
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Monte Carlo Algorithms for Playing an
Imperfect-Information Chess Variant

Vojtěch Foret

Supervisor: Mgr. Viliam Lisý PhD.
Field of study: Open informatics
Subfield: Informatics and Computer Science
January 2019

ctuthesis t1606152353 ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

456991Personal ID number:Foret VojtěchStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Open InformaticsStudy program:

Computer and Information ScienceBranch of study:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Monte Carlo Algorithms for Playing an Imperfect-Information Chess Variant

Bachelor’s thesis title in Czech:

Monte Carlo algoritmy pro hraní šachů s neúplnou informací

Guidelines:
Games with imperfect information are fundamentally more complicated than games with perfect information, because the
players have to reason about large sets of possible states consistent with available information.
The student will:
1) review existing algorithms for playing imperfect information games with focus on Monte Carlo methods;
2) implement a method for representing and maintaining the set of possible states of the game;
3) implement two different algorithms for playing an imperfect-information chess variant (e.g., Kriegspiel);
4) experimentally find suitable parameters for the algorithm and rigorously compare their performance.

Bibliography / sources:
[1] Paolo Ciancarini, Gian Piero Favini, Monte Carlo tree search in Kriegspiel, Artificial Intelligence, Volume 174, Issue
11, Pages 670-684, 2010.
[2] Peter I. Cowling, Edward J. Powley, and Daniel Whitehouse. Information set monte carlo tree search. IEEE Transactions
on Computational Intelligence and AI in Games, 4, no. 2, 120-143, 2012.
[3] Jeffrey R. Long, Nathan R. Sturtevant, Michael Buro, and Timothy Furtak. Understanding the Success of Perfect
Information Monte Carlo Sampling in Game Tree Search. In AAAI 2010, 134-140.

Name and workplace of bachelor’s thesis supervisor:

Mgr. Viliam Lisý, MSc., Ph.D., Artificial Intelligence Center, FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 08.01.2019Date of bachelor’s thesis assignment: 10.01.2018

Assignment valid until: 30.09.2019

prof. Ing. Pavel Ripka, CSc.

Dean’s signature
doc. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Mgr. Viliam Lisý, MSc., Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

ctuthesis t1606152353 iv

Acknowledgements

I would first like to thank my thesis su-
pervisor Mgr. Viliam Lisý PhD. The door
to his office was always open whenever I
had a question about my research. He
allowed this project to be my own work,
but steered me in the right the direction
whenever I needed it.

I would also like to thank my parents
who provided me with support and en-
couragement during my student years.

Declaration

I declare that the presented work was
developed independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
thesis

In Prague, 1. January 2019

v ctuthesis t1606152353

Abstract

Topic of this thesis are algorithms for
games with imperfect information. This
thesis’s goal is to implement some of the
existing algorithms used in games with
imperfect information and test their use-
fulness on the game of kriegspiel, a version
of a well known game of chess. Handling
the imperfect information in this game is
a great challenge because the player re-
cieves only very little information about
state of the game and the information also
ages very quickly.

Keywords: Games with imperfect
information, Chess, Kriegspiel, Monte
Carlo Tree Search, Perfect Information
Monte Carlo

Supervisor: Mgr. Viliam Lisý PhD.

Abstract

Tématem této bakalářské práce jsou algo-
ritmy pro hry s neúplnou informací. Tato
práce si bere za cíl implementovat některé
z již existujících algoritmů používaných
na hry s neúplnou informací a testovat
jejich použitelnost na hře Kriegspiel, verzi
známe hry šachy. Zvládnutí neúplné infor-
mace v této hře je velká výzva, jelikož hráč
dostává o stavu hry jen opravdu velmi
málo informací a informace se velmi rychle
stávají zastaralými.

