5
0]

R
ec
N
N
+
V
it
er
bi
[5
1]

Tr
ai
n
ac
c.

N
ER

X
0.
99
96
5
±

0.
00

02
0

0.
99

88
2
±

0.
00

15
6

0.
99

93
9
±

0.
00

09
5

X
X

Va
lid

at
io
n
ac
c.

N
ER

X
0.
99
35
9
±

0.
00

04
1

0.
98

94
5
±

0.
00

10
1

0.
98

98
1
±

0.
00

06
9

X
X

Tr
ai
n
ac
c.

IR
0.
99

95
5
±

0.
00

02
9

X
0.
99

95
3
±

0.
00

02
6

0.
99
97
0
±

0.
00

00
7

X
X

Va
lid

at
io
n
ac
c.

IR
0.
96

20
4
±

0.
00

12
5

X
0.
96

38
5
±

0.
00

06
7

0.
96
76
7
±

0.
00

12
5

X
X

Te
st

F1
N
ER

X
0.
95

48
6
±

0.
00

04
0

0.
97
71
8
±

0.
00

15
9

0.
94

88
7
±

0.
00

11
8

93
.9
6

95
.4
2

Te
st

F1
IR

0.
95
47
9
±

0.
00

10
1

X
0.
94

75
4
±

0.
00

12
3

0.
94

14
8
±

0.
00

13
1

95
.4
0

94
.0
9

Ta
bl
e
3.
11

:
R
es
ul
ts

on
AT

IS
da

ta
se
t

44

Conclusion

This master’s thesis is focusing on NER and intent recognition as described
in the initial chapters. We were exploring machine learning algorithms on a
newly created dataset. For generating the dataset, we developed an original
algorithm. We described the generation algorithm in the section “Automat-
ically generated dataset”. The main trick lies in combining the automatic
generation process and manual labeling. The generated dataset is suitable for
chatbot system Alquist. The main result is a comparison of different algo-
rithms regarding accuracy, speed and computational requirements.

The study proceeded in two steps. First, we evaluated the NER and
intent recognition separately. Then, we designed new algorithms combining
the NER and intent. The main result of the master’s thesis is proving that
the joint models are, in general, preserving the NER accuracy and decreasing
the intent recognition error rate. In our experiment, see Table 3.10 and Table
3.11, we compare results of our joint model with published results in the
scientific papers. The joint model is proven to be more efficient and requires
less computational resources over separated models for each task.

The master’s thesis is provided with the trained model described in the
last chapter. The proposed algorithms were successfully integrated into the
chatbot system Alquist.

Future research, based on this master’s thesis, can be focused on fine-
tuning of the joint model, using gradually developing information in dialogs
or using other types of embeddings (like BERT[52]).

45

Bibliography

[1] Devaney, E. The 2018 State of Chatbots Report: How Chatbots
Are Reshaping Online Experiences. , no. 23, Jan. 2018, [Online; ac-
cessed 30-December-2018]. Available from: https://www.drift.com/
blog/chatbots-report/

[2] khatun, A. Let’s know Supervised and Unsupervised in an easy
way. July 2018, [Online; accessed 30-August-2018]. Available from:
https://chatbotsmagazine.com/lets-know-supervised-and-
unsupervised-in-an-easy-way-9168363e06ab

[3] Walber. Precision and recall. Nov 2014, [Online; accessed 28-December-
2018]. Available from: https://commons.wikimedia.org/wiki/File:
Precisionrecall.svg

[4] Elenktik. Approximation of Markov chain. 2015, [Online; accessed
22-December-2018]. Available from: https://commons.wikimedia.org/
wiki/File:Mvchain_approx_C2.png

[5] Cloud, A. HMM, MEMM, and CRF: A Comparative Analysis of Statisti-
cal Modeling Methods. May 2018, [Online; accessed 22-December-2018].
Available from: https://medium.com/@Alibaba_Cloud/hmm-memm-and-
crf-a-comparative-analysis-of-statistical-modeling-methods-
49fc32a73586

[6] Mikolov, T.; Chen, K.; et al. Efficient Estimation of Word Repre-
sentations in Vector Space. CoRR, volume abs/1301.3781, 2013, [On-
line; accessed 29-December-2018], 1301.3781. Available from: http:
//arxiv.org/abs/1301.3781

[7] Sazli, M. A brief review of feed-forward neural networks. 2006: pp. 11–17,
doi:10.1501/0003168, [Online; accessed 28-December-2018].

