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Abstrakt

Jednou z hlavných predspracujúcich úloh v oblasti źıskavania informácii z
videa je segmentácia scény, hlavne segmentácia popredných objektov od poza-
dia. Ide vlastne o klasifikačnú úlohu, ktorá je špecifická v tom, že je časovo
náročné źıskat’ človekom anotované trénovacie dáta na učenie klasifikátora.
Preto je vhodné použit’ semi-supervizovanú klasifikáciu. Táto práca sa zaoberá
použit́ım semi-supervizovaných klasifikátorov založených na regularizovańı zh-
lukov a na fuzzy c-means v spojeni s úlohou segmentácie popredia a poza-
dia. Na klasifikáciu d’aľśıch sńımkov podl’a jedného sńımku, ktorý ošt́ıtkoval
človek, je použitý detektor významných bodov založený na kombinácii de-
tektoru rohov s vizuálny deskriptorom. Práca experimentálne porovnáva obe
tieto metódy s tradičnou metódou GMM.

Kl’́učové slová UHD video, Segmentácia scény, Detektor významných bodov,
Semisupervizovaná klasifikácia, Regularizácia klastrov, C-means
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Abstract

One of the key preprocessing tasks in information retrieval from a video is the
segmentation of the scene, primarily its segmentation into foreground objects
and the background. This is actually a classification task, but with the specific
property that it is very time consuming and costly to obtain human-labelled
training data for classifier training. That suggests to use semi-supervised
classifiers to this end. The presented work reports the investigation of semi-
supervised classification methods based on cluster regularization and on fuzzy
c-means in connection with the foreground / background segmentation task.
To classify as many video frames as possible using only a single human-based
frame, the semi-supervised classification is combined with a frequently used
keypoint detector based on a combination of a corner detection method with
a visual descriptor method. The paper experimentally compares both meth-
ods of semi-supervised classification in this context with traditional algorithm
GMM.

Keywords UHD video, Scene segmentation, Keypoint detector, ORB, Semi-
supervised classification, Cluster regularization, C-means
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Introduction

For the indexing of multimedial content, it is beneficial to extract annotations
of actors, objects that occur in the video or any other semantic information
that can occur in a video. A vital preprocessing task to prepare such an-
notations is the segmentation of the scene into foreground objects and the
background. Traditional algorithms work on the pixel level and are time con-
suming for higher resolution. That is why we decided to choose a different
approach.

The method proposed in this master’s thesis is based on the semi-supervised
classification of features detected by the ORB (Oriented FAST and Rotated
BRIEF) algorithm. The approach is based on the assumption, that the ob-
ject and the background move in different directions when the camera moves.
From the key points obtained in two succeeding frames, we gather a set of
motion vectors. Those motion vectors are subsequently classified by a semi-
supervised classifier to discriminate the individual objects in the scene and
background. To get initial labels, a user is involved to annotate the object(s)
of interest and background with rather imprecise scribbles in one of the first
frames. Those labels serve as supervised information in the classification of
the whole video.

In the analysis part of the thesis – chapters 2 and 3 – we introduce all
methods and algorithms used in our proposed approach. They include the
already mentioned ORB algorithm and a method for feature tracking built on
the ORB detector. For expansion of the initial user annotation to all pixels
in the frame, we use the Boykov-Kolmogorov algorithm.

In chapters 4 and 5 we introduce our proposed approach and validate it
on a set of videos created for this experiment.
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Chapter 1
State-of-the-art

Computer vision is a field of computer science that deals with processing of the
digital images and retrieving information from them. A video is a sequence of
images called frames. A video is usually processed on the frame level, so the
methods used are similar to those used for images.

In this chapter, we state the problem solved in our thesis, show our related
research and present one of the traditional algorithms for image segmentation
– the Gaussian Mixture Model.

1.1 Problem

There are three main tasks related to objects in computer vision: classification,
detection, and segmentation. Classification aims to answer the question ”what
is in the picture”. The other tasks try to also answer the question ”where is
the object in the picture”. [1] Segmentation specifically aims to provide such
information at the pixel level.

More precisely, scene segmentation is the process of partitioning a digital
image into multiple segments (sets of pixels). Each segment represents one of
the objects in the foreground. The remaining part of the image is considered
the background.

1.2 Our Previous Research

In [6], we have tested a similar approach. Instead of an initial annotation by a
user, the initial labels were taken from the ground truth. We were testing the
robustness of the solution with respect to the dependence on the order of the
frame when the classifier was trained. The test included the first five frames
of the video.

The hypothesis of equality of all five classifiers was rejected (p-value < 5%)
only for the delay 1 frame and the F-measure, and weakly rejected (p-value

3



1. State-of-the-art

Figure 1.1: The difference between classification, detection and segmentation
[1]

Table 1.1: Results of the Friedman test of the hypothesis that for a given delay
between classifier training and measuring its quality, a given quality measure
is equal for the classifiers trained in each of the 5 first video frames. The
combinations for which the tested hypothesis was weakly rejected (p-value
< 10%) are in italic, the single combination for which it was rejected (p-value
< 5%) is in bold italic.

Quality measure Delay p-Value
accuracy 1 1
accuracy 5 0.117
accuracy 10 1

sensitivity 1 0.052
sensitivity 5 0.428
sensitivity 10 0.238
specificity 1 1
specificity 5 1
specificity 10 0.25
F-measure 1 0.043
F-measure 5 0.089
F-measure 10 0.238

< 10%) for the delay 1 frame and the sensitivity, as well as for the delay 5
frames and the F-measure. All p-values from the Friedman test are shown in
Table 1.1.

