Master’s Thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Control Engineering

Support for PREM on
contemporary multicore COTS
systems

Jan Dolezal
Open Informatics, Computer Engineering
dolezj210fel.cvut.cz

January 2019
Supervisor: Ing. Joel Matéjka

Acknowledgement

My gratitude for support during
preparations of this work belongs to
my supervisor Joel Matéjka. I thank
him especially for his guidance and
also for his easy-going attitude that
shifted the fun while creating this work
to the completely different level. I am
very grateful for the support provided
by people from the CIIRC’s Industrial
Informatics Research Center. Namely 1
want to thank to Michal Sojka for all
the valuable advices.

/ Declaration

I hereby declare that the submitted
thesis is exclusively my own work and
that I have listed all used information
sources in accordance with the Method-
ological Guideline on Ethical Principles
for College Final Work Preparation.

In Prague, 8. 1. 2019

Abstrakt

Préace prinasi podporu pro vyvijené
vykonné aplikace redlného casu, které
pro sviij béh vyuzivaji vicejadrové bézné
komerc¢né dostupné systémy.

Hlavnim cilem prace je shrnout me-
tody pro zvyseni predvidatelnosti doby
béhu programu a provést testy na-
stroji a hardware, které tyto metody
vyuzivaji. Metody diskutované v této
praci Tesi problémy pii konfliktech pri
pristupu ke sdilenym prostiedkim na
téchto platformach.

Konflikty pfi pristupech do hlavni pa-
méti jsou feseny za pomoci Predikova-
telného vypocetniho modelu (PREM).
K vylepseni jeho spolehlivosti jsou zkou-
many a vyhodnoceny moznosti omezeni
$itky pasma klientd paméti na trovni
pamétového kontroléru a také s vyuzi-
tim néstroje MemGuard na drovni ja-
der procesoru. Dvé ze zminénych metod
k omezeni sitky pasma paméti jsou tes-
tovany na energeticky tuc¢inné vestavné
platformé NVIDIA TX2.

Dale jsou prozkoumaény efekty hard-
warového déleni sdilenych vyrovnava-
cich pameéti (Intel RDT) na platformé s
procesorem fady Intel Xeon.

Vysledky ukazaly, Zze omezeni Sitky
pasma na tUrovni paméfového Kkon-
toléru mneni pouzitelné, protoze neni
mozné korektné separovat klienty. Na-
opak implementace MemGuardu byla
uspésné otestovana na vice testovacich
pripadech. Testované hardwarové deé-
leni sdilenych vyrovnéavacich paméti
zlepsuje predvidatelnost dle ocekavani.
Daéle poskytujeme informace jak vy-
ladit parametry néstroji vyuzivanych
implementaci PREM.

Klicova slova: Systémy realného
casu; WCET; Predikovatelny vypocetni
model; omezovani Sitky pasma klienti
paméti; Vyuziti délené skryté paméti.

Preklad titulu: Podpora PREM na
soucasnych multicore COTS systémech

/ Abstract

This work brings support for high-
performance real-time applications that
run on generic contemporary multicore
systems referred to as Commercials
Off-The-Shelf (COTS) platforms.

The main goal is to summarize the
methods improving the predictability of
program execution time and to test the
tools and hardware utilizing these meth-
ods. Methods discussed in this work ad-
dress issues of competition for shared re-
sources in multicore COTS platforms.

Memory contention is resolved by
PRedictable Execution Model (PREM)
that schedules memory accesses in the
system. To improve the reliability
of PREM, we describe and employ
bandwidth limiting capabilities to the
memory clients. We evaluate throttling
of memory controller clients and the
MemGuard tool, which allows throt-
tling of CPU cores, and profile the
implementation to show its overhead.
Tests are performed to see the effects
of throttling on the memory controller
level. The two presented methods
to throttle bandwidth of the memory
clients are tested on the low-power
embedded platform NVIDIA TX2.

Further, we address shared cache
contention using methods for parti-
tioning shared cache (Intel RDT, Page
Color). We showed the effects of the
hardware partitioning using RDT on an
Intel Xeon series processor.

The results have shown that throt-
tling of the memory controller is not us-
able since we cannot separate particular
clients properly. Further, MemGuard
was successfully tested on multiple use
cases. Tested hardware cache partition-
ing improves the system performance as
expected. Moreover, we provide details
about the fine-tuning of the tools used
by PREM.

Keywords: Real-time systems;
Worst-Case Execution Time; Pre-
dictable Execution Model; throttling
memory clients bandwidth; Partitioned
Cache Utilization.

Contents

1 Introduction 1
2 Background 3
2.1 Real-time embedded systems....3

2.2

2.3

24

2.5

2.6

2.7

2.8

2.1.1 Worst-case execution

time (WCET) 4
2.1.2 WCET and contempo-

rary hardware.............. 4
2.1.3 Timing constraints in

industry ... 5)
Multicore systems and real-
time applications................. 5)

Methods increasing pre-
dictability of execution time

within multicore system 5
Memory hierarchy 6
2.4.1 Data request propaga-

tion ... 7
2.4.2 Cache organization 8
2.4.3 Writing data back to

main memory 9
2.4.4 Cache inclusion policy ... 10
2.4.5 Cache coherency 10
2.4.6 Caches incorporated in

virtual address model.... 10
2.4.7 Caches in contempo-

rary hardware 12
2.4.8 Quality of service in

relation to cache 12
Performance Monitor Unit
(PMU) .o 14
Hypervisor 14

2.6.1 Hardware partitioning ... 15
PRedictable Execution Mod-
el (PREM)coooviiiiit. 16
2.7.1 WCET-aware compiler .. 17
2.7.2 Decoupled Access Exe-

cute (DAE)............... 18
MemGuard: limiting memo-

ry bandwidth of CPU cores ... 18

2.9 Page coloring as a software
solution addressing cache
contention 20

3 Methodology 22

3.1 NVIDIA Tegra X2 22

3.1.1 System organization 23

3.1.2 Memory subsystem 23

3.1.3 Throttling memory
controller clients
3.1.4 Processing units..........
3.1.5 Performance Monitor
Unit (PMU)..............
3.2 Intel Xeon W...................
3.2.1 Memory controller
3.2.2 Cache organization
3.2.3 Resource Director
Technology (RDT).......
3.2.4 Performance Monitor
Unit (PMU)..............
3.3 Measuring performance
events under Linux
3.4 Jailhouse: HV partitions HW .
3.4.1 Setup ovovviii
3.5 Benchmarks
3.6 Design of experiments
3.6.1 Throttling memory
clients
3.6.2 Profiling MemGuard
implementation
3.6.3 Hardware cache parti-
tioning....................

4 Evaluation.........................

4.1 Throttling memory clients.....
4.1.1 Measurement results.....
4.2 Profiling MemGuard imple-
mentationo...
4.2.1 Profiling basic MG pa-
rameters..................
4.2.2 Reliability of Mem-
Guard ...l
4.2.3 MemGuard as a profiler .
4.2.4 MemGuard upon
real-world application:
KCF tracker..............
4.3 Hardware cache partitioning ..

5 Conclusion

References

A Specification......................
A.1 Specification in English........
B Abbreviations

2.1.

2.2.

3.1.

3.2.

3.3.

3.4.

3.5.

3.6.

3.7.

4.1.

Tables

MOESI cache coherency pro-

tocol states 10
Cache parameters of contem-
porary hardware platforms 14
Parameters of the Tegra X2
system on module 22
Registers used to throttle
groups of clients................ 26
Cache parameters of TX2

CPU clusters 27
Xeon W-2133 cache parame-

TS ot 28
RDT support on Xeon pro-
CESSOT VEISIONSvuvuvvnenenn.. 29
Intel PMU: selected perfor-
mance events 30
Complexity of the used Poly-
Bench benchmarks 33
Percentage overhead of the
MemGuard for various re-
plenish time periods............ 45

/ Figures

vii

2.1.
2.2

2.3.
2.4.

2.5.

2.6.

2.7.

2.8.

2.9.

2.10.

2.11.

2.12.

2.13.

3.1.

3.2.

3.3.

3.4.

3.5.

3.6.

3.7.
3.8.

4.1.

4.2.

Execution time distribution 4
CPU vs. DRAM perfor-

mance in time 7
Multi-level cache 8
Parts of memory address
driving cache element choice..... 9
x86 arch: paging with 4kB

long pagescooiiiiiiii. 12
Principle of Translation
Lookaside Buffer and Page

Table missoon... 13
Hypervisor types comparison .. 15
Comparison of virtualization
BYPES oo 16
Predictable interval with
constant execution time........ 17
Compiler outline with sup-

port for multiple targets 18
MemGuard system architec-

tUre ..o 19
MemGuard budget illustra-

tive example 20
Example of page coloring

used to partition cache......... 21
TX2: Block diagram of a
Parker series processor......... 23
TX1: Memory Controller:

Path between DRAM mod-

ules and MC clients 24
TX1: Memory Controller:
Arbitration among MC clients . 25
RDT: Cache Allocation
Technology 29
Jailhouse: hardware static
partitioning 32
Jailhouse: loading process
phases.............ooii 32
KCF tracker illustration 36
Cache partitioning experi-

ment ... 36
TX2 vs. Xeon W: cache re-

lated relative comparison of
performance 38
TX2: Throttle MC Clients:
Throttle on ring 2. No clients
added. ...l 39

viii

4.3.

4.4.

4.5.

4.6.

4.7.

4.8.

4.9.

4.10.

4.11.

4.12.

4.13.

4.14.

4.15.

4.16.

TX2: Throttle MC Clients:
Throttle on ring 0. No clients
added. ...l 40
TX2: Throttle MC Clients:
Throttle on NISO group. No
clients added. 40
TX2: Throttle MC Clients:
Throttle GPU within NISO

MemGuard: Depicting ap-
plication’s performance re-
sponse with varying MG pa-

rameters........cooeeiiiiiiean.. 42
MemGuard: focus on memo-

ry budget behavior. 43
MemGuard: focus on replen-

ish time period behavior. 43
MemGuard: profiling timer

ISR overhead. 44

MemGuard: scatter plot of
million measurements that
involve task reading ten
thousand cache lines............ 45
MemGuard: scatter plot of
million measurements that
involve task reading hundred
thousand cache lines............ 46
MemGuard: CDF: cache

misses plot of million mea-
surements that involve task
reading hundred thousand

cache lines. 47
MemGuard: CDF: execution
time plot of million measure-
ments that involve task read-

ing hundred thousand cache

lines. ... 47
MemGuard: compare real-
world and synthetic applica-

Shared vs. partitioned cache:
cache misses and times aver-

AZES et 49
Shared vs. partitioned cache:
scatter plot 50

Chapter].
Introduction

The requirements of real-time embedded systems on their computational power increase
as they are expected to solve the new feature-rich challenges with higher and higher
complexity. There are ongoing efforts to simplify everyday life tasks. The example of
such effort is research in the area of autonomous transportation. To cover the market,
the devices that carry out such tasks need to be distributed in high numbers. There-
fore, the price of the underlying devices used in such solutions becomes increasingly
important. The custom hardware designed for any particular real-time application
cannot provide the low price, so the attention shifted to the use of generic multi-core
computation platforms referred to as Commercials of The Shelf (COTS).

COTS platforms bring high performance and low price. However, their properties
are not optimized for critical real-time applications. Programs driving critical real-
time systems have to provide their result within the specified deadline. Otherwise,
an event threatening human life or property may occur. Real-time systems and their
parts are therefore subjected to the worst-case execution time (WCET) analyses to be
sure no deadline within the system is exceeded. The hardware of the multicore COTS
platforms is targeting primarily non-real-time segments, and it is optimized for high
average performance (i.e., low average execution time) by utilizing complex superscalar
CPUs and multi-level caches. Sparse random occurrences of the significantly lower
performance are not considered to be an issue. Therefore, use of such systems in real-
time applications lead to pessimistic estimations of worst-case execution times, and
significant underutilization of the designed system.

In multicore COTS platforms the possibility of the state that leads to the occur-
rence of unusually high execution time is caused by shared resources. Shared resources
are contention points such as shared last level cache and shared main memory bus.
Competition of parallelly running CPU cores for these shared resources can introduce
significant timing delays and increase execution times of all contenders.

The focus of this work is on a research of the methods to decrease WCET by in-
creasing the predictability of program execution time, and on evaluating some of these
methods using the COTS platforms. The effort of these methods is to moderate quality
of service provided by shared resources so that it corresponds to the system’s require-
ments.

PRedictable Execution Model is a mechanism addressing competition for shared main
memory. PREM coschedules all active components (e.g., CPU cores, I/O peripherals)
in the system. FEach component has a time slot in a static schedule where it can
access the memory. The scheduler notifies components about beginning and end of
their memory phase. If the task executed by certain component is aware of PREM,
it is called predictable task. If not, it is called legacy task. The predictable task is
prepared in a way it contains memory phases and executes phases that are in line with
the static schedule. In memory phase the, data necessary for the execute phase are
loaded to the component-local memory (cache for CPU). During execute phase the
component performs no memory accesses leaving the memory bus free to be used by

other components. It is not possible to premize every task because many of them have
complex memory access patterns. Such legacy tasks could unpredictably interfere with
the memory phases of predictable tasks.

The memory phase of predictable task suffering from negative interference might not
be completed by the static schedule and expected execution time of such task could be
crossed. This could lead to serious consequences if the task employed was a real-time
task. Moreover, this could start chain reaction breaking down the static schedule and
crashing the whole system in the end.

To ensure that memory phase finishes within its deadline, a certain level of the bus
bandwidth has to be guaranteed for the usage by the statically scheduled memory
phases. Such a guarantee is provided when the bandwidth of all legacy components is
limited. This way the memory bus bandwidth is partitioned among predictable and
legacy components. This motivated the exploration of methods to limit the bandwidth
of legacy tasks.

There exist methods to partition shared cache among contenders leading to improved
predictability of their execution time.

This work addresses the following methods or employes the following tools:

m PRedictable Execution Model (PREM) that addresses competition for main memory

MemGuard which is the tool to limit memory bandwidth of the CPU cores utilizing
Performance Monitor Counters

m memory controller as the mean to limit memory bandwidth of its clients

m cache partitioning as a method addressing contention for the space in a cache shared
among CPU cores

m in software with page coloring
m in hardware with Intel Resource Director Technology

m Jailhouse hardware partitioning hypervisor

m version with the implemented MemGuard support
m version with the support for RDT

There are hardware and software solutions that we tested. Two tested software
solutions are related to the throttling bandwidth of memory clients. First, we test
throttling on the memory controller level. Next, the MemGuard tool is profiled. Both
aforementioned solutions are evaluated using low-power embedded platform NVIDIA
Tegra X2. Lastly, we tested the behavior of the hardware cache partitioning with RDT.
This feature is available on some of the Intel Xeon processors.

Memory controller and its throttling mechanism are complex devices with hierar-
chical organizations. Moreover, NVIDIA does not provide a complete description of
the controller in its manuals. The setup of test incorporating memory controller is,
therefore, challenging task.

The work partly originated as a contribution to the European project HERCULES V.

Y https://hercules2020.eu/

https://hercules2020.eu/

Chapter 2
Background

In section 2.1 are stated main objectives of embedded systems and real-time systems
along with their analysis. Section 2.2 briefly introduces multicore systems and problems
of their usage in the area of real-time applications. The methods increasing predictabil-
ity within multicore systems were briefly introduced in the section 2.3. In section 2.4
the chapter continues with the memory hierarchy description, highlighting especially
caching mechanism. The memory hierarchy is followed by the section 2.5 that describes
Performance Monitor Unit allowing to profile, among others, characteristics of the mem-
ory subsystem. The section 2.6 talks about hardware partitioning with the utilization
of hypervisor. Next follows the section 2.7 describing PRedictable Execution Model.
Section 2.8 describes MemGuard — tool to reservate memory bandwidth for execution
unit. Finally there is an example of software based cache partitioning in section 2.9.

I 2.1 Real-time embedded systems

In our daily lives, people use computer systems that have dedicated purpose and that are
controlling some larger system. These are called embedded systems. Several examples
follow: ticket vending machine, cash register, digital watch, mobile phone, microwave
oven, washing machine, medical imaging, GPS navigation, anti-lock braking system or
infotainment system.

There are several highly important objectives for current embedded systems [1]:

m low development costs

m short time-to-market

= dependability

® temperature efficiency

m energy efficiency

m average-case performance
m worst-case performance

To ensure safety, the devices are required to response to an event within the certain
time constraint. System having this property is referred to as a real-time system. My
favorite example is the airbag responding to a collision. If the system responses to the
collision too late, the airbag inflation might not help and it could even cause additional
injuries to the passenger. This example shows hard real-time system. That is a system
where missing the time constraint (so called deadline) can lead to damage of property
or loss of lives.

