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Abstract

In Stackelberg games, one agent must commit to a strategy before the other agent compute
his, allowing him to always play the best response to first player’s strategy. The standard
models of computing optimal strategy of the first player are difficult to compute, because they
solve a linear program for the whole Game Tree. In this work, we will focus on Stackelberg
games and their solution in sequential games using dynamic approach, which can solve
potentially infinite games.

Keywords: Game Theory, Stackelberg games, Sequential games, Dynamic program-
ming

Abstrakt

Ve Stackelbergových hrách se musí jeden z agentů přihlásit ke své strategii ještě před tím,
než druhý hráč spočítá svou. To mu dává možnost hrát svou nejlepší strategii proti prvnímu
hráči. Standartní modely výpočtu optimální strategie prvního hráče v sekvenčních hrách jsou
výpočetně náročné, jelikož spočívají ve vyřešení lieárního programu pro celý herní strom. V
této práci se zaměříme na Stackelbergovy hry a jejich řešení ve hrách v sekvenční formě s
využitím principu dynamického programování, což umožní řešit i potenciálně nekonečné hry.

Klíčová slova: Teorie her, Stackelbergovy hry, hry v sekvenční formě, dynamické
programování
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Chapter 1

Introduction

In game-theoretical problems, the roles of agents are often not symmetric. Stackelberg game,
in which one player called the leader must commit himself to a strategy before the other
player (the follower) computes his. That allows the follower to play the best response to
the leader’s committed strategy. These games are often used to model real-world problems,
such as finding the optimal security protocol, which can be observed by possible attackers.
Optimal strategy, to which the leader should commit to, is described by the concept of Strong
Stackelberg Equilibrium (SSE) [6] and the application of existing algorithms for finding it
has seen a lot of success in infrastructure, property protection [1] or economy fields [12].

However, most of the existing algorithms are simplified and do not apply to sequential
games [2]. Reason for this is that computation of similar problems in sequential games is
often an NP-hard problem [5], even in many one-shot games.

Algorithms based on mathematical programs constructed for the whole game-tree suffer
from poor scalability because of the exponential size of the game-tree with the horizon of
the game. While there is an algorithm finding SSE by finding Stackelberg Extensive-Form
Correlated Equilibrium (SEFCE) [8], which can be found in polynomial time, this algorithm
still cannot be used for games with infinite horizon.

The main goal of this thesis is to explore the possibility to find SSE in sequential games
with possibly infinite horizon. That can be done by using the dynamic approach and rep-
resenting the solution of the solved sub-problem in a compact and accurate way, allowing
us to use these sub-solutions to construct the solution of the whole game. We will further
use this algorithm to develop an approximative algorithm, that would scale well into large
problems.

1.1 Outline

In the second chapter of this work, we will introduce essential parts of the game theory. It
is necessary for understanding the main goal of this work. We will describe the outcomes
of the game, utility function, strategies of players and the concepts of Nash and Stackelberg
equilibria using those strategies. Then we will describe several game classes and existing
algorithms for solving different types of Stackelberg games, on which will we then focus.

1



2 CHAPTER 1. INTRODUCTION

In Chapter 3, we will focus on the problem of finding strong Stackelberg equilibrium in
general-sum sequential games. We will modify the existing program solving the correlated
version of this problem into a MILP that solves the task exactly, though being an NP-hard
problem. We will then focus on the dynamic approach to find SSE in sequential games. As
the reachable outcomes in Stackelberg games correspond to strategies of both players, such
that follower’s strategy is the best response to the leader’s strategy, and SSE corresponds to
the best of such outcomes (best for the leader), we will organize outcomes of the sub-games
into facets corresponding to strategies of the follower (in other words, a point in some facet
represents strategy of both leader and best response of the follower, and two different points
in the same facets represent two different strategies of the leader, which share the same best
response of the follower). We will call boundaries of these facets (points, where the best
response of the follower changes) extreme points. These facets from sub-games bear all the
necessary information to be transformed into a set of constraints, that we will transform
into a polytope form. Extreme points of this polytope form a new facet, which can be used
again at higher levels of the game-tree. In the final part of this chapter, we will present the
approximative algorithm, that provides a lower bound on the solution, while reducing the
memory complexity of the problem.

In the experiment part, we will focus on the precision of this approximative algorithm
based on the memory complexity and the randomness rate in utility function values for both
players.



Chapter 2

Game theory

Game theory is a mathematical discipline describing the interaction of two or more agents
solving a given problem (for the rest of the work referred to as the game) [4]. We will focus
on non-cooperative game theory, which means that every agent (often referred to as a player)
is only concerned about his outcome. The outcome of the game is typically modeled as a
utility function.

2.1 Utility and utility function

Formally, the utility for a player p is any complete transitive relation � over outcomes of
the game such that these outcomes can be partially ordered using � [4].

For the rest of this work, we will use only the following concept. A utility function
up : O 7→ R (where O is the set of possible outcomes of the game) evaluates every outcome
for player p with a real number. Player p then measures his utility using relation ≥ on these
numbers.

In non-cooperative game-theory, player p seeks to maximize his utility, that means to
reach such an outcome a, for which no reachable outcome b is strictly preferred to a. In
terms of a utility function, it means to reach a reachable outcome with the highest value
of utility function. Generally, this is not the outcome with the highest utility value of all
outcomes, because this outcome might not be reachable due to the actions of the other
players (that means that other players will play - in pursuit of maximizing their utility value
- such actions, that will make reaching this outcome impossible).

Utility values for the outcomes are usually represented by payoff matrix M , an n-
dimensional matrix, such that M(s1, ..., sn) is a tuple (u1(o), ..., un(o)), where o is outcome
of the game, in which player 1 played strategy s1, player 2 played s2, ... and player n played
strategy sn. This means, that outcome o yields utility value of u1(o) for player 1, u2(o) for
player 2 etc.

Example of a payoff matrix:
Let us assume for the rest of the work, that player 1’s actions are equivalent to rows and

player 2’s to columns. In this example, player 1 can play actions a or b, while player 2 can

3



4 CHAPTER 2. GAME THEORY

c d
a 2;3 1;0
b 0;1 1;1

play c or d. When player 1 plays a and 2 plays c, an outcome is reached, in which player 1
gets utility equal to 2 and player 2 gets utility equal to 3.

2.2 Actions and strategies

An action performed by a player in a state of the game advances the game to another state
(e.g., in chess, a state is a position of figures on a chess-board; an action - moving one piece
changes the position, creating another state). In some games, players act simultaneously
and the resulting state depends on the combination of actions of all players (rock, paper,
scissors). In other games, players choose actions sequentially and each action moves the game
to another state (chess). An action taken in a state of the game will definitely yield a new
state, but there are games, in which that state is not uniquely determined, instead of which
the actions lead to a probability distribution over several possible states (often referred to
as stochastic actions, or having the element of nature).