The accuracy and specificity of one video for all classifiers in 50 frames are
illustrated in Figure 1.2.

4



1.3. Gaussian Mixtures Model

1.3 Gaussian Mixtures Model

One of the traditional algorithms for the foreground segmentation is Gaus-
sian Mixtures Model (GMM). It is used to model the background and the
foreground objects of the image by a combination of several Gaussians. The
means of those Gaussians serve as a threshold value for distinguishing between
the background and the foreground objects.

Each area which comes into the view of a given pixel is represented by
one of a set of states k ∈ {1, 2, . . . ,K}. Some of the states correspond to
background objects and the rest are deemed to be foreground. The process
k which generates the state at each frame time is simply modeled by a set
of K parameters ωk . Each represents the a priori probability of an area k
appearing in the pixel view, hence

∑K
k=1 ωk = 1.

The pixel values are samples of some random process X which includes
the behaviour of k. The process X is assumed to be modelled by a mixture of
K Gaussian densities with parameter sets θk, one for each state k:

fX|k(X|k, θk) = 1
(2π)

n
2 |
∑
k |

1
2
e−

1
2 (X−µk)T Σ−1

k
(X−µk) (1.1)

where µk is the mean and Σk is the covariance matrix of the kth density. It is
assumed that the components of X are independent so that Σk is diagonal and
may be represented by the n-dimensional variance σ2

k. The density parameter
set is defined as θk = {µk, σk} for a given k and the total set of parameters
becomes Φ = {ω1, . . . , ωk, θ1, . . . , θk}.

Because the events k are disjoint, the distribution of X may be modelled
as a sum-of-Gaussians mixture (see Figure 1.3).

fX(X|Φ) =
K∑
k=1

P (k)fX|k(X|k, θk) (1.2)

where P (k) = ωk. All parameters need to be estimated from observations of
X in parallel with the estimation of the hidden state k.

Maximum likelihood parameter estimation from incomplete data is solved
with an approximate formulation of the expectation-maximization (EM) al-
gorithm. [7] [8] The EM algorithm works by iterating two steps:

• E-step – finding an estimate based on the hidden data of the likelihood
function of the complete data using the observed data and current esti-
mates of the parameters

• M-step – calculating maximum likelihood estimates of the parameters
using the observed data and current estimates of the hidden data

The first step is to estimate which of the K distributions most likely gave
rise to the current sample X = X. The posterior probability P (k|X,Φ) is

5



1. State-of-the-art

the likelihood that this pixel value was generated in state k, given by Bayes’s
theorem (see Figure 1.4):

P (k|X,Φ) =
P (k)fX|k(X|k, θk)

fX(X|θ) (1.3)

The k which maximizes P (k|X,Φ) is the maximum a posteriori estimate

k̂ = arg max
k

P (k|X,Φ) = arg max
k

ωkfX|k(X|k, θk) (1.4)

The mixture model models both foreground and background surfaces with-
out distinction. This is why a total of K = 3 Gaussians may be considered
a practical minimum to model two background surfaces and one foreground
surface in each pixel. It is generally considered that not much improvement
is obtained beyond K = 5 distributions [2].

The Stauffer-Grimson procedure [7] for demarcation starts by ranking the
K states by the criterion ωk/σk. If σk is not a scalar the ranking has to be
done with ωk/||σk|| or ω2

k/||σk||2.
A surface is deemed to be the background with a higher probability if it

occurs frequently (high ωk) and does not vary much (low σk). To demarcate
the background, they provide an overall prior probability T of anything in
view being background. The first B of the ranked states whose accumulated
probability accounts for T are deemed to be background,

B = arg min b(
b∑

k=1
ωk > T ) (1.5)

and the rest of the states are foreground.
The complete-data likelihood function is given by

P (X1, X2, . . . , XN , k|Φ) =
N∑
t=1

ωkfX|k(Xt|k, θk) (1.6)

where Xt shows the pixel value at time t. Renewed estimates of the paramteres
Φ are obtained by maximizing the expected value of 1.6 with respect to k. The
results are:

ω̂k = 1
N

N∑
t=1

P (k|Xt,Φ) (1.7)

µ̂k =
∑N
t=1XtP (k|Xt,Φ)∑N
t=1 P (k|Xt,Φ)

(1.8)

6



1.3. Gaussian Mixtures Model

σ2
k =

∑N
t=1((Xt − µ̂k) ◦ (Xt − µ̂k))P (k|Xt,Φ)∑N

t=1 P (k|Xt,Φ)
(1.9)

where ◦ is the element-wise multiplication operator and P (k|Xt,Φ) is given
in each case by 1.3.

Equations 1.7 to 1.9 assume stationary processes k and X, and also a
fixed number of observations N . A practical implementation that is capable
of foreground segmentation of each frame as it is acquired has to re-estimate
the current surface k and all the parameters incrementally from each new
sample X = Xt as well as adapt to changing scene statistics.

7



1. State-of-the-art

Figure 1.2: The evolution of accuracy (top) and specificity (bottom) of the
classifiers trained in each of the 5 first video frames for a handheld-camera
video with only the foreground object sharp
8



1.3. Gaussian Mixtures Model

Figure 1.3: The pixel value probability fX(X|Φ) for 1D pixel values X ∈
{0, 1, . . . , 255},K = 3, ωk = {0.2, 0.2, 0.6}, µk = {80, 100, 200}, and σk =
{20, 5, 10} [2]

Figure 1.4: The a posteriori probabilities P (k|X; Φ) plotted as functions of X
for each k = 1, 2, 3, using the same parameters as in Figure 1.3 [2]
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Chapter 2
Methods of Video Processing

In this chapter, methods and algorithms for video processing are introduced.
First, we introduce the area of feature detection generally and then one of
the algorithms in detail – ORB. Subsequently, we introduce an algorithm that
is built on the ORB detector. Finally, we recall the algorithm for the min-
cut/max-flow problem in the graph theory, which can be also used in the
image segmentation area.