There exist also soft real-time systems. If the deadline is missed in these systems,
the result of computation invoked by the event can still be utilized, but the usefulness
of such a result degrades as the time advances further beyond the deadline. Very
frequent example of soft real-time systems are live audio-video systems, where late
data delivery/processing leads to degraded quality of the output. [2]

Observed
BCET WCETyEas
Actual Actual
BCET WCET
Estimated
BCET WCETgsy

\/

Distribution of Execution Time

Execution Time

Figure 2.1. Execution time distribution. Best/Worst-Case Execution Times. [1]

B 2.1.1 Worst-case execution time (WCET)

To ensure that the time constraint is fulfilled whenever the code is invoked, there is
need to know the longest possible time interval during which the given code can run
from its invocation. Such a period is referred to as worst-case execution time (WCET).

To find the maximum execution time it is not feasible to exhaustively explore all the
possible execution times since software for contemporary architectures exhibit a too
large state space [1]. Thus measured WCET, WCET ;g 4s, is not sufficient parameter
for the verification of hard real-time systems. However, it can be utilized for more
relaxed real-time systems, where there is added a safety margin to WCET y;gas.

The more scientific approach includes usage of formal methods to reason about
WCET. With this approach, the code is analyzed statically to determine properties of
its temporal behavior [1]. Nevertheless WCET cannot be derived from every program
due to undecidability. Analyzed programs must meet constraints such as guaranteed
termination, bounded recursion depths and loop iteration counts.

B 2.1.2 WCET and contemporary hardware

Since embedded systems are getting more and more complex, there is a need to use high-
performance commercials off the shelf (COTS) hardware [3]. There is need to account
for architectural features of such hardware. Common architectural features such as
superscalar pipelines and caches are targeting reduction of average-case execution time
(ACET). It is however not possible to precisely analyze these features using static
methods [1].

Furthermore, a sound approximation of the actual WCET demands an abstraction
of possible inputs and initial states of the system, which introduces another source of
imprecision [1]. As a consequence, the determination of the actual WCET has to be
relaxed to the derivation of an upper bound on the execution time of the task. These
bounds represent the estimated WCETggr. The process of estimating the WCET is
called timing analysis. [1]

The relation among mentioned worst-case execution times is as follows

WCETMEAS < WCETActual < WCETEST

. Example that helps to understand the execution time distribution is in the figure 2.1.
To ensure safeness, WCET gctyaqr < WCETggy must hold. The estimated WCET gets
more precise when WCETgsr — WCET Actyar — 0. This is referred to as tightness.

2.2 Multicore systems and real-time applications

B 2.1.3 Timing constraints in industry

The availability of timing-aware software development tools is insufficient. As a re-
sult trial-and-error approach is often used in practice. The software is tuned until
WCETyEAs + Safety margin is less than timing constraints. [1] If the optimizations
of WCET create enough time reserve before the deadline either cheaper hardware may
be utilized, or the software may be modified to do more work.

I 2.2 Multicore systems and real-time applications

Historically the performance of silicon system increased with usage of higher clock
frequencies. Higher frequency allows more operations to be performed within the same
time. With higher frequency there is produced more heat and if the frequency is
increased too much, the limit may be reached, where too much heat can damage the
system.

Since the performance couldn’t be increased by scaling frequency anymore, another
way to increase performance came to broad use. There are used multiple computational
cores i.e., multiple CPUs in one system.

Within real-time domain, one of the main issues with multicore systems is the main
memory shared among the cores. When multiple cores share the main memory it leads
to contention over access to the memory. In turn this increases the timing unpre-
dictability. Existing WCET analyses are extremely pessimistic for these configurations.
Since industry relies on those analyses, the usage of multi-core systems in these areas
is limited unless new approaches are utililzed. [4]

In this work the approach to address memory contention described in previous para-
graph is PRedictable Execution Model (PREM). Further details on PREM can be found
in section 2.7.

Memory organization is thoroughly described in section 2.4.

I 2.3 Methods increasing predictability of execution
time within multicore system

In the area of our interest — real-time embedded systems — there is an aim to utilize
simple ideas so the whole system is deeply understood. This way people can more easily
reason about the guarantees within the system and potentially provide certified system.

With PRedictable Execution Model (PREM) basically the main memory accesses are
scheduled among the clients of the memory. This way the timing of memory accesses
is more predictable and theoretical WCET bloated by possible clashes of concurrent
accesses to the memory can be decreased. PREM is described in detail in the section 2.7.

With PREM each task is divided into memory phases to retrieve some data and
computation phases to work on those data. In memory phase the data are prefetched
to the local memory of an execution unit. Tasks that may be divided into these phases
are called predictable intervals. PREM employs static scheduling of intervals. To
achieve predictability it is necessary to shedule the memory phases so that they follow
up each other. This is easily done utilizing static scheduling. In practice this means
that there is one unit accessing memory and all other execution units are either in their
compute phase or stalled. This way WCET in execution phases can be decreased, since
each data access is faster.

Not all tasks may be easily separated into memory and computation phase due to
its complexity. These undividable tasks are called compatible or legacy intervals. A
compatible interval may seriously interfere with predictable interval when they run
concurrently. To regualte the level of interference there is required certain level of
memory bandwidth for the predictable intervals. This allows to guarantee WCET.

In this paragraph there are presented methods to limit the bandwidth of the compu-
tation unit. Some platforms utilize memory controllers that have its clients attached
in a way their bandwidth can be limited directly. For example when the GPU, as the
computation unit, is one of the MC’s clients, its memory accesses can be limited on the
MC level to ensure it does not interfere with CPU. The CPU could be approached if
only each CPU core was a client to the memory controller. However the whole CPU
cluster is typically attached as one MC client. To limit memory bandwidth of certain
CPU core there may be utilized Performance Monitor Unit (PMU). The PMU captures
various statistics related to the performance of CPU. It may also essentially count mem-
ory accesses. The memory bandwidth can be limited in the following way. In the given
period of time certain amount of the memory accesses is allowed to be executed. The
execution of the core that exceeded the limit is suspended until the period times out.
The method using Performance Measuring Counters was introduced by MemGuard [5].

Any task requires certain resources i.e., hardware to achieve its goal. This includes
certain portion of memory, execution unit and it may require further devices such as
timers, DMAs and many others. Hardware often needs to be shared among tasks as
the number of its instance is limited. In general however, sharing resources may lead
to timing unpredictabilities originating in the manager of such shares.

Consider the hardware is partitioned to certain bundles. Above each bundle there
runs specific task. With such organization the simple model is obtained. It is possible
to reason about such model more easily and easily ensure the bundels mutual negative
interference is mitigated. An example follows: the reserved resources for certain task
could include few regions in the physical memory address space, CPU cores 4 & 5 and
memory mapped PCI device. No other task would get access to the resources mentioned
in the previous sentence. More on this in section 3.4.

CPU clusters have typically some very fast per core memory as well as fast per
cluster memory. These memories are meant to capture part of the data backed by
main memory and provide execution unit that reaches for the same data repeatedly
with fast accesses to such data. Described on-chip memories are called caches and they
are hidden from direct access by the programmer. Since per cluster memory is shared
among cores it may occure that one core thrashes data of the other core in such a
cache. This behavior is undesirable since it is source of unpredictability. Hence some
manufacturers equipped the shared caches with the ability to be partitioned. When
partitioned, certain part of cache belongs exclusively to certain cores. Besides the
trend of manufacturing processors with this effective cache management [6] there also
exists software method to partition the cache called Page Coloring [7].

I 2.4 Memory hierarchy

Nowadays, computer systems utilize fast processors with high frequencies and fairly
slower main memories. Figure 2.2 compares the evolution in speeds of processor and
main memory at the end of last century. When the processor executes code, it first
needs to load the executed code itself and then to load the data that are referenced by
the code. Between main memory and processor there are present devices called caches.

Cache is much faster memory compared to the main memory. If the caches were not
present in the system, it would take hundreds of processor cycles for the main memory
to load a data item. That would lead to the most of the processor time to be wasted.

Cache is basically small piece of memory but much faster than the main memory.
Different technology is used for the main memory (Dynamic RAM: capacitor), and for
caches (Static RAM: flip-flop). The price is the main reason why the main memory
is not made with the same fast technology as the one used in caches. Another reason
is the space requirements for SRAM technology. Besides the fact that for storing one
bit DRAM requires only one transistor along with a capacitor whereas SRAM requires
as much as six transistors, the wire capacities charge faster with larger transistors.
Therefore the speed depends on the time needed to charge these wire capacities, and
the speed and space on the die required have the inverse relationship. Il.e., having
two caches of the same byte capacity the one taking up more space on the die (larger
transistors) is faster. Further, the high amount of memory requires more complex
controllers and typically when the complexity rises the speed goes down.

When writing code, programmer ponders over virtual memory model, and in general,
he does not interact with caches directly. Detailed information can be found in a serial
about memory at the Linux Weekly News [8].

CPU-DRAM Gap

DRAM

1982
1993 +
1984 +
1985
1996
1997 +
19598 1
1999
2000 L

980
981
982
983
984 1
985 1
1986 +
1987 +
1988
1989 +
1950
1981 L

Figure 2.2. Processor and memory performance comparison throughout the years.

B 2.4.1 Data request propagation

In memory hierarchy, there is typically more than one cache level where the cache level
closer to the CPU is smaller and faster than the level farther from the CPU. Smaller
cache has simpler control circuits hence it is faster (relates to the propagation times).

When CPU accesses the data item, it starts by searching the item in the first level
cache. Cache either returns an item, in case of the cache hit, or informs the CPU about
cache miss, in case the item is not present in the cache. In the event of a miss, CPU
tries to find the data item in the next cache level. Eventually, if the item is not found
in any cache level it is retrieved from the main memory. The example of the cache
hierarchy in Sandybridge architecture from Intel is in the figure 2.3.

Cache miss typically introduce a time miss penalty, because cache first checks whether
it contains the item and only then advances to the next level in the hierarchy. Time to
retrieve uncached data item is the sum of time miss penalties in each cache level and
time of the memory access. Due to this some synthetic programs could perform better

Physical Core 0 Physical Core N
HT: 2 Logical Cores HT: 2 Logical Cores
Level 1 Level 1 Level 1 Level 1

Data Instruction Data Instruction
Cache Cache Cache Cache
Level 2 Cache Level 2 Cache

Shared Level 3 Cache

Figure 2.3. Multi-level caching on Intel Sandybridge.
Level 1 cache is the closest to the execution unit, it has the shortest access time, but
it is the smallest cache. Caches farther from the execution units are slower, but they
can hold more data.

with caches turned off completely. The potential increase in data access time is a risk
factor for the real-time systems.

The power of caches lies in the locality of reference. Temporal locality describes
phenomena where the same values or memory locations are frequently and repeatedly
accessed. Spatial locality assumes that when one memory location is referenced it is
likely that nearby locations will soon be also referenced. To exploit spatial locality, the
bigger chunk of memory is copied into cache than what was requested. The chunk size
closely relates to cache organization which is described in the next section.

B 2.4.2 Cache organization

The cache purpose is to capture useful part of the main memory at the given moment.
Memories are organized in sequences of data elements — bytes and one byte (1B = 8b;
B: byte, b: bit) is the basic addressable unit of memory. In the following, address
having the size of 32 bits is considered. The cache needs to know the memory address
of the captured element. When the CPU asks for certain address, the cache compares
it with addresses associated to the stored elements.

In this paragraph simplistic example is considered, where one cache element allows to
store 1B. For such an element there are needed 40 bits (5B) — 4B of information to store
32b address and 1B of data. This would be an inexcusable waste of transistors. Instead,
for given address, there are stored multiple data bytes of the memory surrounding such
an address. Multiple bytes in cache line is a setup that exploits the spatial locality.

The cache line is the term referencing to basic copiable unit between levels of hierar-
chy. There are several information fields associated with each cache line such as flags
including line validity and bits determining line usage frequency, and further, there is
a tag as a part of a memory address allowing to refer to the cache line.

Consider cache line with the size of 64B. To refer to the specific byte in the cache
line, there is need for 6 addressing bits (indeed 2% = 64). These 6 bits are cut from
the end of an address, and they are called the offset. The rest 26 bits of the address
are used to reference the cache line, and they are called the tag. This is the example
of fully associative cache. The cache stores each tag that is not yet in it to the next

31 0

. Tag Cache Set Offset

«— T - §———wa— () —»

Figure 2.4. Address parts driving cache data element choice. [§]

empty cache line along with its data. Retrieving cache line requires comparison of the
input tag to each cache line tag, so the comparator is needed for each cache line.

Besides offset another portion of bits can be cutted from the address and use to
address cache lines. Such a portion of bits is called index or cache set. If each set
addresses exactly one cache line, then the cache is called direct-mapped cache. For
example, if the offset is 6 bits long yielding 64B long cache line and the set is 8 bits
long yielding 256 cache lines the size of the direct-mapped cache is 16kB. Considering
32 bit addresses the size of tag is 18 bits long, and only one comparator is necessary
to compare tag of selected cache line with the input address tag. Every two addresses
having same bits in the field set end up in the same cache line and replace each other’s
data. To address this problem, the associativity of the cache must be increased as
described in the next paragraph.

By combining the two previous approaches the set-associative cache is constructed.
The field set in the address refers to multiple cache lines. The cache lines in the given
set are called ways. According to the number of ways this type of cache is also called
n-way associative cache. If there are 2 ways in the cache, where for certain set one
way has already valid cache line, and there is need to store another cache line to the
same set, it is stored in the second, empty way. Now if the third request comes that
has different tag but the same set, the cache line in one of the two ways have to be
replaced. If the cache had more ways than 2 the replacement would not be necessary,
cache line would be stored in any empty/invalid way. There are n comparators used in
this cache type corresponding to number of ways. Modified example from the previous
paragraph (64B long cache line and 256 cache lines) with 2 ways would have the size
of cache equal to 32kB. Note that none of the address parts (offset, set, tag) sizes have
changed.

Caches which have associativity greater than one uses various replacement strategies
to a select cache line to be sacrificed when lines in all ways are valid. Among strate-
gies mentioned in literature belong random replacement, Least Recently Used (LRU),
Least Frequently Used (LFU), Adaptive Replacement Cache (ARC) combining previous
two or Not Recently Used (NRU). These strategies developed in the era of single-core
processor. In the multi-core processors, it seems that for per-core private caches the
best replacement policy is LRU [9]. There is ongoing research targeting replacement
strategies for caches shared by multiple cores in multi-core processors [10-11].

B 2.4.3 Writing data back to main memory

When the processor writes data to the given address, it might not end up in the main
memory right away. Data typically stay in the cache for the moment and get to the
main memory later.

m write through: policy writes data to the cache, and to the write buffer. From the
write buffer data are moved to the main memory asynchronously.

m write back: policy writes data to the cache line marking them with flag Dirty. When
the cache line is canceled the data are moved to the main memory.

B 2.4.4 Cache inclusion policy

Inclusion policy characterizes relation between adjacent cache levels. It specifies re-
quirements on the presence of the cache line in higher level of hierarchy when it is
present in lower hierarchy level.

There are three possible policies:

m inclusive: higher level cache is inclusive of lower level cache if the cache line present
in lower level cache have to be presnt also in higher level cache

m exclusive: higher level cache is exclusive of lower level cache if the cache line present
in lower level cache must not be present in the higher level cache

® non-inclusive non-exclusive: neither of the above two is required

B 2.45 Cache coherency

Since there are per-core private caches in multi-core systems, with parallel program-
ming, it might occur that same data are loaded into two or more caches associated with
different cores. If one core modifies data in its cache, it is necessary to inform other
cores’ caches about the change. Otherwise the incoherency makes the whole system
fairly unusable.

If the private caches are interconnected with higher cache level using common bus,
the invalidation may be utilized. When one core writes to given address, this address
is announced as invalidated on the bus. Cores monitor events on the bus. If the core is
not the originator of the announcement, it checks whether its cache contains cache line
with the announced address and in case it does the cache line is invalidated.

Another approach is to send updated information. Cores read update requests on
the bus, and if the request contains common data, the core updates them in its cache.

Further, more sophisticated protocols such as MOESI and friends may be utilized.
Fach cache line has information about its coherency state. The possible states in
MOESI protocol are briefly described in table 2.1. The protocol then assures that the
caches are coherent given the set of allowed states for any pair of caches in the system.

state brief description

Modified This cache has the only valid copy of the cache line.
Owned There are several caches with the valid copy,

but this one has exclusive write permission.
Exclusive This cache has the only copy.
Shared This cache line can be only read.
Invalid This cache line is invalid.

Table 2.1. MOESI cache coherency protocol states. The validity relates to the given cache
line.

B 2.4.6 Caches incorporated in virtual address model

Up until now the caches were described as a mean to mediate faster access to the
portion of memory. Caches are also utilized to speed up some other mechanisms used
in current systems.