A strategy [4] of a player is the probability distribution over all possible actions for every
state of the game, in which this player takes action.

The simplest way to create a strategy is to choose one action for every state and always
play this action (with probability 1). This is called a pure strategy [4].

The more general concept means to choose the decision in every state randomly depending
on a probability distribution over all actions available in that state. This is called a mixed
strategy [4].

For every mixed strategy s of player p, we define support of s as the set of pure strategies,
that are played in s with non-zero probability. Let us denote Sp set of all possible strategies
for player p.

Set of strategies R = {s1, s2, ..., sn}, where sp is a strategy (mixed or pure) for player
p, is called a strategy profile. Let us denote the set R−p = {s1, s2, ..., sp−1, sp+1, ..., sn} as
strategy profile without player p’s strategy and the whole strategy profile as R = (R−p, sp).

Because strategies with a random element (mixed strategies or stochastic actions) may
yield different utility for a player every time they are played, we will need to consider this fact
in the utility function. For these strategies, we will define the value of the utility function
as:

up(sp, R−p) =
∑

o∈O
Psp,R−p(o) N(o) up(o)

where

• sp is strategy of player p, R−p is strategy profile without player p’s strategy.

• up(sp, R−p) is the utility function of player p, strategies sp and R−p

• O is set of possible outcomes
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• Psp,R−p(o) is the probability that outcome o will be reached when player p plays strategy
sp and all other players play their strategies from R−p

• C(o) is the probability that o will be reached due to the stochastic actions and it is
equal to the product of the probabilities of actions needed to reach o, assuming all
players played their actions corresponding to history of o.

• up(o) is value of utility function for outcome o and player p.

up(sp, R−p) is equal to the expected value of probability distribution over utilities of possible
outcomes given the mixed strategy sp and stochastic actions and is calculated as average
utility value yield by this strategy profile.

Consider player p, his strategy sp and strategy profile without p’s strategy
R−p = {s1, s2, ..., sp−1, sp+1, ...sn}. If for every (generally mixed) strategy of player p (denote
it s′p) is up(sp, S−p) ≥ up(s

′
p, R−p), we say that sp is player p’s best response to S−p [4].

Usually, the best response to a given set of strategies of other players is not unique.

Definition 2.2.1. Nash equilibrium Nash equilibrium is a strategy profile R = (s1, ..., sn) if
for every player p is sp p’s best response to R−p.

2.3 Stackelberg games

In Stackelberg games, we seek a different solution concept called Stackelberg equilibrium. It is
different in terms of computing strategies and possible outcomes. In the following paragraph,
we will describe the main difference between Stackelberg and other games. From now on,
we will consider the game of only two players (it can be extended to an n-player case; e.g.
see [7]).

We have so far assumed, that all the players have the same role in the game and the same
possibilities. For some problems, this is not exactly the desired assumption. In Stackelberg
games, one player is called the leader while the other one is called the follower. We will use
index 1 for the leader, 2 for the follower and we will denote S1 set of strategies of the leader
and similarly S2 strategies of the follower. Before the beginning of the game, the leader is
forced to commit himself to a strategy he will play, the follower observes this commitment
and plays his best response to the leader’s committed strategy. Therefore, the leader needs
to commit himself to such strategy, which will with it’s best response from the follower yield
the maximal utility for the leader. Such strategy along with the corresponding best response
of the follower is called Stackelberg equilibrium.

2.3.1 Strong Stackelberg equilibrium

We now define Strong Stackelberg equilibrium (SSE). We assume, that the follower prefers
outcome with the higher utility value of the leader over the outcome with lower utility,
assuming that both outcomes yield the same utility value for the follower. Formally, let us
denote K the set of all possible strategy profiles for both players (K = {(s1, s2)|s1 ∈ S1, s2 ∈
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S2}), K∗ ⊆ K the set of all strategy profiles, in which strategy of the follower is a best
response to leader’s strategy (K∗ = {(s1, s2)|s1 ∈ S1, s2 ∈ S2∗(s1)}, where S2∗(s1) ⊆ S2 is
set of follower’s best responses to s1), U1 : K 7→ R leader’s utility function.

Definition 2.3.1. Strong Stackelberg equilibrium Strong Stackelberg equilibrium is any
strategy profile s, such that s = argmax

s∈S∗
U1(s)

In other words, we find SSE as the strategy of the leader, which – when combined with
it’s best response played by the follower – yields the highest utility value for the leader.

The following example [3] shows, that Nash and Stackelberg equilibrium are generally
not the same. Given that both players move simultaneously, the only Nash equilibrium
will be reached - player 1 plays a and player 2 plays c. However, if player 1 is able to
commit himself to a strategy first, the Stackelberg equilibrium will be reached - player 1
plays a or b with probability 0.5 and 2 plays d. Note, that by committing himself to the
strategy corresponding to Nash equilibrium, the leader can force follower to reach the Nash
equilibrium. Therefore, in SSE, the leader will always get the same or greater utility value
than in Nash equilibrium.

c d
a 2;1 4;0
b 1;0 3;2

Since a mixed strategy s2 of the follower is a probability distribution over his pure
strategies and for a fixed leader’s strategy s1 the value of U1 is given by the same probability
distribution over U1 of s1 and those pure strategies, it is clear, that U1(s1, s2) will be always
lesser or equal than U1(s1, s

′
2), where s′2 is such pure strategy used in s2, that yields maximal

U1(s1, s
′
2). Therefore, at least one SSE exists (and it always exists [9]), such that follower

plays a pure strategy. That is very helpful when computing SSE, as the leader can consider
only follower’s pure strategies, for every such strategy find his own strategy so that this
strategy profile is element of S∗ and then select the one that yields maximal utility for him.

2.4 Game classification based on utility dependence

Since every player is trying to maximize his utility, it is clear, that player interactions and
behavior will reflect the dependencies between utilities of players in possible terminal states.
We will describe several common categories.

2.4.1 Constant-sum games

A Game of two players, in which exists a real constant q, such that for every outcome of the
game (terminal states of a game) the sum of utilities of both players is equal to q, we talk
about constant-sum game.



2.5. GAME CLASSIFICATION BASED ON REPRESENTATION 7

If q = 0, we talk about zero-sum game. The behavior of agents in zero-sum games is
strictly competitive. However, since adding a real constant to utility value of every outcome
doesn’t change the optimal strategy, every constant-sum game can be modified to a zero-sum
game and vice versa. Therefore, agents will behave strictly competitive in every general-sum
game.

2.4.2 General-sum games

A general-sum game is such game, in which there is no obvious dependence between utilities
of different players in different outcomes. We cannot presume cooperative or competitive
behavior of agents, only that they will maximize their utility.

