FACULTY

OF INFORMATION
TECHNOLOGY
CTU IN PRAGUE

ASSIGNMENT OF MASTER’S THESIS

Title: Domain-Specific NER Adaptation

Student: Bc. Bogoljub Jakovcheski

Supervisor: Ing. Milan Dojc¢inovski

Study Programme: Informatics

Study Branch: Web and Software Engineering
Department: Department of Software Engineering
Validity: Until the end of summer semester 2018/19

Instructions

Named Entity Recognition (NER) has become one of the core Web data mining technologies. In the past ten
years, NER enjoys a significant increase in popularity and usage in the academic and industrial sphere.
Nevertheless, vast majority of the developed NER systems have been developed as general-purpose
systems. While they can perform well on multiple domains (macro level), on specific domains (micro level)
their performance quality is often very low. The ultimate goal of the thesis is to develop domain-specific
NER models.

Guidelines:

- Get familiar with the NER technology and available NER frameworks.

- Investigate possible datasets for domain-specific training of NER.

- Develop NER training datasets for several selected domains (e.g. sports, politics, music, etc.).

- Train a domain-specific NER model using existing frameworks, such as DBpedia Spotlight or StanfordNER.

- Validate and evaluate the developed domain-specific NER models.

References

Will be provided by the supervisor.

Ing. Michal Valenta, Ph.D. doc. RNDr. Ing. Marcel Jifina, Ph.D.
Head of Department Dean

Prague February 16, 2018

FACULTY

OF INFORMATION
TECHNOLOGY
CTU IN PRAGUE

Master’s thesis

Domain-specific Named Entity Recognition

Be. Bogoljub Jakovcheski

Department of software engineering

Supervisor: Ing. Milan Doj¢inovski

June 27, 2018

Acknowledgements

I would like to thank my family and friends and especially to my supervisor
Mr. Ing. Dojé¢inovski for support during writing this thesis.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive au-
thorization (license) to utilize this thesis, including any and all computer pro-
grams incorporated therein or attached thereto and all corresponding docu-
mentation (hereinafter collectively referred to as the “Work”), to any and all
persons that wish to utilize the Work. Such persons are entitled to use the
Work in any way (including for-profit purposes) that does not detract from its
value. This authorization is not limited in terms of time, location and quan-
tity. However, all persons that makes use of the above license shall be obliged
to grant a license at least in the same scope as defined above with respect to
each and every work that is created (wholly or in part) based on the Work, by
modifying the Work, by combining the Work with another work, by including
the Work in a collection of works or by adapting the Work (including trans-
lation), and at the same time make available the source code of such work at
least in a way and scope that are comparable to the way and scope in which
the source code of the Work is made available.

In Prague on June 27,2018 .

Czech Technical University in Prague

Faculty of Information Technology

(© 2018 Bogoljub Jakovcheski. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Jakovcheski, Bogoljub. Domain-specific Named Entity Recognition. Master’s
thesis. Czech Technical University in Prague, Faculty of Information Technol-
ogy, 2018.

Abstrakt

Technologie Named Entity Recognition (NER) je i pfes neustély vyvoj populdrni
jak v akademické, tak v prumyslové sféte, a to i pres to, ze coarse grain (hrubé)
pouziti je ¢astéjsi nez fine grained (jemné). V této préci pouzivame sady dat
DBpedia NIF. Zpracovavame je a pripravujeme nové sady dat pro trénovani
modelt se Stanford NER. Experimenty jsou provadény s trénovanymi modely,
které pokryvaji dopad vysledki pti pouziti globdlniho a specifického doménového
modelu. Dalsi experimenty zkoumaji dopad poétu ¢lankt pouzAnvanych pro
trénovani modela. Vysledky experimentu ukazuji, ze doménové specifické
fine grain modely poskytuji lepsi vysledky nez doménové specifické coarse
grain modely i globdlni modely v obou anotacich. Také modely trénované za
pouziti vétsiho mnozstvi clankt poskytuji lepsi vysledky nez modely trénované
s nizsimi pocty ¢lank.

Kli¢ova slova Oteviena Data, Named Entity Recognition, Ptirodni zpra-
covani jazyki, NLP, DBpedia, NIF, RDF, SPARQL

Abstract

The popular but still under development Named Entity Recognition (NER)
technology has seen a significant usage in both academic and industrial sphere

vii

inspite of it’s more dominant coarse grain usage compared to it’s fine grain
usage. In this thesis, we use DBpedia NIF dataset. We process them, and pre-
pare new datasets ready for training models with Stanford NER. Experiments
are provided with trained models which cover the impact of results when used
with global domain model and domain specific model. In addition, the exper-
iments examine the impact of number of articles used to train models. The
results from the experiments show that the domain specific fine grain models
provide a better results than domain specific coarse grain models and global
models in both annotations. As well, models trained with higher number of
articles give better results than models trained with lower number of articles.

Keywords Open Data, Named Entity Recognition, Natural Language Pro-
cessing, DBpedia, NIF, RDF, SPARQL

viii

Contents

[Citation of this thesis| vi
Introductionl

Motivationl o v e 1

Goals of the thesiglo 2

Mhesis outlinel vt 2

|1 Background and related work| 3

[1.1 Background| 3

(L1.1 Information extraction|. 3

(1.1.2 Named Entity Recognition| 4

(1.1.3 RDF and NLP interchange format| 7

(1.1.4 DBpedia). 9

(1.1.5 Apache Jena] 10

T16 SPARQU o o oo 11

1.2 Related workl 0. 11

2 Domain specific named entity recognition| 13

2.1 Data pre-processing|, 14

[2.2 Domain specification| oL 16

2.3 Domain population| oo L. 17

2.4 Data transformationl o000 18

2.5 Model generation|o oo 21

[2.5.1 Training datasets| 21

3 Experiments| 23

3.1 Goals of the experiments|. 23

3.2 Fvaluation metricsf oo oo 23

[3.3 List of experiments| 24

[3.3.1 Main experiment| 25

[3.3.2 Experiments that has less than 300 abstracts in model| . 32

ix

13.3.3 Experiments that have more than 300 abstracts in model |

and test files]o 61

B34 Evaliah ra - &m0] 77
B35 Evalah : &R el Wil 500 al l

| and are tested with texts from news papers| 81
[3.3.6 Summary of theresults| 86
IConclusion| 89
Future workl 90
|Bibliography| 91
|IA Appendix]| 95
[A.l Acronyms| 95
|A.2 POLITICS domain types| 95
IA.3 SPORT domain types 95
[A.4 TRANSPORTATION domain types| 97
|A.5 Properties file used for training models|. 97
[A.6 POLITICS domain SPARQL query|. 98
[A.7 SPORT domain SPARQL query|. 99
IA.8 TRANSPORTATION domain SPARQL query|. 102
[B_Contents of CDI 105

List of Figures

1.1 Information extraction example] 4
1.2 Stanford NER GUI with 3 classes model (Location, Person, Orga- |

nization i| 5

1.3 DBpedia Ontology - Instances per class| 10
2.1 Chapter 2 flow] 14
0 25

xi

List of Tables

3.1 Testing computer parameters| 23
13.2 Results of base experiment run to be used as reference for subse- |
| quential experiments | Lo oo 25
[3.3 Results of base model in coarse grained run with "POLITICS’ |
Cabstractd 26
3.4 Results of base model in coarse grained run with "SPORT” ab- |
[stracts] e 26
13.5 Results of base model in coarse grained run with "TTRANSPORTA- |
| TION” abstracts|. 26
3.6 Results of base experiment in fine grained run to be used as refer- |
| ence for subsequential experiments |. 27

13.7 Results of base model in fine grained run with "POLITICS™ abstracts| 28
13.8 Results of base model in fine grained run with "SPORT" abstracts| 28
13.9 Results of base model in fine grained run with "T'/RANSPORTA- |

[TION” abstractsl 29
[3.10 Results of "POLITICS” base model in coarse grained run with |
["POLITICS” abstracts| 29
[3.11 Results of "POLITICS” base model in fine grained run with "POL- |
| ITICS” abstracts | 30
13.12 Results of "SPORT” base model in coarse grained run with "SPORT” |
[abstracts| 30
13.13 Results of "SPORT™ base model in fine grained run with "SPORT” |
| abstracts| 31
[3.14 Results of "TRANSPORTATION” base model in coarse grained |

ith ” > " abstracts|. 31
13.15 Results of "T'TRANSPORTATION” base model in fine grained run |
[with "TRANSPORTATION” abstracts] 32
13.16 Results of global model in coarse grained run with 10 abstracts |
| from every domain |. Lo oL 33

13.17 Results ot global model in coarse grained run with 10 abstracts

’ "domainl 33

[3.18 Results ot global model in coarse grained run with 10 abstracts |
’ ” ml ... 34

13.19 Results ot global model in coarse grained run with 10 abstracts |
’ 5 “domainl 34

13.20 Results of global model in fine grained run with 10 abstracts from |
| every domain |.o 35
[3.21 Results of global model in fine grained run with 10 abstracts from |
["POLITICS” domain | 35
13.22 Results ot global model in fine grained run with 10 abstracts from |
["SPORT” domain | 36
13.23 Results of global model in fine grained run with 10 abstracts from |
["TRANSPORTATION” domain] o v v v v i i 36
13.24 Results of "POLITICS” domain specific model in coarse grained |
[run with 10 abstracts from the same domain| 37
13.25 Results of "POLITICS” domain specific model in fine grained run |
L with 10 abstracts from the same domain| 37
13.26 Results of "SPORT” domain specific model in coarse grained run |
L with 10 abstracts irom the same domain| 38
13.27 Results of "SPORT"” domain specific model in fine grained run with |
[10 abstracts from the same domaimn| 38
13.28 Results of "TRANSPORTATION” domain specific model in coarse |
| grained run with 10 abstracts from the same domain| 39
13.29 Results of "TRANSPORTATION" domain specific model in fine |
| grained run with 10 abstracts from the same domain| 39
13.30 Results ot global model in coarse grained run with 20 abstracts |
| from every domain |. L oo 40
[3.31 Results ot global model in coarse grained run with 20 abstracts |
[from "POLITICS” domain | 40
13.32 Results of global model in coarse grained run with 20 abstracts |
[from "SPORT” domain| 41
13.33 Results of global model in coarse grained run with 20 abstracts |
[from "TRANSPORTATION” domain] 41
13.34 Results of global model in fine grained run with 20 abstracts from |
| every domain |. e 42
13.35 Results of global model in fine grained run with 20 abstracts from |
["POLITICS” domain | 42
13.36 Results of global model in fine grained run with 20 abstracts from |
["SPORT™ domain | 43
13.37 Results of global model in fine grained run with 20 abstracts from |
” > "domainl 43

13.38 Results of "POLITICS” domain specific model in coarse grained |
[__run with 20 abstracts from the same domain| 44

Xiv

13.39 Results of "POLITICS” domain specific model in fine grained run

[with 20 abstracts from the same domain| 44
13.40 Results of "SPORT” domain specific model in coarse grained run |
[__with 20 abstracts from the same domain| 45
[3.41 Results of "SPORT" domain specific model in fine grained run with |
[20 abstracts from the same domain| 45
13.42 Results of "TRANSPORTATION" domain specific model in coarse |
| grained run with 20 abstracts from the same domain| 46
13.43 Results of "TTRANSPORTATION" domain specific model in fine |
| grained run with 20 abstracts from the same domain| 46
[3.44 Results of global model in coarse grained run with 40 abstracts |
| from every domain |.o 47
[3.45 Results of global model in coarse grained run with 40 abstracts |
[from "POLITICS” domain | 48
[3.46 Results of global model in coarse grained run with 40 abstracts |
[from "SPORT” domainl 48
13.47 Results of global model in coarse grained run with 40 abstracts |

7 > 7 | 48
13.48 Results ot global model in fine grained run with 40 abstracts from |
| every domain |.o 49
13.49 Results of global model in coarse grained run with 40 abstracts |

7 7 il ... 50
13.50 Results ot global model in coarse grained run with 40 abstracts |

7 "domainl 50
[3.51 Results of global model in coarse grained run with 40 abstracts |

7 ’ | ... 51
13.52 Results of "POLITICS” domain specific model in coarse grained |
[___run with 40 abstracts from the same domain| 51
13.53 Results of "POLITICS” domain specific model in fine grained run |
[__with 40 abstracts from the same domain| 52
[3.54 Results of "SPORT” domain specific model in coarse grained run |
[with 40 abstracts from the same domain| 52
13.55 Results of "SPORT” domain specific model in fine grained run with |
[40 abstracts from the same domam | 53
13.56 Results of "TRANSPORTATION” domain specific model in coarse |
| grained run with 40 abstracts from the same domain| 53
[3.57 Results of "TTRANSPORTATION” domain specific model in fine |
| grained run with 40 abstracts from the same domain| 54
13.58 Results of global model in coarse grained run with 100 abstracts |
| from every domain [.o o 54
13.59 Results of global model in coarse grained run with 100 abstracts |

7 S domain | ... oo 55
13.60 Results of global model in coarse grained run with 100 abstracts |

7 7 ml ... 55

XV

[3.61 Results of global model in coarse grained run with 100 abstracts

’ "domainl 56

13.62 Results ot global model in fine grained run with 100 abstracts from |
| every domain |.o Lo 56
13.63 Results ot global model in fine grained run with 100 abstracts from |
7 5" ml .. 57

13.64 Results ot global model in fine grained run with 100 abstracts from |
["SPORT” domain | 57
[3.65 Results of global model in fine grained run with 100 abstracts from |
["TRANSPORTATION” domain | 58
13.66 Results of "POLITICS” domain specific model in coarse grained |
[run with 100 abstracts from the same domain| 58
[3.67 Results of "POLITICS” domain specific model in fine grained run |
[with 100 abstracts from the same domain|. 59
13.68 Results of "SPORT™ domain specific model in coarse grained run |
[with 100 abstracts from the same domain|. 59
13.69 Results of "SPORT"” domain specific model in fine grained run with |
[100 abstracts from the same domainl. 60
13.70 Results of "TRANSPORTATION” domain specific model in coarse |
| grained run with 100 abstracts from the same domain | 60
[3.71 Results of "TTRANSPORTATION” domain specific model in fine |
| grained run with 100 abstracts from the same domain|. 61
13.72 Results of global model in coarse grained run with 400 abstracts |
| from every domain |. Lo 62
13.73 Results of global model in coarse grained run with 400 abstracts |
’ 7 | ... 62

[3.74 Results of global model in coarse grained run with 400 abstracts |
'S ” ml ... 63

13.75 Results of global model in coarse grained run with 400 abstracts |
[from "TRANSPORTATION" domain| 63
[3.76 Results ot global model in fine grained run with 400 abstracts from |
| every domain |.o 64
13.77 Results of global model in fine grained run with 400 abstracts from |
["POLITICS” domain | 65
13.78 Results ot global model in fine grained run with 400 abstracts from |
["SPORT” domain | 65
13.79 Results ot global model in fine grained run with 400 abstracts from |
["TRANSPORTATION” domain] o v v v i it 66
13.80 Results of "POLITICS” domain specific model in coarse grained |
L run with 400 abstracts from the same domain| 67
13.81 Results of "POLITICS” domain specific model in fine grained run |
L with 400 abstracts from the same domain|. 67
13.82 Results of "SPORT” domain specific model in coarse grained run |
[__with 400 abstracts from the same domain!. 67

xvi

13.83 Results of "SPORT"” domain specific model in fine grained run with

[400 abstracts from the same domain|.

13.84 Results of "TRANSPORTATION” domain specific model in coarse

| grained run with 400 abstracts from the same domain |.

13.85 Results of "TTRANSPORTATION” domain specific model in fine

| grained run with 400 abstracts from the same domain |.

13.86 Results of global model in coarse grained run with 500 abstracts

| from every domain |.

13.87 Results of global model in coarse grained run with 500 abstracts

7 J7)

13.88 Results of global model in coarse grained run with 500 abstracts

7 7

13.89 Results of global model in coarse grained run with 500 abstracts

ki 7

13.90 Results of global model in fine grained run with 500 abstracts from

| every domain |.

13.91 Results ot global model in fine grained run with 500 abstracts from

["POLITICS” domain | oo o000

13.92 Results of global model in fine grained run with 500 abstracts from

["SPORT” domain | o oo o

13.93 Results ot global model in fine grained run with 500 abstracts from

74

74

75

|

75

13.97 Results of ”SPORT” domain specific model in fine grained run with |
[500 abstracts from the same domain|. 76
13.98 Results of "TRANSPORTATION" domain specific model in coarse |
| grained run with 500 abstracts from the same domain|. 76
13.99 Results of "TRANSPORTATION” domain specific model in coarse |
| grained run with 500 abstracts from the same domain|. 77
|3.100Results of fine grain global model trained 300 abstracts per domain, |
| tested with dataset that contains 500 abstracts, but with lower |
| PageRank on article and dataset that contains 500 abstracts, but |
| with higher PageRank. | 78
|3.101 Results of fine grain global model trained 500 abstracts per domain, |
| tested with dataset that contains 500 abstracts, but with lower |
| PageRank on article and dataset that contains 500 abstracts, but |
| with higher PageRank.|. 79

xvii

LisT oF TABLES

13.102Results of fine grain global model trained 500 abstracts per domain,

| tested with dataset that contains 500 abstracts, but with lower

| PageRank on article. | o000 80
[3.103Result of "TTRANSPORTATION” fine grained Top 500 Links tested |
| with global dataset that contains 300 abstracts per domain and |
| "TRANSPORTATION” fine grained dataset with 300 abstracts | 81
|3.104Results of fine grain model trained with 1500 abstracts, tested with |
[text from BBC| o 82
[3.105Results of fine grain model trained with 1500 abstracts, tested with |
| text from BBC based on sport domain| 83
|3.106 Results of fine grain model trained with 1500 abstracts, tested with |
[text from BBCl 83
[3.107Results of fine grain model trained with 1500 abstracts, tested with |
[textfrom BBC| 84
|3.108Results of fine grain model trained with 1500 abstracts, tested with |
[text from CNN| 84
[3.109Results of fine grain model trained with 1500 abstracts, tested with |
| text from CNN based on sport domain|. 85
[3.110Results of fine grain model trained with 1500 abstracts, tested with |
[text from CNN| 85
[3.111Results of fine grain model trained with 1500 abstracts, tested with |
| text from BBCIo 86

xviii

Introduction

Motivation

Named Entity Recognition (NER)[I] is NLP technique for locating and clas-
sifying named entities in text into some pre-defined categories such as loca-
tions, organizations, person name, sport etc. Today NER is used to different
areas from full-text search and filtering to preprocessing tool for other Natu-
ral Language Processing (NLP tasks), such as Text Summarization, Machine
Translation, Part-of-speech tagging, Entity linking, Text simplification etc.
12].

Most NER applications are trained on a general text and on a specific
domain, the problem is that they are optimized for the specific type of data
i.e. specific domain. That means that those NER applications can give very
good results on texts or domains that are trained, but bad results for texts on
a specific domain for which that NER application is not trained.

Most of the NER applications are trained on a small number of types. For
example, at the moment of writing this thesis, Stanford NERE] has a model
that have maximum 7 types, DBpedia Spotlightﬂ has model with 31 types,
spaCyE] build-in model has 18 types and spaCy Wikipedia scheme model have
4 types.

The main goal of this thesis is to research possibilities of training NER
models for a specific domain and as well for a specific types. To achieve this
goal it is necessary to create datasets for certain domains. This research is
focused on 3 domains, "POLITICS”, "SPORT” and "TRANSPORTATION".
Every domain is specified with a certain number on types from DBpedia On-
tology, then for creating datasets is used DBpedia NIF dataset who provides
data for every Wikipedia article.

"http:/ /nlp.stanford.edu:8080/ner/
https://www.dbpedia-spotlight.org/demo/
Shttps://spacy.io/usage/linguistic-features

1

INTRODUCTION

Goals of the thesis

Vast majority of the developed NER systems have been developed as general-
purpose systems. While they can perform well on multiple domains (macro
level), on specific domains (micro level) their performance quality might be
low. The ultimate goal of the thesis is to develop domain-specific NER models.
Guidelines:

e Investigate possible datasets for domain-specific training of NER.

e Develop NER training datasets for several selected domains (e.g. sports,
politics, music, etc.).

e Train domain-specific NER model using Stanford NER.

e Validate and evaluate the developed domain-specific NER models.

Thesis outline

This thesis is divided into three chapters.

The first chapter describes the frequently used techniques and the basic
concept in Named-Entity Recognition and on the related work is covered ex-
isting solutions and already provided experiments in domain specific field.

Second chapter defines the process of pre-processing raw big data to data
ready to use for creating datasets. As well the process of choosing the domains
and their types. How after defining the domains, data are prepared to datasets
ready for using in Stanford NER. And as well how those datasets are used in
application to train a models.

The final chapter goes through all experiments that we provided with the
created datasets and models, to ensure our goals. As well chapter classifies
the impact of the number of abstracts used to train and test different models.

CHAPTER 1

Background and related work

1.1 Background

1.1.1 Information extraction

Information extraction first appears in late 1970s within NLP ﬁeldﬁ Infor-
mation extraction (IE) [3] is the task of automatically extracting structured
information from unstructured and/or semi-structured machine-readable doc-
uments. In most of the cases, this activity concerns processing human lan-
guage texts by means of natural language processing (NLP). Recent activities
in multimedia document processing like automatic annotation and content
extraction out of images/audio/video could be seen as information extraction.

Another view of that what Information extraction is that automatically
building a relational database from information contained in unstructured
text[4].

To understand better what IE is let’s give trivial exampleﬂ Imagine re-
ceiving an email message with some date in it. So extracting date information
from mail message, and adding to Calendar to create some event is part of
IE. Millions of people use this on their daily basis and they are not aware of
that how that works and what technology is used for that.

Figure[1.1]gives us a closer look at what Information extraction (IE) is, and
how State-of-the-Art algorithms transform unstructured text to structured
sequences understandable for machines.

“https://www.slideshare.net /rubenizquierdobevia/information-extraction-45392844
slide 4 of 69
"https://ontotext.com/knowledgehub/fundamentals/information-extraction/

3

1. BACKGROUND AND RELATED WORK

Unstructured Structured
Web Text Sequences

Sign of the Zodiac:

e b T 1. Ef'i&‘b

- = 4 \
= _\"'\-’:‘ i | _*- aurus
The sec

| sign of the Zodiacis - 3. Gemini...

rf'
[Taurus.)

o Most Common Couse of
2 Strokes are the third most common cause of Death in America:

{ death in America today. \ 1. Heart Disease
L o / 2. Cancer
\:}"'— b 4 Stroke. ..

[No study would be complete without %

\. mentioning the !a.rg_est radent'ln the }, Largest rodent in the
e world, the Capybara., / world:
\\x =Y /H“_'J 1. Capybara
e o 2. Beaver

——

3. Patagonian Cavies

Figure 1.1: Free unstructured texts, parsed and structured with help of IE,
downloaded fromff

1.1.2 Named Entity Recognition

Named Entity Recognition (NER) [5] is the problem of identifying and clas-
sifying proper names in text, including locations, such as China; people, such
as George Bush; and organizations, such as the United Nations. The named-
entity recognition task is, given a sentence, first to segment which words are
part of entities, and then to classify each entity by type (person, organiza-
tion, location, and so on). The challenge of this problem is that many named
entities are too rare to appear even in a large training set, and therefore the
system must identify them based only on context.

Most research on NER systems has been structured as taking an unanno-
tated block of text, such as this one:

Jim bought 300 shares of Acme Corp. in 2006.

And producing an annotated block of text that highlights the names of
entities:

[Jim]Person bought 300 shares of [Acme Corp.|Organization in [2006] Time.

In this example, a person name consisting of one token, a two-token com-
pany name and a temporal expression have been detected and classified [I].

Figure [I.2] shows how one NER application can look like. The text in
the example is predefined in Stanford NER application and loaded model

Shttps://www.slideshare.net/rubenizquierdobevia/information-extraction-
45392844

https://www.slideshare.net/rubenizquierdobevia/information-extraction-45392844
https://www.slideshare.net/rubenizquierdobevia/information-extraction-45392844

1.1. Background

(Classifier) is also trained by Stanford NERE

Stanford Named Entity Recognize
File Edit Classifier

In bringing his distinct vision to the Western genre, writer-director [TBE G uIEEY has B ORGANIZATION
created a quasi-mystical avam-garde drama that remains a deeply spiritual viewing
experience. After losing his parents and fiancée, a WENEIEE accountant named W LOCATION

{a remarkable spends all his money and takes a train to the frontier
town of Machine in order to work at a factory. Upon arriving in Machine, he is denied his B PERSON
expected job and finds himself a fugitive after murdering a man in self-defense.
Wounded and helpless, is befriended by Nobody (SERMEERNEY), 2 wandering MNative u.
American who considers him to be a ghostly manifestation of the famous poet. Nobody
aids in his flight from three bumbling bounty hunters, preparing him for his final
journey--a return to the warld of the spirits.

Figure 1.2: Stanford NER GUI with 3 classes model (Location, Person, Or-
ganization)

There are several applications or frameworks for NER such as Stanford
NER [I.1.2.1] DBpedia Spotlight [I.1.2.2] spaCy [I.1.2.3] Chatbot NER [I.1.2.6]
GATE OpenNLP [1.1.2.5| etc. Here we will take a look only on the

mentioned ones.

1.1.2.1 Stanford NER

Stanford NERE| is a Java implementation of a Named Entity Recognizer.
Named Entity Recognition (NER) labels sequences of words in a text which
are the names of things, such as person and company names, or gene and
protein names. It comes with well-engineered feature extractors for Named
Entity Recognition, and many options for defining feature extractors. In pro-
vided implementation are named entity recognizers for English, particularly
for the 3 classes (PERSON, ORGANIZATION, LOCATION).

Stanford NER is implemented as CRFClassifier. The software provides a
general implementation of (arbitrary order) linear chain Conditional Random
Field (CRF) sequence models. That is, by training your own models on labeled
data, you can actually use this code to build sequence models for NER or any
other task [6].

