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A B S T R A C T

Carbon fibers (CFs) have high specific tensile strength, high modulus, and outstanding wear resistance, and are
widely used for the reinforcement of advanced composite materials. CF-reinforced thermoplastic composites
have received much attention because of their easy processability and recycling convenience compared with
thermosetting composites. Surface treatment of CFs is generally employed to increase the surface functional
groups and interfacial adhesion between the CFs and the surrounding polymer matrix. In this review, we explore
recent advances in the surface treatment of CFs and preparation of CF/thermoplastic composites. The thermal,
mechanical, and electrical properties of the composites are also discussed.

1. Introduction

Carbon fibers (CFs) have been widely used to reinforce advanced
composite materials because of their exceptional properties, such as
high specific tensile strength, high modulus, and outstanding wear re-
sistance. CFs can be classified as continuous CFs, long CFs, and short
CFs (SCFs) based on the length of the fiber. CF-reinforced polymers
exhibit outstanding mechanical properties and low density and are
widely used in the fields of aerospace, transportation, and sporting
goods [1–10].

In CF-reinforced composites, the polymer usually acts as the con-
tinuous phase (the matrix), and the CF serves as the discontinuous
phase. The polymer matrices can be classified into thermosetting and
thermoplastic resins. Thermoplastics can be further divided into general
plastics, such as polyethylene (PE), polypropylene (PP), and acryloni-
trile butadiene styrene (ABS) resins, and engineering plastics, such as
polyamide (PA), polycarbonate (PC), polyetheretherketone (PEEK),
polyetherimide (PEI), polyethersulfone (PES), and polyphenylene sul-
fide (PPS). Thermoplastics have received significant attention as
polymer matrices because of their lack of requirement for a curing stage
and their less hazardous chemical compositions and improved recycling
convenience and mass production capability compared with conven-
tional thermosetting resins. Thermoplastic resins are often fabricated
using conventional molding methods, such as injection−molding,

rotational−molding, extrusion, vacuum forming, and com-
pression−molding [11–19].

However, the surface of pristine CFs is non-polar, whereas, the
polymer matrix generally exhibits polar character. The strength of the
interfacial bonds between the CFs and matrix is consequently poor,
thereby precluding achievement of the ideal mechanical properties of
the composites. Thus, numerous CF surface treatment methods, such as
wet chemical or electrochemical oxidation, ozone treatment, polymer
or metal coating, and plasma treatment, have been proposed to increase
the surface functional groups and interfacial adhesion between the CFs
and surrounding polymer matrix [20–28].

In this report, various methods for surface treatment of CFs and the
preparation of CF-reinforced thermoplastic composites are reviewed in
detail. In addition, the thermal, mechanical, and electrical properties of
the composites are discussed.

2. Surface treatment of CFs

Zhang et al. [29] treated CFs with a mixture of concentrated sul-
furic/nitric acid in a reaction flask. The flask was placed in an ultra-
sonic water bath to maintain the treatment temperature. The treated
CFs were washed several times with distilled water. Wu et al. [30] also
treated CFs with nitric acid at 115 °C for 20–90min. The CFs were then
refluxed with 1.0 N NaOH solution, extracted with distilled water, and
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dried in ambient air. Their results indicated that oxidation by nitric acid
effectively generated significant amounts of acidic functional groups on
the surfaces of CFs. Ryu et al. [31] treated CFs with aqueous ammonium
carbonate solution using an original continuous treatment process. The
length of the electrolytic treatment bath was 0.23m, and the total
oxidized fiber surface area was 0.032m2. X-ray photoelectron spec-
troscopic (XPS) analysis indicated that the O1s/C1s and N1s/C1s ratios of
the treated CFs increased with increasing current intensity.

Park et al. [27,32–35] investigated the effect of oxyfluorination on
the surface characteristics of CFs. The oxyfluorination reaction was
performed in a batch reactor, as shown in Fig. 1. The fluorine and
oxygen mixtures were introduced into the reactor at room temperature
and the reactor was then heated to the treatment temperature. After the
reaction, the specimens were cooled and the reactor was purged with
nitrogen. Fourier-transform infrared (FT-IR) analysis indicated that the
oxyfluorinated CFs contained carboxyl/ester and hydroxyl groups and
the –O–H peak was more intense than that of the fluorinated counter-
parts. Park et al. [36] also studied the effect of anodic oxidation of CFs
on the fracture toughness of CF-reinforced epoxy composites. Electro-
chemical treatment of the CFs was conducted using a laboratory pilot-
scale apparatus, as shown in Fig. 2. The electrolyte was a 10wt%
phosphoric acid solution. After anodic oxidation, the CFs were washed
with distilled water and then rinsed by immersion in acetone for 2 h.
Contact angle measurements indicated that anodic oxidation led to an
increase in the surface free energy, mainly by increasing the polar

component. Park et al. [37] further proposed an interpretation based on
more precise linear free energy relationships for describing the
acid−base interaction at a solid surface. The CFs were subjected to
anodic treatment at an oxidation voltage of 1.6 V on a pilot scale.
Electrochemical treatment of the CFs significantly improved the
acid−base character.

Osbeck et al. [38] investigated the effect of ultraviolet-generated
ozone treatment on the surface functionality and structure of CFs. The
CFs were electrochemically treated in a base oxidation bath prior to
further photosensitized oxidation in a UVO cleaner/oxidizer. XPS ana-
lysis indicated that functional groups such as hydroxyl species, alk-
oxides, carbonyl, and carboxyl groups were introduced in the ozone-
treated CFs. Park et al. [39] also studied the gas−phase ozone treat-
ment of CFs for introducing acidic oxygen functional groups onto the
surfaces of CFs. Ozone treatment of the CFs was performed at ozone
concentrations in the range of 10–40mg/l at room temperature. FT-IR
and XPS analyses indicated that oxygen functional groups, such as
−OH, O−C=O, C=O, and C−O, were attached to the surfaces of the
CFs after the ozone treatment.