2.1 Feature detection

Feature detection is a very important area of computer vision and image pro-
cessing. It includes methods for making local decisions at every image point
depending on the presence or value of a particular feature. An important char-
acteristic of algorithms for feature detection is reproducibility. That means
that the same feature will be detected in different images with the same scene
or object.

The features are a starting point for lots of algorithms in image processing
- for example, object tracking, face detection, image classification, motion
detection and tracking and so on. The quality of those algorithms is dependent
on the quality of feature detector.

Types of features:

• Edges – points where there is a boundary between two image regions,
for example, object and background

• Corners – points where the direction of the edge changes rapidly or
there is a high level of curvature in the image gradient

• Blobs – regions of interest points; blob detectors can detect areas which
are too smooth to be detected by a corner detector

List of important algorithms for feature detection:

11



2. Methods of Video Processing

• Canny – edges

• SUSAN – edges, corners

• SIFT – corners

• SURF – corners

• FAST – corners, blobs

• Harris corner detection – corners

• ORB – corners

2.1.1 ORB (Oriented FAST and Rotated BRIEF)

This method for feature detection, in detail described in [3], is a combina-
tion of a corner detection method FAST (Features from Accelerated Segment
Test) with a visual descriptor method BRIEF (Binary Robust Independent
Elementary Features). It was demonstrated that ORB is two orders of magni-
tude faster than SIFT (Scale-Invariant Feature Transform) while performing
as well in many situations.[3] It is also less affected by image noise and is
capable of being used for real-time performance.

The FAST detector takes one parameter – the intensity threshold between
the center pixel and those in a circular ring about the center. The FAST
does not produce a measure of cornerness, and it was found that it has large
responses along edges. A Harris corner measure is employed to order the
FAST key points. To get N key points, the threshold is set low enough to
get more than N of them and then they are ordered according to the Harris
measure to pick the top N points.

As a measure of corner orientation, the intensity centroid is used. It as-
sumes that a corner’s intensity is offset from its center, and this vector may
be used to impute an orientation. In [9], Rosin defines the moments of a patch
as:

mpq =
∑
x,y

xpyqI(x, y), (2.1)

where I(x, y) is image intensity and using these moments, we may find the
centroid:

C = (m10
m00

,
m01
m00

) (2.2)

Then, we can construct a vector from the corner’s center, O, to the centroid.
The orientation of the patch is then simply:

θ = atan2(m01,m10), (2.3)

12



2.1. Feature detection

where atan2 is the quadrant-aware version of arctan.
BRIEF descriptor [10] is a bit-string description of an image patch con-

structed from a set of binary intensity tests. Consider a smoothed image
patch, p. A binary test τ is defined by:

τ(p;x, y) =
{

0, p(x) < p(y)
1, p(x) ≥ p(y)

(2.4)

where p(x) is the intensity of p at a point x. A detected feature is defined as
a vector of n binary tests:

fn(p) =
∑

1≤i≤n
1i−1τ(p;xi, yi) (2.5)

The length n of that vector is selected as 256. Before performing the tests,
smoothing is achieved using an integral image, where each test point is a 5 ×
5 subwindow of a 31 × 31 pixel patch.

The matching performance of BRIEF falls off for in-plane rotation of more
than a few degrees (see Figure 2.1). An efficient method to allow BRIEF to be
invariant to in-plane rotation, is to steer BRIEF according to the orientation
of keypoints. For any feature set of n binary tests at location (xi, yi), define
the 2× n matrix

S =
[
x1 . . . xn
y1 . . . yn

]
(2.6)

Using the patch orientation θ and the corresponding rotation matrix Rθ,
we construct a steered version Sθ of S:

Sθ = RθS, (2.7)

and the steered BRIEF operator comes

gn(P, θ) = fn(p)|(xi, yi) ∈ Sθ (2.8)

BRIEF has an important property that each bit feature has a large variance
and a mean near 0.5. This mean gives the maximum sample variance 0.25 for
a bit feature. But when it is oriented along keypoint direction, it loses this
property and becomes more distributed.

High variance makes a feature more discriminative since it responds differ-
ently to inputs. Another desirable property is to have these tests uncorrelated,
since then each test will contribute to the result independently.

To recover from the loss of variance in steered BRIEF, and to reduce
correlation among binary tests, a learning method was developed for choosing
a good subset of binary tests.

13



2. Methods of Video Processing

Figure 2.1: Matching performance of SIFT, SURF, BRIEF with FAST, and
rBRIEF under synthetic rotations with Gaussian noise of 10 [3]

It searches among all possible binary tests to find ones that both have
high variance and are uncorrelated. The method is called rBRIEF. [3] It has a
significant improvement in the variance and correlation over steered BRIEF.

Figure 2.2 shows a correlation between the speed and the accuracy of kd-
trees with SIFT and LSH with rBRIEF. LSH is faster than the kd-trees, most
likely thanks to its simplicity and the speed of the distance computation.

2.2 Features tracking

The following method for features tracking, proposed in [11], is based on the
ORB feature detector. In each frame of the video, a key point detector is used
to detect points of interest and compute their descriptors. Points of interest
detected in a frame are always attempted to match those detected in the next
frame.

