
Ing. Karel Klouda, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague January 2, 2018

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Music Recommender System

 Student: Ondřej Šofr

 Supervisor: doc. Ing. Pavel Kordík, Ph.D.

 Study Programme: Informatics

 Study Branch: Knowledge Engineering

 Department: Department of Applied Mathematics

 Validity: Until the end of summer semester 2018/19

Instructions

Survey algorithms for recommedation of music. Focus mainly on collaborative filtering approaches and
algorithms that can work with the temporal dimension (for example time events or sequence of genres).
Design and implement a recommender system and evaluate the success rate in time context. Demonstrate
functionality of the system on data provided by your supervisor.

References

Will be provided by the supervisor.

Bachelor’s thesis

Music Recommender System

Ondřej Šofr

Department of Applied Mathematics
Supervisor: doc. Ing. Pavel Kordík, Ph.D.

June 28, 2018

Acknowledgements

I would like to thank my supervisor doc. Ing. Pavel Kordík, Ph.D. for giving
me the opportunity to work on this interesting topic and for his guidance.
I would also like to thank all members of my family for their endless support
throughout my studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on June 28, 2018 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2018 Ondřej Šofr. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Šofr, Ondřej. Music Recommender System. Bachelor’s thesis. Czech Technical
University in Prague, Faculty of Information Technology, 2018.

Abstrakt

Tato práce se zabývá problematikou personalizovaného doporučování hudeb-
ních skladeb posluchačům. Jsou zde představeny přístupy využívané v součas-
nosti, zejména metody kolaborativního filtrování. Důraz je kladen na zpra-
cování časových informací o jednotlivých akcích uživatelů a jejich využití pro
zkvalitnění doporučovacích systémů. Nejdůležitější částí je rozbor modelů
predikujících aktivitu uživatelů. Je zde porovnána přesnost a výkonnost jed-
notlivých řešení i s ohledem na jejich využitelnost v praxi. Práce obsahuje
výsledky experimentálního vyhodnocení představených metod nad daty reál-
ných uživatelů.

Klíčová slova doporučovací systémy, kolaborativní filtrování, strojové uče-
ní, predikce časových řad, umělé neuronové sítě

vii

Abstract

This thesis deals with the field of personalized recommendation of music.
Modern approaches are described and analyzed, especially the methods of
collaborative filtering. The main focus is the processing of temporal dimension
data of user actions and its usage to improve recommendation systems. The
most important part is the analysis of models predicting the activity of users.
Prediction accuracy and efficiency of solutions are compared with emphasis on
the usability in practice. This thesis contains experimental results of presented
methods tested on real-world data.

Keywords recommender systems, collaborative filtering, machine learning,
time series prediction, artificial neural networks

ix

Contents

1 Introduction 1
1.1 Goals of this thesis . 2

2 Related work 3
2.1 Recommender systems . 3

2.1.1 Approaches . 4
2.1.2 Evaluation . 5
2.1.3 Music recommendation systems 7

2.2 Collaborative filtering . 9
2.2.1 Representation of user-item interactions 9
2.2.2 User-based and item-based approaches 9
2.2.3 Processing of user feedback 11
2.2.4 Determining similarity of users or items 12
2.2.5 Model-based collaborative filtering 13

2.3 Machine learning . 15
2.3.1 Key concepts . 16
2.3.2 Overview of basic models 17
2.3.3 Ensemble models . 18
2.3.4 Artificial neural networks 19
2.3.5 Recurrent neural networks 21

3 Time series prediction experiments 25
3.1 Summary of used data . 25
3.2 Data preprocessing . 27

3.2.1 Discretization of time 27
3.2.2 Binning of activity . 28
3.2.3 Transformation into a supervised ML task 28

3.3 Structure of experiments . 32
3.3.1 Overall structure . 32

xi

3.3.2 Model behavior . 33
3.3.3 Measuring results . 33
3.3.4 Further data selection 34
3.3.5 Implementation and environment 34

3.4 Used models . 35
3.4.1 Baseline statistical models 35
3.4.2 Perceptron model . 36
3.4.3 Gradient boosted trees model 36
3.4.4 Multilayer perceptron model 37
3.4.5 LSTM model . 37

3.5 Conclusion of results . 38

4 Advanced experiments 41
4.1 Data preprocessing . 41

4.1.1 Selection of training data 41
4.2 Used models . 42

4.2.1 Perceptron model . 42
4.2.2 Multilayer perceptron model 42
4.2.3 LSTM model . 43
4.2.4 Stacked LSTM model 44
4.2.5 Stacked GRU model . 44
4.2.6 Ensemble model . 44