2.5 Game classification based on representation

Representation of the game is a mathematical model, in which the game can be described
and solved. Obviously, more complicated games will need more complex and more difficult
model to represent them. We will describe several most frequently used representations.

2.5.1 Normal-form games

Normal-form game is the simplest form of game. In this model, every player chooses one
pure strategy available for him to play and once all players have made their actions, each of
them gains an utility depending on combination of those actions. Formally, game in Normal
form is a tuple (N,A, u), where

• N is a set of 2 players (agents), in this work indexed by p.

• A = A1×A2× ...×An is a space of actions, Ap refers to possible actions of p-th player.
Ap also corresponds to p’s set of pure strategies.

• u is a tuple (u1, u2, ..., un), where up : A 7→ R is a utility function of p-th player.

The algorithm for finding SSE in normal-form games [1] consists of computing one linear
program for every pure strategy of the follower. Every linear program computes a strategy
profile, in which strategy of the leader is optimal, such that the follower’s fixed pure strategy
is best response to strategy of the leader. From those strategy profiles computed by the
linear programs, the one with the highest expected utility of the leader is chosen.

2.5.2 Extensive form games

Extensive-form games are used to effectively model finite sequential games, allowing stochas-
tic actions, strategies of more than one action and imperfect observation of players. Formally,
the game in the extensive form is a tuple (N,H,Z,A, ρ, u, C, I) , where

• N is a set of 2 players (agents) indexed by p.
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• H is a finite set of states of the game, usually represented by a game tree. Each state
is unique and holds information about all actions taken by all players (plus Nature) so
far.

• Z ⊆ H, is a set of terminal states of the game. By reaching any terminal state, the
game ends and each player is given his utility value, depending on which terminal state
was reached.

• A is set of all actions. Mostly, we will care just about a subset of actions available for
a player acting in state h ∈ H. This subset will be denoted as A(h).

• ρ : H 7→ N ∪ {r} is a function, which assigns each state of the game a player acting in
it. r represents the element of Nature, meaning that if ρ(h) = r, one possible action
will be chosen in state h due to a known probability distribution over A(h).

• u is a tuple (u1, u2, ..., un), where up : Z 7→ R is a utility function of p-th player.

• C : H 7→ [0, 1] is a function assigning each h ∈ H a probability that state h will be
reached, assuming that all players will choose actions corresponding to history of h.
The value of C(h) is a product of probabilities of actions taken by element of nature
in every state in history of h needed to reach h.

• I is a tuple (I1, I2, ...., In) set of n sets of states used to model imperfect information
in the game. Set Ip represents information that player p has in the following way:
States of the game H are divided into sets Ipi , such that in each set Ipi , there is at
least one element of H and every h ∈ H belongs to exactly 1 set Ipi . For each state in
set Ipi , player is not able to distinguish this state from any other state in Ipi . In other
words, set Ipi includes all states, whose history the player p cannot distinguish due to
imperfect observation.

A pure strategy of player p in an extensive-form game corresponds to assigning one action
a ∈ A(h) to every state h ∈ H, in which player p takes actions, such that a will be played
every time h is reached. The same action is assigned to every state of the same information
set.

Given a game in form of the game-tree with root in node n, we call sub-tree with root in
node ch, where ch is the child of n in the game-tree, a sub-game of n given by ch. We will
also call the set of all sub-games given by children of n sub-games of n.

Example of Stackelberg game in the extensive form is the Transition game, where the
follower must travel from one side of the game-plan to the other while avoiding the leader,
which tries to catch the follower.

2.5.3 Extensive-form games with perfect information and concurrent moves

We will restrict only on games with perfect information, so players will have perfect obser-
vation. Therefore, every information set contains exactly one node and we may omit the
information sets completely. We will also restrict to such games, in which both players make
their actions simultaneously, which means, that in the game tree, child of n is given by pair
of actions (one for every player)



2.5. GAME CLASSIFICATION BASED ON REPRESENTATION 9

We will shortly describe the existing algorithm for finding SSE in finite sequential games
with perfect information and concurrent moves [11] as we aim to extend this algorithm. Let
us denote N the set of all nodes in the game tree, Z the set of leafs of this tree, q(n) the
set of all children of node n ∈ N \ Z ,Ul(n) and Uf (n) the values of utility function for
the leader and the follower in leaf n from Z, Al(n) and Af (n) the action sets of leader and
follower in node n from N \ Z, q(n, al, af ) the child of node n reachable by action profile
(al, af ), Um(n) the minmax value of the follower of the sub-game given by node n. Further,
considering chance nodes in the game-tree, we denote C(n, a) the probability that action a
is played in chance node n, h(n) the set of players making a move in the n (it will always
be {c} for chance nodes and {1, 2} for all other nodes). The existing algorithm consists of
linear program in a following form:

max
p,v

∑
n∈Z

p(n) Ul(n) (1)

s.t.
p(r) = 1 (2)

0 ≤ p(n) ≤ 1 ∀n ∈ N (3)

p(n) =
∑

n′∈q(n)

p(n′) ∀n ∈ N \ Z, h(n) = {1, 2} (4)

p(q(n, a)) = p(n)C(n, a) ∀n ∈ N \ Z ∀a ∈ Ac(n) , h(n) = {c} (5)

v(n) = p(n)Uf (n) ∀n ∈ Z (6)

v(n) =
∑

n′∈q(n)

v(n′) ∀n ∈ N \ Z (7)

∑
al∈Al(n)

v(q(n, al, af1)) ≥
∑

al∈Al(n)

p(q(n, al, af1))Um(q(n, al, af2))

∀n ∈ N \ Z, af1 , af2 ∈ A2(n) (8)

Variables p(n) represent the probability that node n is reached, while variables v(n)
represent expected follower’s utility in node n.

The objective function (1) we are maximizing corresponds to sum of utilities in the
leafs multiplied by the probability, that that leaf is reached. Constraints (3) bound the
probability variables to be non-negative, (2) ensures that the root is always reached, (4) and
(5) are the network-flow constraints for nodes, in which both players take the action, and for
chance node respectively. Constraint (6) defines the expected utility variables of the follower
in leafs, while (7) sets these variables in other nodes to be equal to sum of values in it’s
children. Constraint (9) forces the follower to play his best response to leader’s strategy. By
formulating that constraint for every pair of follower’s actions in every node, it is ensured
that the expected utility after playing that action is highest among possible actions, or
the probability of that action must be zero (because assuming that it will be played with
positive probability p would mean that there is another child with higher expected utility,
which played with probability p would yield higher value).
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Chapter 3

Computing Strong Stackelberg
equilibrium in Sequential games

We will focus on Stackelberg general-sum extensive form games with perfect information and
concurrent moves for the rest of this work. In the first part of this chapter, we will describe
computing of SSE for sequential games using a Mixed integer linear program (MILP) for the
whole game. In the second part, we will do the same using a dynamic approach
In the third and final part of this Chapter, we describe a heuristic algorithm, that finds a
lower bound for the utility value of the leader, by introducing pruning of some solutions.