For a match between points of interest pk and pk+1 in subsequent frames
k and k + 1, the following criteria have been used:
(i) Only the points of interest in the spacial neighbourhood of the expected

position are considered. That position is based on last known interest
point position and its past motion (if available).
The point pk+1 must lie within the radius rpk from the estimated new

14



2.2. Features tracking

Figure 2.2: Example of features detected by OpenCV implementation of ORB
[4]

position of the point p̂k

‖pk+1 − p̂k‖ < rpk. (2.9)

Here, the estimated position p̂k is calculated as

p̂k =
{
pk + c1(pk − pk−1) if pk−1 is available,
pk else,

(2.10)

with c1 > 0, and the radius rpk is calculated as

rpk = (upkW )2, (2.11)

where upk quantifies the uncertainty pertaining to the point pk in the
k-th frame and W denotes the frame width (in the units in which point
positions are expressed). The uncertainty up is set to up1 = c2 > 0 in
the first frame and is then evolved from frame to frame through linear
scaling above a lower limit c3 > 0:

upk+1 =
{

max(c3, c4u
p
k) if pk is matched,

c5u
p
k if pk is not matched,

(2.12)
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2. Methods of Video Processing

Figure 2.3: Speed vs. accuracy. The descriptors are tested on warped versions
of the images they were trained on. We used 1, 2 and 3 kd-trees for SIFT (the
autotuned FLANN kd-tree gave worse performance), 4 to 20 hash tables for
rBRIEF and 16 to 40 tables for steered BRIEF (both with a sub-signature of
16 bits). Nearest neighbours were searched over 1.6M entries for SIFT and
1.8M entries for rBRIEF. [3]

where 0 < c4 < 1, c5 > 1.
Moreover, if the evolution (2.12) leads to upk+1 > c6 for some c6 >
c3, then the point p is deactivated and not any more considered for
matching.

(ii) Among the points of interest resulting from (i), as well as among all
detected in the current frame for which no information about their past
motion is available, points in the previous frame are searched based on
the Hamming distance between the descriptors of both points. Hamming
distance between the 256-bit binary descriptors of the points is allowed
to be at most 64.

Whereas the dependence of matching success on the difference between posi-
tions of the points and on the movement of the first point has a straightforward
geometric meaning, its dependence on the Hamming distance between their
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2.3. Boykov-Kolmogorov max-flow

Figure 2.4: Example of the motion description of each point of interest. The
darker line is, the older information it represents

descriptors has a probabilistic character. In [3], this dependence was inves-
tigated and was found that if the Hamming distance between 256-bit binary
descriptors of the points is greater than 64, then the probability of successful
match is less than 5%.

The choice of the real-valued constants in the criterion (i) has been based
on the resolution of the video (4K), on the frame rate (25) and on the defaults
in the ORB implementation based on [3]. They have been set to the following
values: c1 = 0.6, c2 = 0.02, c3 = 0.009, c4 = 0.9, c5 = 1.1, c6 = 0.03.

If two points of interest in subsequent frames are considered matching,
the point in the later frame is added to the history vector of the point in the
previous frame. In this way, we get the motion description of each point of
interest. An example of the motion description is in Figure 2.4.

2.3 Boykov-Kolmogorov max-flow

The min-cut/max-flow algorithm, proposed in [5], belongs to the group of
algorithms based on augmenting paths. The difference compared to other
similar algorithms is that it reuses trees and never starts building them from
scratch.

Figure 2.5 shows the basic terminology. There are two non-overlapping
search trees S and T . The nodes that are not in S or T are called ”free”. The
nodes in the search trees can be either ”active” or ”passive”. The active nodes
represent the outer border in each tree while the passive nodes are internal.
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2. Methods of Video Processing

Active nodes allow trees to grow by acquiring new children from a set of free
nodes. An augmenting path is found as soon as an active node in one of the
trees detects a neighbouring node that belongs to the other tree.

The algorithm iteratively repeats the following three stages:
(i) growth stage – search trees S and T grow until they touch giving a s→ t

path
(ii) augmentation stage – the found path is augmented, search trees can fall

apart and change into forests
(iii) adoption stage – trees S and T are restored

At the growth stage, the search trees expand. The active nodes explore
adjacent non-saturated edges and acquire new children from a set of free nodes.
The new nodes become active. As soon as all neighbours of a given active node
are explored the active node becomes passive. The growth stage terminates if
an active node of one tree touches a node from another tree.

The augmentation stage augments the path found at the growth stage.
First, it finds the bottleneck capacity of the found path, and then it updates
the residual capacity of the edges from this path by substracting the bottleneck
capacity from the residual capacity. This phase can destroy the built-up search
trees.

The goal of the last stage is to restore the single-tree structure of sets S
and T with roots in the source and the sink. A new valid parent is tried to be
found for each orphan. If there is no qualifying parent, the orphan is removed
from S or T and it is made a free node. The stage terminates when no orphans
are left and the search tree structures are restored.

After the adoption stage is completed the algorithm returns to the growth
stage. The algorithm terminates when the search trees cannot grow and the
trees are separated by saturated edges. This implies that a maximum flow is
achieved. The corresponding cut can be determined by the search trees.
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2.3. Boykov-Kolmogorov max-flow

Figure 2.5: Example of the search trees S (red nodes) and T (blue nodes) at
the end of the growth stage when a path (yellow line) from the source s to
the sink t is found. Active and passive nodes are labeled by letters A and P,
correspondingly. Free nodes appear in black. [5]
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Chapter 3
Classification

3.1 Definition

Classification is one of the most common problems in the area of machine
learning [12]. Its task is to assign labels to new observations based on a training
set of observations. In contrast to clustering, where we do not know the classes
to assign, in case of classification, we know the labels for the observations in
the training set. Observations from the set X = F1 × F2 × · · · × Fd are
defined by a set of features. The features can be categorical (e.g. blood types
“A”, “B”, “AB” or “0’), ordinal (e.g. “small”, “medium” or “large”), integer
or real numbers. Mathematically, classification can be viewed as a function
ĉ : X → L , where L = {C1, C2, . . . , Ck} is a finite set of classes. The
algorithm that implements actual classification is called classifier.

