
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague June 2, 2018

ASSIGNMENT OF MASTER’S THESIS
 Title: Evolvability of Business Process Models

 Student: Bc. Stanislav Mikeš

 Supervisor: Ing. Marek Skotnica

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of winter semester 2019/20

Instructions

Majority of state-of-the art enterprises are using business process management systems (BPMS) to bridge
the gap between the business needs and IT implementations. But as enterprises do change over time due
to government regulations and market requirements, these systems need to change over time. A goal of
this thesis to investigate what types of changes usually occur and what is their impact on enterprise
information systems based on BPMS.

Steps to take:
1. Explore state-of-the-art BPMS
2. Explore how BPMS handle versioning
3. Create a proof-of-concept case study with minor and major changes
4. Propose best practices how to handle these changes

References

Will be provided by the supervisor.

Master’s thesis

Evolvability of Business Process Models

Bc. Stanislav Mikeš

Department of Software Engineering
Supervisor: Ing. Marek Skotnica

January 9, 2019

Acknowledgements

I would like to thank my thesis supervisor, Marek Skotnica, for his valuable
advice and guidance throughout the process of writing and searching for re-
sources. I would also like to thank my parents for their continuous support.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on January 9, 2019 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2019 Stanislav Mikeš. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Mikeš, Stanislav. Evolvability of Business Process Models. Master’s thesis.
Czech Technical University in Prague, Faculty of Information Technology,
2019.

Abstrakt

Podnikové procesy jsou zásadńı součást́ı každé společnosti. Vzhledem k tomu,
že společnosti rostou, procesy se stávaj́ı stále složitěǰśımi a náklady spojené s
jejich změnami rostou. Podle některých publikaćı je až 6 % obratu společnosti
vynaloženo pouze na dodržováńı regulaćı a předpis̊u.

Abychom se vypořádali s těmito stále se měńıćımi procesy, použ́ıvaj́ı se
systémy pro správu business proces̊u (BPMS). Tyto systémy umožňuj́ı společnostem
překlenout propast mezi implementaćı softwaru a obchodńımi potřebami.

Hlavńım ćılem této práce je analyzovat, jak efektivně BPM systémy řeš́ı
měńıćı se podnikové procesy.

Prvńı kapitola poskytuje přehled o tom, jak se stávaj́ıćı BPM systémy řeš́ı
tyto změny a porovnává je s jinými př́ıstupy, jako jsou např́ıklad Low-code
platformy.

Druhá část analyzuje, jaké změny nastávaj́ı v podnikových procesech, a
vysvětluje na př́ıkladu, jak s nimi pracovat.

Nakonec jsou popsány postupy a doporučeńı pro ř́ızeńı změn v podnikových
procesech.

Kĺıčová slova BPMN, evolvabilita, migrace, procesńı ř́ızeńı, změnové ř́ızeńı,
BPR

vii

Abstract

Business processes are an essential part of every company. As the companies
grow, the processes are becoming more complex and cost a lot of money to
maintain. According to some reports, 6 % of company turnover is spent only
on compliance processes alone.

To deal with these ever-changing processes, a Business Process Manage-
ment Systems (BPMS’) are being used. The BPMS’ allow companies to bridge
the gap between software implementation and business needs.

The main goal of this thesis is to analyze how effectively the BPMS’ deal
with the changing business processes.

The first chapter provides an overview of how existing BPMS’ are dealing
with the changes and compares them to other approaches such as Low-code
platforms.

The second part analyzes what kind of changes occur in business processes,
and explains on an example of how to deal with them.

Finally, best practices to deal with changes in business processes are de-
scribed.

Keywords BPMN, evolvability, migration, business process management,
change management, BPR

viii

Contents

Introduction 1
Motivation . 1
Objectives . 2

1 Business Process Management Platforms 3
1.1 Key Factors . 3
1.2 Comparison of BPMS and Low-code Approaches 4
1.3 BPM Solutions . 7
1.4 Low-code Platforms . 10
1.5 Open-source . 13
1.6 Vendor Lock-in . 14

2 Handeling of Business Process Changes 17
2.1 Business Process Reengineering 17
2.2 Low-code Versioning . 18
2.3 BPM Versioning . 22
2.4 Camunda Analysis . 25

3 Process Model Evolvability 37
3.1 BPMN Elements . 38
3.2 Basic Definition . 39
3.3 DMN . 47
3.4 Rules of Migration . 48

4 Evolvability Strategy 59
4.1 Logical Blocks . 59
4.2 Awarness of Variables . 59
4.3 Compatible Elements . 60
4.4 Subprocesses . 62
4.5 Awarness of Tokens . 62

ix

4.6 Third-party Systems . 63

Conclusion 65
Meeting the Goals . 65
Further Research . 66

Bibliography 67

A Acronyms 71

B Process models 73

C Decision tables 77

D Process forms 79

E Contents of enclosed CD 81

x

List of Figures

1.1 Example of creating and managing business processes in Camunda
BPM platform [1] . 5

1.2 Example of creating app with PowerApps [2] 7
1.3 Comparison of two leading research graphs about BPM suites . . . 8
1.4 Comparison of two leading research graphs about low-code platforms 12

2.1 PoweApps - table of versions of an app 19
2.2 Business process model as a microflow in Mendix Modeler 20
2.3 History of revisions in Mendix Modeler 21
2.4 Braching and merging concept in Mendix 22
2.5 Visualisation of running processes from different definitions 23
2.6 Process of versioning models and using them for new business pro-

cesses in Appian . 24
2.7 Camunda architecture overview [3] 25
2.8 Camunda administration screens 27
2.9 Camunda heat map tool . 28
2.10 Process of versioning models and using them to creat new process

instances in Camunda . 29
2.11 Option for process instance migration in Camunda Cockpit 31
2.12 Choise of the source and target versions and highlighted ways of

activity mapping in Camunda Chockpit 32
2.13 Selecting instances which will be migrated in Camunda Cockpit . . 32
2.14 Confirmation window with options and summary of the migration

in Camunda Cockpit . 33

3.1 Graphical representations of Start Event types 39
3.2 Graphical representations of general Boundary Event types 40
3.3 Graphical representations of Intermediate Catch Event types . . . 40
3.4 Graphical representations of Task types 41
3.5 Views of subprocesses . 43

xi

3.6 Graphical representations of Subprocess types 43
3.7 Graphical representations of Multi-instance Tasks 45
3.8 Graphical representations of Gateway types 46
3.9 Example of a simple business rule 47
3.10 Example of a Decision Requirements Diagram 48
3.11 Payment process model without pools 49
3.12 Payment process model with pools 50
3.13 Payment process model with Data Object 51
3.14 Payment process model with Data Store 51
3.15 Model of the booking process with highlighted running instances . 56
3.16 Migration of instances to the patched version of the process model 57
3.17 Process model extended by a new feature of booking a hotel room 57
3.18 Migration of instances to the new version of the process model . . 58

4.1 Process with two added tasks that uses previously unknown vari-
able ’B’ . 60

4.2 Process with multiple tokens and parallel gateway 61
4.3 Migration of embedded subprocess to transaction subprocess . . . 62

B.1 Final example of the flight booking process model 74
B.2 Final example of the flight and hotel booking process model 75

C.1 Decision table for flight prices . 77
C.2 Decision table for room prices . 77

D.1 Setting parameters for the trip by the user 79
D.2 Setting parameters for the trip by the user 79
D.3 Recapitulation form . 80
D.4 Form for input information about a credit card 80
D.5 Recapitulation of charging a creadit card 80

xii

List of Tables

1.1 Comparison of tools . 6
1.2 Comparison of key features and capabilities 6

2.1 Weaknesses in processes [4] . 19
2.2 Example of versioning . 23

xiii

Introduction

Motivation

Processes are generally a part of all tasks. They can be found in corporate
structures and the public sector but are also used by many individuals. The
complexity of processes can increase based on the company growth or contin-
uously changing regulations.

The main goal of this thesis is to provide recommendations for change
management of business processes. It is reflected in the competitiveness of
the market. In this case, there is the frequent use of Business Process Man-
agement (BPM) that specifies entities and their part that they will engage in
the processes. It also specifies the inputs and outputs of a process.

An important role in this effort is business process modeling, which allows
processes to be captured in the visual form to facilitate their creation, an-
alysis, and subsequent changes. A unified notation (BPMN) is used for this
visualization.

Nowadays, all spectrums of business are supported by some type of infor-
mation system. Each company uses different information systems based on
their own business types and company structures. A majority of enterprises
have decided to take advantage of Business Process Management Systems
(BPMS’) to bridge the gap between the business needs and IT implemen-
tations. BPMS’ allow the aforementioned functionality to model business
processes as well as orchestrate sub-steps from the point of view of lower-level
systems. The purpose of these systems is, for example, to manage different
types of recourses or customer relationships.

However, as enterprises change over time, due to government regulations
and market requirements, these systems need to change as well. Companies
claim that they spend around 6% of their turnover on complying regulations
[5].

1

Introduction

Objectives

The goal of this work is to investigate what types of changes are most of-
ten performed and what the impact is on BPM-based corporate information
systems.

This thesis is divided into theoretical parts. They include the exploration
of popular solutions for process management and an output in the form of
best practice recommendations for change management. That is based on the
practical part of creating a case study with change interventions.

Explore state-of-the-art BPMS’

The first step is to explore the BPMS’ that are used these days and are the
most popular in the market. It is also important to investigate an alternative
solution called Low-code Application, which replaces BPMS’ for less complex
processes, mostly for smaller companies.

Explore how BPMS’ handle versioning

The next step is to learn about the procedures that BPMS’ have to deal with
during model versioning in case of necessary repairs or updates. The focus in
this chapter is mainly on BPMs.

Create a proof-of-concept case study with minor and major
changes

After the versioning exploration, the proof-of-concept (with an open-source
solution) is created based on a more complex business process where it is
possible to present interventions in the form of minor and major changes.

Propose best practices how to handle these changes

Based on the two previous steps and their outputs it is possible to propose
methods how to handle upcoming changes in complex process models.

2

Chapter 1
Business Process Management

Platforms

There are two main research and advisory companies that release their re-
search papers nearly every year. This is no different with BPM systems.
The first well known company is Gartner, with their magical quadrants [6].
Another research company that this chapter will use as a source is called For-
rester. They started using the term DPA [7], instead of BPMS, which means
Digital Process Automation. Since these terms were used for the first time,
the BPM market grew and there are many more specialized software solutions.
Some vendors aim at the enterprise sphere or larger companies while others
aim at smaller businesses. This will affect the number of features, price, time
for implementation, and the need for specialists. Software for business pro-
cess management can be divided into two categories - BPMs and low-code
platforms. Main vendors have already recognized the demand for low-code
solutions and most of them offer these solutions within their BPMS.

1.1 Key Factors

The importance of key factors can vary depending on the category or size of
a company.

One of the main factors is if the solution is cloud-based or on-premise. It
is crucial for enterprises that their processes are complex and include their
know-how. One of the requirements is to keep the solution on their servers
because of lack of trust or a wider variety of adjustment. On the other hand,
the cloud-based software can be useful for smaller companies or companies
that are not strictly process-centric. It allows them to start modeling and
using the software at that exact moment without spending unnecessary time
or money during the implementation.

Another important factor is the capability of integration with the existing

3

1. Business Process Management Platforms

systems. Most of the solutions that are on the market feature that. The in-
tegration is mainly available via REST API, Java integration, Soap, prepared
adapters, and connectors.

One of the integrations could be called Single Sign-On (SSO) as well.
SSO becomes more important with the growth of a company and the need of
employee directories to manage role/person access to their systems. In this
case, SSO is a mandatory feature to allow users to log in with one set of
credentials.

Another key factor could be mobile-ready apps so the users can interact
with models from wherever they need to.

Creating models is the main purpose of these solutions. There are a variety
of standards for process models, the most popular being BPMN. It should be
used in leading technology rather than proprietary notations. It leads to easier
understanding for all of the users that are involved, such as the end customer,
team member or project manager.

Performance also plays a key role. The software performs differently de-
pending on the number of users at one moment. Scalability is important
during the growth of a business.

1.2 Comparison of BPMS and Low-code
Approaches

The main difference between traditional BPM and new Low-Code approaches
is a complexity of the setup process. Any BPMS requires coding skills (mostly
in Java) to develop and integrate automated business processes. As a result,
this means that the company needs an outsourced team to set up the envi-
ronment or assemble its own team. All of this coding and related concept
preparation can take months to prepare and many more months to reach pos-
itive numbers of ROI. Also, maintenance can be as expensive as the initial
deployment.

On the other hand, there is the Low-code approach. It can not be said that
these are two different things since a low-code platform is more likely to be
an extension of a traditional BPM solution. It provides prepared templates,
connectors, and even database schemas that allow users to easily create auto-
mated tasks, test them, and deploy them in a matter of days/weeks. There
is very little need for the coding and creation process of UI. This is done via
drag and drop designers, as you can see in table 1.1. Due to its simplicity, the
low-code solution cannot be used for more complex problems. An example of
these advantages and a simple way for how to deploy an app can be seen in
the pictures 1.2.

More differences can be seen in the table 1.2 and they can have a major
role in the decision-making process for choosing a solution for a company.