Nowadays there is widely present memory virtualization in the contemporary sys-
tems. With this mechanism it seems to an application as it has whole memory just for
itself. It is achieved by providing each app with its own virtual memory (VM). Only
small, currently used, portion of program and its data located in VM is actually mapped

10

to the physical memory. The currently unused portions of program and its data are
stored in the secondary device (hard drive). The mechanism simplifies management of
concurrenly running applications as their address spaces do not collide with each other.

Virtual memory is typically implemented using paging which is managed by OS.
With paging the physical address space (main memory) is divided to the regions of
equal size called frames. Virtual memory is also divided to the regions of equal size,
but these are called pages. Size of frame and page is equal. The size of page in current
systems ranges from traditional 4kB all the way up to 16GB. It is always power of 2 as
this choice allows to divide the address space equaly.

Simple synthetic example that follows will clarify the behavior of the virtual memory.
Consider our virtual space consists of 100 pages and physical memory is divided into
100 frames. Now consider applications — A1 utilizing 60 pages within its 100 page VM
and A2 utilizing 70 pages within its 100 page VM. OS starts Al which uses 60 pages
that are mapped (loaded) to arbitrary 60 frames. While A1l is running it needs only 20
pages, because there was possibly only initialization code in other 40 pages. Now the
OS starts A2. A2 needs 70 pages to overcome initializations and to get to its regular
operation mode. There are still 40 empty frames in physical memory. Further there are
40 frames loaded with 40 pages belonging to A1l that were not used for the long time.
30 of these pages may be stored to the hard drive so that frames become free for use
by A2.

Continuing in previous example the sizes of virtual and physical spaces may vary. By
lowering the amount of physical memory to 10 frames, the mechanism would still work,
but it would be considerably slower due to the necessity to move the pages between
frames in main memory and the secondary device. On the other hand if there were
1000 frames available there could be loaded basically 10 applications without need to
use of secondary device given the apps utilize fully its 100 pages virtual memory.

Virtual memory wouldn’t bring such improvement without support for management
structures in hardware. There is need for page tables allowing translation from virtual
to physical address. Fach process has its own page table structure. When translating
virtual memory address to physical memory address, part of the virtual address is
used as an index to select entry within page table. The remaining part of the virtual
address is an offset within page/frame itself. Among others the page table entry may
contain following informations: frame number, where the page is loaded, presence of the
page (in memory or swapped out to the secondary device), some privilege information
(writable, executable), and some usage statistics.

When pages have relatively small sizes, the page table would be very big. To prevent
this, page table is split to the hierarchy of page tables. In figure 2.5 is an possible
example of hierarchical paging on x86 platform.

As can be seen from the x86 example to read from or write to physical address there
are necessary three accesses to the memory. First it is necessary to read page direc-
tory entry, after that page table entry, and finally physical address is obtained and it
is accessed. Memory accesses take a long time therefore the translations from virtual
page number to the physical frame number are cached in so called Translation Looka-
side Buffer (TLB) which may be implemented as CAM. On inserting virtual address it
returns physical address or reports cache miss. In figure 2.6 is depicted translation of
virtual address to physical address utilizing TLB. The TLB may be divided to instruc-
tion cache — ITLB and data cache — DTLB which increases hit rate [13]. There are
compared caches of contemporary systems in the table 2.2. Both virtual and physical

11

2. Background

Linear address:
23 15

31 24 16 8|7 0

10 10 12
page directory
page table -
. H
.
L] Q
o
32bitPD g
>
- entry - g
£
g
= 32 bit PT
o entry ® ¥
- . .
32 -
CR3 >

*) 32 bits aligned to a 4-KByte boundary

Figure 2.5. Paging with 4kB long pages on x86 architecture in 32-bit protected mode. [12]

The OS fills CR3 register with the base address of application’s page directory. Linear
address is Virtual address after applying x86 segmentation mechanism. Segmentation
nowadays typically maps addresses one to one and we won’t further elaborate on this.
First 10 bits of the Linear address are used to point to entry within page directory,
which effectively select the page table — the base address of the page table is stored in
the entry. Next 10 bits of the Linear address are used as an index that selects an entry
within the page table. PT entry contains frame number within main memory where
the program’s page is loaded. Remaining 12 bits of the Linear address points to the
byte within 4kB long page. Notice the PDs and P'Ts are also 4kB long therefore they
fit in the frames. PDs and PTs may also be swapped out to the secondary device.

addresses are used to select L1 cache item in the Intel platforms. This way cache set
may get ready during the time physical address is retrieved from the TLB.

B 2.4.7 Caches in contemporary hardware

The comparison of currently used caches is best made based on their parameters, which
can be seen in table 2.2.12)3)4)

Interesting Intel’s feature is the usage of adaptive cache allocation mechanism for
their shared cache. Marketing name is Intel Smart Cache. If only one core is active, it
can utilize the whole shared cache.

B 2.4.8 Quality of service in relation to cache

In general the possibility to monitor the cache utilization on the per-thread basis allows
the operating system (OS) or hypervisor (HV) / virtual machine monitor (VMM) to
reschedule tasks in a way to favor high-priority task. Incremental step is allocating the
portion of the cache for such high-priority task.

D http://www.7-cpu.com/

2) https://stackoverflow.com/questions/33974193/does-x86-64-cpu-use-the-same-chache-lines—
for-communicate-between-2-processes-vi

3 http://www.realworldtech.com/sandy-bridge/7/

4 https: / / superuser . com / questions / 745008 / whats-the-difference-between-physical-and-
virtual-cache

12

http://www.7-cpu.com/
https://stackoverflow.com/questions/33974193/does-x86-64-cpu-use-the-same-chache-lines-for-communicate-between-2-processes-vi
https://stackoverflow.com/questions/33974193/does-x86-64-cpu-use-the-same-chache-lines-for-communicate-between-2-processes-vi
http://www.realworldtech.com/sandy-bridge/7/
https://superuser.com/questions/745008/whats-the-difference-between-physical-and-virtual-cache
https://superuser.com/questions/745008/whats-the-difference-between-physical-and-virtual-cache

2.4 Memory hierarchy

TLB hit

virtual address ————» T L B ———————) physical address
+
TLB miss + TLB update/write
page
—> page table —

table
hit

page table miss
page table

update/write

page file (disk) —

Figure 2.6. Principle of TLB and illustration of Page Table miss. [12]

When TLB has virtual address cached it responds with physical address. If the
physical address can’t be obtained from the TLB there is need to do a page walk. If
either page table or target page is not present in the memory, OS loads them from
the hard drive to the main memory. Then the physical address is obtained using the
paging mechanism, the record is created in the TLB (i.e., VA is cached) and the physical
address is passed to the next stage.

An implementation of cache QoS is available for example in the Intel Resource Direc-
tor Technology RDT. The details on the RDT are available in section 3.2.3. Another
example utilizing QoS in relation to cache could be Qualcomm’s Centrigq 2400 V.

R https://wuw.anandtech. com/show/11737/analyzing-falkors-microarchitecture-a-deep-dive-
into-qualcomms-centriq-2400-for-windows-server-and-linux/2

13

https://www.anandtech.com/show/11737/analyzing-falkors-microarchitecture-a-deep-dive-into-qualcomms-centriq-2400-for-windows-server-and-linux/2
https://www.anandtech.com/show/11737/analyzing-falkors-microarchitecture-a-deep-dive-into-qualcomms-centriq-2400-for-windows-server-and-linux/2

Intel Intel IBM ARM AMD
Haswell Skylake POWERS Cortex-Al Jaguar

L1 data 32 KB 32 KB 64 KB 32 KB 32 KB
64 B/line 64 B/line 128 B/line 64 B/line 64 B/line
8-WAY 8-WAY 8-WAY 2-WAY 8-WAY

- indexed virtually virtually

- tagged physically physically

L1 instr. 32 KB 32 KB 32 KB — 32 KB
64 B/line 64 B/line — 64 B/line
8-WAY 8-WAY 8-WAY 2-WAY

- indexed virtually virtually

- tagged physically physically

L2 cache 256 KB 256 KB 512 KB 1 MB 2 MB
64 B/line 64 B/line 128 B/line 64 B/line 64 B/line
8-WAY 4-WAY 8-WAY 16-WAY 16-WAY
NINE NINE

- indexed physically physically

- tagged physically physically

L3 cache 8 MB 8 MB 8 MB — —
64 B/line 64 B/line 128 B/line
— 16-WAY 8-WAY
inclusive inclusive

- indexed physically physically

- tagged physically physically

Table 2.2. Cache parameters of contemporary hardware platforms.
Note: some specific model parameters may vary.

B 2.5 Performance Monitor Unit (PMU)

PMU is a logical component of the processor. PMU serves the purpose of capturing and
reporting summaries of various performance events. With this component it is possible
to profile applications. It is possbile to measure characteristics such as cache misses,
cache accesses, memory accesses, and others.

The value of the measured event is counted in the performance monitor counter.
There is limited amount of the counters available on platforms and each counter has
configuration register. To start counting event its number needs to be set in the con-
figuration register of the selected counter.

When reading core specific value such as L1 cache characteristics, on typical platform
it is necessary to read the register using given core.

I 2.6 Hypervisor

A hypervisor (HV) is virtual machine manager and monitor. Typically the hypervisor
manages multiple instances of virtual machines running on one physical computer. Such
a computer needs to support hardware virtualization (otherwise the virtualization would
be significantly slower). Virtual machines called guest machines run operating systems
and guest OSes run in turn the target applications.

Hypervisor running on host machine manages the hardware and provides guests with
access to the hardware. Since there exist cases of one instance of hardware (for example

14

2.6 Hypervisor

there is typically only one instance of the ethernet interface) the HV provides guests
with virtualization of such a hardware so that each can access such a scarce resource.
Typical HV may also schedule accesses to the shared resources. When such a resource is
currently assigned to one VM another VM has to wait until the scarce resource becomes
available.

Historically hypervisors were classified as Type-1 for native hypervisors running on
bare metal and Type-2 hypervisors as an application under host operating system [14].
Figure 2.7 highlights the difference.

Type 1 hypervisor Type 2 hypervisor

Host user space Host user space
< o <
HE HE
> i | > i |
m 2 N2 m 2§
N " glg N H
0 (V] (] (] wn (V2] (1] (1]
o] S gle SIS gl
< Je i kA S i K
o o 1K o o 1k
L 212
S S
Linux kernel Linux kernel
& i
Hypervisor SRSy
CPUO CPUO
110 110
Memory Memory
Hardware Hardware

Figure 2.7. Hypervisor types comparison. [15]

B 2.6.1 Hardware partitioning

With the generic hypervisor there are hardware resources shared among VMs. The
scheduling of access to the hardware is a contention point and potentially source of
time unpredictability. The solution to overcome such unpredictabilities that may be
employed is partitioning hardware with the supervision of hypervisor. The contention
point is removed by dedicating certain hardware to certain VM. With this setup there
can be a set of real-time tasks, each in its own VM with preallocated hardware resources
necessary for the task’s operation. The tasks are separated from each other and the
risk of one task interfering with another is lowered significantly.

To perform beneficial task, the machine, in our case virtual machine, needs at least
some memory for data and code, execution unit, and output device. If supported by

the HV (and by HW), the following resource may be partitioned and assigned to virutal
machines:

B Processor cores

m cache

= memory

= input/output ports (on x86)

15

2. Background

Full hypervisor Static partition

Host user space user Host user space

< |m <M
S|s 3 B
< m O ©|® B B
o @ 0 == <l © S .o
O o i EE ol all 2 S s
O o) O il Bl K AR
e <l < B3 ool & 2 g
o o o B (= ofepe A B
e Sl HE
i Linux 8
Lmuxplfemel emel 2
B o
Linux kernel
Virtual | Virtual
VeI €0 CPU CPU
CPUO CPU1 CPUO CPU1
1/0 1/0 110
Memory Memory Memory
Hardware Hardware

Figure 2.8. Comparison of virtualization types. [15]

= memory mapped input/output devices

m PCI devices
m UARTSs
m VGA text console

s [RQ chips

The hardware partitioning may be also called static allocation of resources. Compare
full hypervisor with static partitioning hypervisor in figure 2.8. [16]

I 2.7 PRedictable Execution Model (PREM)

This section is based on the knowledge of Real-time systems that were described in
section 2.1 and contemporary memory systems described in section 2.4.

In a typical computer system, there are several execution units — processor cores and
other subsystems that share the main memory and contest for the main memory band-
width. If two or more resources request access to the main memory at the same time,
one of them gets the access while the others are stalled. Considering real-time systems
requirement for predictability this behavior is undesirable due to its unpredictability.
An execution unit might miss its deadline while waiting for the data. To address this
problem, time slots could be allocated for each device in which it can access memory
so that the access is dedicated and schedulable. That is exactly the main idea behind
PRedictable Execution Model (PREM) — the ability to coschedule all active components
(e.g., CPU cores, I/O peripherals) in the system at a high level. [17]

Each device has its time slot where it can access the needed data for further pro-
cessing, but obviously, the device itself must have some local storage to bridge the time
interval when it has no access to the main memory. There are two local storage options
discussed in the literature that can be used for this purpose in CPUs — scratchpad
memories (SPMs) and caches.

16

Scratchpad memory is fast and small on-device memory (SRAM) addressable directly
from the device itself. Unlike cache, SPM is not transparent to the programmer, thus
either programmer or compiler must issue instructions to load data into the scratchpad
memory before processing them. SPM may be either mapped to global or separate
address space, where the latter is more likely [18]. SPMs are not part of the mainstream
hardware, so we will not discuss them further.

memory execution |

I
I phase : phase I
[I

CPUBRMON g g
Cache fetches and w :
replacements | | +

Peripheral data | ‘

transfers emem !

L] *
e, ;(constant)

exec

el.yj

* K7
& -V -

Figure 2.9. Model of a task in task-based execution system.

There is predictable time interval with constant execution time. In the memory
phase CPU loads all data it needs and processes them in the execution phase. While
CPU core is processing data memory is free to be accessed by peripherals (e.g., GPU)
or other cores. e/’ is the time duration of memory phase and €{7* is the time of
execution phase, where index 7 marks task number and since each task is divided into
scheduling intervals those are numbered with index j. [17]

Pellizzoni et al. [17] describe how to schedule tasks with I/O operations, so that whole
system execution is predictable while using COTS platforms. Two classes of intervals
are scheduled. Compatible intervals are compiled and executed in no particular manner.
Within compatible intervals I/O data flows are not allowed, there are allowed only 1/O
interrupts of peripherals associated with given task. Predictable intervals have two
phases as depicted in figure 2.9 — during memory phase data are exchanged between
main memory and cache of the corresponding CPU, and during the execution phase,
the data loaded into caches are processed. The I/O operations accessing main memory
are also scheduled in the execution phase.

There was created a PREM real-time C compiler [17]. Macros are used by the
programmer to mark parts of predictable interval function. With the help of these an-
notated intervals compiler passes transform the interval to be predictable. The PREM
compiler source code is not publicly available.

B 2.7.1 WCET-aware compiler

A compiler is a program that translates executable source code in one language to an
executable source code in another language. Traditional compilers have two parts —
frontend and backend. In this setup, the frontend translates source code into interme-
diate representation (IR), IR is optimized in case of optimizing compiler, and finally,
the backend translates IR to the machine code.

With the IR in the middle the compiler becomes extensible more easily. To add
support for another language only the frontend needs to be modified. Similarly to add
support for the different target machine, the new backend needs to be added. This

17

2. Background

C -» C Frontend / XB6 Backend - XB6
Fortran —#=| Fortran Frantend Carprnnn | PowerPC Backend | —» PowerPC
Optimizer
Ada # | Ada Frontend ARM Backend —» ARM

Figure 2.10. Multi-target compiler.
On the left, there are frontends for different languages that get transformed to the
compiler intermediate representation (IR). IR is optimized and transformed to the tar-
get machine code by the appropriate backend.

approach makes the IR important part of the compiler. Insightfully designed IR can be
optimized well, and that leads to somewhat better output programs than the original.

The goal of optimizations is to make the code better in some way. The programs
can be optimized for speed when running, for the size of the resulting code, for energy
efficiency, and for other purposes. IR is not the only stage that can be optimized.
The resulting machine code is another stage where the optimization opportunity oc-
curs. However, these optimizations require more effort since the stage needs to be
reimplemented for each backend.

B 2.7.2 Decoupled Access Execute (DAE)

The approach that divides the execution into phases that are called access phase and
execute phase is described in work of Koukos et al. [19]. These phases are analogic
to the memory phase and execution phase in PREM [17]. Authors of DAE use the
separated phases to optimize the energy efficiency of general purpose programs. They
utilize hardware capability Dynamic Voltage and Frequency Scaling (DVFS) to decrease
frequency during access phase when the data are preloaded from the main memory to
the cache. The slow down in this phase is negligible since the processor waits for the
data to be fetched anyway. FExecute phase runs using high frequency. The results
show that for memory-bound applications there are improvements not only in energy
efficiency but the applications even run faster.