47

https://www.drift.com/blog/chatbots-report/
https://www.drift.com/blog/chatbots-report/
https://chatbotsmagazine.com/lets-know-supervised-and-unsupervised-in-an-easy-way-9168363e06ab
https://chatbotsmagazine.com/lets-know-supervised-and-unsupervised-in-an-easy-way-9168363e06ab
https://commons.wikimedia.org/wiki/File:Precisionrecall.svg
https://commons.wikimedia.org/wiki/File:Precisionrecall.svg
https://commons.wikimedia.org/wiki/File:Mvchain_approx_C2.png
https://commons.wikimedia.org/wiki/File:Mvchain_approx_C2.png
https://medium.com/@Alibaba_Cloud/hmm-memm-and-crf-a-comparative-analysis-of-statistical-modeling-methods-49fc32a73586
https://medium.com/@Alibaba_Cloud/hmm-memm-and-crf-a-comparative-analysis-of-statistical-modeling-methods-49fc32a73586
https://medium.com/@Alibaba_Cloud/hmm-memm-and-crf-a-comparative-analysis-of-statistical-modeling-methods-49fc32a73586
1301.3781
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781

Bibliography

[8] Christopher Olah. Understanding LSTM Networks. 2015, [Online; ac-
cessed December 19, 2018]. Available from: http://colah.github.io/
posts/2015-08-Understanding-LSTMs/

[9] Adit Deshpande. A Beginner’s Guide To Understanding Convolutional
Neural Networks. July 2016, [Online; accessed December 19, 2018]. Avail-
able from: https://adeshpande3.github.io/A-Beginner%27s-Guide-
To-Understanding-Convolutional-Neural-Networks/

[10] Kim, Y. Convolutional Neural Networks for Sentence Classification. In
Proceedings of the 2014 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), Association for Computational Lin-
guistics, 2014, pp. 1746–1751, doi:10.3115/v1/D14-1181. Available from:
http://aclweb.org/anthology/D14-1181

[11] Chiu, J. P. C.; Nichols, E. Named Entity Recognition with Bidirectional
LSTM-CNNs. CoRR, volume abs/1511.08308, 2015, 1511.08308. Avail-
able from: http://arxiv.org/abs/1511.08308

[12] Raffel, C.; Ellis, D. P. W. Feed-Forward Networks with Attention Can
Solve Some Long-Term Memory Problems. 2015, [Online; accessed 25-
December-2018], 1512.08756.

[13] Ma, M.; Zhao, K.; et al. Jointly Trained Sequential Labeling and
Classification by Sparse Attention Neural Networks. CoRR, volume
abs/1709.10191, 2017, [Online; accessed 25-December-2018], 1709.10191.
Available from: http://arxiv.org/abs/1709.10191

[14] Srivastava, N.; Hinton, G.; et al. Dropout: A Simple Way to Prevent Neu-
ral Networks from Overfitting. Journal of Machine Learning Research,
volume 15, 2014: pp. 1929–1958, [Online; accessed 26-December-2018].
Available from: http://jmlr.org/papers/v15/srivastava14a.html

[15] Pichl, J.; Marek, P.; et al. Alquist: The Alexa Prize Socialbot
Based on Sub-Dialogue Models. 2018, [Online; accessed 23-December-
2018]. Available from: https://developer.amazon.com/alexaprize/
2018/proceedings

[16] David Nadeau, S. S. A survey of named entity recognition and classifica-
tion [online]. 2007, [Online; accessed 4-November-2018]. Available from:
https://nlp.cs.nyu.edu/sekine/papers/li07.pdf

[17] Winograd, T. Procedures as a representation for data in a computer
program for understanding natural language / by Terry Winograd. Mas-
sachusetts Institute of Technology Cambridge, 1971, 462 p. : pp., [Online;
accessed 28-December-2018].