1.1.2.2 DBpedia Spotlight

DBpedia Spotlightﬂ [7] is a tool for annotating mentions of DBpedia resources
in text. This allows linking unstructured information sources to the Linked

"https://nlp.stanford.edu/software/ CRF-NER.html#Models
Shttps://nlp.stanford.edu/software/ CRF-NER.html
“https://www.dbpedia-spotlight.org/

1. BACKGROUND AND RELATED WORK

Open Data cloud through DBpedia. DBpedia Spotlight performs named en-
tity extraction, including entity detection and name resolution (in other words,
disambiguation). It is used for named entity recognition, and other informa-
tion extraction tasks. DBpedia Spotlight aims to be customizable for many
use cases. Instead of focusing on a few entity types, the project strives to
support the annotation of all 3.5 million entities and concepts from more than
320 classes in DBpedia. The project started in June 2010 at the Web Based
Systems Group at the Free University of Berlin.

1.1.2.3 spaCy

spaCyH [8] is an open-source software library for advanced Natural Language
Processing, written in the programming languages Python and Cython. It
offers the fastest syntactic parser in the world. The library is published un-
der the MIT license and currently offers statistical neural network models
for English, German, Spanish, Portuguese, French, Italian, Dutch and multi-
language NER, as well as tokenization for various other languages.

1.1.2.4 GATE

General Architecture for Text Engineering or GATEE [9] is a Java suite of
tools originally developed at the University of Sheffield beginning in 1995 and
now used worldwide by a wide community of scientists, companies, teachers
and students for many natural language processing tasks, including informa-
tion extraction in many languages.

GATE includes an information extraction system called ANNIE (A Nearly-
New Information Extraction System)@ which is a set of modules comprising
a tokenizer, a gazetteer, a sentence splitter, a part of speech tagger, a named
entities transducer and a coreference tagger. ANNIE can be used as-is to
provide basic information extraction functionality, or provide a starting point
for more specific tasks.

GATE as well has support for NER, for instance StringAnnotation GATE
plugin, which is the extended version of ANNIE.

1.1.2.5 OpenNLP

The Apache OpenNLP libraryE is a machine learning based toolkit for the
processing of natural language text. It supports the most common NLP
tasks, such as tokenization, sentence segmentation, part-of-speech tagging,
named entity extraction, chunking, parsing, and coreference resolution. These
tasks are usually required to build more advanced text processing services.

https://spacy.io/

Hhttps://gate.ac.uk/

2http:/ /services.gate.ac.uk/annie/
3http://opennlp.apache.org/docs/1.8.4/manual/opennlp.html#intro.description

1.1. Background

OpenNLP also included maximum entropy and perceptron based machine
learning.

The goal of the OpenNLP project will be to create a mature toolkit for
the abovementioned tasks. An additional goal is to provide a large number
of pre-built models for a variety of languages, as well as the annotated text
resources that those models are derived from.

1.1.2.6 Chatbot NER

Chatbot NER[Y]is heuristic based that uses several NLP techniques to extract
necessary entities from chat interface. In Chatbot, there are several entities
that need to be identified and each entity has to be distinguished based on its
type as a different entity has different detection logic.

1.1.3 RDF and NLP interchange format

The Resource Description Framework (RDF)[I0] is a family of World Wide
Web Consortium (W3C) specifications originally designed as a metadata data
model. It is a framework for describing resources on the web; it is designed to
be read and understood by computers.

The information in RDF is represented by subject-predicate-object, known
as triples. Triples are written in one of RDF notations: RDF/XML, RDFa,
N-Triples, Turtle, JSON-LD and as one of the possibility to store those triples
is triplestore [I1], which we are using in this thesis.

RDF [12] has features that facilitate data merging even if the underlying
schemas differ, and it specifically supports the evolution of schemas over time
without requiring all the data consumers to be changed.

In this thesis we use datasets that are stored in NIF, which is described
below.

Natural Language Processing Interchange Format (NIF)E] [13] is an RDF-
based format. The main idea of NIF is to allow NLP tools to exchange annota-
tions about text in RDF. So the prerequisite is that text should be referencable
by URIs, so that they can be used as resources in RDF statements [14]. The
structure of the NIF document is round up with nif:Section and nif:Paragraph
classes.

The classes to represent linguistic data are defined in the NIF Core Ontol-
ogy. The NIF Core Ontology also provide properties to describe the relations
between substrings, text, documents and their URI schemes [14]. All ontology
classes are derived from the main class nif:String which represents strings of
Unicode characters.

NIF is built upon the Unicode Normalization Form C, which follows rec-
ommendation of the RDF standard for rdf:Literal. Each URI scheme is a

Y“https://haptik.ai/tech/open-sourcing-chatbot-ner/
Shttp:/ /aksw.org/Projects/NIF.html

1.

BACKGROUND AND RELATED WORK

subclass of nif:String. Users of NIF can also create their own URI schemes
by subclassing nif:String and providing documentation on the Web in the
rdfs:comment field. This puts restriction over the URI syntax, so for example
instances of type nif:RFC5147String have to adhere to the NIF URI scheme
based on RFC 5147.

As well another important subclass of nif:String is the nif:Context OWL

class. This class is assigned to the whole string of the text. The purpose of
an individual of this class is special, because the string of this individual is
used to calculate the indices for all substrings. Therefore, all substrings have
to have a relation nif:referenceContext pointing to an instance of nif:Context.
Listing provides an example of NIF structure.

prefix rdf:<http://www.w3.0rg/1999/02/22—rdf—syntax—ns#> .
prefix xsd:<http://www.w3.org/2001/XMLSchema#> .

prefix itsrdf:<http://www.w3.o0rg/2005/11/its/rdf#> .
prefix nif:<>

prefix ex:<http://nif.dbpedia.org/wiki/en/>

ex: United_States?dbpv=2016—10&nif=context a nif:Context;

nif:
nif:
nif:
nif:

beginlndex 707" "xsd:nonNegativelnteger;

endIndex 7104211”7""xsd:nonNegativelnteger;

firstSection ex:United_States?dbpv=2016—10&char=0,4241;
lastSection ex:United_States?dbpv=2016—10&char=103211,

104211;

nif:
nif:
nif:
nif:

hasSection ex:World_War_117dbpv=2016—10&char=0,5001;
sourceUrl ex:United_States?oldid=745182619;
predLang <http://lexvo.org/id/iso639 —3/eng >;
isString ”...The first inhabitants of North America

migrated from Siberia by way of the Bering land bridge...”

ex: United_States?dbpv=2016—10&char=7745,9418 a nif: Section;

nif:

beginlndex 7”7745”" "xsd:nonNegativelnteger;

if :endIndex”9418”""xsd:nonNegativelnteger ;

nif:
:lastParagraph ex:United_States?dbpv=2016—10&char=8741,9418;
nif:
nif:

nif

nif:

hasParagraph ex:United_States?dbpv=2016—10&char=7860,8740;

nextSection ex:United_States?dbpv=2016—10&char=9420,12898;
referenceContext ex:United_States?dbpv=2016—10&nif=context ;
superString ex:United_States?dbpv=2016—10&char=7548,7743

ex: United_States?dbpv=2016—10&nif=paragraph&char=7860,8740
anif:Paragraph;

nif:
nif:
nif:
nif:
nif:

beginlndex”7860”" " xsd: nonNegativelnteger;
endIndex”8740”" "“xsd:nonNegativelnteger;

nextParagraphex: United_States 7dbpv=2016—10&char=8741,9418;
referenceContextex: United_States?dbpv=2016—10& nif=context ;
superString ex:United_States?dbpv=2016—10&char=7745,9418.

ex: United_States 7dbpv=2016—10&char=7913,7920 a nif:Word;

8

1.1. Background

nif:anchorOf” Siberia ”;

nif:beginlndex”7913”""xsd: nonNegativelnteger;
nif:endIndex”7920”" " xsd: nonNegativelnteger;
nif:referenceContext ex:United_States?dbpv=2016—10&nif=context ;
nif:superString ex:United_States?dbpv=2016—10&char=7860,8740;
itsrdf:taldentRef<http://dbpedia.org/resource/Siberia> .

Listing 1.1: Example of NIF taken from @

1.1.4 DBpedia

DBpedia [15] is a crowd-sourced community effort to extract structured con-
tent from the information created in various Wikimedia projects. This struc-
tured information resembles an open knowledge graph (OKG) which is avail-
able for everyone on the Web. A knowledge graph is a special kind of database
which stores knowledge in a machine-readable form and provides a means for
information to be collected, organised, shared, searched and utilised. Google
uses a similar approach to create those knowledge cards during search.

DBpedia data is served as Linked Data, which is revolutionizing the way
applications interact with the Web. One can navigate this Web of facts with
standard Web browsers, automated crawlers or pose complex queries with
SQL-like query languages (e.g. SPARQL).

At the time of writing this thesis the last version of DBpedia is 2016/10.

1.1.4.1 DBpedia NIF

DBpedia [16] currently primarily focus on representing factual knowledge as
contained in Wikipedia infoboxes. A vast amount of information, however,
is contained in the unstructured Wikipedia article texts. DBpedia NIF also
considers to broad and deep the amount of structured data.

With the representation of wiki pages in the NLP Interchange Format
(NIF) are provided all information directly extractable from the HTML source
code divided into three datasets:

e nif-context: the full text of a page as context (including begin and end
index)

e nif-page-structure: the structure of the page in sections and paragraphs
(titles, subsections etc.)

e nif-text-links: all in-text links to other DBpedia resources as well as
external references

https://2018.eswc-conferences.org/wp-content/uploads/2018/02/ESWC2018_
paper_136.pdf

https://2018.eswc-conferences.org/wp-content/uploads/2018/02/ESWC2018_paper_136.pdf
https://2018.eswc-conferences.org/wp-content/uploads/2018/02/ESWC2018_paper_136.pdf

1. BACKGROUND AND RELATED WORK

These datasets will serve as the groundwork for further NLP fact extraction
tasks to enrich the gathered knowledge of DBpedia.

For the purposes of this thesis we will use English version of DBpedia NIF
dataset version 2016-04 (dbpv=2016-04).

1.1.4.2 DBpedia ontology

The DBpedia Ontology is a shallow, cross-domain ontology, which has been
manually created based on the most commonly used infoboxes within Wikipedia.
The ontology currently covers 685 classes which form a subsumption hierarchy
and are described by 2,795 different properties.

Since the DBpedia 2016/10 release, the ontology is a directed-acyclic
graph, not a tree. Classes may have multiple superclasses, which is important
for the mappings to schema.org. [17].

DBpedia ontology classes can be found herﬂ

The DBpedia Ontology version 2016-10 currently contains about 4,233,000
instances only in English. Figure[I.3shows the number of instances for several
classes within the ontology[}

Resource (overall) 4,233,000
Place /35,000
FPerson 1,450,000
Work 411,000
Species 227,000
Organisation 247,000

Figure 1.3: DBpedia Ontology - Instances per class

1.1.5 Apache Jena

Apache Jenaﬁ [18] is an open source Semantic Web framework for Java. It
provides an API to extract data from and write to RDF graphs. The graphs

""http://mappings.dbpedia.org/server/ontology/classes/
18http://wiki.dbpedia.org/services-resources/ontology
https://jena.apache.org/index.html

10

http://mappings.dbpedia.org/server/ontology/classes/
http://wiki.dbpedia.org/services-resources/ontology
https://jena.apache.org/index.html

1.2. Related work

are represented as an abstract "model”. A model can be sourced with data
from files, databases, URLs or a combination of these. A Model can also be
queried through SPARQL 1.1.

1.1.6 SPARQL

SPARQL [I1] is an RDF query language, that is, a semantic query language for
databases, able to retrieve and manipulate data stored in Resource Description
Framework (RDF) format. SPARQL works for any data source that can be
mapped to RDF.

SPARQL allows users to write queries against key-value data or, more
specifically, data that can be mapped to RDF. The entire database is thus a
set of subject-predicate-object triples.

The SPARQL standard @ is designed and endorsed by the W3C and helps
users and developers focus on what they would like to know instead of how a
database is organized.

In Listing is shown an example of SPARQL query where we are select-
ing 10 abstracts (articles) from DBpedia NIF who has ontology type Political-
Party and their PageRank value. The results are sorted in descending order,
according to their PageRank value.

PREFIX rdf:<http://www.w3.0rg/1999/02/22—rdf—syntax—ns#>
PREFIX dbo:<http://dbpedia.org/ontology/>
PREFIX vrank:<http://purl.org/voc/vrank#>

SELECT DISTINCT ?s ?v
FROM <http://dbpedia.org>
FROM <http:// people.aifb.kit.edu/ath/#DBpedia_PageRank>
WHERE{
?7s rdf:type dbo:PoliticalParty
?s vrank:hasRank/vrank:rankValue ?v.

}
ORDER BY DESC(?v) LIMIT 10

Listing 1.2: SPARQL example

1.2 Related work

Traditionally Named Entity Recognition (NER)[I9] systems have been built
using available annotated datasets (like CoNLL, MUC) and demonstrate ex-
cellent performance. However, these models fail to generalize onto other do-
mains like Sports and Finance where conventions and language use can differ

2Onttps://ontotext.com/knowledgehub/fundamentals/what-is-sparql/

11

https://ontotext.com/knowledgehub/fundamentals/what-is-sparql/

1. BACKGROUND AND RELATED WORK

significantly. Furthermore, several domains do not have large amounts of an-
notated labeled data for training robust Named Entity Recognition models.
With specifying the domain we can create a bigger model with more annotated
words and reading the whole text will be same or even faster that reading text
with a global domain.

In [20] authors used the WordNet English database for retrieving enti-
ties. As domain they chose Lord of the Rings book and "LOCATION” and
"PERSON” as types. After the small experiment they figure out that the
"PERSON” type is quite a large, so after some fine-tuning they changed to
"ANIMATE” type, which in their main experiment gives better results.

Authors in [2I] propose methods to effectively adapt models learned on one
domain onto other domains using distributed word representation from Online
Media. As well they demonstrate how to effectively use such domain specific
knowledge to learn NER models. They chose "FINANCE” and "SPORT”
types because as they say domains from CoNLL or MUC performs poor results.
Also are compared the global model and a domain specific models, so from
the observation the training data in domain specific models get increased and
perform better results.

As well [22] authors for domain chose tweets and use T-NER system, and
for comparing the results, they used Stanford NER. system. They created a
dataset with 2400 annotated tweets with 10 popular tweets domain. Based
on their experiments the T-NER system performs a way more better results
than the Stanford NER system, where they have 3 types, "PERSON”, "L.O-
CATION” and "ORGANIZATION™.

12

CHAPTER 2

Domain specific named entity
recognition

In this chapter, as we can see from Figure [2.1| we will go through the whole
process of transforming raw DBpedia datasets to datasets that are ready for
training a models with Stanford NER and the process of training models
with Stanford NER. Section explains the process of filtering the data with
relevant information from DBpedia NIF datasets and preparing them for pro-
cessing. In Section [2.2) we explain how we choose "POLITICS”, "SPORT” and
"TRANSPORTATION” domains. Section shows all ontology types that
we retrieve for every domain and grouping them to more specific ontology
type. In Section is explained the process of preparing datasets for training
in Stanford NER. And finally in Section is shown the process of training
models from prepared datasets with Stanford NER.

13

2. DOMAIN SPECIFIC NAMED ENTITY RECOGNITION

Step 2. Choosing which domains wil ﬁam \ / Domam A T —
Speuflcatlon \ single domain will contains and group

be used to make experiments. \
I POpulatIOn “. those types to more generic, if is
| Choosing domains. ,:“: EimseiyEs i every , needed.

\from DBpEdla OHm\ogy ST,

\

Domnin specific
Named Entity
Reeognition Data SteP 4. Rur! an algorithm wh‘ich will

retrieve articles from DBpedia and
Transformation

Data

—— B pre-processing
(NN + r Download datasets
’ from DBpedia NIF

dataset and DBpedia

download page.

based on this will create datasets with
annotated entities in coarse and fine
grain.

Prepare datasets ready
o to use in Stanford NER,

Model ?

Step 1. Filter the data with the
relevant information from DBpedia
NIF datasets and preparing them for
processing.

Generation

Train models from

created datasets. Step 5. Finally, with the created

datasets from the previous step, we
can start training models with
Stanford NER.

Figure 2.1: Chapter 2 flow

2.1 Data pre-processing

To be able to create domain specific datasets we need training data which
covers multiple domains, where used multiple types. We choose data from
DBpedia NIF Datasets (for more information about DBpedia NIF see Sec-
tion for the English language in .ttl format. This dataset is provided
with 3 partitions that we used only 2 of them. Those partitions are:

e nif-context: This partition contains full text of a Wikipedia page as
context (including begin and end index)

e nif-text-links: This partition contains all in-text links to other DBpe-
dia resources also external references

Because DBpedia NIF dataset does not contains entity types dataset, we
should use instance-types_en datasetelﬂ who is also in .ttl format. This
dataset contains all types of nif-text-links that occurrence at nif-abstract-
context file.

So how all this dataset are connected between themselves? Let say that we
have abstract for Alexander the Great. In nif-text-links file we have all words
from the abstract that have annotation, but we still don’t know their type. So
here comes instance-types_en dataset where based on link from nif-text-link
(eg.http://dbpedia.org/resource/Philip_II_of Macedon) we can find the type
of annotated word (word Philip II has ontology type Monarch), but of course,

2'http://wiki.dbpedia.org/downloads-2016-04

14

http://wiki.dbpedia.org/downloads-2016-04

2.1. Data pre-processing

there might be a case that some words cannot be found on instance types file
and automatically have no type, or in our case ontology type O (O stands for
OTHER).

Let us explain in detail how we process and clean data from the datasets.
First, we define small test dataset to check how fast we can process data.
Processing that dataset on downloaded files without any cleaning of data
takes too long. In order to improve processing speed of the dataset we consider
converting data RDF format to binary format (.ttl to .hdt) with RDF/HDT
too]@ will be faster. HDT (Header, Dictionary, Triples)[23] is a compact data
structure and binary serialization format for RDF that keeps big datasets
compressed to save space while maintaining search and browse operations
without prior decompression. So we converted the datasets and reran the
data processing face again. There were some processing time improvements,
but not satisfying for our purposes. Because we don’t need all information that
datasets contains, our next solution was to clean datasets from those unused
data for our aims. The final result after cleaning was a smaller datasets, for
instance, nif-abstract-context file from 7.78 GB now has 2.99GB, another big
improvement was nif-text-links file who is reduced to 10.5GB from 44.6GB
and at the end we also clean instance-types file, but here we don’t record
any major memory improvements. Again we rerun the algorithm, of course,
there were improvements, but as well as previous the processing time was not
acceptable. To give an illustration, the time needed to find all types from
one abstract in a worst case, to read nif-text-links and instance type files
until the end was around 3.5 minutes. Therefore we converted our cleaned
datasets from RDF format(.ttl) to binary format(.hdt). And how in previous
processing face there were again time improvements, but those improvements
didn’t meet our criteria. So we decided not to use binary format, but we will
create dataset tree only for nif-text-links and instance-types_en datasets.

The reason why we chose to create a tree is, because, who we see previously,
reading a big dataset takes a lot of time and memory as well. So diving that
dataset to smaller pieces will reduce the memory usage and reading time,
which as well will reduce the processing time of algorithm. We create a dataset
tree for nif-text-links and instance-types datasets. For nif-text-links dataset we
created a tree where we have folders from "a-z”, also special characters folders
and other folder (this folder contains data that have a lower occurrence, let say
& character or letters that are not part of the English alphabet) and folders
from ”a-z” has subfolders also from "a-z”.

To give a closer look how we create that tree, let say that we have an
abstract for Volkswagen Golf MK3, so the link for that abstract would be
http://dbpedia.org/resource/Volkswagen_Golf_Mk3 and this link will be stored
to "v” folder and ”0” subfolder, because the title of the abstract is Volkswagen
Golf MK3, where we need only first 2 letters from the first word, in this case

2Znttp://www.rdfhdt.org/

15

http://www.rdfhdt.org/

2. DOMAIN SPECIFIC NAMED ENTITY RECOGNITION

word Volkswagen. As we say earlier, this will create smaller dataset, where
we need less time to read it.

For instance-types_en dataset we modified the process of creating a data
tree datasets. Here because of lower range data we have created only datasets
', of course, special characters dataset and dataset with a special
characters in the beginning of their names that have lower occurrence, for
example & or “ character etc.

from "a-z’

Finally, we rerun the algorithm, and the time to process one abstract, at
worst case, takes no longer than 1 minute. Now we were ready to take next
steps to create domains (see Section , retrieve types (see Section and
prepare data for Stanford NER (see Section .

2.2 Domain specification

As we said earlier most of the NER application are trained on same domains,
like "PERSON”, "ORGANIZATION” and "LOCATION”. These 3 domains
are widely spread all over the applications and perform nice results on text
from these domains. So what we need is something that is not already trained
or there is a small usage of that domain. After some research, we find out
that "TRANSPORTATION” domain is not a popular domain for NER, appli-
cations, respectively in time of writing the thesis we don’t find any usage of
this specific domain. So there is the possibility to create this specific domain.
Types that we retrieve for this domain and groping them to more specific
types are more deeply explained in Types retrieval (see Section . We have
our first domain, but at least 2 more domains are needed to be able to make
some experiments and conclusion.

The next domain that we chose was "POLITICS”. The reason why we
chose "POLITICS” domain is because it is widely covered in DBpedia, which
gives an opportunity for quality working and testing with that domain. The
types that contains this domain are explained in Section 2.3] The second
domain is chosen, so we need at least one more domain to keep up with other
NER applications.

It was not an easy task to select a domain having in mind the criteria
we set. After a research, also referring to ontology types from previous two
domains and some NER applications (see Section we find an opportu-
nity to create the last "SPORT” domain. Now we should check on DBpedia
ontology classes page (see Section how many ontology types we have
for this domain. At the time of writing this thesis there were around 170
ontology types, which is very good number for creating a domain (for more
see Section .

After we complete choosing of domains, the next step was to choose the
right ontology types for every specific domain and if it is needed or make

16

2.3. Domain population

sense group those types to more specific type. This is explained in detail at

Section 2.3

2.3 Domain population

After the problem of running the algorithm to find all types from the abstract
and choose domains, next issue was which types we want to be part of our
domains and also which types we want to retrieve from DBpedia. Worth men-
tioning that we will use the same ontology types for retrieving the abstracts
links from DBpedia and creating a domain models. For example the type
"Politician” will be used to retrieve links from DBpedia that has that type,
and also ”Politician” type will be use to annotated words, for instance Barack
Obama will have type of "Politician” (we will give more details on section.

In DBpedia ontology classes pag@ we can see all types that DBpedia
ontology has. Those ontology types are the same in instance types file also.
Now we are facing with the fact that if we choose very small group of ontology
types, at the experiment point we will have minor range of annotated words
and experiments won’t be relevant. On the other hand, if we go too deep
to ontology types, we will have a lot of annotated words, which might be
positive, but training the model will take a lot of time and memory. There is
a possibility that we will reach memory exception, or because of big group of
types training will never end.

After some testing with the number of retrieved types we finally found the
best selection of types, in total we choose 283 ontology types for all domains.

Now let us explain more deeply every single domain and which types has
that domain. We have 3 domains (see Section for that how we choose
those domains) "POLITICS”, "SPORT” and "TRANSPORTATION".

In "POLITICS” domain we retrieve in total 26 types, found at Appendix[A.2]
which we sort in 11 more specific types like Ambassador, Chancellor, Congress-
man, Deputy, Governor, Lieutenant, Mayor, MemberOfParliament, Minister,
President, PrimeMinister, Senator, VicePresident and VicePrimeMinister are
joined together in one specific domain Politician, other types we leaved as it
is, because if we group them the types wouldn’t give any sense.

We do the same for "SPORT” domain where we retrieve in total 171 types,
found in Appendix so those types, same as "POLITICS” domain, are
more specified in 8 types, like SportClub, SportsLeague, SportsTeam, Athlete,
Coach, OrganizationMember, SportsManager and SportsEvent. Grouping of
types is also shown in appendix [A73] This domain is a nice example of that
even we retrieve quite a big number of types, we can reduce that number
with more specific types which don’t lose the meaning further. For instance
”"David de Gea” has a type of SoccerPlayer, but after processing will have type
of Athlete, which gives sense, because any type of sport player is an athlete.

23http ://mappings.dbpedia.org/server/ontology/classes/

17

http://mappings.dbpedia.org/server/ontology/classes/

2. DOMAIN SPECIFIC NAMED ENTITY RECOGNITION

At the end we repeat the process for "TRANSPORTATION” domain,
where we retrieve in total 86 types. Retrieved types can be found in Ap-
pendix[A4] Those types are after minimized in 14 more specific types like Air-
craft, Automobile, On-SiteTransportation, Locomotive, MilitaryVehicle, Mo-
torcycle, Rocket, Ship, SpaceShuttle, SpaceStation, Spacecraft, Train, Pub-
licTransitSystem and Infrastructure. The logic of that who we create more
specific ontology types is same as in "POLITICS” or "SPORT” domain.

The reason why we group ontology types to more generic ones is that,
that when the dataset has a smaller number of types, training a model with
Stanford NER is more faster and requires less memory for training. Another
reason is faster providing a NER, because is needed to read less types and
also the overall results after testing with same data perform better than when
ontology types where not grouped.

2.4 Data transformation

We define domains as well their types that we will retrieve and process, now
we should put everything together and prepare data for Stanford NER, appli-
cation. In Data pre-processing (see Section we explain how we handled
the data downloaded from DBpedia NIF dataset and we briefly touch how
those data will be prepared for training in Stanford NER application.