4

1.2. Comparison of BPMS and Low-code Approaches

(a) Camunda Modeler for creating and editing process models

(b) Managing instances of a process in Camunda Cockpit

Figure 1.1: Example of creating and managing business processes in Camunda
BPM platform [1]

The Low-code software is perfect for straightforward processes that require
less customization. Due to its simplicity, the low-code software offers a lower
learning curve that can speed up the entire setup process. As a result, this is
a preferred option for smaller (and maybe medium) sized enterprises.

Another factor from the comparison table 1.2 is pricing. The low-code
software does not require hiring external specialists or building an in-house
team. It is the same with the initial costs. The low-code platform can decrease

5

1. Business Process Management Platforms

Table 1.1: Comparison of tools

BPMS Low-Code
Designer BPMN modeler, but no

designer for creating UI
Doesn’t support BPMN (or
any other standard notations
- only proprietary ones),
basic flowcharts, drag and
drop designer for UI

Connectors Most common products or
services are provided or has
to be customly developed
with SDK

Only common products or
services are provived, lack of
these connectors

Monitoring Tool for monitoring running
instaces of processes, also
analyzing bottlenecks or
potential money saving

Just limited monitoring

these costs for small and medium companies as well.
However, simplicity is not always an advantage for BPM platforms. The

main reason is that developers are not able to customize forms or automate
complicated workflows that are based on requirements from c-level executives
or business analysts.

Table 1.2: Comparison of key features and capabilities

BPMS Low-Code
Process setup Has to be programmed

and takes more resources
to make a later changes

Drag and drop designer,
pre-built app templates
and connectors

Setup time In range of couple of
months with specialists

In range of couple of
minutes/hours

Deployment type Mostly on-premise Mostly cloud-base
Integration Some already provide

connectors or add-ons
Many connectors for 3rd
party services/databases,
data-driven development

Pricing Thousands of dollars
(depends on the size of
the project) for
deployment and monthly
for maintenance or
help-desk

Average $10/month/user

IT skills IT specialists to setup
and training for end-users

Minimal or no coding
skills needed

6

1.3. BPM Solutions

(a) Gallery of prebuilt apps

(b) Blank app ready to connect to data
sources

(c) Creating form and gallery of contacts

(d) Using Microsoft Flow to cover integration of services

Figure 1.2: Example of creating app with PowerApps [2]

1.3 BPM Solutions

The main advantages were mentioned in comparison section 1.2 but there are
also other reasons why companies should decide to use a BPM solution. The
most important factor is the efficiency of business processes: it can help with
productivity thanks to parallel processing or the removal of bottlenecks. The
monitoring feature improves the process of finding unnecessary steps or the
potential risk of fraudulent activity.

Nowadays, companies have to be able to manage new regulations and

7

1. Business Process Management Platforms

market demands. BPM systems can ensure that regulatory requirements will
be implemented properly and quickly. Furthermore, that prevents associated
fines.

The requirements also come from the business structure and its continuous
change (growth or adaptation on new markets). All these aspects are tightly
intertwined with the versioning of preexisting business process models (more
information about how BPMS’ handle versioning can be found in chapter 2).

The main leaders usually offer their own solution for dealing with busi-
ness processes. For companies that wonder about adopting this, it is hard to
decide what solution to get and from which vendor. These BPMS’ can look
similar because most of them are based on visual modeling. However, there
are differences between them that can have more weight in decision making.

As it can be seen from the graphs in 1.3, the research from Gartner [6] is
based on strategy, vision, and offers. Forrester [7] even includes the market
presence, which is also important for talking about leaders. A majority of
solutions are Java-based.

(a) Forrester Wave: Digital Process Automa-
tion Software, Q3 2017 [7]

(b) Gartner’s Magic Quadrant for
BPMS’, October 2017 [6]

Figure 1.3: Comparison of two leading research graphs about BPM suites

1.3.1 Pega Platform

The first one is Pega, from Pegasystems [8], with the highest ranking from
both sets of research. One of the reasons is that Pegasystems have an extensive
history of developing CRM applications that offer support services for sales,
marketing, and customer service.

The platform offers low-code development to accelerate building process
models through visual tools. Continuous modification and improvement of

8

1.3. BPM Solutions

processes are allowed thanks to Agile Studio and their DevOps solution, which
are part of the Pega platform. The software supports robotic automation,
which means that it is possible to create bots to take care of repetitive com-
munication with a customer.

1.3.2 IBM

IBM has a long history of developing enterprise solutions and continues to
show this in the case of their BPMS. It is widely used by many companies and
is available in on-premises and cloud configurations.

The solution [9] is designed to support mobile devices, featuring case man-
agement capabilities. Its tooling is ready to design, execute, monitor, and
optimize business processes. A crucial highlight should be aimed at the ca-
pability to be deployed on a single process server or in a federated topology.
Thanks to the Process Portal, users are provided with a collaborative work
environment. As usual, the pricing is available upon request.

1.3.3 Appian

Appian only offers a BPM solution [10] with the support of case management
that allows building process-centric and case-centric applications.

Their solution includes every key factor that was mentioned in chapter 1.1.
For instance, the key factor - cloud/on-premise - is covered with both of these
options. Users are able to manage the creation of mobile or web applications
with the low-code approach. Appian BPMS provide real-time monitoring and
management tools to keep track of running processes. It is possible to reassign
tasks and track the progress of the tasks in different parts of the company.
Team members can define critical policies and procedures.

1.3.4 Bizagi

One of the main leaders is Bizagi, whose solution [11] is divided into three
components - Bizagi Engine, Bizagi Studio, Bizagi Modeler. These products
are also available in the cloud version. The Studio and Modeler are available
for free so the process can be ready before even buying the Engine.

The solution is similar in the key capabilities to its alternatives. It provides
users with process modeling, automation, low-code development, and case
management.

The learning path is supported by the extensive catalog of courses. An-
other useful catalog is full of templates of process models, process apps, and
widgets to achieve fast results. When compared to the other solutions, Bizagi
supports JEE and .NET platforms and all server operating systems.

9

1. Business Process Management Platforms

1.3.5 AuraPortal

Another solution that is slightly dependent on Microsoft technology is Au-
raPortal [12]. Its main difference from the others is that it uses Microsoft
SharePoint as its document manager.

It also offers no-code development, which can be a dealbreaker for smaller
companies with only a basic IT department.

AuraPortal consists of Core BPM and optional modules. These modules
are notable benefits that are not seen in their competitors’ solutions. The
main module is Deep Business Intelligence and allows the insight of business
processes with a connection to Microsoft Power BI. The next modules provide
a management of business rules, having three synchronized environments (de-
velopment, production, and testing), and external users workflow that allows
users to send tasks to each other without requiring an intermediary employee.

1.3.6 K2

K2 [13] offers a nearly identical portfolio of components and capabilities when
compared to its competitors. It also provides the low-code approach to create
apps without any need to have coding skills, or just creating simple forms.
For its costumers, K2 solution has pre-build applications to take a shortcut
to process automation.

The basic product K2 runs on the cloud, however, there are two other
products (K2 Five and K2 Blackpearl) that are ready for on-premise solutions.

1.3.7 Oracle

Oracle, one of the largest software makers in the world, also has its own BPM
solution (Oracle BPM Suite) [14]. This also indicates that the pricing is not
published and final, it depends on an individual plan made for user’s needs.

The solution offers basic features as the web-based Process Composer to
create models, Web Form designer, application adapters for web services or
databases or Desktop BPM studio.

When compared to the other vendors, Oracle BPM also includes capturing
business goals, objectives, and strategies. This allows users to get reports,
such as KPI Heat Map, which helps with the evaluation of the quality of
implemented business models.

The entire solution is provided as a cloud service.

1.4 Low-code Platforms

Low-code platforms are based on products and services (mostly not provided
on-premise), which are intended for application development that employs a
visual and declarative approach instead of programming. They are supposed

10

1.4. Low-code Platforms

to have a big advantage in low or almost no cost for training time and building
apps right away. Some vendors offer low-code or no-code solutions but there
is still a small gap that has to be filled by coding to integrate access to older
applications for reporting or customized user interface.

As it can be seen in graph 1.4, made by Forrester [15] and Gartner [16],
there are again some companies (Appian, Bizagi, K2) that were already men-
tioned in chapter 1.3 about BPM systems. Their products also offer low-code
development, but there is no need to list them again.

Low-code platforms are often cloud-based and correspond with issues for
integration in an internal business network. It does not affect web services,
which are public, so these platforms can connect. Support for integration with
databases is done by JDBC connectors. However, it is not usually possible to
be directly connected.

For example, the PowerApps platform 1.4.3 has its own data storage (Com-
mon Data Service) or it offers many connectors for widely used database sys-
tems. These systems can be reached by PoweApps proprietary gateway, which
has to be installed on the server system that has access to the given database.
The gateway creates an outbound connection to Azure Service Bus, where it
is possible to reach the data from the database.

Another solution that Appian uses is its own Data Store. This allows
them to insert, update, query, and delete data in the format needed by the
applications without writing structured queries. Then, tables and keys have
to be created in the business database. It is recommended to perform bulk
operations for retrieving external data.

1.4.1 Salesforce

Salesforce is a well-known cloud-based customer service platform that is used
widely around the world. They offer solutions for customer relationship man-
agement, sales, and marketing. It was a logical move to extend this portfolio
[17].

It has been offered for years and the product developed into the cutting-
edge solution on the market with features to build code-less apps. To achieve
this, the platform provides the component marketplace and visual interfaces
to build apps or create business models.

The pricing plans are almost the highest when compared to competitors.
The prices range from $25 to $100 per user per month (or $4,000+ per com-
pany) and vary in the number of available objects that can be used to build
apps.

1.4.2 OutSystems

This product is mainly enterprise-focused for large companies. That is why
OutSystems [18] can give their platform with limited features (single private

11

1. Business Process Management Platforms

(a) Forrester Wave: Low-Code Development
Platforms for AD&D Pros, Q4 2017

(b) Magic Quadrant for Enterprise High-
Productivity Application Platform as a
Service, April 2018

Figure 1.4: Comparison of two leading research graphs about low-code plat-
forms

development environment, limited scalability only-cloud) for free to organiza-
tions with less than 100 users. On the other hand, the pricing tiers start at
$2,100.

An unique feature is publishing the apps to iOS App Store and Google
Play store.

The OutSystems solution is not fully cloud-based and it is necessary to
install a desktop integrated development environment. However, it offers the
component marketplace or connectors like the competition.

1.4.3 Microsoft

Microsoft, as a major vendor, also decided to have its own solution for the low-
code platform. In comparison to the other large competitors, it doesn’t offer a
full-fledged BPM suite (their BizTalk product can be used for the orchestration
of business services and supporting their processes) but does have two other
products that can help to develop apps and support basic processes.

The first product for building apps is called PowerApps [2], which starts
at $ 7 per user per month or can be included in Microsoft Office 365 and
Dynamics 365. The second product for covering task automation (known as
IFTTT - If This Then That) is Microsoft Flow. Both of these products are
developed to cooperate and offer connectors right in the visual interface.

The PowerApps provide access to Microsoft’s Common Data Service, which
is a file storage and database to support newly created apps. It also offers con-

12

1.5. Open-source

nectors for regular databases or services as well.
Many others also include pre-built apps to get started right away. The

entire interface is made with a look and feel of other Office applications.

1.4.4 Mendix

Mendix [19] offers the same common features as its competitors. However, it
is more IT-focused, includes testing, and also has customization and options
for analytics.

The pricing starts from 10 users (less is for free with the Community
edition). The enterprise editions start at $ 1,875 per month for a single app and
goes up to $ 7,825 with a wider range of features as an advanced deployment,
continuous integration, private cloud deployment, scaling, or apps on-premise.

Mendix makes users create a design first and continue with creating a
model, app logic, and workflows.

1.5 Open-source

BPM software is solely for a commercial sphere because it aims at cost saving,
greater efficiency and better organization of work, productivity, and process
performance. This will project in its prices. For companies with a large
revenue, it could be a profitable investment. However, for small and medium
enterprises the BPMS’ are basically unavailable. These companies have a
choice in using open-source software as it can lower the initial costs. However,
these solutions mostly do not include as many features as the commercial
BPMS’. Open-source does not mean free software since the costs are connected
with the support and maintenance for the products.

1.5.1 Activiti

Activiti is a Java-based open-source BPMN engine [20]. It is owned by the
company Alfresco. They also have their enterprise BPM solution and the
Activiti engine that is used as the core.

The Activiti is designed for Spring Cloud, docker, and kubernetes. It in-
cludes all the basic tools to create models and workflows or manage processes.
All the tools are web-based with a designer, which is an Eclipse plug-in for
developing the workflows.

1.5.2 Camunda

Camunda is an open-source BPM platform for workflow and business process
automation [1].

The models can be created with BPMN in the modeler. Camunda also sup-
ports other standard definitions, such as CMMN or DMN. Users can manage

13

1. Business Process Management Platforms

reports via Comunda Optimize and create dashboards for business monitoring
or searching for bottlenecks of models.

As with most of the solutions, Camunda is written in Java. This means
that it supports development in Java EE and extending functionality as well
as REST API. Additionally, it can be added to Java applications as a library.

1.5.3 Coverage of BPMN 2.0 Standard

Most of the BPM solutions cover a major part of elements defined by the
standard BPMN 2.0. This also applies on the Camunda BPM platform, which
declares a coverage of most elements of BPMN 2.0 [21]. The coverage is one
of the reasons why Camunda will be used is for this thesis as the main BPMS
to implement and test evolvability of business process models.