Zhang et al. [40] treated CFs using an oxidation–reduction method
followed by coating with vinyl silsesquioxane (VMS–SSO) to improve
the interfacial properties of CF/polyarylacetylene (PAA) composites.
The oxygen plasma treatment was performed in a plasma processor.
The CFs were reduced with LiAlH4/THF saturated solution and then
coated with VMS–SSO. The XPS results indicated that the number of
polar functional groups increased after the redox reaction. The
VMS–SSO coating treatment introduced vinyl groups, which could react
with the PAA resin during the PAA curing process. Iwashita et al. [41]
studied the treatment of CFs using either silane or titanate coupling
agents. A CF bundle was immersed in a solution containing 1 wt%
coupling agent and then dried in air at 120 °C for 30min. The tensile
strength of the carbonized composite was improved by both coupling
treatments.

Park et al. [42] prepared a Ni–P coating on the surfaces of CFs to
improve the impact resistance of CF–reinforced epoxy composites. The
CFs were activated in nitric acid for 30min and then sequentially ac-
tivated in tin chloride and palladium chloride solutions. Nickel-plated
CFs were obtained by dipping the CFs in a nickel bath, washing with
distilled water, and drying in a vacuum oven at 120 °C for 12 h. X-ray
diffraction (XRD) and XPS analyses indicated that Ni–P coating of the
CFs led to an increase in the microcrystalline and amorphous phases.
Park et al. [21,43–45] also performed electrolytic plating of metallic
nickel on the surface of CFs to improve the interfacial adhesion and
mechanical properties of CF/phenolic matrix composites. The CFs were
activated in nitric acid, tin chloride, and palladium chloride solutions.
Nickel-plated CFs were obtained by dipping the CFs in a nickel bath.
The oxygen functional groups and metallic nickel on the CF surfaces
were found to greatly affect the mechanical interfacial behavior of the
composites.
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Fig. 1. Schematic diagram of fluorination reactor [27]. 1: F2 gas cylinder, 2: N2 gas cy-
linder, 3: O2 gas cylinder, 4: Buffer tank, 5: HF absorber, 6: reactor, 7: pressure gauge, 8:
F2 absorber, 9: glass cock, 10: liquid nitrogen, 11: rotary vacuum pump.
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Fig. 2. Schematic representation of continuous electrolytic surface
anodization process [36].
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3. Sample preparation

3.1. ABS-based composites

3.1.1. Preparation method I
ABS resin was mixed with chloroform to form a paste; the desired

amount of CFs was dispersed in the paste by mechanical stirring. The
CF-filled paste was dried at room temperature and then molded by hot
pressing at 200–210 °C for 5min [46,47].

3.1.2. Preparation method II
The desired amount of CFs was chopped into 5−mm pieces and

mixed with ABS resin in a Brabender mixer operating at 210 °C for
3min. The mixture was then hot compression−molded at 200–210 °C
for 5min [46,48].

3.1.3. Preparation method III
A twin-screw extruder was preheated for 2 h and ABS was then used

to clean the extruder for 10–15min. The CF/ABS mixture was loaded
into the machine at 260 °C using a rolling speed of 110 rpm. The CF/
ABS mixture was hot compression−molded at 240 °C and 150 kg/cm2

for 4min [49–51].

3.2. PA-based composites

3.2.1. Preparation method I
PA was mechanically mixed with CFs and then extruded using a

twin-screw extruder in the temperature range of 190–230 °C at a rota-
tional speed of 20 rpm. The extrudate was pelletized, dried, and in-
jection−molded into standard test samples [52,53].

3.2.2. Preparation method II
SCF-reinforced PA composites were prepared by melt mixing at

240 °C for 3min using a laboratory-scale co-rotating twin-screw mini
extruder. The compounds were subsequently injection−molded using a
laboratory-scale injection−molding machine using a barrel tempera-
ture of 240 °C, mold temperature of 30 °C, and injection pressure of
8 bar [54–57].

3.2.3. Preparation method III
The CFs and solvent (1:5 wt/wt) were mixed and the mixture was

treated by ultrasonic oscillation at 30 °C for 2 h. The PA pellets, solvent,
CF suspension, and lubricant were combined in a reactor, stirred at
145 °C for 2–3 h, and then cooled to 105 °C. After distillation of the
solvent, the precipitate was vacuum-dried and ball-milled. The CF/PA
composite powders were thus obtained [58].

3.2.4. Preparation method IV
Unidirectional laminates with CFs and PAs were manufactured

using a steel mold. The laminates with 40 vol% CF were obtained by
sequentially winding CF cables over the PA sheets by alternatively
stacking five PA sheets and five unidirectional CF layers. The two
winding unidirectional prepregs were consolidated using hot com-
pression−molding [59].

3.2.5. Preparation method V
Dried PA pellets were melted and forced to pass through a heated

impregnation die using a single screw extruder at 230 °C. CF tows in the
spool were pulled through the same die, where the CF tows were coated
with a layer of PA, forming core/shell structured composite wire rods.
The composite wire rods were cooled and chopped into core/shell-
structured pellets [60].