I 2.8 MemGuard: limiting memory bandwidth of CPU
cores

MemGuard is a tool for memory performance isolation. It serves as an efficient memory
bandwidth reservation system. “MemGuard distinguishes memory bandwidth as two
parts: guaranteed and best effort.” [5] “It improves system throughput by exploiting best
effort bandwidth after each core satisfies its guaranteed bandwidth.” [5] As MemGuard
operates with available resources it needs to be implemented within OS or VMM.

Memory performance isolation means “that the average memory access latency is no
larger than when running on a dedicated memory system” [5]. Potential delay in the
DRAM controller can be minimized by regulating the per-client aggregated requests
to the DRAM controller. This comes from the fact that thanks to MG the sum of
bandwidth from all the clients is less than or equal to the possible memory bandwidth
and so the memory requests are likely to be processed immediately.

18

2.8 MemGuard: limiting memory bandwidth of CPU cores

MemGuard Operating System
v v v v
B/W B/W B/W B/W
Regulator Regulator Regulator Regulator
K L L L

[pmc | [pmc | PMC PMC
CORE CORE CORE CORE
DRAM Controller Multicore Processor
‘ DRAM ‘

Figure 2.11. MemGuard system architecture. [5]

“The per-core regulator is responsible for monitoring and enforcing its corresponding
core memory bandwidth usage. It reads the hardware PMC to account the memory
access usage. When the memory usage reaches a predefined threshold, it generates an
overflow interrupt so that the specified memory bandwidth usage is maintained. Each
regulator has a history based memory usage predictor. Based on the predicted usage,
the regulator can donate its budget so that cores can start reclaiming once they used
up their given budget. The reclaim manager maintains a global shared reservation for
receiving and re-distributing the budget for all regulators in the system. ” [5]

MemGuard consists of two main components: the per-core regulator and the reclaim
manager. Its design is described [5] along with the design outline in figure 2.11.

The budget assigning example and its cited [5] description in figure 2.12 helps to
understand how MemGuard operates.

19

2. Background

dme L B A P
~— stall I memory access CPU execution

Figure 2.12. MemGuard budget illustrative example with two cores. [5]

“Each core has assigned static budget 3 (i.e., Qo = Q1 = 3). The regulation period
is 10 time units and the arrows at the top of the figure represent the period activation
times. The figure demonstrates the global budget together with these two cores.

When the system starts, each core starts with the assigned budget 3. At time 10, the
prediction for each core is 1 as it only used budget 1 within the period [0,10], hence,
the instant budget becomes 1 and the global budget G becomes 4 (each core donates
2). At time 12, Core 1 depletes its instant budget. Since its assigned budget is 3, Core
1 tries to reclaim 2 from G and G becomes 2. At time 15, Core 1 depletes its budget
again. This time Core 1 already used its assigned budget, only a fixed amount of extra
budget (Qmin) 1 is reclaimed from G and G becomes 1. At time 16, Core 0 depletes
its budget. Since G is 1 at this point, Core 0 only reclaims 1 and G drops to 0. At
time 17, Core 1 depletes its budget again then it dequeues all the tasks as it can not
reclaim additional budget from G. When the third period starts at time 20, the QY%
is larger than ;. Therefore, Core 1 gets the full amount of assigned budget 3, while
Core 0 only gets 1, and donates 2 to G. At time 25, after Core 1 depletes its budget,
Core 1 reclaims an additional budget Qi from G.” [5]

I 2.9 Page coloring as a software solution addressing
cache contention

One cache contention solution was addressed in the section 3.2.3 dedicated to cache
partitiong supported in hardware using Intel RDT. Another purely software method to
partition cache that I want to mention is Page Coloring [7, 13]. An example explaining
the principle of the matter is in figure 2.13. This software based cache partitioning may
be enabled when there is support in the OS or the Hypervisor.

20

2.9 Page coloring as a software solution addressing cache contention

17116 12011 615

(T RRySical@aaress 11| (11111 1111]

CACHE (128kB/way; block 64B; 2k sets): cache line
| tag | cache set index |byte offset|
PAGING (page size 4kB):
| frame number | frame byte offset |
25
partitions
I
/_/ |
Frame I Cache sets
! 320 - 383
Cache sets
#3 Frame | 192 - 255
Frame #i¥2°+3 Cache sets
#2 Frame | | 128 - 191
Frame #i¥2°+2 [Cache sets
#1 7 Frame | ! 64 - 127
Frame #i*254+1 Cache sets
#0 Frame | | 0-63
#i¥2°+0 I
I
I
Memory ' Cache

Figure 2.13. Example of page coloring used to partition cache.[7]

Consider system with the following parameters. Physical address is 48-bits long.
Pages of virtual memory are 4kB in size. Cache is indexed using physical address. It
has 128kB per way, its block size is 64B, and it has 2048 sets.

All the frames that have low 5 bits of frame number in common are cached in spe-
cific portion of 64 cache sets. In this example there may be total of 2° = 32 par-
titions. The bits that determines partition number are referred to as page color{7].
Virtual memory manager has to ensure client of the partitioning has its virutal pages
mapped into frames with numbers following this formula: ¢ % 2" + p, where i € N,
n = loga(number_of _cache_sets) + logs(cache_line_size) — loga(page_size), and per
client chosen partition p € (0;2") Notice the page size have to be less than cache size
in one way for the partitioning described to be possible.

21

Chapter 3
Methodology

The chapter describes:

® used hardware platforms
m evaluation hypervisor Jailhouse
m design of experiments

The description of evalutation platforms includes NVIDIA TX2 and Intel Xeon W.
System on chip Tegra X2 made by NVIDIA is to be found in section 3.1. The platform
to evaluate cache partitioning effects is Xeon W processor from Intel described in 3.2.

B 3.1 NVIDIA Tegra X2

The primary platform used to evaluate methods increasing time predictability is the
Jetson Tegra X2 made by NVIDIA. At a time, it was marketed as “the fastest, most
power-efficient embedded AI computing device” V). There is a summary of parameters
of the TX2 SoM in the table 3.1.

A variant of this platform is used in the applications such as Tesla Motors’ self-driving
capability 2 or infotainment system of the Mercedes-Benz) and others.

parameter value

Power consumption < 15 Watts

Main memory 8 GB LPDDRA4
128-bit bus

Peak memory bandwidth 59.7 GB/s

CPU NVIDIA Denver2 (dual-core)
ARM Cortex-A57 (quad-core)

GPU Pascal (256-core)

SW support Ubuntu 16.04
Kernel 4.4

Table 3.1. Selected parameters of the Tegra X2 system on module.

TX2 platform is used in this work to see the effects of memory bandwidth throttling
on the level of memory controller. We want throttle especially the GPU to ensure certain
level of memory bandwidth is available for the CPUs. The throttling of the GPU on the
memory controller level was previously done and used on the TX1 platform. Further we
evaluate the concept of MemGuard on this platform. The MemGuard implementation
is dependant especially on the CPU’s Performance Monitor Unit (PMU). Therefore

D https://developer.nvidia.com
2) https://electrek.co/2017/05/22/tesla-nvidia-supercomputer-self-driving-autopilot/
3 https://blogs.nvidia.com/blog/2018/01/09/mercedes-ces-2018/

22

https://developer.nvidia.com
https://electrek.co/2017/05/22/tesla-nvidia-supercomputer-self-driving-autopilot/
https://blogs.nvidia.com/blog/2018/01/09/mercedes-ces-2018/

futher sections focus especially on the description of memory controller of the TX2
platform and the PMUs used.

Note: The documentation [20] of the TX2’s memory controller is rather sparse
whereas the TX1’s memory controller is documented in its manual [21] substantially
better. From the comparison of register descriptions in both documentations follows
that the MC of TX2 is heavily based on the one of TX1. Therefore we use TX2 docu-
mentation as an incremental documentation above TX1 docs. Some MC registers are
completely left out of the TX2 documentation. As an example of the omitted registers
those related to PTSA could be mentioned. There exists another source allowing to
check which registers are available on the platform and it is the Linux kernel headers
provided by NVIDIA.

For the overlapping MC design of the TX1 and TX2 discussed in previous para-
graph, sources from both platforms’ documentations are compiled to describe memory
controler in coming sections.

B 3.1.1 System organization

TX2 platform is based on the Parker series processor. Its block diagram may be seen
in the figure 3.1.

The module utilizes shared memory over all data consumers i.e., CPUs and GPU
access the same physical memory, meaning there is no dedicated memory for the GPU.

(

'CPU Power Rail 0 CPU Power Rail 1 3 g ’_‘_’
Clock &Reset| i| Cortex-R5 SPE @ || CAN. PMC,
2x Denver2 4x CA57 GIc i AXI 33| 12C, SPI,
Cluster0 Clusterl > Timers, Qm|: DMIC,
x 3 Mailboxes, | i 4 > GPIO
i Always On Power Rail Nt/
o] Semaphore, | *
4 ch;' Config Reg, SN
CPU switch fabric (Coherent) CoreSight o Sys Config Parker U[;\TF:/T;EI:

1 | I GPIO Architecture | Fuses,
BPMP, APE, Controller i | ThmSnsr,

SPE, SCE PWFM

Conexrserme | ¥ Y 3
- g General
Control Fabric 3. purpose
Q
'y a DMA
DMA ‘ ‘ ’
XUSB
_ Cortex-A9 APE eAVB,
Cortex-R5 SCE PCIE || Audio Processor _> UFS,
< . | sommc,
g

\ 4
Host (Command buffer and Synchronization)]

NI
camera || Video || Video || JPEG || Security VIC Display
ISP encode | | decode TSECs || 2D graphics || 3x heads

&SE || compesiton

| decompress || decompress
\ 4 \ 4 \ 4 \ 4 v \ 4 Y VVY VVY V¥V Y

Memory Controller

NINN W1sAS

MSS Backbone (Memory fabric and arbitration)

64/128b
LPDDR4

Figure 3.1. Block Diagram of a Parker series processor. [20]

B 3.1.2 Memory subsystem

There are several technical means utilized when moving data along the path from the
main memory (DRAM) modules to the consumers of the data and back. It includes
components that are described in the following paragraphs. The scheme of the memory
controller components is in the figure 3.2. Following terms are taken over from [20].

23

3. Methodology

GPU clients e

CCPLEX

4-core

Cortex- 4-core
A57 Cortex-

A53

CPUCIF
RAA A Wr

512b

256b
256b

MC ! %%

(YN ¥V nina X
Ring0_0

WCAM / Row Sorter

Py

|

|

¢ 2x256b @meclk
y

EMC_channel_0

¢ L 2x128b @ emcclk
EMC (mux

A A

2x128b @ emcclk

A
Pads (Pads):

2x32b @ 2x dramdk
4
DRAM (2x16 LPDDR4;)

Figure 3.2. Data path from the memory modules to the memory controller clients in Tegra
X1. [21]

External Memory Controller (EMC) is a module that interfaces with external DDR
devices.

Memory Controller (MC) is a module that handles requests from internal clients and
arbitrates among them to allocate memory bandwidth.

Write Content Addressable Memory (WCAM) presents a point of global visibility
for writes within a single channel, but read-after-read ordering is not guaranteed by
WCAM.

Row Sorter reschedules reads and writes. It is a pending request buffer that sorts
requests by the DRAM row it refers to. Write rescheduling is hidden behind WCAM.

System Memory Management Unit (SMMU) is a block within the memory controller
used to map from a virtual address space to physical addresses for device DMA.

Ring arbiter is a type of round-robin arbiter. Memory client requests are arbitrated
through a sequence of ring arbiters.

Priority Tier Snap Arbiter (PTSA) is a rate control mechanism above each ring.

Memory Controller Client InterFace (MCCIF) is the standard interface block between
the memory controller sub-system fabric and the client device.

24

B 3.1.3 Throttling memory controller clients

Our main focus in relation to the memory controller is exploration of the ability to
throttle the bandwidth of memory controller clients. First there is described the throttle
infrastructure and then MC related registers that allows throttling of clients.

The figure 3.3 below is a view of memory client request datapaths through the PTSA
rate control mechanism in the Tegra X1. Memory client requests are arbitrated through
a sequence of ring arbiters which perform a type of round-robin arbitration. There are
three ring arbiters referred to as ring 0, ring 1, and ring 2. Each ring has a rate control
mechanism referred to as Priority Tier Snap Arbiter (PTSA). The client’s bandwidth
guarantee is specified by the PTSA rate. [21]

SATA AHB GK20A VD MSENC CPU_WR
TSEC/

PCIE i oy i Hostix l Usex i vie lmml 55
ESESEES SIS

Y Y VYV Y VY Y VY Y Y VY VY vV ¥

- - - Real-Time Ring

Ring 2
DIiPO DIiPl
Vi ISPB
Needed for top_peatrans
vel ISP [Viz] (not in actual chip)
| ' ! v —
S==——rc—A,
B2 2 AN 2 T

Ring2 S Hard Isochronous Ring

v
CPU_RD
) v
e o |V
v

l A Y i |

Ringo rorororrrrrres Low Latency Ring

to Row Sorter

Figure 3.3. Snap arbiter tree of the memory controller clients in Tegra X1. [21]

Ring 0 serves the following clients:

s CPU reads (mpcorer)

m L2 cache (ftop) — CPU writes through L2

= Page table cache (ptc)

m Raw output from ring 1

s Output from ring 1 translated through SMMU

Ring 1 has the following clients:

= Ring 2
= Display
s Camera

Ring 2 serves every other client including e.g., two graphics card client instances. The
clients connected here are of non-isochronous nature. Since requests of this ring goes
through both lower rings there are higer time jitters to be expected between processed
requests.

The following knobs affect the fairness algorithm in snap-arbitration [20]:

25

s Client PTSA (DDA) settings

s RING1_. THROTTLE, MAX_OUTSTANDING, RINGO_.THROTTLE_MASK

s NISO.THROTTLE, MAX_OUTSTANDING_NISO, and NISO_.THROTTLE_MASK
s BLOCK_LP_CPU_RD_IF_SMMU_INP_HP

It is possible to select which clients get throttled above ring 0 and ring 2. The MASK
registers listed in table 3.2 serves this purpose. On top of ring 2 the group of clients
to be throttled is called non-isochronous (NISO) meta-client group. The THROTTLE
registers listed in the same table allows to set number of stall cycles that get inserted at
the input to the ring after every request from any of the clients included in the meta-
client group in question. The number of requests pending in the row sorter can affect
whether ringl or ring2 arbiters are throttled (slowed down) based on thresholds (OUT-
STANDING_REQ registers). There are two values settable in THROTTLE register.
One for the case when number of requests is below OUTSTANDING_REQ threshold
and another for the case above the threshold.

Ring Grouped Clients Wait Cycles Trigger Requests

2 input NISO_THROTTLE_ NISO_THROTTLE OUTSTANDING._
MASK, REQ-NISO
NISO_THROTTLE_
MASK_1

2 output RING3_ THROTTLE OUTSTANDING_

REQ-RING3

0 input RINGO_.THROTTLE_ RING1_THROTTLE OUTSTANDING_REQ

MASK

Table 3.2. Registers used to throttle groups of clients.
Note: registers named RING3 are not a mistake, it is more of a naming legacy.

PTSA registers are used to set the bandwidth of clients. Client snap levels are
expected to be programmed statically based on client type and its needs. Boot code
programs and locks the override control register for certain clients. Registers may be
configured dynamically to provide bandwidth guarantees to ISO clients.

The important statement of this section is the possibility to throttle group of MC
clients by inserting certain number of stall cycles after each memory request. During
stall cycles no request is served. That is how bandwidth should get throttled.

B 3.1.4 Processing units

In TX2 there are two CPU clusters contained in TX2 platform and one GPU. There
is present Quad-core Cortex-A57 cluster, which is an implementation of ARM intelec-
tual property, along with Dual-core Denver2 cluster created by NVIDIA. Denver uses a
combination of simple hardware decoder with software-based dynamic binary recompi-
lation storing the code it optimized in a portion of main memory. From the programmer
perspective the Denver core implements ARMvS8 instruction set architecture following
the ARMv8 programming model and it should effectively behave as an A57. There is
slightly better performance in Denver compared to Cortex-A57.

Both clusters has L1 data and L1 instruction per core caches and L2 unified per
cluster cache. Cache line size is 64B. There are listed details of the TX2 CPU caches
parameters in the table 3.3.

26

Cluster Level Type Size Ways Sets Write Policy

A57 L1 Data 4x 32K 2 256 Write Back
L1 Instruction 4x 48K 3 256
L2 Unified 2M 16 2048 Write Back
Denver2 L1 Data 2x 64K 4 256 Write Through
L1 Instruction 2x 128K 4 D%
L2 Unified 2M 16 2048 Write Through

Table 3.3. Cache parameters of TX2 CPU clusters [20]

Each core may operate on certain exception level (EL). There are four EL in ARMv8
marked ELO to EL3. Higher values of EL indicate increased software execution privilege.
Execution at ELO is called unprivileged execution. EL1 is the level meant for execution
of operating system kernel. EL2 provides support for virtualization and lastly EL3
provides support for switching to Secure state and back to Non-secure state. When
EL3 is implemented there exists portion of physical address space available only from
the Secure state.