1.6 Vendor Lock-in

During circumstances in which low-code platforms (1.4) are used, the depen-
dency on a vendor is almost 100% and results in the issue of vendor lock-in.
The vendor lock-in means that the source code is closed and the vendor does
not provide any API or SDK to enhance the product functionality. This prob-
lem is still manageable, and for most smaller companies with less complex
processes, is relatively safe.

However, a more significant threat than the extensibility is the future of
the vendor. The company that delivers the product as is can be acquired or
become insolvent. This problem becomes more critical as deeper automation
processes are involved in the core business.

The vendor lock-in is not only a problem for low-code platforms but also
for traditional BPM solutions. The company that developed the solution or
its partners are the only ones who have developers with the required skills.
The lack of knowledge for the end users is caused by a closed system and, for
example, expensive training and certifications. These subjects offer custom
deployment with configuration or support. However, the risk is still present
in the case of implementation of the BPM suite as a core business system.

The way that a company can go is an indoor solution. This approach has
more risks than the previous ready-to-go solutions. The main risk is that the
development team has to be experienced enough to produce at least the same
quality product as the normal off-the-shelf application. Another risk could be
insecurity, time which was consumed for developing, or the financial aspect.

The most common cloud vendor lock-in issues are these: (based on the
analysis in Journal of Cloud Computing [22])

Data lock-in This is a problem of low-code platforms and BPM solutions
offered on the cloud (also known as SaaS). Data is stored only at one
cloud provider.

14

1.6. Vendor Lock-in

Data breach This problem is also related to the platforms mentioned above.
The company using the service cannot ensure the security of their data.

Proprietary data format Hard to go to another vendor because of the for-
mat of data, which is specific for the current vendor.

Lack of integration Using another vendors‘ services with the current one is
hard or impossible because there is no prepared interface.

An example of the vendor lock-in is in forms of other services from the same
vendor. In this case, a company will buy a traditional BPM suite. It is working
properly the entire time and the amount of business processes are increasing
as the company grows. The board of the company wants to connect the BPM
system with other (new or older) systems to be more flexible in growing or to
automate more tasks to save financial resources.

This thesis will open the opportunity for a better understanding of the pro-
cess engine and more extensive variety of modifications. The Camunda BPM
solution (1.5.2) is a proper product for the study of evolvability of business
process models.

15

Chapter 2
Handeling of Business Process

Changes

Whenever a company decides for a BPMS, it is because their processes can no
longer continue being handled by a human. These business processes become
more complex and can run long term. In a single instance of a process, the
participants have to deliver documents or have to approve some steps of the
process; having the ability to significantly impact the length of the instance
run. The instance can last for weeks or months. The requirements for the
process model can vary throughout time and have to be changed, even if
some instances are still running. If the change is crucial and fundamental, the
requirement can be more complicated for the already running instances and
they have to be migrated to the newest version.

2.1 Business Process Reengineering

For the continuously evolving business environment, the competitiveness of
individual companies is crucial for survival. Improving processes is an essential
part of maintaining or improving market position. Such improvements can
be faster customer clearance, approval projects, or product manufacturing.
From the process view, an optimal path is investigated by considering time or
resources consumed in that process.

The definition of BPR also includes these three points [4]:

Aiming at processes
Focusing on basic business processes that affect customers and not purely
internal processes. Recognition of these processes is crucial and identi-
fied as critical.

Radical change
A distinctive target for radical change is to improve competitiveness or

17

2. Handeling of Business Process Changes

to dominate the market. The result is to switch from the old functional
grouping of departments to the process-driven departments.

Dramatic improvement
BPR has a radical effect over small gradual improvements. BPR is
performed on core business processes, which are mandatory in improving
competitiveness. First, the strategic objectives are set. Next, the process
is transformed to achieve these goals.

The BPR can be divided into three types:

Mild - the executive staff works similarly but with better support

Medium - some activities are added at the operational level

Heavy - complete reorganization

When optimizing processes, it is good to deal with various aspects like
searching for places that break the optimum path, changing the organizational
structure or dividing competencies. It is also helpful to outsource the process
or reduce bureaucracy in the process. Some businesses also incorporate new
technologies and practices.

The most common weaknesses of processes whose removal leads to im-
proved process performance are stated in table 2.1.

2.2 Low-code Versioning

In section 1.4, the most popular low-code platforms were mentioned. Low-code
platforms can be seen as BPM systems even though they do not necessarily
use the standard BPM notation (some of them have their own proprietary
notations or just support simple flowcharts). In this section, there are slightly
different platforms - the first one is more simple and the second one is more
advanced. It is important to include these platforms as well because they can
provide valuable insight into the concept of versioning process models.

2.2.1 Versioning in Microsoft PowerApps

The PowerApps solution from Microsoft can be used as the first example for
low-code platforms. The concept of saving changes of created apps is simple
and straightforward. In picture 2.1 is the version number, date, author and
flag if the version is published. This table does mot describe versions of process
models created with Microsoft Flow tool.

There can be only one running version of the app, which can interact with
one version of Flow model implicitly. However, from the view of the Flow
environment, it is possible to create a conditional calling of other flows, which

18

2.2. Low-code Versioning

Table 2.1: Weaknesses in processes [4]

Type Description
Spacial Different locations of tasks in one process. It is

time-consuming and hard to manage.
Time Tasks are poorly coordinated on the time scale.
Organizational Tasks are executed by different departments. The

communication can slow down or the priority of the
particular process is not on the same level throughout
the different departments.

Informational Information can get missing through a process. The data
is not compatible or accessible.

Descriptional Tasks are not described properly and it can cause a
misunderstanding.

Applicational This problem is connected with the informational point.
Different applications are used in a company where data
transformation is used, resulting in possible delays in
time.

Sequence Some processes are executed sequentially, even though
they can be executed parallellly.

Loops Complex processes often include many conditions and it
can cause them to return to previous tasks.

can be seen as different versions. The main issue comes with already running
processes, which have to be finished or canceled before changing the flow.

Figure 2.1: PoweApps - table of versions of an app

2.2.2 Versioning in Mendix

The second example is a solution called Mendix, which was mentioned in
section 1.4.4. Projects made by this platform consist of many parts (java
codes, web pages, web service, connectors, images, flows etc.). The flow is

19

2. Handeling of Business Process Changes

basically a type of process model with two options of complexity - microflow
and nanoflow.

Microflow Represents the model which can perform actions like creating and
updating objects, showing pages, or making choices as it is showed in
picture 2.2. Microflow supports error handling with predefined error
variables for inspection.

Nanoflow It is prepared for more simple tasks with no expectation of failure.
The error handling is not supported and also nanoflow does not support
transactions. If an error occurs, it will not roll back to any previous
changes. The actions are directly executed without waiting for results.

Figure 2.2: Business process model as a microflow in Mendix Modeler

The whole process of creating the project is done in Mendix Modeler -
making flows, services, pages or handling versioning. This platform is more
advanced with versioning than PowerApps.

The versioning is supported by Mendix Team Server [23], which works as
the central place for all projects. There are repositories for every application
with process models.

The repository stores a specific version of the project, which is called re-
vision. This revision includes process models, java codes, custom widgets,
etc. The number of revision incrementally increases every time when some-
one commits a set of changes to the repository. This way, the project can be
identified at a certain point in time.

Every team member can download the most recent revision and has their
own copy of the project, called the working copy. It is the lowest level of
versioning that is done locally so that the changes that are made by the
person are not yet reflected on the server. Once the changes are ready, the
person can commit the project to the server, which creates a new revision.
The history of revisions with other info is in picture 2.3.

20

2.2. Low-code Versioning

Every single part of the project is tracked and marked with a proper graph-
ical status that describes if the part was added, modified, moved, deleted or
if it is in conflict. As an example, the mark can be seen in the history window
in picture 2.3.

Figure 2.3: History of revisions in Mendix Modeler

There is also an update request that retrieves the latest changes from
the repository. This process does not only mean updating some parts of the
project because the individual will get the newest revision. During the update
process, the new working copy and local changes are compared and combined.
Consequently, two types of conflicts can arise. The first one is a document
conflict, which means that two people changed the properties of the same
data view (when the changes are too close to each other). The second one
is a project conflict when someone deleted a flow and the other person was
changing it or just moving files to different locations in the project tree.

The Mendix versioning system is more useful thanks to the development
lines (in picture 2.4). The repository can contain a number of these lines. This
concept is well known in the GIT world. There can be more development lines
(branches) for developing new features or the main one for fixing bugs.

Whenever changes are made in the main (for example, in production)
development line, it is possible to merge these changes to the feature branch.
This concept is useful to have bug fixes in every branch.

21

2. Handeling of Business Process Changes

1 2 3

4 5

6 7

merge

main

branch

Figure 2.4: Braching and merging concept in Mendix

Overall, there is no option for how to migrate running instances of process
models.

2.3 BPM Versioning

Unlike low-code platforms, BPM systems have a unified pattern (which can
vary in some details) to handle the versioning of process models and the mi-
gration of their running instances.

2.3.1 Common Pattern

The versioning of process models is done by simply uploading a new process
model to the system under a single process that is incrementally marked. The
new instance of the process is created according to the latest valid version
of the process model. Running instances, which were created according to
previous versions of the process model, must stay active.

There are two scenarios of how the system can handle the versioning. The
first scenario is simple. The instance continues uninterrupted, according to
the previous version of the model that it was created from. The second is
more advanced and based on migrating instances into the latest version of the
model process. The migration means that the unfinished part of the running
instance of the process will continue on the basis of the new version of the
model.

Table 2.2 represents the definition of the process of versioning model.
There is the definition with its three different versions, including dates of
creation. This table is used in picture 2.5, which describes the process the
versioning along with the process of creating the instances out of the model
templates (definitions).

Without migrating The first instance is created based on version 1. Later
on, the second instance is created and both of them will finish inde-
pendently of new templates. Version 2 is still defined while the second
instance is running and from now on, new instances will be created based
on it. The same will happen to the last instance, based on version 3.

22

2.3. BPM Versioning

Table 2.2: Example of versioning

Name Version Date
A 1 01/10
A 2 08/10
A 3 12/10

01.10.2018 30.10.2018

templates

instances
(without migration)

Version: 1

Version: 2
Version: 3

created

created created created created

01.10.2018 30.10.2018

16.10.201816.10.201813.10.201813.10.2018

23.10.201823.10.2018

06.10.201806.10.201804.10.201804.10.2018

instances
(with migration)

05.10.201805.10.2018
15.10.201815.10.2018

19.10.201819.10.2018

25.10.201825.10.2018

created migrated created migrated

Figure 2.5: Visualisation of running processes from different definitions

This scenario is the basic one where attention is not focused on migrating
already running instances.

With migrating The first instance is created from version 1 of the definition.
After the second version is published, the running instances are required
to migrate. The first running instance is being migrated and, later on, a
new instance is created based on version 2. After version 3 is published,
both running instances are migrated to the latest definition.

As previously mentioned, this pattern is the standard for most BPM sys-
tems but it can be different in notation and also in the number of extra features
that are offered for the process of migration.

2.3.2 Versioning in Appin

The solution from Appian, which was mentioned in section 1.3.3, offers ver-
sioning by creating multiple versions of the same process model [24]. Every
single version has a different, unique, number. This unique number is saved
to the property pm!version for each process that starts on it. The version

23

2. Handeling of Business Process Changes

New
model

Create
draft

Save /
 version = „draft“

Published model
current v. = version

Publish /
version = 1.0

Run current model v.

Process runs on the current
model version /

pm!version = current v.

Process runs on the modified
model version /

pm!version = null

Apply changes

New model

Save new /
increased minor version number,

version = x.y++

Publish /
Increased major version number,

version = x++.0

Figure 2.6: Process of versioning models and using them for new business
processes in Appian

number consists of a major version number and a minor version number. The
versioning is based on the process of increasing these version numbers.

When a new process model is saved, it is represented as a draft (version
number is also ’draft’). After publishing the process model, its version is set to
1.0 (major version = 1, minor version = 0). Whenever a process started with
this model, its property pm!version is set to 1.0. Modifying the model of the
running process will cause the process to be run on the modified model and
the process’s pm!version is set to null. The process model 1.0 is modified and,
after saving changes, a new process model with version 1.1 is created (but new
processes will run on 1.0). After publishing model 1.1, process model 2.0 is
created and new processes will run on the latest model. The visual description
of the versioning process is in picture 2.6.

2.3.2.1 Sub-Process Model

It is important to cover process models that can also be run as a sub-process
of another process model. The element is called Sub-Process activity and it
allows one to launch a sub-process from a parent process. The Appian system
defines two sub-process types:

Asynchronous The running parent process launches an asynchronous type
of sub-process and the parent will continue once the sub-process starts.
The variables can be sent to the child but not back to the parent.

Synchronous When the parent process launches the synchronous type of
sub-process, it waits until the child completes. The variables can be

24

2.4. Camunda Analysis

Figure 2.7: Camunda architecture overview [3]

sent back and forth between parent and child processes.

The rules for creating and running a sub-process are similar to the basic
ones that were formerly mentioned. A sub-process which started via the Sub-
Process Activity is created based on the latest published version. The latest
version is also used if the model was republished after the parent process
started. This also applies when the process model is deleted and the latest
published version that existed before removing is used.