3.1.1 Binary classificiation

The most elementary type of classification is binary classification when there
are only two classes. Usually, one is considered positive and the other negative.
A typical example of binary classification is spam filtering. In this case, we
consider spam as the positive class (similarly to a disease) because we want
to identify it.

3.1.2 Multiclass classification

In the real world, classification into multiple classes is more common. There
are two approaches how to classify into multiple classes using binary classifier.
Consider classification into k classes:

• one-versus-rest – k binary classifiers are used, where each of them is
trained to separate one class from the union of all remaining ones
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3. Classification

• one-versus-one – in this case, k(k−1)/2 binary classifiers are used, each
of them is trained to distinguish a pair of classes

3.2 Evaluation of classifier’s quality

3.2.1 Contingency table

For the evaluation of classifiers’ quality, we can use a contingency table. The
rows of the table represent real classes as they are labeled in the testing set
and in the columns, there are classes that were predicted by the classifier. In
Table 3.1, there are 50 positive samples, 30 of them were classified correctly
and 20 of them were classified wrongly as negative.

In case of binary classification, correctly classified positive and negative
records are called true positives (TP), and true negatives (TN), respectively.
Wrongly classified positive are called false negatives (FN) and similarly in-
correctly classified negative records are called false positives (FP). These four
values are placed in the contingency table. We will use this terminology in
the evaluation of quality metrics.

3.2.2 Quality metrics

From the contingency table, it is possible to calculate these quality metrics:

Accuracy It is one of the easiest indicators. It is calculated as the rate of
the number of correctly classified records to the size of the testing set:

TP + TN

TP + FP + TN + FN

Error rate It is the complement to the Accuracy:

FP + FN

TP + FP + TN + FN

Table 3.1: Contingency table serves for the evaluation of classifier’s quality. In
case of a binary classifier, the values on the decreasing diagonal show correct
predictions, while the values on the increasing diagonal show classification
errors.

Predicted \Real ⊕ 	

⊕ 30 10 40
	 20 40 60

50 50 100
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Sensitivity (true positive rate) It expresses the accuracy for classification
of positive class. It is calculated as the rate of the number of correctly classified
positive records to the number of positive records:

TP

TP + FN

Specificity (true negative rate) It expresses the accuracy for classifica-
tion of negative class. It is calculated as the rate of the number of correctly
classified negative records to the number of negative records:

TN

FP + TN

False negative rate It expresses the error rate for the classification of pos-
itive class. It is calculated as the rate of the number of incorrectly classified
positive records to the number of positive records:

FN

TP + FN

False positive rate It expresses the error rate for the classification of neg-
ative class. It is calculated as the rate of the number of incorrectly classified
negative records to the number of negative records:

FP

FP + TN

Precision It expresses the probability that the record classified as positive is
really positive. It is calculated as the rate of the number of correctly classified
positive records to the number of records classified as positive:

TP

TP + FP

Accuracy can be deceiving when classes are not distributed uniformly. For
example, we want to distinguish between unauthorized payments by bank
card. 99 % of payments is authorized and only 1 % is unauthorized. Classifier,
that would label all payments as authorized would achieve 99 % accuracy. But
it wouldn’t be very useful. That is why it is better to calculate precision rather
than accuracy in these cases.

F-measure It is a compromise between sensitivity and precision. It is cal-
culated as the harmonic mean of those values:

2TP
2TP + FP + FN

For multiclass classification, we can calculate only accuracy and its com-
plement – error rate. We can also calculate accuracy and precision for each
class.
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3.3 Semi-Supervised Classification

In situations where the number of available labelled instances is insufficient
and labelling is expensive and time consuming, semi-supervised classification
can be employed, which uses both labelled and unlabelled instances for learn-
ing. Unlabelled data with a small amount of labeled data can bring improve-
ment in the accuracy of a classifier. Semi-supervised classification can be
either inductive or transductive. The goal of inductive learning is to find, by
means of all available training data, a mapping of inputs to labels. The goal
of transductive learning is to find labels for a specific subset of inputs based
on a specific subset of training data.

Semi-supervised classifiers make use the following assumptions: [13]
(i) Continuity assumption – Points which are close to each other are

more likely to share a label. It assumes that there exist simple geomet-
rical boundaries. This assumption is present also in supervised learning.

(ii) Cluster assumption – The data in the same cluster share the same
label. This assumption is present in unsupervised learning and makes it
usable for semi-supervised learning.

(iii) Manifold assumption – ”The (high-dimensional) data lie (roughly)
on a low-dimensional manifold.” [13]

In the reported research we used the following two methods for semi-
supervised classification.

3.3.1 Semi-Supervised Classification with Cluster
Regularization

The principle of this method, in detail described in [14], consists in clustering
all labelled and unlabelled instances and estimating, for the instance xk, k =
1, . . . , N , its probability distribution qk on the set of clusters. In addition, the
following penalty function is proposed for the differences between the pairs
(qk, qn) of probability distributions of the instances.