4.3 Conclusion of results . 45

5 Proposed solution 49
5.1 Description . 49

5.1.1 Structure . 50
5.2 Overview of usability . 50

5.2.1 Computational and memory cost 50
5.2.2 Analysis of predictions 51

5.3 Potential improvements . 51

Conclusion 53

Bibliography 55

A Acronyms 63

B Visualizations of predictive behavior 65

C Contents of attached storage medium 71

xii

List of Figures

2.1 Example of MLP structure . 20
2.2 The inner structure of a LSTM unit (taken from [55]) 22

3.1 Distribution of playbacks of 14 random users during one day . . . 26
3.2 Binning preprocessing of raw data into an activity sequence 29
3.3 Initial extraction of samples . 29
3.4 Example of persistence forecast prediction behavior 30
3.5 Advanced extraction of samples . 32
3.6 Comparison of simple baseline models 35
3.7 Relative importance of features . 37
3.8 Comparison of model performance with varying regularization set-

tings . 38

4.1 Comparison of model performance with varying number of LSTM
blocks . 43

4.2 Structure of ensemble model . 46

B.1 Comparison of the behavior of LSTM model using different exper-
imental settings . 65

B.2 Example of predicting behavior of selected models 1 66
B.3 Example of predicting behavior of selected models 2 67
B.4 Example of predicting behavior of selected models 3 68
B.5 Example of predicting behavior of selected models 4 69
B.6 Example of predicting behavior of selected models 5 70

xiii

List of Tables

2.1 Example of user-item matrix . 9
2.2 Confusion matrix . 16

3.1 Comparison of the whole dataset and the selection of most active
users . 27

3.2 Comparison of performance of basic models 39
3.3 Comparison of relative count and importance of samples grouped

by their sample weight determined during preprocessing 39

4.1 Comparison of performance of advanced models 47

xv

Chapter 1
Introduction

We live in a period of time, where the popularity of digital content streaming
services is constantly on the rise. This trend is even more evident at the field
of music streaming. Major providers like Spotify, Pandora or Apple Music
claim to have tens of millions of active users and those numbers are constantly
increasing [1]. Most people prefer music streaming services over radio stations
because they can conveniently choose what songs they want to listen to and
this process is much more comfortable than having a music collection stored on
CDs. Another advantage is the amount of content that can be easily accessed.
All significant streaming service providers have collections containing tens of
millions of songs. It is, however, very difficult for users to find relevant content
in such an inexhaustible quantity of items. Because of that, providers try to
offer convenient and personalized ways to discover music. This issue is mainly
solved by recommender systems that suggest only such content that is likely
to be considered useful by users.

A predominant technique used in modern recommender systems is collabo-
rative filtering. The basic assumption of this approach is that there are groups
of users with similar taste and listening behavior. Subsequently, there is high
a probability that a certain user will like a content that is popular amongst
a group to where he belongs. Recommender systems which use collaborative
filtering usually provide a high accuracy of suggestions and they can be easily
deployed no matter what type of content is offered. That is the reason why
they are used in most systems that generate music recommendations. An im-
portant feature of collaborative filtering (in its basic form) is that it needs no
other information than users’ ratings of items. However, streaming services
usually record and store many additional data about musical works and users.
These pieces of information can be used to improve the quality of suggestions.
Most companies try to utilize them but this is not a straightforward task and
a lot of research is needed concerning this topic. That is the reason why this
thesis focuses on utilizing time information of user behavior.

1

1. Introduction

From a business point of view, it might be useful to predict when a partic-
ular user desires to listen to music. Such knowledge could be used to improve
the user experience and to increase the service usage. For example, if a mobile
application is able to display a notification with suggested song at the proper
time, it could attract the users to listen to music more frequently. On the
contrary, if a user is predicted not to be interested in such recommendations
at a certain moment, the application would cease to display notifications to
prevent dissatisfaction with the service. In terms of knowledge engineering,
this problematics is closely related to the topics of machine learning and time
series prediction. Utilizing a sequence of recorded data of past behavior, the
goal is to predict user’s activity in the future. Although time series prediction
is a popular research field, most of the time experts focus on economical and
insurance business topics such as stock prediction or risk management. This
thesis is innovative because of its topic of music listening activity prediction
and the usage of real-world data gathered by a music streaming service. Its
main goal is to examine and compare the usability of prediction techniques
used in other fields to accurately predict listening behavior of users.

1.1 Goals of this thesis
• Analyze machine learning approaches used for time series prediction and
present possible solutions for user activity prediction task.

• Experimentally evaluate these approaches on real-world dataset. Deter-
mine model settings that bring the most accurate results.

• Analyze the usability of selected solutions in real-world recommender
systems. If needed, propose changes to make such solutions more suit-
able.

The goal of this thesis, on the other hand, is not to create a standalone
recommender system. Construction of such system is a well-researched task
and a work of this size could hardly create any innovative outputs. Because
of that this thesis focuses on a single specific topic where an improvement can
be reasonably expected.

2

Chapter 2
Related work

2.1 Recommender systems
Recommender (or Recommendation) systems are information filtering soft-
ware tools. Their main goal is to generate meaningful collections of suggested
items for a particular user [2]. This behavior is extremely useful in all ar-
eas where the total number of possible retrieved options greatly exceeds the
number of options that a typical user would consider to be interesting. Such
examples are large online shopping websites like Amazon1 or eBay2 where
millions of products are being sold but usual customer is likely to buy only a
tiny portion of them.