48

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/
https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/
http://aclweb.org/anthology/D14-1181
1511.08308
http://arxiv.org/abs/1511.08308
1512.08756
1709.10191
http://arxiv.org/abs/1709.10191
http://jmlr.org/papers/v15/srivastava14a.html
https://developer.amazon.com/alexaprize/2018/proceedings
https://developer.amazon.com/alexaprize/2018/proceedings
https://nlp.cs.nyu.edu/sekine/papers/li07.pdf

Bibliography

[18] Mitchell, T. M. Machine Learning. New York: McGraw-Hill, 1997, [On-
line; accessed 10-June-2018].

[19] Weizenbaum, J. Computer Power and Human Reason: From Judgment
to Calculation. New York, NY, USA: W. H. Freeman & Co., 1976, ISBN
0716704641, [Online; accessed 28-December-2018].

[20] Yan, R. "Chitty-Chitty-Chat Bot": Deep Learning for Conversational
AI. In Proceedings of the Twenty-Seventh International Joint Confer-
ence on Artificial Intelligence, IJCAI-18, International Joint Confer-
ences on Artificial Intelligence Organization, 7 2018, pp. 5520–5526, doi:
10.24963/ijcai.2018/778, [Online; accessed 28-December-2018]. Available
from: https://doi.org/10.24963/ijcai.2018/778

[21] Ramshaw, L. A.; Marcus, M. P. Text Chunking using Transformation-
Based Learning. 1995, cmp-lg/9505040.

[22] Dey, A.; Prukayastha, B. S. Article: Named Entity Recognition using
Gazetteer Method and N-gram Technique for an Inflectional Language:
A Hybrid Approach. International Journal of Computer Applications, vol-
ume 84, no. 9, December 2013: pp. 31–35, [Online; accessed 23-December-
2018].

[23] Nadeau, D.; Sekine, S. A survey of named entity recognition and classi-
fication. 2007, [Online; accessed 30-December-2018].

[24] Liu, B.; Lane, I. Attention-Based Recurrent Neural Network Models for
Joint Intent Detection and Slot Filling. CoRR, volume abs/1609.01454,
2016, [Online; accessed 25-December-2018], 1609.01454. Available from:
http://arxiv.org/abs/1609.01454

[25] Xu, P.; Sarikaya, R. Convolutional neural network based triangular CRF
for joint intent detection and slot filling. In 2013 IEEE Workshop on
Automatic Speech Recognition and Understanding, Dec 2013, pp. 78–83,
doi:10.1109/ASRU.2013.6707709, [Online; accessed 24-December-2018].

[26] Tjong Kim Sang, E. F.; De Meulder, F. Introduction to the CoNLL-
2003 Shared Task: Language-independent Named Entity Recognition.
In Proceedings of the Seventh Conference on Natural Language Learn-
ing at HLT-NAACL 2003 - Volume 4, CONLL ’03, Stroudsburg, PA,
USA: Association for Computational Linguistics, 2003, pp. 142–147, doi:
10.3115/1119176.1119195, [Online; accessed 8-December-2018]. Available
from: https://doi.org/10.3115/1119176.1119195

[27] Burnham, K. P.; Anderson, D. R. Model selection and multimodel infer-
ence: a practical information-theoretic approach. Springer, second edi-
tion, 2002, ISBN 0387953647, 1–488 pp., [Online; accessed 27-December-
2018].

49

https://doi.org/10.24963/ijcai.2018/778
cmp-lg/9505040
1609.01454
http://arxiv.org/abs/1609.01454
https://doi.org/10.3115/1119176.1119195

Bibliography

[28] Sutton, C.; McCallum, A. An Introduction to Conditional Random
Fields. Found. Trends Mach. Learn., volume 4, no. 4, Apr. 2012:
pp. 267–373, ISSN 1935-8237, doi:10.1561/2200000013, [Online; ac-
cessed 28-December-2018]. Available from: http://dx.doi.org/10.1561/
2200000013

[29] Xing, E. P. Conditional Random Fields. Nov 2018, [Online; accessed 28-
December-2018].

[30] Maas, W. Networks of Spiking Neurons: The Third Generation of
Neural Network Models. Trans. Soc. Comput. Simul. Int., volume 14,
no. 4, Dec. 1997: pp. 1659–1671, ISSN 0740-6797, [Online; accessed 3-
December-2018]. Available from: http://dl.acm.org/citation.cfm?id=
281543.281637

[31] Mikolov, T. Statistical Language Models Based on Neural Networks. VUT
v BRNĚ, 2012, [Online; accessed 30-December-2018].