P (qk, qn) = sin
(
π

2 (r(qk, qn) ∗ s(qk, qn))κ
)
,

k, n = 1, . . . , N, k 6= n, (3.1)

where r(qk, qn) denotes the Pearson correlation coefficient between qk and qn,
κ is a parameter controlling the steepeness of the mapping from similarity to
penalty, and s(qk, qn) is a normalized similarity of the probability distributions
qk and qn, defined

s(qk, qn) = 1− ‖qk − qn‖ − dmin
dmax − dmin

(3.2)
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3.3. Semi-Supervised Classification

using the notation

dmin = minQ, dmax = maxQ,
with Q = {‖qk − qn‖|k, n = 1, . . . , N, k 6= n}. (3.3)

The results of clustering allow to assign pseudolabels to unlabelled in-
stances. In particular, the pseudolabel assigned for the j-th among the M
considered classes to an unlabelled instance xn in a cluster Ψ is

ŷn,j =
exp

(∑
xk∈Ψ is labelled yk,j

)
∑M
i=1 exp

(∑
xk∈Ψ is labelled yk,i

) , (3.4)

where yk,i, i = 1, . . . ,M is a crisp or fuzzy label of the labelled instance xk for
the class i. For uniformity of notation, the symbol ŷk,j , j = 1, . . . ,M can also
be used for yk,j if xk is labelled.

The penalty function (3.1) can be used as a regularization modifier in
some loss function L : [0, 1]2 → [0,+∞) measuring the discrepancy between
the classifier outputs F (xn) = ((F (xn))1, . . . , (F (xn))M ) for an instance xn,
and the corresponding labels (yn,1, . . . , yn,M ) or pseudolabels (ŷn,1, . . . , ŷn,M ):

E = 1
N

M∑
j=1

( ∑
xn labelled

L((F (xn))j , yn,j)+

∑
xn unlabelled

λmax(qn)
|φ(xn)|

∑
xk∈φ(xn)

P (qk, qn)L((F (xk))j , ŷk,j)

 , (3.5)

where λ > 0 is a given parameter determining the tradeoff between supervised
loss and unsupervised regularization, and the set of instances xk 6= xn with
the highest value of P (qk, qn) is denoted φ(xn).

In [14], the following design decisions have been made for the loss function
and the classifier in (3.5):

1. The employed loss function can be derived fromDKL ( (ŷn,1, . . . , ŷn,M )‖F (xn) ),
the Kullback-Leibler divergence, from classifier outputs to labels or pseu-
dolabels. If both the labels or pseudolabels and the classifier outputs
form probability distributions on classes, then

DKL((ŷn,1, . . . , ŷn,M )‖F (xn)) =

=
M∑
j=1

ŷn,j ln
(

(F (xn))j
ŷn,j

)
, n = 1, . . . , N. (3.6)

Therefore, the considered loss function is

L((F (xk))j , ŷk,j) =

= ŷn,j ln
(

(F (xn))j
ŷn,j

)
, n = 1, . . . , N, j = 1, . . . ,M. (3.7)
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2. As a classifier, a multilayer perceptron with one hidden layer is used,
such that the activation function g in its hidden layer is smooth and in-
cludes no bias, and its output layer performs the softmax normalization
of the hidden layer. Hence,

(F (x))j =
exp(g(w>j·x))∑M
i=1 exp(g(w>i· x)

. (3.8)

The weight vectors w1·, . . . , wM · in (3.8) are learnt through the minimiza-
tion of the error function (3.5).

3.3.2 Semi-Supervised Kernel-Based Fuzzy C-means

This method, in detail described in [15], originated from the fuzzy c-means
clustering algorithm [16]. Similarly to the original fuzzy c-means, the method
is parameterized by a parameter m > 1. What makes this method more
general than the original fuzzy c-means is its dependence on the choice of
some kernel K, i.e., a symmetric function on pairs (x, y) of clustered vectors,
which has positive semidefinite Gramm matrices (e.g., Gaussian or polyno-
mial kernels). In fact, the fuzzy c-means algorithm corresponds to the choice
K(x, y) = x>y.

First, the membership matrix U l is constructed, for clustering nl labelled
instances xl1, . . . , xlnl

into as many clusters as there are classes, i.e., M . For
j = 1, . . . ,M, k = 1, . . . , nk,

U lj,k =
{

1 if the instance xlk is labelled with the class j
0 else.

(3.9)

From U l, the initial cluster centers are constructed as

v0
j =

∑nl
k=1 U

l
j,kx

l
k∑nl

k=1 U
l
j,k

, j = 1, . . . ,M. (3.10)

If for some t = 0, 1, . . . , the cluster centers vt1, . . . , vtM are available, such as
(3.10), then they are used together with the chosen kernel K to construct the
membership matrix Uu,t for clustering nu unlabelled instances xu1 , . . . , xunu

, as
follows:

Uu,tj,k = (1−K(xuk , vj))
− 1

m−1∑M
i=1(1−K(xuk , vi))

− 1
m−1

,

j = 1, . . . ,M, k = 1, . . . , nu. (3.11)
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Finally, the cluster centers are updated, for t = 0, 1, .. by calculating

vt+1
j =

=
∑nu
k=1(U lj,k)mK(xlk, vtj)xlk +

∑nu
k=1(Uu,tj,k )mK(xuk , vtj)xuk∑nu

k=1(U lj,k)mK(xlk, vtj) +
∑nu
k=1(Uu,tj,k )mK(xuk , vtj)

. (3.12)

The computations (3.11)–(3.12) are iterated until at least one of the fol-
lowing termination criteria is reached:
(i) ‖Uu,t − Uu,t−1‖ < ε, t ≥ 1, for a given matrix norm ‖ · ‖ and a given

ε > 0;
(ii) a given maximal number of iterations tmax.
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Chapter 4
Proposed Approach

4.1 Overall strategy

Our methodology for the segmentation of video frames into foreground objects
and background relies on the assumption that the user labels some area of the
image as the object and the background. This manual annotation will be
done only in the first frame or in one of the frames in the beginning of the
video. This gives us some input information that will be used for training of
the semi-supervised classifier.