3.2.6. Preparation method VI
Continuous CF-reinforced PA composites were prepared using a 3D

printing system. The PA matrix was firstly printed and the continuous

fiber reinforcement was then printed. The PA and fiber layers were
printed onto a print bed using a hot end temperature of 263 °C [61].

3.2.7. Preparation method VII
Continuous−CF-reinforced PA 6 composites were prepared using a

melt impregnation method by passing fiber bundles through a cross-
head impregnation die. The volume fraction of the fiber was controlled
in the range of 50.0 ± 2.0% and the thickness and width were
0.25 ± 0.03mm and 7.00 ± 0.15mm, respectively [62].

3.3. PC-based composites

3.3.1. Preparation method I
PC pellets were completely dissolved in tetrahydrofuran (THF).

SCFs were dispersed in THF using a stirring and sonification process.
The PC solution was added to the CF mixture. The mixture was soni-
cated and stirred for 15min before being cast into a mold, and placed in
a furnace at 50 °C for 7min. Finally, the sheets were compacted at
180 °C and 25 kN for 10min using a hot compress machine [63].

3.3.2. Preparation method II
SCF/PC composites were prepared at 300 °C by compounding with a

twin-screw extruder for 1 h. The solid was compacted by a hot com-
pressor at 180 °C and 25 kN for 20min. The material was placed in a
furnace at a temperature above the glass transition temperature (Tg) of
PC [64,65].

3.3.3. Preparation method III
SCF-reinforced PC composites were prepared by treatment of the

components in a micro-compounder at 295 °C for 3min, followed by
molding using an injection molding machine with a barrel temperature
of 295 °C, mold temperature of 100 °C, and injection pressure of 10 bar
[66].

3.4. PEEK-based composites

3.4.1. Preparation method I
Unidirectional composite specimens with fiber orientations of 0°

and 90° were prepared by hot pressing CF/PEEK prepregs into uni-
directional laminates and then cutting the laminates into specimens
[67,68].

3.4.2. Preparation method II
The compounding of PEEK with CFs was achieved using a twin-

screw extruder at 360–390 °C; a screw speed of 360 rpm and feed rate of
18 rpm were employed. The extrudate was continuously cooled in
water and pelletized. Standard test bars were injection−molded at
180 °C [69].

3.4.3. Preparation method III
In this method, 30 wt% SCF-containing PEEK composites were

prepared at processing temperatures of 360–390 °C using an in-
jection−molding machine [70].

3.4.4. Preparation method IV
CFs and PEEK powder were dispersed in alcohol using a ball

grinder. The mixture was dried at 90 °C for 24 h. The CF/PEEK com-
posites were produced at 380 °C using an injection-molding machine.
The resulting composite was injected into molds [71].

3.4.5. Preparation method V
Continuous CF-reinforced PEEK composite cylinders comprising a

PEEK matrix, continuous CF, and internal lubricants, were produced by
a filament winding process [72].
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3.4.6. Preparation method VI
Unidirectional laminated long CF/PEEK composite plates were

prepared by compression−molding. The micro-braided yarn was uni-
directionally wound around a stainless-steel frame with adequate ten-
sion. The frame was then placed in a mold that was put on the platform
of a hot press machine and subjected to programmed heating and
pressure [73].

3.5. PEI-based composites

3.5.1. Preparation method I
Unidirectional CF tapes were clamped on a frame, followed by ap-

plication of layers of a viscous solution of PEI in dichloromethane using
a hand layup technique. Two unidirectional strokes of coats were ap-
plied and then dried under ambient environment. These dried prepregs
were then compression−molded at 390 °C and 32 kN/m2 for 20min
[74,75].

3.5.2. Preparation method II
SCF-reinforced PEI composites were prepared using a twin-screw

extruder. The screw temperature and rotation speed were 385 °C and
10 rpm, respectively. The extrudate was molded into a rectangular plate
by compression−molding [76].

3.5.3. Preparation method III
PEI was dissolved in a mixture solvent, and continuous CF bundles

were impregnated into the PEI solution. The solution-processed prepreg
was allowed to dry on the drum and then vacuum-oven treated at
100–200 °C for 10 h. The prepreg was laid up and compressed into
unidirectional composite panels using a hot-press molding method
[77].

3.6. PES-based composites

3.6.1. Preparation method I
PES films were pre-cut to the cavity dimensions and placed in the

mold. A single CF was placed on the stack of PES films. Both ends of the
CF were fixed to the mold with polyimide adhesive tape. Additional PES
films were placed on top of the CF. The mold was heated in a press-
clave at 300 °C for 30min and then slowly cooled to room temperature
[78].

3.6.2. Preparation method II
PES was dissolved in a mixture solvent, and continuous CF bundles

were impregnated into the PES solution. The solution-processed pre-
preg was dried and treated at 100−200 °C for 10 h. The prepreg was
laid up and compressed into unidirectional composite panels using a
hot-press molding method [77,79,80].

3.6.3. Preparation method III
SCF/PES composites were prepared using a co-rotating twin-screw

extruder. The temperature of the barrel was in the range of 360–375 °C.
The extrudates were continuously cooled and pelletized. Standard test
bars were obtained by injection−molding at 180 °C using a plastic-in-
jection molding machine [81].

3.6.4. Preparation method IV
Unidirectional composites were fabricated with poly(phthalazinone

ether sulfone ketone) (PPESK)/PES blends as the matrix and continuous
CF as the reinforcement. Continuous CF bundles were impregnated into
the polymer solution. The individual bundles were wound on−to a
stainless−steel plate. The solution-processed prepreg was allowed to
dry on the drum and then treated at 100–200 °C for 10 h [77].