GPU is based on Pascal michroarchitecture. There are two streaming multiproces-
sors each consisting of 128 CUDA cores. GPU is attached to the PTSA of the memory
controller through two interfaces. These are present to favor GPU data retrieval over
other clients also attached to the ring 2. Duplicating MC interfaces is a simple mecha-
nism how to favor GPU which is expected to have much higher data consumption over
other clients.

B 3.1.5 Performance Monitor Unit (PMU)

There may be implemented up to 31 event counters PMEVCNTR<n> each with the
length of 32 bits. Each of these registers may be configured to count certain event type
with the PMEVTYPER<n>_ELO of the same number <n>. These counting registers
overflow when they wrap. [22]

To give an example there are a few performance events in the following list:

m Software increment — architecturally executed instruction
m Level 1 instruction cache refill

m Level 1 data cache refill

m Level 1 data cache access

m Level 2 data cache refill

m Level 2 data cache access

m Bus Access

® Data memory access

| ...

PMU allows to raise an interrupt to notify software when the counter overflows. If
the software wants to count specific amount of performance event occurrences it has to
preset the counter register with the maximum value the counter register can hold de-
creased by that specific counted amount. The PMU can filter events by combinations of
Exception level and Security state. Filtering is settable in the PMEVTYPER<n>_ELO
registers.

Compare with the Intel’s PMU in section 3.2.4.

27

B 3.2 intel Xeon W

This section briefly describes Intel Xeon W-2133. The processor is employed by this
work to see the effects of cache partitioning technology. The cache partitioning is
available in Resource Director Technology under the term Cache Allocation Technology
(more in section 3.2.3).

Xeon labeled with W is a succesor to the Eb5 series. The Intel Xeon W-2133 is
made in 14nm litography technology and belongs to Skylake microarchitecture. It has
integrated 6 cores and can handle 12 threads at a time. Operation frequency moves in
range 3.6 — 3.9 GHz. Processor’s thermal design power is 140W.

B 3.2.1 Memory controller

Parameters of memory controller integrated in Xeon W-2133 1:

Maximum Memory Size: 512GB

s Maximum # of Memory Channels: 4

m Memory Type: DDR4

» Maximum Memory Frequency: 2666 MHz
s Maximum Memory Bandwidth: 85.3 GB/s

B 3.2.2 Cache organization

Cache line has size of 64B. Table 3.4 gives an overview of the CPU’s cache organization.

Level Type Size Ways Sets Write Policy
L1 Data 6x 32K 8 64 Write Back
L1 Instruction 6x 32K 8 64

L2 Unified 6x 1024K 16 1024 Write Back
L3 Unified 8448 K 11 12288 Write Back

Table 3.4. Cache parameters of Xeon W-2133 CPU [Linux sysFS records]

B 3.2.3 Resource Director Technology (RDT)

Resource Director Technology brought possibility to monitor and allocate cache. RDT
was first introduced with Xeon E5-2600 v4 and it operated above LLC. Since than it is
available on certain Xeon series e.g., Intel Scalable Processors family. The technology
is the mean to assure Quality of Service. It targets shared resource contention between
co-running applications. [23]

Intel RDT consists of following technologies:

s Cache Monitoring Technology (CMT)

s Cache Allocation Technology (CAT)

s Memory Bandwidth Monitoring (MBM)
m Code and Data Prioritization (CDP)

m Memory Bandwidth Allocation (MBA)

RDT above L3 cache gradually developped with Xeon versions as shown in table 3.5.
The technology or its parts might not be available on all Xeon processors.

R https://www.intel.com/content/www/us/en/products/processors/xeon/w-processors/w-2133.
html

28

https://www.intel.com/content/www/us/en/products/processors/xeon/w-processors/w-2133.html
https://www.intel.com/content/www/us/en/products/processors/xeon/w-processors/w-2133.html

3.2 Intel Xeon W

Xeon Version Microarchitecture RDT increment
v2 Ivy Bridge 22nm Tick N/A

v3 Haswell 22nm Tock CMT

v4 Broadwell 14nm Tick MBM, CAT, CDP
vH Skylake 14nm Tock MBA

v6 Kaby Lake 14nm optimized

Table 3.5. RDT support that appeared on certain Xeon processor of the given versions. [20]

To use RDT there must be Intel VT-x feature enabled in the BIOS setup.

The desription of the individual technologies associated under RDT follows. 1) [24]

Cache Monitoring Technology allows the OS or VMM to recognize whether some
thread is negatively interfering with another high priority thread, application, or virtual
machine. Misbehaving thread may be then migrated or postponed.

Cache Allocation Technology is an incremental step over CMT. “CAT is a way-based
hardware cache-partitioning mechanism for enforcing quality-of-service with respect to
LLC occupancy.” [25] There can be allocated certain portion of the total cache size for
thred, application, or VM. Effect of the CAT is depicted in the figure 3.4 that depicts
CAT effect.

Intel® Xeon® processor E5-2600 v4 product family

wiCache Allocation Technology
Cache allocation designated by user through OSIVMM priarities

Intel® Xeon® processor E5-2600 v3 product family
Cache allocated on first-come first-serve basis.

Low Priority High Priority Low Priority High Priority
App. 1 App. 2 App. 1 App. 2

__l__, ?__ Performance . Performance
— - A0DG P ssnnmsnsnsnsnnsannnnn L LR LTy en
cagne cach

SH 1 | e sesssamasanes — e
-_| _— -
— Appl. 1 Appl. 2

\ {

Figure 3.4. Intel RDT Cache Allocation Technology. [24]

Another technology from the bundle, Memory Bandwidth Monitoring, which allows
the per-core or thread memory bandwidth to be monitored. Based on the information
from monitoring can OS or VMM adjust scheduling accordingly.

Code and Data Prioritization is an extension to the CAT. CDP allows to optimize
LLC layout for the given workload characteristics as it can prioritize separately data
and instruction.

Lastly Memory Bandwidth Allocation technology help enforce a limit on the memory
bandwidth each thread or VM can use. MBA uses credit-based throttling mechanism.

CMT, MBM and CAT are configured using Model Specific Registers (MSRs). MSRs
are part of many control registers implemented on the x86 platform.

In this work we are most interesed in the CAT. There is certain number of classes
of service (COS) defined. In relation to cache the COS is basically a bitmask where
each bit corresponds to the portion of cache. It is possible to define COSes with shared
regions or completely isolated regions. To prevent cache sharing among clients the

D https://wiki.xenproject.org/wiki/Intel_Platform_QoS_Technologies

29

https://wiki.xenproject.org/wiki/Intel_Platform_QoS_Technologies

COSes are set in a way that when bit at position ¢ in the mask of one COS is set to
one, then in any other COS there must be bit at the same position 7 set to zero (given
bit value equal to one means the corresponding portion of cache is included in the COS
and value equal to zero means the cache portion is not included). The bitmask based
COS provides an abstraction independent of the partitioning scheme. When the COSes
are constructed they can be groupped into threads, applications, or VMs. There is
a hardware register known as “PQR” into which scheduler of the OS or VMM writes
required COS of the unit being scheduled. [26]

Since CAT is way-based partitioning and our Xeon W has 11-way associative LLC,
the COS has 11 bits.

B 3.2.4 Performance Monitor Unit (PMU)

The principle is the same as for TX2’s PMU described in 3.1.5. Xeon W-2133 identifies
itself with CPUID signature DisplayFamily_DisplayModel of 06_55H. It corresponds to
the Intel® Xeon® Processor Scalable Family based on Skylake microarchitecture. Ap-
propiate section is available in the Intel software developer’s manual combined volumes
describing this family’s Performance Monitoring [27].

“Performance monitoring was introduced in the Pentium processor with a set of
model-specific performance-monitoring counter MSRs. These counters permit selection
of processor performance parameters to be monitored and measured. The information
obtained from these counters can be used for tuning system and compiler performance.”
Intel processors newer than Intel Core Duo generation support enhanced architectural
performance events and non-architectural performance events. [27]

There are finite number of performance event select IA32 PERFEVTSELx MSRs
and corresponding number of performance monitoring counter IA32_ PMCx MSRs to
capture selected events. These performance related MSRs are available per core. Be-
sides selecting the performance event to be measured allows PERFEVTSEL register to
enable/disable evenets counting, enable/disable interrupts on overflow, and it contains
some further settings.

In the table 3.6 there are few of the events that can be measured. The Event
Number and Unit mask Value choose the event and they are filled in the specific
TA32_PERFEVTSELx to measure the chosen event.

Event Name Event Num. Unit mask Value
Instructions Retired 0xCO0 0x00
LLC Reference 0x2E 0x4F
LLC Misses 0x2E 0x41
Branch Instruction Retired 0xC4 0x00
Branch Misses Retired 0xCbh 0x00

Table 3.6. Selected Performance Events measurable using the PMU on Intel platform. [27]

I 3.3 Measuring performance events under Linux

Linux kernel has support for measuring performance events utilizing PMU. There needs
to be enabled option CONFIG_PERF_EVENTS. On Intel we also need to include sup-
port for intel uncore performance events provided as kernel module.

30

CONFIG_PERF_EVENTS=y
CONFIG_PERF_EVENTS_INTEL_UNCORE=m

Further there is a system call perf_event_open as an interface to set up performance
monitoring. The call returns a file descriptor created above an event that was passed as
argument to the perf_event_open. The event may be restricted to certain processes or
processors and it may also be grouped with other events under one fd. To control event
there are ioctl operations called on the corresponding fd. With the linux command
man perf_event_open the details may be obtained.

There is a security measure that, when set to certain value, limits the ability of
processes to access the perf events. 12 To allow use of all events we need to set following
to -1:

echo -1 > /proc/sys/kernel/perf_event_paranoid

The perf_event_open receives as a first argument description of the event to
be measured. Among other its type may be set to the PERF_TYPE_RAW to se-
lect arbitrary performance event to be measured. There are though some events
predefined with type PERF_-TYPE_HARDWARE, PERF_TYPE_SOFTWARE, and
PERF_TYPE_HW_CACHE, and others. These are specified per architecture. For intel
the predefined values are in the file arch/x86/events/intel/core.c and contains e.g.,
following;:

PERF_COUNT_HW_CACHE_MISSES = 0x412e
PERF_COUNT_HW_CACHE_REFERENCES = 0x4f2e

Compare with table 3.6.

I 3.4 Jailhouse: HV partitions HW

Jailhouse is a static partitioning hypervisor. It aims to be a minimal hypervisor and
basically it is a monitor only. This HV allocates hardware exclusively for its guests.
Thanks to this exlusivity, there is no need for scheduling (which means less overhead
in HV) and it also means no contention for access to partitioned hardware (optimally
guests would not interfere among each other). Both features are interesting from the
point of view of the real-time applications. It only virtualizes those resources in SW,
that are essential for the platform and cannot be partitioned in HW.

The minimal code base of Jailhouse is reached thanks to exploiting the Linux in
essence as the Jailhouse bootloader. Before the JH is started, Linux configures the
hardware. The approach greatly simplifies operations that has to be performed by the
hypervisor. Image 3.6 shows the loading process of the Jailhouse. [16]

Jailhouse management relies strongly on the Linux infrastructure. Hypervisor pro-
vides linux kernel module which is the main component to control the hypervisor
through ‘/dev/jailhouse’ device. Jailhouse also comes with the ‘jailhouse’ utility, that
allows to easily issue commands to control the hypervisor. The command completion
is also included.

There are used special names in Jailhouse. The cell is a configuration that describes
partitioned hardware for certain VM. The inmate is the code loaded to the cell. When
enabling the Jailhouse the configuration containing extensive system resources descrip-
tion has to be provided. The cell that starts with all the resources assigned is called

b https://www.kernel.org/doc/Documentation/sysctl/kernel.txt — section perf_event_paranoid

2 https://lvn.net/Articles/696216/

31

https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
https://lwn.net/Articles/696216/

Stahlkoche
CC BY-SA3.0

Root Non-roo k
~ Cell | . Cell
. \\\ J . ;/ o i
E\\\ Linux RTOSI//é
Bare-

Metal

Jailhouse Hypervisor

Core 1 ‘ Core 2 ‘ Core 3 Core 4

Device A ‘ Device B ‘ Device C Device D

Hardware

Figure 3.5. Statically partitioned hardware with Jailhouse. [28]

T

Images

Linux (Configs Linux
ST RT
Linux App
_ Partitioning Layer Partitioning Layer
Hardware Hardware Hardware
1. Boot phase 2. Partitioning 3. Operational phase

phase

Figure 3.6. Phases in the Jailhouse loading process. [28]

root-cell. The HV takes control over these hardware resources and assigns them imme-
diately back to the Linux root-cell.

The first step to create a guest (to run an inmate) within Jailhouse is creation of the
cell configuration with description of hardware which the inmante will utilize. Creating
new cell cuts away resources from the root-cell. When the cell is ready we may bring
in the inmate. In this step the code of the guest is loaded to the proper virtual memory
locations. After that the cell is start, which effectively begins the execution of the
loaded code.

In the following listing is an example of starting Jailhouse with one demo non-root
cell. Cf. figure 3.6.

insert jailhouse kernel module
insmod driver/jailhouse.ko
enable partitioning layer with available hardware description
jailhouse enable configs/root.cell
allocat some hardware for new cell (including memory)
jailhouse cell create configs/non-root-demo.cell
load code to the allocated partitioned memory
jailhouse cell load non-root-demo inmates/demos/demo.bin -a 0x£0000
start the execution of the new machine
jailhouse cell start non-root-demo

32

B 3.4.1 Setup

Root Linux settings

The Jailhouse has few requirements on the Linux that is used for JH bootstrap.
Jailhouse needs some space in memory where it will load itself. We allocate the space
for JH with Linux kernel option ‘memmap’.

On x86 platform we need to turn off VI-d IOMMU with the option ‘intel iommu’.
After disabling this for Linux, IOMMU can be fully in hands of Jailhouse when it is
enabled.

In our setup we also disabled kernel address space layout randomization with the
option ‘nokaslr’ ASLR is a security mean that loads sections of binary to the random
addresses within memory. With that turned off we get stable root-cell description of
the system.

The options are passed to the Linux kernel at the boot time.

vmlinuz ... nokaslr intel_iommu=off memmap=82M$0x3a000000

Jailhouse contains command to generate root-cell description. For this ‘intel iommu’
option needs to be turned on so that Linux loads right modules to enumerate all the
devices.

different versions for TX2 and Xeon

I disabled HyperThreading

I 3.5 Benchmarks

The benchmarks we used in the experiments can be categorized into synthetic bench-
marks and semi-real-world benchmarks.

The synthetic benchmarks are convenient from the perspective of results evaluation.
They are simple so their behavior is predictable which makes it easier to interpret the
results. We used synthetic benchmarks with the aim of maximally utilizing memory
bandwidths by the computation unit that performs such benchmark. In our tests
the synthetic benchamrks included sequential reads and sequential writes of an array.
Since the accent of our tests is on the memory bandwidth behavior, the stride, when
accessing arrays, is set to the cache line size. That allows CPU core to generate top
amount of memory requests. As an synthetic benchmark for the GPU we employed
saxpy — “Single-Precision A.X Plus Y”. This GPU kernel performs simple operations
above arrays in parallel which leads to very big memory bandwidth utilization.

There is often need to get closer to the real world applications, but also to retain
the ability to derive the meaning of the results with ease. We used the Polyhedral
Benchmark suite to design tests that model the real world applications closer. “Poly-
Bench is a collection of benchmarks containing static control parts. The purpose is to
uniformize the execution and monitoring of kernels, typically used in past and current
publications.” ! Table 3.7 shows the complexity of the kernels used in experiments.

benchmark operations memory O(Ops) O(Mem)
gemm 3n3 4 n? 3n? O(n?) O(n?)
doitgen 2nt nd4+n?2+n On?) O(n?)

Table 3.7. Complexity of the used PolyBench benchmarks. [29]

D http://web.cs.ucla.edu/ pouchet/software/polybench/

33

http://web.cs.ucla.edu/~pouchet/software/polybench/

The complexity of the benchmark helps to understand the results of experiments.

Since we can understand why the benchmarks behave certain ways we use them to
understand aggregated behavior of the real world application. The real world applica-
tion that we compared to synthetic benchmark is the KCF tracker, which is the tool
for tracking objects visually.

I 3.6 Design of experiments

B 3.6.1 Throttling memory clients

We are especially interested in the effects of the throttling mechanism when there is
high utilization of the memory bandwidth. That is the essence of our test scenario —
we use threads executing on CPU and GPU that highly utilize the memory bandwidth.
As the main memory is shared accross the system we should observe contention over
the bandwidth. Thanks to the throttling mechanism we should be able to moderate
some and prefer other clients.