2.4 Camunda Analysis

As previously stated, Camunda is a Java-based solution with an open-source
idea. Thanks to that, the engine is more transparent than closed systems and
it is possible to analyze how the system architecture is done.

The picture 2.7 shows the essential parts and user roles that manage these
parts.

Modeler A desktop modeling tool for BPMN 2.0 (also CMMN 1.1 and DMN
1.1), where the functionality can be improved with plugins.

Tasklist A web application (image 2.8a) that allows working on User Tasks
without any coding. It supports Embedded Forms for customization as
well. It enables users to start a process, create a task, or claim another
user.

25

2. Handeling of Business Process Changes

Cockpit A web application for monitoring and operations (image 2.8b). Users
can access deployed BPMN processes and check their running instances.
In the enterprise bundle, it provides options for deployment or access
to statistics of performance. All of that, and more, can be added to
Cockpit via plugins.

Admin A web application that provides a typical admin site to manage users,
groups, their authorizations, and so on.

Engine The core of the entire Camunda solution is a java library, which is
responsible for executing processes based on BPMN, CMMN, and DMN.

Java API Camunda module that provides programming model integration
CDI for Java dependency injection. This module allows programmers
to add Java code behind tasks in BPMN.

REST API The process engine provides access to the entire relevant func-
tionality through REST API calls, which can be used for remote appli-
cations.

2.4.1 Process Analysis and Bottlenecks

Another reason for why changes happen to process models is to improve the
efficiency of the process. With a growing amount of running instances, the risk
of a bottleneck may occur. The bottleneck term is derived from the real world
neck from a bottle, where water can not flow fast enough. The bottleneck in
the business process world is used the same way, where running instances of
the process can slow down at some spot of the definition.

The bottlenecks can have many causes. In the corporate bottlenecks re-
search [25] was found the most common reasons for bottlenecks and their
negative effects.

Most common reasons:

• confusing processes
• colleagues fail to meet deadlines
• cumbersome approval process
• stuck on one high level decision maker

Negative effects:

• low morale
• missed deadlines
• unsatisfied customers
• lost revenue
• regulatory problems

26

2.4. Camunda Analysis

(a) Tasklist screen

(b) Cockpit main screen

Figure 2.8: Camunda administration screens

2.4.1.1 History and Heat Maps

One efficient way to discover these issues is using tools as a historical view
and a heat map in BPM. Camunda offers a tool for exploring the history of
instances. The heat map can be overlayed over the BPM historical view 2.9.
The heat map displays elements with different colors based on a number of
nodes that flow through the process model.

As seen in picture 2.9, the user tasks are the most overloaded parts of the

27

2. Handeling of Business Process Changes

Figure 2.9: Camunda heat map tool

process. For example, that is the spot where an analyst should go deeper into
the problem and a newer version of the definition will be released.

User and external task instances can be evaluated by their parameters like
the assignee, owner, creation date, completion date, the duration, due date,
follow up date, amount of retries, or priority.

2.4.2 Process Versioning

Versioning of process models is considerably challenging. A business process
can run for a longer period of time. Processes, by nature, may last for weeks
or months, depending on internal rules and laws. Furthermore, the duration
depends on the number of stakeholders, who need to pass documents or only
to get their approval to continue.

However, the process model must reflect the changes of the rules, laws, or
the idea behind the process. There can be running instances that have to be
adequately handled during deployment of a new version.

Camunda process engine stores a version and ID of process models into
its database. The process engine handles process versioning by three simple
rules.

• When deployment of a new model of the same process is done, a new
record is added to the database with a higher version number.

• Already running instances, which were created with the older version,
will continue without any changes.

• New process instances will be created based on the new model version
- unless explicitly specified. The determination of which version will be
used depends on two properties.

– Creating a model by the key starts an instance from the latest
deployed model version, which is defined by the key.

28

2.4. Camunda Analysis

– Creating a model by the ID starts an instance from the model that
is stored in the database under this ID. This allows the process to
start with a specific version.

The entire process of versioning and creating instances is captured in pic-
ture 2.10.

Change model
 (i.e. in Camunda Modeler)

New
model

Create
 (i.e. in Camunda Modeler) Process

definition

Deploy /
version = 1,
dbID = GUID

Process runs on the the latest
version of the process definition

Start process instance by key

Process runs on the specific
version of the process definition

Start process instance by dbID

Modified
model

Redeploy /
version++

dbID = GUID

Figure 2.10: Process of versioning models and using them to creat new process
instances in Camunda

The rules, which were mentioned above, raised a question about migrating
already running processes to the latest model versions. Camunda, compared
to Appian, supports this scenario with its Process Instance Migration tool
(section 2.4.4), which is available in the Enterprise version. However, thanks
to the open REST API, it is possible to create ones own tool for migration
with only open-sourced Camunda core bundle.

2.4.2.1 Subprocess Versioning

BPMN 2.0 defines two elements which can be used for calling a process from a
parent process. The child process, from a conceptual point of view, is called a
subprocess. A Call Activity runs an external process definition. However, the
subprocess is embedded within the original process definition. The main idea
of having two different types of subprocesses is to be able to reuse a process
definition, which can be called from multiple processes. When a parent process
executes the call activity, a new process instance is created. The parent process

29

2. Handeling of Business Process Changes

instance waits until the subprocess is completed and continues the original
process afterward.

The regular embedded subprocess will be versioned with the parent pro-
cess. However, there must be particular properties defined within the Call
Activity, so that the engine can recognize which version is supposed to be
used. The properties are:

latest uses the latest version of the process definition.

deployment uses the process definitions that were deployed together, allow-
ing versioning of both (parent and children) processes.

version uses the specific version, which is hard coded into the parent process
definition.

versionTag uses the specific version with the defined versionTag, which hard
coded.

2.4.3 Process Instance Migration

As it was already mentioned in section 2.4.2 and captured in picture 2.10,
the process instances are created based on the latest version of the process
definition (unless otherwise specified).

When some process instances have been running for awhile and a new
process definition is deployed, none are affected. All the instances based on
previously deployed versions will be finished.

However, it is likely that already running instances will have to be com-
pleted according to the new definition. In this case, the migration of running
instances has to be done. The migration is supported by a migration plan,
which describes how to migrate instances from one process definition to an-
other. The migration does not have to be done only from the previous version
to the latest but also the other way or else it is possible to downgrade the
process definition too.

A migration plan consists of a set of migration instructions that describes
a mapping of activities between the two process definitions. An instruction
manages that an instance of the source activity is migrated into an instance
of the target activity. The main condition for having the migration plan valid
is when all the instructions cover all active source activities.

It is mandatory to map activities that are semantically equal or it will not
be possible to migrate the activity. There is a way to manage cases where the
migration has to be done, even if the activities are not semantically equivalent.
The process instance can be modified before the migration so that the partic-
ular activity instance is canceled and started again after the migration. This
case can also be applied when the activity changes its variables, that have to
be known for the rest of the process, so a user or some external process has

30

2.4. Camunda Analysis

to go through the task again after migration to have a valid running process
instance.

2.4.4 Enterprise UI Approach

The tool from the Camunda team covers the entire instance migration process.
Although it is Camunda opensource and free solution, this tool is delivered as
an enterprise feature in the bundle called Enterprise Edition (with many other
useful features but they are not related to this thesis). The tool is provided
as an extension of the user interface in the Camunda Cockpit.

This tool can help with a better presentation of how the process of migra-
tion is being done.

The following four steps are taken to complete the migration based on the
Camunda documentation [26]:

1. Create a mapping of the source activities to the target activities

2. Select running instance to migrate

3. Confirm the migration

4. Check the results and eventual errors

The environment can recognize that the newer version was deployed and
it it will give an option of migration to the user, as seen in picture 2.11.

Figure 2.11: Option for process instance migration in Camunda Cockpit

On the next page, the tool will leave up to choose the source process
definition version and the target one, as seen in picture 2.12.

31

2. Handeling of Business Process Changes

Figure 2.12: Choise of the source and target versions and highlighted ways of
activity mapping in Camunda Chockpit

After the selection, the source and target diagrams are displayed with a
generated migration plan for the user (picture 2.12). However, this plan does
not have to reflect the plan of the user, so it is possible to change the map-
ping there. The mapping has some limitations that are described in chapter
3.4. During this step, the plan is being validated whenever the mapping gets
changed.

Occasionally, if the running activity instances cannot be mapped to any
target activity, they will be marked, and the process of migration will fail.
The users can map the activities by themselves with the drag and drop tool.
The tool will help by highlighting the semantically similar activities.

The window with displayed diagrams can be synchronized for movement so
that it can help with orientation with large models. It also provides a tooltip
for showing the user an error or the particular mapping issue.

After creating the migration plan, there is another step to select the wanted
process instances (or all), which will be the plan applied (in picture 2.13).
These instances can be filtered by their properties (i.e., business key).

Figure 2.13: Selecting instances which will be migrated in Camunda Cockpit

32

2.4. Camunda Analysis

At the last step, the user is asked for permission to execute the migration.
There are also options for if the migration will be executed asynchronously
in a batch, or whether custom listeners and IO mappings should be skipped
(picture 2.14). The asynchronous migration is done one by one process in-
stance and it is useful for a larger amount of these instances. The result of
the migration will be displayed with related errors.

Figure 2.14: Confirmation window with options and summary of the migration
in Camunda Cockpit

2.4.5 RestAPI Approach / SDK

Since the previous section 2.4.4 is describing the UI approach, which Ca-
munda supports only in Enterprise edition, Camunda offers Rest API (and
their Java SDK) that covers the all relevant interfaces of the engine. It is
possible to use a different engine than the Camunda’s default one. Typical
usage of the query for tasks is /engine/task, but for another engine, it is
/engine/name of the engine/task.

The SDK way uses the same interface but it only wraps the API calling
by java methods, so it is easier to use in any already running application. The
Camunda is Java-based, which means that all the Service tasks in process
models can be implemented as a java class. The entire project with these
classes will be deployed together as a .war file.

33

2. Handeling of Business Process Changes

The migration API consists of three methods which cover the process of
migration.

2.4.5.1 Initialization

As indicated previously, the migration is initialized by generating a plan with
migration instructions. The instructions describe a mapping of process model
elements between two versions of process definitions.

REST API method
POST /migration/generate

Parameters
The REST request has to be parametrized by a JSON body. The pa-
rameters refer to the source definition ID and the target definition ID.
This method also sets if event triggers in the process instances will be
updated or not during the migration.

Result
The basic mapping will be applied, and the response body (again, in
JSON format) will return generated instructions of equal elements. The
instructions include a note about updating event triggers, which depends
on the particular type of the element. The instruction is not a 1 × 1
mapping, but it can be N × M by nature; however, that is an unwanted
behavior.

2.4.5.2 Validation

To make sure that the migration plan is correct and will not affect running
instances, it has to be validated. Validation is done two times during the
migration process.

Creation time validation validates a migration plan before the migration
for static aspects without executing the plan.

REST API method
POST /migration/validate

Request
The result body of the previous step of initialization is used as the
request body for this method

Result
The result body contains information about correct mapping and oc-
curred errors if any instruction is not valid.

After the plan is validated, an execution time validation will occur before
the plan is applied to every instance. All leaf activities must have a migration
instruction.

34

2.4. Camunda Analysis

2.4.5.3 Execution

Whenever the migration plan is valid, the execution can start. This process
applies the migration plan to selected instances with the execution time vali-
dation.

REST API method
POST /migration/execute

Request
The body contains the entire migration plan (mentioned above), selected
process instance (their IDs) and other additional parameters. These
parameters define if execution listeners and if I/O mappings should be
invoked during the migration.

This method is described with more details in the section about the en-
terprise approach 2.4.4.

35

Chapter 3
Process Model Evolvability

The meaning of the term evolvability is the ability to undergo adaptation,
development, or evolutionary change [27].

For running process instances that do not require a change in their def-
inition and therefore can continue without interruption, there is no need to
address the issue of evolvability. Conversely, for running instances that re-
quire a change of definition, evolvability is essential and it is necessary to go
through the migration process.

This need for evolvability is due to a legal regulation that is crucial to this
process and there is no exception for already running cases. These instances
can also be affected by a business change. Another reason for changing the
definition can be the analysis of a process that contains errors or bottlenecks
and consumes an unnecessarily large amount of resources (financial or human).
Also, there may be processes that are carried out within B2B where processes
could be changed on the other side, or this party no longer exists and must
be replaced by another supplier/customer and corresponding processes.

It is also important to decide which instances to migrate. It is not always
necessary to migrate all instances because some may already be in a stage
that is not affected by the change of the process definition and migration only
means creating potential problems and errors. Another reason to consider
migrating a given instance is to have initialized variables that were created
by the system or user that could be lost and, for example, the process would
behave differently from an external perspective than was previously designed.

BPM migration also involves migrating and validating other components
in which the model is dependent on and using them. These include DMN,
scripts, external tasks, simple expressions, or subprocesses. In some cases, a
collision of transferable BPM elements may also occur. These issues are dealt
with in this chapter, which seeks to provide solutions for them. This chapter
uses Camunda solution for creating examples.

37

3. Process Model Evolvability

3.1 BPMN Elements

BPMN is the leading notation for defining models of business processes. The
standard of BPMN which will be used in this chapter is based on the official
normative documents [28] created by OMG (Object Management Group).