The items can be recommended based on information such as their overall
popularity or the demographics of the customer. However, modern systems
usually perform an analysis of the past buying behavior of a customer to
predict his future buying behavior [3]. Suggestions produced by recommender
system are typically personalized for each user. The term item may stand not
only for physical objects sold over the internet, but also for any digital content
such as movies, videogames, music and even news articles or user-generated
content on social networks.

Recommender systems are very important for companies that offer digital
content directly to the customers. There are many goals that can be achieved
by providing recommendation service (according to [4]):

• Increase the number of items sold The most important function
of recommender system is to suggest items that consumer finds worth
buying. Without these suggestions the user would have probably never
discovered those items and his spending would be lower. This goal also
applies if the provider does not profit directly from selling items but
rather from some kind of periodic subscription fee or from advertising

1www.amazon.com
2www.ebay.com

3

2. Related work

revenue. In such cases it is important to keep the user inclined to use
the service by showing him interesting content. The increase in profit
can be really significant. Netflix 3, one of the biggest video-streaming
providers, reports that 75 % of user views are made as a result of their
recommendation features [5].

• Sell more diverse items Without personalized recommendation sys-
tem the service provider has to be more conservative about offering less-
popular products to consumers as those can be expected to be bought
less frequently. But not selling such long tail products might be a missed
opportunity and users usually like to discover novel items.

• Increase the user satisfaction A typical user expects to get inter-
esting and relevant suggestions and user satisfaction is a vital part of
provider’s success. That is especially important for cases where the
provider does not sell items or digital content, for example news web-
sites. Good recommendation engine will show interesting articles to
user, who will stay on the website much longer than he normally would.
That may increase advertisement revenues for such website.

• Understand the user better Information about customers’ desires
is invaluable for every company. It may be beneficial for logistic and
management planning and to estimate potential interest in future prod-
ucts. When a new product enters the market it might be possible to use
recommendation system to find a subset of users who are most likely to
find the product interesting – this is called inverse recommendation [6].

2.1.1 Approaches

Although the general goal of producing personalized suggestions is shared
amongst all recommender systems, there are many ways how to achieve it.
Systems can be divided by their basic approach into three groups (as catego-
rized in [7]:

• Collaborative filtering approach This approach focuses on user-item
interactions. Every user has his observed behavior consisting of pur-
chases, ratings or views of items. If a group of users share their interest
in a specific item, it is reasonable to suggest that item to other users
with similar behavior. This approach tends to bring good results and
it is capable of suggesting novel and serendipitous items. The system
needs no additional knowledge about the specific domain as all needed
information is observed from user behavior. A more detailed review of
collaborative filtering can be found later in this chapter.

3www.netflix.com

4

2.1. Recommender systems

• Content-based filtering approach Such systems create suggestions
based on items that a user found interesting in the past. Using known at-
tributes of these, they try to find similar items. Other information about
user may also be taken into account. The result is a relevance judgment
that represents the user’s predicted level of interest in particular items.
Unlike collaborative filtering based systems, there is no need for infor-
mation about other users and their behavior. This makes content-based
approach more suitable for tasks where there is not enough data about
user behavior (the so called cold start problem) [8]. However, a good
knowledge of items is needed for those recommender systems to operate
effectively. Also, as most of them use textual features to represent items
and user profiles, they might suffer from the classical problems of natu-
ral language ambiguity [9]. Another drawback is their lack of ability to
suggest completely novel items.

• Hybrid approach Recommender system can be created by using mul-
tiple approaches. A good example would be a system that uses content-
based filtering for a particular user when there are not enough users
with similar behavior and switches to collaborative filtering once there
are. Hybrid recommender systems can maintain advantages of other
categories and limit their disadvantages, making them very efficient.

Some sources like [10] also consider other approaches to be important indepen-
dent categories. Knowledge based systems take explicit user requirements and
search the set of available items to find a best match. Demographic recom-
mender systems usually combine user’s demographic information with other
context to make suggestions. Both of these approaches do not need large
datasets of user-item interactions. It may be beneficial in some areas to in-
clude those approaches into hybrid systems or into ensembles of recommender
systems.

2.1.2 Evaluation

Important topic concerning recommender systems is measuring their perfor-
mance. Generally speaking, the ultimate goal of every recommender system
is to increase conversion rate. This metric is defined as the ratio of users who
take a certain action depending on provider’s business goals (e.g. visit a spe-
cific page, listen to a song or make a purchase) to the total number of users
who receive a specific cue (e.g. being suggested an item by a recommender
system) [11]. High increase of conversion rate after recommender system de-
ployment indicates that it is successful in creating valid suggestions because
users are more attracted to do actions utilized by the system provider. There
are also many other metrics that may be observed.

5

2. Related work

2.1.2.1 Offline evaluation

There are three basic ways of evaluating recommender system performance.
The first is offline evaluation. Collected data recorded from the past are split
into two parts – training set and test set. The recommender system can only
use knowledge of the first one to make predictions about values in the second
one. Such predictions are then compared with recorded values in the test set.
This approach is clearly the easiest as it requires no additional testing done
by real users. That means it is very cheap to test any changes done to the
system because the only thing that is needed is computation power and time.
Because there is no additional user interaction, offline evaluation is suitable
for comparison of different recommender systems. This makes it popular in
academic research as all results are easily reproducible and proposed outputs
can be compared with other solutions. However, the main drawback is that
the measured performance is often misleading. Even when using appropriate
metrics and concluding the testing phase properly, a recommender system
that performed well in offline evaluation may be drastically less successful
when deployed to real-world usage. Most of the time it is due to the fact that
user behavior captured in testing data is insufficient for proper modelling of
future behavior of users [12]. Nowadays, offline evaluation is often considered
to be a basic auxiliary approach and enterprise recommender systems are
additionally tested in different manners before deploying.