3.7. PE-based composites

3.7.1. Preparation method I
The PE and CFs were mixed at 190 °C for 10min using a two-roll

mill. The mixture was melted by treatment at 190 °C for 10min and
compressed under a pressure of 18MPa for 15min, followed by
quenching in water to obtain the films [82–85].

3.7.2. Preparation method II
PE, CFs, and compatibilizers were mixed using a co-rotating twin

screw extruder at 50–210 °C and 100 rpm. The extrudate was pelletized
and molded using a laboratory-scale injection-molding machine at a
barrel temperature of 200 °C and mold temperature of 30 °C [86].

3.7.3. Preparation method III
Several layers of a cross-plied-woven roving CF mat were positioned

individually on aluminum foil, and powdered high-density poly-
ethylene (HDPE) was spread on these layers. The layers were placed on
one another and enfolded in aluminum foil. The stacked laminate was
placed between the platens of a high-temperature hydraulic press at
140 °C and compressed at 2500 psi for 2 h [87].

3.8. PPS-based composites

3.8.1. Preparation method I
PPS resin was melted and pulled into CFs and then knotted loosely

around a CF monofilament. The sample was placed onto a microscope
melting point apparatus at 300 °C and kept for 1min; the specimen was
then removed from the hot plate and cooled to ambient temperature.
The prepared samples were annealed at 120 °C for 12 h [88].

3.8.2. Preparation method II
PPS and CFs were compounded using a mini-twin-screw extruder at

230 °C for 10min. The melted composites were continuously injected
into the mold at an injection temperature of 250 °C [89–91].

3.9. PP-based composites

3.9.1. Preparation method I
CFs and PP particles were mixed together in a mortar. The mixture

was subjected to strong mechanical stirring in ethanol for 1 h and ul-
trasonication for another 1 h. After complete evaporation of the
ethanol, the mixture was compression−molded into sheets at 190 °C
under a pressure of 15MPa [92,93].

3.9.2. Preparation method II
PP and SCF were compounded using a co-rotating twin-screw mini-

extruder at 230 °C. The compounds were subsequently in-
jection−molded using an injection−molding machine employing a
barrel temperature of 230 °C, mold temperature of 25 °C, and injection
pressure of 8 bar [94,95].

3.9.3. Preparation method III
CF/PP composites were prepared by melt-blending PP with CFs. The

mixed samples were compressed under a pressure of 7.5 MPa at 200 °C
for 20min using a hot press. The mold was cooled to room temperature
using a cooling system [96,97].

3.9.4. Preparation method IV
PP resins and coupling agents were mixed in a single screw ex-

truder. Long roving type CFs were impregnated into the PP die. The
composite of PP impregnated with long CFs was water-cooled, pelle-
tized with 10mm pellets, and dried [98].

3.9.5. Preparation method V
Unidirectional and quasi-isotropic preconsolidated laminates were
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heated to the melting temperature of PP and then stamp−formed in a
cold−matched metal tool. A continuous CF-reinforced PP prepreg with
approximately 20% fiber was used. The prepreg sheet had a thickness of
0.4–0.5 mm [99].

4. Thermal, mechanical, and electrical properties

4.1. ABS-based composites

Li et al. [51,100] studied the tensile properties of HNO3-treated
SCF/PA6/ABS composites. Their results indicated that the tensile
strength and tensile modulus of the composites improved when the SCF
content was increased from 10wt% to 30wt%. The tensile properties of
the composites were also enhanced by increasing the PA6 content due
to improved interfacial adhesion.

Lu et al. [46] investigated the electrical conductivity and shielding
effectiveness of CF/ABS composites. The resistivity of the nickel-coated
CF/ABS composites decreased with an increase in the CF content. For
the same CF content, the conductivity of the composites with nickel-
coated CFs was much greater than that of the non-coated composites.
The shielding effectiveness of ABS resin filled with 10 vol% of nickel-
coated CFs was 50 dB. Liang et al. [47] also investigated the resistivity
of SCF/ABS resin composites. The composites displayed good con-
ductivity when the SCF content was greater than 2 vol%. The resistivity
of the composites decreased with increasing SCF length and surface
treatment of the SCFs.

Tzeng et al. [48] studied the electromagnetic interference (EMI)
shielding effectiveness of copper- and nickel-coated CF-reinforced ABS
composites. Their results indicated that the electroless-nickel-coated
CF/ABS composites exhibited the best EMI shielding capability because
of the longer fiber length distribution and excellent bonding between
the nickel coating and fibers. Huang et al. [50] also investigated the
EMI shielding effectiveness of CF/PC/ABS composites. Nickel-coated
CFs produced by electroless nickel plating were the most effective
conductive fillers for EMI shielding. Huang et al. [49,101] also studied
the EMI shielding effectiveness of metal-coated CF-reinforced PC/ABS
composites. The results indicated that the resistivity of the nickel-
coated CF/ABS composites increased significantly after composite fab-
rication. The highest EMI shielding effectiveness obtained with the
composites was 65 dBm.