The basic categories of elements are:

• Flow Objects

• Data

• Connecting Objects

• Swimlanes

• Artifacts

The main graphical elements that define the behavior of a process and will
be affected by the changes in the model are Flow Objects.

These Flow Objects consists of:

• Events

• Activities

• Gateways

Since this thesis uses Camunda as a representant of a BPM system, it is
necessary to check the elements that are supported and implemented by the
engine. The system supports most of the BPM elements [21] except for Parallel
Event-Based gateway, Multiple and Multiple Parallel events, Undefined and
Receive (instantiated) Tasks. The Data elements (Data Objects, Data Inputs,
Data Outputs, Data Stores) are also not supported by the engine.

Migration depends on the type of activities a process model contains, caus-
ing the migration to have different effects.

3.1.1 Scopes

For evolvability, it is important to explain what BPMN scopes means. A scope
describes the context in which the execution of an Activity happens [28]. The
scope consists of:

• Events ready for catching or throwing triggers

• Data Objects available (input/output)

A scope contains exactly one main flow of activities. Scopes are used to
define the visibility of data objects, event resolution, and start/stop of token
execution.

38

3.2. Basic Definition

3.2 Basic Definition

Before starting an exploration of evolvability of business process models, the
basic information about BPMN elements is described in this section to con-
tinue with whole business process models. The main source of information
of migration basis is from Camunda documentation [26] and OMG BPMN
standard [28].

3.2.1 Events

In BPMN, there are three types of events: start, intermediate and, end events.
These types can be either catching or throwing events. Intermediate events
can be used as boundary events pinned on activities, where they can be inter-
rupting or non-interrupting.

3.2.1.1 Start Event

Start event (picture 3.1) starts the entire process or subprocess. It can be
migrated with persisting event trigger if the source start event is not mapped
it will be removed and the new start event is initialized.

(a) Normal Event (b) Message Event (c) Timer Event (d) Signal Event

(e) Conditional Event

Figure 3.1: Graphical representations of Start Event types

3.2.1.2 End Event

End event acts the same way as the Start Event during migration. Unlike
the Start Event, the End Event can be represented as Escalation, Error, or
Compensation End Event. The End Event cannot have a Timer event trigger.
There does not have to be a focus on updating the timer.

3.2.1.3 Boundary Event

Boundary Event (picture 3.2) caches a throwing event from the inside of the
Activity in which the event is attached. Whenever the boundary event is

39

3. Process Model Evolvability

attached to a multi-instance, all the instances are canceled. When a boundary
event is triggered the execution continues through the attached sequence flow.

(a) Interrupting (b) Non-interrupting

Figure 3.2: Graphical representations of general Boundary Event types

3.2.1.4 Intermediate Catch Event

Intermediate Events (picture 3.3) handle triggering Events. Waiting for the
occurs of the Events starts when the Intermediate Event is reached. Once
it catches the Event, the token leaves the Intermediate Event by a Sequence
Flow.

(a) Message (b) Conditional (c) Timer (d) Signal (e) Link

Figure 3.3: Graphical representations of Intermediate Catch Event types

3.2.1.5 Compensation Event

Compensation is used for undoing steps that were already done. These steps
can be represented as activities that could cause some unwanted effects and
should be reversed. If the task is running, it cannot be compensated and
the cancel event has to be applied. In the case of a subprocess, the cancel
event can result in compensation of the already finished tasks and the entire
subprocess. Compensation is mostly performed because of some error inside
the particular activity.

3.2.2 Activities

An Activity is a single work item in a process definition - it is the executable
element of a BPMN process. Activity can be atomic or non-atomic (com-
pound). Activities are divided into three types (Task, Subprocess and Call
Activity). Task graphical elements are in the figure 3.4.

40

3.2. Basic Definition

Choose the
destination

(a) User task

Calculate the
final price

(b) Service task

Send message

(c) Send task

Recieve
message

(d) Receive task

Validate date

(e) Script task

Install the
Seaching app

(f) Manual task

Figure 3.4: Graphical representations of Task types

A task is an atomic Activity, which means that it cannot be broken down
to a finer level of detail.

The main rule for migrating tasks is that the type of target and source
activity has to match.

3.2.2.1 User Task

A User Task (picture 3.4a) is a typical task which is performed by a human
performer. There can be a software interface that assists with the task.

When a user task is migrated, all properties of the task instance are pre-
served except the process definition ID and task definition key. The task is
not reinitialized: Attributes like assignee or name do not change.

3.2.2.2 Service Task

Service Task (picture 3.4b) uses some sort of service, which can be a web
service or an execution of a method. This task is used for orchestration of
external tasks and it can delegate work through different implementation,
which depends on the architecture of the process engine. For example for
Camunda - it can be implemented as a java class or external code which is
accessible via REST API; it also supports expressions or connectors.

As previously noted, a service task can be defined as an external task which
means that is implemented by an application running out of the execution
engine. When the service task is implemented as external, it can be mapped
to other tasks which have an option of external implementation. Other tasks

41

3. Process Model Evolvability

that have this option is Send Task (picture 3.4c). This allows mapping these
tasks with each other.

3.2.2.3 Receive Task

Receive Task (picture 3.4d) is a simple task that waits for a message from an
external source. The task is completed whenever it receives a message.

Since this task is the simplest one, there is a rule about specifying a mes-
sage and setting if a persistent event trigger can be updated or preserved dur-
ing migration. More information about the event trigger is in section about
events 3.2.1.

3.2.2.4 Script Task

Script Task is defined by a script in language which is supported by the exe-
cution language (mostly different types of JavaScript). Once the task is ready
to start, the engine executes the script and when the script is completed the
task is completed as well.

The script task can only be mapped to the same type of task. The script
task is atomic, so it will not preserve any initialized variables during the
migration.

3.2.2.5 Manual Task

Manual Task (picture 3.4f) is performed without any help of a business process
execution engine or any application. This type of task is used for manual
work, which is considered as a unmanaged task (e.g., a technician installing a
telephone at a customer location).

There is nothing to preserve during migration.

3.2.2.6 Subprocesses

Subprocess is another type of Activity. Unlike tasks, subprocesses are non-
atomic. They can consist of Activities, Events, Gateways, and sequence Flows.
A subprocess defines a contextual scope (including attribute visibility, trans-
actional scope, handling of throwing events, or compensations).

Subprocesses can be collapsed (picture 3.5a), which hides the model inside,
or expanded (picture 3.5b), which reveals the model.

There can be different styles of subprocesses, some of which can be seen
in picture 3.6 and described in the section below.

Migrating a subprocess (except Call Activity) applies the same rules as to
the standard task - it will preserve the subprocess state such as variables. If
there is no migration instruction for the subprocess, the instance is canceled.
The regular subprocesses (embedded/event/transaction) can sbe mapped be-
tween each other.s

42

3.2. Basic Definition

Get weather

(a) Collapsed (b) Expanded

Figure 3.5: Views of subprocesses

Order car

(a) Call Activity

Order car

(b) Transaction

Flight

Hotel

Booking Error 2Booking Error 1

(c) Event Subprocess

Figure 3.6: Graphical representations of Subprocess types

Call Activity
Call Activity (picture 3.6a) is defined as an external subprocess. Call activity
is a reusable process definition that can be called from many other processes.
When the process arrives at the call activity element, a new instance is cre-
ated out of the call activity definition. The parent process waits until the
subprocess is completed and continues afterwards.

Migration of Call Activity is done separately since the definition is not a
part of the parent definition.

43

3. Process Model Evolvability

Transaction
Transaction groups sets of activities, events, sequence flows, and gateways.
The main sign of a transaction is that the entire process will fail or succeed
collectively.

BPMN transactions should not be confused with a transaction known in
the technical world with ACID properties. The BPMN transaction is not
atomic and it can last four hours.

A transaction can end up in three different states:

• Successful completion - normal sequence flow leaves the subprocess.

• Failed completion (Cancel) - a transaction is canceled if any activity
triggers the Cancel End Event. A compensation is triggered and af-
ter it is completed the token leaves the transaction through the Cancel
Boundary Event.

• Hazard - something went wrong in the subprocess, and the cancel is not
possible to execute. When a hazard happens, the activity is interrupted
without any compensation and a sequence flow will leave from the Error
Intermediate Event.

Event Subprocess
Event subprocess is not part of a regular flow of the parent process. There are
no incoming and outgoing flows. This subprocess does not have to occur every
time in the process but it is possible that it will occur multiple times. The
event subprocess will start by the Start Event with a trigger. The parent pro-
cess can continue when the subprocess was started but it can be interrupted,
which is defined by the type of the start event in the subprocess.

3.2.2.7 Multi-Instance

Multi-instance task offers to create multiple instances of one activity. These
activities can be executed in parallel (picture 3.7a) or sequentially (picture
3.7b). Both of these types have an attribute Loop Cardinatily, which indi-
cates how many instances will be created and executed. The multi-instance
activities can be represented by a normal Task, Subprocess or Call Activity.

There are two cases when a multi-instance activity can be migrated:

• The target and source types have to be the same - parallel to parallel
and sequential to sequential.

• Multi-instance activity can be mapped on any no multi-instance activity.

The previous two types of migration have different behavior.

44

3.2. Basic Definition

Parallel

(a) Parallel Task

Sequential

(b) Sequential Task

Figure 3.7: Graphical representations of Multi-instance Tasks

• Whenever a migration of the same target and source type happens then
the inner state is preserved. The number of active instances are the
same after the migration.

• If the target is a normal activity, the multi-instance variables are deleted
(number of total instances, number of completed instances and number
of active instances). However, the number of inner activity instances are
preserved.

3.2.3 Gateways

Gateways are used to control token flow in a business process. If the flow has
to be controlled, there is a gating mechanism that decides which way the token
will go. Tokens can be merged at the gate or split apart on output, known as
forking and joining. A single gateway can have multiple inputs and outputs.
This behavior has to be managed during a modeling phase to decided which
option will be performed.

There are five types of gateways: inclusive, exclusive, parallel, event-based
(figure 3.8) and complex.

The complex gateway is not supported by the representative system -
Camunda BPM.

The following four types of gateways are possible to migrate. However,
the common restriction is that only the target type has to be the same as the
source type.

The other rules can vary whether the gateway is event-based or data-based.
The event-based restriction is described in section. However, for data-based
gateways are the restriction similar.

• The migration plan for the target gateway must have at least the same
amount of incoming paths as the source gateway.

• A maximum of one source gateway can be mapped every same type
gateway in the target definition.

• The migration has to be valid for the scope of the gateway.

45

3. Process Model Evolvability

(a) Exclusive
Gateway

(b) Parallel Gateway (c) Inclusive Gateway (d) Event-based Gate-
way

Figure 3.8: Graphical representations of Gateway types

3.2.3.1 Exclusive Gateway

Exclusive Gateway, also called XOR gateway (picture 3.8a), is used to model
a data-based decision. The gateway is waiting for a token that will be sent
through the sequence flow that meets the condition (if more sequence flows
meet a condition then the first defined one is evaluated).

3.2.3.2 Parallel Gateway

Parallel gateway (picture 3.8b) is used to model concurrency in business pro-
cesses. It simply offers to fork into multiple paths that are executed simulta-
neously and offers to join multiple incoming paths.

Forking is a straightforward process of splitting the sequence flow; the
joining process requires more caution because all the previous executions have
to wait for each other before continuing.

There can be multiple incoming tokens in this gateway. These tokens will
join first and fork after the gateway. A parallel gateway is the only gateway
which does not evaluate conditions.

3.2.3.3 Inclusive Gateway

A combination of exclusive and parallel is an inclusive gateway (picture 3.8c).
This gateway allows defining conditions for outgoing tokens. Since it combines
parallel as well, it can receive more than one sequence flow.

3.2.3.4 Event-based Gateway

Compared to the rest of the gateways, the event-based gateway (picture 3.8d)
branches the sequence flow where the alternative paths that follow the gate-
ways are based on events.

The gateway does not evaluate a data-based expression, but the event
(mostly receiving a message) determines the path where the token will con-
tinue. The decision is not made by the gateway but by some other participant
which has access to the data.

46

3.3. DMN

The event-based gateway has different rules about outgoing sequence flows.
There must be two or more outgoing ones. This type of gateway is followed
by Intermediate Catch Events or Receive Tasks.

3.3 DMN

As BPMN, Decision model and notation (DMN) was declared by OMG [29]
to provide the constructs that are needed to model decisions.

In picture 3.9, an example of a simple decision table can be seen. Even
though the table is simple; it will not get more complicated. The main parts
are inputs, outputs, and corresponding rules. A decision table also supports a
declaration of the Hit Policy. If rules overlap, multiple rules can match, and a
hit policy indicates how to handle the multiple matches. The Hit Policy can
acquire values from a unique item to a collection.

FlightPrices

(a) Representa-
tion in BPMN

(b) Decision table

Figure 3.9: Example of a simple business rule

As it was mentioned, a decision table is not a complex element. How-
ever, for making a complex domain of decisions, Decision Requirements Graph
(DRG) is used (picture 3.10). This graph shows the most important elements
involved in the process and their dependencies between them. The graph
consists of decisions (represented by a decision table), input data, knowledge
sources, and business knowledge models (except the decisions tables Camunda
DMN engine does not implement the rest of the DRG). DRG is visually rep-
resented by Decision Requirements Diagram (DRD) [29].

3.3.1 DMN Versioning

A decision model, as a part of a process model, can depend on the changes in
the process model, or more, it can be the reason for the change and subsequent
migration of process instances.