The final thing that is missing is how we will choose which abstracts will
be part of our models. Because our goal is to create models with different
number of abstracts we need some strict order of retrieved links from DBpe-
dia dataset. In order to chose the data, we chose those articles with higher
PageRank values. PageRank [24] is an algorithm used by Google Search to
rank websites in their search engine results. So with a prepared SPARQL
queries (SPARQL queries for every domain can be found in |A.6} [A.7|and [A.§|
appendix) and with help of Apache Jena framework (see Section we
implemented retrieving links, on Java, on DBpedia endpoinﬂ After retriev-
ing those data, based on their PageRank we check does retrieved link from
DBpedia is part on our abstract file (nif-context dataset). If link is found in
nif-context dataset it’s written to two files, one file is where are written all
abstracts from every domain and another file is file for that specific domain.
Those files are creating in RDF format, with n-triples, that means that there
is subject, in our case that is the link of abstract, then predicate who has
isString annotation which tells that next triple contains the abstract text and
finally object where abstract text is placed. Next thing that we need to do is
to find all annotated words from abstract and their types. The algorithm of
finding types is explained in Section 2.I] What is not mention there is that
after finding the types, the abstract is written to file, where on first position
is word and on the second position is the type of that word, if there is any,

2*nttp://www.dbpedia.com/sparql

18

http://www.dbpedia.com/sparql

2.4. Data transformation

if not the type is O. Final step is to prepare data to be able to train models
in Stanford NER with the types that we define in Section [2.3] Because files
contains all types that were found on the abstracts we need to clean and group
them, as well to create datasets with coarse and fine grained entities with fine
and coarse types. The algorithm is very simple, it reads the files which al-
ready have all types and if type is part of our retrieved types then either type
is leaved as it is, or is grouped to more specific type, for instance if word has
type Ambassador, then after filtering that word will have Politician type. The
same is for coarse grained annotation, but here proper types after filtering are
"POLITICS”, "SPORT” or "TRANSPORTATION” type. The whole process
is also illustrated at Algorithm

Interesting fact is that, that when we retrieve links from DBpedia with a
specific ontology types types, some links there have types that are not even
part of our domain. Here are some interesting links that we catch:

e http://dbpedia.org/page/Orbital period

e http://dbpedia.org/page/Pregnancy

e http://dbpedia.org/page/Melody

e http://dbpedia.org/page/ITunes

e http://dbpedia.org/page/Tachycardia

e http://dbpedia.org/page/Shortwave_radio
e http://dbpedia.org/resource/UTC-05:00

19

2.

DOMAIN SPECIFIC NAMED ENTITY RECOGNITION

Retrieve links from DBpedia NIF Dataset based on their PageRank;

if Retrieved link is found at nif-abstract dataset then
| write value from nif-abstract dataset to file

else
| go to next retrieved link and repeat steps

end
Read new file with values from nif-context and get abstract links;
Check does that link is consists in nif-text-links dataset;
if link consists in nif-text-links then
Get all values (links) from nif-text-links dataset;
Search for ontology types in instance-types dataset;
if Link from nif-text-links exists in instance-types then
‘ Parse value and return ontology type;
else

end
Write abstract text to domain specific file with founded type of
the word, as only word and the type at a line;

Ise
Write abstract text to domain specific file with word and O type

at a line;

]

end
Read created domain specific files and clean unnecessary types;

if Type equals some of retrieved types then
Leave type as it is or group type and write to two domain specific

files in coarse and fine grained;
else
Rewrite the type to ”0O” and write to two domain specific files in
coarse and fine grained;
end
Write to two domain specific files in coarse and fine grained;

Algorithm 1: Algorithm for preparing datasets ready for training in Stan-
ford NER

20

2.5. Model generation

2.5 Model generation

With the created files from Section now we can start training models.
At Stanford NER CRF FAQ webpageFE] provides explanation of that how to
train own model with Stanford NER. We follow those steps and used the
same NER properties file with a small correction where we had to add 2 more
flags to be able to train big models. Those two flags are saveFeaturelndex-
ToDisk=true, which is used on every properties file and for creating a models
in fine grained we use useObservedSequencesOnly=true. Flag saveFeatureln-
dexToDisk stands for saving the feature name’s to disk that aren’t actually
needed while the core model estimation (optimization) code is run. Another
flag that we use is useObservedSequencesOnly flag. It is used for labeling only
adjacent words with label sequences that were seen next to each other in the
training data. For some kinds of data this actually gives better accuracy, for
other kinds it is worse. After testing on a small model with only 40 abstracts
and model with 300 abstracts we find out that for creating a fine grained
model with 40 and more abstract this flag gives us better results, while on
coarse grained models this flag gives worst results, the exception are models
with 500 abstracts where we should use this flag to reduce memory usage.
The whole properties file with all used flags can be found in Appendix

After creating a properties files, training models is very easy with only one
command, where unlike command from Stanford we add Xmx Java option,
because standard command use only 4GB of RAM, which for our purposes is
not enough for training big models.

Command for training model ran from the stanford-ner folder:

java —Xmxllg —cp stanford—ner.jar
edu.stanford.nlp.ie.crf. CRFClassifier —prop
locationAndnameOfPropFile. prop

2.5.1 Training datasets

For the aim of our experiments we have trained 57 models. As mentioned
earlier for training we have used Stanford NER application explained in Sec-
tion We have two types of models, coarse-grained and fine-grained,
also those model types are divided in to "POLITICS”, "SPORT” or "TRANS-
PORTATION” specific domains and a global domain who contains all ab-
stracts from every domain. To give an illustration, for dataset with 100 re-
trieved abstract we will have 4 coarse-grained models (global domain and 3
specific domains), and similarly for a fine-grained models, so in total we have
8 trained models for every dataset. We created 7 different groups of datasets
with 10 abstracts, 20 abstracts, 40 abstracts, 100 abstracts, 300 abstracts, 400
abstracts and 500 abstracts. FEach of this datasets has 8 trained models and

*https://nlp.stanford.edu/software/crf-faq.html

21

https://nlp.stanford.edu/software/crf-faq.html

2. DOMAIN SPECIFIC NAMED ENTITY RECOGNITION

we have one dataset that have also 500 abstracts, but those abstracts are not
the same like the previous dataset. This dataset contains abstracts that have
lower PageRank value and has only one trained model with abstracts from
every domain in fine grained.

22

CHAPTER 3

Experiments

There are parameters of the computer used for tests shown in Table

Table 3.1: Testing computer parameters

Part Description

CPU | 2.00 GHz Intel(R) Core(TM) i5-4310U
MEM | 16 GB DDR3L

0S x86_64 Windows 10 Pro

DISK | 240GB SSD Kingston

We have provide various types of experiments. In next sections we will
discuss more about every provided experiment.
3.1 Goals of the experiments
We set a few goals of the experiments. Those goals are:

e To investigate the impact of coarse grain global model results against
the fine grain global model results.

e To evaluate the performance of domain specific models.
e To evaluate the performance of global models.

e To investigate the impact of global models tested with domain specific
dataset.

3.2 Evaluation metrics

The success of NER systems is exposed to Fj score (F-score or F-measure).
Fy [25] score is a measure of a test’s accuracy. It considers both the precision

23

3. EXPERIMENTS

P and the recall R of the test to compute the score: P is the number of
correct positive results divided by the number of all positive results returned
by the classifier, and R is the number of correct positive results divided by the
number of all relevant samples (all samples that should have been identified
as positive). The F} score is the harmonic average of the precision and recall,
where an F} score reaches its best value at 1 (perfect precision and recall) and

worst at 0. Written in formula, the [y = 2 . Precision-recall
’ precision+recall

3.3 List of experiments

With our trained models we made a few experiments. First one is the model
that has 300 abstract on every domain(900 abstract in total). This is our
main model and other experiments that we will provide, models that has
lower or higher number of abstracts or experiments where model has more
abstracts that a test file or vice-verse, all those results will be compared with
the results obtained from main experiment. This experiment can be found an

Section B.3.11

With the experiments we wanted to answer some important questions:

e What is the impact on results when models are trained with less data
than in the main experiment?

Section [3:3.2 has answer to this question.

e What is the impact on results when models are trained with more data
than in the main experiment?
Section [3.3.3] gives a closer look to this questions.

e What is the impact on results when models are train in fine or coarse
grain?
In both sections (Section and Section and as well in Sec-
tion |3.3.1) we provide those types of experiments.

e What is the impact on results when trained model is tested with more
than one dataset?
Section has the answer of this question.

e How the models from group of 500 abstracts per domain will perform
when are tested with news articles?

Section [3:3.5] gives a closer look to this question.

Figure [3.I] shows the time that algorithm explained in Section [2.4] need to
process data and prepare datasets ready for training with Stanford NER. As
we can see time grows approximately linearly.

24

3.3. List of experiments

Time needed to prepare datasets for training

220

180

140

100

[Time in mitunes]

60

30
1

| | | | | | |
020 60100 200 300 400 500
[Number of retrieved abstracts]

Figure 3.1:

3.3.1 Main experiment

This is our main experiment where other experiments will be compared with
this one. This model is trained with top 300 Wikipedia abstracts for every
domain. Algorithm for preparing the data for training model explained in
Section [2.4] takes 2.40 hours. The model is trained in coarse grained and takes
873.7 seconds, from which 844.63 seconds spent in optimization.

3.3.1.1 Global domain models

First experiment that we do with this model is that we run it with the same
text that model is trained in coarse grained. Results are promising, we are
above 95% as shown in Table which is great number for such quite big
model. With such results, someone will say that those are nice results and
other experiments will only have the worst results. But let see how model
behaves when we test with abstracts for every specific domain.

Entity Precision | Recall | F1 score
POLITICS 0,9872 0,9462 | 0,9662
SPORT 0,9846 0,9629 | 0,9736
TRANSPORTATION | 0,9940 0,9823 | 0,9881
Totals 0,9875 0,9625 | 0,9748

Table 3.2: Results of base experiment run to be used as reference for subse-
quential experiments

25

3. EXPERIMENTS

Table [3.3] shows the output of model when is tested with abstracts from
a "POLITICS” domain. As we said in Section this type of abstract has
the biggest word annotation. Result is not even close with the result from
previous experiment. Also, trained model annotated words with a "TRANS-
PORTATION” domain, where the test file don’t have any word with that
annotation.

Entity Precision | Recall | F1 score
POLITICS 0,9839 0,4025 | 0,5713
TRANSPORTATION | 0,0000 1,0000 | 0,0000
Totals 0,9792 0,4025 | 0,5705

Table 3.3: Results of base model in coarse grained run with "POLITICS”
abstracts

Table gives us results from abstracts from "SPORT” domain. Here
we have the same results like in first experiment, but because trained model
annotated some words with a "POLITICS” or "TRANSPORTATION”, even
those that our test file contains only abstracts from "SPORT” domains and
words has only "SPORT?” type, the overall result is only a little bit lower that
the first experiment.

Entity Precision | Recall | F1 score
POLITICS 0,0000 1,0000 | 0,0000
SPORT 0,9846 0,9628 | 0,9736
TRANSPORTATION | 0,0000 1,0000 | 0,0000
Totals 0,9819 0,9628 | 0,9722

Table 3.4: Results of base model in coarse grained run with "SPORT” ab-
stracts

Table [3.5 provide outcome with testing with abstracts only from "TRANS-
PORTATION” domain. As in the previous experiment, the result now is al-
most the same like in first experiment, but even thought that trained model, as
in previous 2 experiments, annotated words with a "SPORT” type, the overall
results is better that the experiment where test file contains all abstracts from
every domain.

Entity Precision | Recall | F1 score
SPORT 0,0000 1,0000 | 0,0000
TRANSPORTATION | 0,9940 0,9822 | 0,9880
Totals 0,9861 0,9822 | 0,9841

Table 3.5: Results of base model in coarse grained run with "TRANSPORTA-
TION” abstracts

26

3.3. List of experiments

In conclusion with this kind of experiments we can say that it is not a
good idea to train a model with all chosen domains and then use texts from
specific domain to perform NER.

After we finish the experiments with model that is trained with all ab-
stracts from every domain in coarse grained, we wanted to see the impact of
model that is trained with same abstracts, but now annotated in fine grained.
To train this model we needed 3250.9 seconds from which 3207.45 seconds for
optimization. Table shows the results of provided experiment where we
can see that we have a little bit more better total result than experiment in

Table B.21

Entity Precision | Recall | F1 score
Aircraft 1,0000 1,0000 | 1,0000
Athlete 1,0000 0,9802 | 0,9900
Automobile 1,0000 1,0000 | 1,0000
Coach 1,0000 1,0000 | 1,0000
Infrastructure 1,0000 0,9820 | 0,9909
PoliticalParty 0,9860 0,9628 | 0,9743
Politician 1,0000 0,9353 | 0,9665
PublicTransitSystem | 0,9919 0,9839 | 0,9879
Ship 1,0000 1,0000 | 1,0000
SpaceShuttle 1,0000 1,0000 | 1,0000
SpaceStation 1,0000 1,0000 | 1,0000
SportsClub 0,9796 0,9683 | 0,9739
SportsEvent 1,0000 0,9242 | 0,9606
SportsLeague 0,9647 0,9805 | 0,9725
SportsManager 1,0000 0,9423 | 0,9703
SportsTeam 1,0000 0,9805 | 0,9902
Train 1,0000 1,0000 | 1,0000
Totals 0,9880 0,9712 | 0,9795

Table 3.6: Results of base experiment in fine grained run to be used as refer-
ence for subsequential experiments

Then we tested our model with abstracts from "POLITICS” domain. How
we can see from Table there is some improvements on overall result un-
like the experiment in coarse grained, but no satisfying at all. As well table

shows that some words again are annotated with types from "SPORT” and
"TRANSPORTATION” domain.

27

3. EXPERIMENTS

Entity Precision | Recall | F1 score
Election 0,0000 0,0000 | 0,0000
PoliticalParty 0,9860 0,9628 | 0,9743
Politician 1,0000 0,1849 | 0,3120
PublicTransitSystem | 0,0000 1,0000 | 0,0000
Ship 0,0000 1,0000 | 0,0000
SportsLeague 0,0000 1,0000 | 0,0000
Totals 0,9825 0,4072 | 0,5758

Table 3.7: Results of base model in fine grained run with "POLITICS” ab-
stracts

After that we rerun the experiment, but now with abstracts from "SPORT”
domain. In Table[3.§ we can see minor growth of the results unlike experiment
in Table[3.4] but these improvements are so small that are almost unimportant.
Also our model annotated some words with types from "POLITICS” and
"TRANSPORTATION” domain which the test file don’t have those types at
all.

Entity Precision | Recall | F1 score
Athlete 1,0000 0,9802 | 0,9900
Coach 1,0000 1,0000 | 1,0000
Politician 0,0000 1,0000 | 0,0000
SportsClub 0,9794 0,9680 | 0,9737
SportsEvent 1,0000 0,9242 | 0,9606
SportsLeague 0,9678 0,9805 | 0,9741
SportsManager | 1,0000 0,9423 | 0,9703
SportsTeam 1,0000 0,9804 | 0,9901
Train 0,0000 1,0000 | 0,0000
Totals 0,9821 0,9716 | 0,9768

Table 3.8: Results of base model in fine grained run with "SPORT” abstracts

Finally the last experiment with this model are the abstracts from "TRANS-
PORTATION” domain. Table shows the output of the provided experi-
ment, where like in previous 2 experiments we can notice a very little improve-
ments on results, from experiment in Table[3.5] who again can be unimportant.
As in previous experiments similarly here model annotated some words with
types from other 2 domains, which test file does not even contain.

28

3.3. List of experiments

Entity Precision | Recall | F1 score
Aircraft 1,0000 1,0000 | 1,0000
Automobile 1,0000 1,0000 | 1,0000
Infrastructure 1,0000 0,9820 | 0,9909
Politician 0,0000 1,0000 | 0,0000
PublicTransitSystem | 0,9918 0,9837 | 0,9878
Ship 1,0000 1,0000 | 1,0000
SpaceShuttle 1,0000 1,0000 | 1,0000
SpaceStation 1,0000 1,0000 | 1,0000
SportsClub 0,0000 1,0000 | 0,0000
SportsTeam 0,0000 1,0000 | 0,0000
Train 1,0000 1,0000 | 1,0000
Totals 0,9862 0,9881 | 0,9871

Table 3.9: Results of base model in fine grained run with "TRANSPORTA-
TION” abstracts

Provided experiments with the model which is trained with all abstracts
from every domain annotated in fine grained, overall provide a very little
improvement on results on every experiment. With that observation trained
model annotated in fine grained is better to use instead of the model that is
annotated in coarse grained. Another benefit of this type of model is that
we can see which types are annotated and their results. But, because those
improvements are small and is needed almost four times more time to train a
fine grained model, maybe the better solution will be models trained in coarse
grained. Everything depends on our goals: faster models or more precision?

3.3.1.2 Evaluation of domain specific models

After completing experiments with global domains in coarse and fine grained,
now we will make experiments with models for specific domains.

To train "POLITICS” domain specific model we need 66.7 seconds in total
from which 59.53 seconds spend on optimization. In Table[3.10|the experiment
is provided with model trained only with abstracts from "POLITICS” domain
and run with the same texts that model in trained, in coarse grained. The
result here is better than experiment in Table but worse that experiment
provided with global domain in Table This can be cause by the fact that
model has biggest number of annotated words.

Entity Precision | Recall | F1 score
POLITICS | 0,8039 0,6779 | 0,7355
Totals 0,8039 0,6779 | 0,7355

Table 3.10: Results of "POLITICS” base model in coarse grained run with
"POLITICS” abstracts

29

3. EXPERIMENTS

We repeated the previous experiment, but now everything in fine grained.
Time for training this kind of model in total was 163.5 seconds, from which
155.94 seconds spend on optimization. Table shows that this kind of
model provides better result that coarse grained model and the experiment
provided in Table but again worst than model trained with all abstracts

(see Table [3.6).

Entity Precision | Recall | F1 score
Election 0,8240 0,6398 | 0,7203
PoliticalParty | 0,8100 0,7006 | 0,7513
Politician 0,8599 0,7234 | 0,7858
Totals 0,8354 0,6980 | 0,7606

Table 3.11: Results of "POLITICS” base model in fine grained run with "POL-
ITICS” abstracts

In conclusion with provided 2 experiments and from this point of view, for
this domain we can say that training a specific model will give better results
and will perform faster that global domain tested with text from specific
domain. On the other hand the global domain tested with a texts that is
trained, how we can see from Table and Table perform even better
results that specific trained models.

Next experiment that we do is the same like the previous one, but now
the domain is ”SPORT”. Training time for this model was 93.0 seconds in
total, but 82.97 seconds spend on optimization. This model and test file, how
in previous one is run with 300 abstracts. Table shows the outcome of
the experiment in coarse grained. From the table we can see that this domain
provide a better result that "POLITICS” domain, because here we have less
annotated words. But, when compared with base experiment from Table
and Table those experiments perform better results that this one.

Entity | Precision | Recall | F1 score
SPORT | 0,9432 0,8839 | 0,9126
Totals | 0,9432 0,8839 | 0,9126

Table 3.12: Results of "SPORT” base model in coarse grained run with
"SPORT?” abstracts

Also we train a model in fine grained, with total time of 554.9 seconds,
with 543.55 seconds spend on optimization. Table show that the result
is little bit more better that result with model in coarse grained, but still this
result is lower that the results for Table B.6] and Table 3.8

30

3.3. List of experiments

Entity Precision | Recall | F1 score
Athlete 0,9713 0,8366 | 0,8989
Coach 1,0000 0,7500 | 0,8571
SportsClub 0,9453 0,9041 | 0,9242
SportsEvent 1,0000 0,7879 | 0,8814
SportsLeague 0,9418 0,8958 | 0,9182
SportsManager | 1,0000 0,9615 | 0,9804
SportsTeam 0,9845 0,8301 | 0,9007
Totals 0,9592 0,8750 | 0,9152

Table 3.13: Results of "SPORT” base model in fine grained run with "SPORT”
abstracts

After provided 2 experiments with trained models for specific domain, the
results shows that training a global model will perform better result than
training a domain specific model.

Final experiment that we do with this size of abstracts (300 abstracts)
is with "TRANSPORTATION” domain. We needed 58.9 seconds to train
the model, from which 50.35 seconds on optimization. Table show the
experiment outcome in coarse grained, where we can see that this result is
lower than results from experiments provided in Table and Table

Entity Precision | Recall | F1 score
TRANSPORTATION | 0,9583 0,9109 | 0,9340
Totals 0,9583 0,9109 | 0,9340

Table 3.14: Results of "TRANSPORTATION” base model in coarse grained
run with "TRANSPORTATION” abstracts

Finally we make an experiment in fine grained. Total training time for
this kind of model was 702.6 seconds, from which 686.50 seconds spend on
optimization. In Table we can see the results of provided experiment,
where those results are even worse that the experiment with coarse grained
model, which in previous two domain, "SPORT” and "POLITICS” was not
that case. Also those results are worse than the experiments with a global

domain in Table [3.6] and Table [3.9

31

3. EXPERIMENTS

Entity Precision | Recall | F1 score
Aircraft 0,9659 0,8333 | 0,8947
Automobile 1,0000 0,8000 | 0,8889
Infrastructure 0,9550 0,9550 | 0,9550
PublicTransitSystem | 0,9662 0,9309 | 0,9482
Ship 1,0000 0,6429 | 0,7826
SpaceShuttle 1,0000 0,8333 | 0,9091
SpaceStation 0,0000 1,0000 | 0,0000
Train 1,0000 1,0000 | 1,0000
Totals 0,9660 0,9010 | 0,9324

Table 3.15: Results of "TRANSPORTATION” base model in fine grained run
with "TRANSPORTATION” abstracts

In conclusion with the provided experiments in this section, we can say
that training a global model and providing a NER is a better, but a little
bit slowest solution than training a domain specific model, except the "POL-
ITICS” domain, where the results was better in domain specific model unlike
the experiment with a global domain and test file with "POLITICS” abstracts,
but worse than experiment with a global domain tested with abstracts from all
3 domains. Then we wanted to see the impact of fine grained trained models,
where in most of the cases this kind of models provide a better results than
models trained in coarse grained, except the experiment in "TRANSPORTA-
TION” specific domain where the coarse grained model was better that fine
grained model.

After we finish with the main experiment, we were interested about the
impact of the size of abstracts that will be used for training models. The
following two subsections show the behavior of trained models.

3.3.2 Experiments that has less than 300 abstracts in model

In this subsection we want to see the behavior of models that are trained with
less than 300 abstracts. First experiment is trained with 10 abstracts, then
we have experiments with 20 abstracts, next experiment with 40 abstracts,
and finally experiment with 100 abstracts. The order of abstracts, how we
said earlier, is based on PageRank.

Model trained with 10 abstracts to every domain. To retrieve links
from DBpedia with SPARQL and prepare data to be able to train models with
10 abstract, our algorithm explain in Section takes in total 10.81 minutes,
which comparing with main experiment, where we need 2.40 hours, is way
more faster to prepare data. Of course this indicates that training models will
also be faster than in main experiment.

Coarse grained model.

32

3.3. List of experiments

Description of the experiment. How in the main experiment, also here
we start with model trained in coarse grained. To train this kind of model we
need 19.6 seconds, from which 17.44 seconds spend on optimization.

Results of the experiment. From Table we see that trained
model perform the best results without any loosing of words in "SPORT”
and "TRANSPORTATION” domains, but worst result in "POLITICS” do-
main. The result of "POLITICS” domain is even worst than the result from
main experiment provided in Table Because of this, there is a little bit
lower overall result than in the main experiment. This can indicates that
training models with lowest number of abstracts, for this kind of domains, is
not worth. But let’s see how model will behaves when is tested with abstracts
from a specific domains.

Entity Precision | Recall | F1 score
POLITICS 0,9655 0,9333 | 0,9492
SPORT 1,0000 1,0000 | 1,0000
TRANSPORTATION | 1,0000 1,0000 | 1,0000
Totals 0,9811 0,9630 | 0,9720

Table 3.16: Results of global model in coarse grained run with 10 abstracts
from every domain

Description of the experiment. In this experiment we take the same
model from the previous one, but now tested only with dataset that contains
abstracts from "POLITICS” domain.

Results of the experiment. Table show the output of experiment
where we have global model that is tested with 10 abstracts from "POLITICS”
domain. Here model do not annotated any word from other domains unlike
in the main experiment in Table but even this and the fact that here are
much less abstracts does not help to provide a better results.

Entity Precision | Recall | F1 score
POLITICS | 0,9655 0,3636 | 0,5283
Totals 0,9655 0,3636 | 0,5283

Table 3.17: Results of global model in coarse grained run with 10 abstracts
from "POLITICS” domain

Description of the experiment. For purposes of this experiment we
have again used global model, but now tested with abstracts only from "SPORT”
domain.

Results of the experiment. Table show the outcome of the ex-
periment. We can see that model perform perfect result, how in experiment
in Table without any misleading annotations, which we cannot say for

33

3. EXPERIMENTS

the main experiment where model annotated words from "POLITICS” and
"TRANSPORTATION” domains.

Entity | Precision | Recall | F1 score
SPORT | 1,0000 1,0000 | 1,0000
Totals | 1,0000 1,0000 | 1,0000

Table 3.18: Results of global model in coarse grained run with 10 abstracts
from "SPORT” domain

Description of the result. Finally we tested the model with abstract
from "TRANSPORTATION” domain.

Results of the experiment. From Table we can see that model as
well as in previous experiment perform maximum result without misleading
annotations, unlike the main experiment where how we can see from Table
model annotate words with "SPORT” domain and has a lowest result than
this one.

Entity Precision | Recall | F1 score
TRANSPORTATION | 1,0000 1,0000 | 1,0000
Totals 1,0000 1,0000 | 1,0000

Table 3.19: Results of global model in coarse grained run with 10 abstracts
from "TRANSPORTATION” domain

In conclusion with the results from provided experiments we see that there
is a huge impact of the number of abstracts for training a global model in
coarse grained. We see that for "SPORT” and "TRANSPORTATION” do-

main our model provide maximum results, which is what we want to reach.

Fine grained model. After we finish the experiments with global models
in coarse grained, we wanted to see the impact of fine grained model. Does
also here this kind of model will perform better results as was the case in main
experiment, where global fine grained model perform a slide better results.

Description of the experiment. Training a fine grained model takes in
total 124.7 seconds, from which 120,73 seconds spent in optimization. In this
experiment, the model is tested with the same dataset that is trained.