Keywords: Hry s neúplnou informací,
Šachy, Kriegspiel, Monte Carlo Tree
Search, Perfect Information Monte Carlo

Title translation: Monte Carlo
algoritmy pro hraní šachů s neúplnou
informací

ctuthesis t1606152353 vi

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Related work 2

1.3 Kriegspiel . 3

2 Background 5

2.1 Perfect Information Monte Carlo 5

2.1.1 Algorithm 5

2.1.2 Characteristics 6

2.2 Monte Carlo Tree Search 6

2.2.1 Algorithm 6

2.2.2 Characteristics 7

2.3 Information Set Monte Carlo Tree
Search . 8

2.3.1 Algorithm 8

2.4 Upper Confidence Bounds Applied
to Trees . 9

3 Implementation 11

3.1 GNU-chess 11

3.2 Chessboards 11

3.3 Players . 12

3.4 Information Set Representation . 12

4 Experiments and Evaluation 15

4.1 Experiments 15

4.1.1 Dummy1 vs. Dummy2 15

4.1.2 Finding Exploration Constant 16

4.1.3 ISMCTS1 vs. Dummy2 17

4.1.4 ISMCTS2 vs. Dummy2 17

4.1.5 ISMCTS1 vs. ISMCTS2 17

4.1.6 Determinization vs. Dummy2 18

4.1.7 Determinization vs. ISMCTS 18

5 Conclusion 19

A Bibliography 21

vii ctuthesis t1606152353

Figures Tables

4.1 Dummy1 vs. Dummy2 16

4.2 ISMCTS1 vs. Dummy2 16

4.3 ISMCTS2 vs. Dummy2 16

4.4 ISMCTS1 vs. Dummy2 17

4.5 ISMCTS2 vs. Dummy2 17

4.6 ISMCTS1 vs. ISMCTS2 17

4.7 Determinization vs. Dummy2 . . 18

4.8 Determinization vs. ISMCTS1 . . 18

4.9 Determinization vs. ISMCTS2 . . 18

ctuthesis t1606152353 viii

Chapter 1

Introduction

1.1 Motivation

For ages people have played board games, either for fun or to sharpen their
brains. Even in the present day, people often sit down to play a wide variety
of these games with their families or friends. Board games have a long
tradition and are an important part of human culture. Moreover they are
an excellent test bed for studies in the field of artificial intelligence. They
provide a simple model with, when compared to the real world, very simple
set of rules. Imperfect information is an integral part of the real world and
every agent has to deal with decision making under uncertainty which quickly
made it a very important part of artificial intelligence. A good test bed for
these situations are games with imperfect information. In these games player
doesn’t know the exact game state, only a set of possible states. This makes
games with imperfect information very difficult and challenging for computer
programs and humans.

This thesis focuses on the game kriegspiel. Kriegspiel is a very interesting
game because it is an imperfect information variant of chess. It combines
rules identical to chess, one of the most popular board games in the world,
and very strongly imperfect information. Chess is transformed into one with
imperfect information by letting players see only their own pieces. Player
receives only very little information about enemy pieces which makes the
number of possible states particularly large and impossible to store in any
present-day computer. The information in kriegspiel also ages fast and rarely
lasts longer than a few moves. This makes kriegspiel a particularly challenging

1 ctuthesis t1606152353

1. Introduction
and very difficult for a computer program to play well.

A lot of work and research has been put into solving games with perfect
information and computer programs have defeated the best human players in
many of these games (e.g. chess). After a long time of research, computer
programs have begun to be succesfull even in games with imperfect infor-
mation. Perfect information Monte Carlo is a technique that deals with the
problem of perfect information by avoiding it. Even though it is very often
criticized for problems arising from this approach, it’s success in a variety
of games is undeniable. Another very interesting approach to solving games
with imperfect information is relatively new AI technique called information
set Monte Carlo tree search (ISMCTS). Monte Carlo Tree Search (MCTS)
has been succesfull in many games with perfect information and it requires
minimal to no domain knowledge even though it can improve it’s performance.
ISMCTS is a way to apply MCTS to games with perfect information and it
avoids some of the downsides of Perfect information Monte Carlo.

1.2 Related work

Perfect information Monte Carlo (PIMC) as described in [CPW12] was for
a long time the aproach to go for when dealing with games with imperfect
information. Despite it’s flaws, in many games like Bridge and Skat it plays
on expert level. In [CPW12] a new version of Monte Carlo Tree Search for
games with imperfect information is introduced - Information Set Monte
Carlo Tree Search. It is shown that it overcomes some of the often criticized
problems of PIMC and in some domains performs better.

