
Kladno, May 2018

The Posture Evaluation System

Bachelor Thesis

Study program: Biomedical and Clinical Technology
Study branch: Biomedical Technician

Author of thesis: Cornil Petrov
Supervisor of thesis: Ing. Tomáš Funda

Czech Technical University in Prague
FACULTY OF BIOMEDICAL ENGINEERING

Department of Biomedical Technology

DECLARATION

I hereby declare that I have completed this thesis with the topic “The posture evaluation

system” independently and I have included a full list of used references.

I do not have a compelling reason against the use of the thesis within the meaning of

Section 60 of the Act No 121/2000 Coll., on copyright, rights related to copyright and

amending some laws (Copyright Act).

In Kladno, date 18.05.2018 ……………………

ACKNOWLEDGEMENTS

I would like to express my sincerest gratitude to Ing. Tomaš Funda for providing me

with all the tools and basic skills necessary for the construction of this device.

Ing. Tomaš Funda’s consistent encouragement, guidance and patience enabled me to

complete this project successfully.

I would also like to thank Ing. Petr Kudrna, Ph.D. and MUDr. Markéta Janatová for

their advisory throughout the thesis.

ABSTRACT

Thesis Title: The Posture Evaluation System

Proper posture does not only display confidence and stature, but is a sign of well-being

in general. For healthy people, maintaining improper posture poses many health risks,

including spinal misalignment, deformation of musculoskeletal structures and pain in

general. In today’s computer age, when people have no motivation to align their axes

properly, it’s more important than ever to maintain proper posture. The suggested

project allows a posture evaluation device to be constructed from commercially

available devices, which sends signals from the inclining object to the LCD display and

speaker, warning the user of a posture/inclination fault. Responsible for the precise

measurements is the MEMS gyroscope in the 6-axis motion sensor connected to the

circuit. All calibration and test processes were described to achieve optimal

performance in detecting posture fault

Keywords: Posture, gyroscope, Arduino, micro-controller, HD6050, fault detection

Content

List of symbols and abbreviations .. 8	

1	 Introduction ... 9	

1.1	 Steady state ... 10	

1.2	 Aim ... 10	

2	 Design .. 11	

2.1	 Inter-Integrated Circuit ... 12	

2.2	 Microcontroller ... 12	

2.3	 Gyroscope sensor .. 12	

2.4	 LCD Display ... 13	

2.5	 Piezoelectric speaker .. 13	

2.6	 External Button ... 13	

2.7	 9V Battery and Switch .. 13	

2.8	 Plastic Cover ... 14	

3	 Devices and Elements Used .. 15	

3.1	 Arduino Leonardo ... 16	

3.2	 InvenSense 6-axis MPU-6050 Gyroscope-Accelerometer 18	

3.3	 LCD HD44780 .. 21	

3.4	 Piezoelectric Speaker .. 24	

3.5	 9v Battery and Switch ... 25	

3.6	 External Button ... 26	

3.7	 Plastic Casing .. 27	

4	 Results ... 30	

5	 Calibration and Testing ... 33	

5.1	 Calibration and Verification ... 33	

5.2	 Human Subject Testing ... 36	

5.2.1	 Posture Evaluation Session ... 37	

5.2.2	 Questionnaire/Form .. 39	

6	 Testing Results .. 40	

7	 Discussion ... 41	

8	 Conclusion ... 45	

References ... 46	

7

Appendix A. Main code for posture evaluation .. 48	

Appendix B Code for retrieving RAW values .. 52	

Appendix C I²C scanner .. 55	

Appendix D code for processing DMP offsets ... 56	

Appendix E Testing Questionnaire ... 58	

8

List of Symbols and Abbreviations

Abbreviation Meaning

MC
IDE
DMP
LCD
FIFO
MEMS
ICSP
PWM
I/O

Micro-controller
Integrated Development Environment
Digital Motion Processor
Liquid Crystal Display
First in first out
Microelectromechanical systems
In-circuit serial programming
Pulse-width Modulation
Input/Output

I²C I2C

SCL
SDA
VDD

Inter-Integrated Circuit
I²C bus clock connection
I²C bus data lines connection
Integrated circuit power supply

Symbol Meaning

9

1 Introduction

Anatomical posture in humans is controlled by the cerebellum and motor cortex of

the brain. Rigidity is maintained by slow twitch fibers in the muscles. These fibers

are more efficient in generating ATP through aerobic processes resulting in extended

muscle contractions over longer periods of time. [1] A good posture implies a

minimum expenditure of energy required to maintain proper anatomical alignment,

whereas exertion of excess energy and effort is a sign of poor posture. Joints are the

most mechanically efficient while maintaining good posture, which provides the

body with ease of movement for less effort. In a good posture the weight is equally

distributed, all axes are parallel to an arbitrary vertical line, shoulders are in an erect

position with chest held up, abdomen is retracted back and curves of the spine are

not twisted. [2]

Improper posture exerts unbalanced forces on the supporting structures of the body:

spinal column and discs, pelvis, joints, muscles and tendons. This leads to fatigue,

appearance abnormalities, deformation, pain, difficulty of movement and balance. [3]

Causes of a poor posture can be either acquired or congenital. Genetics, disease,

habit, physical trauma and weakness all affect posture. [2] An individual suffering

from Parkinson’s disease experiences a forward flex posture, hindering normal

functionality. In healthy individuals, habit plays a vital role in tendency to maintain

proper posture. People tend to remain in a poor posture, regardless of their desire to

maintain proper posture. This is usually attributed poor habit. These may be formed

at an early age from improper initial development or acquired later in life as a result

of a leading sedentary lifestyle. As a consequence of technological industrialization,

work with computers is becoming extremely common, resulting in an increase of

individuals working in a sedentary posture for long periods of time. [4] In addition

to excessive use of computers, other harmful habits, such as improper form during

exercise, carrying heavy loads and sitting behind a desk for long periods of time

affects the shape of muscles and the skeletal development of an individual. This may

cause abnormal development leading to difficulty maintaining proper posture. [5]

Habits are automatic responses to contextual cues, or signals, associated with their

execution. For example, putting on a seat belt when getting into a car. A habitual

action is dependent mostly on external cues without requiring conscious attention or

motivational processes. Habits are therefore likely to persist even without conscious

10

awareness of the action. Formation of habits is simply constituted by repeating an

action consistently in the same context. [6,7]

1.1 Steady state

When it comes to maintaining proper spinal alignment there are many braces

available designed to perform this function. However, this does not facilitate muscle

strengthening, which ultimately has little impact on body posture.