Results of the experiment. From Table we can see that now fine
grained model provide exactly the same overall result as well as coarse grained
model. Also from table we can see in which ontology type our model fails to
perform maximum result. So, because of PoliticalParty type where we have a
lowest result, the total result is not at the maximum level, even thought other
ontology types has maximum annotation.

34

3.3. List of experiments

Entity Precision | Recall | F1 score
Aircraft 1,0000 1,0000 | 1,0000
Athlete 1,0000 1,0000 | 1,0000
Coach 1,0000 1,0000 | 1,0000
PoliticalParty 0,9600 0,9231 | 0,9412
Politician 1,0000 1,0000 | 1,0000
PublicTransitSystem | 1,0000 1,0000 | 1,0000
Ship 1,0000 1,0000 | 1,0000
SportsClub 1,0000 1,0000 | 1,0000
SportsEvent 1,0000 1,0000 | 1,0000
SportsLeague 1,0000 1,0000 | 1,0000
SportsTeam 1,0000 1,0000 | 1,0000
Totals 0,9811 0,9630 | 0,9720

Table 3.20: Results of global model in fine grained run with 10 abstracts from
every domain

Description of the experiment. Then how in previous experiments,
we take the global train model and test it with abstracts from every specific
domain separately.

Results of the experiment. The first domain abstracts was from "POL-
ITICS” domain, where from Table we can see that model perform same
result as well as in coarse grained model experiment in Table Also even
our model and test files has words with Election ontology type, the model do
not recognize any of them. With that misleading we have lower results, if that
doesn’t happen the model will perform pretty much good recognition.

Entity Precision | Recall | F1 score
Election 0,0000 0,0000 | 0,0000
PoliticalParty | 0,9600 0,9231 | 0,9412
Politician 1,0000 1,0000 | 1,0000
Totals 0,9655 0,3636 | 0,5283

Table 3.21: Results of global model in fine grained run with 10 abstracts from
"POLITICS” domain

Description of the experiment. In this experiment we also used the
global model, but now tested with dataset that contains only abstracts from
"SPORT” domain.

Results of the experiment.Table shows that our model recognizes
all annotated words from test file without any misleading and perform maxi-
mum F1 score. In comparing with the main experiment in Table where we
have some loosing, here that is not the case and it is what we want to reach.

35

3. EXPERIMENTS

Entity Precision | Recall | F1 score
Athlete 1,0000 1,0000 | 1,0000
Coach 1,0000 1,0000 | 1,0000
SportsClub 1,0000 1,0000 | 1,0000
SportsEvent | 1,0000 1,0000 | 1,0000
SportsLeague | 1,0000 1,0000 | 1,0000
SportsTeam 1,0000 1,0000 | 1,0000
Totals 1,0000 1,0000 | 1,0000

Table 3.22: Results of global model in fine grained run with 10 abstracts from
"SPORT” domain

Description of the experiment. Final experiment that we do with
global train model was with "TRANSPORTATION” domain abstracts.

Results of the experiment. In Table we can see that model, same
as in previous experiment with "SPORT” abstracts, perform maximum F1
score result, which in comparing with the main experiment from Table [3.9
here we have improvements on result.

Entity Precision | Recall | F1 score
Aircraft 1,0000 1,0000 | 1,0000
PublicTransitSystem | 1,0000 1,0000 | 1,0000
Ship 1,0000 1,0000 | 1,0000
Totals 1,0000 1,0000 | 1,0000

Table 3.23: Results of global model in fine grained run with 10 abstracts from
"TRANSPORTATION” domain

In conclusion from the provided experiments where we had 10 abstracts on
every domain, in comparing with the main experiments, we can say that there
is an impact on performing a NER with a smallest number of abstracts for
training testing models. Here when we use coarse of fine grained global model
and test it with texts from specific domain, except the "POLITICS” domain
abstracts, on other two domain, model perform NER without any misleading,
which is what we wanted to reach. Also training such small models takes way
more less time, than training a big models.

3.3.2.1 Evaluation of domain specific models

In next 6 experiments trained models has 10 domain specific abstracts per
model and also test files have the same specification.

Description of the experiment: First domain that we provide an ex-
periment was "POLITICS” specific domain. To train this model we need 3.8
seconds, from which 2.56 seconds spent in optimization. The model is tested
with the same dataset that is trained.

36

3.3. List of experiments

Results of the experiment: Table show the outcome of the exper-
iment, where the result here is way better, than with comparing with main
experiment in Table [3.10] and the experiment with global train model tested
with "POLITICS” domain specific text in Table

Entity Precision | Recall | F1 score
POLITICS | 0,9737 0,9610 | 0,9673
Totals 0,9737 0,9610 | 0,9673

Table 3.24: Results of "POLITICS” domain specific model in coarse grained
run with 10 abstracts from the same domain

Description of the experiment: Because we want to know the impact
when model is trained in fine grained, we make an experiment with fine grained
model. For training this model we need 8.3 seconds, from which 6.99 seconds
spent in optimization. As well here the model is tested with the same dataset
like is trained.

Results of the experiment: From Table we can see that this kind
of model provide a higher result than coarse grained model from previous
experiment. Also this result is better than result from main experiment in
Table and the result from the experiment where we tested the global
trained model with domain specific text in Table

Entity Precision | Recall | F1 score
Election 1,0000 0,9333 | 0,9655
PoliticalParty | 0,9600 0,9231 | 0,9412
Politician 1,0000 1,0000 | 1,0000
Totals 0,9867 0,9610 | 0,9737

Table 3.25: Results of "POLITICS” domain specific model in fine grained run
with 10 abstracts from the same domain

From the "POLITICS” domain specific experiments we can say that for
this kind of domain with a lower number of abstracts for training a model
the application provide NER with better results unlike the same experiments
from the main experiment, where we have a worst results than here.

Description of the experiment: Training for a "SPORT” domain
coarse grained model with 10 abstracts we need 5.0 seconds, from which 3.50
seconds spend on optimization. The model is tested with the same dataset
with which was trained.

Results of the experiment: From Table is clear that this model,
same as experiment in Table provide excellent result unlike the main
experiment in Table where we have some loosing in recognition.

37

3. EXPERIMENTS

Entity | Precision | Recall | F1 score
SPORT | 1,0000 1,0000 | 1,0000
Totals | 1,0000 1,0000 | 1,0000

Table 3.26: Results of "SPORT” domain specific model in coarse grained run
with 10 abstracts from the same domain

Description of the experiment: Same as in the previous experiment,
also here we have a fine grained model. Time needed for training this model
was 26.4 seconds, from which 24.64 seconds spent in optimization. Of course,
the model is tested with the dataset with which was trained.

Results of the experiment: From Table we see that the result
is exactly the same like in coarse grained model (see Table and the
experiment from Table where model is trained with abstracts from every
domain and test file contains only abstracts from "SPORT” domain. Those
results from Table are of course better that the results from the main
experiment in Table because here we don’t have any false recognition.

Entity Precision | Recall | F1 score
Athlete 1,0000 1,0000 | 1,0000
Coach 1,0000 1,0000 | 1,0000
SportsClub 1,0000 1,0000 | 1,0000
SportsEvent | 1,0000 1,0000 | 1,0000
SportsLeague | 1,0000 1,0000 | 1,0000
SportsTeam 1,0000 1,0000 | 1,0000
Totals 1,0000 1,0000 | 1,0000

Table 3.27: Results of "SPORT” domain specific model in fine grained run
with 10 abstracts from the same domain

From the experiments provided in Table and Table as well as in
previous experiment the number of abstracts needed for training a model plays
significant role also in "SPORT” domain. Here as well there is no difference if
model is trained in coarse or fine grain, because we have the same result, but
here plays role the time needed for training those models.

Description of the experiment. Finally we have "TRANSPORTA-
TION” domain. For training a coarse grain model we needed 4.3 seconds,
from which 3.10 seconds spent in optimization.

Results of the experiment: From Table [3.28 we can see that as well as
in "SPORT?” specific model NER is provided without any wrong recognition,
which was also the case in experiment from Table This means that this
model also turned out to be better than the main experiment who has 300
abstracts (see Table [3.14)).

38

3.3. List of experiments

Entity Precision | Recall | F1 score
TRANSPORTATION | 1,0000 1,0000 | 1,0000
Totals 1,0000 1,0000 | 1,0000

Table 3.28: Results of "TRANSPORTATION” domain specific model in coarse
grained run with 10 abstracts from the same domain

Description of the experiment. With total time of 14.3 seconds, from
which 12.99 seconds spent on optimization we trained a fine grained model
for "TRANSPORTATION” domain.

Results of the experiment: Table shows that this model 100%
precise same as the coarse grain model (see Table and the experiment
where model is trained with abstracts from every domain and test file con-
tains only abstract from "TRANSPORTATION” domain (see Table[3.23)). Of
course this experiment provides a better result that the main experiment in

Table B.15

Entity Precision | Recall | F1 score
Aircraft 1,0000 1,0000 | 1,0000
PublicTransitSystem | 1,0000 1,0000 | 1,0000
Ship 1,0000 1,0000 | 1,0000
Totals 1,0000 1,0000 | 1,0000

Table 3.29: Results of "TRANSPORTATION” domain specific model in fine
grained run with 10 abstracts from the same domain

"TRANSPORTATION” domain model as well as previous two domain
models provide a better NER than the main experiment, but of course here
we have much less annotated words in model and if we test this model with
some other data, the results will be worse than in the main experiment where
we have much more data.

3.3.2.2 Evaluation of global domain with 20 abstracts from every
domain

Datasets with 20 abstracts for every domain. Since our goal was to
know the impact of train data, we decided to increase retrieved abstract from
DBpedia to 20 abstracts per domain. Time need to retrieved those abstracts
and prepare datasets for training in Stanford NER was 21.30 minutes.

Description of the experiment: In Table we provide an experi-
ment where the model was trained with abstracts from every domain, in total
60 abstracts, annotated in coarse grain. We need 36.6 seconds to train the
model, from which 32.52 seconds spent in optimization. The model was tested
with the same dataset that was trained.

39

3. EXPERIMENTS

Results of the experiment: Table [3.30] show the output of the experi-
ment, where the overall precision is on maximum level, the recall on "POLI-
TICS” entities is a little bit lower, which results with overall lower recall and
not bad at all F'1 overall score. For the ’SPORT” and "TRANSPORTATION”
entities we have a maximum recognition. Referring to the main experiment
from Table is clearly that results here are better than in main experiment.

Entity Precision | Recall | F1 score
POLITICS 1,0000 0,9615 | 0,9804
SPORT 1,0000 1,0000 | 1,0000
TRANSPORTATION | 1,0000 1,0000 | 1,0000
Totals 1,0000 0,9780 | 0,9889

Table 3.30: Results of global model in coarse grained run with 20 abstracts
from every domain

Description of the experiment: For purposes of the experiment in
Table [3.31] we have use the same global trained model from the previous ex-
periment, but now the test file contains only 20 abstracts from "POLITICS”
domain.

Results of the experiment: From Table [3.31] we see that the result
is way more worst than the previous experiment, but thanks to maximum
precision and not recognizing any entity from other domains is slightly bet-

ter than main experiment from Table [3.3] where model recognize entity from
"TRANSPORTATION” domain.

Entity Precision | Recall | F1 score
POLITICS | 1,0000 0,3906 | 0,5618
Totals 1,0000 0,3906 | 0,5618

Table 3.31: Results of global model in coarse grained run with 20 abstracts
from "POLITICS” domain

Description of the experiment: This experiment is almost identical
like previous one, with only difference is test file, where now we tested with
abstracts from "SPORT” domain.

Results of the experiment: From Table we see that model provide
maximum recognition without any wrong entity recognition of other domains.
But this is not the case in the main experiment from Table where also

recognize entities from other two domains, even the file contains only abstracts
from "SPORT” domain.

40

3.3. List of experiments

Entity | Precision | Recall | F1 score
SPORT | 1,0000 1,0000 | 1,0000
Totals | 1,0000 1,0000 | 1,0000

Table 3.32: Results of global model in coarse grained run with 20 abstracts
from "SPORT” domain

Description of the experiment: The final experiment is also the same
like previous two, where now test file contains only abstracts from "TRANS-
PORTATION” domain.

Results of the experiment: Table[3.33|shows that for "TRANSPORTA-
TION” entities we have maximum recognition, but model also make a wrong
entity recognition from "SPORT” domain. This makes the overall result not
to be on his maximum and also in comparing with the main experiment from
Table |3.5] where the model also recognize entity from "SPORT” domain, here
the overall result is worst.

Entity Precision | Recall | F1 score
SPORT 0,0000 1,0000 | 0,0000
TRANSPORTATION | 1,0000 1,0000 | 1,0000
Totals 0,9231 1,0000 | 0,9600

Table 3.33: Results of global model in coarse grained run with 20 abstracts
from "TRANSPORTATION” domain

Description of the experiment: Experiment in Table is provided
with same data like the experiment in Table but now the model and test
data are annotated in fine grained. We needed in total 239.1 seconds to train
model, from which 233.18 seconds spent in optimization.

Results of the experiment: How we can see from Table our model
provide maximum precision, but because there are 2 ontology types from
"TRANSPORTATION” domain, where out model provide a half on the max-
imum in the recall we have a lower result at the end. Also in comparing with
the main experiment from Table[3.6] we have slightly lower results here. As well
those results are lower than the experiment in coarse grain (see Table [3.30)).

41

3. EXPERIMENTS

Entity Precision | Recall | F1 score
Aircraft 1,0000 0,5000 | 0,6667
Athlete 1,0000 1,0000 | 1,0000
Coach 1,0000 1,0000 | 1,0000
Infrastructure | 1,0000 0,5000 | 0,6667
PoliticalParty | 1,0000 0,9512 | 0,9750
Politician 1,0000 1,0000 | 1,0000
Ship 1,0000 1,0000 | 1,0000
SpaceShuttle | 1,0000 1,0000 | 1,0000
SpaceStation | 1,0000 1,0000 | 1,0000
SportsClub 1,0000 1,0000 | 1,0000
SportsEvent 1,0000 1,0000 | 1,0000
SportsLeague | 1,0000 1,0000 | 1,0000
SportsTeam 1,0000 1,0000 | 1,0000
Totals 1,0000 0,9560 | 0,9775

Table 3.34: Results of global model in fine grained run with 20 abstracts from
every domain

Description of the experiment: In this experiment we use the same
trained model from previous experiment, but now the test file contains only
abstracts from "POLITICS” domain, who is annotated in fine grain.

Results of the experiment: Table show the output of the exper-
iment, where we can see that even we have Election type on model and test
file, the model do not find any entity with that type. Also for the Politician
type we have a very low recall, which reflects that there is a very low overall
result. In comparing with the experiment in coarse grain (see Table we
have exactly the same overall result, but when we compare with the main
experiment from Table even in that experiment model also annotate some
words from other two domains, the overall result is better than the result here.

Entity Precision | Recall | F1 score
Election 0,0000 0,0000 | 0,0000
PoliticalParty | 1,0000 0,9512 | 0,9750
Politician 1,0000 0,2000 | 0,3333
Totals 1,0000 0,3906 | 0,5618

Table 3.35: Results of global model in fine grained run with 20 abstracts from
"POLITICS” domain

Description of the experiment: How in the previous experiment also
here we have the same model but now tested with abstracts from "SPORT”
domain annotated in fine grain.

42

3.3. List of experiments

Results of the experiment: In Table we have the output of the
provided experiment. How we can see the results are excellent, there is no
wrong recognition or some lower values of precision and recall. When com-
paring with experiment in coarse grain (see Table we have the same
overall result, but we cannot say that about the results from the main exper-
iment provided in Table where we have wrong recognition of entities from
other 2 domains and only one type has maximum precision and recall.

Entity Precision | Recall | F1 score
Athlete 1,0000 1,0000 | 1,0000
Coach 1,0000 1,0000 | 1,0000
SportsClub 1,0000 1,0000 | 1,0000
SportsEvent 1,0000 1,0000 | 1,0000
SportsLeague | 1,0000 1,0000 | 1,0000
SportsTeam 1,0000 1,0000 | 1,0000
Totals 1,0000 1,0000 | 1,0000

Table 3.36: Results of global model in fine grained run with 20 abstracts from
"SPORT” domain

Description of the experiment: The last experiment with the model
used in previous 3 experiment is now the dataset test file with abstracts from
"TRANSPORTATION” domain also annotated in fine grain.

Results of the experiment: Table shows that our train model
provide the same results how in experiment in Table for the "TRANS-
PORTATION” ontology types. Also we have exactly the same overall result
with the experiment in coarse grain (see Table but when we compare
results with the main experiment from Table [3.9] we have a way more better
results than here, even thought that there model recognize some entities from
other two domains.

Entity Precision | Recall | F1 score
Aircraft 1,0000 0,5000 | 0,6667
Infrastructure | 1,0000 0,5000 | 0,6667
Ship 1,0000 1,0000 | 1,0000
SpaceShuttle | 1,0000 1,0000 | 1,0000
SpaceStation | 1,0000 1,0000 | 1,0000
SportsTeam 0,0000 1,0000 | 0,0000
Totals 0,9091 0,8333 | 0,8696

Table 3.37: Results of global model in fine grained run with 20 abstracts from
"TRANSPORTATION” domain

43

3. EXPERIMENTS

3.3.2.3 Evaluation of domain specific models with 20 abstracts

Description of the experiment: Experiment in Table [3.38 was provided
with model trained only with abstracts from "POLITICS” domain in coarse
grain. To train this model we needed 5.4 seconds, from which 3.81 seconds
spent in optimization.

Results of the experiment: How we can see from Table[3.38|the result is
not bad at all. In comparing with experiment from Table the results now
are way more better and are more usable. Also referencing to main experiment
from Table where the only difference is the number of abstracts used for
training the model, now the result is a little bit better than there.

Entity Precision | Recall | F1 score
POLITICS | 0,9921 0,9766 | 0,9843
Totals 0,9921 0,9766 | 0,9843

Table 3.38: Results of "POLITICS” domain specific model in coarse grained
run with 20 abstracts from the same domain

Description of the experiment: For the purposes of this experiment
we have used the same data from the previous one, but now annotated in fine
grain. To train this kind of model we needed 12.4 seconds, from which 10.80
seconds spent in optimization.

Results of the experiment: We tested the model with the same data
that was created and how we can see from Table[3.39|model provides maximum
precision on entities, but because of lower recall we have overall a quite lower
F1 score. But in comparing with previous experiment the result is slightly
better, which we cannot say that about experiment in Table where result
is terrible. Also in comparing with the main experiment from Table now
model provides also a little bit better result, but not that significant like in
experiment from Table

Entity Precision | Recall | F1 score
Election 1,0000 0,9688 | 0,9841
PoliticalParty | 1,0000 0,9512 | 0,9750
Politician 1,0000 1,0000 | 1,0000
Totals 1,0000 0,9766 | 0,9881

Table 3.39: Results of "POLITICS” domain specific model in fine grained run
with 20 abstracts from the same domain

Description of the experiment: Experiment in Table is provided
with a coarse grain model trained with abstracts only from "SPORT” domain.
The time needed to train this model was 5.0 seconds, from which 3.50 seconds

44

3.3. List of experiments

spent in optimization. To test it we have used the same dataset that model
was trained.

Results of the experiment: How we can see from Table [3.40] the trained
model provide excellent recognition on entities from test dataset, without any
miss or wrong recognition. The same results we have in experiment with a
global domain model tested with the same dataset (see Table . But when
we compare the results from here and the results from the main experiment
(see Table we see that now results are better, but here we have a less
entities.

Entity | Precision | Recall | F1 score
SPORT | 1,0000 1,0000 | 1,0000
Totals | 1,0000 1,0000 | 1,0000

Table 3.40: Results of "SPORT” domain specific model in coarse grained run
with 20 abstracts from the same domain

Description of the experiment: In this experiment we have used the
same dataset from previous, but now entities are annotated in fine grain. To
train a fine grain model we have need 26.4 seconds, from which 24.46 second
spent in optimization. As well as previous the model is tested with the dataset
that is trained.

Results of the experiment: In Table we see the output of the
experiment. How in the previous experiment in coarse grain, also here the
results are excellent without any looseness of unrecognized entities. As well
we have the same result in Table where we have a global domain and the
same test file (test file contains only abstracts from "SPORT” domain). But
in comparing with the main experiment from Table again the results
there are lower than here (experiment from Table [3.41).

Entity Precision | Recall | F1 score
Athlete 1,0000 1,0000 | 1,0000
Coach 1,0000 1,0000 | 1,0000
SportsClub 1,0000 1,0000 | 1,0000
SportsEvent 1,0000 1,0000 | 1,0000
SportsLeague | 1,0000 1,0000 | 1,0000
SportsTeam 1,0000 1,0000 | 1,0000
Totals 1,0000 1,0000 | 1,0000

Table 3.41: Results of "SPORT” domain specific model in fine grained run
with 20 abstracts from the same domain

Description of the experiment: At the end we train a model with
abstracts from "TRANSPORTATION” domain. To train a coarse grain model
from this domain we needed 4.3 seconds, from which 3.10 seconds spent in

45

3. EXPERIMENTS

optimization. Of course, here also we tested the model with the same dataset
that was created.

Results of the experiment: In Table[3.42] we see that the model provide
maximum precision, but lower recall on entities which results with a worst F1
score. Surprisingly result here is lower than the experiment where we had
a global model tested with the same dataset like here (see Table , even
those that there we have a wrong entity recognition from "SPORT” domain,
the results is still better. As well the results from the main experiment in
Table are better than here, which was not the case in the previous 4
experiments.

Entity Precision | Recall | F1 score
TRANSPORTATION | 1,0000 0,8333 | 0,9091
Totals 1,0000 0,8333 | 0,9091

Table 3.42: Results of "TRANSPORTATION” domain specific model in coarse
grained run with 20 abstracts from the same domain

Description of the experiment: We also train a fine grain model from
"TRANSPORTATION” domain. To train it we needed 14.3 seconds, from
which 12.99 seconds spent in optimization. As well as the previous experiment,
the model is tested with the same dataset that is created.

Results of the experiment: The output of the experiment seen in Ta-
ble are quite surprisingly. Until now in the experiments with a lower
abstracts than the main experiment, the fine grained models provides same or
better results than coarse grained model. Here model provides a worst result
than the previous experiment. Also experiment in Table [3.37] and the main
experiment from Table have better results than here.

Entity Precision | Recall | F1 score
Aircraft 1,0000 0,5000 | 0,6667
Infrastructure | 1,0000 0,5000 | 0,6667
Ship 1,0000 1,0000 | 1,0000
SpaceShuttle | 1,0000 1,0000 | 1,0000
SpaceStation | 1,0000 1,0000 | 1,0000
Totals 1,0000 0,7500 | 0,8571

Table 3.43: Results of "TRANSPORTATION” domain specific model in fine
grained run with 20 abstracts from the same domain

Until now we can say that the number of abstracts used to train a models
has an impact on the final results and also it is faster to train a smaller models,
but in that case we are short on entities and types. We still have 2 more groups
of different number of abstracts, 40 abstracts per domain and 100 abstracts

46

3.3. List of experiments

per domain. So let see how those groups will behave in comparing with the
main experiment, where we have 300 abstracts per domain.

3.3.2.4 Evaluation of global domain with 40 abstracts from every
domain

Datasets with 40 abstracts for every domain. Now we have increased
number of retrieved links from DBpedia to 40 abstracts. To retrieve links and
prepare datasets that contains 40 abstracts to every domain our algorithm
needs 30.94 minutes.

Description of the experiment: In Table we provide an experi-
ment where the model is trained with all retrieved abstracts (120 abstracts in
total) in coarse grain. To train this model with Stanford NER we needed 101.7
seconds, from which 91.52 seconds spent in optimization. We have tested the
model with the same dataset that was created.

Results of the experiment: Table shows the output of the experi-
ment, where we see that for the "SPORT” domain we have maximum results,
but also results from other domains are not bad at all. This gives a very good
total results on precision, recall and F1 score. In comparing with the main
experiment from Table now we have a little bit more better results, but
with a lower number of entities in model.

Entity Precision | Recall | F1 score
POLITICS 0,9890 0,9375 | 0,9626
SPORT 1,0000 1,0000 | 1,0000
TRANSPORTATION | 1,0000 0,9846 | 0,9922
Totals 0,9960 0,9724 | 0,9841

Table 3.44: Results of global model in coarse grained run with 40 abstracts
from every domain

Description of the experiment: In this experiment we have used the
same model from previous, but now it is tested with dataset that contains
only abstracts from "POLITICS” domain.

Results of the experiment: How we see from Table even those that
we don’t have any recognition from other domains and a maximum precision,
the recall is very low which reflects with low F1 score. When we compare with
the previous experiment we see that there result for "POLITICS” domain is
better than here. Also in comparing with the main experiment from Table
where model recognize some entities from "TRANSPORTATION” domain and
precision is lower, still those results are better than here.

47

3. EXPERIMENTS

Entity Precision | Recall | F1 score
POLITICS | 0,9890 0,3529 | 0,5202
Totals 0,9890 0,3529 | 0,5202

Table 3.45: Results of global model in coarse grained run with 40 abstracts
from "POLITICS” domain

Description of the experiment: For purposes of this experiment we
also used the global modal, but now it is tested with dataset that contains
only abstracts from "SPORT” domain.

Results of the experiment: How we can see from Table model
provides perfect recognition without any wrong entity recognition from other
domains. The same result for "SPORT” domain we have in experiment from
Table but in comparing with the main experiment from Table [3.4] where
model recognize some entities from other two domain, as well the result for
"SPORT” domain are lower than here.

Entity | Precision | Recall | F1 score
SPORT | 1,0000 1,0000 | 1,0000
Totals | 1,0000 1,0000 | 1,0000

Table 3.46: Results of global model in coarse grained run with 40 abstracts
from "SPORT” domain

Description of the experiment: Finally we tested the global domain
with abstracts from "TRANSPORTATION” domain.

Results of the experiment: As we can see from Table model
provides maximum precision on "TRANSPORTATION” domain, but a little
bit lower recall, which of course reflects on F1 score. Model also recognize
some wrong entities from "SPORT” domain which results with lower total F1
score. As well here we have same results like in experiment from Table
In comparing with the main experiment from Table [3.5] where model also
recognizes wrong entities from "SPORT” domain the overall result is slightly
better than here.