3.1 MILP representation

As the baseline algorithm to compare the results to, we use the modified LP described in
the previous chapter. This LP utilizes chance nodes, which do not need, as we focus on
games without them, therefore we can omit them as well as functions C(n, a) and h(n) (as
in each state of the game both players make a move). This removes constraint (5) completely.
However, the previous LP allows the follower to use mixed strategies, which is not desired
in our class of games. Therefore we will transform this LP into a MILP (Mixed integer
linear program) by adding the constraints using binary variables to ensure that follower
always chooses a pure strategy as his best response. Similarly to previous LP, we introduce
following variables: p(n) representing a probability that node n from N will be reached, v(n)
representing expected follower’s utility in node n, and we further introduce binary variables
b(n, af ), which represent, if the action af from Af (n) is the best response of the follower in
node n. The MILP has the following form.

max
p,v

∑
n∈Z

p(n) Ul(n) (10)

s.t.
0 ≤ p(n) ≤ 1 ∀n ∈ N (11)

p(r) = 1 (12)

v(n) = p(n)Uf (n) ∀n ∈ Z (13)

11
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p(n) =
∑

n′∈q(n)

p(n′) ∀n ∈ N \ Z (14)

v(n) =
∑

n′∈q(n)

v(n′) ∀n ∈ N \ Z (15)

∑
al∈Al(n)

v(q(n, al, af1)) ≥
∑

al∈Al(n)

p(q(n, al, af1))Um(q(n, al, af2))

∀n ∈ N \ Z, af1 , af2 ∈ A2(n) (16)

b(n, af ) ∈ {0, 1} ∀n ∈ N \ Z, af ∈ Af (n) (17)

p(q(n, al, af )) ≤ b(n, af ) ∀n ∈ N \ Z, al ∈ Al(n), af ∈ Af (n) (18)

∑
af∈Af (n)

b(n, af ) = 1 ∀n ∈ N \ Z (19)

We are maximizing objective function (10), which corresponds to leader’s utility values
in the outcomes of the game, and constraints (11), (12) and (14) will force values of p(n) to
satisfy the constraints of probability distribution, (13), (15) restrict values of variables v to
correspond to the utility of the follower while (16) forces the follower to play the best response
to the strategy of the leader, similarly to the algorithm described above. Constraints (17),
(18), (19) utilize binary variables for follower’s actions, forcing him to play only one action
in each node by ensuring that if there are two child nodes reached with non-zero probability,
they are reached through the same combination of actions.

Note that while in the MILP it is stated that the binary constraints are used for every
node, in the implementation, it is used only in those nodes where it is really needed (See
algorithm 1). This is done by solving the algorithm iteratively and adding the constraints
to every node where the follower randomizes between actions, until there are no such nodes.
Only the time of the last run of the MILP is taken into account, therefore we know that only
the minimal needed number of these constraints will be used. This extension of the existing
algorithm using correlated strategies to find SSE in this class of games [8], which is current
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State of the Art. That is why we chose it as baseline algorithm.

Algorithm 1: Baseline algorithm for Solving the Extensive form Stackelberg games
with perfect information and concurrent moves
1 function ComputeLP (root);
Input : Node root
Output: solved LP

2 LP = formLPwithouBinaryVariables();
3 queue.add(root);
4 while queue is not empty do
5 forall Node n in queue do
6 checkPureStrategy(n, queue, LP );
7 end
8 end
9

10

11 function checkPureStrategy (n, queue, LP );
Input : Node n – node for which the strategy should be checked
Input : queue – queue of nodes yet to be checked
Input : LP

12 if isLeaf(n) then
13 queue.remove(n);
14 else
15 A←− n.getFollowerActions();
16 A.filterOutZeroProbbabilities(LP );
17 if |A| > 1 then
18 forall followerAction fa ∈ A do
19 LP .addBinaryVariable(fa);
20 LP .addBinaryVariableToNodeConstraint(fa, n);
21 end
22 else
23 queue.remove(n);
24 S ←− n.getSuccessors();
25 queue.addAll(S);
26 forall Node succ ∈ S do
27 checkPureStrategy(succ, queue, LP );
28 end
29 end
30 end

3.2 Dynamic approach

The main idea of this work is to use results computed in sub-games to find the Stackelberg
equilibrium. Nash equilibrium of the game given by some node in game-tree can always be
computed from the set of Nash equilibria of sub-games given by children of this node (so no
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strategy profiles except the Nash equilibrium will ever be needed in the node’s predecessor).
No such assumption holds for Stackelberg equilibrium, therefore we must represent the result
computed in sub-games in a compact way, in which no information about that sub-game is
lost.

3.2.1 Sub-game representation

To hold information about sub-games necessary to compute SSE, we represent every node
in the game-tree as the set of facets, where each facet represents a strategy of the follower in
the sub-game given by this node and all the strategies of the leader, to which this follower’s
strategy is the best response. Borders of this facets correspond to probability distribution
over the leader’s actions (which we will denote as leader’s simplex), at which the follower’s
best response changes. We will call those borders extreme points of that facet. In every
extreme point, the important information, which can be used to construct solution of the
parent node in the game tree, are utility values of that extreme point for both players,
leader’s simplex in the first step of the strategy represented by that extreme point (which is
not needed for the computation of the value, just for reconstructing of the optimal strategy,
to which the leader should commit to) and which extreme points belong to the same facet
(in other words, which extreme points belong to the strategies, to which the best response
of the follower is the same). The leafs of the tree are represented as the facet containing a
single point, which is assigned the same utilities as the leaf.