47

3. Process Model Evolvability

Figure 3.10: Example of a Decision Requirements Diagram

There is no possible validation of the migration plan for a decision table.
A person who is responsible for versioning of a business process has to check
the input and output variables of the decision table. The properties of the
variables are data types, names, and hit policy. These properties have to be
validated against the parent model.

The version of decision table which will be used in future instances, can be
defined in the BPMN model. There are four types of bindings - deployment (a
version which was deployed along with the calling case definition), latest (the
latest decision definition version), version (the exact version) and versionTag
(a version with the given tag - used for patching a particular definition version).

3.4 Rules of Migration

The migration of business process models has to follow rules of the individual
BPMN elements, which are described in the previous sections and rules of the
entire process scope, which consists of more elements that can depend on each
other in different ways.

The complexity of migration may vary based on the complexity of models,
scripts, linked external systems, or decision tables.

Once some running instances pass the spot of the change, it can be com-
plicated to decide whether to migrate particular instances or not. Questions
such as initializing some needed variables or checking a document may appear.

The following examples were tested with Camunda BPM Enterprise and
their implementation of migration proces which is described in the section
2.4.4.

48

3.4. Rules of Migration

3.4.1 Minor Changes

This section deals with applying minor changes to the model where no special
constructs are needed for the migration process. It covers the situations where
simple elements are migrated.

The basis of minor changes is renaming elements. In this case, the migra-
tion is not challenging and, if there are no higher needs to migrate, then the
running instances can remain the same.

3.4.1.1 Logical Elements

Logical elements are meant to be BPMN elements that have only descrip-
tive features but no functional features, and they are not executable. For
demonstration is used a process of payment wihtin a bank (picture 3.11).

A Text Annotation element is not mentioned in the following sections
because it is not connected with conceptual modeling of the process. It is
only annotation for better understanding by a human.

Review request
Withdraw money
from the account

Analyze the
request

Send money
request recieved

Paymet rejected

Money sent

Enough moeny on
the account?

Yes

No

The request was
marked as
dangerous

Figure 3.11: Payment process model without pools

Collaboration
Collaboration is required for BPMN Process Modeling Conformance, but it is
not required for BPMN Process Execution Conformance [28].

Collaboration package includes Pools and Message Flows. A pool repre-
sents a participant in the process collaboration, and a message flow represents
connections between pools (connects pools or objects inside of pools). A pool
is not required to have process inside and can be represented as a black box
(example can be seen in the picture 3.12).

Every pool is a different process and has to be initialized (with Start Event)
separately. However, lanes represent only participants of one process.

49

3. Process Model Evolvability

B
an

k

S
ys

te
m

A
na

ly
tic

s

Enough money on
account?

No

Payment rejected

Withdraw money
from the account

Money sentSend money
request received

Review request

Analyze the
request

The request was
marked as
dangerous

Customer

Figure 3.12: Payment process model with pools

Pools are used for modeling business parties and lanes are used for mod-
eling departments or internal roles within the company.

By adding lanes or pools, the migration process does not have to be han-
dled with any special structures. There is no need for migrating the running
instances.

Data Object
A Data Object represents information flowing through the process, such as
business documents, e-mails, or letters. The Data Object in the extended
payment process model (picture 3.13).

In this case, the Data Objects acts as a descriptive element and does not
affect the process.

Data Store
Data Store is an element which represents a place where data is persisted and
the process can read or write information from. It can be a database, a file,
or a cabinet. It keeps data beyond the lifetime of the process instance.

The Data Store representing a database of transactions is used in a new
version of the payment process model in the picture 3.14.

Data Store acts like the other logical elements and it does not change the
behavior of the process. The migration of running instances does not have to
be performed.

50

3.4. Rules of Migration

Review request
Withdraw money
from the account

Analyze the
request

Send money
request recieved

Paymet rejected

Money sent

Enough moeny on
the account?

Yes

No

The request was
marked as
dangerous

Report
[Created]

Figure 3.13: Payment process model with Data Object

Review request
Withdraw money
from the account

Analyze the
request

Send money
request recieved

Paymet rejected

Money sent

Enough moeny on
the account?

Yes

No
The request was

marked as
dangerous

Transaction
database

Figure 3.14: Payment process model with Data Store

3.4.1.2 Tasks

Tasks were described in the section 3.2.2. Migration of tasks have one signifi-
cant limitation, and that is one type of task can be mapped only on the same
type.

User Task
A user task migration has some properties to look out for.

User Tasks are supported by forms that a human can interact with. Im-
plementation of these forms can depend on a vendor. Camunda engine uses
three types of forms - generated by the engine, embedded (written in HTML
+ JS) or external (user is directed to another application). Attention must
be focused on differencing these form types.

• Generated forms have fields that were defined already in the modeling

51

3. Process Model Evolvability

process (id, type, and default value). Validation is also offered.

• Embedded forms are defined in HTML and behavior in JavaScript. The
Camunda engine uses its meta-attributes in HTML tags to recognize a
type and id of the forms fields.

• External forms act the same way as the embedded ones, but they are
not part of the application.

The migration between embedded and external forms is not complicated,
and a developer has to take care of right names of variables. Awareness of vari-
ables is the same in the case of a generated form as well. Once the instance’s
token is before the execution of the patched spot, there is a danger of using
variables that were not used before migration and the previous definition does
not count with it. Alternatively, two variables with the same name can be
defined in different forms and have different variable types - this will cause an
error.

Once the token is at the task which it is being migrated, there are proper-
ties which can not be changed. By specification, an assignee (a person how is
assigned to a task) will not change during migration, and the task preserves
it (a value of assignee has to be changed manually). Properties Due Date and
Follow Up Date will not be updated either and have to be changed manually.

When the token is behind the migrated task, there is no conflict. There is
also no need for migration.

Service Task
Service Task is described in the section 3.2.2.2. Service Task can be imple-
mented in several ways which will cause different behavior during migration
and subsequent execution of the rest of the process instance. Handeling a
proper programming technique is not in the scope of this thesis.

The first approach is invoking Java code (specifying a class with predefined
methods or a method explicitly). Most of the responsibility is toward Java de-
velopers who manage the code. Java code can access to instance variables and
can set new variables. A service task offers an option to inject fields straight
to the underlining implementation. BPMN engine and the implementation of
a service task are two separate systems and must be defined with respect to
the fact that names of variables have to match, or even be initialized properly.

Similar rules can be applied to External implementation. This approach
is handled as a RESTful API service, which is called by other applications.
The awareness of the consistency of variables is the same as with Java code.
An external task is executed by the process of fetching and locking of the
particular task instance and then completing by the same worker that locked
the task. If migration is performed, while the task is locked by a worker, the
lock will persist and the worker can complete the task.

52

3.4. Rules of Migration

Migration between these two implementations is not allowed because of
incompatible activity behaviors.

Send Task
A Send Task acts the same way as a Service Task; there is only a difference in
the conceptual view. The mapping is possible between Send Task and Service
Task (only the type implementations have to match).

Script Task
Script Task is described 3.2.2.4. A script task executes a script, which is
defined in a body of the task or is deployed as an individual script file. A kind
of script depends on the BPM engine.

Migration of a script task means versioning of the underlying script. A
script can be changed and packed with a deployment of a new process defini-
tion.

It is necessary to control variables that are used by the source and the
target script task instance.

Business Rule Task
Business Rule Task provides a mechanism for a process to provide the output
based on the input and business rules. Business Rule Task also refers to DMN,
which is described in the section 3.3.

The core of the element is similar to Service and Send tasks - it can be
implemented with Java code or as a web service (external task). This means
that the migration relates to the rules of these tasks too and can be migrated
between each other (the types of implementation have to match).

The only difference is in the usage of DMN, which is described in the
section 3.3.1.

3.4.1.3 Gateways

Gateways are described in section 3.2.3. Gateways can be mapped between
the same types only.

Exclusive Gateway
Exclusive Gateway is described in section 3.2.3.1.

The second part of migrating an exclusive gateway is changing conditions
of following sequence flows. Only the variables have to exist and be initialized
from the previous pass of the process instance.

Inclusive Gateway
Inclusive Gateway is described in the section 3.2.3.3. The migration plan for

53

3. Process Model Evolvability

the target gateway must have at least the same amount of incoming paths as
the source gateway.

The other rule for an inclusive gateway is the common rule for most of
the other elements that access instance variables. There have to be variables
valid for all the conditions within the following sequence flows.

Parallel Gateway
Parallel Gateway is described in the section 3.2.3.2. The migration plan for
the target gateway must have at least the same amount of incoming paths as
the source gateway.

The migration of a parallel gateway is more complicated than the other
gateways because of splitting a token into multiple tokens at a time. After a
token is multiplied and the number of sequence flows increase, there is no token
in the newly added flows, and the entire sequence is not executed. Whenever
the number of sequence flows decrease the token will be removed, and the rest
of the definition have to count with that and adjust using of variables.

Event-based Gateway
An Event-based Gateway is described in section 3.2.3.2. The event-based
gateway can be migrated to the same type only, and in order to migrate the
gateway’s event trigger, the following events may be migrated as well. The
migration of events is described in the following section 3.4.1.4.

3.4.1.4 Events

Events are described in the section 3.2.1. The events which define a persistent
event trigger (message, conditional, timer, and signal events) can be migrated.

There are two scenarios for event triggers during instance migrations.

• The event trigger is not updated event the target one is a different type
of trigger. The migrated event instance will follow the definition that
was defined previously in the source model.

• The event trigger is updated and follows the new target definition. It
may have different behavior base on the type of the event trigger.

Start Event
Start Event is described in 3.2.1.1. Start Events are mutually interchangeable.
A start event can be exchanged between its subtypes (Message, Conditional,
Timer, and a regular Start Event).

The migration is not needed in case of patching only a start event, the
instance already started and it would not cause any breaking changes. Just
in case of a subprocess, it is possible to migrate a start event and will follow
the same rules as any other event have (updating trigger).

54

3.4. Rules of Migration

End Event
End Event is described in 3.2.1.2. End Events are not mutually interchange-
able.

Even if the throw message end event is used and implements an external
service or Java code, it can not be mapped on Send Task or Service Task.

Intermediate Event
An Intermediate Event is described in 3.2.1.4. If the process instance is waiting
for the particular event during the migration, it has to be mapped on the target
definition.

Most of the Intermediate events can be mapped between each other. How-
ever, there is an exception of migrating throw and catch actions (the source
and target type has to match their actions).

Boundary Event
A Boundary Event is described in 3.2.1.3. Boundary Events are not mutually
interchangeable. However, it is possible to migrate the same type but with
a changed property of interruption. The non-interrupting and interrupting
events are mutually interchangeable.

Migration of a boundary event has to be done by mapping the event along
with an activity which is its bearer.

The boundary event can be migrated if it is mapped, however if it is not
mapped to any target it will be removed during the migration.

3.4.2 Major Changes

This section deals with applying major changes to the model where might be
some special constructs, or precautions have to be applied. The major changes
can be patching of one element but it can cause other troubles or lead to a
subsequent extension of the target model. The major changes topic can target
for example subprocess instances or new events.

The new process definition must be designed to provide backward com-
patibility to instances that are in scope of migration.

For the demonstrations of extensive changes in business process models as
an example was used a booking process.

There are three different changes made in this process to see how significant
the changes can be before migration is not feasible.

3.4.2.1 The Basic Flight Booking

The full model diagram can be find in appendix B.1.
The user starts the process by entering the full name. It shows a desti-

nation offer, a length of stay, and a type of the trip D.1. Additionally, the
process determines the pricing for a given destination based on the business

55

3. Process Model Evolvability

rule task that is implemented with a decision table (DMN) C.1. The system
shows the recapitulation of the order D.3. At the event-based gateway, the
process will decide in which way to continue based on the sent message. If
the user waits for more than 10 minutes or instructs the system to terminate,
the process is terminated. If the user continues, they are asked to enter the
credit card information D.4 (also must be done within 10 minutes otherwise
the process will be terminated). Then the flight booking is performed but in
case of error and exhaustion of tries, the process is restored and the customer
is notified of the error. In case of success, the system will try to charge the
credit card. If any error occurs, the whole process is compensated, and the
user has to start again. In the positive case, the user is notified of the success
of the booking.

Figure 3.15: Model of the booking process with highlighted running instances

In the picture 3.15, the blue marks show spots (e.g., tasks, gateways) in
which the individual instances of the process are located.

3.4.2.2 Patching Process

Example of patching in picture 3.16 illustrates the migration of some changes
in the model. Simple changes were made to the Intermediate Timer Event,
which does not indicate problems for mapping, but can have two different
consequences.

Based on the detailed rules in the section 3.4.1.4, the timer event triggers
will remain the same, and both will continue with previously defined 10 min-
utes. The other option is that the event triggers are updated during migration
and the timer newly starts, and the definition is 15 and 5 minutes.

A different situation is with the Update Customer Record task which was
changed from a user task to service task. It demonstrates automatization of
this task the way that it does not have to be executed by a person but by a
system. Referring to the section 3.4.1.2, these two tasks can not be mapped

56

3.4. Rules of Migration

between each other. This issue means that one process instance cannot be
migrated to the new process definition.

Figure 3.16: Migration of instances to the patched version of the process model

3.4.2.3 Adding Accommodation Booking

In the last example of the process definition change, a new feature is added,
which provides a hotel booking room with the previously modeled flight se-
lection.