Entity Precision | Recall | F1 score
SPORT 0,0000 1,0000 | 0,0000
TRANSPORTATION | 1,0000 0,9846 | 0,9922
Totals 0,9697 0,9846 | 0,9771

Table 3.47: Results of global model in coarse grained run with 40 abstracts
from "TRANSPORTATION” domain

Description of the experiment: For the purposes of this experiment we
train a fine grain model with abstracts from every domain. The time that we

48

3.3. List of experiments

needed to train this model was 287.5 second, from which 278.99 seconds spent
in optimization. The model is tested with the same dataset that is created.

Results of the experiment: How we can see from Table the list
of ontology types now is longer than in previous two groups of experiment
(with 10 and 20 abstracts). Also model provides maximum precision on every
type except PoliticalParty type and a lower recall on the same type as well the
Politician ontology type. This results with a lower overall result on every mea-
surement. But in comparing with the model in coarse grain (see Table ,
here the overall result is better, but not what significant. In comparing with
the main experiment from Table [3.6| where model has more ontology types,
the overall result is lower than now, but the difference in the results is not that
big. Another thing is that even test dataset contains Election type, model do
not find any entity of that type.

Entity Precision | Recall | F1 score
Aircraft 1,0000 1,0000 | 1,0000
Athlete 1,0000 1,0000 | 1,0000
Coach 1,0000 1,0000 | 1,0000
Infrastructure 1,0000 1,0000 | 1,0000
PoliticalParty 0,9863 0,9730 | 0,9796
Politician 1,0000 0,8182 | 0,9000
PublicTransitSystem | 1,0000 1,0000 | 1,0000
Ship 1,0000 1,0000 | 1,0000
SpaceShuttle 1,0000 1,0000 | 1,0000
SpaceStation 1,0000 1,0000 | 1,0000
SportsClub 1,0000 1,0000 | 1,0000
SportsEvent 1,0000 1,0000 | 1,0000
SportsLeague 1,0000 1,0000 | 1,0000
SportsTeam 1,0000 1,0000 | 1,0000
Totals 0,9960 0,9764 | 0,9861

Table 3.48: Results of global model in fine grained run with 40 abstracts from
every domain

Description of the experiment: In this experiment we have used the
same model from previous, but now it is tested with the dataset that contains
only abstracts from "POLITICS” domain, of course annotated in fine grain.

Results of the experiment: From Table we see that model almost
fail the test, even thought that test data are part of training the model. In
test dataset we have entities with Election ontology type, but model do not
recognize any of them, as well on Politician type we have maximum precision
and a very low recall which reflects with low F1 score. Those results are the
same with the experiment in coarse grain from Table As we compare the
results for every ontology type from previous experiment we will get way more

49

3. EXPERIMENTS

better results, also the results from the main experiment in Table [3.7] are a
slightly better although model recognize types of entities from other domains.

Entity Precision | Recall | F1 score
Election 0,0000 0,0000 | 0,0000
PoliticalParty | 0,9863 0,9730 | 0,9796
Politician 1,0000 0,1565 | 0,2707
Totals 0,9890 0,3529 | 0,5202

Table 3.49: Results of global model in coarse grained run with 40 abstracts
from "POLITICS” domain

Description of the experiment: Experiment here has the same trained
model like the previous one, with the difference that now it is tested with
dataset that contains abstracts only from "SPORT” domain.

Results of the experiment: The output of the experiment shown in
Table[3.50]is exactly that we wanted to reach. Model provide maximum results
on every ontology type without any wrong recognition. The same results for
"SPORT” ontology types we have in experiment with the global dataset in
Table and the experiment in coarse grain from Table We cannot
say that about the main experiment in Table where some ontology types
don’t have maximum results and also model recognize entities from other two
domains, which results with lower total result than here.

Entity Precision | Recall | F1 score
Athlete 1,0000 1,0000 | 1,0000
Coach 1,0000 1,0000 | 1,0000
SportsClub 1,0000 1,0000 | 1,0000
SportsEvent 1,0000 1,0000 | 1,0000
SportsLeague | 1,0000 1,0000 | 1,0000
SportsTeam 1,0000 1,0000 | 1,0000
Totals 1,0000 1,0000 | 1,0000

Table 3.50: Results of global model in coarse grained run with 40 abstracts
from "SPORT” domain

Description of the experiment: The final experiment with the fine
grain global model that we provide was that now it is tested with the abstracts
from "TRANSPORTATION” domain.

Results of the experiment: As we can see from Table [3.51], model pro-
vide maximum results for ontology types from "TRANSPORTATION” do-
main, but also recognize some entities from "SPORT” domain, which was not
in test dataset. Because of that the total result is a little bit lower that the
maximum. When we compare the results for every type with the results from

20

3.3. List of experiments

experiment in Table we can see that are the same. Also this experiment
provides better result that the coarse grain experiment from Table A
little bit surprisingly is that, that the main experiment from Table gives
better results than the experiment here.

Entity Precision | Recall | F1 score
Aircraft 1,0000 1,0000 | 1,0000
Infrastructure 1,0000 1,0000 | 1,0000
PublicTransitSystem | 1,0000 1,0000 | 1,0000
Ship 1,0000 1,0000 | 1,0000
SpaceShuttle 1,0000 1,0000 | 1,0000
SpaceStation 1,0000 1,0000 | 1,0000
SportsTeam 0,0000 1,0000 | 0,0000
Totals 0,9701 1,0000 | 0,9848

Table 3.51: Results of global model in coarse grained run with 40 abstracts
from "TRANSPORTATION” domain

3.3.2.5 Evaluation of domain specific models with 40 abstracts

Description of the experiment: The experiment here is provided with
coarse grain model that is trained with dataset that contains only abstracts
from "POLITICS” domain. To train this model we needed 13.9 seconds, from
which 10.36 seconds spent in optimization. It is tested with the same dataset
that is trained.

Results of the experiment: Table shows the outcome of the exper-
iment, where in comparing with experiment from Table we can see a big
improvement on the result, where now we are closer to the best performance.
In comparing with the main experiment from Table now we have a way
more better result than there.

Entity Precision | Recall | F1 score
POLITICS | 0,9921 0,9804 | 0,9862
Totals 0,9921 0,9804 | 0,9862

Table 3.52: Results of "POLITICS” domain specific model in coarse grained
run with 40 abstracts from the same domain

Description of the experiment: This experiment is provided with same
data like the previous one, but now dataset is annotated in fine grain. To train
a "POLITICS” fine grain model we needed 41.0 seconds, from which 36.11
seconds spent in optimization. Of course it is tested with the dataset that is
trained.

Results of the experiment: As we can see from Table the result
is better than the previous experiment, and also model recognize all entities

51

3. EXPERIMENTS

from the domain, which was not the case in experiment from Table[3.49|and as
well the result now is way more better. Comparing with the main experiment
from Table now we again have a better results to every ontology type,
and of course better total result.

Entity Precision | Recall | F1 score
Election 1,0000 0,9848 | 0,9924
PoliticalParty | 0,9863 0,9730 | 0,9796
Politician 1,0000 1,0000 | 1,0000
Totals 0,9960 0,9882 | 0,9921

Table 3.53: Results of "POLITICS” domain specific model in fine grained run
with 40 abstracts from the same domain

Description of the experiment: For the purposes of this experiment we
have used dataset with abstracts from "SPORT” domain annotated in coarse
grain. To train a coarse grain model we needed 10.0 seconds, from which 6.84
seconds spent in optimization. Here as well we test the model with the dataset
that is trained.

Results of the experiment: Table show the output of the experi-
ment, where we have a maximum entity recognition, which was also the case
in experiment with a global model and same test dataset like here (see Ta-
ble In comparing with the same experiment in Table from main
experiment, is clearly that now we had a way more better results than there.

Entity | Precision | Recall | F1 score
SPORT | 1,0000 1,0000 | 1,0000
Totals | 1,0000 1,0000 | 1,0000

Table 3.54: Results of "SPORT” domain specific model in coarse grained run
with 40 abstracts from the same domain

Description of the experiment: Then we used same data like in pre-
vious experiment, but now dataset is annotated in fine grain. To train a
"SPORT” fine grain domain model with Stanford NER we needed 56.2 sec-
onds, from which 52.77 seconds spent in optimization. It is tested as always,
with the same dataset that is trained.

Results of the experiment: In Table [3.55] we see the experiment out-
come, where because of the lower recall on SportsClub ontology type, the
overall result is slightly lower. So after some time, again fine grain model
provides a little bit worst result than coarse grain model. Because of this
the experiment with a global model and same test dataset like here from
Table gives better results. For consolation is the fact that model here
provide significantly better result than the main experiment in Table

52

3.3. List of experiments

Entity Precision | Recall | F1 score
Athlete 1,0000 1,0000 | 1,0000
Coach 1,0000 1,0000 | 1,0000
SportsClub 1,0000 0,9474 | 0,9730
SportsEvent | 1,0000 1,0000 | 1,0000
SportsLeague | 1,0000 1,0000 | 1,0000
SportsTeam 1,0000 1,0000 | 1,0000
Totals 1,0000 0,9890 | 0,9945

Table 3.55: Results of "SPORT” domain specific model in fine grained run
with 40 abstracts from the same domain

Description of the experiment: The final experiments with this num-
ber of abstracts is with "TRANSPORTATION” domain. To train a coarse
grain model we needed 9.1 seconds, from which 6.24 seconds spent in opti-
mization. As in all previous experiment, test is provided with the same dataset
that is trained.

Results of the experiment: Table shows the output of the coarse
grain model experiment, where the result is very close to the maximum. In
experiment where we use a global model who is tested with same dataset as
here (see Table , overall results there is lower, because model recognize
some entities from another domain, but the result from "TRANSPORTA-
TION” domain is the same as here. As well this experiment provides a better
result than the main experiment from Table

Entity Precision | Recall | F1 score
TRANSPORTATION | 1,0000 0,9846 | 0,9922
Totals 1,0000 0,9846 | 0,9922

Table 3.56: Results of "TRANSPORTATION” domain specific model in coarse
grained run with 40 abstracts from the same domain

Description of the experiment: Lastly we train a fine grain model
with the same data like in previous experiment, but of course annotated in
fine grain. To train this kind of model we needed 44.6 seconds, from which
41.63 seconds spent in optimization. It is tested as usual.

Results of the experiment: As we can see from Table we have
exactly the same result like in coarse grain experiment. In comparing with
the experiment in Table where because of wrong entity recognition model
gives lower results than here, although the results on every ontology type is the
same, except the PublicTransitSystem type, where now we had a lower recall.
Also model here, again gives us better results than the main experiment in

Table B.15

93

3. EXPERIMENTS

Entity Precision | Recall | F1 score
Aircraft 1,0000 1,0000 | 1,0000
Infrastructure 1,0000 1,0000 | 1,0000
PublicTransitSystem | 1,0000 0,9630 | 0,9811
Ship 1,0000 1,0000 | 1,0000
SpaceShuttle 1,0000 1,0000 | 1,0000
SpaceStation 1,0000 1,0000 | 1,0000
Totals 1,0000 0,9846 | 0,9922

Table 3.57: Results of "TRANSPORTATION” domain specific model in fine
grained run with 40 abstracts from the same domain

3.3.2.6 Evaluation of global domain with 100 abstracts from
every domain

Datasets with 100 abstracts for every domain. In this final group of 100
abstracts per domain we will repeat all experiments like in previous groups,
to see how model will behaves when is closer to the number of abstracts in
main experiment. To retrieve and prepare datasets for training in Stanford
NER, our algorithm needs in total 63.71 minutes, which is twice more than
when we had 40 abstracts for every domain.

Description of the experiment: In Table we provide an exper-
iment where the model is trained with, in total, 300 abstracts annotated in
coarse grain. To train this kind of model we needed 258.1 seconds, from which
246.28 seconds spent in optimization. The model is tested with the dataset
that was trained.

Results of the experiment: As we can see from Table now model
provides maximum result only in precision measurement on "TRANSPORTA-
TION” domain. From here we can see that results are closer to the main
experiment from Table but still results here are little bit better than
there.

Entity Precision | Recall | F1 score
POLITICS 0,9920 0,9612 | 0,9764
SPORT 0,9963 0,9926 | 0,9944
TRANSPORTATION | 1,0000 0,9735 | 0,9865
Totals 0,9952 0,9766 | 0,9856

Table 3.58: Results of global model in coarse grained run with 100 abstracts
from every domain

Description of the experiment: For purposes of this experiment we
have used the model train previously, but now it is tested with the dataset

o4

3.3. List of experiments

that contains only abstracts from "POLITICS” domain, annotated in coarse
grain.

Results of the experiment: From Table[3.59 we see that even we have a
precision close to maximum value, but because of very low recall, the F1 score
is lower, which means that model recognize only half of our entities. When
we compare with the previous experiment is clearly that there the results for
"POLITICS” domain are better. Also comparably with the main experiment
from Table results there a quite better than now, although there model
recognize some entities from "TRANSPORTATION” domain.

Entity Precision | Recall | F1 score
POLITICS | 0,9920 0,3615 | 0,5299
Totals 0,9920 0,3615 | 0,5299

Table 3.59: Results of global model in coarse grained run with 100 abstracts
from "POLITICS” domain

Description of the experiment: In this experiment we also used the
global trained model, but now it is tested with "SPORT” domain abstracts
dataset.

Results of the experiment: Table shows the output of the ex-
periment, from where we see that even the results aren’t at their maximum
are quite satisfying, but are a little bit lower than in global experiment in
Table As well in comparing with the main experiment from Table
now, very importantly, we don’t have any wrong entity recognition and even
if we compare only results from ”SPORT” domain, still result is better now.

Entity | Precision | Recall | F1 score
SPORT | 0,9962 0,9888 | 0,9925
Totals | 0,9962 0,9888 | 0,9925

Table 3.60: Results of global model in coarse grained run with 100 abstracts
from "SPORT” domain

Description of the experiment: Final experiment with the global do-
main is that is tested with the dataset that contains only abstracts from
"TRANSPORTATION” domain.

Results of the experiment: From Table we see that model also
recognize some entities from "SPORT” domain, that are not part of the tested
dataset. Also if we compare only results for "TRANSPORTATION” domain
with the results from global experiment in Table they are the same, but
now because of that wrong recognition, overall results is slightly lower. The
exact situation is in main experiment from Table where model also make
a mistake, but there results are better than here.

95

3. EXPERIMENTS
Entity Precision | Recall | F1 score
SPORT 0,0000 1,0000 | 0,0000
TRANSPORTATION | 1,0000 0,9735 | 0,9865
Totals 0,9821 0,9735 | 0,9778

Table 3.61: Results of global model in coarse grained run with 100 abstracts
from "TRANSPORTATION” domain

Description of the experiment: For purposes of this and the next 3
experiments we train a fine grain global model with 100 abstracts from every
domain. To train this kind of model we needed 857.3 seconds, from which
844.91 seconds spent in optimization. In this experiment we tested the model
with the dataset that was trained.

Results of the experiment: From Table we can see the results for
every particular ontology type. Now model preforms bad results mostly for
types from "SPORT” domain. And it happens again that the fine grain model
gives worst total results than the coarse grain model (see Table for coarse
grain results). As well referencing to main experiment in Table the results
there are way more better than here, although there we have more data.

Table 3.62: Results of global model in fine grained run with 100 abstracts

Entity Precision | Recall | F1 score
Aircraft 1,0000 0,6957 | 0,8205
Athlete 1,0000 0,4167 | 0,5882
Automobile 1,0000 1,0000 | 1,0000
Coach 1,0000 0,6667 | 0,8000
Infrastructure 1,0000 1,0000 | 1,0000
PoliticalParty 0,8774 0,6700 | 0,7598
Politician 1,0000 0,7455 | 0,8542
PublicTransitSystem | 0,9744 0,7308 | 0,8352
Ship 1,0000 0,6000 | 0,7500
SpaceShuttle 1,0000 1,0000 | 1,0000
SpaceStation 1,0000 1,0000 | 1,0000
SportsClub 0,9512 0,9398 | 0,9455
SportsEvent 0,9737 0,8605 | 0,9136
SportsLeague 0,9500 0,8636 | 0,9048
SportsManager 1,0000 1,0000 | 1,0000
SportsTeam 1,0000 0,6364 | 0,7778
Train 1,0000 1,0000 | 1,0000
Totals 0,9452 0,7535 | 0,8385

from every domain

o6

Description of the experiment: In this experiment we tested the global

3.3. List of experiments

model with dataset that contains only abstracts from "POLITICS” domain,
of course annotated in fine grain.

Results of the experiment: Table shows the output of the exper-
iment, where model provides terrible results and also recognize entity with
SportEvent type which is not part of the dataset, but don’t recognize any
entity with Election type who is part of the dataset. As well this experiment
gives a worst total result than the coarse grain experiment in Table [3.59| and
worst type results than global model from previous experiment. Finally the
results now are worse than in main experiment from Table

Entity Precision | Recall | F1 score
Election 0,0000 0,0000 | 0,0000
PoliticalParty | 0,8774 0,6700 | 0,7598
Politician 1,0000 0,1285 | 0,2278
SportsEvent 0,0000 1,0000 | 0,0000
Totals 0,8985 0,2580 | 0,4009

Table 3.63: Results of global model in fine grained run with 100 abstracts
from "POLITICS” domain

Description of the experiment: Here we also have the global train
model, but for this experiment is tested with dataset abstracts from "SPORT”
domain.

Results of the experiment: As we see from Table model gives
exact the same results for every ontology type like in global experiment in
Table where because of worst recall the overall result are lower than in
comparing with the coarse grain experiment in Table As well referencing
to main experiment in Table now again results are worse than there.

Entity Precision | Recall | F1 score
Athlete 1,0000 0,4167 | 0,5882
Coach 1,0000 0,6667 | 0,8000
SportsClub 0,9506 0,9390 | 0,9448
SportsEvent 1,0000 0,8605 | 0,9250
SportsLeague 0,9500 0,8636 | 0,9048
SportsManager | 1,0000 1,0000 | 1,0000
SportsTeam 1,0000 0,6250 | 0,7692
Totals 0,9683 0,7985 | 0,8753

Table 3.64: Results of global model in fine grained run with 100 abstracts
from "SPORT” domain

Description of the experiment: The final experiment with the global
model is with dataset that contains only abstracts from "TRANSPORTA-
TION” domain.

o7

3. EXPERIMENTS

Results of the experiment: Table shows the outcome of the ex-
periment, where again the results for every individual ontology type aren’t
increased from the result in global experiment in Table[3.62] Because of worst
recall in Aircraft, PublicTransitSystem and Ship types we have a lower total
result than in coarse grain experiment in Table Not surprisingly for
this group of experiment, the results from here are also worst than in main
experiment from Table [3.9

Entity Precision | Recall | F1 score
Aircraft 1,0000 0,6957 | 0,8205
Automobile 1,0000 1,0000 | 1,0000
Infrastructure 1,0000 1,0000 | 1,0000
PublicTransitSystem | 0,9744 0,7308 | 0,8352
Ship 1,0000 0,6000 | 0,7500
SpaceShuttle 1,0000 1,0000 | 1,0000
SpaceStation 1,0000 1,0000 | 1,0000
SportsClub 0,0000 1,0000 | 0,0000
SportsTeam 0,0000 1,0000 | 0,0000
Train 1,0000 1,0000 | 1,0000
Totals 0,9677 0,7965 | 0,8738

Table 3.65: Results of global model in fine grained run with 100 abstracts
from "TRANSPORTATION” domain

3.3.2.7 Evaluation of domain specific models with 100 abstracts

Description of the experiment: In this experiment we train a domain
specific coarse grain model with dataset that contains only abstracts from
"POLITICS” domain. The time needed to train this model was 34.2 seconds,
from which 28.45 seconds spent in optimization. The model is tested with the
same dataset that is trained.

Results of the experiment: As we can see from Table this model
provides a better result than the 2 experiments with the global model in
Table|3.58land and a way more better results than experiment from Table[3.59
As well referencing to main experiment in Table now model gives better
results.

Entity Precision | Recall | F1 score
POLITICS | 0,9956 0,9898 | 0,9927
Totals 0,9956 0,9898 | 0,9927

Table 3.66: Results of "POLITICS” domain specific model in coarse grained
run with 100 abstracts from the same domain

o8

3.3. List of experiments

Description of the experiment: With the same data from the previ-
ous experiment, but not annotated in fine grain, we train new model. We
needed 89.4 seconds to train this model, from which 83.54 seconds spent in
optimization. The model is tested with the same dataset that was trained.

Results of the experiment: Table[3.67|shows the outcome of the exper-
iment, where we see that even results on every type are close to maximum, the
overall results is slightly lower than the previous experiment. But in compar-
ing to the experiments with global domain in Table and Table now
results are better, we don’t have any wrong recognition and also entities from
Election ontology type are recognized. Referencing to the main experiment in
Table now as well results are way more better and more usable.

Entity Precision | Recall | F1 score
Election 1,0000 0,9878 | 0,9939
PoliticalParty | 0,9950 0,9852 | 0,9901
Politician 0,9937 0,9906 | 0,9922
Totals 0,9956 0,9883 | 0,9920

Table 3.67: Results of "POLITICS” domain specific model in fine grained run
with 100 abstracts from the same domain

Description of the experiment: For the purposes of the experiment
we train a coarse grain model with dataset that contains only abstracts from
"SPORT” domain. Time needed to train this kind of model was 25.3 seconds,
from which 20.47 seconds spent in optimization. The model is tested like in
previous experiments, with the same dataset that is trained.

Results of the experiment: From Table we see that model gives
a slightly better results than in experiments with global domain in Table
and Table Also referencing to the main experiment in Table now
model gives results that are closer to the maximum values, but we don’t have
that much data here.

Entity | Precision | Recall | F1 score
SPORT | 0,9963 0,9963 | 0,9963
Totals | 0,9963 0,9963 | 0,9963

Table 3.68: Results of "SPORT” domain specific model in coarse grained run
with 100 abstracts from the same domain

Description of the experiment: This experiment is provided with a
"SPORT? fine grain model. To train this model we needed 194.2 seconds, from
which 187.77 seconds spent in optimization. Test is the same like previous
experiment, where dataset now are annotated in fine grain.

Results of the experiment: As we see from Table[3.64] the overall results
is lower than previous experiment, but way better than experiments provided

99

3. EXPERIMENTS

with the global model in Table and Table Also referencing to main
experiment in Table now model was more precise than there, an because
of that gives better results.

Entity Precision | Recall | F1 score
Athlete 1,0000 0,9722 | 0,9859
Coach 1,0000 1,0000 | 1,0000
SportsClub 1,0000 0,9878 | 0,9939
SportsEvent 1,0000 0,9767 | 0,9882
SportsLeague 1,0000 1,0000 | 1,0000
SportsManager | 1,0000 1,0000 | 1,0000
SportsTeam 1,0000 1,0000 | 1,0000
Totals 1,0000 0,9888 | 0,9944

Table 3.69: Results of "SPORT” domain specific model in fine grained run
with 100 abstracts from the same domain

Description of the experiment: Experiment in Table is provided
with a coarse grain model train with dataset from "TRANSPORTATION”
domain. To train this model we needed 20.5 seconds in total, from which
14.93 seconds spent in optimization. As previous model is tested with same
dataset that is trained.

Results of the experiment: Table shows that model provides max-
imum precision on entities, but slight lower recall which results with lower F1
score. Comparably with experiments with global model in Table and
Table [3.61] now model gives better score than there and it’s faster to train
and provide experiment. As well referencing to main experiment in Table
again those results are lower than domain specific model.

Entity Precision | Recall | F1 score
TRANSPORTATION | 1,0000 0,9912 | 0,9956
Totals 1,0000 0,9912 | 0,9956

Table 3.70: Results of "TRANSPORTATION” domain specific model in coarse
grained run with 100 abstracts from the same domain

Description of the experiment: The final experiment with this group
of number of abstracts is fine grain model for "TRANSPORTATION” domain.
Time taken to train this kind of model was in total 134.6 seconds, from which
126.98 seconds, spent in optimization. Testing routine is the same here.

Results of the experiment: From Table we again have a lower
result than the previous experiment with coarse grain model. But referencing
to main experiment in Table results now are closer to maximum value.
As well the same situation is with experiments provided with global model in

60

3.3. List of experiments

Table B.62 and Table [B.65] where those results there are lower than domain
specific model results.

Entity Precision | Recall | F1 score
Aircraft 1,0000 1,0000 | 1,0000
Automobile 1,0000 1,0000 | 1,0000
Infrastructure 1,0000 1,0000 | 1,0000
PublicTransitSystem | 1,0000 0,9808 | 0,9903
Ship 1,0000 1,0000 | 1,0000
SpaceShuttle 1,0000 0,6667 | 0,8000
SpaceStation 1,0000 1,0000 | 1,0000
Train 1,0000 1,0000 | 1,0000
Totals 1,0000 0,9735 | 0,9865

Table 3.71: Results of "TRANSPORTATION” domain specific model in fine
grained run with 100 abstracts from the same domain

In conclusion we can say that models that were trained with lower number
of abstracts than in main experiment, mostly provides a better results, of
course the time needed to train those models and make experiments was faster,
but here we don’t have that much data unlike in main experiment, which if we
try some other dataset who was not used to train the models, the results can we
worst here than in models who has more trained data. Except the experiment
where we had 100 abstracts to every domain, in most of other experiment, the
fine grain model gives more precise recognition than the coarse grain model,
which for us was quite surprise. And in the every group of experiment the
domain specific models gives same or better results than global models and if
we put there the time needed for training or testing domain specific models,
then the results for now is that domain specific models are better for usage.

3.3.3 Experiments that have more than 300 abstracts in
model and test files

In this subsection we have a two groups of number of abstracts retrieved from
DBpedia, that are bigger than in the main experiment. One of them is where
we have 400 abstracts per domain and the other one is with 500 abstracts per
domain, which is the maximum that we succeeded to train.

