
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Finite Automata Drawing Platform

Tomáš Hořovský

Supervisor: RNDr. Marko Genyk-Berezovskyj
January 2019

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

456997Personal ID number:Hořovský TomášStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Open InformaticsStudy program:

Computer and Information ScienceBranch of study:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Finite Automata Drawing Platform

Bachelor’s thesis title in Czech:

Platforma pro kreslení diagramů konečných automatů

Guidelines:
Design and implement a programming platform based on TikZ language for producing vector graphics. The aim of the
platform is automatic or semi-automatic creation of finite automata diagrams and integration of the diagrams into documents
written in TeX system. Exploit a suitable existing graph diagrams drawing program in the platform and use the drawing
program output to determine the layout of the diagram and its elements, or other diagram properties if necessary. Implement
software tools which will allow the user to manage and to modify programmatically the appearance of the diagrams
generated by the platform.
Choose a suitable formalized text description of the automata and use it as a platform input format. Consider also a
possibility of extending the platform by additional procedures processing regular grammars and regular expressions.
The platform should run on common personal computer operating systems. Write an appropriate programmer and user
documentation of the platform.

Bibliography / sources:
[1] J. E. Hopcroft, R. Motwani, J. D. Ullman: Introduction to Automata Theory, Languages, and Computation (3rd Edition),
Addison Wesley; 3 edition (July 15, 2006)
[2] B. Melichar: Jazyky a překlady, Praha, ČVUT 2003
[3] [Online] M. Demlová: Jazyky, automaty a gramatiky, elektronická skripta, FEL ČVUT, 2018,
(http://math.feld.cvut.cz/demlova/teaching/jag/predn_jag.html)
[4] [Online] http://www.graphviz.org/
[5] [Online] http://www.graphdrawing.org/

Name and workplace of bachelor’s thesis supervisor:

RNDr. Marko Genyk-Berezovskyj, Department of Cybernetics, FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 08.01.2019Date of bachelor’s thesis assignment: 06.06.2018

Assignment valid until: 16.02.2020

prof. Ing. Pavel Ripka, CSc.

Dean’s signature
doc. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
RNDr. Marko Genyk-Berezovskyj

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Acknowledgements
I want to thank RNDr. Marko Genyk-
Berezovskyj and prof. RNDr. Marie
Demlová, CSc. for their help. I am also
thankful to my family for their endless
support.

Declaration
I declare that the presented work was
developed independently and that I
have listed all sources of information
used within it in accordance with the
methodical instructions for observing the
ethical principles in the preparation of
university theses.
V Praze dne 7.1.2019

. .
Tomáš Hořovský

v

Abstract
The goal of this project was to develop
new scripting language for describing au-
tomata and operations with them, im-
plement interactive shell interface for ex-
ecuting the commands and finalize the
JAutomata library for operations on au-
tomata. The interpreter operates the
JAutomata library and implements ex-
port of automata to various output for-
mats including TEXcode to display the
automaton.

Keywords: Java, Automata theory,
Regular automaton, Regular expression,
Graphviz, JAutomata

Supervisor: RNDr. Marko
Genyk-Berezovskyj
Praha, Na Zderaze 269/4, room: G-9

Abstrakt
Cílem tohoto projektu bylo dokončení
knihovny JAutomata pro operace s auto-
maty, vývoj nového skriptovacího jazyka
JASL, který popisuje automaty a ope-
race s těmito automaty a implementace
interaktivního konzolového prostředí pro
spouštění příkazů tohoto jazyka, které po-
užívá knihovnu JAutomata. Skriptovací
jazyk JASL měl umožňovat export auto-
matů v různých formátech, včetně kódu
pro jazyk TEX, pro kreslení jejich stavo-
vých diagramů.

Klíčová slova: Java, Teorie automatů,
Regulární automat, Regulární výraz,
Graphviz, JAutomata

Překlad názvu: Platforma pro kreslení
diagramů konečných automatů

vi

Contents
1 Introduction and motivation 1

1.0.1 Motivation 1

2 Definitions and terminology 3

2.1 Languages . 3

2.2 Operations over languages 3

2.3 Automaton 4

2.3.1 Deterministic Finite Automaton
(DFA) . 4

2.3.2 Non-deterministic Finite
Automaton (NFA) 5

2.3.3 Non-deterministic Finite
Automaton with epsilon transitions
(ENFA) . 6

2.4 Regular expression 6

2.5 Notation of automata 7

2.5.1 Table . 7

2.6 State diagram 8

3 User manual 11

3.1 Installation 11

3.1.1 Compiling JAR yourself 11

3.2 Execution . 11

3.3 Syntax of the language 12

3.3.1 Syntax details 13

3.3.2 Data types 14

3.3.3 Functions 14

3.3.4 Automata 17

3.3.5 Member functions 18

3.3.6 Consequences of string as
default data type 23

4 Details of Implementation 25

4.1 Used technology 25

4.1.1 JAutomata 25

4.1.2 Graphviz 26

4.1.3 Graphviz-java library 27

4.1.4 TEX . 27

4.1.5 TikZ and automata for TikZ 27

4.2 Interpreter implementation 27

4.2.1 Details of parsing code 28

4.2.2 Enhancing syntax 28

4.3 Problems with Graphviz-java . . . 30

5 Drawing images 33

5.1 Using Graphviz for layout output 33

5.1.1 Graphviz layout engines 35

5.2 Relative position model 37

5.2.1 Relation chains 37

5.2.2 Edge angle calculation 39

6 Examples of usage, practice,
problems of testing 41

6.1 Defining a NFA automaton 41

6.2 Defining an ENFA automaton . . 42

6.3 Example of TikZ image 43

6.4 Example of a JASL script file . . 44

vii

7 Looking to the future 47

7.1 JAutomata 47

7.1.1 Operations over regular
expressions 47

7.1.2 Regular expression minimizer 48

7.2 JASL . 48

7.2.1 JASL Syntax 48

7.2.2 Interpreter 49

7.2.3 Graph conversion 49

8 Conclusion 51

Bibliography 53

A Used code 55

A.1 Used DOT code 55

A.1.1 A.1.1 . 55

A.2 Used TikZ code 56

A.2.1 A.2.1 . 56

viii

Figures
2.1 Transition table of automaton M 8

2.2 State diagram of automaton M . . 9

3.1 State diagram of example
automaton . 16

5.1 Process of conversion 33

5.2 Original automaton image.
Generated with attributed dot code
in A.1.1 . 34

5.3 Example of a stretched automaton.
See TikZ code in A.2.1 34

5.4 Image of automaton M generated
using dot layout 35

5.5 Image of automaton M generated
using neato layout 36

5.6 Image of automaton M generated
using circo layout 36

5.7 Image of automaton M generated
using twopi layout 36

5.8 Correct relations 38

5.9 Moved relations 38

5.10 Incorrect relations 38

5.11 Visualization of α 39

6.1 Image saved in image.png 43

6.2 Image in compiled image.pdf file. 44

7.1 Image of longer edge generated by
Graphviz . 50

7.2 TikZ equivalent of figure 7.1 . . . 50

7.3 Edge with angle 140◦ 50

ix

Tables
3.1 Transition table of example
automaton . 15

3.2 Example of conversion of transition
table to list . 17

6.1 Transition table of automaton M1. 41

6.2 Transition table of automaton M2. 42

x

Chapter 1

Introduction and motivation

Java Automata Syntax Language (abbreviated to JASL) is a scripting lan-
guage that I developed as a part of this project. It allows the user to define
and work with acceptor finite state machines. I implemented an interpreter
for this language that functions as a live console environment. One of the
main features of JASL is the ability to export state machines to diagrams in
a format native to TEX.

Both JAutomata library and JASL interpreter are written in pure object-
oriented Java. The program should be able to run on Linux and Windows
operating systems, but the primary support is for Linux.

This project started as a passion of mine for automata. I implemented
a library in c++ that could do reduction of automata. I kept adding new
functionality until the original automata-cpp library was so messy I could
not orient in the code very well. After some time of struggling with the
code, I needed to choose the assignment for my software project and my
bachelor’s thesis. It was only natural that I would finish and rewrite the
whole library properly. JAutomata library was the result. I wrote most of
the JAutomata library in my software project. I finished the library and I
started working on JASL and the interpreter in my bachelor’s thesis .

1.0.1 Motivation

When I wrote my own material for Automata and Grammars in LATEX, I
stumbled upon the problem of visualizing automata in the document. I
wanted a fast and reliable way to draw automaton diagrams in code, not
having to include image files to the compilation folder. I searched for a
suitable way to do so and I found TikZ. TikZ is a powerful image drawing
library that has many features. I tried drawing automaton directly with TikZ,
but the code was unnecessarily long and tedious to write. After a couple of

1

1. Introduction and motivation
diagrams I started looking for another option. Then I found a library for
TikZ called automata. It was just what I was looking for. It could draw
nodes and edges nicely while keeping the code simple and clear.

Next problem on the line was to draw these diagrams so that they are as
simple as possible. Mostly eliminating crossing edges did the trick. However
the more complex the diagram got, the harder it was to eliminate those by
hand. I used Graphviz to do the layout work for me. Then it was all about
the process of converting Graphviz output to the TikZ code.