Since the mid-2000s, many posture correction apparatuses based on habit formation

were patented and have come to be available on the market. However, few have

achieved commercial success and popular appraisal. [8] “LumoMotionScience” and

“Upright” have been the leaders on the market for the past several years. The

products are portable and contain a sensor inside the device. The sensor transmits

positional data to the user’s mobile application via Bluetooth adapter, providing

various information on body position. The device vibrates when slouching is

detected, warning the user of posture fault.

However, these solutions do not display deviation values in real time and require a

connection to a smartphone with Bluetooth capabilities. This may not be a suitable

option in certain clinical or rehabilitation scenarios.

1.2 Aim

The aim of this project is to design and test a prototype of a posture evaluation

prototype using commercially available devices from which the signals are

processed by an Arduino microcontroller. The prototype will allow the user to

observe misalignment of the upper back as a percent value of deviation from the

vertical axis during pitch and yaw movements. Visual and audio signals will serve as

repeated external cues warning the user of deviation. Sensors are to be tested and

calibrated both outside and on the human body.

The hypothesis is that it is possible to construct a portable posture evaluation device

that would dynamically display vertical deviation values and promote healthy

postural habit formation, without requiring a connection to mobile applications.

11

2 Design

Four primary steps were required for achieving a successful and clinically viable

result in the realization of detecting posture fault on a human subject:

1. Connection of components

2. Protection/Fixation

3. Sensor calibration

4. Testing/Implementation

A block scheme of the purposed solution is presented in Figure 2.1.

Figure 2.1. Block scheme of posture evaluation device

12

2.1 Inter-Integrated Circuit

Communication of devices should be performed via Inter-Integrated Circuit (I²C), a

serial bus commonly used for attachment of lower speed peripherals to

microcontrollers. It uses two lines as a collector and drain: Serial Data Line (SDA)

and Serial Clock Line (SCL) with typical voltages 3,3-5V. Its simplicity and

accessibility makes it the ideal communications protocol for this device, as all

components connected to the bus do not exceed 5V range, while SDA and SCL lines

with I²C communication are commonly found on most microcontrollers.

2.2 Microcontroller

The microcontroller is responsible for providing means for connecting all the

elements of the posture evaluation system and processing all information that is

exchanged between them. A microcontroller contains a CPU along with memory and

programmable digital and analog input/output peripherals. It is mainly used for

executing embedded applications uploaded to the memory. Its’ size and cost

efficiency makes it ideal for implementation in this device.

2.3 Gyroscope sensor

The gyroscope sensor sends motion data to the microcontroller for further

processing. It should measure in 3-axis, 2 of which would be used in context for the

realization of angle detection within the prototype. The gyroscope sensor should also

be of microelectromechanical system (MEMS) type, meaning there is a piezoelectric

component that vibrates and sends information about movement to the computer as

an electrical signal. The sensor should be able to communicate with I²C protocol as

well as process and convert analog to digital signal to the microcontroller. It is

necessary to install software libraries and perform calibration of the sensor.

13

2.4 LCD Display

The LCD is responsible for displaying text and current deviation from data collected

from the gyroscope sensor, visually alarming the user when improper posture is

detected while displaying deviation values. The display should be 5V maximum and

have I²C interface for ease of communication with the MC. Most libraries for LCD

character display may be downloaded online. Small size and cost efficiency makes a

16 pin LCD display of smaller size ideal for implementation in this device.

2.5 Piezoelectric speaker

The piezoelectric speaker is responsible for alarming the user of detected posture

fault. As electricity flows through the speaker, it goes through a ceramic material

with piezoelectric properties. The voltage applied by the current produces vibrations.

The vibrations result in a noise signal, triggered by high values of deviation from

information processed by the MC. Changing of the noise is directly influenced by

the frequency of the input signal, which is set by the user in microcontroller

development environment.

2.6 External Button

A simple push button is intended to initiate the posture evaluation process in the

device. When the push button is unpressed, the pin is connected to HIGH voltage

state. Pressing the button makes a connection between its legs connecting the pin to

ground creating LOW pin voltage state. The gyroscope data collection should be

initiated by the button pin state LOW.

2.7 9V Battery and Switch

A regular 9V battery with connected switch are responsible for providing power to

the prototype. The battery is crucial for portability, as it can be easily placed within

the device and powered “ON” and “OFF” by the user using the connected switch.

The switch works similar to the external button, completing the circuit between the

power source and the MC.

14

2.8 Plastic Cover

The plastic covers for the device and sensor are responsible for maintaining the

integrity of the devices inside, as well as providing fixation and protection. The

plastic case used should have dimensions capable of fitting all devices inside,

excluding the sensor. The front panel of the large plastic cover should fix the LCD

display, button and switch to provide ease of access for the user. The gyroscope

sensor should be attached parallel to the horizontal plane of the small plastic cover

and fixed.

15

3 Devices and Elements Used

For the creation of the posture evaluation system, a multitude of devices and

elements were connected to the MC of type Arduino Leonardo:

1. InvenSense 6-axis MPU-6050 gyroscope-accelerometer

2. LCD HD44780

3. Piezoelectric speaker

4. 9V battery

5. Electrical switch

6. External button

7. Large plastic case for device

8. Small plastic case for sensor

After wiring the elements together and connecting the necessary devices in I²C serial

connection, the posture system was connected to a computer via USB-micro to USB

cable. The Arduino open source software IDE, available for download on the official

Arduino website, provided the basic environment for creating and uploading the

functional code to the Arduino MC as well as monitoring and retrieving calibration

values.

All of the elements of the posture system were then placed inside a protective plastic

cover, providing the necessary means for fixation, portability and protection of the

devices and connections inside.

The following chapters provide an overview of the used devices.

16

3.1 Arduino Leonardo

Figure 3.1. Arduino Leonardo microcontroller [9]

Arduino Leonardo is a microcontroller based on the ATmega32u4 datasheet. It is

very similar to the more popular Arduino Uno, but differs from all preceding boards

in that the ATmega32u4 has no need for a secondary processor with built in USB

communication. This allows the Leonardo to appear to a connected computer as a

mouse and keyboard, or it can also be seen as a virtual serial / COM port (Figure

3.1).

There are 20 digital input/output pins, of which 7 can be used as Pulse-width

Modulation(PWM) outputs and 12 as analog inputs, a 16 MHz crystal oscillator, a

micro USB connection, a power jack, an in-circuit serial programming (ICSP)

header, and a reset button. Pins 2 and 3 are alterative pins for SDA and SCL

respectively. SDA and SCL pins are present on the Arduino Leonardo as well. This

allows for the connection of two devices without the need for an extension cable

from a single pin.