3.3.3.1 Evaluation of global domain with 400 abstracts from
every domain

Datasets with 400 abstracts for every domain. As well because we
wanted to know the impact of train data who has more abstracts than the main
experiment, we’ve increased the number of retrieved data to 400 abstracts per

61

3. EXPERIMENTS

domain. Our algorithm needs 184.92 minutes to retrieve data from DBpedia
and prepare datasets ready to use in Stanford NER application.

Description of the experiment: In Table we provide an experi-
ment where the model was trained with abstracts from every domain, in total
1200 abstracts, annotated in coarse grain. We need 1041.3 seconds to train
the model, from which 1008.25 seconds spent in optimization. The model was
tested with the same dataset that was trained.

Results of the experiment: Table show the output of the exper-
iment, where the results to every domain are close to the maximum values
on every measurement. We can say that for such big model the results are
fantastic. Referring to the main experiment from Table now this kind of
model provide slightly lower results, but we have more trained data here.

Entity Precision | Recall | F1 score
POLITICS 0,9804 0,9434 | 0,9615
SPORT 0,9832 0,9590 | 0,9709
TRANSPORTATION | 0,9941 0,9754 | 0,9847
Totals 0,9849 0,9584 | 0,9714

Table 3.72: Results of global model in coarse grained run with 400 abstracts
from every domain

Description of the experiment: For purposes of the experiment in
Table we have use the same global trained model from the previous ex-
periment, but now the test file contains only 400 abstracts from "POLITICS”
domain.

Results of the experiment: From Table we see that the result is
way more worst than the previous experiment, also model recognizes entities
from other domain which are not part of dataset.If we compare only result of
"POLITICS” type with the previous experiment we can see that now results
are worst then there. Also in comparing with the main experiment from
Table now model gives a very very little better results, although recognize
entities from "SPORT” domain, which is not the case in main experiment.

Entity Precision | Recall | F1 score
POLITICS 0,9754 0,4082 | 0,5756
SPORT 0,0000 1,0000 | 0,0000
TRANSPORTATION | 0,0000 1,0000 | 0,0000
Totals 0,9531 0,4082 | 0,5716

Table 3.73: Results of global model in coarse grained run with 400 abstracts

from "POLITICS” domain

Description of the experiment: This experiment is almost identical

62

3.3. List of experiments

like previous one, with only difference is test file, where now we tested with
abstracts from "SPORT” domain.

Results of the experiment: From Table [3.74] we see that model despite
"SPORT” type, recognize entities from other 2 domain which are not part of
dataset, This brings results a little bit lower than the results of "SPORT” type.
We have the same situation on the main experiment in Table but now
results there are better for a bit. As well if we get only results for "SPORT”
type and compare with the results from global model in Table [3.72] we can see
that now results are again a bit better.

Entity Precision | Recall | F1 score
POLITICS 0,0000 1,0000 | 0,0000
SPORT 0,9837 0,9588 | 0,9711
TRANSPORTATION | 0,0000 1,0000 | 0,0000
Totals 0,9805 0,9588 | 0,9695

Table 3.74: Results of global model in coarse grained run with 400 abstracts
from "SPORT” domain

Description of the experiment: The final experiment is also the same
like previous two, where now test file contains only abstracts from "TRANS-
PORTATION” domain.

Results of the experiment: Table[3.75|shows that for "TRANSPORTA-
TION” entities we have precision closer to maximum value. But how in previ-
ous 2 experiment, also here model recognize entities which are not part of test
dataset. Now if we compare only the results of "TRANSPORTATION” type
with the results in global model from Table we see that global model pro-
vides a slight better results. Referring to the main experiment from Table
the overall results of the experiments are the same, but now model recognize
entities also with "POLITICS” type and the result for "TRANSPORTATION”
type are as well a bit lower.

Entity Precision | Recall | F1 score
POLITICS 0,0000 1,0000 | 0,0000
SPORT 0,0000 1,0000 | 0,0000
TRANSPORTATION | 0,9939 0,9762 | 0,9806
Totals 0,9861 0,9822 | 0,9841

Table 3.75: Results of global model in coarse grained run with 400 abstracts
from "TRANSPORTATION” domain

Description of the experiment: Experiment in Table is provided
with same data like the experiment in Table but now the model and test
data are annotated in fine grained. We needed in total 5139.7 seconds to train
model, from which 5095.94 seconds spent in optimization.

63

3. EXPERIMENTS

Results of the experiment: How we can see from Table [3.76] our model
provide maximum precision on most of entity types and maximum recall on
some entity types. This helps to have a bit better results the experiment
in coarse grain model from Table Also in comparing with the main
experiment from Table [3.6] we have a slightly lower results here, but a more
annotated entities.

Entity Precision | Recall | F1 score
Aircraft 1,0000 1,0000 | 1,0000
Athlete 1,0000 0,9899 | 0,9949
Automobile 1,0000 1,0000 | 1,0000
Coach 1,0000 1,0000 | 1,0000
Infrastructure 1,0000 0,9896 | 0,9948
PoliticalParty 0,9766 0,9486 | 0,9624
Politician 1,0000 0,9893 | 0,9946
PublicTransitSystem | 0,9935 0,9776 | 0,9855
Ship 1,0000 0,9231 | 0,9600
SpaceShuttle 1,0000 1,0000 | 1,0000
SpaceStation 1,0000 1,0000 | 1,0000
SportsClub 0,9796 0,9658 | 0,9726
SportsEvent 1,0000 0,8636 | 0,9268
SportsLeague 0,9698 0,9835 | 0,9766
SportsManager 1,0000 0,9726 | 0,9861
SportsTeam 1,0000 0,9851 | 0,9925
Train 1,0000 1,0000 | 1,0000
Totals 0,9870 0,9709 | 0,9789

Table 3.76: Results of global model in fine grained run with 400 abstracts
from every domain

Description of the experiment: In this experiment we use the same
trained model from previous experiment, but now the test file contains only
abstracts from "POLITICS” domain, who is annotated in fine grain.

Results of the experiment: Table show the output of the experi-
ment, where we can see that even we have Election type on model and test file,
the model do not find any entity with that type. Also for the Politician type
we have a very low recall, which reflects that there is a very low overall result.
Here we can also see which types the model recognize from other 2 domains,
who are not part of the dataset. This also contributes to lower result.

In comparing with the experiment in coarse grain (see Table now we
have a bit better overall result. As well the results here are better than in
main experiment from Table even the model now recognize more types
than there.

64

3.3. List of experiments

Entity Precision | Recall | F1 score
Aircraft 0,0000 1,0000 | 0,0000
Election 0,0000 0,0000 | 0,0000
PoliticalParty 0,9766 0,9484 | 0,9623
Politician 1,0000 0,2092 | 0,3460
PublicTransitSystem | 0,0000 1,0000 | 0,0000
Ship 0,0000 1,0000 | 0,0000
SportsClub 0,0000 1,0000 | 0,0000
SportsLeague 0,0000 1,0000 | 0,0000
Totals 0,9619 0,4151 | 0,5799

Table 3.77: Results of global model in fine grained run with 400 abstracts
from "POLITICS” domain

Description of the experiment: How in the previous experiment also
here we have the same model but now tested with abstracts from "SPORT”
domain annotated in fine grain.

Results of the experiment: In Table we have the output of the
provided experiment. How we can see the results are not bad at all for such
big data. Comparable with the coarse grain model in Table now we
have a better overall result, although model also recognize wrong entities.
Referencing to main experiment in Table the results there are bit lower
than now, even though than model recognize more wrong entities than in main
experiment.

Entity Precision | Recall | F1 score
Aircraft 0,0000 1,0000 | 0,0000
Athlete 1,0000 0,9899 | 0,9949
Coach 1,0000 1,0000 | 1,0000
PoliticalParty | 0,0000 1,0000 | 0,0000
Politician 0,0000 1,0000 | 0,0000
SportsClub 0,9794 0,9654 | 0,9724
SportsEvent 1,0000 0,8636 | 0,9268
SportsLeague 0,9696 0,9834 | 0,9765
SportsManager | 1,0000 0,9726 | 0,9861
SportsTeam 1,0000 0,9850 | 0,9924
Train 0,0000 1,0000 | 0,0000
Totals 0,9821 0,9721 | 0,9770

Table 3.78: Results of global model in fine grained run with 400 abstracts
from "SPORT” domain

Description of the experiment: The last experiment with the model
used in previous 3 experiment is now the dataset test file with abstracts from

65

3. EXPERIMENTS

"TRANSPORTATION” domain also annotated in fine grain.

Results of the experiment: Table shows that our train model
provide a bit better results than the coarse grain experiment in Table [3.75]
Also comparing with the main experiment from Table results there are
little bit better than now. Than can be because model recognize one more
wrong entity (PoliticalParty entity).

Entity Precision | Recall | F1 score
Aircraft 1,0000 1,0000 | 1,0000
Automobile 1,0000 1,0000 | 1,0000
Infrastructure 1,0000 0,9896 | 0,9948
PoliticalParty 0,0000 1,0000 | 0,0000
Politician 0,0000 1,0000 | 0,0000
PublicTransitSystem | 0,9934 0,9773 | 0,9853
Ship 1,0000 1,0000 | 1,0000
SpaceShuttle 1,0000 1,0000 | 1,0000
SpaceStation 1,0000 1,0000 | 1,0000
SportsClub 0,0000 1,0000 | 0,0000
SportsTeam 0,0000 1,0000 | 0,0000
Train 1,0000 1,0000 | 1,0000
Totals 0,9866 0,9866 | 0,9866

Table 3.79: Results of global model in fine grained run with 400 abstracts
from "TRANSPORTATION” domain

3.3.3.2 Evaluation of domain specific models with 400 abstracts

Description of the experiment: Experiment in Table was provided
with model trained only with abstracts from "POLITICS” domain in coarse
grain. To train this model we needed 125.6 seconds, from which 114.88 seconds
spent in optimization. The model is tested with the same dataset that is
created.

Results of the experiment: How we can see from Table the result
is not bad at all for this big model. In comparing with experiments provided
with global domain in Table and in Table the result now is better
and a significant difference in result we can see in experiment where we had
a global model tested with same dataset like here (see Table [3.73). Also
referencing to main experiment from Table where the only difference is
the number of abstracts used for training the model, now the result is a better
than there, although that now we have more data.

66

3.3. List of experiments

Entity Precision | Recall | F1 score
POLITICS | 0,9866 0,9479 | 0,9669
Totals 0,9866 0,9479 | 0,9669

Table 3.80: Results of "POLITICS” domain specific model in coarse grained
run with 400 abstracts from the same domain

Description of the experiment: For the purposes of this experiment
we have used the same data from the previous one, but now annotated in fine
grain. To train this kind of model we needed 416.7 seconds, from which 405.16
seconds spent in optimization.

Results of the experiment: We tested the model with the same data
that was created and how we can see from Table [3.81] the overall result is
better than previous experiment with coarse grain model. Also in comparing
with the main experiment from Table now model provides also a better
result, but not that significant like in experiment from Table [3.77]

Entity Precision | Recall | F1 score
Election 0,9975 0,9590 | 0,9779
PoliticalParty | 0,9767 0,9530 | 0,9647
Politician 0,9977 0,9920 | 0,9948
Totals 0,9906 0,9717 | 0,9810

Table 3.81: Results of "POLITICS” domain specific model in fine grained run
with 400 abstracts from the same domain

Description of the experiment: Experiment in Table is provided
with a coarse grain model trained with abstracts only from ”SPORT” domain.
The time needed to train this model was 90.9 seconds, from which 81.58
seconds spent in optimization. To test it we have used the same dataset that
model was trained.

Results of the experiment: How we can see from Table[3.82]the trained
model give a worthy results, who in comparing with the experiments provided
with global model in Table and Table are a bit better. As well
comparing with the results from the main experiment (see Table we see
that now results are also quite better, although we have a more entities.

Entity | Precision | Recall | F1 score
SPORT | 0,9858 0,9676 | 0,9766
Totals | 0,9858 0,8676 | 0,9766

Table 3.82: Results of "SPORT” domain specific model in coarse grained run
with 400 abstracts from the same domain

67

3. EXPERIMENTS

Description of the experiment: In this experiment we have used the
same dataset from previous, but now entities are annotated in fine grain. To
train a fine grain model we have need 915.1 seconds, from which 898.50 second
spent in optimization. As well as previous the model is tested with the dataset
that is trained.

Results of the experiment: In Table we see the output of the
experiment. Model give maximum precision on most of entities, as well the
recall values are not bad at all but only one entity has maximum result. This
results with a bit lower F1 score than the maximum value. In comparing with
the previous experiment now overall result is a little bit better. Also comparing
with the experiment with a global model in Table[3.78] again results are better.
Final comparison is with main experiment in Table where as well the
result is significantly better now.

Entity Precision | Recall | F1 score
Athlete 1,0000 0,9731 | 0,9863
Coach 1,0000 1,0000 | 1,0000
SportsClub 0,9815 0,9715 | 0,9765
SportsEvent 1,0000 0,9091 | 0,9524
SportsLeague 0,9718 0,9787 | 0,9752
SportsManager | 1,0000 0,9726 | 0,9850
SportsTeam 1,0000 0,9900 | 0,9796
Totals 0,9865 0,9727 | 0,9796

Table 3.83: Results of "SPORT” domain specific model in fine grained run
with 400 abstracts from the same domain

Description of the experiment: At the end we train a model with
abstracts from "TRANSPORTATION” domain. To train a coarse grain model
from this domain we needed 72.5 seconds, from which 64.53 seconds spent in
optimization. Of course, here also we tested the model with the same dataset
that was created.

Results of the experiment: In Table [3.84] we see that the model, unlike
in previous experiment, gives values from every measurement close to maxi-
mum value. When we compare the results with the results from experiments
provided with the global model in Table and Table we can see that
now we again have a bit better result than in those experiments. Referring to
main experiment in Table the results are as well significantly better and
more usable.

68

3.3. List of experiments

Entity Precision | Recall | F1 score
TRANSPORTATION | 0,9954 0,9747 | 0,9850
Totals 0,9954 0,9747 | 0,9850

Table 3.84: Results of "TRANSPORTATION” domain specific model in coarse
grained run with 400 abstracts from the same domain

Description of the experiment: We also train a fine grain model from
"TRANSPORTATION” domain. To train it we needed 725.2 seconds, from
which 711.78 seconds spent in optimization. As well as the previous experi-
ment, the model is tested with the same dataset that is created.

Results of the experiment: From the output of the experiment in
Table we can see that model provides excellent results, despite that, that
is tested with big dataset. Comparing with the experiment who was provided
with the global model and tested with same dataset like here in Table [3.79
now we have a bit better results, but a significant improvement on the results
we have when we refer to the main experiment from Table [3.15

Entity Precision | Recall | F1 score
Aircraft 1,0000 0,9835 | 0,9917
Automobile 1,0000 0,9583 | 0,9787
Infrastructure 1,0000 0,9948 | 0,9974
PublicTransitSystem | 0,9934 0,9773 | 0,9853
Ship 1,0000 1,0000 | 1,0000
SpaceShuttle 1,0000 0,6667 | 0,8000
SpaceStation 1,0000 1,0000 | 1,0000
Train 1,0000 1,0000 | 1,0000
Totals 0,9970 0,9807 | 0,9888

Table 3.85: Results of "TRANSPORTATION” domain specific model in fine
grained run with 400 abstracts from the same domain

3.3.3.3 Evaluation of global domain with 500 abstracts from
every domain

Datasets with 500 abstracts for every domain. In this final group of
experiments with 500 abstracts per domain we will repeat all experiments
unlike in previous groups. To retrieve and prepare datasets for training in
Stanford NER, our algorithm needs in total 3.63 hours.

Description of the experiment: In Table we provide an experi-
ment where the model is trained with, in total, 1500 abstracts annotated in
coarse grain. To train this kind of model we needed 1021.3 seconds, from
which 989.89 seconds spent in optimization. The model is tested with the
dataset that was trained.

69

3. EXPERIMENTS

Results of the experiment: As we can see from Table model
provides amazing results even though that we have now a lot of data. From
here we can see that results are closer to the main experiment from Table

but results there are bit better than now.

Entity Precision | Recall | F1 score
POLITICS 0,9788 0,9444 | 0,9613
SPORT 0,9850 0,9596 | 0,9721
TRANSPORTATION | 0,9962 0,9750 | 0,9855
Totals 0,9857 0,9587 | 0,9720

Table 3.86: Results of global model in coarse grained run with 500 abstracts
from every domain

Description of the experiment: For purposes of this experiment we
have used the model train previously, but now it is tested with the dataset
that contains only abstracts from "POLITICS” domain, annotated in coarse
grain.

Results of the experiment: From Table we see that even the
precision is not that bad, but because of very low recall, the F1 score is
lower, which means that model recognize only half of our entities. Also model
recognize entities that are not part of the tested dataset. As well when we
compare with the previous experiment is clearly that there the results for
"POLITICS” domain are way more better. Also comparably with the main
experiment from Table results now are bit better, although there model
recognize only some entities from "TRANSPORTATION” domain.

Entity Precision | Recall | F1 score
POLITICS 0,9734 0,4095 | 0,5765
SPORT 0,0000 1,0000 | 0,0000
TRANSPORTATION | 0,0000 1,0000 | 0,0000
Totals 0,9549 0,4095 | 0,5732

Table 3.87: Results of global model in coarse grained run with 500 abstracts
from "POLITICS” domain

Description of the experiment: In this experiment we also used the
global trained model, but now it is tested with "SPORT” domain abstracts
dataset.

Results of the experiment: Table [3.88 shows the output of the exper-
iment, from where we see that even the results aren’t at their maximum are
quite satisfying for such a big model and dataset. Also here model recognize
entities that are not part of the dataset. As well in comparing with the re-
sults for "SPORT” type in global model, now we have a very very little lower

70

3.3. List of experiments

result. The same situation is with the main experiment in Table where
again results there are bit better.tter now.

Entity Precision | Recall | F1 score
POLITICS 0,0000 1,0000 | 0,0000
SPORT 0,9849 0,9594 | 0,9720
TRANSPORTATION | 0,0000 1,0000 | 0,0000
Totals 0,9788 0,9594 | 0,9690

Table 3.88: Results of global model in coarse grained run with 500 abstracts
from "SPORT” domain

Description of the experiment: Final experiment with the global do-
main is that is tested with the dataset that contains only abstracts from
"TRANSPORTATION” domain.

Results of the experiment: From Table we see that model again
recognize some entities from other 2 domains, that are not part of the tested
dataset. Also if we compare only results for "TRANSPORTATION” domain
with the results from global experiment in Table they are almost the
same without any significant difference. The situation in main experiment
from Table is a little bit different, because there model recognize only one
wrong entity and the results are bit better.

Entity Precision | Recall | F1 score
POLITICS 0,0000 1,0000 | 0,0000
SPORT 0,0000 1,0000 | 0,0000
TRANSPORTATION | 0,9961 0,9769 | 0,9864
Totals 0,9870 0,9769 | 0,9819

Table 3.89: Results of global model in coarse grained run with 500 abstracts
from "TRANSPORTATION” domain

Description of the experiment: For purposes of this and the next 3
experiments we train a fine grain global model with 500 abstracts from every
domain. To train this kind of model we needed 6706.7 seconds, from which
6650.30 seconds spent in optimization. In this experiment we tested the model
with the dataset that was trained.

Results of the experiment: From Table we can see the results for
every particular ontology type. So even we have a lot of entities we see that
results are not bad at all, even model provides maximum precision on most
of entities and maximum recall on some of entities, which for a big model is
excellent. When we compare with the results from coarse grain model, now
we have a bit better overall result. As well referencing to main experiment
in Table the results there are bit worst than here, although here we have
more data.

71

3. EXPERIMENTS

Entity Precision | Recall | F1 score
Aircraft 1,0000 0,9929 | 0,9964
Athlete 1,0000 0,9896 | 0,9948
Automobile 1,0000 1,0000 | 1,0000
Coach 1,0000 1,0000 | 1,0000
Infrastructure 1,0000 0,9783 | 0,9890
PoliticalParty 0,9775 0,9403 | 0,9585
Politician 1,0000 0,9874 | 0,9937
PublicTransitSystem | 0,9944 0,9807 | 0,9875
Ship 1,0000 0,9259 | 0,9615
SpaceShuttle 1,0000 1,0000 | 1,0000
SpaceStation 1,0000 1,0000 | 1,0000
SportsClub 0,9756 0,9553 | 0,9654
SportsEvent 1,0000 0,8796 | 0,9360
SportsLeague 0,9700 0,9810 | 0,9755
SportsManager 1,0000 0,9780 | 0,9889
SportsTeam 1,0000 0,9831 | 0,9915
Train 1,0000 1,0000 | 1,0000
Totals 0,9866 0,9669 | 0,9766

Table 3.90: Results of global model in fine grained run with 500 abstracts
from every domain

Description of the experiment: In this experiment we tested the global
model with dataset that contains only abstracts from "POLITICS” domain,
of course annotated in fine grain.

Results of the experiment: Table [3.91| shows the output of the exper-
iment, where model provides terrible results and also recognize entity types
which is not part of the dataset, but don’t recognize any entity with Election
type who is part of the dataset. This model for consolation gives a bit better
results than the experiment with coarse grain model in Table 3.87 As well
referring to main experiment in Table[3.7] now model gives a bit better results,
but when we take also the size of the model this is a huge difference.

72

3.3. List of experiments

Entity Precision | Recall | F1 score
Aircraft 0,0000 1,0000 | 0,0000
Election 0,0000 0,0000 | 0,0000
PoliticalParty 0,9774 0,9400 | 0,9583
Politician 1,0000 0,2171 | 0,3567
PublicTransitSystem | 0,0000 1,0000 | 0,0000
Ship 0,0000 1,0000 | 0,0000
SportsClub 0,0000 1,0000 | 0,0000
SportsLeague 0,0000 1,0000 | 0,0000
Totals 0,9631 0,4138 | 0,5789

Table 3.91: Results of global model in fine grained run with 500 abstracts
from "POLITICS” domain

Description of the experiment: Here we also have the global train
model, but for this experiment is tested with dataset abstracts from "SPORT”
domain.

Results of the experiment: As we see from Table model gives
slightly better results than in the experiment with coarse grain model from
Table As well referencing to main experiment in Table now model
provides a bit lower result.

Entity Precision | Recall | F1 score
Aircraft 0,0000 1,0000 | 0,0000
Athlete 1,0000 0,9896 | 0,9948
Coach 1,0000 1,0000 | 1,0000
PoliticalParty | 0,0000 1,0000 | 0,0000
Politician 0,0000 1,0000 | 0,0000
SportsClub 0,9753 0,9549 | 0,9650
SportsEvent 1,0000 0,8796 | 0,9360
SportsLeague 0,9717 0,9810 | 0,9763
SportsManager | 1,0000 0,9780 | 0,9889
SportsTeam 1,0000 0,9831 | 0,9915
Train 0,0000 1,0000 | 0,0000
Totals 0,9785 0,9690 | 0,9737

Table 3.92: Results of global model in fine grained run with 500 abstracts
from "SPORT” domain

Description of the experiment: The final experiment with the global
model is with dataset that contains only abstracts from "TRANSPORTA-
TION” domain.

Results of the experiment: Table shows the outcome of the exper-
iment, where for the types from "TRANSPORTATION” domain we have an

73

3. EXPERIMENTS

excellent results, but because model also recognize wrong entities, the over-
all results is lower. But in comparing with the experiment with coarse grain
model in Table now we have a bit better results. As well referring to
main experiment in Table we now have again a bit lower result.

Entity Precision | Recall | F1 score
Aircraft 1,0000 0,9927 | 0,9963
Automobile 1,0000 1,0000 | 1,0000
Infrastructure 1,0000 0,9783 | 0,9890
PoliticalParty 0,0000 1,0000 | 0,0000
Politician 0,0000 1,0000 | 0,0000
PublicTransitSystem | 0,9943 0,9804 | 0,9873
Ship 1,0000 1,0000 | 1,0000
SpaceShuttle 1,0000 1,0000 | 1,0000
SpaceStation 1,0000 1,0000 | 1,0000
SportsClub 0,0000 1,0000 | 0,0000
SportsTeam 0,0000 1,0000 | 0,0000
Train 1,0000 1,0000 | 1,0000
Totals 0,9884 0,9833 | 0,9858

Table 3.93: Results of global model in fine grained run with 500 abstracts
from "TRANSPORTATION” domain

3.3.3.4 Evaluation of domain specific models with 500 abstracts

Description of the experiment: In this experiment we train a domain
specific coarse grain model with dataset that contains only abstracts from
"POLITICS” domain. The time needed to train this model was 165.6 seconds,
from which 152.45 seconds spent in optimization. The model is tested with
the same dataset that is trained.

Results of the experiment: As we can see from Table this model
provides a better result than the 2 experiments with the global model in
Table[3.86)and and a way more better results than experiment from Table[3.87]
As well referencing to main experiment in Table now model gives better
results.

Entity Precision | Recall | F1 score
POLITICS | 0,9808 0,9450 | 0,9626
Totals 0,9808 0,9450 | 0,9626

Table 3.94: Results of "POLITICS” domain specific model in coarse grained
run with 500 abstracts from the same domain

textbfDescription of the experiment: With the same data from the pre-
vious experiment, but not annotated in fine grain, we train new model. We

74

3.3. List of experiments

needed 479.3 seconds to train this model, from which 465.16 seconds spent in
optimization. The model is tested with the same dataset that was trained.

Results of the experiment: Table shows the outcome of the ex-
periment, where we see that even results on every type are close to maximum,
the overall results is a bit better than the previous experiment. But in com-
paring to the experiment with global domain inTable now results are
way more better, we don’t have any wrong recognition and also entities from
Election ontology type are recognized. Referencing to the main experiment in
Table as well now model provides a better results, which is surprisingly
for such big dataset.