4.2. PA-based composites

Wu et al. [52] studied the mechanical, thermal, and morphological
properties of glass-fiber- and CF-reinforced PA6 and PA6/clay nano-
composites. Their results indicated that the mechanical and thermal
properties of the PA6/clay nanocomposites were superior to those of
the PA6 composite and there was no sacrifice of the impact strength.
The heat distortion temperature of the CF-reinforced PA6/clay com-
posites was almost 20 °C higher than that of the CF-reinforced PA6
composites. Yan et al. [58] studied the preparation and characterization
of CF/PA12 composites for selective laser sintering. The CF/PA 12
composites exhibited higher thermal stability than pure PA12. The
sintered CF/PA composites exhibited greatly enhanced flexural strength
and flexural moduli compared with pure sintered PA12. Surface frac-
ture analysis revealed that the CFs were encapsulated and bonded well
with the PA12 matrix. Karsli et al. [54] investigated the tensile and
thermo-mechanical properties of SCF-reinforced PA6 composites. Eva-
luation of the mechanical parameters indicated that the tensile
strength, modulus, and hardness increased and the strain−at−break of
the composites decreased with increasing CF content. Dynamic me-
chanical analysis (DMA) revealed that the storage modulus and loss
modulus of the composites increased with increasing SCF content. Ma
et al. [102] studied the failure behavior and mechanical properties of
CF-reinforced PA6 laminates. Tensile strength analysis indicated that
the CF/PA6 laminates exhibited step-like fracture in the interfacial

fracture mode with weak interfaces.
Kurokawa et al. [53] investigated the gear performance of CF-re-

inforced PA12. Their results indicated that the composites exhibits
excellent load-bearing characteristics when grease was present in the
engagement region. The load-bearing capacity was enhanced by in-
creasing the molecular weight of PA12. Botelho et al. [59] compared
the mechanical behavior of CF-reinforced PA6 and PA66 composites.
The elastic modulus, tensile strength, and compressive strength of the
composite increased slightly with increasing CF content. Scanning
electron microscopy (SEM) analysis revealed that damage to the com-
posite occurred largely via shear failure at the fiber/matrix interface,
where failure was initiated at relatively low stress. Hassan et al. [55]
studied the structure–property relationship of injection-molded SCF-
reinforced PA66 composites. Their results indicated that the tensile
strength and tensile modulus of the composites increased with in-
creasing CF content. Li [103] investigated the interfacial properties of
O3-treated CF-reinforced PA6 composites. A 60% augmentation of the
interfacial shear strength (IFSS) of the composites was achieved with
O3-treated CF compared with the untreated counterparts. XPS analysis
revealed that O3 treatment increased the amount of carboxyl groups on
the CF surface, thereby enhancing the interfacial adhesion between the
CFs and PA6 matrix. Do et al. [18] studied the effect of PP on the
mechanical properties and water absorption of CF-reinforced PA6/PP
composites. The results indicated that the ultimate tensile strength,
elastic modulus, elongation, density for weight reduction, and dimen-
sional stability of the composites with PP exhibited were superior to
those of the composite without PP.

Dickson et al. [61] investigated the influence of the fiber orienta-
tion, fiber type, and volume fraction on the mechanical properties of
continuous CF-reinforced PA composites. The results indicated an up to
6.3-fold enhancement of the tensile strength of the composites com-
pared with that of non-reinforced PA. Li et al. [62] studied the effects of
the thermal histories on the interfacial properties of continuous CF/PA
6 composites. Their results revealed that the IFSS of the composites
decreased at slower cooling rates and higher annealing temperatures.

4.3. PC-based composites

Carneiro et al. [104] prepared PC composites reinforced with vapor-
grown CFs. The tensile properties of the injection-molded specimens
were marginally better than those of the unreinforced PC; however, the
impact resistance was severely diminished by the addition of CFs. Park
[105] studied the interfacial properties of CF-reinforced PC composites
using two types of coupling agents. It was found that both coupling
agents caused an increase in the IFSS due to chemical and hydrogen
bonding at the interface between the functional groups in the CFs and
polyacrylamide in the coupling agents. Montes−Morán et al. [106]
investigated the effects of plasma oxidation on the surface and inter-
facial properties of CF-reinforced PC composites. Plasma treatment
significantly increased the interfacial shear strength of the CF/PC
composites by increasing the number of surface functional groups.
Hornbostel et al. [64] investigated the mechanical properties of triple
composites of PC, single-walled carbon nanotubes (SWCNTs), and CFs.
Small amounts of CNTs randomly distributed in the PC matrix did not
necessarily enhance the mechanical stability, whereas greater me-
chanical improvements were attained by adding CFs to the composites.

Choi et al. [63] studied the electrical and mechanical properties of
PC composite sheets reinforced with vapor-grown CFs. Microscopic
analysis revealed a homogeneous dispersion of CFs in the PC matrix.
The electrical resistivity of the CF/PC composites decreased with in-
creasing CF loading because of the presence of a good fiber network.
The mechanical properties of the composite improved greatly because
of the enhanced fiber orientation. Ozkan et al. [66] investigated the
effects of sizing materials on the mechanical, electrical, and morpho-
logical properties of SCF-reinforced PC composites. Their results in-
dicated that the tensile strength, modulus, and electrical conductivity of
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sized CF/PC composites were higher than those of unsized CF/PC
composites. SEM analysis revealed better interactions between the
phenoxy-sized CF and PC matrix.

4.4. PEEK-based composites

Hanchi et al. [70] investigated the effects of the operating tem-
perature on the dry sliding friction and wear performance of a SCF-
reinforced PEEK composite. The wear performance of the composite
decreased when the temperatures was increased from below to above
the Tg. In the sliding regime above the Tg, the friction and wear per-
formance of the composite was significantly better than that of neat
PEEK. Xie et al. [69] investigated the tribological behavior of a PEEK
composite reinforced with CFs and potassium titanate whiskers (PTW)
using a pin-on-disk configuration. Their results indicated that the CF/
PTW/PEEK composite exhibited excellent tribological performance
under aqueous conditions. The results also revealed that the two fillers
worked synergistically to enhance the wear resistance of the composite.