Automata have a few common operations associated with them. These
include reduction, deciding whether a word is accepted by the automaton,
constructing automaton that accepts language L = L1∪L2 or even automaton
that accepts L∗. I decided to create a library that would implement all of
these operations and more. There are libraries that can do these operations
such as Algorithms Library Toolkit [6], but it is complicated to use, it is not
public and it cannot output directly to LATEXcode.

The goal of this project is to write a program that would implement an
intuitive command line interface for operating my JAutomata library that
contains most of the commonly-used algorithms for working with automata.
Also, it would allow the user to convert automata to various output formats
including LATEXcode.

The implemented solution uses various other programs and libraries to
make the codebase smaller. It uses tools such as Graphviz or graphviz-java
library.

2

Chapter 2

Definitions and terminology

In this section, I will define terminology used in this thesis to describe the
relation of the application and language theory. Some of the definitions in
sections 2.1,2.2,2.3 and 2.4 are translations of [1].

2.1 Languages

.Alphabet is a finite non-empty set Σ. Elements of Σ are called termi-
nals..Word w over an alphabet Σ is a finite sequence of terminals: w =
a1a2 . . . am, a ∈ Σ,m ≥ 0.. Length of word w, denoted by |w|, is the number of terminals in the
word w.. Empty word ε is a word that has length |ε| = 0 (i.e. does not contain
a terminal)..All words over an alphabet Σ, denoted by Σ∗, is a set of all words
that can be created using terminals from Σ (including ε).. For two words w1, w2 ∈ Σ∗, w1 = a1a2 . . . am, w2 = b1b2 . . . bn the result
of the concatenation operation is: w1w2 = a1a2 . . . amb1b2 . . . bn.. Language L over an alphabet Σ is any arbitrary subset of Σ∗.

2.2 Operations over languages

We will use the following operations over languages in this thesis:

3

2. Definitions and terminology
.Concatenation of languages L1 ⊆ Σ∗1, L2 ⊆ Σ∗2 is a set that is defined

as follows:

L1L2 = {w1w2 | w1 ∈ L1, w2 ∈ L2} ⊆ (Σ1 ∪ Σ2)∗

.Union of languages L1 ⊆ Σ∗1, L2 ⊆ Σ∗2 is a set that is defined as
follows:

L1 ∪ L2 = {w | w ∈ (L1 ∪ L2)} ⊆ (Σ∗1 ∪ Σ∗2). Intersection of languages L1 ⊆ Σ∗1, L2 ⊆ Σ∗2 is a set that is defined
as follows:

L1 ∩ L2 = {w | w ∈ L1, w ∈ L2} ⊆ (Σ∗1 ∩ Σ∗2)

. For any language L we define L0 = {ε}, Li+1 = LiL for i ≥ 0. We define
the result of Kleene operation as:

L∗ =
∞⋃

i=0
Li

. For any language L over an alphabet Σ we define its complement as:

L = {w|w 6∈ L,w ∈ Σ∗}

2.3 Automaton

The term automaton in language theory includes many types of automata,
such as Moore automaton, Mealy automaton or others [7]. However, JASL
and JAutomata library implement only the following regular automata:

2.3.1 Deterministic Finite Automaton (DFA)

Deterministic Finite Automaton M is defined as a tuple with five elements:
M = (Q,Σ, δ, q0, F), where:

.Q is a finite non-empty set of states.. Σ is a finite non-empty set of terminals. δ is a transition function δ : Q× Σ→ Q. q0 is an initial state from the set Q. F is a subset of so-called accepting states, F ⊆ Q.

4

..................................... 2.3. Automaton

For the purpose of this thesis, we will interchangeably use the term state
and name of state to call an element of Q and we say that state name can
be any string.

We define the extended transition function δ∗ : Q × Σ∗ → Q by
induction as:

1 : δ∗(q, ε) = q, q ∈ Q
2 : δ∗(q, wa) = δ(δ∗(q, w), a), a ∈ Σ, w ∈ Σ∗, q ∈ Q

We say that automaton M accepts word w iff:

δ∗(q0, w) ∈ F

For an automaton M over Σ, we define L(M) (language accepted by M)
as follows:

L(M) = {w | δ∗(q0, w) ∈ F,w ∈ Σ∗}

We say that states p, q ∈ Q are equivalent iff:

∀w ∈ Σ∗, δ∗(p, w) ∈ F ⇐⇒ δ∗(q, w) ∈ F

We say that M = (Q,Σ, δ, q0, F) is reduced if it does not have any
unreachable states (∀q ∈ Q,∃w ∈ Σ∗, δ∗(q0, w) = q) and no two states of this
automaton are equivalent.

We can informally describe the operation of an automaton as follows:
Suppose we have a word w and an automaton M . We start in initial state
of the automaton: q0. We read the first terminal a of the word and move
to the state q1 that we got as a result of δ(q0, a). Now we have only |w| − 1
terminals left to read. We read the second terminal b. We move to the state
q3 that is the result of δ(q1, b). We repeat this process, until we have no more
terminals to read. Suppose we finished in state q7. We say that word w is
accepted by automaton M iff q7 ∈ F .

2.3.2 Non-deterministic Finite Automaton (NFA)

Non-deterministic Finite Automaton is a tuple: M = (Q,Σ, δ, I, F). Sets
Q,Σ, F have the same meaning as in DFA definition and:

. I is a set of states that are considered initial: I ⊆ Q. δ : Q×X → P (Q), P (Q) is a set of all subsets of states: P (Q) = {X |
X ⊆ Q}

5

2. Definitions and terminology
We define extended transition function for NFA as δ∗ : Q×Σ∗ → P (Q) by

induction as:

1 : δ∗(q, ε) = {q}, q ∈ Q

2 : δ∗(q, wa) =
⋃
{δ(p, a) | p ∈ δ∗(q, w)}, a ∈ Σ, w ∈ Σ∗, q ∈ Q

We say that NFA M accepts word w iff:

∃q0 ∈ I, such that δ∗(q0, w) ∩ F 6= ∅

2.3.3 Non-deterministic Finite Automaton with epsilon
transitions (ENFA)

ENFA differs from NFA by introducing so-called ε-transitions. These allow the
automaton to move between states without reading any terminal. Formally
we change the transition function as follows:

δ : Q× (Σ ∪ {ε})→ P (Q)

To define extended transition function for ENFA, we need ε-closure. We
can say that the epsilon closure of a set of states: N , is the set of all states
that can be reached from states in N , using only epsilon transitions.

We define ε-closure formally as:..1. ∀X ⊆ Q,X ⊆ ε-closure(X)..2. If p ∈ ε-closure(X), then δ(p, ε) ⊆ ε-closure(X)

Now we can define extended transition function as:

1 : δ∗(q, ε) = ε-closure(q), q ∈ Q
2 : δ∗(q, wa) = ∪{ε-closure(δ(p, a)) | p ∈ δ∗(q, w)}, a ∈ Σ, w ∈ Σ∗

We say that ENFA M accepts word w iff:

∃q0 ∈ I, such that δ∗(q0, w) ∩ F 6= ∅

2.4 Regular expression

A regular expression (regex) can describe any regular language (language
accepted by some regular automaton). In this section, we will use bold font to
denote regular expressions. In [1] regular expressions are defined as follows:

6

.................................2.5. Notation of automata

Suppose we have an alphabet Σ. The set of all regular expressions over Σ
is defined as:

. ∅ is a regular expression. ε is a regular expression. a is a regular expression for every terminal a ∈ Σ. If r1, r2 are regular expressions, then r1 + r2, r1r2 and r∗1 are regular
expressions

Every regular expression over an alphabet Σ represents a language over an
alphabet Σ as follows:

. Regular expression ∅ represents language ∅.. Regular expression ε represents language {ε}.. If a ∈ Σ then regular expression: a represents language {a}.. If regular expression r1 represents language L1 and regular expression
r2 represents language L2, then regular expression r1 + r2 represents
language L1 ∪L2, and regular expression r1r2 represents language L1L2.. If regular expression r represents language L, then regular expression r∗
represents language L∗.

Brackets in regular expressions define the order of operations. Regular
expression r describes the same language as regular expression (r).

We mark the language described by regular expression r as Lr

2.5 Notation of automata

2.5.1 Table

In this thesis, automata are often described by their transition tables. Tran-
sition table has full information contained in the tuple (Q,Σ, δ, I, F). We
construct this table from the tuple as follows:

The table has k + 2, k = |Σ| columns and n+ 1, n = |Q| rows. In the first
row of the table, there are two empty cells followed by all unique elements
of Σ. The next n rows are each for one state q ∈ Q. In the first column is
IO(q) which holds information about relation of q to I and F :

7

2. Definitions and terminology

IO(q) =


→, if q ∈ I and q 6∈ F
←, if q 6∈ I and q ∈ F
↔, if q ∈ I and q ∈ F
empty, otherwise.

In the second column is the name of state q. The remaining cells describe
the function δ. For every column header t ∈ Σ and state q the cell contains
the set δ(q, t). We will omit curly brackets of the sets to clean up the notation.