Entity Precision | Recall | F1 score
Election 0,9915 0,9393 | 0,9647
PoliticalParty | 0,9777 0,9502 | 0,9637
Politician 0,9962 0,9877 | 0,9919
Totals 0,9890 0,9648 | 0,9768

Table 3.95: Results of "POLITICS” domain specific model in fine grained run
with 500 abstracts from the same domain

Description of the experiment: For the purposes of the experiment
we train a coarse grain model with dataset that contains only abstracts from
"SPORT” domain. Time needed to train this kind of model was 115.0 seconds,
from which 103.59 seconds spent in optimization. The model is tested like in
previous experiments, with the same dataset that is trained.

Results of the experiment: From Table we see that model gives
a slightly better results than in experiments with global domain in Table [3.86
and Table Also referencing to the main experiment in Table [3.12] now
model gives again significant better results than there.

Entity | Precision | Recall | F1 score
SPORT | 0,9856 0,9706 | 0,9780
Totals | 0,9856 0,9706 | 0,9780

Table 3.96: Results of "SPORT” domain specific model in coarse grained run
with 500 abstracts from the same domain

Description of the experiment: This experiment is provided with a
"SPORT” fine grain model. To train this model we needed 1175.1 seconds,
from which 1158.90 seconds spent in optimization. Test is the same like pre-
vious experiment, where dataset now are annotated in fine grain.

Results of the experiment: As we see from Table the overall re-
sults is a bit better than previous experiment, as well better than experiment
provided with the global model in Table Also referencing to main ex-

75

3. EXPERIMENTS

periment in Table now model was more precise than there, an because
of that gives better results.

Entity Precision | Recall | F1 score
Athlete 1,0000 0,9791 | 0,9894
Coach 1,0000 1,0000 | 1,0000
SportsClub 0,9771 0,9630 | 0,9700
SportsEvent 1,0000 0,9074 | 0,9515
SportsLeague 0,9755 0,9848 | 0,9801
SportsManager | 1,0000 0,9780 | 0,9889
SportsTeam 1,0000 0,9915 | 0,9957
Totals 0,9861 0,9731 | 0,9796

Table 3.97: Results of "SPORT” domain specific model in fine grained run
with 500 abstracts from the same domain

Description of the experiment: Experiment in Table [3.98|is provided
with a coarse grain model train with dataset from "TRANSPORTATION”
domain. To train this model we needed 78.3 seconds in total, from which
67.96 seconds spent in optimization. As previous model is tested with same
dataset that is trained.

Results of the experiment: Table shows that model provides very
good results on every measurement. Comparably with experiments with global
model in Table and Table now model gives better overall score than
there and it’s faster to train and provide experiment. As well referencing to
main experiment in Table again results from this experiment are signifi-
cantly better than main experiment results.

Entity Precision | Recall | F1 score
TRANSPORTATION | 0,9974 0,9756 | 0,9864
Totals 0,9974 0,9756 | 0,9864

Table 3.98: Results of "TRANSPORTATION” domain specific model in coarse
grained run with 500 abstracts from the same domain

Description of the experiment: The final experiment with this group
of number of abstracts is fine grain model for "TRANSPORTATION” domain.
Time taken to train this kind of model was in total 1040.2 seconds, from which
1023.55 seconds, spent in optimization. Testing routine is the same here.

Results of the experiment: From Table we again have excellent
results. Comparing with the experiment provided with global model in Ta-
ble and the main experiment in Table model here gives a better
results, than in those experiments.

76

3.3. List of experiments

Entity Precision | Recall | F1 score
Aircraft 1,0000 0,9781 | 0,9889
Automobile 1,0000 0,8800 | 0,9362
Infrastructure 1,0000 0,9870 | 0,9934
PublicTransitSystem | 0,9915 0,9804 | 0,9860
Ship 1,0000 1,0000 | 1,0000
SpaceShuttle 1,0000 0,6667 | 0,8000
SpaceStation 1,0000 1,0000 | 1,0000
Train 1,0000 1,0000 | 1,0000
Totals 0,9961 0,9769 | 0,9864

Table 3.99: Results of "TRANSPORTATION” domain specific model in coarse
grained run with 500 abstracts from the same domain

In this group of experiment where trained models and datasets contains
more abstracts than in the main experiment, we had a quite surprisingly
results. In most of the experiments the results where better than in the main
experiment, which when we compare the size of the data that makes a huge
difference on recognized entities. As well we had some results where the results
where a bit lower than in the main experiment, but again here comes the size
of data, which as we say, we have a way more recognized entities.

Our assumptions of that, that a domain specific models will provide a
better results were true. In all of the experiment the domain specific model
gives a bit better results, as well those domain takes less time to train and
test. Another thing was that the fine grain model, even takes a bit more time
to train, also in this group gives a better results than coarse grain models.
This can be handy, because on fine grain models we see all entities and how
they perform.

3.3.4 Evaluation of domains tested with two or more datasets

Description of experiment: This experiment is provided with the global
train model in fine grain from the main experiment. Model is tested with the
two datasets. One dataset contains 500 abstracts per domain where fall also
those 300 abstracts from the model, and the other dataset contains also 500
abstracts, but now those abstracts has a lower PageRank.

Results of the experiment: As we can see from Table for some
entities we have a maximum precision, conversely for some entities model do
not find nothing, because those entities maybe are from the dataset which
model do not contain them. As well the recall on founded entities is very low,
and the reason is same like in precision measurement.

7

3. EXPERIMENTS

Entity Precision | Recall | F1 score
Aircraft 0,9242 0,5755 | 0,7093
Athlete 0,8182 0,3778 | 0,5169
Automobile 0,9565 0,3607 | 0,5238
Coach 1,0000 0,2000 | 0,3333
Infrastructure 1,0000 0,9896 | 0,9948
Locomotive 0,0000 0,0000 | 0,0000
Motorcycle 0,0000 0,0000 | 0,0000
OrganisationMember | 0,0000 0,0000 | 0,0000
PoliticalParty 0,7656 0,5819 | 0,6613
Politician 0,8925 0,4099 | 0,5618
PublicTransitSystem | 0,8291 0,6178 | 0,7080
Ship 0,9375 0,3409 | 0,5000
SpaceShuttle 1,0000 0,3750 | 0,5455
SpaceStation 1,0000 0,3333 | 0,5000
SportsClub 0,8009 0,4276 | 0,5575
SportsEvent 0,9559 0,3171 | 0,4762
SportsLeague 0,8071 0,0912 | 0,6824
SportsManager 0,9643 0,2903 | 0,4463
SportsTeam 0,8856 0,5838 | 0,7037
Train 1,0000 0,5455 | 0,7059
Totals 0,8206 0,4837 | 0,6087

Table 3.100: Results of fine grain global model trained 300 abstracts per do-
main, tested with dataset that contains 500 abstracts, but with lower PageR-
ank on article and dataset that contains 500 abstracts, but with higher PageR-
ank.

Description of experiment: This experiment is provided with the global
train model in fine grain that was trained with 500 abstracts per domain.
Model is tested with the two datasets. One dataset contains 500 abstracts
per domain, so the same dataset that model is trained, and the other dataset
contains also 500 abstracts, but now those abstracts has a lower PageRank.

Results of the experiment: As we can see from Table the results
now are bit better than the previous experiment, but still we are bit higher
than middle values, but not that close to maximum like in experiments where
the model were tested with one dataset. This is caused by the fact that one of
the dataset was not part of training the model, although the entity types are
same. Another fact is the size of the models, so because of that model makes
wrong recognition.

78

3.3. List of experiments

Entity Precision | Recall | F1 score
Aircraft 0,9735 0,6934 | 0,8099
Athlete 0,9101 0,6222 | 0,7391
Automobile 1,0000 0,4098 | 0,5814
Coach 1,0000 0,3000 | 0,4615
Infrastructure 0,8885 0,5218 | 0,6575
Locomotive 0,0000 0,0000 | 0,0000
Motorcycle 0,0000 0,0000 | 0,0000
OrganisationMember | 0,0000 0,0000 | 0,0000
PoliticalParty 0,8393 0,7403 | 0,7876
Politician 0,9271 0,6593 | 0,7706
PublicTransitSystem | 0,9027 0,7389 | 0,8126
Rocket 0,0000 0,0000 | 0,0000
Ship 0,9615 0,5682 | 0,7143
SpaceShuttle 1,0000 0,4375 | 0,6087
SpaceStation 1,0000 0,6667 | 0,8000
SportsClub 0,8722 0,6071 | 0,7159
SportsEvent 0,9000 0,4829 | 0,6286
SportsLeague 0,8622 0,7357 | 0,7939
SportsManager 0,9787 0,4946 | 0,6571
SportsTeam 0,9276 0,7514 | 0,8302
Train 1,0000 0,5455 | 0,7059
Totals 0,8844 0,6592 | 0,7553

Table 3.101: Results of fine grain global model trained 500 abstracts per do-
main, tested with dataset that contains 500 abstracts, but with lower PageR-
ank on article and dataset that contains 500 abstracts, but with higher PageR-
ank.

Description of experiment: For purposes of this experiment we have
used the same trained model from the previous one, but now it is tested with
the dataset that contains 500 abstracts per domain, but with lower PageRank.

Results of the experiment: As we can see from Table the results
are not brilliant at all. Here we see the difference where model is tested with
the completely different data that is trained. We see that maximum F1 score
is 0.5154 for PublicTransitSystem entitites.

79

3. EXPERIMENTS

Entity Precision | Recall | F1 score
Aircraft 0,6667 0,1111 | 0,1905
Athlete 0,4675 0,1268 | 0,1994
Automobile 0,0000 0,0000 | 0,0000
Coach 0,0000 0,0000 | 0,0000
Infrastructure 0,5352 0,1387 | 0,2203
Locomotive 0,0000 0,0000 | 0,0000
Motorcycle 0,0000 0,0000 | 0,0000
OrganisationMember | 0,0000 0,0000 | 0,0000
PoliticalParty 0,5462 0,4097 | 0,4682
Politician 0,5962 0,1867 | 0,2844
PublicTransitSystem | 0,6943 0,4098 | 0,5154
Rocket 0,0000 0,0000 | 0,0000
Ship 0,0000 0,0000 | 0,0000
SpaceShuttle 0,0000 0,0000 | 0,0000
SpaceStation 0,0000 0,0000 | 0,0000
SportsClub 0,6370 0,2675 | 0,3768
SportsEvent 0,2667 0,0412 | 0,0714
SportsLeague 0,6395 0,4125 | 0,5015
SportsManager 0,6000 0,0316 | 0,0600
SportsTeam 0,6316 0,2975 | 0,4045
Train 0,0000 0,0000 | 0,0000
Totals 0,5983 0,2670 | 0,3692

Table 3.102: Results of fine grain global model trained 500 abstracts per do-
main, tested with dataset that contains 500 abstracts, but with lower PageR-
ank on article.

Description of experiment: In this experiment we have used a fine
grain model trained with 500 abstracts only from "TRANSPORTATION”
domain. The model now is tested with dataset that has 900 abstracts, that
means 300 abstracts per domain and the dataset that has 300 abstracts only
from "TRANSPORTATION” domain.

Results of the experiment: As we can see from Table for the
entities of "TRANSPORTATION” domain we have nice results, but because
we tested with the dataset that has all abstracts the overall results is around
middle value. As well model do not recognize any wrong entities from other
domains, which is also excellent.

80

3.3. List of experiments

Entity Precision | Recall | F1 score
Aircraft 0,9950 0,9706 | 0,9826
Athlete 0,0000 0,0000 | 0,0000
Automobile 1,0000 0,8500 | 0,9189
Coach 0,0000 0,0000 | 0,0000
Infrastructure 1,0000 0,9820 | 0,9909
PoliticalParty 0,0000 0,0000 | 0,0000
Politician 0,0000 0,0000 | 0,0000
PublicTransitSystem | 0,9835 0,9676 | 0,9755
Ship 1,0000 0,9655 | 0,9825
SpaceShuttle 1,0000 0,6667 | 0,8000
SpaceStation 1,0000 1,0000 | 1,0000
SportsClub 0,0000 0,0000 | 0,0000
SportsEvent 0,0000 0,0000 | 0,0000
SportsLeague 0,0000 0,0000 | 0,0000
SportsManager 0,0000 0,0000 | 0,0000
SportsTeam 0,0000 0,0000 | 0,0000
Train 1,0000 0,9091 | 0,9524
Totals 0,9909 0,3491 | 0,5163

Table 3.103: Result of "TRANSPORTATION” fine grained Top 500 Links
tested with global dataset that contains 300 abstracts per domain and
"TRANSPORTATION?” fine grained dataset with 300 abstracts

As we can see from the previous 4 experiments, it really depends on that
how we choose the datasets and also on the size of the model. Also those
experiments shows that if model is trained with one data and is tested with
completely different data, the results are of course very low. Maybe if the
model was trained with more abstracts and then tested, the results will be
better. But because we have not enough RAM memory we not succeed to
train a bigger model.

3.3.5 Evaluation of model who are trained with 500 abstracts
and are tested with texts from news papers

In this section we wanted to know who the trained models will behaves when
they are tested with texts from daily life, or in this case texts from BCC
and CNN web page. We make a datasets for every domain. Those datasets
contains 3 texts per domain. As well we choose a fine grain, because from the
previous experiments we noticed that those models gives better results.

BBC

81

3. EXPERIMENTS

For the purposes of this experiment we have used BBC articles |||
EIE]

Description of the experiment: For purposes of this experiment we
used a fine grain model who was trained with 500 abstracts per domain, which
is our biggest trained model. We tested it with the dataset than contains texts
from BBC website. This dataset has 2 texts for every domain.

Results of the experiment: As we can see from Table the results
are not satisfying at all. Even a such a big train model it is not able to
recognize all entities. It’s true that we don’t have a lot annotated words in
dataset, but we still expected higher results.

Entity Precision | Recall | F1 score
Athlete 1,0000 0,0303 | 0,0588
Infrastructure 1,0000 0,1818 | 0,3077
PoliticalFunction 0,0000 0,0000 | 0,0000
PoliticalParty 1,0000 0,1538 | 0,2667
Politician 0,0000 0,0000 | 0,0000
PublicTransitSystem | 1,0000 0,3333 | 0,5000
SportsEvent 0,0000 0,0000 | 0,0000
SportsLeague 0,0000 0,0000 | 0,0000
SportsTeam 0,0000 0,0000 | 0,0000
Totals 1,0000 0,0357 | 0,0690

Table 3.104: Results of fine grain model trained with 1500 abstracts, tested
with text from BBC

Description of the experiment: In this experiment we get the model
trained with 500 abstracts from "POLITICS” domain. We tested it with the
text from the politics spare from BBC web site.

Results of the experiment: From Table is clear that now we
have a better results than in the previous experiment for "POLITICS” entities.
Now model recognize Politician entities, which was not the case in the previous
experiment. Because of this now results are better and we can see the power
of domain specific models.

26https://www.bbc.com/sport/tennis/43964642
2"https://www.bbc.com/sport/rugby-union/43969948
*®https://www.bbc.com/news/election-us-2016-37855894
29https://www.bbc.com/news/world-us-canada-43453312
3%nhttps://www.bbc.co.uk/news/technology-43962881
3'https://www.bbc.com/news/uk-wales-43913363

82

https://www.bbc.com/sport/tennis/43964642
https://www.bbc.com/sport/rugby-union/43969948
https://www.bbc.com/news/election-us-2016-37855894
https://www.bbc.com/news/world-us-canada-43453312
https://www.bbc.co.uk/news/technology-43962881
https://www.bbc.com/news/uk-wales-43913363

3.3. List of experiments

Entity Precision | Recall | F1 score
Election 0,0000 0,0000 | 0,0000
PoliticalFunction | 0,0000 0,0000 | 0,0000
PoliticalParty 1,0000 0,1538 | 0,2667
Politician 0,5000 0,0588 | 0,1053
Totals 0,6250 0,0649 | 0,1176

Table 3.105: Results of fine grain model trained with 1500 abstracts, tested
with text from BBC based on sport domain

Description of the experiment: For this experiment we used the model
trained with 500 abstracts from "SPORT” domain. As in previous experiment,
also here, model is tested with texts from the same domain like it is trained.

Results of the experiment: Table we see than we have exactly
the same results like in the global model experiment (see Table , where
only Athlete entities are recognized. So here the only improvement that we
have is the time needed to train the model and we can be sure that here cannot
be any wrong recognition from other domains.

Entity Precision | Recall | F1 score
Athlete 1,0000 0,0303 | 0,0588
SportsClub 0,0000 0,0000 | 0,0000
SportsEvent 0,0000 0,0000 | 0,0000
SportsLeague | 0,0000 0,0000 | 0,0000
SportsTeam 0,0000 1,0000 | 0,0000
Totals 1,0000 0,0127 | 0,0250

Table 3.106: Results of fine grain model trained with 1500 abstracts, tested
with text from BBC

Description of the experiment: This experiment shows how the model
trained with 500 abstracts from "TRANSPORTATION” domain will behave
when it is tested with texts from same domain taken from BBC web site.

Results of the experiment: As we can see from Table now model
gives a worst results than the experiment in Table where there model
also recognize PublicTransportSystem entities, which is not the case now.
In this experiment is clear that the global domain provides a better results,
because recognize one more entity, which is a big step.

83

3. EXPERIMENTS

Entity Precision | Recall | F1 score
PublicTransitSystem | 0,0000 0,0000 | 0,0000
Infrastructure 1,0000 0,1818 | 0,3077
Totals 1,0000 0,1429 | 0,2500

Table 3.107: Results of fine grain model trained with 1500 abstracts, tested
with text from BBC

CNN

For the purposes of this experiment we have used BBC articles 2|4 7]
E9ET

Description of the experiment: For purposes of this experiment we
used the same model like in experiment in Table but now the model is
tested with texts from CNN web page.

Results of the experiment: As we can see from Table the results
are even worst that in experiment from Table [3.104 Here model recognize
just Politician entity. So even a such big model cannot provide average results
from texts from daily basis.

Entity Precision | Recall | F1 score
Athlete 0,0000 0,0000 | 0,0000
GeopoliticalOrganization | 0,0000 0,0000 | 0,0000
Infrastructure 0,0000 1,0000 | 0,0000
Politician 0,5000 0,0227 | 0,0435
SportsClub 0,0000 0,0000 | 0,0000
SportsEvent 0,0000 0,0000 | 0,0000
SportsLeague 0,0000 0,0000 | 0,0000
Totals 0,1667 0,0139 | 0,0256

Table 3.108: Results of fine grain model trained with 1500 abstracts, tested
with text from CNN

Description of the experiment: In this experiment we also used the
fine grain trained model with 500 abstracts from "POLITICS” domain. Model

3Znttps://edition.cnn.com/2018/04/30/politics/trump-merkel-putin-advice/
index.html

°’https://m.cnn.com/en/article/h_53075a6£d222756ef530484023dd8be7

34https://edition.cnn.com/2018/04/27/sport/tiger-woods-pga-tour-players-
championship-spt/index.html

https://edition.cnn.com/2018/04/24/sport/kentucky-derby-gronkowski-horse-
racing-nfl-spt/index.html

®nhttps://edition.con.com/travel/article/most-extreme-airports-world/
index.html

°'http://money.cnn.com/2018/05/02/news/companies/boeing-747-qantas-fleet/
index.html

84

https://edition.cnn.com/2018/04/30/politics/trump-merkel-putin-advice/index.html
https://edition.cnn.com/2018/04/30/politics/trump-merkel-putin-advice/index.html
https://m.cnn.com/en/article/h_53075a6fd222756ef530d84023dd8be7
https://edition.cnn.com/2018/04/27/sport/tiger-woods-pga-tour-players-championship-spt/index.html
https://edition.cnn.com/2018/04/27/sport/tiger-woods-pga-tour-players-championship-spt/index.html
https://edition.cnn.com/2018/04/24/sport/kentucky-derby-gronkowski-horse-racing-nfl-spt/index.html
https://edition.cnn.com/2018/04/24/sport/kentucky-derby-gronkowski-horse-racing-nfl-spt/index.html
https://edition.cnn.com/travel/article/most-extreme-airports-world/index.html
https://edition.cnn.com/travel/article/most-extreme-airports-world/index.html
http://money.cnn.com/2018/05/02/news/companies/boeing-747-qantas-fleet/index.html
http://money.cnn.com/2018/05/02/news/companies/boeing-747-qantas-fleet/index.html

3.3. List of experiments

is tested with dataset than contains texts from the same domain from CNN
web page.

Results of the experiment: As we see from Table now model
recognizes the same entity like the previous one, but now with a better score.
So here as well we see the power of domain specific model.

Entity Precision | Recall | F1 score
GeopoliticalOrganization | 0,0000 0,0000 | 0,0000
Politician 0,8333 0,0893 | 0,1613
Totals 0,8333 0,0877 | 0,1587

Table 3.109: Results of fine grain model trained with 1500 abstracts, tested
with text from CNN based on sport domain

Description of the experiment: For this experiment we used the model
trained with 500 abstracts from ?SPORT” domain. We tested the model with
texts from the same domain from CNN web page.

Results of the experiment: In Table we again see the power of
domain specific model. We have a recognition on Athlete entities, which was
not the case in experiment from Table Even thought that the score is
very low, we still have some improvements.

Entity Precision | Recall | F1 score
Athlete 1,0000 0,0667 | 0,1250
SportsClub 0,0000 0,0000 | 0,0000
SportsEvent 0,0000 0,0000 | 0,0000
SportsLeague | 0,0000 0,0000 | 0,0000
SportsTeam 0,0000 1,0000 | 0,0000
Totals 0,5000 0,0370 | 0,0690

Table 3.110: Results of fine grain model trained with 1500 abstracts, tested
with text from CNN

Description of the experiment: For the purposes of this experiment
we get the fine grain model trained with 500 abstracts from "TRANSPORTA-
TION” domain. As in previous experiments, also here we test the model with
the texts from same domain from CNN web page.

Results of the experiment: As we see from Table for some reason
model gives a maximum recall value to two entities. But, because there is
no precision, model do not recognize any entity. This was also the case in
experiment from Table so here we don’t have any improvements or
looseness.

85

3. EXPERIMENTS

Entity Precision | Recall | F1 score
Aircraft 0,0000 1,0000 | 0,0000
Infrastructure | 0,0000 1,0000 | 0,0000
Totals 0,0000 1,0000 | 0,0000

Table 3.111: Results of fine grain model trained with 1500 abstracts, tested
with text from BBC

From the provided 8 experiments, except the experiment in Table [3.107]
where domain specific model gives worst results than a global model, in all
other experiment we had a better or same results, which shows that the domain
specific models are more usable. Another advantage is the time to train and
test models.

3.3.6 Summary of the results

The global models from the main experiment which have 300 abstracts per
domain, gives a slightly better results that the domain specific models, except
the "POLITICS” domain specific models who have a way better results than
a global model. As well the fine grain models provide a bit better results than
a coarse grain models.

In the group of 10 abstracts per domain, the results from the global models
and domain specific models were almost the same, except the "POLITICS”
domain specific models which again give significantly better results than a
global model. As well in this group of experiment the coarse and fine grain
models give very similar results, without any significant difference.

The domain specific models from 20 abstracts per domain group, again
gives a better results than the global models. But here the coarse grain models
provide a bit better results than a fine grain models.

The same situation was for group of 40 abstracts per domain, where the
fine grain domain specific models provide better results. But from this point,
global models start to recognize wrong entities which were not part of the
testing dataset.

In the group of 100 abstracts per domain, the models from a specific do-
main annotated in coarse grain provide better results than the global models
in both annotation and better results than domain specific fine grain models.

The domain specific fine grain models from groups of 400 abstracts per
domain and 500 abstracts per domain give slightly better results than the
results from other types of experiments in particular group.

As well we test some models with the datasets that were not used for
training the model or with bigger dataset than the model was trained. So the
results from those experiments were worse than any previous experiments,
which shows that results depends on data used to train and test model.

86

3.3. List of experiments

As summary from the provided experiments we can say that domain spe-
cific fine grain models give better results in comparing to domain specific
coarse grain models and as well global models in both annotations. This give
advantage because training a domain specific fine grain models takes less time,
than global fine grain models. As well models trained with higher number of
abstracts gives better results unlike models trained with lower number of ab-
stracts.

87

Conclusion

The goal of this master thesis was to check does creating and testing domain
specific models that will be used in NER application is a better solution,
compared to global models who are used until now.

In the introduction of this thesis was explained which technologies was
used to create this thesis and also common NER applications used today. In
addition, the research related to this topic was included.

The whole process of preparing the datasets ready to be used in Stanford
NER application was explained. The process of transforming downloaded raw
data to data that are ready for processing to be able, in reasonable time,
to create a datasets was also explained. The algorithm that was used for
preparing datasets is also included. Secondly, we explained the way of choosing
the domains that were used in this thesis. After that we deal with choosing
types for the particular domain and grouping them if itAAZs needed. Then
we explain the process of transforming structured data from first section, to
datasets that are ready to be used in Stanford NER application for training
models. And at the end we cover the process of training models that were
used in experiments.

Finally we provide all experiments, that were needed to check if domain
specific models will provide better results compared to a global models. We
cover the highlighted goals of the experiments. Afterwards the evaluation
metric are explained the evaluation metrics used to compare results from ex-
periments. And finally, we go through all provided experiments that were
needed to answer to the set goals. One main experiment was created where
all other experiments were compared with those results. As well we have used
our biggest trained models and test them with web articles from BCC and
CNN web page.

From the provided experiments we can conclude that creating and training
a domain specific models give better results than a global domain that are used
today. Another advantage of using a domain specific model is the time. For
training and testing those models, is needed less time and less memory. This

89

CONCLUSION

knowledge gives an opportunity to train a bigger domain specific models where
can be covered more data can be included. As well from the observation on
results, the fine grain models provide a bit better results, than a coarse grain
model. Disadvantage of these types of model is that is needed more time and
memory to train it. But, like advantage is the list of used and recognized
entities.

Future work

In the future for providing a even better results than now can be used technique
for annotating entities more than once. For example if in text word ”"Barack
Obama” appears more than ones, also other appearance to be annotated. This
can brings to have more entities in a lower dataset.

As well adding a new future or flag in the process of training models can
also brings for a bigger precision while performing tests.

To transfer and prepare datasets more quickly using another framework
than Apache Jena can lower the processing time. Also importing the whole
data to some database, for example Virtuoso, and querying data from there
maybe will have an impact on processing time.