Not too much work has been done on kriegspiel itself. In [CF07] an aproach
called metaposition is introduced. Metaposition stores a superset of the
current information set on a single virtual chessboard and allows to create
evaluation function and use minimax methods like it was a game with perfect
information. It performed very well among other kriegspiel playing computer
programs but was not strong enough to face human players. In [CPW12] it
is shown that Information Set Monte Carlo Tree Search can be with some
domain-specific knowledge very strong and even outperform kriegspiel. It can
even face human players although it does not play on the expert level just
yet.

ctuthesis t1606152353 2

...................................... 1.3. Kriegspiel

1.3 Kriegspiel

Kriegspiel is a chess variant deriving from a German war game (Kriegsspiel)
used to train military officers. It’s a variant with regular chess pieces in which
player has exact information about position of only his own pieces. This
nature of the game is also reason why it is sometimes reffered to as Blind
Chess. All the rules remain the same as in the regular game of chess. The
game of chess can end for several reasons:

. Checkmate - The player to move has his king in check (threatened
with capture) and there is no legal move that can remove the threat.
Chcekmating the opponent is the only way to win the game of chess. If
the game is terminated for any other reason, it ends in a draw.. Stalemate - The player to move has no legal moves available and he is
not in check.. 3-fold repetition - The same position occurs three times (all the pieces
are at the same position, it is the same player’s turn and he has the same
legal moves).. 50-move rule - No capture or pawn move has occured in the last 50
moves.. Insufficient material - The game reaches position where there is no
possible series of legal moves that would cause a checkmate.

The only way players can obtain information about opponent’s pieces
is through a referee (umpire) who is the only one with information about
positions of both players’ pieces. After a player attempts a move, umpire
decides whether the move is legal or not. If it is illegal, player can choose
a different one. If the move is legal, umpire announces consequences of the
move, if there are any. From the view of umpire it is normal game of chess,
only the information shared with the players depends on the Kriegspiel variant
being played. Probably the most widely spread ruleset is the one usen on the
Internet Chess Club. The umpire messages there are following:

. No or Illegal - If the move is illegal, umpire will ask the player to choose
a different move..White to move/ Black to move - If the move is legal and it’s now
opponent’s turn

3 ctuthesis t1606152353

1. Introduction
. Pawn captured - When a pawn is captured. Umpire will also specify the

position of the captured pawn.. Piece captured - When a piece that is not a pawn is captured. Umpire
will also specify the position of the captured pawn.. Check - In the case that a King is in check

ctuthesis t1606152353 4

Chapter 2

Background

2.1 Perfect Information Monte Carlo

2.1.1 Algorithm

Perfect Information Monte Carlo (PIMC)(sometimes also called determiniza-
tion) is a relatively simple approach to playing games with imperfect in-
formation. Rather than dealing with the imperfect information, it applies
classic algorithms on an equivalent game with perfect information. The
term determinization refers either to the process of converting a game with
imperfect information to an instance of a game with perfect information or
to the instance itself. Determinization is chosen from the current information
set. For example, a determinization of a game of Kriegspiel is a chessboard
with all pieces visible.

Using this approach, we choose a number of determinizations from the
current information set and use algorithms for games with perfect information
for every determinization. Then we combine results of these algorithms to
get a decision for the original game. Determinizations could be chosen using
a probability distribution over the information set but in this thesis i chose
to chose them uniformly at random. Advantage of determinization is that
it allows us to choose the method used to evaluate particular determiniza-
tions. Because of the nature of kriegspiel determinization, I am able to use
sophisticated minmax based algorithms that are very strong at playing chess.

5 ctuthesis t1606152353

2. Background
2.1.2 Characteristics

Allthough determinization shows success in many games, it is not without
flaws. Since determinization uses perfect information game playing algorithms
on particular determinizations, it doesn’t "realize" that it is playing a game
with imperfect information. Therefore it will never make the decision to make
a move that reveals some information or a move that makes sure that as much
information as possible stays hidden from the opponent. That brings us to
another problem, some determinizations might be extremely unlikely because
the opponent can simply avoid them - that would make results of these
determinizations useless. The last significant problem with determinization is
strategy fusion. Player can make different decisions in different determiniza-
tions but he cannot make different decisions in different states of the same
information set because he cannot distinguish them. For example, there can
be a move after which the player can in every determinization make a decision
that leads him to victory. However, in every determinization the winning
decision can be different. So it is even possible that determinization will say
that the said move is a sure victory while in reality the probability that the
player will choose the right move after that is very low.