17

Arduino Leonardo sources its power via USB cable, connected to a computer. In

case both external power supply and USB are connected, the power source is

selected automatically. [9]

Software is not required to be installed, as it is ready to use with it pre-installed

inside of the package. The Arduino Leonardo is controlled by uploading code in the

IDE and displaying information in the serial port window.

The full list of Arduino Leonardo technical specifications is presented below in
Table 3.1.

Table 3.1 Arduino Leonardo Technical Specifications

Microcontroller

ATmega32u4

Operating voltage

5V

Input voltage

7-12V

Input voltage

6-20V

Digital I/O pins

Analog input channels

PWM channels

DC Current per I/O Pin

DC Current for 3.3V Pin

Flash Memory

Length

Width

Weight

20

12

7

40 mA

50 mA

32 KB

68.6 mm

53.3 mm

20 g

18

Each of the 20 digital I/O pins on the Leonardo can be used as an input or output,

usingpinMode(), digitalWrite(), and digitalRead() functions. They operate at 5 volts

and each pin can provide or receive a maximum of 40 mA and has an internal pull-

up resistor of 20-50 kOhm. This value can be set for any desired input pin but the

value is too large for the purpose of this project, therefore smaller pull-up resistors

were connected to ground wires on some elements. [9]

3.2 InvenSense 6-axis MPU-6050 Gyroscope-
Accelerometer

The first device connected to the MC is the InvenSense 6-axis MPU-6050 is a first

of its kind motion tracking device that combines a 3-axis microelectromechanical

system (MEMS) accelerometer, 3-axis MEMS gyroscope and a Digital Motion

Processor (DMP) on a small 4x4x0.9mm board(Figure 3.2). It is very widely used

for experiments related to precise motion measurements. The sensor records angle

values rounded to the nearest hundredth of a degree based on built in gyroscope and

gravity variable.

Figure 3.2. InvenSense 6-axis MPU-6050 gyroscope-accelerometer top view with
connected wires

19

The MPU-6050 features three 16-bit analog-to-digital converters for digitizing the

gyroscope outputs and three 16-bit analog to digital converters for digitizing the

accelerometer outputs. For precision tracking of both fast and slow motions, the

parts feature a user-programmable gyroscope full-scale range of ±250, ±500, ±1000,

and ±2000°/sec and a user-programmable accelerometer full-scale range of ±2g, ±4g,

±8g, and ±16g. The standard gyroscope range of ±250 was used for the purposes of

this prototype. [10]

Table 3.2. Basic MPU-6050 characteristics (taken from [10])

 Part/Item MPU-6050

VDD

2.375V-3.46V

VLOGIC

1.71V to VDD

Serial Interfaces Supported

I²C

Pin 8

VLOGIC

Pin 9

Pin 23

Pin 24

AD0

Bus-Clock(SCL)

Bus data line(SDA)

For this experiment, there was used only 1-axis “pitch” of the MEMS gyroscope

element and the DMP.

The general characteristics of the 3-axis MEMS gyroscope important to the project

are as follows:

• Digital-output X-,Y-,and Z-Axis gyroscopes with a user-

programmable full scale

• Integrated 16-bit analog to digital enable simultaneous sampling of

gyroscope

• Enhanced bias and sensitivity temperature stability reduces the need

for user calibration

• Gyroscope operating current: 3.6mA

20

• Factory calibrated sensitivity scale factor

The general characteristics of the DMP important to the project are as follows:

• The MPU-6050 collects gyroscope and accelerometer data while

synchronizing data sampling at a user defined rate. The total dataset

obtained by the MPU-6050 includes 3-Axis gyroscope data, 3-axis

accelerometer data, and temperature data. The MPU’s calculated output

to the system processor can also include heading data from a digital 3-

axis third party magnetometer. The FIFO buffers the complete data set,

reducing timing requirements on the system processor by allowing the

processor to read the FIFO data. After burst reading the FIFO data, the

system processor can save power by entering a low-power sleep mode

while the MPU collects more data.

• Low-power pedometer functionality allows the host processor to

sleep while the DMP maintains the step count. [4]

The MPU-6050 requires the following connection to perform the function of

measuring the pitch and yaw angle relative to gravity. Interrupt pin set to

7(Appendix A).

Connection of the sensor is described in the following table:

Table 3.3. MPU-6050 Arduino pin connection

Arduino Leonardo Pin MPU-6050

GND GND

3V3 VCC

2 SDA

3

7

SCL

INT

21

The sensor was connected to the microcontroller according to the diagram depicted

in Figure 3.3.

Figure 3.3. Connection used for MPU-6050(taken and modified from [9,10])

3.3 LCD HD44780

The second device to be connected to the MC is the 20x4 I²C LCD HD44780 display,

one of the most common commercially available LCD displays used for simple

display of text. The LCD front view with available characters with backlight turned

on is shown in Figure 3.4.

22

Figure 3.4. LCD display front view

In Figure 3.5, the YWRobot module is shown connected to the 16 pins on the back

of the LCD. It simplifies the connection from 16 pins to 4 and features a contrast

adjustment knob and optional jumpers for backlight.

Figure 3.5. Rear view of the LCD HD44780 with YWRobot module connected to

the 16 pins [11]

The 20x4 LCD HD44780 uses the 2-wire communication method of I²C and the

device address is factory set to 0x27.

Connection of the LCD display to the microcontroller pins is described in Table 3.4.

23

Table 3.4 LCD Arduino pin connection

Arduino Leonardo Pin 20x4 I²C LCD

GND GND

+5V VCC

2 SDA

3 SCL

The connection to the microcontroller is shown in Figure 3.5.

Figure 3.6. Connection used for 20x4 LCD display(taken and modified from [9])

24

3.4 Piezoelectric Speaker

The third component connected to the MC is a simple 8Wpiezoelectric speaker

(Figure 3.7).

Figure 3.7. 8W piezoelectric speaker

Pin 8 was selected for communication with the speaker as “piezopin” and sound

frequency set to 3kHz (see Appendix A). Low value of resistance over the speaker

also requires a connection of a 100 Ohm pull-up resistor when connecting the other

terminal to the ground wire. This eliminates the risk of causing a false alarm due to

passage of a low current. The connection is described in Table 3.5 and depicted in

Figure 3.8.

Table 3.5. Connection of speakers to microcontroller

Arduino Leonardo Pin Piezoelectric speaker terminals

GND Negative terminal of speaker connected through 100W pull-
up resistor

8 Positive terminal of speaker

25

Figure 3.8. Speaker connection with Arduino with a 100 Ohm pull up resistor (taken

and modified from [9])

3.5 9v Battery and Switch

The fourth component of the posture evaluation device prototype is the power source

with a connected switch. The simple switch completes the circuit between the

microcontroller and battery when powering the device “ON” and creates a short

circuit when switched to cut off power supply, turning the device “OFF”. The

connection of the 9V battery and switch with a snap connector is shown in Figure

3.9 and described in Table 3.6.