2.1.2.2 User studies

Another option is to gather feedback from a group of participants of a con-
trolled study. This is an approach popular in marketing business which can
be also used in this field. Outputs of various recommender systems are pre-
sented to users who evaluate them. This type of studies is expensive and may
provide biased results. It is difficult to correctly select a representative sample
of users to participate in study and even the behavior of such users can be
affected by the fact that a rating is expected from them. The advantage of
user studies is that the provided feedback is much more detailed than any
output from the other two approaches which can be crucial to understand the
current solution’s strengths and weaknesses (as pointed out in [13]).

2.1.2.3 Online evaluation

Online evaluation is perhaps the most accurate way of determining the qual-
ity of a recommender system. Such system is simply integrated into ex-
isting production infrastructure like website or mobile application and the
changes of user behavior are observed. Performance is then measured as an
increase/decrease in an appropriate metrics like conversion rate or total rev-
enues from sold items. While this may be a straightforward approach, there
are many issues connected to it. To avoid corruption of results by outer factors

6

2.1. Recommender systems

like changes of user behavior during the year, such experiments are usually
performed as A/B tests [14]. That means users are divided into two groups
– the first uses a certain baseline recommender system (typically an already
tested and used) and the second uses the one that is to be evaluated. It is
crucial to choose these two groups right to avoid influencing the results, for
example by running a series of A/A tests first (observing the behavior of both
groups in identical conditions). It is also quite dangerous to perform an online
evaluation from a business point of view because customers might be dissatis-
fied with the tested system’s suggestions. Because of that, the group of testing
users is usually tiny in comparison to the group of all users. The biggest ad-
vantage of online evaluation is the fact that users do not know their behavior
is used as a part of testing at all, so the results are unbiased and valuable.
In production it is usually used as a second phase of evaluating changes of
recommender systems, performed after successful offline testing [15].

2.1.3 Music recommendation systems

Although listening to music seems to be an activity similar to watching movies
or reading web articles, there are a lot of differences that has to be taken into
account. A consumption time of one song is much shorter than consumption
time of one movie. An observation related to this is that people can often
decide whether they like the song or not after a few opening seconds, while
they need a much longer time to be able to rate a movie. Sound is also per-
ceived differently than pictures by human senses, which may result in specific
behavior patterns. For example, music is often listened to as a background
noise, which means that the user is not paying full attention to it. The most
important difference between music and other types of content from a recom-
mender systems point of view is that users are much more likely to consume
the same item multiple times [16]. People are inclined to repeat their favorite
songs even in the same listening session, which is a behavior that is unexpected
when reading news articles, for example.

Another property of audio content is that the sound can be analyzed with
a variety of methods. Music features like beat (tempo), dynamics, key or
chord distribution can be extracted from audio tracks and used for content
based recommendation [17]. With additional metadata collected about songs
and artists, using content based recommender systems can be a viable choice,
as shown in the next subsection on the example of Pandora music stream-
ing service. Collaborative filtering techniques are inherently domain-agnostic,
so they can be easily applied here as well, but there are several issues. Ex-
plicit ratings are relatively rare and recorded data tend to be sparser, which
makes collaborative filtering a less dominant approach than in other domains
(according to[18]).

The format of recommendations may also be a bit different. In many other
areas, a set of items is selected by the recommender system and presented

7

2. Related work

to the user at the same time. On the next occasion a new set of items is
generated and so on. However, many music recommender systems are built
to predict a sequence of songs rather than just a set of them. The result is
slightly different from predicting one item per step as the system has to create
a balanced playlists where the order of songs ensures a pleasing experience.
There are many approaches to playlist construction and the topic is frequently
researched (for example in [18]).

2.1.3.1 Examples of music streaming services

The nature of music recommender systems can be observed on two streaming
services with the largest number of active users – Pandora Radio and Spotify.
Both companies have surprisingly different approach to this task.

Pandora Radio (or simply Pandora) is a USA based audio content
streaming provider that resembles internet radio stations. Each user receives
a personalized stream of songs selected by engine built around the Music
Genome Project [19]. This is a complex labeling process with precisely defined
metodology. A musician or a group of musicians carefully listen to a song and
manually submit ratings of hundreds of musical features, called genes, such as
the level of distortion on the electric guitar or the type of background vocals.
A content-based recommender system is then used to suggest content with
similar musical genes as the one that a user likes. The result is a playlist
consisting of songs that can be rated as satisfactory or unsatisfactory, which
changes the importance and preferred values of individual genes for future
predictions.