3.2.2 Using the representation of sub-games to form a solution

Now that we have the facets and extreme points for the leafs, we will focus on creating
the set of facets in the node of the tree, for which the facets of all it’s children are known.
Because facets need to reflect strategy of the follower throughout the tree, for every action
af of the follower and set of child nodes Qaf , which can be reached by action af , new facet
will be constructed for every combination of facets such that there is exactly one facet from
each child node from the set Qaf . Selecting one facet in a sub-game corresponds to the
leader committing himself to strategy that leads the follower to play strategy represented by
this facet in this sub-game. The leader’s simplex in that sub-game can be seen as a linear
combination of strategies in the extreme points of this facet, and the utility values of both
players in such case can be computed by multiplying the utility values of those extreme
points by the coefficients given by this linear combination. By taking into account every
combination of facets in the sub-games corresponding to the same action of the follower (we
need to fix his strategy as the best response to create new facet) and all possible actions
of the leader, we can form a new facet representing follower’s strategy (the fixed action in
this node and the facet combination bears all the information about sub-games) without loss
of any information. Formally, given node n ∈ N \ Z, for which the set of facets is already
computed in all of his children, let us denote Af (n) the set of follower’s actions available in
n, similarly Al(n) set of leader’s actions in n, q(al, af ) child node of n reachable by action
profile (al, af ) and F (al, af ) set of facets of this child node. Given action af from Af , let
us consider a combination of facets s, such that for every action al from Al there is exactly
1 facet from F (al, af ) in s denoted f(al, af ). We will denote the set of all such possible
combinations S(af ). Furthermore, let us denote E(f) the set of extreme points of facet
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f and Mf (al, af ) the minimum utility that the follower will surely get in q(al, af ). Given
following constraints, we form an LP for every combination of facets s from S(af ). For this
LP, we introduce variables p(al), which represent a probability, that the leader plays action
al from Al, and variables c(e), which represent the contribution of extreme point e of some
facet f to the utility of both players (given a point at the facet f(al) from S(af ), values of
these variables of it’s extreme points represent a point at this facet as a linear combination
of it’s extreme points, multiplied by probability p(al)). These variables are used to form a
new solution based on extreme points from sub-games. Extreme points of the polytope of
this LP correspond to extreme points of the desired facet and the LP has following form:

0 ≤ p(al) ≤ 1 ∀al ∈ Al(n) (20)∑
al∈Al(n)

p(al) = 1 (21)

p(al) =
∑

e∈E(f(al,af ))

c(e) ∀al ∈ Al (22)

0 ≤ c(e) ≤ 1 ∀al ∈ Al(n), e ∈ E(f(al, af )) (23)∑
al∈Al(n)

p(al)Mf (al, af1)) ≤
∑

al∈Al(n)

∑
e∈E(f(al,af ))

c(e)Uf (e))

∀af1 ∈ Af (n) \ {af} (24)

Constraints (20) and (21) ensure that variables p(al) satisfy constraints of probability
distribution. Constraints (22) and (23) represent a possible strategies in subgames. Given
that and constraint (24) ensures that the follower is playing his best response. There is no
objective function, as we need all extreme points of this polytope, not just one.

We used lrslib [10] to transform an LP in form of those constraints into polytope form
and reading the extreme points from that form.

3.2.3 Extreme points pruning

Number of facets and extreme points grows exponentially due to the depth of the tree. Not
all the extreme points (and possibly facets) are however needed, some strategies are just
dominated and can be pruned. In terms of those extreme points, let us consider the set of
all extreme points of all facets, for which the best response of the follower in the computed
node (just one action, not considering children) is the same. We will denote this set D. In
terms of simplex, any linear combination of those points is reachable for the leader (because
the best response of the follower will not change) as long as it doesn’t lower the follower’s
utility, therefore if we find an extreme point E1 ∈ D such that there is a linear combination
of two other points from D that offers the same or better utility to both players, E1 can be
pruned. If we use follower’s and leader’s utility of extreme points from D as the coordinates
and plot those points into a graph along with their linear combinations, only points from the
upper envelope can be preserved without loss of any possible solution to the whole problem
(See Figure 3.1.). If all extreme points of an facet are pruned, that facet is pruned as well.
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Figure 3.1: Example of extreme points pruning
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Algorithm 2: Baseline algorithm for Solving the Extensive form Stackelberg games
with perfect information and concurrent moves
1 function DynamicApproach (maxDepth,NodesByLevel);
Input : int maxDepth - maximal depth of the Tree
Input : NodesByLevel[][] - all nodes in the game-tree grouped by the their depth in

the tree
Output: Value of the game

2 i←− maxDepth;
3 while i ≥ 0 do
4 NodesAtLevel←− NodesByLevel[i];
5 forall Node n ∈ NodesAtLevel do
6 if isLeaf(n) then
7 E ←− createExtremePoint(n.getLeadersUtility(), n.getFollowersUtility());
8 n.createFacet({E});
9 else

10 A←− n.getFollowerActions();
11 forall followerAction fa ∈ A do
12 FacetSetList F ;
13 S ←− n.getAllSuccessorsOfAction(fa);
14 forall Node n ∈ S do
15 F .addFacetSet(S.getFacets()).;
16 end
17 C ←− F .getOneFacetFromEachSet();
18 forall FacetCombination c ∈ C do
19 LP ←− createLPfromFacets(c);
20 Points←− LP .transformToPolytope().getExtremePoints();
21 Points.fillUtilityValues();
22 n.createFacet(Points);
23 end
24 n.prunePoints();
25 n.removeEmptyFacets();
26 end
27 end
28 end
29 end
30 return root.getBestExtremePoint().getLeaderutility();

Example: Now we will show the simple example of how the LPs are created. Let
us consider a game in node n, in which Al(n) = {a, b}, Af (n) = {c, d}. We will denote
q(n, a, c) = s1, q(n, b, c) = s2, q(n, a, d) = s3 and q(n, b, d) = s4. There will be 7 facets and
10 extreme points in this example, as depicted in 3.1.

As Uf values of a sub-tree correspond to the minimal utility the follower can get in that
sub-tree, Uf (s1) = −1, Uf (s2) = 0, Uf (s3) = −2 and Uf (s4) = −4. Because the follower can
play 2 actions, there will be just one best response constraint in every LP.

Now, we will consider action c to be follower’s best response and create a linear program



18CHAPTER 3. COMPUTING STRONG STACKELBERG EQUILIBRIUM IN SEQUENTIAL GAMES

sub-tree Facet Extreme point leader’s utility value follower’s utility value
s1 f1 e1 0 1
s1 f1 e2 -1 2
s1 f2 e3 1 -1
s2 f3 e4 1 1
s2 f4 e5 2 1
s2 f4 e6 3 0
s3 f5 e7 2 -2
s4 f6 e8 -1 -3
s4 f7 e9 -2 -4
s4 f7 e10 -1 2

Table 3.1: Example: utility values of extreme points along with their membership to facets
and sub-trees

for each of 4 facet combinations from sub-trees s1 and s2. Starting with facets f1 and f3,
their LP will have following form:

0 ≤ p(a) ≤ 1

0 ≤ p(b) ≤ 1

0 ≤ c(e1) ≤ 1

0 ≤ c(e2) ≤ 1

0 ≤ c(e4) ≤ 1

p(a) + p(b) = 1

p(a) = c(e1) + c(e2)

p(b) = c(e4)

1 c(e1) + 2 c(e2) + 1 c(e4) ≥ −2 p(a)− 4 p(b)

This will produce polytope with 3 extreme points, first for p(a) = c(e1) = 1, second for
p(a) = c(e2) = 1 and the third for p(b) = c(e4) = 1, (which correspond to leader playing
one of his pure strategies). Therefore, newly generated facet f(f1, f3) will have 3 extreme
points with utility values of both players equal to utility values of points e1, e2 and e4 (for
the summary of which extreme points and facets were created, see Table 3.2).