Table 3.6. Connection of better and switch to the microcontroller

Arduino Leonardo Pin Terminals

GND Negative terminal of battery

Vin Middle terminal of switch with positive terminal of battery
connected on either side

26

Figure 3.9. 9V Battery and switch connection to Arduino Leonardo with snap
connector(taken and modified from[9])

3.6 External Button

The last component to be added to the device is the “sodial 100 pcs panel pcb

momentary tactile tact push button switch 9963”. The connection of the external

button is simply connecting one terminal to ground and the opposite terminal to the

assigned button pin. The button pin was assigned to pin 5(see appendix A). When

pressed, the button completes the circuit changing voltage state of the pin to LOW. It

is included to initiate the posture evaluation process.

Connection is depicted in Figure 3.10.

27

Figure 3.10. Connection of external button to Arduino Leonardo(taken and modified

from [9])

3.7 Plastic Casing

In order to achieve optimal integrity of the device, a large black plastic case was

used to enclose the main components of the device. A smaller black plastic case was

used to enclose the sensor. The necessary cuts and holes in the large plastic casing

were made with the help of an automatic power drill (Figures 3.11-12).

28

Figure 3.11. Plastic cover with drilled openings.

Figure 3.12 Automatic power drill with front panel placed on reference point

The front panel required areas to be cut out in order to fit the LCD, power switch and

external button to the front panel and make them easily accessible for the user.

Precise dimensions were drawn on the computer software connected to the drill and

the cuts were delivered automatically. (Figure 3.13). All smaller adjustments,

including the fitting of the sensor cable, were made by a flat file.

29

The most crucial part is that the software and drill will only give the proper result

when the drawing was created according to a specific reference point and placed

directly under it when drilling. Drilling frequency set to low value to eliminate

melting of plastic yielding unrefined edges.

Figure 3.13. Automatic power drill software drawing of the front panel with cuts

All of the components of the prototype, with exception of the motion sensor, were

then fixated inside the plastic cover with hot glue and double-sided tape. The LCD

display, switch and external button were attached to the front panel with holes. The

MC, 9V battery and Piezoelectric speaker were attached to the back panel. The

microcontroller was fixated specifically to allow room for a USB connection to be

possible, without compromising the integrity of the device.

The sensor was fixated directly onto the surface of the small plastic cover and sealed

shut with hot glue. (Figure 2.13). Fixation of the cable was also provided by hot glue.

The large plastic cover enclosing the device was then sealed shut with four screws

on all corners from the bottom using a drill.

30

4 Results

Figure 4.1 Posture evaluation device fixated inside plastic casing
, where A— push button, B— LCD display, C—battery switch, D—piezoelectric
speaker, E—Arduino Leonardo microcontroller, F—9V battery, G—sensor
cable

31

Top view of the encased device with LCD, switch, MEMS sensor in plastic case and

push button interfaced with the front panel are shown in Figures 4.2 and 4.3.

Figure 4.2. Posture evaluation device prototype

The device is powered on by flipping the red switch located on the front panel. Also

located on the front panel next to the switch is the push button intended to initiate

posture evaluation when pressed. The signal from the sensor is transmitted through a

cable and processed by Arduino Leonardo microcontroller. The device creates an

audible noise signal when values read from the sensor are above threshold levels set

before use. This alarm serves as a cue for the user to improve posture. While user

maintains proper posture, noise subsides and the LCD displays text indicating

posture state and current deviation values.

32

Figure 4.3. Motion sensor in plastic cover

The sensor and connected cable are secured within the plastic cover, providing ease

of manipulation and confidence in the duration of its’ functionality. The plane of

contact with human skin is opposite to where the cable and cap are fixed.

33

5 Calibration and Testing

Before any testing could take place, it is crucial to perform proper calibration of the

MEMS gyroscope sensor in order to receive precise measurements. A software code

was uploaded to the microcontroller mapping angle of inclination values from 0-

180° in𝑦 and 𝑧 (pitch and yaw) directions relative to gravity (see appendix A).

Values from the calibrated sensor were then compared to real measured values.

Testing on human subjects could begin only when the devices ability to measure

angles of inclination precisely was verified. Angles of inclination were then

converted to a percent value of deviation from the vertical axis in 𝑦 and	𝑧	directions

by the modifying the software using formula:

𝑦𝑑𝑒𝑣, 𝑥𝑑𝑒𝑣 = 100 ∗ 1 −
𝑦, 𝑧
90 %

(5.1)

Healthy subjects were then selected to test the posture evaluation prototype and fill

out a form by the end of the trial. A detailed description of the process of calibration,

verification and finally testing on human subjects is covered in the following

chapters.

5.1 Calibration and Verification

Calibration begins with running the I²C scanner code and initiating devices

connected to the bus. This is done to verify functional connection of the SDA and

SCL lines of the LCD display and sensor to the MC (see Appendix C).

An important note is that it is impossible to construct virtually identical 3-axis

MEMS gyroscope sensors with such precision, therefore every sensor reads unique

RAW values when tested. RAW values are read by the RAW code and displayed in

the serial monitor of the Integrated Development Environment (IDE) for Arduino

software (see Appendix B). Results shown on the serial monitor represent offsets of

the 6 axes: x-axis accelerometer, y-axis accelerometer, z-axis accelerometer, x-axis

gyroscope, y-axis gyroscope and z-axis gyroscope respectively (Figure 5.1).

34

Figure 5.1. Offset values obtained from “Raw” code in MPU6050 library

Once it is verified that the sensor is functional,calibration of digital motion processor

offsets may be performed. Prior to running the DMP offsets code (see Appendix D),

the gyroscope motion sensor must be placed in a horizontal position relative to the

direction of gravity (Figure 5.2).

Figure 5.2. Sensor placed on level parallel to horizontal plane relative to gravity

35

After running the DMP offsets code, the offset values for all 6 axes of the sensor are

received (Figure 5.3)

Figure 5.3. DMP offset results in serial monitor

These offsets were then edited into the main posture evaluation code with the

mpu.setoffset functions (see Appendix A). In order to verify the precision of the

calibration, a test was performed to compare measured and real values read by the

motion sensor with a precision error to the nearest degree. Verification of calibration

test depicted in Figure 5.4. The protractor tool was set directly parallel to the

horizontal plane mediated by the level tool. The test consisted of mounting the

sensor onto the angle measuring tool and verifying relative angle measurements of

yaw direction angles of 0, 45, 90, 135 and 180 degrees relative to the horizontal

plane. The same process was repeated for the angle in y direction for pitch, until the

minimum error of 0 was achieved. All results from verification of calibration are

depicted in Table 5.1.