No matter whether the considered method of semi-supervised classification
is semi-supervised classification with cluster regularization or semi-supervised
kernel-based fuzzy c-means, the methodology always proceeds in the following
steps:

1. In the first frame, the user labels some of the pixels.

2. Using the Boykov-Kolmogorov algorithm, the remaining part of the im-
age is labelled.

3. Matching points detected in the next frame are assigned the same labels
as the points to which they are matched.

4. Using the considered method of semi-supervised classification, the re-
maining points of interest detected in the next frame are labelled.

5. Steps 3 and 4 are repeated till either the points of interest in all frames
have been classified or the scene has been so much disrupted between
two frames that no points of interest could be matched between them
(in such a case, new labelling by the user is needed).

29



4. Proposed Approach

Figure 4.1: Example of the user annotation. Each line corresponds to a dif-
ferent segment of the scene.

4.2 Initial labels provided by the user

The process of manual annotation is as simple as possible. The user is required
to draw two lines – one in the region of the object and one in the region of
the background. You can see an example of the annotation in Figure 4.1.

4.3 Propagation of the labels

Labels from the user usually cover only a small amount of the pixels. To get
the labels for all pixels in the image, max-flow algorithm, described in 2.3 is
used.

First, the image is converted to grayscale. To highlight edges between the
object and the background, Laplacian of Gaussian filter with the size (5, 5) is
applied to the image (Figure 4.2).

Then the image is converted to the four-connected graph. Each node of the
graph represents one pixel. For each inner pixel, there are four edges - with
the upper, lower, right and left neighbouring pixel. Each edge has weight
computed according to the pixel intensities corresponding to the boundary
nodes. Let pi be intensity of the pixel i and ei,j is the edge between the nodes
corresponding to the pixels i and j the edge weight w(ei,j) is computed as
follows:

w(ei,j) = 255− |pi − pj | (4.1)
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Figure 4.2: Image after Laplacian of Gaussian filter was applied.

Then the graph is extended by two artificial nodes. One is marked as
source and the other as sink. All pixels labeled by a user as the object are
connected with the source node by an edge with the weight 255. Analogically,
all pixels labeled as the background are connected with the sink node by an
edge with the weight 255.

On this extended graph, the Boykov-Kolmogorov algorithm is executed.
A minimum cut partitions the graph nodes into two sets. One set corresponds
to the source and all the pixels in the set are labeled as the object. The other
pixels are labeled as the background. In Figure 4.3, the nodes that belong to
the source are marked.

At the end of this process, we have labels of all pixels in the first frame,
which are later used for the classification.

4.4 Implementation of Semi-Supervised Classifiers

As input features for both classification methods, the Cartesian coordinates
([pk]1, [pk]2) of the point in the k-th frame and and the polar coordinates
([pk−pk−1]||, [pk+1−pk]ϕ) of its movement with respect to the previous frame
are used.

The Cartesian coordinates ([p]1, [p]2) of a point p of interest are expressed
with respect to the top left corner of the frame, using as units the frame height
and width. Due to that, [p]1 and [p]2 are normalized to [0, 1].
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Figure 4.3: An object found by Boykov-Kolmogorov algorithm from the image
in the Figure 4.1.

4.4.1 Semi-Supervised Classification with Cluster
Regularization

In the implementation of the semi-supervised classification with cluster regu-
larization method described in 3.3.1, we used k-means clustering for an initial
clustering of all instances. Although this method allows choosing the number
of clusters independently of the number of classes, we have set it to the same
value for comparability with semi-supervised kernel-based fuzzy c-means, i.e.,
to the value 2 corresponding to the classes of foreground objects and back-
ground. Hence, we performed k-means clustering with k = 2. Since the
k-means algorithm does not output a probability distribution on the set of
clusters, we employed a simple procedure proposed in [14] to transform the
original distances from an instance xn to cluster centers v1, . . . , vk to a prob-
ability distribution qn, which assures that xn more likely belongs to clusters
which centers it is closer to:

(qn)i =
1−

(
‖xn−vi‖∑k

j=1 ‖xn−vi‖

)
k − 1 . (4.2)

Consequently, for our case k = 2:

(qn)1 = ‖xn − v2‖
‖xn − v1‖+ ‖xn − v2‖

, (4.3)

(qn)2 = ‖xn − v1‖
‖xn − v1‖+ ‖xn − v2‖

. (4.4)
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The remaining parameters pertaining to semi-supervised classification with
cluster regularization were set as proposed in [14]: λ = 0.2, κ = 2, |φ(xn)| = 10.

4.4.2 Semi-Supervised Kernel-Based Fuzzy C-means

For the semi-supervised kernel-based fuzzy c-means algorithm described in
3.3.2, we used a Gaussian kernel function for updating the membership matrix
K(x, y) = exp(−‖x − y‖2/σ2), in which the parameter σ is computed as
proposed in [15]:

σ = 1
M

√∑N
n=1 ‖xn − v‖2

N
, (4.5)

where v is the center of all instances. The remaining parameters were set as
follows: m = 2, ε = 0.001, tmax = 50.
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Chapter 5
Experimental Validation

This chapter deals with the experimental validation of our proposed approach.
First, the employed data and implementation is described. Then, the obtained
results are illustrated and we analyze them.