Now we move to LP for combination of facets f1 and f4. The LP will have following
form:

0 ≤ p(a) ≤ 1

0 ≤ p(b) ≤ 1

0 ≤ c(e1) ≤ 1

0 ≤ c(e2) ≤ 1
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0 ≤ c(e5) ≤ 1

0 ≤ c(e6) ≤ 1

p(a) + p(b) = 1

p(a) = c(e1) + c(e2)

p(b) = c(e5) + c(e6)

1 c(e1) + 2 c(e2) + 1 c(e5) + 0 c(e6) ≥ −2 p(a)− 4 p(b)

This will produce polytope with 4 extreme points, p(a) = c(e1) = 1, p(a) = c(e2) = 1,
p(b) = c(e5) = 1 and p(b) = c(e6) = 1, so this LP will also just copy utility values of all four
extreme points e1, e2, e5 and e6 to the new facet f(f1, f4).

We move combination of facets f2 and f3.

0 ≤ p(a) ≤ 1

0 ≤ p(b) ≤ 1

0 ≤ c(e3) ≤ 1

0 ≤ c(e4) ≤ 1

p(a) + p(b) = 1

p(a) = c(e3)

p(b) = c(e4)

−1 c(e3) + 1 c(e4) ≥ −2 p(a)− 4 p(b)

The Polytope of this LP will have just 2 extreme points, again corresponding to pure
strategies of the leader. So new facet f(f2, f3) will contain 2 extreme points.

The final combination of facets for action c as best response is the combination of facets
f2 and f4.

0 ≤ p(a) ≤ 1

0 ≤ p(b) ≤ 1

0 ≤ c(e3) ≤ 1

0 ≤ c(e5) ≤ 1

0 ≤ c(e6) ≤ 1

p(a) + p(b) = 1

p(a) = c(e3)

p(b) = c(e5) + c(e6)

−1 c(e3) + 1 c(e5) + 0 c(e6) ≥ −2 p(a)− 4 p(b)
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This will produce polytope with 3 extreme points, once again just copying utility values
of extreme points e3, e5 and e6 to new extreme points in facet f(f2, f4).

That is all for the action c of the follower, so now we will move to LPs for action d being
the best response of the follower. We start by combining facets f5 and f6, which will create
a following LP:

0 ≤ p(a) ≤ 1

0 ≤ p(b) ≤ 1

0 ≤ c(e7) ≤ 1

0 ≤ c(e8) ≤ 1

p(a) + p(b) = 1

p(a) = c(e7)

p(b) = c(e8)

−2 c(e7)− 3 c(e8) ≥ −1 p(a) + 1 p(b)

This LP is clearly infeasible, which means that this combination of facets will never
correspond to any best response of the follower. No facet or extreme points will be generated
by this LP, so we move to the last combination of facets, f5 and f7:

0 ≤ p(a) ≤ 1

0 ≤ p(b) ≤ 1

0 ≤ c(e7) ≤ 1

0 ≤ c(e9) ≤ 1

0 ≤ c(e10) ≤ 1

p(a) + p(b) = 1

p(a) = c(e7)

p(b) = c(e9) + c(e10)

−2 c(e7)− 4 c(e9) + 2 c(e10) ≥ −1 p(a) + 1 p(b)

This LP will yield 3 extreme points for the new facet f(f5, f7), one of which just copies
utilities values of extreme point, e10, but second one corresponds to values of p(b) = 1, c(e9) =
1/3, c(e10) = 2/3 which will create new extreme point e11 with Ul(e11) = 1/3 (−2) +
2/3 (−1) = −4/3 and Uf (e11) = 1/3 (−4) + 2/3 (2) = 0. The last extreme point e12
corresponds to p(a) = 2/3, p(b) = 1/3, c(e8) = 2/3, c(e10) = 1/3, therefore Ul(e12) =
2/3 (2) + 1/3 (−1) = 1 and Uf (e12) = 2/3 (−2) + 1/3 (2) = −2/3.

Now that all extreme points are calculated, begins the pruning phase. For action c, all
the extreme points were just copied twice into new facets, therefore one copy of each will
surely get pruned. Also, since extreme point e5 fares better (it has better leader’s utility
value for the sam follower’s utility value) than points e1 and e4, all copies of those two points
will be pruned as well. Facet f(f2, f4) will be empty after the pruning and will be removed.
For action d, linear combination of copy of point e10 and e12 (with coefficients 3/4 and 1/4)
fares better than the point e11, therefore e11 will be pruned from the facet f(f5, f7). The
solution (4 facets, 6 extreme points) after the pruning is written in Table 3.3.
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follower’s action Facet leader’s utility value follower’s utility value
c f(f1, f3) 0 1
c f(f1, f3) -1 2
c f(f1, f3) 1 1
c f(f1, f4) 0 1
c f(f1, f4) -1 2
c f(f1, f4) 2 1
c f(f1, f4) 3 0
c f(f2, f3) 1 -1
c f(f2, f3) 1 1
c f(f2, f4) 1 -1
c f(f2, f4) 2 1
c f(f2, f4) 3 0
d f(f5, f7) 1 -2/3
d f(f5, f7) -4/3 0
d f(f5, f7) -1 2

Table 3.2: Example: facets and extreme points generated by the LPs

follower’s action Facet leader’s utility value follower’s utility value
c f(f1, f3) -1 2
c f(f1, f4) 2 1
c f(f1, f4) 3 0
c f(f2, f3) 1 -1
d f(f5, f7) 1 -2/3
d f(f5, f7) -1 2

Table 3.3: Example: Generated facets and extreme points after the pruning phase
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Figure 3.2: Example: visualization of pruning phase for follower’s action c

3.3 Computing the lower bound on the value of Stackelberg
equilibrium

In this part, we present an heuristic algorithm, which provides a lower bound on the value
of the Stackelberg game. The main idea is to use the basic dynamic algorithm as described
above, but make the pruning phase more aggressive. Pruning more extreme points of course
brings the risk of pruning some points that could be used in the parent nodes to force the
follower to play some strategy, that would benefit the leader.

The pruning in this algorithm will only preserve fixed number k (given to the algorithm
as parameter) points with the best utility of the leader for each action af of the follower. In
the exact dynamic algorithm, number of facets and therefore also extreme points can grow
exponentially in the higher levels of the game-tree (as the facet represents a strategy of the
follower throughout the game, and number of those grows exponentially). The main goal of
this approach is to prevent that exponential growth of the number of facets, as the memory
complexity might be problematic to deal with for the exact dynamic algorithm.