The table that is the result of this process describes fully all of the elements
of the tuple and can be easily reconstructed into the tuple.

Example. Suppose we have a non-deterministic finite automaton M =
({q0, q1, q2, q3}, {0, 1}, δ, {q0, q1}, {q0, q3}), where δ is defined as:

δ(q0, 0) = {q1}, δ(q0, 1) = ∅,
δ(q1, 0) = {q2, q3}, δ(q1, 1) = {q0},
δ(q2, 0) = {q1}, δ(q2, 1) = ∅,
δ(q3, 0) = ∅, δ(q3, 1) = ∅.

The resulting transition table is on figure 2.1:

0 1
↔ q0 q1 ∅
→ q1 q2, q3 q0

q2 q1 ∅
← q3 ∅ ∅

Figure 2.1: Transition table of automaton M

2.6 State diagram

One of the many use-cases for JASL is to output TEXcode to draw state
diagrams of automata. A state diagram is a visual representation of an au-
tomaton. It provides a complete description of the automaton it is visualizing.
A state diagram is a directed graph. Ullman and Hopcroft define it in [2,
Example 3.1, p.27] as follows:

"The state diagram consists of a node for every state and a directed
line from state q to state p with label a (in Σ) if the finite automaton,
in state q, scanning the input symbol a, would go to state p. Final
states, i.e., states in F , are indicated by a double circle."

8

.................................... 2.6. State diagram

Ullman and Hopcroft use an arrow with label start, to mark the initial
state. We will omit the label, cleaning up the visuals of state diagrams. If we
have multiple oriented edges from state q0 to state q1, we use only one edge
labeled by the comma-delimited labels of all edges from q0 to q1. We will use
dotted edges to emphasize ε transitions in the diagram.

Example. A state diagram of the automaton M from Example in sec-
tion 2.5.1, is in figure 2.2

q0 q1

q2

q3

0

1

0

0

0

Figure 2.2: State diagram of automaton M

9

10

Chapter 3

User manual

JASL interpreter needs Graphviz command in console. To install Graphviz
prerequisite, follow instructions in tutorial [19].

3.1 Installation

There are two ways of installing this program. You can either download
precompiled .jar file or compile it on your own. If you just want to use the
precompiled jar, skip right to the running section 3.2

3.1.1 Compiling JAR yourself

Get the source code of the project from the official github repository [12].
After that, you can install it using Maven [13] and JDK [14] from the root
directory of the downloaded project and these commands:

mvn clean
mvn install

After running these commands, you can find the compiled .jar file in the
target/ folder. Use the compiled .jar with dependencies (jasl-1.1-jar-with-
dependencies.jar).

3.2 Execution

The program can be executed from the console with this command :

11

3. User manual
java -jar <path-to-jar> [-f <path-to-file>]

Square brackets are optional. If the switch -f is not specified, the program
will enter interactive shell mode where you can type in your command
and get an immediate response. The environment will store your variables
in the interpreter memory and you can manipulate them as described in
section 3.3. However after terminating the shell environment (by using the
quit command) all variables in the interpreter memory are lost. The same
effect can be achieved even without closing the environment by using the
clear command.

If switch -f is specified, the program will look for its argument: the path to
an existing file. JASL will then execute commands from this file line by line.
Note, that all variables are lost after terminating the program.

You can execute JASL script files from the live interpreter environment,
by using the execute function (full description in section 3.3.3).

3.3 Syntax of the language

The JASL language allows you to define variables and call functions upon
those variables. Commands are parsed line by line.

Grammar of the language. The following is an abstract grammar describing
the JASL language. Terminals are shown in red color. Square brackets
enclose optional parameters. Vertical bars separate alternatives. Starting
non-terminal is line.

line → expression | assignment | comment | command | ε
variable → $variableName

comment → %any
expression → string | list | functionCall | variable.memberFCall | variable

list → {listItems} | {}
assignment → variable = expression

listItems → expression | expression, listItems
functionCall → functionName([args])[.memberFCall]

args → expression[, args]
memberFCall → memberFName([args])[.memberFCall]

command → help | helpLong | clear

where non-terminals:

12

................................ 3.3. Syntax of the language

. any can be any sequence of characters that does not contain linebreak. variableName can be any non-empty sequence of characters that does
not contain any whitespace characters or dots.. functionName is any function name from chapter 3.3.3.memberFName is any function name from chapter 3.3.5. string is any sequence of characters that does not start with any function
name, member function name or any of these symbols: { , % $ and
does not contain linebreak

3.3.1 Syntax details

Object. An object is a piece of data.

Expressions. Expression is a function call, member function call, string or
list definition. Expressions are evaluated before assignments. This evaluation
typically produces a new value that contains the result of the evaluation. If
an expression is called by itself, the console prints the return value.

Variables. Variables are used to store objects. Variable name can be any
string that does not contain whitespace or a dot. To access a variable (create
variable or use existing variable), use this syntax:

$<variableName>

Assignment.

<variable> = <expression>

Assignments save <expression> return value to an <variable>. This is done
using ’=’ operator. If the variable does not exist, an assignment creates a
new variable.

Functions. Function calls consist of the name of the function followed by
comma-separated arguments enclosed in a pair of parentheses.

<functionName>(<arguments>)

13

3. User manual
Comments. You can add comments to your JASL code by the means of line
comments. This means that only a whole line can be a comment. Commenting
at the end of a non-comment line is not possible. Every comment starts with
the % sign as the first character. Everything that follows the percent sign
will not be parsed and the whole line will be skipped.

%<commentString>

Help. Help for the JASL syntax can be displayed with command: help while
command: helpLong prints longer, more detailed version with descriptions
of functions.

3.3.2 Data types

Variables can hold objects of types: string, list or automaton.

String. Used mainly to describe terminals, words or regular expressions. A
string can be any sequence of characters that does not contain any linebreak
and does not start with any function name, member function name or any of
these symbols: { , % $.

List. List in JASL is an ordered set of elements. Lists are enclosed in pairs
of curly brackets. Elements are separated by commas. Elements can be
any objects. Lists can be empty and they can be nested. They are used for
defining automata. Some examples of lists are:

{a, b, c}
{}
{a, {b, {}}, c}

Automaton. This data type is explained in section 3.3.4

3.3.3 Functions

In this section, I will describe the functions that are implemented in JASL in
more detail.

execute

14

................................ 3.3. Syntax of the language

execute($path)

Executes script on the specified path. The argument is a string (or a
variable that contains a string) that contains absolute or relative path to a
file in filesystem. Execute uses already defined variables for the execution,
and updates/overwrites them. This effect is demonstrated in section 6.4.

A JASL script is a file that contains one or several lines of JASL code. It
is recommended to give JASL scripts the .jasl extension.

fromCSV

$M = fromCSV($path)

Returns new Automaton object, loaded from a comma-separated csv file
specified in the single argument of this function. The argument is a string
(or a variable that contains a string) that contains absolute or relative path
to a file in filesystem. The CSV file should contain the automaton table as
described in section 2.5.1.

getExample

$automaton = getExample()

Returns example automaton. The example automaton is described by this
transition table:

a b

→ 0 1 2, 3
→ 1 1, 4
↔ 2 0
← 3 3 3

4 4 2

Table 3.1: Transition table of example automaton

And its state diagram:

15

3. User manual

0

1 4

2

3

a

bb

b

b

b

a, b

b

a

Figure 3.1: State diagram of example automaton

fromRegex

$automaton = fromRegex($regex)

Returns new Automaton object specified by regular expression passed in as
an argument. The argument is a string or a variable that contains a string.

There are limitations to this function. It works only with terminals that
are a single character. Characters cannot be escaped. Symbols ’(’, ’)’, {, },
’·’ and ’*’ cannot be used as terminals.

The JAutomata library uses a modified version of the algorithm from [7,
p.86 algorithm 2.107], to create automata from regular expressions.

getTikzIncludes

getTikzIncludes()

Returns the TEXincludes needed, in order to use TikZ and its libraries that
are necessary for diagrams of automata to work.

This code is:

\usepackage{tikz}
\usetikzlibrary{shapes,angles,calc,quotes,arrows,automata,positioning}

16

................................ 3.3. Syntax of the language

3.3.4 Automata

To define an automaton you need to use the Automaton function. This
function accepts a single parameter: nested list L = {ls, l1, l2, . . . , ln}, n = |Q|,
where Q is the set of states of the automaton we want to define. Elements of
list L are:

. disjoint list of all terminals in Σ.

. n lists where each list li = {IO, qi, δ(qi, t1), δ(qi, t2), . . . , δ(qi, tk)},∀qi ∈
Q, k = |Q|, where IO is defined as:

IO =


<>, if qi ∈ F,Qi ∈ I
<, if qi ∈ F
>, if qi ∈ I
empty string, otherwise

In other words, this parameter is the transition table of the automaton.
Lists in the definition are the rows of transition table read from left to right,
separated by commas.