We will take a look here at the CPU and GPU tasks utilizing memory bandwidth.

The memory intensive task on the CPU is mere array traversing. The array is
prepared, where each element has size same as the size of the cache line. This means
that with each access to an element of the array we transfer 64B (cache line size)
between cache and the memory. Each element of the array contains pointer with an
address to the next element of the array. Pointer of the last element points back to the
first element. Now the benchmark can only access next pointers to perform sequential
memory access and count the accesses. We can easily measure the bandwidth. Number
of elements accessed multiplied by cache line size (item size) yields the total number
of bytes transfered. The utilized bandwidth is then obtained as the total number of
transfered bytes divided by the time it took to perform those transfers. Described
benchmark is referred to as pointer chasing [8]. The size of the array is chosen in a
way it is bigger than LLC so that the array cannot be cached and there are indeed
performed memory accesses.

The core of the task for GPU is CUDA kernel sazpy — “Single-Precision A.X Plus Y”.
It is an operation over arrays defined with following formula z[i| = a* z[i] 4+ y[i], where
x, y, and y are arrays of floats each of length N. Computation of each z[i] requires 3
memory accesses: 2 reads (z[i], y[i]) and 1 write (z[i]). Even though the GPU does not
have dedicated memory it is necessary for the GPU to have knowledge about the data
on which it should operate. One of the ways to do that is by utilizing cudaMemcpy that
creates a copy of the data to be used solely by the GPU. To compute bandwidth we use
the following formula: S*Nxsizeof(float) _ bandwidth|GB/s] There is actually performed

time_in_ns
a batch of these kernels to increase precision of measurements.

Part of the codebase used in work of Houdek et al. [30] was used as a start point to
evaluate these tests.

The memory controller configuration was discussed in the section 3.1.3. We just
note here the THROTTLE_MASK registers serve to select clients to be throttled and
THROTTLE registers serve to set number of cycles to be inserted after each performed
memory operation. THROTTLE registers are associated with arbitration point and
their values may be set on the ring 0 and on the NISO group to 0 — 63 cycles and on
the ring 3 to 0 — 31 cycles.

34

B 3.6.2 Profiling MemGuard implementation

Concept of MemGuard was introduced in the section 2.8. Typical length of the memory
phase in PREM on this platform is in range 100-500us and length of the compute phase
moves in range from 100us to 10ms [31]. Compared to memory controller level, where
can be throttled various clients including GPU, MemGuard can throttle specific CPU
cores. On the other hand, the memory controller allows to throttle whole CPU cluster
and not the single cores. We evaluate MemGuard implementation in the Jailhouse
hypervisor. The MemGuard’s integration to the Jailhouse was done as a part of the
efforts within HERCULES project which is an innovation action under EU’s Horizon
2020 programme. Evaluation platform employed is NVIDIA’s Tegra X2.

The MemGuard variant implemented utilizes per-core memory bandwidth limiter
only. It is available to use by the applications through hypercall interface. For the
purposes of profiling there is available patch for Linux kernel enabling the syscall as an
MG limiter’s interface. The tests were performed using this Linux interface.

Limiter in the implementation allows to setup memory budget for the calling CPU
core plus the budget’s replenish time period. Memory budget is the amount of memory
acceesses that may be depleted during the time period. Time period is implemented us-
ing hardware timer and memory budget monitoring is implemented using PMU. When-
ever the timer expires the memory budget is replenished. If the budget is depleted
before the timer expires an PMU’s interrupt is triggered. Within the corresponding
ISR the core is then blocked until the timer expires and unblocks the core by replen-
ishing the budget. The instruction wait for event (wfe) is employed during blocking to
activate low-power standby mode of the core.

There were tested multiple performance monitor events that seemed suitable for
measuring the amount of memory accesses. ‘HW_EVENT _L2_ CACHE_REFILL’ seems
most suitable. This event increases the performance counter anytime the cache line is
loaded from the main memory to the LLC i.e., memory access is performed.

The interface further allows to mask low priority interrupts. With interrupts masked
the profiling is shielded from distortion of the results as there are expected certain out-
come values from the profiled tasks. Another option the interfece provides is periodic or
non-periodic mode. The periodic mode was described as a standard mode of operation.
In non-periodic mode there is occuring no limiting of the memory bandwidth. This is
used for profiling.

MemGuard measures certain statistics. When its interface is called it reports the
amounts measured since the last call. The statistics include:

= number of cache misses measured (performance events that occured)
m total time that passed

= memory budget overrun

m time budget overrun

Memory budget overrun in effect means that the ISR handling overflow of the per-
formance monitor counter was invoked at least once. Similarly the time budget overrun
means the ISR handling replenish time period was invoked at least once.

In the HERCULES project there was a need to see behavior of the KCF tracker. It
is a tool to track objects using visual data. The aim of measured KCF implementation
is to comply with PREM. 1) An illustrative example is in figure 3.7.

D https://github.com/CTU-IIG/kcE

35

https://github.com/CTU-IIG/kcf

3. Methodology

Figure 3.7. Visualization of the profiled KCF tracker object tracking. Red square is ref-
erence value. Green square is the tracker’s outcome.

In this work the tool was used as a blackbox. We compare performance of this
application with the synthetic task performing sequential array reads. The performed
measurements utilize memory bandwith limiting with the MemGuard.

B 3.6.3 Hardware cache partitioning

The experiment described in this section aims to show the behavior of hardware last
level cache partitioning. The LLC is typically shared among CPU cores. The parti-
tioning of the LLC is available in some of the Intel Xeon series processors. Jailhouse
hypervisor includes software support for partitioning of the Xeon’s LLC and assigns
cache partitions to cells according to their configuration.

As a benchmark we use kernels from the PolyBench suite with various dataset sizes.
The performance of the benchmark is measured under Linux within root cell. There
was utilized the perf tool that allows to report task statistics. It uses PMU’s counters
internally.

We utilize Jailhouse hypervisor to create cells with bare-metal interfering tasks. The
interfering tasks perform sequential array reads with stride of a cache line size.

The experiment compares shared and partitioned cache setups. For single benchmark
there are measured multiple test cases in both cache setups. The test cases are depicted
in the figure 3.8. The total number of utilized cache ways is set to be equal to the number
of cells in the test case.

Partitioned cache setup Shared cache setup
Cache way index: 0 1 2 3..10 0 1 2 3..10
Test case 1: I Measured I Unused 22 | I Measured Unused 22 |
Test case 2: | Measured |Inten‘eringl| Unused 82 | |Measured + Interferingl Unused 82 |
Test case 3: | Measured |Interferingl|Interferingz| u 82 | |Measured + Interferingl + Interferingz| Ugg |

Figure 3.8. Cache partitioning experiment.

Root-cell with Linux has assigned one cache way. Every interfering cell has also
assigned one cache way. Unused cache ways and CPU cores are assigned to the dummy
cell. The dummy cell does not run any code and its CPU cores are off.

For this experiment the HyperThreading (HT) feature of the Intel Xeon processor was
disabled. HT is hardware level virtualization that allows to interact with one physical

36

CPU core as if there were two cores present. We experienced crashes of Jailhouse due
to misconfigured cell access to the cores so the HT was disabled in the BIOS setup. 1
believe both virtual cores belonging to one real core would have to be assigned to the
single cell for proper functioning with HT.

37

Chapter 4
Evaluation

There are used two platforms to perform tests. I find it interesting to see the relative
performance comparison of the platforms employed in relation to caches. The compar-
ison is plotted in the figure 4.1. There is employed PolyBench GEMM benchmark with
the same dataset sizes on both platforms. For the test we limited Xeon LLC size to
3MB so that we get closer to the TX2’s 2MB LLC. The test for TX2 uses MemGuard
to measure cache misses and execution time. Measured and interfering tasks run all
under Linux. The test for Xeon uses perf utility to measure cache misses and execution
time. Measured task runs in the Jailhouse root-cell and interfering tasks run in the
non-root cells. In the figure, in the point where there is no interfering task, the number
of cache misses on the Xeon is ten times lower than on the TX2. The main reason for
this is the Xeon has three level cache whereas TX2 has only two level cache. Xeon’s L2
cache has the size of 1IMB.

Relative comparison of TX2 and Xeon cache misses and execution times
Benchmark: PolyBench GEMM

100 T T 10
[TX2 : Slow down [-] —t
I TX2 : Cache misses grow [-] —K—
I Xeon: Slow down [-]

I Xeon: Cache misses grow [-]

2 —_
o -~
o c
v 2
1}
g or 3
E 8
2 "
[}
©
O
1 - : 1

0 1 2 3
Number of Interfering tasks

Figure 4.1. Relative comparison of benchmark performance on the TX2 and Xeon W in
relation to caches.

There is employed PolyBench with the same dataset size on both platforms.

38

4.1 Throttling memory clients

I 4.1 Throttling memory clients

B 4.1.1 Measurement results

Our measuring is performed above combinations of up to two CPU threads and a GPU
thread. There are first measured CPU thread alone and GPU thread alone. Later
the measured GPU thread is combined with one or two interfering CPU threads. The
interfering thread starts before the beginning of measured thread and finishes after the
measured thread execution is done. This way the measured thread should have more
precise results. Number of cycles to throttle clients is chosen approximately as powers
of two.

The setup that follows depicts the effects of setting different amounts of throttle cycles
applied to different rings (i.e., to the THROTTLE registers), but without enabling any
client within mask registers at all.

When examining Ring 2 we see, as we would expect, that in the figure 4.2 the memory
bandwidth of our threads is not influenced.

Throttling Memory Controller clients. Measuring Pascal GPU with interfering from Denver2 cores
No clients added into throttle mask registers. Throttle cycles set above ring 2.

40 T T T T T T T
——X

35 : -

30L K —K HK———K X X

Bl g e]

1) Denver2: measure

Bandwidth [GB/s]
N
o
T
1

2) Pascal: measure —X—
3) Pascal: measure —kK—
15 - 3) Denver2: interfere —=— 1
4) Pascal: measure ——
4) Denver2: interfere #1 ——
10 F 4) Denver2: interfere #2 —— |
1 £ - £ ==
al @ o ¢ — - ¢ — |
0 1 1 1 1 1 1 1
0 1 2 4 8 16 31

of throttle cycles

Figure 4.2. Examining behavior of the THROTTLE register above ring 2.

That is however not the case for Ring 0. In the figure 4.3 it seems clients that are
used by our threads gets throttled anyway no matter they are not set to be throttled.
I suspect the Ring 0 does not mind its mask register.

Finally NISO client group is portrayed in the figure 4.4.

It seems the CPU client is selectively influenced as soon as 3 throttle cycles count (in
these cases our memory intensive task for CPU [pointerChasing] reads from a cache-line
size cell at a time and also writes into it). This looks like the CPU reads are set to
be throttled even though all clients in the NISO meta-group are disabled (i.e., zeroed
mask register).

39

4. Evaluation

Throttling Memory Controller clients. Measuring Pascal GPU with interfering from Denver2 cores
No clients added into throttle mask registers. Throttle cycles set above ring 0.

40 T T T T T T T
35 .
30 .
w 25 F .
Pe)
S
<
5 20 . SRR 7
S 1) Denver2: measure
% 2) Pascal: measure —X—
S 3) Pascal: measure —k—
o 15 3) Denver2: interfere —— -
4) Pascal: measure ——
4) Denver2: interfere #1 —0—
10 4) Denver2: interfere #2 —0—]
[5=! e =
¢ o —
5 - -
0 1 l 1 1 1 l 1
0 1 2 4 8 16 31
of throttle cycles
Figure 4.3. Examining behavior of the THROTTLE register above ring 0.
Throttling Memory Controller clients. Measuring Pascal GPU with interfering from Denver2 cores
No clients added into throttle mask registers. Throttle cycles set above NISO group.
40 T T T T T T T
35 : .
X X X X X
30 - .
w 25 - i
o
)
J-C-J 20 - -
S 1) Denver2: measure ——
-% 2) Pascal: measure —X—
S 3) Pascal: measure —K—
m 15 | 3) Denver2: interfere —=— 1
4) Pascal: measure ——
4) Denver2: interfere #1 —o—
10 F 4) Denver2: interfere #2 —0— |
¢ R E :
5 - -
0 1 1 1 1 1
0 1 2 4 8 16 31

of throttle cycles

Figure 4.4. Examining behavior of the THROTTLE register above NISO client group.

40

4.2 Profiling MemGuard implementation

We show only the results for Denver2 core, but the analogic results are yielded by
AS57 core. The trends are less striking with A57.

As the specific test case we throttle GPU memory client (GK and GK2 in the masks
registers). The resulting bandwidth is depicted in chart 4.5.

Throttling Memory Controller clients. Measuring Pascal GPU with interfering from Denver2 cores
GK, GK2 (GPU) clients added into NISO meta-client group. Throttle cycles set above NISO group.

40 T T T T T T T
35 .
30 .
w 25 .
)
9
J-C-J 20 - -
hel 1) Denver2: measure
% 2) Pascal: measure —X—
S 3) Pascal: measure —K—
m 15 | 3) Denver2: interfere —=— 1
4) Pascal: measure ——
4) Denver2: interfere #1 ——
10 F 4) Denver2: interfere #2 ——
5 -
0

of throttle cycles

Figure 4.5. Throttling GPU within NISO client group.

The GPU client memory accesses are obviously well throttled there, but unfortu-
nately the CPU accesses gets throttled as well. T wasn’t able to find any further (reg-
ister) settings that could allow the CPU bandwith to stay intact. In this form is the
GPU throttling on the TX2’s MC level unusable for increasing the time predictability
of the system.

Further we measured the delay between time the new values are set in the throttle
related registers and the time same values are read back. The delay was in range
from 20ms to 100ms. Such high values would make the throttling on the MC level
for the purpose of increasing the system time predictability also unsusable since the
task running on CPU that should be protected from GPU interference would finish its
execution by the time this throttling was operational.

I 4.2 Profiling MemGuard implementation

B 4.2.1 Profiling basic MG parameters

The synthetic application used to profile MemGuard performs sequential reads or writes
above an array. The array is accessed with stride of cache line size. It should be noted
that when the application is memory bound, decreasing memory bandwidth of the app

41

4. Evaluation

read(10000lines)

log =

log -

Figure 4.6. Application performance with varying MemGuard parameters.
The arrows indicate direction of increase of the quantities associated with the axes.
Scale of the axes is logarithmic.
Points having the same application execution time corresponds more or less to the
same bandwidth.

results in increased execution time and vice versa. The application employed is designed
to be memory bound.

The figure 4.6 depicts behavior of the synthetic sequential read application under
MemGuard. We observe the app’s response to various combinations of memory budgets
and replenish time periods. For each combination the total execution time and total
cache misses amount the app needed are recorded and plotted. We can see the number
of cache misses stays more or less constant. It is expected as the application should
have more or less constant number of memory accesses in each run. The execution time
however changes as we moderate memory bandwidth the app can utilize.

The figure 4.7 is a two dimensional projection of the figure 4.6. It highlights appli-
cation’s response to the changes in the memory budget. When the amount of memory
budget is lower than the amount that would saturate the task bandwidth needs, we
need more replenishes to finish the task. That results in longer total execution time of
the task. The MemGuard stops to limit core’s bandwidth at the point where the task
cannot deplete all the memory budget given for the current time period. In chart 4.7
it happens at around 10000 cache misses and it is directly related to our task reading
10000 cache lines, because one cacheline miss means one access to the main memory. At
the same time if we decrease replenish time period enough (128us and less in the chart)
the bandwidth of the app is increased. This results in the decrease of total execution
time.

We can also make projection of the figure 4.7 so that the application’s response to
the changes in the replenish time period is higlighted. It is shown in figure 4.8. The
description of behavior from the previous paragraph holds. The interesting part of the
chart is on the far left.