Spotify is the world leading music service provider, surpassing Pandora
in 2016 [20]. Spotify’s feature Discover Weekly is highly praised by its users
as one of the best ways to explore the musical world. This feature focuses
on providing novel recommendations by combining three model groups (as
described in [21]). The first one is a group of models using collaborative filter-
ing which utilizes user behavior. The second one consists of natural language
processing models that are used for sentiment analysis of articles, blogposts
and discussions about specific artists and songs that are scraped from the
entire internet. And finally, there are convolutional neural network models
that analyze raw audio data. Outputs of these three categories of models
are combined to provide accurate suggestions. This approach is very robust
and can be used even in cases where individual models perform poorly due to
unfavorable circumstances, for example a lack of data.

8

2.2. Collaborative filtering

2.2 Collaborative filtering
Collaborative filtering refers to a class of techniques used in recommender
systems, that recommend items to users that other users with similar tastes
rated positively in the past. The basic assumption is that if two users share
their opinion on an item, they are more likely to have similar opinion on other
items than two randomly chosen users.

2.2.1 Representation of user-item interactions

To apply this approach, three things are needed – a set of users U , a set of
available items I and the historical data for each user concerning his interac-
tions with certain items. The most common way of data representation for
collaborative filtering purposes is the user-item matrix. Traditionally, each
row represents interactions of one user and each column represents interac-
tions made by all users with one particular item. This can be specified as a
matrix R, in which the value of Ri,j denotes the preference of user i ∈ U to
item j ∈ I (as in [16]). Values of this matrix are usually numerical represen-
tations of user ratings of items. More about their meaning and representation
can be found in the section 2.2.3 of this thesis. An example of user-item ma-
trix is shown at 2.1. Notice that this matrix is rather sparse, i.e. there are a
large number of unspecified values. That is nothing unusual as a typical user
interacts only with a small portion of items. Real-world dataset matrices can
be even much sparser.

Table 2.1: Example of user-item matrix

A B C D E
Alex 3 7 - 3 3
John 6 10 3 - -

Patrick 10 - 1 2 -
Susan - - - 8 9
Mary 5 - 3 1 -
Helen 7 - 6 - 8

2.2.2 User-based and item-based approaches

As stated earlier, collaborative filtering utilizes interaction data collected from
users. In order to make a suggestion, it is necessary to determine how likely
a particular user is to be satisfied with a particular (previously unseen) item.
Generally, this can be done by examining the user-item matrix in two basic
manners:

• User based approach When determining Ri,j where i ∈ U and j ∈ I,
the first step is finding users with similar behavior who rated the item

9

2. Related work

j. The value Ri,j is then computed from values Ru,j where u ∈ US and
US ⊂ U is a set of users with similar behavior as user i.

A following simplified example explains this approach. Let’s try to de-
termine, using user-item matrix in Table 2.1, how is user Mary expected
to rate item B. The goal is to find a group of users that rated item B
and their behavior is similar to Mary’s behavior. User John seems to
belong to this group, as he rated items A and C in a closely similar way
as Mary and there are no other items rated by both. User Alex also
rated item B; however, his other ratings are not significantly similar to
corresponding ratings made by Mary. Because of this, only John should
be considered to have similar behavior as Mary. As John rated item B
with a value of 10, Mary can be expected to like this item and rate it
with a high value as well.

• Item based approach In comparison to the former approach, the first
step is to find a group of items similar to the item of which the rating is
being predicted. Similar items are those that are generally rated in the
same way by all users. Item attributes are not compared, only relations
with users – otherwise that would lead to a content based (or hybrid)
approach. The value Ri,j is computed from values Ri,k where k ∈ IS is
an item from a group of similar items IS ⊂ I.

Let’s try to determine, using Table 2.1 again, how is user Helen expected
to rate item D. Helen rated items A, C and E. First step is to choose
a subset of items, which other users rated similarly as item D. Item A
does not really suit this as Patrick rated it with a value of 10 and yet he
rated item D with a value of 2. Item C is more suitable because both
Patrick and Mary rated it with rather low values and so did they rated
the item D. Item E can also be considered to be akin to item D since
both Susan and Alex rated them each with similar values. (Notice that
while Alex dislikes both items, Susan likes them. This causes no issues
at all when using collaborative filtering.) It was decided to consider
items C and E to be similar to D. Helen rated them with the values of
6 and 8 respectively. One possibility is, for example, to compute their
mean – which is 7. This value can be considered to be Helen’s expected
rating of item D.

These examples are just illustrative and similarity of two users or items
is determined intuitively. The exact ways how to measure similarity are de-
scribed in section 2.2.4. In order to decide which users should be taken into
account, k-NN algorithm (presented in the section 2.3.2) is often used.

10

2.2. Collaborative filtering

2.2.3 Processing of user feedback

The user-item matrix is a key element of collaborative filtering. To construct
a successful recommender system, it is crucial to ensure that the user-item
matrix is filled with meaningful and useful values. This data can be obtained
in various manners, which are divided into two main categories (as in [22]).