2.2 Monte Carlo Tree Search

This chapter focuses on describing Monte Carlo Tree Seaarch (MCTS) for
games with perfect information as summarised in [CPW12].

2.2.1 Algorithm

MCTS starts with only the root node being the current state of the game.
With each iteration the algorithm builds bigger and bigger part of the search
tree focusing more on the more promising areas. Each iteration has four
following steps:

. Selection - Algorithm starts in the root and descends the already existing
tree. Descending stops when the algorithm reaches a node that is either
a terminal state or reaches a node that has children that have not been
addded to the tree yet. There are several existing selection strategies.

ctuthesis t1606152353 6

............................... 2.2. Monte Carlo Tree Search

The simplest one is to select randomly. It can be also aproached as a
multiarmed bandit problem and UCT as described in 2.4 can be used.
Ideal selection strategy finds balance between exploration (descending
to parts of the tree that have been visited less often) and exploitation
(choosing the more promising parts of the tree).. Expansion - In this step, a new node is added to the tree. A simple and
popular expansion strategy is to add one node per iteration but it could
also be a small subtree. This node can be chosen at random from the
children of the node that we find ourselves in that is not yet in the tree.. Simulation - A simulation is run from the newly added node. There are
different simulation strategies. The most popular one is to choose moves
randomly until the end of the game is reached. Using domain-specific
information can improve reliability of the result of this simulation. Even
a knowledge-based evaluation function can be used.. Backpropagation - The algorithm returns back to the root and statistics
stored in all the visited nodes are updated using the newly gained results
from the simulation.

After a given number of iterations or when time runs out, the most
favourable action from the root is chosen using the statistics that the algorithm
gathered.

2.2.2 Characteristics

MCTS is an aheuristic algorithm. In games where reliable heuristics have
been found, minimax based algorithms perform very well (e.g. Chess). Since
MCTS requires little to no domain-specific knowledge, it can be very usefull in
games where it is difficult to formulate reliable and useful heuristics (e.g. Go).
However, using some domain-specific knowledge can signifficantly improve
performance of MCTS.

After adding each node to the tree in each iteration, MCTS immediately
backpropagates the outcome up in the tree so the statistics stored in the
nodes are always up-to-date. This means that the algorithm can return an
action at any moment making it an anytime algorithm. This is an advantage
over minimax algorithm although iterative deepening can also make minimax
into an anytime algorithm.

7 ctuthesis t1606152353

2. Background
MCTS builds an asymmetric tree and therefore performs an asymmetric

search. Depending on selection strategy, the algorithm can put more com-
putation time into the more promising parts of the tree and find balance
between exploration and exploitation.

2.3 Information Set Monte Carlo Tree Search

Information Set Monte Carlo Tree Search (ISMCTS) should help us overcome
some of the problems with determinization because it embraces the imperfect
information nature of the game.

In MCTS the nodes represent game states and edges represent moves. In
ISMCTS they represent the same thing from the perspective of the root
player and so taking into account that it is a game of imperfect information.
Therefore nodes represent information sets and edges represent moves from
the point of view of the root player - actions that are indistinguishable for the
root player share a single edge. In the case of kriegspiel edges representing
opponent’s moves correspond to umpire messages retrieved by the root player.

2.3.1 Algorithm

At the beginning of each iteration the algorithm chooses a determinization at
random just like the Perfect Information Monte Carlo. The whole iteration
then works with this determinization and has 4 steps that are only slightly
different from the MCTS’s :

. Selection - Algorithm descends the tree using only the edges compatible
with the chosen determinization. When choosing the action performed
by the root player, it can be viewed as subset-armed bandit problem and
we can use UCT. Actions of opponent are chosen at random because
nodes in the tree do not store any information that would help us make
a better choice.. Expansion - There has to be action compatible with the chosen deter-
minization leading to the newly added node.. Simulation and Backpropagation are the same as in MCTS

ctuthesis t1606152353 8

....................... 2.4. Upper Confidence Bounds Applied to Trees

This algorithm solves the strategy fusion. Unfortunately it assumes that
the opponent choses his moves at random so the opponent model is very
weak. This can be solved by maintaining a separate tree for the opponent
that corresponds to the opponents point of view. But this algorithm is not
part of this thesis.