36

Figure 5.4. Verification of calibration of z(yaw) angle using a protractor and level

5.2 Human Subject Testing

The main software code responsible for evaluation of deviation angles (see

Appendix A) was then uploaded and the device was programmed to display accurate

postural deviation angles and indicators describing suggested corrections (Figure

5.5).

37

Figure 5.5. LCD display of posture evaluation with percent of deviation values with
lean indicators

14 volunteers were selected to take part in testing the posture evaluation prototype.

The subjects were required to use the device and fill out a form of questions (see

Appendix E). The test process can be described in 2 steps:

1. Posture Evaluation Session

2. Questionnaire/Form

5.2.1 Posture Evaluation Session

The posture evaluation session required 14 participants to use the posture evaluation

device for a minimum of 20 minutes while performing daily tasks involving sitting

and standing for extended periods of time. Tasks performed by participants included

walking, working with computer, using a mobile phone, brushing teeth and in some

cases cooking. The individuals were required to monitor the noise signal and

deviation values shown on the LCD. Adjustments were to be made by the subject

based on these cues.

38

Figure 5.6. Human test participant engaging in daily activities with mounted sensor

The position of the sensor was selected based on current existing devices of similar

type. All participants were required to place the sensor on the upper back between

the shoulder blades, where the curve of the spine is nearest to vertical alignment.

Fixation of the sensor was performed by placing double-sided tape between the

sensor and the surface of the skin (Figure 5.7).

39

Figure 5.7. Positioning of sensor on upper back between the shoulder blades

5.2.2 Questionnaire/Form

Directly after trialing the device, the subjects were asked to fill out a questionnaire.

The appropriate answer to each question is a subjective score ranging from 1-5.

Filling out an answer of 1 translates to “strongly disagree”, 2 is “disagree”, 3 is

“neutral”, 4 is “agree”, rising up to 5, which translates to “strongly agree”. All

answers were averaged and the results input into Table 6.2.

40

6 Testing Results

Table 6.1 Verification of calibration to nearest degree

Table 6.2 Human subject testing questionnaire results

System Measurement (°) Protractor measurement (°) Error(D)

0

45

90

135

180

0

45

90

135

180

0

0

0

0

0

Question number Averaged answer score

1

2

3

4

5

6

7

8

9

10

5.00

5.00

4.64

3.14

4.50

4.57

5.00

3.86

4.21

4.64

41

7 Discussion

The designed device proved successful in performing the required functions,

although there were many problems encountered throughout the process. One of the

main issues encountered was disconnection LCD and sensor from the I²C bus. This

was found to be cause by absence of physical integrity of the device and its

connections. Sensors were easily damaged and corrupted when manipulating them.

A total of 4 MPU-6050 gyroscope-accelerometers were purchased for this device.

The experiment required for the LCD display and 6-axis accelerometer SDA and

SCL ports to be connected to the Arduino Leonardo MC with soldered wires and

cables to the digital outputs 2, 3. Leonardo uses these pins for SDA and SCL, while

the most common micro-controllers usually use analog inputs 4 and 5 respectively

for these inputs.

It was evident that before making any measurements with human subjects it was

necessary to protect and fixate the device and sensor in a plastic cover. Cover

dimensions were chosen after creating an abstract measurement of the devices

intended to fit inside. Dimensions of the device were mainly dictated by the size of

the LCD display.

After covering the device, the sound signal became barely noticeable. Adjustments

had to be made to the frequency of the audio signal, as there are no openings in the

plastic cover for the sound to pass through.

Fixating the sensor also presented a challenge. It was crucial for the plane of the

sensor and the plane of the plastic cover to be precisely parallel and nearly coplanar.

Placing and fixating the cable connecting the sensor to the microcontroller required

careful consideration of device dimensions and possible physical damage.

Supplying power to the Arduino Leonardo via USB cable was not a viable option, as

it would impair the prototypes’ portability and make it dependent on a connection to

some power source with a USB port. Therefore, a battery with a snap connector

connected to the Arduino Leonardo MC through a switch was selected to perform

the role of controlled external power source. The assumption is that the battery

would be cheap and easily fixated inside the device. The snap connector provides the

possibility to replace the battery upon depletion.

42

The values read by the sensor were converted from radians to degrees in range

0-180 by the applied software code. It was then modified to show a percent value of

deviation from the vertical axis, which is more applicable for user subjective

evaluation of posture (see Appendix A).

When running the RAW code for the MPU-6050 the values read are chaotic and

must take many variables in account. Therefore, it was necessary to wait

approximately 10 seconds for values shown on the serial monitor to balance out. The

values for each individual sensor are factory made unique and offsets for all 6 axes

must be accounted for prior to performing any measurements.

The calibration process of the posture evaluation prototype proved to be successful

as we can see from the compared values and errors in Table 6.1. Values measured by

the sensor directly reflected the angle values shown on the protractor tool. Although

we could only verify the measurement with a precision value to the nearest degree,

this did not impair the overall functionality of the device. If we take into

consideration the possibility of human error when aligning the centers of the axes

and other measurement uncertainties, we remain confident in the fact that the sensor

is extremely precise. It was evident from the beginning of the test and anecdotal

evidence, that the sensor was extremely accurate in calculating angle of inclination.

This model is very often used to control quadcopters flight, which requires

extremely precise measurements of the pitch, roll and yaw to adjust during flight.

The use of the Leonardo model of the Arduino MCs had some advantages and

disadvantages. There was a power adapter included in the packaging from the

beginning, but the presence of the ATmega32u4 serial ports and native USB greatly

simplified the construction of the prototype. The USB communication on

ATmega32u4is integrated on the board making it cheaper and more efficient, as

opposed to Arduino Uno, which must translate the USB signal into a serial

communication that the native ATmega328 could understand. The device was

connected and programmed through built-in micro USB communication before any

battery was implemented. Unfortunately, the mass majority of information regarding

the Arduino MC is centered on the Arduino Uno, making it difficult to find relevant

information for Leonardo since there are differences in analog and digital inputs

discussed in Chapter 2, making the connection process slightly perplexing.

43

Testing of human subject presented some challenges. Initially five healthy

participants were selected, but during the process nine more healthy individuals

decided to partake in the experiment. This was beneficial for gathering more data

regarding the subjective functionality of the device, but required devoting more time

for testing and guiding the human subjects through the process.