5.1 Employed Data

For the validation of the proposed approach, we prepared 6 short videos. In
all videos, there is a yellow or blue balloon as a foreground object and a green
background. On the background, there are a few small red sticky notes to help
detecting some key points. The videos were recorded in a UHD resolution.

Here is a brief characterization of all employed videos:

• a handheld camera, both the foreground object and the background are
sharp,

• a static camera, only the foreground object is sharp, a hand is interfering
with the background (2 videos),

• a static camera, only the foreground object is sharp, it is close to the
camera,

• a static camera, only the foreground object is sharp, it is moving towards
the camera,

• a static camera, only the foreground object is sharp, it is moving away
from the camera.

For the testing, labels were available for all points of interest. Unfortu-
nately, those labels were often unreliable.
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5.2 Implementation

An ORB tracker was implemented in C++, employing the OpenCV library.
A video was processed by this tracker and motion vectors were exported as
csv files for further analysis.

A user interface for initial annotation with the propagation of those labels
to all pixels and semi-supervised classification were implemented in Matlab.

The GMM algorithm for comparison of our approach was implemented in
Python employing the scikit-learn library.

5.3 Results and Their Analysis

In all the employed videos, we measured the quality of classification by means
of the accuracy, sensitivity, specificity and F-measure of both implemented
classification methods.

For the fuzzy c-means method, those quality indicators are illustrated for
four particular videos in Figures 5.1 and 5.2. The video with a handheld
camera has a very good accuracy and F-measure, but others are only slightly
above 50 %.

For the cluster regularization method, the same is illustrated in Figures 5.3
and 5.4. We can see that all videos, except for the video with the object moving
from the camera, have a F-measure between 70 % and 90 % and an accuracy
between 60 % and 90 %.

For the comparison with our proposed approach, we measured the quality
of the GMM method in the same videos. The results are in Figuress 5.5 and
5.6

Table 5.1 shows that, according to the Friedman test, we can’t reject the
hypothesis that all methods have equal quality measures in delays 1, 5 and
10 frames between classifier training and measuring its quality. The results
are comparable but the reason for choosing semi-supervised classification over
GMM can be more efficient processing of videos in high resolution.
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Table 5.1: Results of the Friedman test of the hypothesis that for a given delay
between classifier training and measuring its quality, a given quality measure
is equal for all considered classifiers.

Quality measure Delay p-Value
accuracy 1 0.8465
accuracy 5 0.5134
accuracy 10 0.3114

sensitivity 1 0.8465
sensitivity 5 0.6065
sensitivity 10 0.3114
specificity 1 0.6065
specificity 5 0.1146
specificity 10 0.3114
F-measure 1 0.8465
F-measure 5 0.5134
F-measure 10 0.3114
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Figure 5.1: The evolution of accuracy and F-measure of the c-means method
on the unlabelled data for four particular videos
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Figure 5.2: The evolution of sensitivity and specificity of the c-means method
on the unlabelled data for four particular videos
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Figure 5.3: The evolution of accuracy and F-measure of the cluster regular-
ization method on the unlabelled data for four particular videos
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Figure 5.4: The evolution of sensitivity and specificity of the cluster regular-
ization method on the unlabelled data for four particular videos
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Figure 5.5: The evolution of accuracy and F-measure of the GMM method on
the unlabelled data for four particular videos
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Figure 5.6: The evolution of sensitivity and specificity of the GMM method
on the unlabelled data for four particular videos
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Conclusion

This thesis deals with scene segmentation of the video in UHD resolution.
Traditional methods work on the pixel level and they are not efficient for use
on high resolution.

The presented research integrates two comparatively recent approaches,
the key point detector ORB, which is a combination of a corner detection
method FAST with a visual descriptor method BRIEF, and two semi-super-
vised classification methods – Semi-supervised classification with cluster regu-
larization and Semi-supervised kernel-based fuzzy c-means. To our knowledge,
this is the first time these approaches are used together for the task of scene
segmentation into the foreground objects and the background.

For the initial annotation, a user is involved to provide some labels. Those
are propagated to the whole image with the usage of max-flow algorithm
Boykov-Kolmogorov. The labels are moved to the matched key points on the
following frames. Key points that don’t have labels are classified using one of
the semi-supervised classifiers. By this process, we get labels for all detected
key points in each frame.

Results we get are comparable to the results achieved by one of the tradi-
tional methods - Gaussian Mixture Model. Friedman test shows that we can’t
decline the hypothesis that all methods have equal quality measures in delays
1, 5 and 10 frames between classifier training and measuring its quality. An
advantage of our proposed approach is time efficiency.

Both approaches should be investigated in the context of more complex
segmentation and more realistic scenes. To this end, however, especially the
ORB detector needs to be more deeply elaborated using with methods of
semisupervised classification.
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Appendix A
Acronyms

BRIEF Binary Robust Independent Elementary Features

FAST Features from Accelerated Segment Test

GMM Gaussian Mixture Model

ORB Oriented FAST and Rotated BRIEF
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Appendix B
Contents of enclosed CD

readme.txt ....................... the file with CD contents description
src.......................................the directory of source codes

thesis..............the directory of LATEX source codes of the thesis
impl ......the directory of source codes of the implemented methods

data ............................................... sample data
text..........................................the thesis text directory

DP Kerul-Kmec Oliver 2019.pdf......the thesis text in PDF format
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