Example of conversion:

a b

↔ 0 ∅ 2
→ 1 0 1, 2
← 2 1, 2, 3 1

3 3 ∅

→

a b
<> 0 {} 2
> 1 0 {1, 2}
< 2 {1, 2, 3} 1

3 3 {}

→

{a, b}
{<>, 0, {}, 2}
{>, 1, 0, {1, 2}}
{<, 2, {1, 2, 3}, 1}
{3, 3, {}}

Table 3.2: Example of conversion of transition table to list

So the argument to construct this automaton is:

{{a,b},{<>,0,{},2},{>,1,0,{1,2}},{<,2,{1,2,3},1},{3,3,{}}}

The automaton specified by the transition table is NFA automaton. It is
created by using the Automaton constructor. The definition of the nested list
can be split into multiple list variables for the sake of clarity. We can also
omit empty lists from the end of each row. This is demonstrated on lines 5-8:

17

3. User manual
1 $alphabet = {a, b}
2 $row0 = {<>,0,{},2}
3 $row1 = {>,1,0,{1,2}}
4 $row2 = {<,2,{1,2,3},1}
5 % The full definition of row 3:
6 $row3 = {3,3,{}}
7 % Shortened definition of row 3:
8 $row3 = {3,3}
9
10 % Now we define the nested list:
11 $nestedList = {$alphabet, $row0, $row1, $row2, $row3}
12
13 % Finally, we can define an automaton:
14 $automaton = Automaton($nestedList)

Note about ENFA automata. ENFA automata can have ε-transitions.
These are defined using keyword eps as one of the terminals. That terminal
then signifies an ε transition. The alphabet of some ENFA automaton could
be:

1 $alphabet = {eps, a, b}

3.3.5 Member functions

Member function is a function called on an object saved in a variable. There
member function for types string and automaton. These can be invoked as
follows:

$variable.functionName(<list of args>)

Note that member function calls can be chained on one line:

1 $reduced = $automaton.reduced()
2 $reduced.toPNG(image.png)
3
4 % Can be written as:
5 $automaton.reduced().toPNG(image.png)

String objects have only the save member function:

18

................................ 3.3. Syntax of the language

save

$myString.save($path)

Saves string saved in the variable $myString to file at $path. If the file
does not exist, it creates it. If the file already exists, it appends the string to
the end of the file. The argument is a string (or a variable that contains a
string) that specifies a file in filesystem.

What follows is a list of member functions for automata objects.

accepts

$M.accepts($w)

Returns true if automaton M (saved in variable $M) accepts word passed
in argument w. It outputs false otherwise. The argument of this function
can be a string or a list of terminals. If the argument is of type string, it
is parsed character by character into terminals. Note, that if you have an
automaton that has any terminals with more than one character, you cannot
use the variant with the argument of type string. In that case you need to
use a list as an argument.

Note, that this function works even if w 6∈ Σ∗, where Σ is the alphabet of
automaton M . In that case it returns false.

equals

$M1.equals($M2)

Returns true if L(M1) = L(M2) (if M1 is equivalent to M2) and Σ1 = Σ2.
It outputs false otherwise. In other words this function checks, whether two
automata accept the same language. Note, that Σ1 and Σ2 can have different
ordering of elements.

reduce

$M2 = $M.reduce()

Returns new automaton M2 that is the reduced version of automaton

19

3. User manual
M . Note that this function creates a new automaton object, so the original
automaton remains unchanged.

If the automaton M is an ENFA automaton or an NFA automaton, it is
first converted to DFA automaton, before the reduction. All of the described
operations are implemented using respective algorithms from [1].

toCSV

$M.toCSV($path)

Exports automaton M to CSV format. It creates/overwrites csv file on
the path specified by the argument. The argument is a string that contains
absolute or relative path to a file in the filesystem. The created CSV file
contains the transition table of the automaton M .

toDot

$M.toDot(neato)

Returns attributed dot code (described in chapter 5) that contains a
description of the automaton state diagram image. It accepts one optional
argument. The argument is the layout (engine) that Graphviz will use to
organize the graph. When no layout is specified, dot is used as a default.
Possible layouts are circo, neato, dot and twopi.

toPNG

$M.toPNG($path, circo)

Exports automaton M to PNG format. It creates/overwrites png file on
the path specified by the argument. The argument is a string that contains
absolute or relative path to a file in the filesystem. The png contains an
image of the state diagram of the automaton M .

The second argument of toPNG is optional. It is the layout (engine) that
Graphviz will use to organize the graph. When no layout is specified, dot is
used as a default. Possible layouts are circo, neato, dot and twopi.

20

................................ 3.3. Syntax of the language

toRegex

$M.toRegex()

Returns regular expression describing language L = L(M). Because no
regular expression simplifier is implemented, the output of this function can
be quite complicated. Nevertheless, it describes the language L.

To convert automaton to regular expression the JAutomata library uses a
modified algorithm described in [7, p.98 algorithm 2.120].

toSimpleDot

$M.toSimpleDot()

Returns dot code (explained in section 4.1.2) that contains a description of
the automaton state-diagram image. As opposed to toDot function, the dot
code is not attributed, so it does not contain positions of elements.

toTexTable

$M.toTexTable()

Returns string containing TEXcode to display the transition table of au-
tomaton M .

toTikz

$M.toTikz(dot)

Returns TikZ code to display the state diagram of automatonM . It accepts
one parameter that is the layout (engine) Graphviz will use to organize the
graph. When no layout is specified, dot is used as a default. Possible layouts
are circo, neato, dot and twopi. It is recommended not to specify this
argument (hence use dot as an engine), because it generally outputs the nicest
results out of the options. Note that you need to add appropriate includes to
your TEXcode. You can get these using the getTikzIncludes function.

21

3. User manual
complement

$M2 = $M1.complement()

Returns automaton that accepts language that is the complement to the
language of the original automaton.

L(M2) = L(M1)

concatenation

$M3 = $M1.concatenation($M2)

Returns new automaton M3 that accepts the concatenation of languages
accepted by automata M1,M2. It accepts one argument of type automaton.

L(M3) = L(M1)L(M2)

intersection

$M3 = $M1.intersection($M2)

Returns new automatonM3 that accepts intersection of languages accepted
by automata M1,M2. It accepts one argument of type automaton.

L(M3) = L(M1) ∩ L(M2)

kleene

$M2 = $M1.kleene()

Returns new automaton M2 such that:

L(M2) = L(M1)∗

union

$M3 = $M1.union($M2)

22

................................ 3.3. Syntax of the language

Returns new automaton M3 that accepts union of languages accepted by
automata M1,M2. It accepts one argument of type automaton.

L(M3) = L(M1) ∪ L(M2)

renameState

$M.renameState(q, p)

Renames state q of automatonM to p. This function accepts two arguments.
The old state name as first and the new state name as second argument. It
fails if the original state is not found in the automaton or if the new name is
already taken by some other state of the automaton. Note, that the new name
is trimmed, so any leading/trailing spaces are deleted. This function modifies
automaton object saved in variable $M and does not return anything.

renameTerminal

$M.renameTerminal(a, b)

Renames terminal a of automaton M to b. This function accepts two
arguments. The old terminal name as first and the new terminal name as
second argument. It fails if the original terminal is not found in the automaton
or if the new name is already taken by some other terminal of the automaton.
Also, you cannot use ’eps’ or ε as a terminal because that is a keyword of
epsilon transition. You cannot use this function to add or remove epsilon
transitions from the table. This function modifies automaton object saved in
variable $M and does not return anything.

3.3.6 Consequences of string as default data type

JASL language does not use "" to define strings as most programming lan-
guages do. This has an interesting side effect: If a name of a function is
mistyped, the whole expression is evaluated as a string:

>> $a = frmRegex(a*babb*a)
>> $a
frmRegex(a*babb*a)
>> % Called correctly as:
>> $a = fromRegex(a*babb*a)

23

24

Chapter 4

Details of Implementation

In this chapter, I will describe various details of the implementation and some
problems that I found when implementing the application. The programmer
documentation is present in the code in the form of a javadoc.

4.1 Used technology

4.1.1 JAutomata

JASL interpreter needed some backend that would implement automata and
the operations executed on them. I developed JAutomata library just for
this reason. It is a library that allows the user to define automata and execute
various operations on them. Because I wrote the library, I could make changes
to the way the library works.

I had to fix some bugs that were in the CSV loading code, finish the
regex conversions and I had to implement new constructor functions for the
Automaton object. For this reason, I decided to work with the code directly
and not to pack it into separate .jar file.

The JAutomata library was developed by test-driven development. This
meant that most of the functionality in the library was already unit-tested so
I could rely on the algorithms to function properly.

Acceptor object

When I wrote the library I encountered an interesting problem with word
accepting. Previously I used a function that would use Java objects like

25

4. Details of Implementation
HashMaps and Lists to find out if a word was accepted by the automaton.
While working on the library I was concerned about the speed of this operation.

I found an algorithm for bit-vector implementation of running an ENFA
automaton [8]. I implemented modified version of this algorithm in Automa-
tonAcceptor object. I intended to use the long datatype to hold the bitmaps.
Java’s long is 64-bit long, so I could use AutomatonAcceptor object on any
automaton with |Q| ≤ 64.

Theoretically, it should be much faster, than the original solution, because
it did not use any objects. Computers generally do bitwise operations very
fast, so I thought that this would be much faster than my previous version. I
tested both versions on multiple automata and various lengths of words. To
my surprise, the operation actually got a bit slower (about 10%) when using
the newly implemented algorithm. The object-oriented way faster, even on
automata with fewer than 32 states.