2.4 Upper Confidence Bounds Applied to Trees

As described in [CPW12] UCT is a variant of UCB1 used in trees. It is
an algorithm used in multi-armed bandit problem. It is used to balance
exploration and exploitation. I use UCT to choose to which node to descend
to in selection step of ISMCTS iteration. The node to descend to is chosen
as the one with the highest Xj + c

√
ln n
nj

, where Xj is value of node j, n is
the number of times the parent node was visited, nj is the number of times
the node j was visited and c is an exploration constant. Finding the optimal
value of c for my algorithms will be one of the many goals of my bachelor
thesis.

In ISMCTS instead of multi-armed bandit problem we have to solve subset
multi-armed problem. We deal with that by counting into n only times when
the parent node was visited and the current node was available in chosen
determination.

9 ctuthesis t1606152353

ctuthesis t1606152353 10

Chapter 3

Implementation

3.1 GNU-chess

GNU-chess is mainly written in C. I sometimes used C++ here and there.
GNU-chess engine offers many efficient functions and data strucures that I
used in my parts of the code, for example finding legal moves, board data
structure, list of moves. I implemented negamax player, random player,
possibility to play from the terminal, different sizes of chessboards and
completely changed the game loop and implemented the umpire.

3.2 Chessboards

This program offers the game of Chess or Kriegspiel on several chessboards of
different sizes. The main focus is put on chessboard 8x8 and 4x4. Chessboard
4x4 has 2 variants. One of them is Silverman 4x4 and the second one is a
reduced form of Silverman with a Bishop instead of a Queen and no Pawns.
Other chessboard sizes from 4x4 to 8x8 are also available.

11 ctuthesis t1606152353

3. Implementation....................................
3.3 Players

A class Player is an interface for agents. There are several implementations:

. Terminal Player
Allows user to play from terminal.. Random Player
Random player can play Kriegspiel and Chess on any chessboard from
4x4 to 8x8. It chooses a random move from all legal moves. The only
intelligence, it possesses, is that when playing Kriegspiel and umpire says
that it’s move was illegal, it will choose from the rest of the pseudolegal
moves.. Negamax Player
It’s a simple minimax player with alpha-beta pruning. The evaluation
function uses only material value. It cannot play Kriegspiel. It plays
only chess but it can play on any chessboard from 4x4 to 8x8.. Determinization Player
Player using described determinization algorithm. Each determinization
is evaluated by gnu chess engine.. ISMCTS Player
Player using described ISMCTS algorithm. It has two different imple-
mented simulation versions..Gnu-chess engine
GNU-chess player uses Principal variation search with iterative deepening.
It also uses search enhancements like transposition table and null-move
pruning. Evaluation function is also more complex than the one that
my negamax uses. It includes for example material value, mobility,
king safety and more. It cannot play Kriegspiel. It plays only chess on
chessboard 8x8.

3.4 Information Set Representation

Because the information set is almost always too large, it is a good idea
to remember only a resonable amount of possible states and throw away
the rest. Both determinization and ISMCTS use only a subset of the
information set so they don’t mind. Unfortunately in case that the true
state of the game is one of the states thrown out, it is possible that

ctuthesis t1606152353 12

.............................3.4. Information Set Representation

the information set will get thinner and thinner and, unless the true
game state is added to the information set because one of the possible
enemy moves lead there, it will eventually be empty. To avoid that, it is
needed to generate new samples and maintain a pool of samples - they
are generated in random.

13 ctuthesis t1606152353

ctuthesis t1606152353 14

Chapter 4
Experiments and Evaluation

In this chapter, I present experiments that I performed. I compared 5
algorithms:..1. Random player choosing uniformly among all legal moves. In this

chapter I will call him Dummy1...2. Random player choosing uniformly among all legal moves. Only
if his piece gets captured and he can recapture, then he prefers to
recapture. In this chapter I will call him Dummy2...3. ISMCTS player where simulation is comparing number and quality
of pieces and assigning one of values 0; 0.5; 1 depending on who is
better off. In this chapter I will call him ISMCTS1...4. ISMCTS player where simulation is performing random moves till
the end of the game. In this chapter I will call him ISMCTS2...5. Determinization player using gnu chess engine to evaluate particular
determinizations.