Tewari et al. [107] characterized the solid particle erosion behavior
of unidirectional CF-reinforced PEEK composites. The CF/PEEK com-
posites exhibited semi-ductile erosion behavior. SEM observations in-
dicated that the composites underwent erosion damage via matrix re-
moval and exposure of the fibers, fiber cracking, and removal of broken
fibers.

Almajid et al. [72] investigated the surface damage characteristics
of continuous CF-reinforced PEEK composites under sliding and rolling
contact. The composite with a normal fiber orientation exhibited the
lowest specific wear rate under rolling wear conditions, whereas par-
allel fiber orientation resulted in the lowest specific wear rate in the
case of sliding wear. Fujihara et al. [73] studied the effect of the pro-
cessing conditions on the bend-ability of continuous CF-reinforced
PEEK composites. It was found that the bending performance of the
composites was significantly affected at 440 °C. A lower fabrication
temperature and a shorter holding time were the most suitable pro-
cessing conditions for preparation of the CF/PEEK composites.

4.5. PEI-based composites

Xian et al. [108] studied the tribological behavior of SCF/PEI
composites using both a block-on-ring and pin-on-disc rig under dry
sliding conditions. The coefficient of friction decreased and the wear
resistance increased significantly with the addition of 5–20 vol% CFs.
Sharma et al. [75] studied the effect of the orientation of long CFs on
the mechanical and tribological properties of CF/PEI composites. It was
found that the tribological properties of the composites deteriorated
when the angle of orientation of the fibers in the composites increased
from 0° to 90°. Sharma et al. [74] also examined the effect of the fiber
orientation on the abrasive wear of CF/PEI composites. The Young's
modulus, Poisson's ratio, toughness, and strain decreased when the
angle of orientation of fiber with respect to the loading direction was
higher. Unidirectional CF reinforcement significantly enhanced all the
strength parameters of PEI.

Arjula et al. [109] investigated the erosive wear behavior of uni-
directional CF-reinforced PEI composites. The investigated CF/PEI
composites exhibited semi-ductile behavior in low-speed erosive stu-
dies. Higher particle speeds resulted in a rougher surface because of
severe fiber breakage and matrix erosion. Arjula et al. [110] also stu-
died the effect of the CF orientation on the erosion rate of CF/PEI
composites, demonstrating that the rate of erosion of the CF/PEI
composites was significantly higher than that of neat PEI at higher
impact angles. The rate of erosion of the composite was higher for 90°
orientation than for 0° orientation of the fibers.

4.6. PES-based composites

Yumitori et al. [78] studied the role of sizing resins in CF-reinforced

PES. The sized CFs exhibited a higher interfacial shear strength than the
unsized counterparts due to the strong interaction between the sizing
resin in the CFs and the PES matrix. Wu et al. [79] investigated the
processing and properties of solution-impregnated CF-reinforced PES
composites, where the longitudinal flexural modulus and flexural
strength were found to be 137 GPa and 1400MPa, respectively. Their
results also suggested that the transverse properties and interlaminar
fracture toughness improved when the molecular weight of the polymer
matrix was higher. Zheng et al. [77] blended PEI and PES to improve
the rheological properties of a PPESK matrix and provide sufficient
impregnation and consolidation during the hot-press molding treatment
of CF/PPESK composites. The mechanical properties of the CF/PPESK/
PEI and CF/PPESK/PES composites were markedly improved, which
was attributed to the good interfacial adhesion and low porosity re-
sulting from the addition of PEI and PES to the PPESK matrix. Li et al.
[111] investigated the cryogenic mechanical properties of SCF/PES
composites using a graphene oxide (GO) coating. The GO-coated SCF/
PES composites displayed greatly enhanced cryogenic mechanical
properties compared with the SCF/PES composites.

4.7. PE-based composites

Savas et al. [86] prepared CF-reinforced HDPE composites using PE
copolymers as compatibilizers. Their results indicated that enhanced
mechanical properties of the composites were achieved with all of the
compatibilizers relative to the composites without compatibilizers.
Chukov et al. [112] investigated the structural, mechanical, and tri-
bological properties of SCF-reinforced ultra-high molecular weight PE
(UHMWPE) composites. The results indicated that thermal oxidation of
the CFs by ambient oxygen at 500 °C significantly enhanced the inter-
facial interaction between the CFs and polymer matrix. Their results
also revealed that the yield stress of the composites was almost twice as
higher as that of pure UHMWPE. Erkendirci et al. [113] studied the
quasi−static penetration resistance behavior of CF-reinforced HDPE
composites. These composites exhibited a large effective displacement
for complete energy dissipation, where more energy was dissipated in
the case of thinner laminates and less energy was dissipated for thicker
composites.