Note that when we restrict the number of extreme points to k, we restrict also number
of facets in each sub-game given by node n to k|Af (n)|, as every facet must contain at
least one extreme point, otherwise it’s pruned. This removes the exponential size of the
problem. Therefore, even for larger k, the memory complexity should much lower for the
approximative algorithm than for the exact one in large games.
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Figure 3.3: Example: visualization of pruning phase for follower’s action d

Also, note that the approximative algorithm prunes only the strategy space of the leader,
as there are some points left for every action of the follower (and therefore, follower’s strat-
egy space is not affected by the pruning). That means, that the algorithm will always be
pessimistic. Hence, we have the algorithm that provides the lower bound on the value of the
leader in extensive form games with perfect information and concurrent moves, that should
address the biggest problem with the exact algorithm.

While the memory complexity of this algorithm is bound to be much better than that of
it’s exact form, there is no reasonable estimate on how precise lower bound will the algorithm
provide or how much faster will it be compared to the exact algorithm. However, the ability
to select k should provide some trade-off options between those criteria.
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Chapter 4

Experiments

In this section, we will first describe the game used for testing of described algorithms, present
results of experiments and then compare those results to examine scalability and precision of
algorithms. We will first focus on testing of the correctness of results provided by the exact
algorithm as well as the performance of both exact and approximative algorithms, therefore
we will compare it’s results to results of the baseline algorithm. In this setting, both utility
values and all algorithms are deterministic, therefore every experiment was run just once,
the difference in computation time between two runs of the same algorithm is marginal. We
will then focus on the games with randomly generated utility to better estimate the tightness
of lower-bound provided by the approximative algorithm and it’s comparison to the exact
form in terms of memory complexity. The experiments were run on standard PC, CPU: 4x
Intel(R) Core(TM) i7-4710MQ 2.50Ghz, 16GB RAM, C++ compiled with GCC on 64-bit
Windows 8.1.

4.1 Pursuit-evasion Game

Pursuit-evasion game [6] (see Figure 4.1) is a game of two players (pursuer and evader, in
this case the evader is the follower and the pursuer is the leader) moving in a graph, in our
case represented as a square grid (possible actions in every node are: move 1 field in one of
4 directions, if possible). The game ends after specified amount of actions have been played
by each player or if both players are at the same position (the evader is caught). Starting
positions of players are known to both of them and they get complete information about
current whereabouts after each tuple of steps (concurrent move) is played. The pursuer’s
goal is to catch the evader, in which case he is awarded positive utility, though he gets a
large penalty if he fails to catch the pursuer in the specified amount of steps. The pursuer’s
goal is to escape capture. If the follower is caught, the leader is awarded a positive utility,
while the follower gets negative utility. If the follower escapes the leader and is not caught
in the specified amount of steps, he is awarded positive utility while the leader gets negative
utility. The leader also gets small penalty to the utility for every step he makes, therefore
he prefers to catch the follower in least amount of steps possible.
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Algorithm 2× 2× 5 2× 2× 6 2× 3× 5 2× 3× 6 2× 3× 7 3× 3× 5 3× 3× 6

Baseline 0.004 s 0.005 s 2.153 s 4.886 s N/A N/A N/A
Dynamic 0.208 s 0.343 s 2.881 s 7.406 s 89.42 s 15.35 s 96.15 s
Dynamic 2 0.123 s 0.243 s 2.455 s 6.971 s 62.73 s 13.26 s 71.13 s
Dynamic 3 0.157 s 0.274 s 2.617 s 7.000 s 67.51 s 14.19 s 78.84 s
Dynamic 4 0.194 s 0.309 s 2.755 s 7.049 s 72.33 s 14.84 s 81.36 s

Table 4.1: Dependence of the computation time on the game size for all algorithms

Algorithm 2× 2× 5 2× 2× 6 2× 3× 5 2× 3× 6 2× 3× 7 3× 3× 5 3× 3× 6

Baseline 8.72 9.242 6.756 7.978 N/A N/A N/A
Dynamic 8.72 9.242 6.756 7.978 8.725 4 3.75
Dynamic 2 8.516 8.777 5.904 6.887 7.421 4 3.247
Dynamic 3 8.533 8.868 6.756 7.487 8.348 4 3.75
Dynamic 4 8.72 8.899 6.756 7.978 8.725 4 3.75

Table 4.2: Dependence of value of the utility value of the leader provided by the algorithms
on the game size

4.2 Deterministic utility

In the first setup, we tested the game on the grid of different sizes with the leader starting
in the left bottom corner (coordinates [0,0]) and the follower starting one-step upwards and
to the right of the leader (coordinates [1,1]). If the follower is caught, he gets utility of -8,
while the leader is awarded utility of 10. If the follower escapes, leader gets utility of -10
and the follower utility of 8. The penalty for each step is 1 for the leader. Results of these
tests are shown in tables 4.1 and 4.2, where in the rows are the computation time and the
value of the game provided by algorithms (name Dynamic k is used for the approximative
algorithm using k best Extreme points for every action of the follower), while in columns
is the size of the game (in form x × y × s, where x, y represent size of the grid and s the
maximum number of steps. The approximative algorithm was tested for k ∈ {2, 3, 4}. N/A
value means that the algorithm was terminated after 2 hours.

4.3 Randomly generated utility

In one of the experimental settings, both players were awarded small positive or negative
amount of utility in each step. It was mainly used to determine how precise values the lower
bound algorithm provides in the setup with many different extreme points and facets, as the
previous test cases contained many extreme points with the same utility values in different
sub-games.

In our setup, the random utility in each leaf was generated uniformly in range from -3
to 3 for the leader and from -2 to 2 for the follower. As the values of the game differed in
consecutive runs of the algorithm, the measured criteria was the average percentage difference
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Algorithm 2× 2× 2 2× 2× 3 2× 2× 4 2× 2× 5 2× 2× 6 2× 2× 7

Dynamic 2 0.76 % 1.31 % 2.13 % 3.47 % 4.67 % 7.89 %
Dynamic 3 0.71 % 1.14 % 1.29 % 2.73 % 3.69 % 4.85 %
Dynamic 4 0 % 0.45 % 0.72 % 1.76 % 3.52 % 3.70 %

Table 4.3: Dependence of value of the utility value of the leader provided by the algorithms
on the game size

Algorithm 2× 2× 5 2× 2× 6 2× 3× 5 2× 3× 6 2× 3× 7 3× 3× 5

Dynamic 527 1 092 9 322 36 229 126 404 57 130
Dynamic 2 390 800 5 273 17 304 47 113 30 184
Dynamic 3 440 920 6 129 20 394 47 934 47 934
Dynamic 4 475 996 6 134 22 046 58 946 58 946

Table 4.4: Dependence of the number of generated extreme points on the size of the game-tree

between value of the game (utility value of the leader in SSE) and the solution found by the
approximative algorithm over 30 runs. The results are depicted in Table 4.3 and Figure 4.3.