B 4.2.2 Reliability of MemGuard

In the figure 4.8 we see the total cache misses counts slightly decrease on the very
left. After reading the ARMv8 documentation thoroughly it is revealed that the PMU
architecture does not require event filtering to be accurate. For most events, it is

42

4.2 Profiling MemGuard implementation

read(10000lines); MGF_MASK_INT=1; MGF_PERIODIC=1; Samples=10

12000 T T T T T T T T 262144
4 65536
10000 e
: 4 16384
8000 - 4096
4 1024
6000 1
= 4 256
— » 9
4 64
4000 1
Cache misses Time [us] (Period: 256us) —v— | ;¢
Time [us] (Period: lus) Time [us] (Period: 512us) —¥—
Time [us] (Period: 2us) Time [us] (Period: 1024us) —<— |
2000 | Time [us] (Period: 4us) Time [us] (Period: 2048us) —— |
Time [us] (Period: ~ 8us) Time [us] (Period: 4096us) —&— 7 4
Time [us] (Period: 16us) Time [us] (Period: 8192us) —@&— |
Time [us] (Period: 32us) —®— Time [us] (Period: 16384us) —+—
Time [us] (Period: 64us) —4A— Memory budget overrun 41
Tlime [us] (IPeriod: |128us) *:Af . Time budqet overrun

0
0 24 20. 95 4096‘ 819 > 16 g 35 268 65 536 3 1072 26 2144 55, 4?88

Variable memory budget [cache misses count]

Figure 4.7. MemGuard: focus on memory budget behavior.

read(10000lines); MGF_MASK_INT=1; MGF_PERIODIC=1; Samples=5
12000 T T T T T T

262144

~~ 65536

10000 [

8000

6000

f , - 64
4000 Cache misses —+ 4
Time [us] (Mem budget: 125) 1

Time [us] (Mem budget: 250) 1 16

Time [us] (Mem budget: 500)
Time [us] (Mem budget: 1000) 1
Time [us] (Mem budget: 2000) |

2000 - Time [us] (Mem budget: 4000) —®— q 4
Time [us] (Mem budget: 8000) —4— |
Time [us] (Mem budget: 16000) —&—
Memory budget overrun : 41
o . . ‘Il'ime budget overrun) .
s 4 16 64 256 1024 4096 1636’4

Variable replenish time period [us]

Figure 4.8. MemGuard: focus on replenish time period behavior.

acceptable that, during a transition between states, events generated by instructions

43

executed in one state are counted in the other state. [22] Since we filter the PMU events
only by exception level 0 and 1 we miss those that are reported in the EL2 (hypervisor).
That is the cause for the slight drop in cache misses.

In the left part of the chart there is also the slight increase in the total execution
time. When testing various performance events behavior we discovered this increase
is connected to the increase in TLB cache misses. The value of TLB cache misses
was around 4 times higher with lus period compared to for example 64us period. EL2
events were included when performing the TLB measurement. This is one of the factors
contributing to the MemGuard overhead in the system. The real world application
probably would not thrash the TLB that much so our results are getting close to the
worst-case scenario.

write(10000lines); MGF_MASK_INT=1; MGF_PERIODIC=1;
Constant memory budget = 200000[cache misses]; Samples=100

12000 T T T T T T T T T T T T T 200
4 180
10000 : .
4 160
4 140
8000 - 5
4 120
41 80
4000 ~
4 60
Cache misses 4 a0
2000 - Memory budget overrun i
Time [us]
Time budget overrun 4 20
Standard Deviation +——+—
min-max
0 1 1 1 1 1 1 0
" 4 16 64 256 10 24 4096“ 16 3«5’4

Variable replenish time period [us]

Figure 4.9. Profiling MemGuard’s timer ISR overhead.
One CPU enabled at measure time. Events counted only from ELO and EL1.

The experiment with its outcomes in figure 4.9 was constructed to measure overhead
of the MemGuard. Since memory budget is higher than the task could ever need we
know ther won’t be executed performance event ISR. The experiment then depicts only
the overhead of the timer ISR that handles replenishes of the budget. We see that the
low amounts of replenish time period result in higher execution times.

With this chart we can decide how high overhead would be acceptable. Unfortunately
there is relatively high deviation in the execution time. If we could partition TLB and
reserve some records for the MemGuard’s usage, the experiment’s execution time would
persumably get more stable.

The percentage overhead of the MemGuard’s timer ISR is listed in table 4.1. It
compares overheads for various replenish time periods. To compute the overhead we

use the following formula: Overhead = (&&time — 1)« 100[%)], where exec_time is the

44

total execution time for the replenish time period. exec_time is the total execution
time yielded for the given replenish time period with the active MemGuard (i.e., time
budget overrun occured; periods 1 to 32 in the chart). Value in the denominator was
counted as an average of the total execution times with MemGuard inactive (i.e., time
budget overrun did not occur; periods 256 to 16384 in the chart).

Replenish time period [us] Timer Overhead [%)]

1 20.10

2 10.04

4 5.32

8 4.10
16 2.74
32 2.03
64 1.79
128 1.48

Table 4.1. Precentage overhead of the MemGuard for various replenish time periods.

B 4.2.3 MemGuard as a profiler

When memory budget of MemGuard is set substantially higher than where are the app
needs and also when the replenish time period is higher than the app execution time we
may use reports from MemGuard to profile the app. We use statistics reported by MG
to profile synthetic application that reads array with cache line stride. With this we
experimentally explore the behavior of the app on the TX2 platform. To get significant
results we perfromed the measurement million times.

Scatter plot [read(10000); Memory budget = 300000 misses; Time period = 50000us]
Cache misses {mean: 10060.000161, min: 10026, max: 10106, std_dev: 8.52}
Time {mean: 151.544421, min: 144, max: 310, std dev: 1.40}

1000000 samples

10110 L I . L B I L L A L A R L R A

10100 ~ —

10090 -~

10080 -

10070 -

10060 -

Total cache misses [amount]

10050

10040 -

10030 F 4

IScatter plot (I)f mem budget with timeI duration salmples

10020
140 160 180 200 220 240 260 280 300 320

Total time [us]

Figure 4.10. Scatter plot of million measurements that involve task reading ten thousand
cache lines.

45

4. Evaluation

Scatter plot [read(100000); Memory budget = 300000 misses; Time period = 50000us]
Cache misses {mean: 100262.163178, min: 100219, max: 100318, std_dev: 11.42}
Time {mean: 1441.545801, min: 1399, max: 2667, std_dev: 11.61}

1000000 samples

w320 7+ 77— 7 T T T T T T T T T T

100310 -

100300

100290

100280

100270

100260

100250

Total cache misses [amount]

100240

100230 -

100220 - E b

Scatter plot of mem budget with time duration samples
100210 | 1 1 | | 1 1
1200 1400 1600 1800 2000 2200 2400 2600 2800

Total time [us]

Figure 4.11. Scatter plot of million measurements that involve task reading hundred thou-
sand cache lines.

There is a scatter plot of ten thousand array reads in figure 4.10 and hundred thou-
sand array reads in figure 4.11. In the scatter plot, the more points are in the same
spot the more red that spot turns. We see the cache misses are all in one cluster.
Full cache misses range is about 100 misses for both measurements performed. Total
execution time is also in one cluster, but its variation depends on the number of opera-
tions performed by measured task. Further there exist outliers with significantly higher
times. Since we run these experiments under Linux root-cell there may occur some high
priority interrupts. Future work could execute this or similar test on the bare metal
Jailhouse cell to see if the time outliers disappear in such setup.

The cumulative distribution function of the cache misses formed from the results
presented in figure 4.11 may be seen in the figure 4.12. Similarly, we can see the
cumulative distribution function of the execution time in figure 4.13. Based on these
profiling results we may allocate the memory bandwidth for the task.

With the initial results from the profiling we were able to recoginze issues in the
MemGuard statistics reporting and based on that we fixed the tool.

46

4.2 Profiling MemGuard implementation

CDF [read(100000); Memory budget = 300000 misses; Time period = 50000us]
Cache misses {mean: 100262.163178, min: 100219, max: 100318, std_dev: 11.42}
Time {mean: 1441.545801, min: 1399, max: 2667, std_dev: 11.61}
1000000 samples

1 T T T T T

0.8 | -

0.6 : -

Cumulat‘ed overflows of-fiem budget semples '
i i i 1 I 1 i i i i i i

0 L i
100200 100220 100240 100260 100280 100300 10032C
cache misses [count]

Figure 4.12. CDF: cache misses plot of million measurements that involve task reading
hundred thousand cache lines.

CDF [read(100000); Memory budget = 300000 misses; Time period = 50000us]
Cache misses {mean: 100262.163178, min: 100219, max: 100318, std_dev: 11.42}
Time {mean: 1441.545801, min: 1399, max: 2667, std_dev: 11.61}
1000000 samples

Cumulated over'ﬂows of mem budget s:'amples

| S S TR SN A SN SO S S |

0 i i i i i i i
1200 1400 1600 1800 2000 2200 2400 2600 2800
total time [us]

Figure 4.13. CDF: execution time plot of million measurements that involve task reading
hundred thousand cache lines.

47

4. Evaluation

B 4.2.4 MemGuard upon real-world application: KCF tracker

We compare the KCF tracker performance with the synthetic task executing sequential
array reads. For each task there are measured different values of memory bandwidth
preset with MemGuard. The figure 4.14 depicts slowdown of applications with decreas-
ing bandwidth.

Throttling memory bandwidth with MemGuard
Compare KCF tracker to synthetic cacheline read
Abbrevs: Replenish Time Period (RTP)

100 r . . —
10 =
c
2
o
©
2
o
n
1 [s e O -
| Synthetic read(1000000), RTP: 125us o
Synthetic read(1000000), RTP: 16000us —X—
| KCF(carl) opencvfft-st, RTP: 125us
| KCF(carl) opencvfft-st, RTP: 16000us
KCF(carl) fftw, RTP: 125us
KCF(carl) fftw, RTP: 16000us | —O—
1x108 1x10° 1x1010
BW [B/s]

Figure 4.14. MemGuard used to compare real-world and synthetic applications.
carl is the name of the test based on dataset within VOT2016 Y datasets. The KCF
codebase comes with multiple FF'T implementations. We evaluate OpenCV FFT single
threaded and FFTW library implementations.

I 4.3 Hardware cache partitioning

The design of the experiment is described in section 3.6.3.

We measured setups with various dataset sizes utilizing GEMM and DOITGEN
benchmarks from the PolyBench suite. There is presented only one setup with GEMM
kernel as all results tend to have similar behavior.

In the figure 4.15 there are compared characteristics of setup with partitioned cache
and setup with non-partitioned (shared) cache. The number of interfering tasks in the
test varies. Each point is an average of either cache misses count or the total execution
time of the measured benchmark.

With the partitioned setup the total number of cache misses that the benchmark
suffers is constant. In the shared cache setup the cache misses rise as the cache lines
belonging to the benchmark are evicted from the cache by accesses of the interfering
task.

The execution time in case of one interfering task is better for the paritioned cache
setup compared to the shared cache setup. With the number of interfering tasks higher

48

than one the performance of the paritioned cache setup is worse than for the shared
cache setup. This was not expected, the time in the partitioned cache case should out-
perform shared cache case. I believe the reason for this behavior is that the experiment
was not designed optimally. I suppose there is employed LRU replacement policy as it is
mentioned in Intel manuals for earlier processor versions platforms [32]. The measured
benchmarks keeps its cache lines hot leaving multiple interfering tasks compete among
each other. Therefore in the shared cache setup the benchmark is limited significantly
less compared to what we expected.

The problem could also lie in the small size of the array used in the interfering
application. Since Jailhouse runs inmates with EL2 level MMU enabled and maps only
the first 2MB for the inmate, we employed just 1.75 MB array in the interfering tasks
to fit the available mapped memory. If this was the issue the mapped memory could
be increased explicitly with calling Jailhouse function map_range.

For the reasons stated above we may consider only test cases with zero and one
interfering task to be significant.

Measuring PolyBench GEMM on Xeon in Jailhouse root-cell
Cache size = i/11 * 8448kB, i is the number of cells; Cache divided equally for Parted scenario
Interfering cells: sequential reads of 1.75MB array each; Samples: 100

140000 . . 0.044
80000 [Time [s]: Parted Cache 10,041

Time [s]: Shared Cache
Cache misses: Parted Cache

60000 | Cache misses: Shared Cache o 0,04
B0000 b . Ci.d 0.039
20000 - - e, 4 0.038
0 L L 0.037
0 1 2 3

Number of interfering cells

Figure 4.15. Benchmarking shared and partitioned cache: averages of cache misses counts
and total times.

To be complete, the figure 4.16 depicts scatter plot of the datapoints measured in
presented experiment. The outliers are expected as we run the task under Linux without
protection from the possible system’s interference.

I’d like to point out, that the evaluation platform arrived late. Therefore there was
not time to design better experiments.

49

4. Evaluation

Comparison of partitioning and sharing cache which amount grows linearly with number of cells
Various amount of interfering cells employed
Benchmark: PolyBench GEMM; Samples: 100 per case

B e

240000 : : : : : : B : L _
220000 1

200000 : : : : : : Lo : : L i

0 Interfering; Partitioned cache ®
180000 1 Interfering; Partitioned cache @ .
2 Interfering; Partitioned cache A
0 Interfering; Shared cache
160000 1 Interfering; Shared cache ¢ : : : : : -
2 Interfering; Shared cache ®

L 2
140000 |- o .]
‘ . ¢ ¢

Total cache misses [amount]

120000 : . ® ® i : : e N o e .
- A o
- °
100000 |- ¢ ; o " Am .
80000 L L L L | L L L L | L L L L | L L L L | L L L L | L L L ! | L L L L
0.037 0.038 0.039 0.04 0.041 0.042 0.043 0.044
Total time [s]

Figure 4.16. Benchmarking shared and partitioned cache: scatter plot of measurements.

50

Chapter 5
Conclusion

The work presents methods that improve predictability of program execution time and
describes the results of the experiments.

We evaluated methods to limit the bandwidth of memory clients, which are neccessary
for the operation of the PRedictable Execution Model.

We wanted to use the memory controller of the TX2 platform to throttle the GPU
memory bandwidth as this was previously done for the TX1 platform. We showed that
on the TX2 the CPUs are throttled along with the GPU even though the CPUs are
not set to be throttled. This makes the throttling of the GPU on the TX2’s memory
controller level unusable.

We verified that the behavior of MemGuard is correct. We found a small issue in
statistics reporting and submitted patch that fixed the issue. We showed that Mem-
Guard’s overhead is 2% when the replenish time period is set to 32 us. This is acceptable
overhead.

The results of profiling the KCF tracker show that the application uses approximately
1.8 GB/s when it is not throttled. However, we set the tracker’s bandwidth to the 100
MB/s and show that this slows the tracker by the factor of 3.5.

We showed that hardware cache partitioning improves the performance of the system.
However, the test was not designed ideally. Details may be found in section 4.3.

51

References

[1] Paul Lokuciejewski, and Peter Marwedel. Worst-Case Execution Time Aware Com-
pilation Techniques for Real-Time Systems. Springer Netherlands, 2011. ISBN 978-
90-481-9928-0.

[2] Albert M. K. Cheng. Real-Time Systems: Scheduling, Analysis, and Verification.
John Wiley & Sons, Inc., 2003. ISBN 9780471224624.
http://dx.doi.org/10.1002/0471224626.

[3] Renato Mancuso, Roman Dudko, and Marco Caccamo. Light-PREM: Automated
software refactoring for predictable execution on COTS embedded systems. In: 201/
IEEE 20th International Conference on Embedded and Real-Time Computing Sys-
tems and Applications [online]. IEEE, 2014. pp. 1-10. ISBN 978-1-4799-3953-4.
http://ieeexplore.ieee.org/document/6910515/.

[4] P. Burgio, A. Marongiu, P. Valente, and M. Bertogna. A memory-centric approach
to enable timing-predictability within embedded many-core accelerators.. In: 2015
CSI Symposium on Real-Time and Embedded Systems and Technologies (RTEST).
IEEE, 2015. pp. 1-8.
https://doi.org/10.1109/RTEST.2015.7369851

[5] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. MemGuard: Memory
bandwidth reservation system for efficient performance isolation in multi-core plat-
forms. In: 2013 IEEFE 19th Real-Time and Embedded Technology and Applications
Symposium (RTAS). 2013. 55-64.

[6] Sparsh Mittal. A Survey of Techniques for Cache Partitioning in Multicore Pro-
cessors. ACM Comput. Surv.. 2017, 50 (2), 27:1-27:39. DOI 10.1145/3062394.

[7] Jiang Lin, Qingda Lu, Xiaoning Ding, Zhao Zhang, Xiaodong Zhang, and P. Sa-
dayappan. Gaining insights into multicore cache partitioning: Bridging the gap
between simulation and real systems. In: 2008 IEEE 14th International Sympo-
stum on High Performance Computer Architecture. 2008. 367-378.
https://doi.org/10.1109/HPCA.2008.4658653.

[8] Ulrich Drepper. What every programmer should know about memory [online: ac-
cessed 11.2.2017]. 2007.
https://lwn.net/Articles/250967/.

[9] Matthew Lentz, and Manoj Franklin. Performance of Private Cache Replacement
Policies For Multicore Processors [online]. 2014.
http://doi.org/10.5121/csit.2014.4708.

[10] Yuejian Xie, and Gabriel H. Loh. PIPP: Promotion/Insertion Pseudo-partitioning
of Multi-core Shared Caches. SIGARCH Comput. Archit. News. 2009, 37 (3), pp.
174-183. DOI 10.1145/1555815.1555778.