Appropriate results and signal of the device was heavily influenced by the position

of the sensor. With advisory from the consultant of the thesis MUDr. Markéta

Janatová, sensor placement position was selected between the shoulder blades in a

vertical position. In some cases, the sensor was initially fixed in a wrong position

and required readjustment. In other cases, the sensor was detached by pulling the

cord with movement of arms and from catching on surrounding objects. This posed

some obvious problems and required the testing process to be reinitiated.

The results from first 5 questions on the questionnaire were the most significant. A

score of 5.00 on the first two questions of this project shows that this device

definitely motivates the user to adjust posture. This also shows that the dynamic

deviation values allowed the user to obtain more information on his/her position in

space.

Questions number 3 and 4 ask whether the user experienced positive posture

formation during and after the posture evaluation session respectively. Positive

effect during testing received a high score of 4.64, meaning most participants found

the device beneficial for maintaining posture while using the device. Positive effect

after using of the device received an average score of 3.14, signifying that after

using the device for 20 minutes postural habits were unaffected. This is most likely

due to the duration of the posture evaluation session being 20 minutes in length.

The next questions 5 and 6 asked the user to evaluate the alarm system. A score of

4.50 and 4.57 shows that users agree that the alarm system was functional and

accurate for the most part.

Question 7 and 8 cover the accessibility and comfort levels while evaluating posture,

receiving scores of 5.00 and 3.14 respectively. All participants found that the

interface of the device was easy to use, while only half agreed that the sensor was

easy to wear. This can be attributed to obvious reasons such as presence of a cable

and requirement to use double-sided tape for fixation.

The last questions required the participants to give a subjective view on the

prolonged usage of the device and the likeliness of using it in the future. The last

questions received a score of 4.21 and 4.64 respectively, meaning most participants

44

found the device potentially more beneficial with longer use. Most participants

agreed they would be likely to use the final version of this product in prospect to

promote healthy postural habit formation.

As was stated in the Chapter 1, habit formation is constituted by repeating an action

consistently. As it was very difficult to perform consistent tests for longer periods of

time on the same subjects, very little evidence is seen on changing postural habits

after using the device for such a short duration. However, continuous use of this

device for a duration at least 3 weeks is expected to promote postural habit

formation. [7]

45

8 Conclusion

The performed experiments allow to conclude that this portable device detects and

displays precise posture misalignment, is likely to promote positive postural habit

formation and does not require a connection to a mobile application. The posture

system designed in this project can be used to evaluate the angle of inclination and

fault of posture of any tilting object, as long as it lays coplanar to the vertical plane

of alignment. By connecting the sensor to the object and processing information in

the MC, the system determines whether the connected object has proper or improper

posture, sending all information to the LCD display. Threshold values can be

adjusted to fit the needs of the subject. The tests performed prove that this setup can

easily be applied to measure a precise angle of inclination for various purposes and

detecting vertical angular deviation in z and y directions within any system that that

the sensor is properly attached to, including the human body.

During all the processes involving designing and connecting of the posture

evaluation device there were many notes taken to improve on it. First, the device

could be constructed to be much smaller if the LCD used would have smaller

dimensions. There is no imperative need for such a relatively large LCD display,

speaker and battery in the context of this project. Second, the signal of posture fault

could be extended to include a vibrating element inside the plastic cover containing

the sensor. A vibrating cue seems to be more compatible with human interactions

and is more intuitive regarding position of the signal. Finally, the device could be

extended to include connection to a smartphone via Bluetooth Adapter. This would

not impair the functionality of the prototype independent of connection to the phone.

The phone would utilize a simple mobile application to interface with the posture

evaluation device. The signal of posture fault could then manifest as a vibration of

the users’ smartphone in their pocket.

46

References

[1] Clark M, Lucett S, Sutton BG. NASM Essentials of Personal Fitness Training

4th edition revised. Philadelphia: Wolters Kluwer Health/Lippincott Williams &

Wilkins; 2014.

[2] International Journal of Physical Education, Sports and Health [online] 2016;

3(1):177-178 ;Available at:

https://www.ncbi.nlm.nih.gov/pubmed/11926755[Accessed 26.01.2018.]

[3] Carter JB, Banister EW: Musculoskeletal problems in VDT work: a review.

Ergonomics, 1994, 37: 1623–1648.

[4] Curnow D, Cobbin D, Wyndham J: Altered motor control, posture and the

Pilates method of exercise prescription. J Body MovTher, 2009, 13: 104–111.

[5] Kim JK, Lee SJ:Effect of stretching exercise as work-related musculoskeletal

pain of neck and shoulder. Korean J Phys Edu, 43: 655–662.

[6] Neal DT, Wood W, Labrecque JS, Lally P. How do habits guide behavior?

Perceived and actual triggers of habits in daily life. J ExpSoc Psychol. 2012;48:492–

498.

[7] Lally P, Gardner B. Promoting habit formation. Health Psychology Rev. In press:

DOI: 10.1080/17437199.2011.603640.

[8]Apparatus to serve as a reminder for posture improvement US 20050070830

A1.[online]2018. Available at: https://www.google.com/patents/US20050070830.

[Accessed 26.01.2018].

[9] ARDUINO LEONARDO WITH HEADERS [online] 2018 Available at:

https://store.arduino.cc/arduino-leonardo-with-headers [Accessed 26.01.2018]

47

[10] InvenSense Inc., MPU-6000/MPU-6050 Product Specification;PS-MPU-

6000A-00,[online] 19.8.2013 Available at: https://www.invensense.com/wp-

content/uploads/2015/02/MPU-6000-Datasheet1.pdf [Accessed 26.01.2018]

[11] YWRobot LCM1602 IIC V1 LCD Arduino Tutorial[online] 2018 Available at:

http://henrysbench.capnfatz.com [Accessed 5.05.2018]

48

Appendix A. Main code for posture evaluation

#include<Wire.h>
#include <LiquidCrystal_I2C.h>
#include <I2Cdev.h>
constintMPU_addr=0x68; int16_t AcX,AcY,AcZ,Tmp,GyX,GyY,GyZ;

intminVal=265;
intmaxVal=402;
int boot=0;
intbuttonPin=5;
intpiezoPin = 8;
double x; double y; double z;

#include "MPU6050_6Axis_MotionApps20.h"
MPU6050 mpu;

#define I2C_ADDR 0x27
#define BACKLIGHT_PIN 3
#defineEn_pin 2
#defineRw_pin 1
#defineRs_pin 0
#define D4_pin 4
#define D5_pin 5
#define D6_pin 6
#define D7_pin 7

LiquidCrystal_I2C lcd(I2C_ADDR,
En_pin,Rw_pin,Rs_pin,D4_pin,D5_pin,D6_pin,D7_pin, BACKLIGHT_PIN,
POSITIVE);