• Explicit rating is gathered by prompting users to consciously rate
certain items. An example is a 5-star rating system available at Internet
Movie Database 4. Users can rate movies by selecting 1 to 5 stars (5
being the best rating) while adding an optional text. Both of these
pieces of information are considered to be explicit rating because they
are provided intentionally by the user. Another example is giving an
item an I like it label, as known from most social networks.

• Implicit rating is gathered by learning from users behavior over time
[7]. For example, in a music recommender system, if a user listens to a
track several times the system may infer that the user has an interest in
that track (as used in [23]). Other examples might be page visits or pur-
chases – generally all user actions by which the user is not intentionally
rating the item. Purchasing an item is intuitively a strong indication of
user’s interest, but it might be possible that the user is buying some-
thing as a gift and he actually does not like the item. Because of this it
cannot be considered to be an explicit rating.

Although explicit rating is generally seen as more valuable [22, 24], it is
also much more difficult to obtain. Users are reluctant to do tasks (like rating)
that require even a minimal effort. Moreover, these ratings might be biased,
as users usually rate items only on specific occasions. Many customers rate
services only when they are unsatisfied with it [12]. A difficult task is to
populate the user-item matrix with values using implicit feedback. It usually
has a complex structure consisting of various observations. The most basic
approach is to compute a rating from this data, which the user would most
likely assign to an item, should he rated it (proposed by [25]). An example
would be a music recommender system that computes the ratio of completed
playbacks (e.g. when the user chose to listen to this song until the end) to
all playbacks (including those that the user chose to stop before the end)
for each user and item. The resulting values would be real numbers from
the interval 0 to 1, with higher values signifying better estimated rating. If
no playback of an item was made by certain user, the corresponding value
can be treated as unknown (the so called All Missing as Unknown approach,
shown in [26]). There are however many more sophisticated approaches and
many researchers focus on this topic (a complex overview can be found in
[27]). There are a large number of studies concerning implicit feedback in the

4www.imdb.com

11

2. Related work

field of music recommendation systems. For example [28] focuses on finding
correlated explicit and implicit rating actions and [29] exploits the usage of
time-related context of implicit feedback.

2.2.4 Determining similarity of users or items

As shown in the previous examples, the key part of collaborative filtering
algorithm is determining the similarity of two users (or items in item-based
approach). It can be easily deducted from the shape of user-item matrix
that this task is equivalent to computing the similarity of vectors of the same
length. Two vectors containing information about the user interactions with
items are taken from the user-item matrix and a resulting value is computed
using a similarity function.

There are many similarity functions and a proper one has to be chosen for
each system with respect to the domain and structure of data in user-item
matrix. The commonly used ones are (according to [30]):

• Cosine similarity measures cosine of the angle between two vectors.
The resulting value is in the range [−1, 1], or [0, 1] in case only non-
negative values are present in the user-item matrix. A higher value
means that the two vectors are more similar to each other. The exact
computation for vectors ~a and ~b of dimension n is shown in equation
2.1. The symbol "·" stands for the Euclidean dot product of two vectors.
The entire vectors can be used in computation, provided that the missing
values are replaced by zeroes.

Cosine similarity(~a,~b) = ~a ·~b
‖~a‖‖~b‖

=

n∑
i=1

aibi√
n∑

i=1
a2

i

√
n∑

i=1
b2

i

(2.1)

• Pearson correlation coefficient (commonly represented as r) mea-
sures the extent to which the corresponding values in two vectors are
correlated. The resulting value is in the range [−1, 1] and a high value
indicates close similarity. When using this method, dealing with missing
values could spoil the results [30]. Because of that, only co-rated parts of
vectors (parts where both vectors contain known values) are used. The
exact computation for vectors ~a and ~b and M , which is a set of indices
where both ~a and ~b contain known values, is shown in 2.2.

12

2.2. Collaborative filtering

r(~a,~b) =
∑

m∈M (am − ā)(bm − b̄)√∑
m∈M (am − ā)2

√∑
m∈M (bm − b̄)2

ā = 1
|M |

∑
m∈M

am b̄ = 1
|M |

∑
m∈M

bm

(2.2)

Pearson correlation coefficient can be used to compute both the similarity of
two items or two users. However, cosine similarity is not suitable for com-
puting item similarities (according to [31]) because different users might use
different rating scales. This is addressed by using the adjusted cosine similar-
ity, which subtracts the corresponding user average rating from each co-rated
pair (further described in [30]). Adjusted cosine similarity in fact has almost
identical formula as the Pearson correlation coefficient [31]. This shows that
the previously explained similarity metrics are related to each other.

2.2.5 Model-based collaborative filtering

So far in this chapter, only memory-based recommender systems were de-
scribed. They are characterized by having the entire user-item matrix stored
and using its values for calculations of predicted ratings. This approach has
its limitations in real-world usage. The crucial problem is scalability. A mem-
ory complexity of user-item matrix in its basic form is O(nm) where n is the
number of users and m is the number of items in the dataset. This means that
it is not suitable for systems with large number of users and items. Although
this might be mitigated to some extent by using storage structures for sparse
matrices, another problem is high computational cost of operations over such
matrix.