[32] Hinton, G. E.; McClelland, J. L.; et al. Parallel Distributed Process-
ing: Explorations in the Microstructure of Cognition, Vol. 1. chapter
Distributed Representations, Cambridge, MA, USA: MIT Press, 1986,
ISBN 0-262-68053-X, pp. 77–109, [Online; accessed 29-December-2018].
Available from: http://dl.acm.org/citation.cfm?id=104279.104287

[33] Mikolov, T.; Sutskever, I.; et al. Distributed Representations of Words
and Phrases and their Compositionality. CoRR, volume abs/1310.4546,
2013, [Online; accessed 29-December-2018], 1310.4546. Available from:
http://arxiv.org/abs/1310.4546

[34] Morin, F.; Bengio, Y. Hierarchical Probabilistic Neural Network Lan-
guage Model. In AISTATS, 2005, [Online; accessed 29-December-2018].

[35] Lample, G.; Ballesteros, M.; et al. Neural Architectures for Named Entity
Recognition. 2016, [Online; accessed 28-December-2018], 1603.01360.

[36] Hochreiter, S.; Schmidhuber, J. Long Short-term Memory. Neural compu-
tation, volume 9, 12 1997: pp. 1735–80, doi:10.1162/neco.1997.9.8.1735,
[Online; accessed 28-December-2018].

[37] Ruder, S. An overview of gradient descent optimization algorithms. 2016,
[Online; accessed 27-December-2018], 1609.04747.

[38] Cho, K.; van Merrienboer, B.; et al. Learning Phrase Representations
using RNN Encoder-Decoder for Statistical Machine Translation. 2014,
[Online; accessed 26-December-2018], 1406.1078.

50

http://dx.doi.org/10.1561/2200000013
http://dx.doi.org/10.1561/2200000013
http://dl.acm.org/citation.cfm?id=281543.281637
http://dl.acm.org/citation.cfm?id=281543.281637
http://dl.acm.org/citation.cfm?id=104279.104287
1310.4546
http://arxiv.org/abs/1310.4546
1603.01360
1609.04747
1406.1078

Bibliography

[39] Schuster, M.; Paliwal, K. Bidirectional Recurrent Neural Networks.
Trans. Sig. Proc., volume 45, no. 11, Nov. 1997: pp. 2673–2681, ISSN
1053-587X, doi:10.1109/78.650093, [Online; accessed 26-December-2018].
Available from: http://dx.doi.org/10.1109/78.650093

[40] LeCun, Y.; Bottou, L.; et al. Gradient-Based Learning Applied to Docu-
ment Recognition. 1998, [Online; accessed 17-December-2018].

[41] Peters, M. E.; Neumann, M.; et al. Deep contextualized word represen-
tations. 2018, [Online; accessed 26-December-2018], 1802.05365.

[42] Hawkins, D. The Problem of Overfitting. Journal of chemical infor-
mation and computer sciences, volume 44, 05 2004: pp. 1–12, doi:
10.1021/ci0342472, [Online; accessed 26-December-2018].

[43] Pennington, J.; Socher, R.; et al. GloVe: Global Vectors for Word
Representation. In Empirical Methods in Natural Language Processing
(EMNLP), 2014, pp. 1532–1543, [Online; accessed 27-December-2018].
Available from: http://www.aclweb.org/anthology/D14-1162

[44] Bojanowski, P.; Grave, E.; et al. Enriching Word Vectors with Subword
Information. arXiv preprint arXiv:1607.04606, 2016, [Online; accessed
27-December-2018].