90

Bibliography

Named Entity Recognition. Named Entity Recognition NER. Available
from: https://en.wikipedia.org/wiki/Named-entity_recognition

Michal Konkol. Named Entity Recognition. Mas-

ter’s thesis, University of West Bohemia in Pilsen,
https://www.kiv.zcu.cz/site/documents /verejne /vyzkum /publikace /technicke-
zpravy /2012 /tr-2012-04.pdf, 2012.

Wikipedia. Information extraction IE. Available from: https://
en.wikipedia.org/wiki/Information_extraction

Charles Sutton and Andrew McCallum. An Introduction to Condi-
tional Random Fields for Relational Learning. Introduction to Statisti-
cal Relational Learning. Edited by Lise Getoor and Ben Taskar, 2006.
Available from: http://people.cs.umass.edu/~mccallum/papers/crf-
tutorial.pdf

Charles Sutton and Andrew McCallum. An Introduction to Condi-
tional Random Fields for Relational Learning. Introduction to Statisti-
cal Relational Learning. Edited by Lise Getoor and Ben Taskar, 2006.
Available from: http://people.cs.umass.edu/~mccallum/papers/crf-
tutorial.pdf

Jenny Rose Finkel, Trond Grenager, and Christopher Manning. In-
corporating Non-local Information into Information Extraction Sys-
tems by Gibbs Sampling. Proceedings of the 43nd Annual Meeting of
the Association for Computational Linguistics (ACL 2005), 2005: pp.
363-370. Available from: http://nlp.stanford.edu/~manning/papers/
gibbscrf3.pdf

Wikipedia. DBpedia Spotlight. Available from: https://
en.wikipedia.org/wiki/DBpedia#DBpedia_Spotlight

91

https://en.wikipedia.org/wiki/Named-entity_recognition
https://en.wikipedia.org/wiki/Information_extraction
https://en.wikipedia.org/wiki/Information_extraction
http://people.cs.umass.edu/~mccallum/papers/crf-tutorial.pdf
http://people.cs.umass.edu/~mccallum/papers/crf-tutorial.pdf
http://people.cs.umass.edu/~mccallum/papers/crf-tutorial.pdf
http://people.cs.umass.edu/~mccallum/papers/crf-tutorial.pdf
http://nlp.stanford.edu/~manning/papers/gibbscrf3.pdf
http://nlp.stanford.edu/~manning/papers/gibbscrf3.pdf
https://en.wikipedia.org/wiki/DBpedia#DBpedia_Spotlight
https://en.wikipedia.org/wiki/DBpedia#DBpedia_Spotlight

BIBLIOGRAPHY

[20]

92

Wikipedia. spaCy. Available from: https://en.wikipedia.org/wiki/
SpaCy

Wikipedia. GATE. Available from: https://en.wikipedia.org/wiki/
General Architecture_for_Text_Engineering

Wikipedia. Resource Description Framework RDF. Available from:
https://en.wikipedia.org/wiki/Resource_Description_Framework

Usmanov Radmir. NCollection, Transformation, and Integration
of Data from the Web Services Domain. Master’s thesis, Czech
Technical University in Prague, Faculty of Information Tech-
nology, https://dspace.cvut.cz/bitstream/handle/10467 /72987 /F8-DP-
2017-Usmanov-Radmir-thesis.pdf, 2017.

W3C. Resource Description Framework RDF. Available from: https:
//www.w3.org/RDF/

W3C. Natural Language Processing Interchange Format NIF. Available
from: https://www.w3.0rg/2015/09/bpmlod-reports/nif-based-
nlp-webservices/#natural-language-processing-interchange-
format-nif

Hellmann, S.; Lehmann, J.; et al. Integrating NLP using Linked Data.
2013. Available from: http://svn.aksw.org/papers/2013/ISWC_NIF/
public.pdf

DBpedia. DBpedia Core. Available from: https://wiki.dbpedia.org/
dbpedia-wiki

DBpedia. DBpedia NIF Dataset. Available from: http:
//wiki.dbpedia.org/dbpedia-nif-dataset

DBpedia. DBpedia Ontology. Available from: http://
wiki.dbpedia.org/services-resources/ontology

Wikipedia. Apache Jena. Available from: https://en.wikipedia.org/
wiki/Apache_Jena

Vivek Kulkarni and Yashar Mehdad and Troy Chevalier. Domain Adap-
tation for Named Entity Recognition in Online Media with Word Embed-
dings. CoRR, volume abs/1612.00148, 2016, 1612.00148. Available from:
http://arxiv.org/abs/1612.00148

Alfonseca, E.; Manandhar, S. An Unsupervised Method for Gen-
eral Named Entity Recognition And Automated Concept Discov-
ery. 2002. Available from: http://www-users.cs.york.ac.uk/~suresh/
papers/AUMFGNERAACD.pdf

https://en.wikipedia.org/wiki/SpaCy
https://en.wikipedia.org/wiki/SpaCy
https://en.wikipedia.org/wiki/General_Architecture_for_Text_Engineering
https://en.wikipedia.org/wiki/General_Architecture_for_Text_Engineering
https://en.wikipedia.org/wiki/Resource_Description_Framework
https://www.w3.org/RDF/
https://www.w3.org/RDF/
https://www.w3.org/2015/09/bpmlod-reports/nif-based-nlp-webservices/#natural-language-processing-interchange-format-nif
https://www.w3.org/2015/09/bpmlod-reports/nif-based-nlp-webservices/#natural-language-processing-interchange-format-nif
https://www.w3.org/2015/09/bpmlod-reports/nif-based-nlp-webservices/#natural-language-processing-interchange-format-nif
http://svn.aksw.org/papers/2013/ISWC_NIF/public.pdf
http://svn.aksw.org/papers/2013/ISWC_NIF/public.pdf
https://wiki.dbpedia.org/dbpedia-wiki
https://wiki.dbpedia.org/dbpedia-wiki
http://wiki.dbpedia.org/dbpedia-nif-dataset
http://wiki.dbpedia.org/dbpedia-nif-dataset
http://wiki.dbpedia.org/services-resources/ontology
http://wiki.dbpedia.org/services-resources/ontology
https://en.wikipedia.org/wiki/Apache_Jena
https://en.wikipedia.org/wiki/Apache_Jena
1612.00148
http://arxiv.org/abs/1612.00148
http://www-users.cs.york.ac.uk/~suresh/papers/AUMFGNERAACD.pdf
http://www-users.cs.york.ac.uk/~suresh/papers/AUMFGNERAACD.pdf

Bibliography

[21]

[22]

[23]

[24]

[25]

for Named Entity Recognition in Online Media with Word Embeddings,
D. A. Domain Adaptation for Named Entity Recognition in Online Media
with Word Embeddings. 2016. Available from: https://arxiv.org/pdf/
1612.00148.pdf

Ritter, A.; Clark, S.; et al. Named Entity Recognition in Tweets:
An Experimental Study. 2011: pp. 1524-1534. Available from: http:
//dblp.uni-trier.de/db/conf/emnlp/emnlp2011.html#RitterCME11

Javier D. FernAandez and Miguel A. MartAnnez-Prieto and Claudio
GutiAlrrez and Axel Polleres and Mario Arias. Binary RDF Represen-
tation for Publication and Exchange (HDT). Web Semantics: Science,
Services and Agents on the World Wide Web, volume 19, 2013: pp. 22—
41. Available from: http://www.websemanticsjournal.org/index.php/
ps/article/view/328

Wikipedia. PageRank. Available from: https://en.wikipedia.org/
wiki/PageRank

Wikipedia. F1 score. Available from: https://en.wikipedia.org/wiki/
F1 _score

93

https://arxiv.org/pdf/1612.00148.pdf
https://arxiv.org/pdf/1612.00148.pdf
http://dblp.uni-trier.de/db/conf/emnlp/emnlp2011.html#RitterCME11
http://dblp.uni-trier.de/db/conf/emnlp/emnlp2011.html#RitterCME11
http://www.websemanticsjournal.org/index.php/ps/article/view/328
http://www.websemanticsjournal.org/index.php/ps/article/view/328
https://en.wikipedia.org/wiki/PageRank
https://en.wikipedia.org/wiki/PageRank
https://en.wikipedia.org/wiki/F1_score
https://en.wikipedia.org/wiki/F1_score

APPENDIX A

Appendix

A.1 Acronyms

NER Named-Entity Recognition
NLP Natural Language Processing
RDF Resource Description Framework
NIF Natural Language Processing Interchange Format
IE Information Extraction
CRF Conditional Random Field
GATE General Architecture for Text Engineering
ANNIE A Nearly-New Information Extraction System .

A.2 POLITICS domain types

Types: Politician, Ambassador, Chancellor, Congressman, Deputy, Gover-
nor, Lieutenant, Mayor, MemberOfParliament, Minister, President, PrimeMi-
nister, Senator, VicePresident and VicePrimeMinister are grouped at Politi-
cian type.

Types: Parliament, Election,PoliticalParty, GeopoliticalOrganisation, Politi-
cianSpouse, PersonFunction, PoliticalFunction, Profession, TopicalConcept
and PoliticalConcept are not grouped.

A.3 SPORT domain types

Types: Sport, firstOlympicEvent, footedness, TeamSport, SportsClub, Hock-
eyClub, RugbyClub, SoccerClub, chairmanTitle, clubsRecord Goalscorer, fans-
group, firstGame, ground, largestWin, managerTitle, worstDefeat and Nation-
alSoccerClub are grouped at SportsClub type.

Types: SportsLeague, AmericanFootballLeague, AustralianFootballLeague,
AutoRacingLeague, BaseballLeague, BasketballLeague, BowlingLeague, Box-

95

A. APPENDIX

ingLeague, CanadianFootballLeague, CricketLeague, CurlinglLeague, Cyclin-
gLeague, FieldHockeyLeague, FormulaOneRacing, GolfLeague, HandballLeague,
IceHockeyLeague, InlineHockeyLeague, LacrosseLeague, MixedMartial ArtsLeague,
MotorcycleRacinglLeague, PaintballLeague, PoloLeague, RadioControlledRac-
inglLeague, RugbyLeague, SoccerLeague, SoftballLeague, SpeedwayLeague,
TennisLeague, VideogamesLeague and VolleyballLeague are grouped at Sport-
sLeague type.

Types: SportsTeam, AmericanFootballTeam, AustralianFootballTeam,
BaseballTeam, BasketballTeam, CanadianFootballTeam, CricketTeam, Cy-
clingTeam, FormulaOneTeam, HandballTeam, HockeyTeam and SpeedwayTeam
are grouped at SportsTeam type.

Types: Athlete, ArcherPlayer, AthleticsPlayer, AustralianRulesFootballPlayer,
BadmintonPlayer, BaseballPlayer, BasketballPlayer, Bodybuilder, Boxer, Am-
ateurBoxer, BullFighter, Canoeist, ChessPlayer, Cricketer, Cyclist, DartsPlayer,
Fencer, GaelicGamesPlayer, GolfPlayer, GridironFootballPlayer, American-
FootballPlayer, CanadianFootballPlayer, Gymnast, HandballPlayer, HighDiver,
HorseRider, Jockey, LacrossePlayer, Martial Artist, MotorsportRacer, Motor-
cycleRider, MotocycleRacer, SpeedwayRider, RacingDriver, DTMRacer, For-
mulaOneRacer, NascarDriver, RallyDriver, NationalCollegiateAthleticAsso-
ciationAthlete, NetballPlayer, PokerPlayer, Rower, RugbyPlayer, Snooker-
Player, SnookerChamp, SoccerPlayer, SquashPlayer, Surfer, Swimmer, TableTen-
nisPlayer, TeamMember, TennisPlayer, VolleyballPlayer, BeachVolleyballPlayer
, WaterPoloPlayer, WinterSportPlayer, Biathlete, BobsleighAthlete , Cross-
CountrySkier, Curler, FigureSkater, IceHockeyPlayer, NordicCombined, Skater,
Ski_jumper, Skier, SpeedSkater, Wrestler, SumoWrestler, Athletics and cur-
rent WorldChampion are grouped at Athlete type.

Types: Coach, AmericanFootballCoach, CollegeCoach and Volleyball-
Coach are grouped at Coach type.

Types: OrganizationMember, SportsTeamMember are grouped at Or-
ganizationMember type.

Types: SportsManager, SoccerManager are grouped at SportsManager
type.

Types: SportsEvent, CyclingCompetition, FootballMatch, GrandPrix,
InternationalFootballLeagueEvent, MixedMartial ArtsEvent, NationalFootbal-
ILeagueEvent, Olympics, OlympicEvent, Race, CyclingRace, HorseRace, Mo-
torRace, Tournament, GolfTournament, SoccerTournament, TennisTourna-
ment, WomensTennisAssociationTournament, WrestlingEvent, SportCompe-
titionResult, OlympicResult, SnookerWorldRanking, SportsSeason, Motor-
sportSeason, SportsTeamSeason, BaseballSeason, FootballLeagueSeason, Na-
tionalFootballLeagueSeason, NCAATeamSeason, SoccerClubSeason, Soccer-
LeagueSeason and MotorSportSeason are grouped at SportsEvent type.

96

A.4. TRANSPORTATION domain types

A.4 TRANSPORTATION domain types

Types: Aircraft, aircraftType, aircraftUser, ceiling, dischargeAverage, en-
ginePower, engineType, gun, powerType, wingArea, wingspan and MilitaryAir-
craft are grouped at Aircraft type.

Types: Automobile, automobilePlatform, bodyStyle, transmission and
AutomobileEngine are grouped at Automobile.

Types: Locomotive, boiler and CylinderCount are grouped at Locomo-
tive.

Types: MilitaryVehicle, Motorcycle, SpaceStation are not grouped.

Types: On-SiteTransportation, ConveyorSystem, Escalator and Moving-
Walkway are grouped at On-SiteTransportation type.

Types: Rocket, countryOrigin, finalFlight, lowerEarthOrbitPayload, maid-
enFlight, rocketFunction, rocketStages and RocketEngine are grouped at
Rocket type.

Types: Ship, captureDate, homeport, layingDown, maidenVoyage, num-
berOfPassengers, shipCrew and shipLaunch are grouped at Ship type.

Types: SpaceShuttle, contractAward, Crews, firstFlight, lastFlight, mis-
sions, numberOfCrew, numberOfLaunches and satellitesDeployed are grouped
at SpaceShuttle type.

Types: Spacecraft, cargoFuel, cargoGas, cargoWater and rocket are grouped
at Spacecraft type.

Types: Train, locomotive, wagon and TrainCarriage are grouped at
Train type.

Types: Tram, PublicTransitSystem, Airline and BusCompany are grouped
at PublicTransitSystem type.

Types: Infrastructure, Airport, Port, RestArea, RouteOfTransportation,
Bridge, RailwayLine, RailwayTunnel, WaterwayTunnel, Station, MetroSta-
tion, RailwayStation, RouteStop and TramStation are grouped at Infras-
tructure type.

A.5 Properties file used for training models

location of the training file
trainFile =

location where you would like to save
#(serialize) your

classifier; adding .gz at the end
#automatically gzips the file ,

making it smaller, and faster to load
serializeTo =

structure of your training file;

97

A. APPENDIX

this tells the classifier that
the word is in column 0 and the
correct answer is in column 1
map = word=0,answer=1

This specifies the order of the CRF:
order 1 means that features

apply at most to a class pair of

previous class and current class

or current class and next class.
maxLeft=1

these are the features we’d like to
train with

some are discussed below, the rest can
be understood by looking

at NERFeatureFactory
useClassFeature=true

useWord=true

word character ngrams will be included
up to length 6 as prefixes

and suffixes only

useNGrams=true

noMidNGrams=true

maxNGramLeng=6

usePrev=true

useNext=true

useDisjunctive=true

useSequences=true
usePrevSequences=true
saveFeaturelndexToDisk=true
useObservedSequencesOnly=true

the last 4 properties deal with word
shape features

useTypeSeqs=true

useTypeSeqs2=true
useTypeySequences=true
wordShape=chris2useLC

A.6 POLITICS domain SPARQL query

PREFIX rdf:<http://www.w3.0rg/1999/02/22—rdf—syntax—ns#>
PREFIX dbo:<http://dbpedia.org/ontology/>

98

A.7. SPORT domain SPARQL query

PREFIX vrank:<http://purl.org/voc/vrank#>

SELECT ?7s ?v

FROM <http://dbpedia.org>

FROM <http://people.aifb.kit.edu/ath/#DBpedia_PageRank>
WHERE {

{?s rdf:type dbo:PoliticalParty .}

UNION
{?s rdf:type dbo:Politician .}
UNION
{
?7s rdf:type dbo:SocietalEvent.
?7s rdf:type dbo: Election.
}
UNION
{
?7s rdf:type dbo:Person.
?7s rdf:type dbo: OfficeHolder.
}
?s vrank:hasRank/vrank:rankValue 7v.
}

ORDER BY DESC(?v) LIMIT 10
A.7 SPORT domain SPARQL query

PREFIX rdf:<http://www.w3.0rg/1999/02/22—rdf—syntax—ns#>
PREFIX dbo:<http://dbpedia.org/ontology/>

PREFIX vrank:<http://purl.org/voc/vrank#>

SELECT 7s ?7v

FROM <http://dbpedia.org>

FROM <http://people.aifb.kit.edu/ath/#DBpedia_PageRank>
WHERE {

{?s rdf:type dbo:Sport.}

UNION

{?s rdf:type dbo:SportsLeague.}

UNION

{?s rdf:type dbo:SportsTeam.}

UNION

{?s rdf:type dbo:Athlete.}

UNION

{?s rdf:type dbo: AustralianRulesFootballPlayer.}
UNION

99

A. APPENDIX

{?s rdf:type
UNION
{?s rdf:type
UNION
{?s rdf:type
UNION
{?s rdf:type
UNION
{?s rdf:type
UNION
{?s rdf:type
UNION
{?s rdf:type
UNION
{?s rdf:type
UNION
{?s rdf:type
UNION
{?s rdf:type
UNION
{?s rdf:type
UNION
{?s rdf:type
UNION
{?s rdf:type
UNION
{?s rdf:type
UNION
{?s rdf:type
UNION
{?s rdf:type
UNION
{?s rdf:type
UNION
{?s rdf:type
UNION
{?s rdf:type
UNION
{?s rdf:type
UNION
{?s rdf:type
UNION
{?s rdf:type
UNION

100

dbo:

dbo:

dbo:

dbo:

dbo:

dbo:

dbo:

dbo:

dbo:

dbo:

dbo

dbo:

dbo:

dbo

dbo:

dbo:

dbo:

dbo:

dbo:

dbo:

dbo:

dbo:

BadmintonPlayer.}
BaseballPlayer.}
BasketballPlayer.}
Bodybuilder.}
Boxer.}

Canoeist .}
ChessPlayer.}
Cricketer.}
Cyclist.}

DartsPlayer.}

:Fencer.}

GaelicGamesPlayer.}

GolfPlayer.}

: GridironFootballPlayer.}

Gymnast . }
HandballPlayer.}
HighDiver.}
HorseRider.}
Jockey .}
LacrossePlayer.}
MartialArtist.}

MotorsportRacer.}

A.7. SPORT domain SPARQL query

{?s rdf:type dbo:NationalCollegiateAthleticAssociationAthlete .}
UNION

{?s rdf:type dbo:NetballPlayer.}
UNION

{?s rdf:type dbo:PokerPlayer.}
UNION

{?s rdf:type dbo:RugbyPlayer.}
UNION

{?s rdf:type dbo:SnookerPlayer.}
UNION

{?s rdf:type dbo:SoccerPlayer.}
UNION

{?s rdf:type dbo:SquashPlayer.}
UNION

{?s rdf:type dbo:Surfer.}

UNION

{?s rdf:type dbo:Swimmer.}

UNION

{?s rdf:type dbo:TableTennisPlayer.}
UNION

{?s rdf:type dbo:TeamMember.}
UNION

{?s rdf:type dbo:TennisPlayer.}
UNION

{?s rdf:type dbo: VolleyballPlayer.}
UNION

{?s rdf:type dbo:WaterPoloPlayer.}
UNION

{?s rdf:type dbo:WinterSportPlayer.}
UNION

{?s rdf:type dbo: Wrestler.}

UNION

{?s rdf:type dbo:Coach.}

UNION

{?s rdf:type dbo:OrganisationMember.}
UNION

{?s rdf:type dbo:SportsManager.}
UNION

{?s rdf:type dbo:SportsEvent.}
UNION

{?s rdf:type dbo:Race.}

UNION

{?s rdf:type dbo:Tournament.}
UNION

101

A. APPENDIX

{?s rdf:type dbo: WrestlingEvent.}

UNION

{?s rdf:type dbo:SportCompetitionResult.}
UNION

{?s rdf:type dbo:SportsSeason.}
UNION

{?s rdf:type dbo:Referee.}

UNION

{?s rdf:type dbo:SportFacility.}
UNION

{?s rdf:type dbo:CricketGround.}
UNION

{?s rdf:type dbo:GolfCourse.}
UNION

{?s rdf:type dbo:RaceTrack.}
UNION

{?s rdf:type dbo:SkiArea.}

?s vrank:hasRank/vrank:rankValue ?v.

}
ORDER BY DESC(?v) LIMIT 10

A.8 TRANSPORTATION domain SPARQL query

PREFIX rdf:<http://www.w3.0rg/1999/02/22—rdf—syntax—ns#>
PREFIX dbo:<http://dbpedia.org/ontology/>

PREFIX vrank:<http://purl.org/voc/vrank#>
SELECT 7s ?7v

FROM <http://dbpedia.org>
FROM <http://people.aifb.kit.edu/ath/#DBpedia_PageRank>

WHERE {

{?s rdf:type dbo: Aircraft.}
UNION

{?s rdf:type dbo:Automobile.}
UNION

{?s rdf:type dbo:Locomotive.}
UNION

{?s rdf:type dbo:MilitaryVehicle.}
UNION

{?s rdf:type dbo:Motorcycle.}
UNION

{?s rdf:type dbo:On—SiteTransportation.}

102

A.8. TRANSPORTATION domain SPARQL query

UNION

{?s rdf:type dbo:Rocket.}

UNION

{?s rdf:type dbo:Ship.}

UNION

{?s rdf:type dbo:SpaceShuttle.}
UNION

{?s rdf:type dbo:SpaceStation.}
UNION

{?s rdf:type dbo:Spacecraft.}
UNION

{?s rdf:type dbo:Train.}

UNION

{?s rdf:type dbo:TrainCarriage.}
UNION

{?s rdf:type dbo:Tram.}

UNION

{?s rdf:type dbo:Engine.}

UNION

{?s rdf:type dbo:AutomobileEngine.}
UNION

{?s rdf:type dbo:RocketEngine.}
UNION

{

?7s rdf:type dbo:Company.

?7s rdf:type dbo:PublicTransitSystem .
¥

UNION

{?s rdf:type dbo: Airline.}
UNION

{?s rdf:type dbo:BusCompany.}
UNION

{?s rdf:type dbo:Infrastructure.}
UNION

{?s rdf:type dbo:Airport.}
UNION

{?s rdf:type dbo:Port.}

UNION

{?s rdf:type dbo:RestArea.}
UNION

{?s rdf:type dbo:RouteOfTransportation.}
UNION

{?s rdf:type dbo:Bridge.}

UNION

103

A. APPENDIX

{?s rdf:type dbo:RailwayLine.}
UNION

{?s rdf:type dbo:RailwayTunnel.}
UNION

{?s rdf:type dbo:Road.}

UNION

{?s rdf:type dbo:RoadJunction.}
UNION

{?s rdf:type dbo:RoadTunnel.}
UNION

{?s rdf:type dbo:WaterwayTunnel.}
UNION

{?s rdf:type dbo:Station.}

UNION

{?s rdf:type dbo:MetroStation.}
UNION

{?s rdf:type dbo:RailwayStation.}
UNION

{?s rdf:type dbo:RouteStop.}
UNION

{?s rdf:type dbo:TramStop.}

?s vrank:hasRank/vrank:rankValue ?v.

}
ORDER BY DESC(?v) LIMIT 10

104

APPENDIX B

Contents of CD

readme.tXt.......oviviiiiiinn.. The file with CD contents description

| CreateModels.......oovviiininiiiinnnnennnn. Thesis project source code

tsrc The directory of source codes

o103 004 111 Maven Project Object Model

| Stanford NER Directory with Stanford NER application, models and test
atasets

classifiers.....coviiiiiiniiininnennnann. Stanford NER classifiers

domainsWithOneAnnotation . The directory that contains test dataset
and properties files used for training models

edu.......... The directory that contains Stanford NER, source codes
lib........ The directory that contains library used in Stanford NER
application
META-INF The directory that contains Stanford NER metadata
modelsWithOneAnnotation.Directory contains trained models used in
experiments

Y =5 A The thesis text directory

LBogoljub,JakovcheskiJVIaster,Thesis,20 18.pdf . The diploma thesis
in PDF format
| Thesis LaTeX.......... the directory of IXTEX source codes of the thesis

105

	Citation of this thesis
	Introduction
	Motivation
	Goals of the thesis
	Thesis outline

	Background and related work
	Background
	Information extraction
	Named Entity Recognition
	RDF and NLP interchange format
	DBpedia
	Apache Jena
	SPARQL

	Related work

	Domain specific named entity recognition
	Data pre-processing
	Domain specification
	Domain population
	Data transformation
	Model generation
	Training datasets

	Experiments
	Goals of the experiments
	Evaluation metrics
	List of experiments
	Main experiment
	Experiments that has less than 300 abstracts in model
	Experiments that have more than 300 abstracts in model and test files
	Evaluation of domains tested with two or more datasets
	Evaluation of model who are trained with 500 abstracts and are tested with texts from news papers
	Summary of the results

	Conclusion
	Future work

	Bibliography
	Appendix
	Acronyms
	POLITICS domain types
	SPORT domain types
	TRANSPORTATION domain types
	Properties file used for training models
	POLITICS domain SPARQL query
	SPORT domain SPARQL query
	TRANSPORTATION domain SPARQL query

	Contents of CD