Because of this, it is often more suitable to construct an approximate
model of such system that stores less data and computes recommendations
more efficiently, even with the risk of being less accurate. These so called
model-based recommender systems often utilize matrix decomposition methods
known from the field of linear algebra. Generally, the user-item matrix is
factorized into several smaller matrices. The product of such matrices is then
the approximation of user-item matrix.

A notable method is the singular value decomposition (SVD). Widely used
in the field of information retrieval, SVD uses three matrices to map both users
and items to a joint latent factor space. Latent factors (also called features
or concepts) are traits generated from the data that describes some shared
characteristics of items (though they are mostly uninterpretable).

13

2. Related work

SVD factorizes the user-item matrix R in the following way (taken from
[32]):

R = UΣV T

R ∈ Rn×m U ∈ Rn×n Σ ∈ Rn×m V T ∈ Rm×m
(2.3)

where the matrix U consists of the orthonormalized eigenvectors of RRT

and the matrix V consists of the orthonormalized eigenvectors of RTR. The
matrix Σ is a rectangular diagonal matrix with nonnegative real numbers. The
diagonal elements of Σ are the non-negative square roots of the eigenvalues
of RTR (and RRT as well) called singular values. These values are sorted in
decreasing order on the diagonal, i.e. Σ1,1 ≥ Σ2,2 and so on.

The i-th latent factor is described by the i-th columns of matrices U and
V and singular value Σi,i. The corresponding singular value signifies the im-
portance of such latent factor. To lower the size of used matrices, parameter
c ∈ N, c ≤ min(n,m) is introduced. Only the c most important latent factors
are preserved and the matrices U ,Σ and V are altered so they contain only the
data corresponding to these latent factors. The matrix R̂ is an approximation
of user-item matrix R with the same size, defined as:

R̂ = UΣV T

R̂ ∈ Rn×m U ∈ Rn×c Σ ∈ Rc×c V T ∈ Rc×m
(2.4)

Only the resulting small matrices U ,Σ and V are stored. These three ma-
trices describe a space of dimensionality c. Further computations like search-
ing for similar users then take place in this reduced space instead of the original
one, which greatly improves their efficiency. It was experimentally shown on
many occasions (for example [33]) that even a small value (i.e. <100)of c is
sufficient to maintain accuracy of the approximation and thus the computa-
tional improvement over memory-based approaches is substantial. Reduction
of dimensionality can sometimes make the model even more accurate by in-
creasing its robustness. However, there are several problems with SVD in
the collaborative filtering domain. SVD has limited ability to process missing
values and the computational cost can be also an issue (both discussed in [34]
and [33]).

Another popular matrix decomposition algorithm in the field of recom-
mender systems is the UV decomposition. An approximation of user-item
matrix R is constructed in the following manner:

R ≈ R̂ = UV T

R, R̂ ∈ Rn×m U ∈ Rn×c V T ∈ Rc×m
(2.5)

where c ∈ N is a parameter that determines the reduction level, which
usually is a rather low value (it has a similar behavior as the parameter c in

14

2.3. Machine learning

SVD). To get a predicted rating which a user is expected to give to an item,
the dot product of the two corresponding vectors is used, i.e.

R̂ij =
c∑

k=1
(uikvkj) (2.6)

Values in U and V do not have the strict mathematical meaning as the
values in matrices constructed by SVD. There are various ways how to ob-
tain U and V , but the most common (according to [35]) is to initialize them
randomly and then iteratively adjust the values to minimize the difference
between matrices R and R̂ (which can be measured for example as the sum of
absolute errors, i.e. differences between each pair of corresponding values in
the matrices). Such numerical approximation method, aiming to find a local
minimum of difference, is called gradient descent. Another method (described
in [36]) is the Alternating Least Squares, which is based on temporal fixation
of certain values and computing the rest by the least-square technique.

2.3 Machine learning
Machine learning is an extensively researched topic in the field of artificial in-
telligence (AI). It focuses on solving problems by giving computers the ability
to learn from data without being explicitly programmed for a specific task.
This is the key strength of this concept because many real-world tasks are
too demanding to be solved by humans efficiently or at all. The goal of ma-
chine learning is to construct algorithms which are able to find patters in the
provided data, gather the knowledge and utilize this process when facing new
challenges in the future.

Typically, a model is trained by inputting multiple data samples, which are
instances of a problem that the model is expected to solve. Machine learning
tasks can be divided into three groups depending on the format of the training
process (summarized from [37]):

• Supervised learning The model is given samples containing labels.
Labels are desired outputs attached to each sample and therefore the
model can deduce what is its expected behavior An example of such
sample is an image labelled with a description. A suitable model can be
expected to learn how to describe unknown images if it is provided with
enough training samples.

• Unsupervised learning During the training process only task in-
stances without labels are provided to the model. This is a useful ap-
proach in situations where there are no desired outputs that are known
beforehand. The model is left on its own to find patterns in the data.
This method can be used for tasks like clustering, i.e. finding groups of
similar instances.

15

2. Related work

• Reinforced learning This is a hybrid approach combining both pre-
vious methods. The model is not given a fixed set of samples as during
supervised learning, but instead it can perform actions and observe how
such actions are rated. The model is thus motivated to explore various
possible solutions. Reinforced learning is often able to solve certain dif-
ficult tasks much better than any other method as the models are able
to come up with highly innovative behavior. It is the key aspect of the
highly successful AI program AlphaGo Zero [38].