I came to the conclusion that the bitwise algorithm was slower, because of
Java’s inner workings and great optimizations on object-oriented approach.
This algorithm is much faster when implemented in C++. In the final version
of the library, I used the object-oriented way. The implementation of Automa-
tonAcceptor object is in cz.cvut.fel.horovtom.automata.logic.AutomatonAcceptor
class.

Automaton types

The JAutomata library distinguishes between deterministic, non-deterministic
and epsilon non-deterministic Finite Automata. In the library there is an
object for each of those types. I originally implemented separate constructor
functions for these types to the JASL language, but soon I realized that
functionally they were indistinguishable from each other. Because of that, I
refactored the language to have only one constructor function for all automata.
Because both NFA and DFA automata are special cases of ENFA automaton,
I used ENFA object for all automata defined in JASL except for reduced
automata. The user of JASL cannot distinguish between inner types of
automaton. This could be re-implemented in the future, if users request it as
a feature.

4.1.2 Graphviz

Graphviz [3] is an open source tool for graph visualization. I used Graphviz to
organize state diagrams of automata. Graphviz uses dot language to describe
graphs. It has several output formats which include png image, plain text or
even dot code. The user can pass in only a couple attributes (nodes, edges,

26

...............................4.2. Interpreter implementation

colors of the edges, . . .) and Graphviz outputs dot code with all attributes
specified (node position, size, edge anchor points, . . .). JASL interpreter
uses output of Graphviz to get PNG images and to get layouts for toTikz
conversions. More on problems with Graphviz in section 5.1.

4.1.3 Graphviz-java library

Graphviz-java [4] is a library that parses dot code into objects in Java and
vice versa. I used Graphviz-java for parsing and extracting attributes from
dot code. I encountered several problems with this library, more on problems
with Graphviz-java in section 4.3.

4.1.4 TEX

TEX [11] is a typesetting system that is widely used to publish academic texts
mainly in the fields of mathematics, physics and computer science. There are
many extensions, packages and software bundles for TEXwhich give TEXmore
variability. One of these native packages is the TikZ package.

4.1.5 TikZ and automata for TikZ

TikZ is a native TEXpackage for creating vector graphics that is built on top
of PGF package. It allows user to draw diagrams and graphs in an intuitive
way.

TikZ has a library made for drawing automata. This library is very well
documented. I have used this library extensively to write my own texts about
Automata so I was very familiar with the syntax. I decided to use it as an
output platform, because of it being user-friendly and immediately usable in
TEXcode to generate images.

The syntax of the code to draw automata in TikZ is described in tutorial: [5].

4.2 Interpreter implementation

One of the main goals of this project was to create live console environment.
There are libraries for Java that can create such environment, but they do not
allow the programmer to define his own syntax. After searching the internet
for a suitable framework, I decided to implement the console environment
myself.

27

4. Details of Implementation
Due to its nature, the live console environment needs to handle many

exceptions. Exceptions could occur because of a non-existent file, a corrupted
CSV file or a syntax error in a command. I created two custom exceptions:
SyntaxException (further shortened to SE) and ParsingException (further
shortened to PE. These exceptions are used all throughout the interpreter
code to distinguish between syntax errors and incorrect parsing methods.

4.2.1 Details of parsing code

Every line of the code is parsed by the parseLine function. There are two
fundamental types of lines in JASL. A line can be either an expression or
an assignment. The parseLine function attempts to parse as an assignment
first, by calling the parseAssignment function. If it was not an assignment,
parseAssignment function throws PE. Then the line is parsed as an expression
by the parseExpression function.

Parsing an assignment. As mentioned in section 3.3.1, assignments in JASL
have the form of:

<variable> = <expression>

If the ’=’ operator have been parsed correctly, all the following errors will
result in throwing SE instead of PE.

Parsing an expression. Expressions in JASL can be of three types which
are evaluated by respective parsing methods in this order:..1. Member function of a variable call..2. List definition..3. Function call

If a parsing method failed before any determining parameters were found,
it throws PE. Then the expression is parsed by the next parsing method. If
all of the parsing methods fail, then the expression is evaluated as a string.

4.2.2 Enhancing syntax

I wanted to develop a way to make JASL more compact so that the scripts
do not have to be unnecessarily long and verbose. To achieve this I added
two features to the interpreter: in-place constructors and member function
chaining.

28

...............................4.2. Interpreter implementation

In-place constructors

In-place constructors allow the user to define and immediately use objects in
expressions. I solved this by evaluating expressions recursively. For example,
if a function call is being evaluated, the interpreter splits the function call
into n + 1 parts: function name and it’s n arguments. On each of those n
arguments, the interpreter calls evaluate function again. This allows the user
to write condensed code where it is needed. It can also reduce unnecessary
variable declarations which could potentially be quite problematic in larger
programs.

1 % Code without in-place construction
2 $automaton1 = fromRegex(a*(b+a))
3 $exampleAutomaton = getExample()
4 $automaton1.equals($exampleAutomaton)
5
6 % Code with in-place construction
7 getExample().equals(fromRegex(a*(b+a)))

Member function chaining

The second step was to make chaining of member function calls possible.
Calling a member function of an object in JASL often results in new object.
This feature allows the user to call member functions on these resulting
objects on the same line as they were defined. Again, this reduces the number
of unnecessary variables in the environment.

To do this, the interpreter splits the expression into member function calls
and then evaluates them one by one. The actual implementation of this
process is rather intriguing.

Suppose we have an expression:

$automaton.reduce().toPNG(test.png)

We run evaluate on this expression.

Evaluate first splits the expression into three parts:

.V - variable, which in this case is: $automaton. F - first member function call, which in this case is: .reduce().R - rest of the expression, which in this case is: .toPNG(test.png)

29

4. Details of Implementation
Then it evaluates expression VF, which in this case is: $automaton.reduce().

It saves the result in temporary variable T. JASL uses $TEMP as a temporary
variable. At last, it runs evaluate on expression TR, which in this case is:
$TEMP.toPNG(test.png).

In each step, the interpreter evaluates the front-most function call. Each
time it saves the result in temporary variable $TEMP and removes the
first function call from the expression. Then it replaces this function call by
$TEMP and runs the evaluation again on the shortened expression.

As a side-effect, it would overwrite $TEMP variable. As a countermea-
sure added a little stack-frame just for this variable. This stack frame was
implemented using Java’s native stack-frame. The implementation is simple
because the algorithm uses recursion to evaluate chained function calls. How-
ever, this solution has a flaw: If one of the member functions has a syntax
error in it, the interpreter throws an SyntaxException and the original stack
frame will be lost (hence the original contents of $TEMP will be lost). It is
not recommended using $TEMP as a variable name.

The chaining feature was added to the JASL language after the main
framework had been completed and this process was the easiest to implement.
The way it is implemented is taxing on computation time because of all the
unnecessary variable name parsing and it should be upgraded in the future.

1 % Code without chained member function calls
2 $automaton = getExample()
3 $reducedAutomaton = $automaton.reduce()
4 $tikzCode = $reducedAutomaton.getTikz()
5 $tikzCode.save(test.txt)
6
7 % Code with chained member functions
8 getExample().reduce().toTikz().save(test.txt)

4.3 Problems with Graphviz-java

I thought that using Graphviz-java library would save me a lot of work on
parsing of the dot code. Graphviz-java is originally meant to be used to
construct graphs by the means of Java objects, then convert those object to
dot code and vice versa. However, I wanted something different from the
library. I wanted to use it only for parsing of the dot code. Then, I wanted
to extract only layout information (x and y coordinates) from the objects.

Graphviz-java does not have any documentation on its classes or functions.
So I had to reverse-engineer most of the fields of the objects and the meaning

30

..............................4.3. Problems with Graphviz-java

of those fields, using Java reflection and debugger. Fortunately, I found the
attributes in the classes created by Graphviz-java and was able to extract
them.

I struggled on one particular bug in Graphviz-java library related to knot
points extraction of the edges. If dot code from Graphviz contained any edge
that was long enough to have more than nine knot points in the spline, it
would linebreak the dot file in the middle of pos attribute. This caused
Graphviz-java to parse it incorrectly. Fixing this issue made me think, whether
using Graphviz-java was worth it in the first place.

So using Graphviz-java for this use-case may not have been the best idea.
It might have been easier to get plain text file as an output from Graphviz
and write my own parsing code.

31

32

Chapter 5

Drawing images

Drawing state diagrams in such a way that they are readable and nice is a
very complicated problem. Apart from special cases, removing edge crossings
produces a better-looking image. This is a NP-hard problem as it is shown
in [17].

I used Graphviz to create the layout of the graph. It draws nice diagrams,
but I needed to convert the output to TikZ code. To do that I instructed
Graphviz to output so-called attributed dot code. This reproduces the input
with added information about the layout of the graph. The attributed dot
code is then converted to TikZ code.