[11] M Geanta, L. Ghica, and N. Tapus. Leverage cache replacement policy in multicore
processors. In: 2016 IEEE 12th International Conference on Intelligent Computer

52

http://dx.doi.org/10.1002/0471224626
http://ieeexplore.ieee.org/document/6910515/
https://doi.org/10.1109/RTEST.2015.7369851
http://dx.doi.org/10.1145/3062394
https://doi.org/10.1109/HPCA.2008.4658653
https://lwn.net/Articles/250967/
http://doi.org/10.5121/csit.2014.4708
http://dx.doi.org/10.1145/1555815.1555778

Communication and Processing (ICCP) [online]. 2016. pp. 417-424. ISBN 978-1-
5090-3899-2.
https://doi.org/10.1109/ICCP.2016.7737182.

[12] Wikimedia Commons.

https://commons.wikimedia.org.

[13] George Taylor, Peter Davies, and Michael Farmwald. The TLB SliceédMdash;a
Low-cost High-speed Address Translation Mechanism. In: Proceedings of the 17th
Annual International Symposium on Computer Architecture. New York, NY, USA:
ACM, 1990. 355-363. ISBN 0-89791-366-3.
http://doi.acm.org/10.1145/325164.325161.

[14] Gerald J. Popek, and Robert P. Goldberg. Formal Requirements for Virtual-
izable Third Generation Architectures. Commun. ACM. 1974, 17 (7), 412-421.
DOI 10.1145/361011.361073.

[15] Ellen Kou Texas Instruments. Virtualization for embedded industrial systems.
http://www.tij.co.jp/jp/lit/wp/spry317a/spry317a.pdf.

[16] Jailhouse, project home [online].
https://github.com/siemens/jailhouse.

[17] Rodolfo Pellizzoni, Emiliano Betti, Stanley Bak, Gang Yao, John Criswell, Marco
Caccamo, and Russell Kegley. A Predictable Execution Model for COTS-Based
Embedded Systems. In: 2011 17th IEEE Real-Time and Embedded Technology and
Applications Symposium [online]. IEEE, 2011. pp. 269-279. ISBN 978-1-61284-326-
1.
http://ieeexplore.ieee.org/document/5767117/.

[18] Rakesh Komuravelli, Matthew D. Sinclair, Johnathan Alsop, Muhammad Huza-
ifa, Maria Kotsifakou, Prakalp Srivastava, Sarita V. Adve, and Vikram S. Adve.
Stash: Have your scratchpad and cache it too. In: 2015 ACM/IEEE }2nd Annual
International Symposium on Computer Architecture (ISCA) [online]. ACM Press,
2015. pp. 707-719. ISBN 978-1-4503-3402-0.
http://dx.doi.org/10.1145/2749469.2750374.

[19] Konstantinos Koukos, Per Ekemark, Georgios Zacharopoulos, Vasileios Spiliopou-
los, Stefanos Kaxiras, and Alexandra Jimborean. Multiversioned Decoupled Access-
execute: The Key to Energy-efficient Compilation of General-purpose Programs.
In: Proceedings of the 25th International Conference on Compiler Construction —
CC 2016 [online]. New York, NY, USA: ACM Press, 2016. pp. 121-131. ISBN 978-
1-4503-4241-4.
http://doi.acm.org/10.1145/2892208.2892209.

[20] NVIDIA. NVIDIA Parker Series SoC, Technical Reference Manual [online]. 2017.
https://developer.nvidia.com/embedded/downloads#?search=X2.

[21] NVIDIA. NVIDIA Tegra X1 Mobile Processor, Technical Reference Manual [on-
line]. 2016.
https://developer.nvidia.com/embedded/downloads#?search=X1.

[22] ARM Limited. ARM Architecture Refernce Manual [online]. 2018.
https://static.docs.arm.com/ddi0487/da/DDI0487D_a_armv8_arm.pdf.

[23] Intel Corporation. Intel RDT in Linuz [online].

https://01.org/intel-rdt-1linux/blogs/fyul/2017/resource-allocation-intel%C2%AE-|}

resource-director-technology.

53

https://doi.org/10.1109/ICCP.2016.7737182
https://commons.wikimedia.org
http://doi.acm.org/10.1145/325164.325161
http://dx.doi.org/10.1145/361011.361073
http://www.tij.co.jp/jp/lit/wp/spry317a/spry317a.pdf
https://github.com/siemens/jailhouse
http://ieeexplore.ieee.org/document/5767117/
http://dx.doi.org/10.1145/2749469.2750374
http://doi.acm.org/10.1145/2892208.2892209
https://developer.nvidia.com/embedded/downloads#?search=X2
https://developer.nvidia.com/embedded/downloads#?search=X1
https://static.docs.arm.com/ddi0487/da/DDI0487D_a_armv8_arm.pdf
https://01.org/intel-rdt-linux/blogs/fyu1/2017/resource-allocation-intel%C2%AE-resource-director-technology
https://01.org/intel-rdt-linux/blogs/fyu1/2017/resource-allocation-intel%C2%AE-resource-director-technology

[24] Intel Corporation. Intel Xeon Processor E5-2600 VJ Product Family Technical
Overview.
https://software.intel.com/en-us/articles/intel-xeon-processor-e5-2600-v4-

product-family-technical-overview.

[25] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. B. Lee. CATalyst:
Defeating last-level cache side channel attacks in cloud computing. In: 2016 IEEE
International Symposium on High Performance Computer Architecture (HPCA).
2016. 406-418.

[26] A. Herdrich, E. Verplanke, P. Autee, R. Illikkal, C. Gianos, R. Singhal, and R.
Iyer. Cache QoS: From concept to reality in the Intel® Xeon® processor E5-2600
v3 product family. In: 2016 IEEE International Symposium on High Performance
Computer Architecture (HPCA). 2016. 657-668.

[27] Intel Corporation. Intel® 64 and IA-32 architectures software developer’s manual
combined volumes: 1, 2A, 2B, 2C, 2D, 34, 3B, 3C, 3D, and 4 [online].

https://software.intel.com/en-us/articles/intel-sdm.

[28] Jan Kiszka Siemens Corporate Technology. Bootstraping the Partitioning Hyper-
visor Jailhouse. 2016.

[29] Tomofumi Yuki, and Louis-Noél Pouchet. PolyBench 4.0. 2015.
http: //www . cs . colostate . edu/ AlphaZsvn /Development / trunk /mde /edu . csu.
melange.alphaz.polybench/polybench-alpha-4.0/polybench.pdf.

[30] Pfemysl Houdek, Michal Sojka, and Zdenék Hanzalek. Towards predictable exe-
cution model on ARM-based heterogenous platforms.. In: 2017 26th IEEE Inter-
national Symposium on Industrial Electronics (ISIE) [online]. IEEE, 2017. pp.
1297-1302.

[31] Joel Matéjka, Bjorn Forsberg, Michal Sojka, Zdenék Hanzalek, Luca Benini, and
Andrea Marongiu. Combining PREM compilation and ILP scheduling for high-
performance and predictable MPSoC' execution.. In: Proceedings of the 9th Inter-
national Workshop on Programming Models and Applications for Multicores and
Manycores. [online]. ACM, 2018. pp. 11-20.

[32] Intel Corporation. Improving Real-Time Performance by Utilizing Cache Alloca-
tion Technology. 2015.
http: //www . cs . colostate . edu/ AlphaZsvn /Development / trunk /mde /edu . csu .
melange.alphaz.polybench/polybench-alpha-4.0/polybench.pdf.

54

https://software.intel.com/en-us/articles/intel-xeon-processor-e5-2600-v4-product-family-technical-overview
https://software.intel.com/en-us/articles/intel-xeon-processor-e5-2600-v4-product-family-technical-overview
https://software.intel.com/en-us/articles/intel-sdm
http://www.cs.colostate.edu/AlphaZsvn/Development/trunk/mde/edu.csu.melange.alphaz.polybench/polybench-alpha-4.0/polybench.pdf
http://www.cs.colostate.edu/AlphaZsvn/Development/trunk/mde/edu.csu.melange.alphaz.polybench/polybench-alpha-4.0/polybench.pdf
http://www.cs.colostate.edu/AlphaZsvn/Development/trunk/mde/edu.csu.melange.alphaz.polybench/polybench-alpha-4.0/polybench.pdf
http://www.cs.colostate.edu/AlphaZsvn/Development/trunk/mde/edu.csu.melange.alphaz.polybench/polybench-alpha-4.0/polybench.pdf

Appendix A
Specification

ZADANI DIPLOMOVE PRACE

I. OSOBNI A STUDIJNi UDAJE

~
Prijmeni: Dolezal J méno: Jan Osobni ¢islo: 393077
Fakulta/Ustav: Fakulta elektrotechnicka
Zadavajici katedra/Ustav: Katedra fidici techniky
Studijni program: Oteviena informatika
L Studijni obor: Pocitacové inZenyrstvi)
I. UDAJE K DIPLOMOVE PRACI
e a

Né&zev diplomové prace:

Podpora PREM na sou¢asnych multicore COTS systémech

Nézev diplomové prace anglicky:

Support for PREM on contemporary multicore COTS systems

Pokyny pro vypracovani:
1. Seznamte se s metodami pro zvySeni predvidatelnosti doby béhu programu, predevsim modelem PREM (PRedictable
Execution Model) navrzenym pro vykonné real-time aplikace.
2. Seznamte se s platformami (NVIDIA Tegra X2, Intel Xeon E5 v4) a technologiemi (Intel RDT) pro evaluaci experimentaini
Casti.
3. Navrhnéte experimenty, které oveli vyuzitelnost technologii riznych platforem pro model PREM. Vyuzijte stavajicich
implementaci.
4. Provedte experimenty, vysledky porovnejte se state-of-the-art.
5. Ve dikladné zdokumentujte a zhodnotte dosazené vysledky.

Seznam doporucené literatury:

[1]1PELLIZZONI, Rodolfo et al. A Predictable Execution Model for COTS-Based Embedded Systems. In: 2011 17th IEEE
Real-Time and Embedded Technology and Applications Symposium. IEEE, 2011, s. 269-279. DOI: 10.1109/RTAS.2011.33.
[21HOUDEK, Pfemys| & SOJ KA, Michal & HANZALEK, Zden&k. Towards predictable execution model on ARM-based
heterogeneous platforms. In: 2017 IEEE 26th Interational Symposium on Industrial Electronics (ISIE). IEEE, 2017, s.
1297-1302. DOI: 10.1109/IS1E.2017.8001432.

[3]1MATE] KA,] oel et al. Combining PREM compilation and ILP scheduling for high-performance and predictable MPSoC
execution. In: Proceedings of the 9th Intemational Workshop on Programming Models and Applications for Multicores and
Manycores. ACM, 2018, s. 11-20. DOI: 10.1145/3178442.3178444.

J méno a pracovisté vedouci(ho) diplomové prace:
Ing. Joel Matéjka, katedra fidici techniky FEL

J méno a pracovisté druhé(ho) vedouci(ho) nebo konzultanta(ky) diplomové prace:

Datum zadani diplomové prace: 09.10.2018 Termin odevzdani diplomové prace: 08.01.2019

Platnost zadani diplomové prace: 20.09.2020

Ing. J oel Matgjka prof. Ing. Michael Sebek, DrSc. prof. Ing. Pavel Ripka, CSc.
podpis vedouci(ho) prace podpis vedouci(ho) Ustavu/katedry podpis dékana(ky)

_ J

lll. PREVZETI ZADANI

Diplomant bere na védomi, Ze je povinen vypracovat diplomovou praci samostatné, bez cizi pomoci, s vyjimkou poskytnutych konzultaci.
Seznam pouzité literatury, jinych prament a jmen konzultantti je tfeba uvést v diplomové praci.

Datum prevzeti zadani Podpis studenta

A.1 Specification in English

I A.1 Specification in English

Master’s Thesis Topic: Support for PREM on contemporary multicore COTS systems
Instructions for elaboration:

m Apprise yourself of the methods for increasing the predictability of program execution
time, especially of model PREM (PRedictable Execution Model) designed for high-
performing real-time applications.

= Apprise yourself of platforms (NVIDIA Tegra X2, Intel Xeon E5 v4) and technologies
(Intel RDT) for evaluation of experimental part.

m Design experiments, which verify usability of different platform’s technoligies for
model PREM. Use existing implementations.

m Realize experiments, compare the results with state-of-the-art.

m Document everything thoroughly and evaluate achieved results.

57

Appendix B

Abbreviations
ACET s Average Case Execution Time
ADT m Abstract Data Type
ARC = Adaptive Replacement Cache
ASLR ® Address Space Layout Randomization
AST m Abstract Syntax Tree
BCET m Best Case Execution Time
BIOS m Binary Input Output System
CAM m Content Addresable Memory
CAT m Cache Allocation Technology
CCPLEX s CPU Complex
CDP m Code and Data Prioritization
CFG m Control Flow Graph; Context Free Grammar
CMT m Cache Monitoring Technology
COS m Class of Service
COTS s Commercials Off-The-Shelf
CPU m Central Processing Unit
CUDA s Compute Unified Device Architecture
DAE m Decoupled Access Execute
DDA m Digital Differential Analyzer
DDR m Double Data Rate
DMA m Direct Memory Access
DRAM m Dynamic Random Access Memory
EL m Exception Level
EMC m External Memory Controller
fd m file descriptor
FFT s Fast Fourier Transform
GCC s GNU Compiler Collection
GNU s GNU’s Not Unix!
GPS m Global Positioning System
GPU m Graphics Processing Unit
HERCULES = High-Performance Real-time Architectures for Low-Power Embedded

Systems

HT s Hyper Threading
aHv s Hypervisor
HW s Hardware
I/0 s Input/Output
IR s Intermediate Representation
IRQ s Interrupt Request
ISR m Interrupt Service Routine
JH m Jaihlouse
JIT s Just-In-Time compiler

58

KCF m Kernelized Correlation Filter

LFU m Least Frequently Used

LLC m Last Level Cache

LPDDR s Low Power DDR

LRU m Least Recently Used

LTO m Link Time Optimization

LWN m Linux Weekly News

L4T m Linux for Tegra

MBA s Memory Bandwidth Allocation
MBM ® Memory Bandwidth Monitoring
MC m Memory Controller

MCCIF m Memory Controller Client InterFace
MMU m Memory Management Unit

MSR m Model Specific Register

MSS m Memory Subsystem

NRU m Not Recently Used

OS m Operating System

PCI m Peripheral Component Interconnect
PM m Physical Memory

PMU m Performance Monitor Unit

PREM m PRedictable Execution Model
PTC m Page Table Cache

PTSA m Priority Tier Snap Arbiter

QoS m Quality of Service

RAM = Random Access Memory

RDT m Resource Dirctor Technology
saxpy m Single-Precision A.X Plus Y
SMMU m System Memory Management Unit
SoC s System on Chip

SoM m System on Module

SPM m Scratchpad Memory

SRAM m Static Random Access Memory
SSA m Single Static Assignment

SW m Software

TLB m Translation Lookaside Buffer
UART s Universal Asynchronous Receiver/Transmitter
VGA s Video Graphics Array

VM m Virtual Machine; Virtual Memory
VMM m Virtual Machine Monitor

vVOoT m Visual Object Tracking

VT-d s Intel Virtualization Technology for Directed 1/0O
WCET m Worst Case Execution Time

59

	TITLE
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	Tables/Figures
	Introduction
	Background
	Real-time embedded systems
	Worst-case execution time (WCET)
	WCET and contemporary hardware
	Timing constraints in industry

	Multicore systems and real-time applications
	Methods increasing predictability of execution time within multicore system
	Memory hierarchy
	Data request propagation
	Cache organization
	Writing data back to main memory
	Cache inclusion policy
	Cache coherency
	Caches incorporated in virtual address model
	Caches in contemporary hardware
	Quality of service in relation to cache

	Performance Monitor Unit (PMU)
	Hypervisor
	Hardware partitioning

	PRedictable Execution Model (PREM)
	WCET-aware compiler
	Decoupled Access Execute (DAE)

	MemGuard: limiting memory bandwidth of CPU cores
	Page coloring as a software solution addressing cache contention

	Methodology
	NVIDIA Tegra X2
	System organization
	Memory subsystem
	Throttling memory controller clients
	Processing units
	Performance Monitor Unit (PMU)

	Intel Xeon W
	Memory controller
	Cache organization
	Resource Director Technology (RDT)
	Performance Monitor Unit (PMU)

	Measuring performance events under Linux
	Jailhouse: HV partitions HW
	Setup

	Benchmarks
	Design of experiments
	Throttling memory clients
	Profiling MemGuard implementation
	Hardware cache partitioning

	Evaluation
	Throttling memory clients
	Measurement results

	Profiling MemGuard implementation
	Profiling basic MG parameters
	Reliability of MemGuard
	MemGuard as a profiler
	MemGuard upon real-world application: KCF tracker

	Hardware cache partitioning

	Conclusion
	References
	Specification
	Specification in English

	Abbreviations