In the image of the new model 3.17, changes are highlighted by the different
colors that distinguish the type of change. In the case of the red highlighted
elements, this is a new element added. In the case of an orange color, it
is a subprocess that wraps existing elements. The blue color highlights the
element’s change again the previous definition.

Notify Customer
of Successful

Booking

Charge Credit
Card

Set Trip Criteria

Evaluate Flights
within Customer

Criteria

Evaluate Hotel
Rooms within

Customer Criteria

15 minutes

Cancel Request

Customer made
Selection

Request
Cancelled

Booking

Reservation
Completed

Cancel Hotel

Book Flight

Book Hotel

Update Credit Card Information

Update Credit
Card Info

Cancel Flight

Flight

Hotel

Booking Error 2Booking Error 1

Handle Compensation

Booking Flight Hotel

Update Customer
Record

Hotel

Flight

Retry Limit
Exceeded?

Retry Limit
Exceeded?

Booking Not
Completed

Request Credit
Card Information
from Customer

Notify Customer
Failed Booking

Notify Customer
Invalid Credit Card

Present the
Summary to the

customer
Signin of
Customer

Package Flights
and Hotel Rooms

for Customer
Review

Booking

Update Customer
Record (Request

Cancelled)

Notify Customer to
Start Again

5 minutes

Yes

No

Yes

No

Booking
Successfully
Completed

Figure 3.17: Process model extended by a new feature of booking a hotel room

The change includes the addition of a price calculation for the hotel room as
a new decision table, the calculation of the total price, which is count from the
time, type, destination and the prices for the flight ticket and accommodation.

57

3. Process Model Evolvability

The change includes the addition of a price calculation for the hotel room as
a new decision table, the calculation of the total price, which is count from the
time, type, destination and the prices for the flight ticket and accommodation.
Then the process counts with activities that book the hotel room and handling
errors and compensations that are connected with the booking task.

Figure 3.18: Migration of instances to the new version of the process model

In picture 3.18 of mapping is seen that migration of instance can be per-
formed. However, the scenario which the validation tool does not count with
is that there might be instances behind the decision table (which is marked
as number 1.) for setting accommodation price and before processing the ac-
commodation booking by the system with handling errors and compensations
(which is marked as numbers 2., 3. and 4.).

58

Chapter 4
Evolvability Strategy

For the content of this chapter, the main building blocks are the findings of
the previous chapter 3. The rules can be found in that chapter. Nevertheless,
in this chapter, recommendations and warnings are proposed so that they can
help during the designing process of a new model with respect to running
instances that were created based on the old process definition.

4.1 Logical Blocks

Logical blocks that only extend the process model of conceptual elements are
not a cause for migration running instance to the new process definition.

The same can be applied to strings on elements (names and annotations).

4.2 Awarness of Variables

The primary issue is the variables, whether environmental or instance vari-
ables.

• Changing types of variables can cause problems in User Tasks, Service
Tasks, Script Tasks, Send Tasks or Business Rule Tasks. If these activ-
ities operate with the particular variable, they expect to be the same
type.

• Adding two tasks before and behind any task that holds a token of
a process instance, which is seen in picture 4.1. The antecedent task
(green color) needs not to create a variable and the descendant task
(green color) uses it, but the token is in the middle and during the
migration is not the particular variable created. This can causes error.

• Changing variables in decision table (Business Rule Task) and migrating
the running instance that our received values of the variables, however
at the end of the process might be a different result than is expected.

59

4. Evolvability Strategy

Do something

Use A variable

Set B variable Use B variable

Figure 4.1: Process with two added tasks that uses previously unknown vari-
able ’B’

If any modification to the process environment is done, variables should
not be removed.

Renaming variables should not happen either. The better way is to intro-
duce a new variable and the old one deprecated.

4.3 Compatible Elements

Whenever a token of any process instances are held on an element of the
model and migration has to be executed, it can cause issues by incompatible
elements.

4.3.0.1 Tasks

As an example is changing a user task that was used to performed by a person
to a service task that is performed by a system. In this case, migration is not
recommended, and the particular instance has to finish their job to the end.

If the migration cannot be skipped, some tools offer to move the token
on different elements and start before or after the element. This can prevent
problems with migrating incompatible activities.

4.3.0.2 Gateways

Migration of gateways is not actually migration of the gateways but the to-
kens that sent to the given sequence flows (only Event-Based Gateway holds
tokens).

Data-based Gateway
Once the ancestor task is finished, the token goes through the gateway and
based on the data, continues the given sequence flow.

• Exclusive gateway has simple behavior and sends a token only one way.
So mapping the following tasks to the other tasks in different sequence
flow is possible. Another solution is to move tokens back to the ancestor

60

4.3. Compatible Elements

of the gateway, and the changed condition will be performed properly,
according to the new process definition.

• Inclusive and Parallel gateways are more complicated because they can
split the flow of a token and create multiple tokens for one process in-
stance. As it is seen in picture 4.2, after removing one path from the
parallel gateway (can be replaced by an inclusive gateway), the token
held by the task ”Do Task C” is orphaned and the current task with the
following one will not be executed. This case cause unexpected issues,
based on the implementation and defined behavior of the entire process.

Figure 4.2: Process with multiple tokens and parallel gateway

Event-based Gateway
Event-based gateway comes with the following events (or Recieve Task). A
token is held at a gateway, and the process is waiting for events to be triggered
(timer, message or signal). Migrating a gateway, the following events are
migrated (or updated) as well. The migration is managed according to event
migration rules. Only the token is moved to the new instance definition.

4.3.0.3 Events

Event migration rules are detailed in section 3.4.1.4. The crucial aspect is
Event Trigger and if that is supposed to be updated or not during the migra-
tion.

• Boundary events are mostly added later for catching errors or compen-
sations. It is safe to add them during the migration process but the
implementation of the particular task has to be ready to throw excep-
tions or to reverse the task.

• Intermediate Catch Event should be migrated in case the token of the
process instance is waiting for the event to occur. The modeler has to be
aware of the other tasks of processes if they throw the matching event.

61

4. Evolvability Strategy

The catch event should not be removed without making sure that the
throwing action will not occur and no catch event is not able to catch
it.

Compensation Event
Compensation can be migrated, but catch events have to be mapped. This
means that the task and the boundary compensation event have to be mapped
together. Triggering the compensation is done from the same scope as was
based in the source definition, or from the closest ancestor scope.

There can be an issue with adding compensation action to the process
definition. When the compensation is triggered after migration, it will not
compensate the task where the new boundary compensation event was at-
tached.

4.4 Subprocesses

Migration refers only to a transaction, event and embedded subprocesses. Call
Activity is managed by separated migration process.

Subprocesses act the same as the regular processes which can be seen in
picture 4.3. The state is preserved and process variables as well. If the token
is inside of the subprocess, then mapping has to be set to convert the token
to the new definition, in case of no mapping is done, the process instance is
canceled.

Figure 4.3: Migration of embedded subprocess to transaction subprocess

4.5 Awarness of Tokens

If the running instances are migrated to the new model version, a problem
can occur if the new version removes steps (any element) from the process
definition. Whenever the target definition does not provide transition tasks
(some temporary one, which is not recommended to have any useless tasks

62

4.6. Third-party Systems

for the future instances), the process instance can fail after the migration.
The advice is to move the tokens from the particular element to the ancestor
element (if the element supports it). At most cases in this thesis are the tokens
described.

Caution should be used with moving tokens between different types of
elements (e.g., task to gateway). The problem can occur when a token is
being moved from a task (which returns a nonboolean value) to gateway (which
returns a boolean value), for example, from any task to an inclusive gateway
with two and more outgoing paths.

4.6 Third-party Systems

This section really depends on the BPMN engine or the services that are used.
If a task implementation was used but is no longer needed, it should stay

in the process application and is marked as deprecated. Later on, it can be
safely removed once no instances need this implementation.

As it was earlier mentioned, variables can cause problems. Object type
variables (defined in a programming language) can also cause issues. There
might be different underlying systems and the classes can have a different
definition, which is the spot where migration most likely fail if not handled
properly. For example, a task is implemented by Java code, it uses a class
variable, and the target task has different implementation, and the object is
serialized and deserialized in a wrong way and process instance fails after the
migration. At first is good practice to analyze previously used implementa-
tions and convert the classes to the new implementation (this can refer to an
external task provisioned via web service).

63

Conclusion

The goal of this thesis was to investigate what types of changes are often
performed and what the impact is on a BPMN system and related corporate
information systems.

Once the changes have to be implemented into business process models,
many problems may occur whenever already running instances also must com-
ply these changed requirements. This process is called migration and the
ability to handle this process is called evolvability.

BPMN systems, in general, can save time in further usage. Implementation
of the systems might be expensive at first, but in future handling of processes
either in the core business or in the customer relationship scope, the BPMN
systems can help prevent many problems. Proper handling of changes in
business processes and their models might save other financial resources.

This thesis provides some valuable tips on how to handle the changes and
describes issues which are associated with the changes.

Meeting the Goals

The following sections report individual parts of the given requirements for
this thesis and how the thesis meets these requirements.

Explore state-of-the-art BPMS’

Research of the most used platforms on the market was carried out. The
chapter 1 focused on BPMN systems and low-code platforms. The low-code
platforms keep gaining popularity.

From the side of evolvability and complex system requirements, BPMN
platforms offer more advanced tools. For smaller businesses, low-code plat-
forms are still relevant, but for these businesses, it may be a disadvantage if
they grow too fast and they are not able to develop and manage their pro-
cesses.

65

Conclusion

Explore how BPMS’ handle versioning

The chapter 2 described approaches of evolvability of some popular low-code
and BPMN platforms.

This chapter also includes an analysis of Camunda BPM solution, which
was chosen as a representative sample. The reason for choosing this solution
is that Camunda offers comprehensive system and it is open-sourced.

The chapter begins with business process reengineering, which can be used
as the basic theory for change management of process models.

Create a proof-of-concept case study with minor and major
changes

First of all, chapter 3 started with an exploration of BPMN specification and
its related standards (DMN). Afterwards, the elements were introduced and
detailed with their specific properties that can affect subsequent migration.

The chapter continues with describing rules for individual elements for the
migrating process.

Based on the migration rules, examples with minor and major changes
are introduces. The major changes were presented in the business process of
booking flight tickets and accommodation.

Propose best practices how to handle these changes

The chapter 4 proposes recommendations on how to handle changes in business
process models and their evolvability.

Based on the rules characterized in the previous chapters, there are not
only recommendations but also limitations and problems that can happen
during the migration process on running process instances.

Further Research

For future research, it is possible to address this issue from a practical point
of view. It could be valuable to collaborate with stakeholders (BPM system
suppliers, integrators, customers, end-users or business analytics).

From the theoretical point of view, it might be beneficial to build the
proposed recommendations on top of a mathematical model and construct an
extended methodology.

66

Bibliography

[1] CAMUNDA. Workflow and Decision Automation Platform. Available
from: https://camunda.com/

[2] MICROSOFT. PowerApps. Available from: https://
powerapps.microsoft.com/

[3] CAMUNDA. Camunda Docs - Introduction. Available from: https://
docs.camunda.org/manual/7.9/introduction/

[4] Šmı́d, V. BPR - Business Process Reengineering. Available from: https:
//www.fi.muni.cz/˜smid/mis-bpr.htm

[5] Berwin Leighton Paisner LLP. The speed of business. Available
from: https://www.blplaw.com/expert-legal-insights/speed-of-
business

[6] Rob Dunie, V. L. B. J. W., Marc Kerremans. Magic Quadrant for In-
telligent Business Process Management Suites. Technical report, Gart-
ner, Inc., October 2017. Available from: https://www.gartner.com/doc/
3818763

[7] Koplowitz, R. The Forrester WaveTM: Digital Process Automation Soft-
ware, Q3 2017. Technical report, Forrester research, July 2017. Avail-
able from: https://www.forrester.com/report/The+Forrester+Wave+
Digital+Process+Automation+Software+Q3+2017/-/E-RES136905

[8] PEGA. Pega Platform. Available from: https://www1.pega.com/
products/pega-platfor

[9] IBM. IBM Business Process Management. Available from:
https://www.ibm.com/cloud/automation-software/business-
process-management

67

https://camunda.com/
https://powerapps.microsoft.com/
https://powerapps.microsoft.com/
https://docs.camunda.org/manual/7.9/introduction/
https://docs.camunda.org/manual/7.9/introduction/
https://www.fi.muni.cz/~smid/mis-bpr.htm
https://www.fi.muni.cz/~smid/mis-bpr.htm
https://www.blplaw.com/expert-legal-insights/speed-of-business
https://www.blplaw.com/expert-legal-insights/speed-of-business
https://www.gartner.com/doc/3818763
https://www.gartner.com/doc/3818763
https://www.forrester.com/report/The+Forrester+Wave+Digital+Process+Automation+Software+Q3+2017/-/E-RES136905
https://www.forrester.com/report/The+Forrester+Wave+Digital+Process+Automation+Software+Q3+2017/-/E-RES136905
https://www1.pega.com/products/pega-platfor
https://www1.pega.com/products/pega-platfor
https://www.ibm.com/cloud/automation-software/business-process-management
https://www.ibm.com/cloud/automation-software/business-process-management