Automa-
ton Dot code Graphviz

At-
tributed
dot code

TikZ
code

Figure 5.1: Process of conversion

First, JASL creates the dot code to draw the automaton, then it runs
Graphviz on this code. Graphviz outputs attributed dot code. At last, JASL
converts the attributed dot to TikZ code. However, many problems arose
from this conversion. Some of these problems are described in next section.

5.1 Using Graphviz for layout output

One of the main problems of converting from dot code to TikZ code was the
size of the output image. TikZ itself does not take care of page size. If input
coordinates exceed page size, it will draw the image cropped. I wanted the
output of toTikz conversion to fit on a regular A4 page so I needed a way to

33

5. Drawing images....................................
tell Graphviz the maximum dimensions of the output image.

There are many attributes that you can specify in the dot file: styling of
the edges, positions of nodes and many more [9]. However, there are some
attributes that have no effect on the attributed dot code, because Graphviz
often ignores some of the attributes to produce a better-looking image.

Size attribute is used to control the pixel size of output images. Graphviz
copies the size attribute to the attributed dot file, but it does not affect
the coordinates of the elements. It is included to the attributed dot only
to instruct the rendering engine on how to scale/orient the resulting image.
JASL reads positions of elements from the attributed dot, so the size attribute
does not have any effect on the resulting TikZ code.

The rankdir attribute in the dot code allows the user to instruct Graphviz
on the direction he wants the graph to grow in. As most publications use the
portrait orientation, I tried to instruct Graphviz to prefer vertical growth.
Using this setting, labels would often overlap with edges. Even without the
overlaps I did not like these images so I discarded the idea and used horizontal
growth instead.

The attributed dot file contains coordinates for all elements of the graph.
However, these are in Graphviz coordinate system. To convert these co-
ordinates to TikZ coordinate system, I measured the maximum feasible
width/height of TikZ image to fit regular A4 page. I tried using linear
mapping, but for that, I would have to know the bounding box of the dot
coordinates. Graphviz has bounding box attribute in the attributed dot file
that specifies the bounding box of the image. Using this bounding box as
mapping parameter, resulted in distorted images.

Using minimum/maximum coordinates in each axis yielded visually better
results even for larger graphs. As a side-effect, I lost the ratio between sizes of
the elements and length of the edges. This means that the output TikZ code
draws small graphs unnecessarily stretched. This is caused by the mapping of
small image to a larger area. The following figures show png image generated
by Graphviz and the TikZ result image in contrast with one another.

Figure 5.2: Original automaton image. Generated with attributed dot code
in A.1.1

a0 b1I
ba

Figure 5.3: Example of a stretched automaton. See TikZ code in A.2.1

34

............................ 5.1. Using Graphviz for layout output

This unwanted effect could be one of the areas to work on in the future
(section 7.2.3).

5.1.1 Graphviz layout engines

Graphviz has four main layout engines that can be used to draw automaton
state diagrams:

. dot

. neato

. circo

. twopi

There are also other engines: sfdp, fdp. These engines are not implemented
in JASL, because sfdp and fdp are for undirected graphs.

These engines produce vastly different images. I got the best results using
dot engine, but for some particular examples circo yields more visually
appealing images.

Example of layout difference

We have an automaton M . This automaton has four states. Images of
automaton M generated by different layout engines are on figures: 5.4, 5.5,
5.6, 5.7.

Figure 5.4: Image of automaton M generated using dot layout

35

5. Drawing images....................................

Figure 5.5: Image of automaton M generated using neato layout

Figure 5.6: Image of automaton M generated using circo layout

Figure 5.7: Image of automaton M generated using twopi layout

36

................................ 5.2. Relative position model

Graphviz has an interesting feature. It varies the size of nodes according to
the number of incoming/outgoing edges. This effect is apparent on foregoing
figures.

5.2 Relative position model

Originally, I wanted JASL to output TikZ code that would be the most easy
for the user to edit. TikZ automata library was built to use the relative
position model. In this model, every element of the graph is placed in relation
to some other element. This allows for very easy editing of the image. For
example, nodes of the graph on figure 5.6 could be described as follows:

\node[state, initial] (0) {I};
\node[state] (1) [above right of=0] {a0};
\node[state] (2) [below right of=0] {ERROR};
\node[state, accepting] (3) [below right of=1] {b1};

This code can be quickly read and edited as opposed to absolute coordinates.
TikZ allows nodes to be in eight different directions: above, above right, right,
below right, below, below left, left, above left. Distance between nodes can
be specified, but that clutters the code. TikZ places nodes on outer edge
of a circle with diameter equal to the distance between nodes. One of the
consequences of this feature is that sequence (below right, above right) does
not give the same position as (right, right). There are only three types of
edge shapes: bend left, bend right and straight.

Using simplifications of the relative position TikZ code poses several con-
straints on the layout generator. Graphviz does not have support for these
types of constraints. Graphviz has no attribute for ideal edge length or grid
alignment of nodes. So the only option is to calculate/approximate these
positions. However, this approximation destroys the layout completely at
times.

5.2.1 Relation chains

The relative model is easily editable, but only if the relations are connected
correctly. The grouping of relations is a problem, because the program has
to approximate which nodes should be connected to which.

In this simple example, we have some graph which is constructed using
these relations:

37

5. Drawing images......................................1. 1 is to the right of 0..2. 4 is to the right of 1..3. 5 is under 4..4. 3 is under 0..5. 2 is to the right of 3

We can visualize these relations like this:

0 1

3 2

4

5

Figure 5.8: Correct relations

Suppose that we want to move nodes 1, 4, 5 below node 2. It is very easy,
just by changing the relation of node 1 to be: 1 is below of 2. The result will
look like this:

0

3 2

1 4

5

Figure 5.9: Moved relations

Now suppose we have these relations in the graph:

0

3 2

1 4

5

Figure 5.10: Incorrect relations

Now it is much more complicated to do this simple operation because to
produce the wanted result, we have to change the relation of three nodes:
1, 4, 5.

38

................................ 5.2. Relative position model

Because we do not know, if and how the user wants to reorganize the
output graph, there would have to be some utility that would re-route the
edges. Without this utility, the relation model would be of no use.

Because of these difficulties, I discarded the idea of relative positions and
used absolute positions in the final version of the program.

5.2.2 Edge angle calculation

The Graphviz output dot file specifies edge shapes in the pos attribute. This
attribute contains coordinates of several knot points, specifying a spline curve.
As stated in previous section, there are three possible shapes of edges in TikZ
automata library: straight, bend left, bend right. Approximation to those
three edge shapes in TikZ produced mostly illegible images.

The ultimate goal was to keep the TikZ code simple and easy to read. I
decided to use the angles library for TikZ that allows the user to specify
the angle of the bend. The angle is a numeric value between 0◦ and 360◦
which specifies the angle α between the connector of source and destination
nodes and the tangent of the arc at source node. The angle α is depicted in
figure 5.11

q0 q1

α

Figure 5.11: Visualization of α

Bend left at 270◦ produces the same output as bend right at 90◦. I decided
to keep TikZ code readable and unambiguous by using both directions (left
and right), and limiting the angle to between 1◦ to 179◦.

I defined an function f that returns this angle as well as the edge orientation
in the code of the application. It takes three arguments: ~q0, ~q1, P , where q0
is the source node center, q1 is the destination node center and P is a set
of spline knot points. These attributes are extracted from the attributed
dot code. If the returned angle is negative, the curve is to the right, if it is
positive, the curve is to the left, if it is negative, the curve is to the right. If
the angle is zero, the edge is straight.

Splines generated by Graphviz are generally simple, approximately elliptical.
I used this property to approximate the curve angle using the following

39

5. Drawing images....................................
function::

f(~q0, ~q1, P) = angle(~q1, ~q0, ~p∗) · ((~q1 − ~q0)× sgn(~p∗ − ~q0)), where
~p∗ = arg max

~p∈P
(angle(~q1, ~q0, ~p))

angle(~a,~b,~c) = 180 · arccos ~x · ~y
π · |~x| · |~y|

, ~x = (~a−~b), ~y = (~c−~b)

This function returns angle γ between q0, q1 and point ~p∗ ∈ P which
maximizes γ.

While this function has good results when Graphviz uses elliptical edges, it
is not so good otherwise. Graphviz uses elliptical splines only if the edges
are short. If the edge exceeds certain length, it will flatten the spline curve.
In these cases, angles returned by function f are not optimal. Further
explanation of the possible upgrades of this function is in section 7.2.3.

40

Chapter 6

Examples of usage, practice, problems of
testing

Here are some examples of usage of the JASL language:

6.1 Defining a NFA automaton

Suppose we have regular language:

L1 = {w | w contains aba as substring }, L1 ⊆ {a, b}∗

We design regular automaton M1 such that L(M1) = L1. Example of such
automaton is depicted in table 6.1.

M1 a b

→ 0 0, 1 0
1 2
2 3

← 3 3 3

Table 6.1: Transition table of automaton M1.