[45] Braun, D.; Hernandez-Mendez, A.; et al. Evaluating Natural Language
Understanding Services for Conversational Question Answering Systems.
In Proceedings of the 18th Annual SIGdial Meeting on Discourse and
Dialogue, Association for Computational Linguistics, 2017, pp. 174–185,
doi:10.18653/v1/W17-5522, [Online; accessed 29-December-2018]. Avail-
able from: http://aclweb.org/anthology/W17-5522

[46] Serban, I. V.; Lowe, R.; et al. A survey of available corpora for
building data-driven dialogue systems. arXiv preprint arXiv:1512.05742,
2015, [Online; accessed 24-December-2018]. Available from: https://
arxiv.org/pdf/1512.05742.pdf

[47] Li, X.; Roth, D. Learning Question Classifiers. In Proceedings of the
19th International Conference on Computational Linguistics - Volume
1, COLING ’02, Stroudsburg, PA, USA: Association for Computational
Linguistics, 2002, pp. 1–7, doi:10.3115/1072228.1072378, [Online; ac-
cessed 29-December-2018]. Available from: https://doi.org/10.3115/
1072228.1072378

[48] Ratinov, L.; Roth, D. Design Challenges and Misconceptions in Named
Entity Recognition. In CoNLL, 6 2009, [Online; accessed 7-August-2018].
Available from: http://cogcomp.org/papers/RatinovRo09.pdf

51

http://dx.doi.org/10.1109/78.650093
1802.05365
http://www.aclweb.org/anthology/D14-1162
http://aclweb.org/anthology/W17-5522
https://arxiv.org/pdf/1512.05742.pdf
https://arxiv.org/pdf/1512.05742.pdf
https://doi.org/10.3115/1072228.1072378
https://doi.org/10.3115/1072228.1072378
http://cogcomp.org/papers/RatinovRo09.pdf

Bibliography

[49] Limsopatham, N.; Collier, N. Bidirectional LSTM for Named Entity
Recognition in Twitter Messages. In Proceedings of the 2nd Workshop
on Noisy User-generated Text (WNUT), The COLING 2016 Organiz-
ing Committee, 2016, pp. 145–152, [Online; accessed 27-December-2018].
Available from: http://aclweb.org/anthology/W16-3920

[50] Guo, D.; Tür, G.; et al. Joint semantic utterance classification and
slot filling with recursive neural networks. 2014 IEEE Spoken Language
Technology Workshop (SLT), 2014: pp. 554–559, [Online; accessed 24-
December-2018].

[51] Xu, P.; Sarikaya, R. Convolutional neural network based triangular CRF
for joint intent detection and slot filling. In 2013 IEEE Workshop on
Automatic Speech Recognition and Understanding, Dec 2013, pp. 78–83,
doi:10.1109/ASRU.2013.6707709, [Online; accessed 24-December-2018].

[52] Devlin, J.; Chang, M.-W.; et al. BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. 2018, [Online; accessed 27-
December-2018], 1810.04805.

52

http://aclweb.org/anthology/W16-3920
1810.04805

Appendix A
Abbreviations

CNN Convolutional Neural Networks

CRF Conditional Random fields

GRU Gated Recurrent Unit

HMM Hidden Markov models

IR Intent recognition

LSTM Long Short Term Memory

NER Named Entity Recognition

NLP Natural Language Processing

POS Part-of-Speech

RNN Recurrent Neural Network

SMT Statistical Machine Translation

53

Appendix B
Contents of CD

Generating tool ... Sources of module for possibility to generate dialogs
editor..................................Editor to create dialog tree
make_model..............Python code to create dataset from dialogs
models...Saved dialogs

Manual labeling tool...........Websites to manually labeling dialogs
app Source part of manual labeling tool

data ..Data to label
modules....................................Helpers and modules
static Javascript and CSS to design tool
templates......................................Flask templates

Model REST API............REST API server for using a trained model
model..................................Saved model and helper files
run_keras_server.py The Python code to start a server

src...The evaluation code
jupyters.............................Interactive Jupyter notebooks

*.ipynb...............................The interactive evaluation
python..................................Python code for evaluation

*.py......................Getting confidential interval on dataset
Text..Text documents

thesis.pdf.............................The master’s thesis in PDF
thesis.tex..............................The master’s theis in TEX

55

	Introduction
	Motivation and objectives
	Structure

	Natural Language Processing
	Chatbots
	Learning algorithms types
	Natural language processing fields
	Entity recognition
	Intent recognition
	Metrics

	Methods
	Statistical models
	Neural-based approaches

	Experiments
	Data
	Models

	Conclusion
	Bibliography
	Abbreviations
	Contents of CD