The other criterion which we focused on in this setup was the memory complexity of both
the exact dynamic algorithm and it’s approximative variants based on how many extreme
points they generate and prune during it’s run. We used the average values over only 10
runs, and the variance of results was much smaller than in the case of measuring of utility
values. the results are rounded up to whole numbers, and can be seen in Table 4.4 and
Figure 4.1. As for pruning of the points, results are depicted in Table 4.5 and Figure 4.2.

Algorithm 2× 2× 5 2× 2× 6 2× 3× 5 2× 3× 6 2× 3× 7 3× 3× 5

Dynamic 143 208 2 224 5 919 27 315 7 301
Dynamic 2 96 176 728 2 818 4 978 4 471
Dynamic 3 107 227 915 3 323 5 989 5 180
Dynamic 4 120 258 1 063 3 575 7 806 5 581

Table 4.5: Dependence of the number of pruned extreme points on the size of the game-tree
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Figure 4.1: Dependence of the number of generated extreme points on the size of the game-
tree in the logarithmic scale
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Figure 4.2: Dependence of the number of pruned extreme points on the size of the game-tree
in the logarithmic scale
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Figure 4.3: Dependence of the average error of the approximative algorithms based on the
game size in the random setting



Chapter 5

Results

The experiments show that the baseline algorithm does not scale well into large problems.
The exact dynamic algorithm works accurately and can solve larger games than the baseline
algorithm.

Approximative algorithm provides trade-off between the computation time and the tight-
ness of the lower-bound on the value of the game. While for k = 2 the algorithm was signif-
icantly faster than the exact algorithm, it provided very imprecise bound on the solution of
larger games, especially in the setting with the randomized utility values. On the other hand,
for k = 4, the algorithm didn’t differ from the exact one much in terms of both computational
time and values provided.

Larger problems were not tested, as we represented the game as the whole game-tree (to
be able to compare the dynamic algorithm with the baseline) and we encountered memory
problems during the larger instances. Also, most of the computation time of the dynamic
algorithms on the larger problems were memory operations, especially the approximative
algorithm with k = 2 spent only about 10% of the computation time by creating the facets
and pruning extreme points. If more fitting representation of the game were used, the
algorithms would be probably much faster and it would be possible to run the tests on even
bigger instances of the game.

Even with the memory problems, the dynamic algorithm computed value of the game
for the game-tree containing more than 75 000 nodes in about 96 seconds.

In terms of memory complexity based the number of extreme points created, the exact
algorithm produced more than twice the number of extreme points compared to the approx-
imative variant, which was expected, yet it didn’t affect the computation time that much,
as it wasn’t significantly slower than it’s heuristic counterparts. It might still be problem in
even larger games.

On the other hand, the approximative algorithm with k = 4 had an error of about 4%
even on larger problems, while computing significantly less extreme points. It seems that
the possibility of trade-off between memory complexity of this algorithm and the tightness
of it’s lower-bound on the solution is working quite well in problems consisting of tens of
thousands game-tree nodes.

What stands out is that differences between approximative algorithms for different k in
terms of generated and pruned points are rather low. Of course, the difference is still visible,
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but not as much as in terms of computational error. Based on this observation, it seems
that choosing higher k might significantly improve the tightness of the solution found at the
cost of moderately increased memory complexity.



Chapter 6

Conclusion

Strong Stackelberg equilibrium (SSE) is a solution concept, in which one player commits
himself to play an optimal strategy, such that the other player observes this committed
strategy and plays his best response to it. This solution concept is used in many security
applications and therefore it has been given lot of focus in the past. While there exists an
efficient algorithm for finding SSE in finite sequential games with perfect information and
concurrent moves, it cannot be applied to games with infinite horizon.

We focused on finding SSE in such games using the dynamic approach, as that approach
can also solve the games with infinite horizon. That was accomplished by representing the
solution of the sub-games with set of facets corresponding to strategy profiles sharing the
same strategy of the follower (best response to the strategy that the leader has committed
to).

We present the exact dynamic algorithm, that finds the Strong Stackelberg Equilibrium
and scales into large problems better than the state-of-the-art algorithms for this class of
games. We also present approximative version of this algorithm, which provides trade-off
between computation complexity and tightness of lower bound on the value of the game.

We encountered memory issues while running tests on larger games, which is caused by
comparing baseline and dynamic algorithms on the whole game-tree.

In future work, we will focus on representation of the game in more fitting way for
the dynamic algorithm, better utilizing it’s advantages, and allowing to solve games with
potentially infinite horizon.
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Appendix A

Contents of CD

File Stackelberg.zip contains a C++ project containing classes used for computing SSE in
Extensive form games with perfect information and concurrent moves (folder ConsoleAppli-
cation1). It also contains folder with lrslib and Gurobi libraries, which need to be linked
into the project to function properly.

Classes related to this work:

• ConsoleApplication1.ConsoleApplication1.ConsoleApplication1.cpp - main class used
for creation of the game and calling the algorithms.

• ConsoleApplication1.ConsoleApplication1.Game.cpp - class containing both algorithms.

• ConsoleApplication1.ConsoleApplication1.Game.h - class containing game specifica-
tion, such as grid size, number of steps, or if the utility values should be randomized.

• ConsoleApplication1.ConsoleApplication1.Facet.cpp - class representing the facet, con-
taining set of extreme points.

• ConsoleApplication1.ConsoleApplication1.ExtremePoint.cpp - class representing the
extreme point.

• ConsoleApplication1.ConsoleApplication1.State.cpp - class representing the state of
the game-plan (coordinates of both players and their possible actions).

• ConsoleApplication1.ConsoleApplication1.SubTree.cpp - class representing the solu-
tion of the sub-game. It contains set of facets and the pruning algorithm.

• ConsoleApplication1.ConsoleApplication1.TreeNode.cpp - class representing a node in
the game-tree.

• ConsoleApplication1.ConsoleApplication1.GridTreeBuilder.cpp - class used to create
the game-tree using the specification in Game.h.

• ConsoleApplication1.ConsoleApplication1.BinaryConstraintVars.cpp - class used by the
baseline algorithm to store information about binary variables, that have been added
to the MILP.
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• ConsoleApplication1.ConsoleApplication1.BinaryConstraintMap.cpp - class used by the
baseline algorithm to find binary variables for given game-tree node.

In the Folder debug, there is ConsoleApplication1.exe, runnable binary that runs the
baseline algorithm, dynamic algorithm, and dynamic approximative algorithm with k = 2
on the deterministic setup on the grid of the size 2× 2 with maximum of 4 steps.
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