In order to define automaton M1 in JASL language we define a few lists:

41

6. Examples of usage, practice, problems of testing
1 $alphabet = {a, b}
2 $row0 = {>, 0, {0,1}, 0}
3 $row1 = {1, {}, 2}
4 $row2 = {2, 3}
5 $row3 = {<, 3, 3, 3}
6
7 % Now we can define an automaton:
8 $M_1 = Automaton({$alphabet, $row0, $row1, $row2, $row3})
9
10 % We can get, whether automaton accepts word bbbbaab:
11 $accepted = $M_1.accepts(bbbbaab)
12 % Accepted has value: false
13
14 % We can get regular expression describing the language L1:
15 $reg = $M_1.toRegex()
16 % $reg has value: b*aa*b((bb*aa*b)*)a((a+b)*)
17
18 % But does this regex really describe language L1?
19 % This one definitely does:
20 $regex = (a+b)*aba(a+b)*
21 $M_2 = fromRegex($regex)
22 $M_2.equals($M_1)
23 % Outputs: true

Note that we use nested lists for definitions of sets of target states. We
can use {} to denote ∅. The output of .getRegex() can be quite complicated.
That is because no real regular expression simplifier has been implemented
yet.

6.2 Defining an ENFA automaton

Suppose we have an ENFA automaton M2 that accepts all words generated
by regular expression: a∗ + b∗.

Such automaton can be described by this transition table:

M2 ε a b

→ S A,B
A F A
B F B

← F

Table 6.2: Transition table of automaton M2.

42

................................ 6.3. Example of TikZ image

We can define this automaton in JASL as follows:

1 $Sigma = {eps, a, b}
2 % We can even shorten the definition by the last empty

transitions
3 $stateS = {>, S, {A, B}}
4 $stateA = {A, F, A}
5 $stateB = {B, F, {}, B}
6 $stateF = {<, F}
7 $M_2 = Automaton({$Sigma, $stateS, $stateA, $stateB,

$stateF})
8
9 % Now we can save png image of automaton M_2:
10 $M_2.toPNG(image.png)

The resulting image is:

Figure 6.1: Image saved in image.png

6.3 Example of TikZ image

Suppose we have automaton M3. This automaton accepts language L =
L(M3). This language is also described by regular expression r2.

r2 = (a+ b)∗ab∗, L(M3) = Lr2 = L

We can use JASL to construct this automaton and create TEXfile to display
it:

43

6. Examples of usage, practice, problems of testing
1 $a = fromRegex((a+b)*ab*)
2 % TeX document parts
3 $class = \documentclass{article}
4 $includes = getTikzIncludes()
5 $beginning = \begin{document}
6 $tikzCode = $a.toTikz()
7 $end = \end{document}
8
9 % Now append these parts in the image.tex file
10 $class.save(image.tex)
11 $includes.save(image.tex)
12 $beginning.save(image.tex)
13 $tikzCode.save(image.tex)
14 $end.save(image.tex)

After compiling image.tex file we get this image:

a0

b1

a2 b3

I

a

b

a

a

b

a

b

b

a

b

a

Figure 6.2: Image in compiled image.pdf file.

6.4 Example of a JASL script file

In this example, we can see the execution of JASL script file and the side
effects of using execute function.

Suppose we have a file append.jasl. This file contains a script that con-
catenates the language described by regular expression: ab∗a to language
accepted by automaton saved in variable $i. The script saves the result to
variable $j. Such file could contain for example this code:

1 $append = fromRegex(ab*a)
2 $j = $i.concatenation($append)

44

............................. 6.4. Example of a JASL script file

We can check whether the function worked correctly:

1 $i = fromRegex(bba)
2 % We define the append variable
3 $j = hello
4 $shouldBe = fromRegex((bba)(ab*a))
5
6 execute(append.jasl)
7
8 % We can see that the contents of the variable k were

overwritten:
9 $j.equals($shouldBe)

The last command will print true to console. Note that by executing code
in append.jasl we have overwritten anything that might be in the variable
$j. The user has to be aware of this side effect. Stack frames might be
implemented later (see 7.2.2).

45

46

Chapter 7

Looking to the future

JASL and its interpreter do not yet implement some of the features that I
would want them to. The ultimate goal of this application is to make tasks
regarding automata simple. There are many quality-of-life improvements
that yet wait to be implemented. I will describe the most important of those
features in this chapter.

7.1 JAutomata

The JAutomata library could implement other types of automata (Mealy,
Moore, Push-down) because these types of automata are often used in practice.
The implementation could use the structure of the project and its classes
with minor tweaks.

7.1.1 Operations over regular expressions

The regular expression format used in JAutomata library, which is also defined
in this thesis, differs from the format that is usually used in literature. It does
not implement powers of regular expressions and positive iteration operator.

Power of regular expression

Powers of regular expressions are often used to shorten regular expressions
with repeating symbols.

Definition of power of regular expression. Suppose we have regular ex-
pression r that describes language L. Then regular expression ri describes

47

7. Looking to the future
language Li which can be defined recursively as:

. L0 = {ε}. Ln+1 = LLn, n > 0

Positive iteration

Another operator missing from the implementation is the positive iteration
of regular expressions.

Definition of positive iteration. Suppose we have a language L that is
described by regular expression r. Then regular expression r+ describes
language L+ which is the positive iteration of the language L and can be
defined as:

L+ =
∞⋃

i=1
Li

Both of these operators only simplify the notation of more complicated
regular expressions. For example, regular expression r+ can be denoted by
rr∗, without changing the resulting language.

7.1.2 Regular expression minimizer

For the moment, the library is missing any regular expression minimizer. Prob-
lem of regular expression minimization is computationally hard (PSPACE-
complete as shown in [18]). The regular expression minimization could be
implemented using already existing algorithms that yield "good enough"
results [16].

7.2 JASL

JASL could implement additional features to make the enhance the user
experience. In this section I will focus on those improvements.

7.2.1 JASL Syntax

JASL syntax could use some more advanced features. Such as: element
extraction from a list or a string, user-defined functions, other data-types or

48

.. 7.2. JASL

allowing the user to use some of the more advanced features of JAutomata
library. It could also make possible the modification of generated PNG images
(colors of edges, size of the image, etc.). These changes would make JASL
more flexible for the user.

Standardization of the syntax would help users that are used to working
with regular programming languages. One example of such standardization
would be encapsulation of strings in double quotes. This would allow for
better exception handling and syntax error detection.

7.2.2 Interpreter

Examples of possible upgrades to the JASL interpreter are:

.Making error messages more clear. Implementing command that would print all used variables. Implementing stack frames for script executions. Saving current workspace (state of all variables) to a file. Live preview of generated images. Live console code completion

Apart from stack frames, all of these upgrades are a quality-of-life improve-
ments. For example the live preview of generated images would certainly
enhance the user experience. Live code completion for the live console envi-
ronment would probably require to implement custom console.

7.2.3 Graph conversion

The JASL language could implement the relative position model, as described
in section 5.2. The problem is complicated to fine-tune and it would be
necessary to implement some tool to change relations in the graph. If this
feature is implemented, adding live preview of graphs would be advisable.

Coordinate conversion. As described in section 5.1, the current implemen-
tation of dot to TikZ coordinate conversion stretches small graphs. One way
of dealing with this stretching is to calculate the required distance between
nodes. The calculation would compare the size of the node from the dot code
to the distance between nodes. Based on the result it would decide, how
distant the nodes should be. There are lots of constants in such calculation
that would require fine-tuning and a lot of experimentation.

49

7. Looking to the future
Angle of edges. Upgrade of the function f , described in section 5.2.2 would
improve diagrams of automata with longer edges. This function should be im-
plemented to cz.cvut.fel.horovtom.jasl.graphviz.DotToTex.getCurveAngle
function. Graphviz does not curve longer edges evenly. Such an edge from
state 0 to state 4 is figure 7.1.

Figure 7.1: Image of longer edge generated by Graphviz

We can see on figure 7.3 that the current f does a decent job:

0
1

2

3

4

5 6

b
c

a

a

a
b c

a

c
a b

c

b

Figure 7.2: TikZ equivalent of figure 7.1

However, on some pictures, the curvature is necessary to maintain clarity
in the layout. In these cases TikZ can visualize edges of this shape much
better with edge angle greater than 90◦ as shown on figure 7.3

0 1
b

Figure 7.3: Edge with angle 140◦

This could be one of the possible improvements of the function f .

50

Chapter 8

Conclusion

The goals of this project were:

. To finish implementation of regular expressions in JAutomata library. To create a language that could be used to define finite automata and
work with them.. To implement a live-console interpreter for this language. To implement a mechanism for creation of code in dot language for
drawing state diagrams of regular automata. To implement a mechanism for conversion of attributed dot code to TikZ
code.

All of these goals have been reached. The application fulfills all set goals
at the moment. However, some areas might be improved in the future (see
chapter 7). Newer versions of the application code are accessible in the project
github repository [12].

This application has many uses for students of automata theory and teachers
that write material for their courses. JASL could be used by researchers
to generate images of automata for their publications after implementing
features mentioned in section 7.

On the appended CD there is the project root directory and the pom.xml
file which allows for easy compilation of the project (as described in section
3.1.1) and a pre-compiled .jar file of the project. This project is written in
pure Java so it is platform independent.

51

52

Bibliography

[1] Marie Demlova. Jazyky, automaty a gramatiky. Materials for CTU course
Jazyky, Automaty a Gramatiky, 2017. http://math.feld.cvut.cz/
demlova/teaching/jag/jag7dohromady.pdf

[2] John E. Hopcroft, Jeffrey D. Ullman. Formal Languages and Their Rela-
tion to Automata. Addison-Wesley Pub. Co., 1969.