Exploration constant also has to be experimentally found for ISMCTS
players.
In all these experiments, algorithms have only one thread availabe and
they are given 2 second for every move.

4.1 Experiments

4.1.1 Dummy1 vs. Dummy2

The first experiment is to see whether slightly more sophisticated random
player has the edge over a plain random player. When his piece is
captured, player Dummy2 will recapture if possible. In the game of
kriegspiel, it is a usual behaviour because when piece gets captured, it
is one of the few situations when a player has exact information about

15 ctuthesis t1606152353

4. Experiments and Evaluation
where one of the enemy’s pieces is and therefore it is very often clever to
recapture if possible.
In the Table 5.1 we can see that Dummy2 has indeed slightly higher
win rate than Dummy1 even though the difference is really small. Large
portion of games ended as a draw because for random players it is not
easy to checkmate the opponent and the game gets very often terminated
due to the 50-move rule.
Even though the difference is insignificant, I will use Dummy2 to find
suitable exploration constant for ISMCTS algorithms.

4.1.2 Finding Exploration Constant

I performed an experiment where players ISMCTS1 and ISMCTS2 with
exploration constant 0.25, 0.5, 0.75,...,1.75, 2.0 played against player
Dummy2. These values for exploration constant were suggested in
[CPW12]. Each ISMCTS player played 80 games per constant with
Dummy2; 40 as white and 40 as black.
Tables 5.2 and 5.3 show that none of the versions of ISMCTS is partic-
ularly sensitive to changes in the exploration constant. However best
performed players ISMCTS1 with constant equal to 1.5 and ISMCTS2
with constant equal to 0.75 and therefore I will use these constants in
following experiments.

White Dummy1 Dummy2 Average

Dummy1 wins 2 2 1.0%
Dummy2 wins 6 12 4.5%
Draw 192 186 84.5%

Table 4.1:

c = 0.25 c = 0.5 c = 0.75 c = 1.0 c = 1.25 c = 1.5 c = 1.75 2.0

ISMCTS1 wins 6 5 4 4 5 7 4 3
Dummy2 wins 2 1 1 1 1 1 3 1
Draw 72 74 75 75 74 72 73 77

Table 4.2:

c = 0.25 c = 0.5 c = 0.75 c = 1.0 c = 1.25 c = 1.5 c = 1.75 2.0

ISMCTS2 wins 8 10 12 8 5 7 11 4
Dummy2 wins 1 2 1 2 3 5 4 1
Draw 71 68 67 72 68 65 75

Table 4.3:

ctuthesis t1606152353 16

..................................... 4.1. Experiments

4.1.3 ISMCTS1 vs. Dummy2

In this experiment ISMCTS1 with exploration constant equal 1.5 played
400 games against Dummy2; 200 of them as white and 200 as black.
We can see the results in the Table 5.4. As we can see ISMCTS1 has
slightly higher win rate then random player but given how much more
sophisticated he is, it is really not by a lot.

4.1.4 ISMCTS2 vs. Dummy2

I performed the same experiment with ISMCTS2 against Dummy2. This
ISMCTS player uses very common and simple simulation strategy and
as we can see in the Table 5.5 he did a little bit better against a random
player than ISMCTS1.

4.1.5 ISMCTS1 vs. ISMCTS2

Results of games between ISMCTS1 and ISMCTS2 are in the Table 5.6.
Just as ISMCTS2 did slightly better against Dummy2 than ISMCTS1,
he also slightly beated ISMCTS1. However, the difference between these
two versions of the same algorithm are so close to each other that given
the number of games, it is not statistically signifficant.