Bibliography

[10] APPIAN. Appian BPM Suite. Available from: https://www.appian.com/
platform/bpm-suite

[11] BIZAGI. Bizagi - The Digital Business Platform. Available from: https:
//www.bizagi.com/en/products

[12] AURORA. Aurora Portal. Available from: https://
www.auraportal.com/product

[13] K2. K2 - platform overview. Available from: https://www.k2.com/
platform/platform-overview

[14] ORACLE. Oracle BPM Suite. Available from: http://www.oracle.com/
us/technologies/bpm/suite/overview/index.html

[15] Rymer, J. R. The Forrester WaveTM: Low-Code Development Platforms
For AD&D Pros, Q4 2017. Technical report, Forrester research, Octo-
ber 2017. Available from: https://www.forrester.com/report/The+
Forrester+Wave+LowCode+Development+Platforms+For+ADD+Pros+
Q4+2017/-/E-RES137262

[16] Paul Vincent, Y. V. N. K. I., Van L. Baker. Magic Quad-
rant for Enterprise High-Productivity Application Platform as a
Service. Technical report, Gartner, Inc., April 2018. Available
from: https://www.gartner.com/doc/3872957/magic-quadrant-
enterprise-highproductivity-application

[17] SALESFORCE. salesforse platform. Available from: https:
//www.salesforce.com/products/platform/overview/

[18] OutSystems. Available from: https://www.outsystems.com/

[19] Mendix. Available from: https://www.mendix.com/

[20] ACTIVITI. Activiti Open Source Business Automation. Available from:
https://www.activiti.org

[21] CAMUNDA. BPMN 2.0 Implementation Reference. Available from:
https://docs.camunda.org/manual/7.10/reference/bpmn20/

[22] Justice Opara-Martins, F. T., Reza Sahandi. Critical anal-
ysis of vendor lock-in and its impact on cloud computing
migration: a business vperspective. Available from: https:
//journalofcloudcomputing.springeropen.com/articles/10.1186/
s13677-016-0054-z

[23] MENDIX. Version Control Concepts. Available from: https://
docs.mendix.com/refguide/version-control-concepts/

68

https://www.appian.com/platform/bpm-suite
https://www.appian.com/platform/bpm-suite
https://www.bizagi.com/en/products
https://www.bizagi.com/en/products
https://www.auraportal.com/product
https://www.auraportal.com/product
https://www.k2.com/platform/platform-overview
https://www.k2.com/platform/platform-overview
http://www.oracle.com/us/technologies/bpm/suite/overview/index.html
http://www.oracle.com/us/technologies/bpm/suite/overview/index.html
https://www.forrester.com/report/The+Forrester+Wave+LowCode+Development+Platforms+For+ADD+Pros+Q4+2017/-/E-RES137262
https://www.forrester.com/report/The+Forrester+Wave+LowCode+Development+Platforms+For+ADD+Pros+Q4+2017/-/E-RES137262
https://www.forrester.com/report/The+Forrester+Wave+LowCode+Development+Platforms+For+ADD+Pros+Q4+2017/-/E-RES137262
https://www.gartner.com/doc/3872957/magic-quadrant-enterprise-highproductivity-application
https://www.gartner.com/doc/3872957/magic-quadrant-enterprise-highproductivity-application
https://www.salesforce.com/products/platform/overview/
https://www.salesforce.com/products/platform/overview/
https://www.outsystems.com/
https://www.mendix.com/
https://www.activiti.org
https://docs.camunda.org/manual/7.10/reference/bpmn20/
https://journalofcloudcomputing.springeropen.com/articles/10.1186/s13677-016-0054-z
https://journalofcloudcomputing.springeropen.com/articles/10.1186/s13677-016-0054-z
https://journalofcloudcomputing.springeropen.com/articles/10.1186/s13677-016-0054-z
https://docs.mendix.com/refguide/version-control-concepts/
https://docs.mendix.com/refguide/version-control-concepts/

Bibliography

[24] APPIAN. Process Model Versioning. Available from: https://
docs.appian.com/suite/help/17.4/Process_Model_Versioning.html

[25] Farrance, M. Corporate Bottlenecks. Available from: https://
www.bonitasoft.com/library/corporate-bottlenecks

[26] CAMUNDA. Camunda Docs - Process Instance Migration. Avail-
able from: https://docs.camunda.org/manual/7.9/webapps/cockpit/
bpmn/process-instance-migration/

[27] Oxford University Press. British & World English. Accessed on
02.11.2018. Available from: https://en.oxforddictionaries.com

[28] OMG. Business Process Model and Notation (BPMN), Version 2.0. Avail-
able from: http://www.omg.org/spec/BPMN/2.0

[29] OMG. Decision Model and Notation (DMN), Version 1.1. Available from:
https://www.omg.org/spec/DMN/1.1

69

https://docs.appian.com/suite/help/17.4/Process_Model_Versioning.html
https://docs.appian.com/suite/help/17.4/Process_Model_Versioning.html
https://www.bonitasoft.com/library/corporate-bottlenecks
https://www.bonitasoft.com/library/corporate-bottlenecks
https://docs.camunda.org/manual/7.9/webapps/cockpit/bpmn/process-instance-migration/
https://docs.camunda.org/manual/7.9/webapps/cockpit/bpmn/process-instance-migration/
https://en.oxforddictionaries.com
http://www.omg.org/spec/BPMN/2.0
https://www.omg.org/spec/DMN/1.1

Appendix A
Acronyms

API Application Programming Interface

BPM Business Process Management

BPMN Business Process Model and Notation

BPMS Business Process Management System

BPR Business Process Reengineering

B2B Business-to-business

CDI Context and Dependency Injection

CMMN Case Management Model and Notation

CRM Customer Relationship Management

DMN Decision Model and Notation

DPA Digital Process Automation

DRD Decision Requirements Diagram

DRG Decision Requirements Graph

IDE Integrated Development Environment

IFTTT If This Then That

JSON JavaScript Object Notation

OMG Object Management Group

REST Representational State Transfer

ROI Return Of Investment

71

A. Acronyms

SaaS System as a Service

SDK Software Development Kit

SOAP Simple Object Access Protocol

SSO Single Sign-On

72

Appendix B
Process models

This appendix includes full business process models which were used to demon-
strate the features and limits of evolvability of complex models.

73

B. Process models

1
0

 m
in

u
te

s

C
a
n
ce

l
R

e
q
u
e
st

C
u
st

o
m

e
r

m
a
d
e

S
e
le

ct
io

n

R
e
q
u
e
st

C
a
n
ce

lle
d

C
h
a
rg

e
 C

re
d

it
C

a
rd

N
o
ti

fy
 C

u
st

o
m

e
r

o
f

S
u
cc

e
ss

fu
l

B
o
o
ki

n
g

P
re

se
n
t

th
e

S
u
m

m
a
ry

 t
o
 t

h
e

cu
st

o
m

e
r

E
v
a
lu

a
te

 F
lig

h
ts

w
it

h
in

 C
u
st

o
m

e
r

C
ri

te
ri

a

B
o
o
ki

n
g

R
e
se

rv
a
ti

o
n

C
o
m

p
le

te
d

B
o
o
k

Fl
ig

h
t

U
p

d
a
te

 C
re

d
it

 C
a
rd

 I
n
fo

rm
a
ti

o
n

U
p

d
a
te

 C
re

d
it

C
a
rd

 I
n
fo

C
a
n
ce

l
Fl

ig
h
t

Fl
ig

h
t

B
o
o
ki

n
g
 E

rr
o
r

2
B

o
o
ki

n
g
 E

rr
o
r

1

H
a
n
d

le
 C

o
m

p
e
n

sa
ti

o
n

B
o
o
ki

n
g

Fl
ig

h
t

U
p

d
a
te

 C
u
st

o
m

e
r

R
e
co

rd

Fl
ig

h
t

R
e
tr

y
 L

im
it

E
xc

e
e
d
e
d
?

R
e
tr

y
 L

im
it

E
xc

e
e
d
e
d
?

B
o
o
ki

n
g
 N

o
t

C
o
m

p
le

te
d

R
e
q

u
e
st

 C
re

d
it

C
a
rd

 I
n
fo

rm
a
ti

o
n

fr
o
m

 C
u
st

o
m

e
r

N
o
ti

fy
 C

u
st

o
m

e
r

Fa
ile

d
 B

o
o
ki

n
g

N
o
ti

fy
 C

u
st

o
m

e
r

In
v
a
lid

 C
re

d
it

 C
a
rd

S
ig

n
in

o
f

C
u
st

o
m

e
r

B
o
o
ki

n
g

U
p

d
a
te

 C
u
st

o
m

e
r

R
e
co

rd
 (

R
e
q

u
e
st

C
a
n
ce

lle
d

)

N
o
ti

fy
 C

u
st

o
m

e
r

to
S

ta
rt

 A
g

a
in

S
e
t

Tr
ip

 C
ri

te
ri

a

1
0

 m
in

u
te

s

N
o

Ye
s

N
o

B
o
o
ki

n
g

S
u
cc

e
ss

fu
lly

C
o
m

p
le

te
d

Ye
s

Figure B.1: Final example of the flight booking process model
74

S
et

 T
rip

 C
rit

er
ia

E
va

lu
a

te
 F

lig
ht

s
w

ith
in

 C
us

to
m

er
C

rit
er

ia

E
va

lu
a

te
 H

ot
el

R
oo

m
s

w
ith

in
C

us
to

m
er

C
rit

er
ia

10
 m

in
u

te
s

C
an

ce
l R

e
qu

es
t

C
us

to
m

er
 m

ad
e

S
el

ec
tio

n

R
eq

ue
st

C
an

ce
lle

d

B
oo

ki
n

g

R
es

er
va

tio
n

C
om

pl
et

ed

C
an

ce
l H

o
te

l

U
pd

at
e

C
re

di
t C

ar
d

 In
fo

rm
at

io
n

U
pd

at
e

C
re

di
t

C
ar

d
In

fo

C
an

ce
l F

lig
ht

B
oo

k
H

ot
el

F
lig

ht

H
ot

el

B
oo

ki
n

g
E

rr
or

 2
B

oo
ki

n
g

E
rr

or
 1

H
an

dl
e

 C
om

pe
n

sa
tio

n

B
oo

ki
n

g
F

lig
ht

H
ot

el

U
pd

at
e

C
us

to
m

er
R

ec
or

d

B
oo

k
F

lig
ht

H
ot

el

F
lig

ht

R
et

ry
 L

im
it

E
xc

ee
de

d?

B
oo

ki
n

g
S

uc
ce

ss
fu

lly
C

om
pl

et
ed R

et
ry

 L
im

it
E

xc
ee

de
d?

B
oo

ki
n

g
N

ot
C

om
pl

et
ed

R
eq

ue
st

 C
re

di
t

C
ar

d
In

fo
rm

at
io

n
fr

om
 C

us
to

m
er

N
ot

ify
 C

us
to

m
er

F
ai

le
d

 B
oo

ki
ng

N
ot

ify
 C

us
to

m
er

In
va

lid
 C

re
di

t
C

ar
d

P
re

se
nt

 F
lig

ht
s

an
d

H
ot

el
R

oo
m

s
A

lte
rn

at
iv

es
 to

C
us

to
m

er

C
ha

rg
e

C
re

di
t

C
ar

d

S
ig

ni
n

of
C

us
to

m
er

P
ac

ka
ge

 F
lig

ht
s

an
d

H
ot

el
R

oo
m

s
fo

r
C

us
to

m
er

R
ev

ie
w

B
oo

ki
n

g

U
pd

at
e

C
us

to
m

er
R

ec
or

d
(R

eq
u

es
t

C
an

ce
lle

d)

N
ot

ify
 C

us
to

m
er

to
 S

ta
rt

 A
ga

in

10
 m

in
u

te
s

Y
es

N
o

Y
es

N
o

Figure B.2: Final example of the flight and hotel booking process model
75

Appendix C
Decision tables

Figure C.1: Decision table for flight prices

Figure C.2: Decision table for room prices

77

Appendix D
Process forms

Figure D.1: Setting parameters for the trip by the user

Figure D.2: Setting parameters for the trip by the user

79

D. Process forms

Figure D.3: Recapitulation form

Figure D.4: Form for input information about a credit card

Figure D.5: Recapitulation of charging a creadit card

80

Appendix E
Contents of enclosed CD

readme.txt the file with CD contents description
src.......................................the directory of source codes

processes........the directory for bpmn models with additional files
thesis...the directory of LATEX source codes and images of the thesis

text..the thesis text directory
DP Mikes Stanislav 2019.pdf the thesis text in PDF format

81

	Introduction
	Motivation
	Objectives

	Business Process Management Platforms
	Key Factors
	Comparison of BPMS and Low-code Approaches
	BPM Solutions
	Low-code Platforms
	Open-source
	Vendor Lock-in

	Handeling of Business Process Changes
	Business Process Reengineering
	Low-code Versioning
	BPM Versioning
	Camunda Analysis

	Process Model Evolvability
	BPMN Elements
	Basic Definition
	DMN
	Rules of Migration

	Evolvability Strategy
	Logical Blocks
	Awarness of Variables
	Compatible Elements
	Subprocesses
	Awarness of Tokens
	Third-party Systems

	Conclusion
	Meeting the Goals
	Further Research

	Bibliography
	Acronyms
	Process models
	Decision tables
	Process forms
	Contents of enclosed CD