[3] Graphviz official website. https://www.graphviz.org/.

[4] Graphviz-java official repository. https://github.com/nidi3/
graphviz-java

[5] Satyaki Sikdar. Drawing Finite State Machines in LATEXusing TikZ A Tu-
torial. University of Notre Dame, 2017. https://www3.nd.edu/~kogge/
courses/cse30151-fa17/Public/other/tikz_tutorial.pdf

[6] Jan Travnicek and col. Private Gitlab repository of Algorithms Li-
brary Toolkit developed at FIT CVUT, accessible with CVUT creden-
tials. https://gitlab.fit.cvut.cz/algorithms-library-toolkit/
automata-library

[7] Bořivoj Melichar. Jazyky a Překlady. CVUT, 2003.

[8] Borivoj Melichar, Jan Holub, Tomas Polcar. Text searching algorithms.
CTU Prague, 2005. Algorithm p.203. http://www.stringology.org/
athens/TextSearchingAlgorithms/tsa-lectures-1.pdf#page=203

[9] Manual for DOT language https://www.graphviz.org/doc/info/lang.
html

[10] Manual for TikZ automata library https://www.bu.edu/math/files/
2013/08/tikzpgfmanual.pdf p.175-180

[11] TEXUsers Group website. http://tug.org/

53

http://math.feld.cvut.cz/demlova/teaching/jag/jag7dohromady.pdf
http://math.feld.cvut.cz/demlova/teaching/jag/jag7dohromady.pdf
https://www.graphviz.org/
https://github.com/nidi3/graphviz-java
https://github.com/nidi3/graphviz-java
https://www3.nd.edu/~kogge/courses/cse30151-fa17/Public/other/tikz_tutorial.pdf
https://www3.nd.edu/~kogge/courses/cse30151-fa17/Public/other/tikz_tutorial.pdf
https://gitlab.fit.cvut.cz/algorithms-library-toolkit/automata-library
https://gitlab.fit.cvut.cz/algorithms-library-toolkit/automata-library
http://www.stringology.org/athens/TextSearchingAlgorithms/tsa-lectures-1.pdf#page=203
http://www.stringology.org/athens/TextSearchingAlgorithms/tsa-lectures-1.pdf#page=203
https://www.graphviz.org/doc/info/lang.html
https://www.graphviz.org/doc/info/lang.html
https://www.bu.edu/math/files/2013/08/tikzpgfmanual.pdf
https://www.bu.edu/math/files/2013/08/tikzpgfmanual.pdf
http://tug.org/

Bibliography
[12] The official repository for JAutomata library and JASL projects https:

//github.com/Horovtom/jAutomata

[13] The official website of Apache Maven https://maven.apache.org/

[14] JDK8 download page https://www.oracle.com/technetwork/java/
javase/downloads/jdk8-downloads-2133151.html

[15] Tomas Horovsky. Notes for the A4B01JAG CVUT course
https://github.com/Horovtom/SchoolNotes/blob/master/
A4B01JAG/A4B01JAG.pdf

[16] H. Gruber, S. Gulan. Simplifying Regular Expressions
A Quantitative Perspective. Universitat Gießen, 2009.
https://www.researchgate.net/profile/Hermann_Gruber3/
publication/228529267_Simplifying_Regular_Expressions_A_
Quantitative_Perspective/links/02e7e517274e7a8f6e000000/
Simplifying-Regular-Expressions-A-Quantitative-Perspective.
pdf

[17] Michael R. Garey, David Johnson. Crossing Number is NP-Complete.
SIAM Journal on Algebraic and Discrete Methods. 4. 312-316.
10.1137/0604033, 1983.

[18] A.R. Meyer, L.J. Stockmeyer, The equivalence problem for regular
expressions with squaring requires exponential space, in: Proc. 13th Ann.
IEEE Symp. on Switching and Automata Theory, 1972, pp. 125–129

[19] Graphviz installation tutorial at https://enterprise-architecture.
org/downloads?id=208

54

https://github.com/Horovtom/jAutomata
https://github.com/Horovtom/jAutomata
https://maven.apache.org/
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://github.com/Horovtom/SchoolNotes/blob/master/A4B01JAG/A4B01JAG.pdf
https://github.com/Horovtom/SchoolNotes/blob/master/A4B01JAG/A4B01JAG.pdf
https://www.researchgate.net/profile/Hermann_Gruber3/publication/228529267_Simplifying_Regular_Expressions_A_Quantitative_Perspective/links/02e7e517274e7a8f6e000000/Simplifying-Regular-Expressions-A-Quantitative-Perspective.pdf
https://www.researchgate.net/profile/Hermann_Gruber3/publication/228529267_Simplifying_Regular_Expressions_A_Quantitative_Perspective/links/02e7e517274e7a8f6e000000/Simplifying-Regular-Expressions-A-Quantitative-Perspective.pdf
https://www.researchgate.net/profile/Hermann_Gruber3/publication/228529267_Simplifying_Regular_Expressions_A_Quantitative_Perspective/links/02e7e517274e7a8f6e000000/Simplifying-Regular-Expressions-A-Quantitative-Perspective.pdf
https://www.researchgate.net/profile/Hermann_Gruber3/publication/228529267_Simplifying_Regular_Expressions_A_Quantitative_Perspective/links/02e7e517274e7a8f6e000000/Simplifying-Regular-Expressions-A-Quantitative-Perspective.pdf
https://www.researchgate.net/profile/Hermann_Gruber3/publication/228529267_Simplifying_Regular_Expressions_A_Quantitative_Perspective/links/02e7e517274e7a8f6e000000/Simplifying-Regular-Expressions-A-Quantitative-Perspective.pdf
https://enterprise-architecture.org/downloads?id=208
https://enterprise-architecture.org/downloads?id=208

Appendix A

Used code

A.1 Used DOT code

This appendix includes all dot codes used to draw images.

A.1.1 A.1.1

1 digraph automaton {
2 graph [bb="0,0,306,55", rankdir=LR, size="8,3"];
3 node [color=black, label="\N", shape=circle];
4 qS0 [color="", height=0.5, label="", pos="27,27.5",
5 shape=none, width=0.75];
6 I [color=red, height=0.5, pos="109,27.5",
7 width=0.5];
8 qS0 -> I [color="red:invis:red",
9 pos="e,90.826,27.5 54.195,27.5 62.654,27.5 72.051,27.5

80.595,27.5"];
10 a0 [height=0.52778, pos="189,27.5", width=0.52778];
11 I -> a0 [label=a,
12 lp="148.5,35",
13 pos="e,169.92,27.5 127.31,27.5 136.8,27.5 148.81,27.5

159.63,27.5"];
14 b1 [color="", height=0.76389,
15 pos="278.5,27.5",
16 shape=doublecircle,
17 width=0.76389];
18 a0 -> b1 [label=b, lp="229.5,35",
19 pos="e,250.75,27.5 208.13,27.5 217.56,27.5 229.44,27.5

240.69,27.5"];
20 }

55

A. Used code......................................
A.2 Used TikZ code

A.2.1 A.2.1

1 \begin{tikzpicture}[->,>=stealth’,shorten >=1pt,auto,node
distance=2.8cm,semithick,initial text=$ $]

2 \tikzset{every state/.style={minimum size=0pt}}
3 \node[state] (0) at (12.27,1.78) {$a0$};
4 \node[state, accepting] (1) at (18.07,1.78) {$b1$};
5 \node[state, initial, initial where=left] (2) at (7.07,1.78)

{I};
6 \path
7 (0)
8
9 edge node {b} (1)
10 (2)
11
12 edge node {a} (0);
13 \end{tikzpicture}

56

	Introduction and motivation
	Motivation

	Definitions and terminology
	Languages
	Operations over languages
	Automaton
	Deterministic Finite Automaton (DFA)
	Non-deterministic Finite Automaton (NFA)
	Non-deterministic Finite Automaton with epsilon transitions (ENFA)

	Regular expression
	Notation of automata
	Table

	State diagram

	User manual
	Installation
	Compiling JAR yourself

	Execution
	Syntax of the language
	Syntax details
	Data types
	Functions
	Automata
	Member functions
	Consequences of string as default data type

	Details of Implementation
	Used technology
	JAutomata
	Graphviz
	Graphviz-java library
	TeX
	TikZ and automata for TikZ

	Interpreter implementation
	Details of parsing code
	Enhancing syntax

	Problems with Graphviz-java

	Drawing images
	Using Graphviz for layout output
	Graphviz layout engines

	Relative position model
	Relation chains
	Edge angle calculation

	Examples of usage, practice, problems of testing
	Defining a NFA automaton
	Defining an ENFA automaton
	Example of TikZ image
	Example of a JASL script file

	Looking to the future
	JAutomata
	Operations over regular expressions
	Regular expression minimizer

	JASL
	JASL Syntax
	Interpreter
	Graph conversion

	Conclusion
	Bibliography
	Used code
	Used DOT code
	A.1.1

	Used TikZ code
	A.2.1