#define MPU6050_INT_PIN 7
#define MPU6050_INT digitalPinToInterrupt(MPU6050_INT_PIN)

volatile boolmpuInterrupt = false;
voiddmpDataReady() {
mpuInterrupt = true;
}
#define MPU6050_INT_PIN 7
#define MPU6050_INT digitalPinToInterrupt(MPU6050_INT_PIN)

voidsetup()
{
lcd.begin(20,4);
lcd.setCursor (0, 0);
lcd.print("Posture Evaluation");
lcd.setCursor (0, 1);
lcd.print("BachelorThesis");
lcd.setCursor (0,2);

49

lcd.print("By: CornilPetrov");
lcd.setCursor (0,3);
lcd.print("Ing. Tomas Funda,PhD");
delay(2000);

Serial.begin(14400);
Wire.begin();
Wire.beginTransmission(MPU_addr);
Wire.write(0x6B);
Wire.write(0);
Wire.endTransmission(true);

pinMode(buttonPin, INPUT_PULLUP);

mpu.setXGyroOffset(51);
mpu.setYGyroOffset(83);
mpu.setZGyroOffset(211);
mpu.setXAccelOffset(-4332);
mpu.setYAccelOffset(1731);
mpu.setZAccelOffset(474);
}

void loop() {

if(digitalRead(buttonPin) == LOW)
{
if(boot == 0)
{
boot = 255;
lcd.clear();
}
else
{
boot = 0;

}
}
if(boot > 0)
{
Wire.beginTransmission(MPU_addr);
Wire.write(0x3B);
Wire.endTransmission(false);
Wire.requestFrom(MPU_addr,14,true);
AcX=Wire.read()<<8|Wire.read();
AcY=Wire.read()<<8|Wire.read();
AcZ=Wire.read()<<8|Wire.read();
intxAng = map(AcX,minVal,maxVal,-90,90);
intyAng = map(AcY,minVal,maxVal,-90,90);
intzAng = map(AcZ,minVal,maxVal,-90,90);

50

int y= (1-((RAD_TO_DEG * (atan2(-xAng, -zAng)+PI)-180)/90))*100;
int z= (1-((RAD_TO_DEG * (atan2(-xAng, -yAng)+PI)-180)/90))*100;
lcd.setCursor(0,0);
lcd.print(" ");
lcd.setCursor(0,3);
lcd.print(" ");
lcd.setCursor (0, 2);
lcd.print("Deviation Z:");
lcd.print(abs(z));
lcd.print("% ");
lcd.setCursor (0, 3);
lcd.print("Deviation Y:");
lcd.print(abs(y));
lcd.print("% ");
delay(250);
lcd.setCursor (12, 2);
lcd.print(" ");
lcd.setCursor (12, 3);
lcd.print(" ");

if(y>10)
{
lcd.setCursor(0,1);
lcd.print(" Lean Back ");
}
else if(y<-10)
{

lcd.setCursor(0,1);
lcd.print(" Lean Forward ");

}
if(z>10)
{
lcd.setCursor(0,0);
lcd.print(" Lean Right ");

}
else if (z<-10)
{
lcd.setCursor(0,0);
lcd.print(" Lean Left ");

}
if (abs(y)<10 && abs(z)<10)
{
lcd.setCursor(0,0);
lcd.print(" Great ");

51

lcd.setCursor(0,1);
lcd.print(" Posture ");
tone(piezoPin, 0, 250);
 delay(250);
 lcd.setCursor(0,0);
 lcd.print(" ");
 lcd.setCursor(0,1);
 lcd.print(" ");
}
if (abs(y)>10)
{
tone(piezoPin, 3000, 250);
}
else if(abs(z)>10)
{
tone(piezoPin, 3000, 250);
}
if (abs(y)<10)
{
lcd.setCursor(0,1);
lcd.print(" ");
}
if (abs(z)<10)
{
lcd.setCursor(0,0);
lcd.print(" ");
}
delay(500);
}
}

52

Appendix B Code for retrieving RAW values

#include "I2Cdev.h"
#include "MPU6050.h"

// Arduino Wire library is required if I2Cdev I2CDEV_ARDUINO_WIRE
implementation
// is used in I2Cdev.h
#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
#include "Wire.h"
#endif

// class default I2C address is 0x68
// specific I2C addresses may be passed as a parameter here
// AD0 low = 0x68 (default for InvenSense evaluation board)
// AD0 high = 0x69
MPU6050 accelgyro;
//MPU6050 accelgyro(0x69); // <— use for AD0 high

int16_t ax, ay, az;
int16_t gx, gy, gz;

// uncomment "OUTPUT_READABLE_ACCELGYRO" if you want to see a tab-
separated
// list of the accel X/Y/Z and then gyro X/Y/Z values in decimal. Easy to read,
// not so easy to parse, and slow(er) over UART.
#define OUTPUT_READABLE_ACCELGYRO

// uncomment "OUTPUT_BINARY_ACCELGYRO" to send all 6 axes of data as
16-bit
// binary, one right after the other. This is very fast (as fast as possible
// without compression or data loss), and easy to parse, but impossible to read
// for a human.
//#define OUTPUT_BINARY_ACCELGYRO

#define LED_PIN 13
bool blinkState = false;

void setup() {
// join I2C bus (I2Cdev library doesn't do this automatically)
#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
Wire.begin();
#elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE
Fastwire::setup(400, true);
#endif

// initialize serial communication
// (38400 chosen because it works as well at 8MHz as it does at 16MHz, but

53

// it's really up to you depending on your project)
Serial.begin(38400);

// initialize device
Serial.println("Initializing I2C devices...");
accelgyro.initialize();

// verify connection
Serial.println("Testing device connections...");
Serial.println(accelgyro.testConnection() ? "MPU6050 connection successful":
"MPU6050 connection failed");

// use the code below to change accel/gyro offset values

Serial.println("Updating internal sensor offsets...");
// -76 -2359 1688 0 0 0
Serial.print(accelgyro.getXAccelOffset()); Serial.print("\t"); // -76
Serial.print(accelgyro.getYAccelOffset()); Serial.print("\t"); // -2359
Serial.print(accelgyro.getZAccelOffset()); Serial.print("\t"); // 1688
Serial.print(accelgyro.getXGyroOffset()); Serial.print("\t"); // 0
Serial.print(accelgyro.getYGyroOffset()); Serial.print("\t"); // 0
Serial.print(accelgyro.getZGyroOffset()); Serial.print("\t"); // 0
Serial.print("\n");
accelgyro.setXGyroOffset(0);
accelgyro.setYGyroOffset(0);
accelgyro.setZGyroOffset(0);
Serial.print(accelgyro.getXAccelOffset()); Serial.print("\t"); // -76
Serial.print(accelgyro.getYAccelOffset()); Serial.print("\t"); // -2359
Serial.print(accelgyro.getZAccelOffset()); Serial.print("\t"); // 1688
Serial.print(accelgyro.getXGyroOffset()); Serial.print("\t"); // 0
Serial.print(accelgyro.getYGyroOffset()); Serial.print("\t"); // 0
Serial.print(accelgyro.getZGyroOffset()); Serial.print("\t"); // 0
Serial.print("\n");