Zhang et al. [82] studied the selective location and dou-
ble−percolation of SCF-filled HDPE/isotactic PP (iPP) blends. The
percolation threshold of the SCF-filled HDPE/iPP blends was found to
be lower than those of the individual polymers. SEM analysis verified
that the improvement in the electrical conductivity could be attributed
to the selective location of the SCFs in the HDPE phase. Thongruang
et al. [83] studied the correlation of the electrical conductivity and
mechanical properties of HDPE filled with graphite and CFs. Their re-
sults indicated that the addition of CFs to the HDPE/graphite compo-
sites increased the conductivity relative to that of HDPE/graphite
composites. Optical and electron micrographs revealed that the CFs
exhibited preferential alignment depending on their length relative to
the thickness of the composite film. Xi et al. [114] studied the dielectric
effects on the positive temperature coefficient (PTC) of SCF/PE com-
posites. An excellent PTC effect was achieved by adding SCFs to the PE
matrix. The conductive CFs aggregated in series, where an equivalent
circuit of a resistor and capacitor were arranged in parallel, re-
presenting the blends at these contact regions. Shen et al. [115] in-
vestigated the combined effects of carbon black (CB) and CFs on the
electrical properties of composites based on PE or a PE/PP blend. The
volume resistivities of the HDPE/CB/CF and HDPE/PP/CB/CF compo-
sites were lower than those of the HDPE/CB and HDPE/PP/CB com-
posites, respectively. The intensity of the PTC and the temperature
coefficient of resistivity of the HDPE/CB/CF and HDPE/PP/CB/CF
composites increased appreciably with increasing CF loading.
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4.8. PPS-based composites

Liu et al. [88] studied the interfacial micromechanical performance
of CF-reinforced PPS composites using microbond analysis. The IFSS of
the composites increased with the length of the embedded CFs at speeds
below 0.02mm/s and above 0.04mm/s; however, the IFSS remained
constant at speeds between 0.02 and 0.04mm/s. Zhou et al. [89] in-
vestigated the effect of CFs on the structural, mechanical, and tribolo-
gical properties of PA6/PPS composites. Introduction of the CFs re-
sulted in an increase in the strength, modulus, and hardness and a slight
decrease in the breaking elongation rate and impact strength of the
PA6/PPS blends. SEM observation revealed that the main wear me-
chanism of the composites was adhesive wear. Stoeffler et al. [91] in-
vestigated the mechanical and physical properties of PPS composites
reinforced with recycled CF. Their results indicated that the mechanical
properties of recycled CF-reinforced PPS composites were equivalent to
those of compounds produced using industrial grades of virgin CF.
Thermogravimetric analysis (TGA) revealed that the introduction of
recycled CFs was not detrimental to the inherent thermal stability of
PPS. Zhang et al. [116] studied the effect of aminated PPS (PPS-NH2) on
the mechanical properties of SCF-reinforced PPS composites. Amination
improved the compatibility between the CFs and PPS matrix. The ten-
sile strength, flexural strength, and flexural modulus of the CF/PPS
composites with compatibilizers were better than those of the compo-
sites without the compatibilizer because of the enhanced adhesion at
the interface of the CFs and PPS-NH2.

Xu et al. [117] investigated the tribological behavior of CF-re-
inforced PPS composite coatings under dry sliding and water lubricated
conditions. The composite coatings exhibited lower friction coefficients
and higher wear rates than the pure PPS coatings under dry sliding. The
composite coatings exhibited better wear resistance with water-lu-
brication than under dry sliding conditions. Jiang et al. [90] studied the
friction and wear behavior of PPS composites reinforced with SCFs and
sub-micro TiO2 particles. The lowest specific wear rate was obtained
with 15 vol% CF and 5 vol% TiO2. SEM analysis revealed a positive
rolling effect of the particles between the two sliding surfaces, which
protected the SCFs from being pulled out of the PPS matrix.

4.9. PP-based composites

Rezaei et al. [118] studied the effect of the length of CFs on the
thermo-mechanical properties of SCF-reinforced PP composites. Their
results suggested that longer CFs imparted better thermo-mechanical
properties to the CF/PP composites than shorter CFs. TGA also in-
dicated that the thermal stability of the SCF/PP composites increased
with increasing CF length. Wang et al. [119] studied the mechanical
and thermal properties of SCF-reinforced PP composites coated with
GO. The tensile, flexural, and impact strengths of the GO-coated SCF/PP
composites were greatly improved by the chemical reaction and me-
chanical interlocking between GO on the surface of the SCFs and the PP
matrix. Differential scanning calorimetry (DSC) indicated that the GO-
SCF/PP composites exhibited good thermal stability.

Fu et al. [120] investigated the fracture resistance of short-glass-
fiber-reinforced and SCF-reinforced PP under Charpy impact load. The
notched Charpy impact energy of the composites was found to increase
with increasing glass fiber content and decreasing CF content. Han et al.
[121] evaluated the surface treatment of CFs on the interfacial behavior
of CF-reinforced PP composites. A 29.7% increase in the IFSS of the
composites subjected to 3min plasma treatment was achieved com-
pared with that of the untreated specimens. The IFSS of the composites
increased by 48.7% when treated with a silane coupling agent and
subjected to 1min plasma treatment compared with that of the un-
treated specimen. Karsli et al. [94] investigated the effects of an irra-
diated PP compatibilizer on the properties of SCF-reinforced PP com-
posites. Their results indicated an increase in the breaking strength
values to 30%. SEM observation indicated that enhanced interfacial

adhesion between the CF and PP matrix was achieved in blends com-
prising the PP matrix and irradiated PP. Arao et al. [95] studied the
mechanical properties of CF/PP composites hybridized with nanofillers.
The IFSS and mechanical properties of the CF/PP composites improved
with the addition of alumina, silica, and CNTs. The alumina particles
were most effective for enhancing the mechanical properties of the
composites.

Akonda et al. [122] studied recycled-CF-reinforced PP composites.
The tensile and flexural strengths of the composites containing 27.7 vol
% recycled CFs were 160 and 154MPa, respectively. Wong et al. [123]
investigated the effect of coupling agents on the potential of recycled CF
as a reinforcement for PP composites. The interfacial adhesion was
improved by the addition of maleic anhydride grafted polypropylene
(MAPP). The impact strength of the composites improved significantly
when MAPP was added due to greater compatibility between the CFs
and matrix.