White ISMCTS1 Dummy2 Average

ISMCTS1 wins 21 8 7.25%
Dummy2 wins 4 4 2%
Draw 175 188 90.75

Table 4.4:

White ISMCTS2 Dummy2 Average

ISMCTS2 wins 23 27 12.5%
Dummy2 wins 9 2 2.75%
Draw 168 171 84.75%

Table 4.5:

White ISMCTS1 ISMCTS2 Average

ISMCTS1 wins 3 33 9%
ISMCTS2 wins 41 4 11.25%
Draw 136 163 74.75

Table 4.6:

17 ctuthesis t1606152353

4. Experiments and Evaluation
4.1.6 Determinization vs. Dummy2

As we can see in the Table 5.7, determinization player has win rate 46%
against Dummy2 while Dummy2 wasn’t able to win a single game.

4.1.7 Determinization vs. ISMCTS

in the Tables 5.8 and 5.9 we can see that Determinization player wins
40.75% games against ISMCTS1 and 50.75% games against ISMCTS2.
Determinization player has a strong gnu chess engine behind him and
despite the flaws of the determinization algorithm, he is still stronger
than IMCTS as implemented in this thesis.
ISMCTS2 once again performed slightly better than ISMCTS1.

White Determinization Dummy2 Average

Determinization wins 91 93 46%
Dummy2 wins 0 0 0%
Draw 109 107 54%

Table 4.7:

White Determinization ISMCTS1 Average

Determinization wins 85 78 40.75%
ISMCTS1 wins 0 1 0.25%
Draw 115 121 59%

Table 4.8:

White Determinization ISMCTS2 Average

Determinization wins 116 87 50.75%
ISMCTS2 wins 12 6 4.5%
Draw 72 107 44.75%

Table 4.9:

ctuthesis t1606152353 18

Chapter 5
Conclusion

First, we described some of the algorithms that are used to play games
with imperfect information, namely Perfect Information Monte Carlo
(or determinization) and Information Set Monte Carlo tree search. I
Implemented these algorithms and tested them on the game of Kriegspiel.
PIMC performed very well against random players and also against ISM-
CTS players. It had a very strong gnu chess engine behind it. ISMCTS
did not perform well. Only very simple simulation was implemented and
as mentioned in [CPW12] this implementation of ISMCTS very often
cannot be distuinguished from random player. Although it had higher
win rate than random player, the difference was so small that it has no
statistical signifficance. It appears that more domain-specific knowledge
has to be implemented into ISMCTS for it to play kriegspiel decently.

19 ctuthesis t1606152353

ctuthesis t1606152353 20

Appendix A
Bibliography

[CPW12] Peter I Cowling, Edward Jack Powley and Daniel Whitehouse,
Information Set Monte Carlo Tree Search, IEEE Transactions
on Computational Intelligence and AI in Games, 4 (2012),
120–143.

[CF07] Paolo Ciancarini and Gian Piero Favini, Representing
Kriegspiel States with Metapositions, IJCAI, (2007).

[CPW12] C. B. Browne et al., A survey of Monte Carlo tree search
methods, IJCAI, 4 (2012), 1–43.

[CPW12] Richard Long, Jeffrey and R. Sturtevant, Nathan and Buro,
Michael and Furtak, Timothy, Understanding the Success of
Perfect Information Monte Carlo Sampling in Game Tree
Search, Proceedings of the National Conference on Artificial
Intelligence, 4212 (2010), 1–43.

[CPW12] Kocsis L., Szepesvári C., Bandit Based Monte-Carlo Planning,
Lecture Notes in Computer Science, 1 (2006).

[CPW12] Paolo Ciancarini, Gian Piero Favini, Monte Carlo tree search
in Kriegspiel, Artificial Intelligence, 174 (2010), 670–684.

21 ctuthesis t1606152353

	Introduction
	Motivation
	Related work
	Kriegspiel

	Background
	Perfect Information Monte Carlo
	Algorithm
	Characteristics

	Monte Carlo Tree Search
	Algorithm
	Characteristics

	Information Set Monte Carlo Tree Search
	Algorithm

	Upper Confidence Bounds Applied to Trees

	Implementation
	GNU-chess
	Chessboards
	Players
	Information Set Representation

	Experiments and Evaluation
	Experiments
	Dummy1 vs. Dummy2
	Finding Exploration Constant
	ISMCTS1 vs. Dummy2
	ISMCTS2 vs. Dummy2
	ISMCTS1 vs. ISMCTS2
	Determinization vs. Dummy2
	Determinization vs. ISMCTS

	Conclusion
	Bibliography