// configure Arduino LED pin for output
pinMode(LED_PIN, OUTPUT);
}

void loop() {
// read raw accel/gyro measurements from device
accelgyro.getMotion6(&ax, &ay, &az, &gx, &gy, &gz);

// these methods (and a few others) are also available
//accelgyro.getAcceleration(&ax, &ay, &az);
//accelgyro.getRotation(&gx, &gy, &gz);

#ifdef OUTPUT_READABLE_ACCELGYRO
// display tab-separated accel/gyro x/y/z values

54

Serial.print("a/g:\t");
Serial.print(ax);Serial.print("\t");
Serial.print(ay); Serial.print("\t");
Serial.print(az); Serial.print("\t");
Serial.print(gx);Serial.print("\t");
Serial.print(gy);Serial.print("\t");
Serial.println(gz);
#endif

#ifdef OUTPUT_BINARY_ACCELGYRO
Serial.write((uint8_t)(ax » 8)); Serial.write((uint8_t)(ax& 0xFF));
Serial.write((uint8_t)(ay » 8)); Serial.write((uint8_t)(ay & 0xFF));
Serial.write((uint8_t)(az » 8)); Serial.write((uint8_t)(az& 0xFF));
Serial.write((uint8_t)(gx » 8)); Serial.write((uint8_t)(gx& 0xFF));
Serial.write((uint8_t)(gy » 8)); Serial.write((uint8_t)(gy & 0xFF));
Serial.write((uint8_t)(gz » 8)); Serial.write((uint8_t)(gz& 0xFF));
#endif

// blink LED to indicate activity
blinkState= !blinkState;
digitalWrite(LED_PIN, blinkState);
}

55

Appendix C I²C scanner
#include <Wire.h>

void setup()
{
Wire.begin();

Serial.begin(9600);
while (!Serial); // Leonardo: wait for serial monitor
Serial.println("\nI2C Scanner");
}

void loop()
{
 byte error, address;
intnDevices;

Serial.println("Scanning...");

nDevices = 0;
for(address = 1; address < 127; address++)
 {
Wire.beginTransmission(address);
 error = Wire.endTransmission();
 if (error == 0)
 {
Serial.print("I2C device found at address 0x");
 if (address<16)
Serial.print("0");
Serial.print(address,HEX);
Serial.println(" !");

nDevices++;
 }
 else if (error==4)
 {
Serial.print("Unknown error at address 0x");
 if (address<16)
Serial.print("0");
Serial.println(address,HEX);

}
}

 if (nDevices == 0)
Serial.println("No I2C devices found\n");
 else
Serial.println("done\n");

delay(5000);}

56

Appendix D code for processing DMP offsets
#include "I2Cdev.h"
#include "MPU6050.h"
#include "Wire.h"

/////////////////////////////////// CONFIGURATION /////////////////////////////
intbuffersize=1000; //Amount of readings used to average, make it higher to get
more precision but sketch will be slower (default:1000)
intacel_deadzone=8; //Acelerometer error allowed, make it lower to get more
precision, but sketch may not converge (default:8)
intgiro_deadzone=1; //Giro error allowed, make it lower to get more precision, but
sketch may not converge (default:1)

MPU6050 accelgyro(0x68); // 100 &&i<=(buffersize+100)){ //First 100 measures
are discarded
buff_ax=buff_ax+ax;
buff_ay=buff_ay+ay;
buff_az=buff_az+az;
buff_gx=buff_gx+gx;
buff_gy=buff_gy+gy;
buff_gz=buff_gz+gz;
 }
 if (i==(buffersize+100)){
mean_ax=buff_ax/buffersize;
mean_ay=buff_ay/buffersize;
mean_az=buff_az/buffersize;
mean_gx=buff_gx/buffersize;
mean_gy=buff_gy/buffersize;
mean_gz=buff_gz/buffersize;
 }
i++;
delay(2); //Needed so we don't get repeated measures
 }
}

void calibration(){
ax_offset=-mean_ax/8;
ay_offset=-mean_ay/8;
az_offset=(16384-mean_az)/8;

gx_offset=-mean_gx/4;
gy_offset=-mean_gy/4;
gz_offset=-mean_gz/4;
 while (1){
int ready=0;
accelgyro.setXAccelOffset(ax_offset);
accelgyro.setYAccelOffset(ay_offset);
accelgyro.setZAccelOffset(az_offset);

57

accelgyro.setXGyroOffset(gx_offset);
accelgyro.setYGyroOffset(gy_offset);
accelgyro.setZGyroOffset(gz_offset);

meansensors();
Serial.println("...");

 if (abs(mean_ax)<=acel_deadzone) ready++;
 else ax_offset=ax_offset-mean_ax/acel_deadzone;

 if (abs(mean_ay)<=acel_deadzone) ready++;
 else ay_offset=ay_offset-mean_ay/acel_deadzone;

 if (abs(16384-mean_az)<=acel_deadzone) ready++;
 else az_offset=az_offset+(16384-mean_az)/acel_deadzone;

 if (abs(mean_gx)<=giro_deadzone) ready++;
 else gx_offset=gx_offset-mean_gx/(giro_deadzone+1);

 if (abs(mean_gy)<=giro_deadzone) ready++;
 else gy_offset=gy_offset-mean_gy/(giro_deadzone+1);

 if (abs(mean_gz)<=giro_deadzone) ready++;
 else gz_offset=gz_offset-mean_gz/(giro_deadzone+1);

 if (ready==6) break;
 }
}

58

Appendix E Testing Questionnaire

1. This device reminded me to adjust my posture.

2. The displayed deviation values helped provide more detailed

information about my current position.

3. This device affected my posture in a positive way while using

it.

4. This device affected my posture in a positive way after using it.

5. This device alarmed me every time posture fault was present.

6. This device did notalarm me when posture fault was not

present.

7. The device interface was easy to use.

8. The device sensor was easy to wear.

9. This device would be more beneficial with prolonged usage

10. I would use this device in the future.

1 2 3 4 5 6 7 8 9 10