Ameli et al. [124] investigated the electrical properties and EMI
shielding effectiveness of CF/PP composite foams. The density of the
composites decreased by 25%, the through-plane conductivity was
enhanced to a maximum of six orders of magnitude, and the dielectric
permittivity increased, resulting in an increase in the specific EMI
shielding effectiveness by up to 65% with the introduction of foaming.
Zhao et al. [92] studied the effect of CFs on the conductive properties of
a segregated CB/PP composite. The percolation threshold of the com-
posite decreased significantly with the addition of 0.155 vol% CFs.
Based on SEM analysis, the reduction of the percolation threshold was
attributed to the construction of a shish-calabash-like conductive net-
work. Hong et al. [96] investigated the EMI shielding effectiveness of
CF-reinforced PP composites in the presence of CNTs as a conductive
filler. The EMI shielding effectiveness of the CF/PP composites in-
creased with increasing mixing speed due to the enhanced dispersion of
the CFs in the matrix, which resulted in improvement of the electrical
networks, and thus the EMI shielding effectiveness, in the CF/PP
composites. Xu et al. [125] studied the liquid sensing behavior of
conductive PP composites containing CFs and CB. The CF/CB/PP
composite exhibited superior liquid sensing behavior compared with
the CB/PP composite.

Cho et al. [98] achieved highly enhanced mechanical properties of
long CF-reinforced PP composites by a combined method involving a
coupling agent and surface modification of CFs. The surface−modified
CF-reinforced PP composite with 5 wt% bi-functional group-grafted PP
as a coupling agent showed the highest tensile strength and flexural
strength, with respective increases of 1.5- and 1.7-fold respectively,
compared with the PP/CF composite employing conventional maleic
anhydride-grafted PP. Hou et al. [99] determined the processing con-
ditions, such as stamping temperature, stamping time, stamping velo-
city, and pressure required for stamp forming of continuous CF-re-
inforced PP composites. An experimental two-dimensional matched die
was successfully designed and employed for stamp-forming of con-
tinuous CF-reinforced PP composites.

4.10. Advantages and disadvantages of CFs in thermoplastic composites

The advantages of using CFs in thermoplastic composites are as
follows [18,19,75,86,126,127]:

1. As advanced reinforcing fiber materials in thermoplastic compo-
sites, CFs have excellent mechanical, thermal, and electrical prop-
erties, good thermal conductivity, excellent corrosion resistance, a
low linear thermal expansion coefficient, and low density.

2. Compared to short glass fibers, SCFs have low density, high specific
strength and stiffness, excellent thermal and electrical conductivity,
high wear resistance, and a low coefficient of friction, making them
attractive for many applications, especially in the automotive in-
dustry.

3. Continuous CF-reinforced thermoplastic composites have been
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extensively used in the aerospace, weaponry, automotive, and che-
mical industries because of their potential for construction of light-
weight materials, high strength and stiffness, recyclability, repair-
ability, and corrosion resistance.

4. CF-reinforced thermoplastics can be recycled by melting the mate-
rial and reforming it into a new object.

The disadvantages of the use of CFs in thermoplastic composites are
as follows [26,112,128,129]:

1. CFs are expensive compared with glass fibers.
2. CFs have poor wettability and adhesion to the thermoplastic matrix.
3. Unidirectional CF-reinforced thermoplastic composites exhibit low

strain under uniaxial tension.

4.11. Problems with CF-reinforced thermoplastic composites and possible
solutions

4.11.1. High cost of CFs compared with glass fibers
To obtain thermoplastics reinforced with SCFs, composites can be

prepared by using recycled CFs. These fibers are much cheaper than the
initial CFs and can be used to reinforce thermoplastic polymers in order
to improve their physical, mechanical, tribological, thermal, and elec-
trical properties [112].

4.11.2. Poor wettability and adhesion of CFs to the thermoplastic matrix
The surfaces of CFs can treated using chemical methods, plasma

methods, electrochemical methods, and sizing or coating methods to
introduce chemical functional groups onto the fiber surface and im-
prove the interfacial adhesion between the CFs and the thermoplastic
matrix [128].

4.11.3. Low strain of unidirectional CF-reinforced thermoplastic composites
under uniaxial tension

In order to increase the strain to tensile failure, different techniques
such as thin-ply hybridization, thin-ply CF-reinforced plastic angle ply
lamination, wavy-ply sandwich structures, and interleaved lamination
can be employed [129].

4.11.4. Negative influence of residual solvent in the solution-processed
system on the performance of CF-reinforced thermoplastic composites

In solution-processed systems, CF-reinforced thermoplastic compo-
site prepregs can be fabricated by impregnating CFs with a suitable
polymer solution. This process can lower the viscosity of the resulting
polymer solution and thus reduce the processing cost. However, the
residual solvent may influence the performance of the composites. The
residual solvent in solution-processed products should be removed by
employing a higher molding temperature and/or longer molding time
[75].

5. Conclusion

This review covered the recent advances in methods of surface
treatment of CFs and preparation of CF/thermoplastic composites.
Suitable surface treatments and preparation methods are important for
achieving a uniform dispersion of CFs in polymer matrices and for in-
creasing the interfacial adhesion between the CFs and matrix.
Furthermore, the thermal, mechanical, and electrical properties of the
composites were discussed in detail. Recent studies have focused on the
preparation and characterization of nanoparticle-filled CF/thermo-
plastic composites as a means of achieving significantly improved me-
chanical and electrical properties.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.

doi.org/10.1016/j.compositesb.2017.12.007.
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