Because only supervised machine learning is used in this thesis, the rest of
this chapter describes aspects connected to this approach.

2.3.1 Key concepts

There are several concepts related to supervised machine learning that need
at least a brief explanation before moving on to more advanced topics. They
are described in this section.

Tasks solved by machine learning can be split into two main groups –
classification and regression tasks. The difference is in the format of output
variables. When solving classification problems, each instance belongs to one
class. The output is thus a discrete (categorical) variable. An example is a
model that labels each song with a genre tag. If there are only two possible
classes, it is a special case called binary classification problem. Regression
problems on the other hand allow the output to be any numerical variable.
An example of such would be a model predicting the salary of users by their
shopping behavior.

While this difference seems to be marginal, it determines the way of evalu-
ating such models. For binary classification problems (for example predicting
a condition whether or not a user will like certain songs) a confusion matrix
is constructed as shown in table 2.2.

Table 2.2: Confusion matrix
Condition: Observed Not observed
Predicted TP FP

Not predicted FN TN

TP stands for the number of true positive samples (condition was predicted
and observed). Correspondingly, FP stands for false positives, FN for false
negatives and TN for true negatives. Several widely used metrics can be
computed from this table, for example precision:

Precision = TP

TP + FP
(2.7)

Some binary classification systems do not provide strict categorical label,
but rather a probability that an instance belongs to a certain class. Such

16

2.3. Machine learning

scoring can be used with a threshold value to produce a discrete binary clas-
sification [39]. Altering the threshold changes the distribution of instances in
the confusion matrix. Because metrics like precision change with the varying
threshold, it is not convenient to use them to evaluate the performance.

A suitable approach is to use a receiver operating characteristics (ROC)
graph. This is a two-dimensional graph where the true positive rate (TPR,
called also recall) is plotted on the Y axis and false positive rate (FPR) on
the X axis (TPR and FPR computation is described in figure 2.8). Every
value of threshold can be depicted by a corresponding point in this space. If
connected, such points for various threshold settings form a ROC curve which
is a common visualization method.

TPR = TP

TP + FN
FPR = FP

FP + TN
(2.8)

To get a numerical evaluation of performance, area under ROC curve
(AUC) is used [39]. As both true positive rate and false positive rate have
range of [0, 1], AUC has also the range of [0, 1]. Higher value means bet-
ter model, while a completely uninformed one (which predicts randomly) is
expected to have an AUC of 0.5.

Regression tasks are usually evaluated by an error function that takes into
account how different are the predictions from observed data. Examples are
the mean absolute error (MAE) or root-mean-square error (RMSE), which are
discussed and compared in [40].

The construction of machine learning models can be divided into two
phases – training and testing. During training phase the model constantly
improves its performance by learning from the provided data. During testing
phase the model is provided with previously unknown instances of the prob-
lem and its performance is measured. This brings the question of how the
model should be trained to perform the best not only on training data, but
also on test data. Several complex models can be trained to have a perfect
performance during training, but this comes at the cost of poor generaliza-
tion ability and bad performance on previously unseen data. This is known
as overfitting and is generally signalized by much larger errors on test data
than on training data. Because testing performance is sometimes difficult to
obtain (it might be gathered by expensive online tests), a subset of training
data called validation data is often not presented to the model during training.
Validation data can be used to simulate a previously unseen data, by which
the model’s behavior can be observed. This helps to discover better model
settings before advancing to the testing phase.

2.3.2 Overview of basic models

A short description of the most common models (or model families) is pre-
sented in this section. As the machine learning tasks can be very diverse, each

17

2. Related work

model has its usage in some fields depending on its advantages and disadvan-
tages.

• Linear regressor/classifier This is probably the simplest model in ma-
chine learning. Input features of instances are given weights depending
on an evaluation (loss) function, thus the output is a linear combination
of inputs. These weights can be determined by statistical methods like
least square technique or by gradient descent method.

• Nearest neighbors The k-nearest neighbors algorithm (k-NN) is based
on the assumption that similar instances have similar labels. Using a
selected similarity function, it finds a set of k (which is an adjustable
parameter) most similar instances and infers the result from their labels.

• Naive Bayes classifier This model utilizes the statistical background
of Bayes’ theorem. It assumes that all input features are independent
of other features (thus called naive). This approach brings good exper-
imental results [41] and it is also a rather simple model, which needs
very few training samples to be functional.

• Decision trees This is a large family of models which utilize a tree-like
structure. They can be interpreted as a sequence of if-else rules, which
makes them understandable from a human point of view. Decision trees
can be also easily utilized in ensemble models.

• Artificial neural networks (ANNs) are a large family of models,
whose structure loosely models the neurons of a human brain. As they
can extract complex patterns and solve difficult tasks, neural networks
are very popular topic of modern machine learning research. ANNs are
thoroughly described in the following sections.

2.3.3 Ensemble models

Ensemble modeling is a highly successful approach, which led to victory in the
famous recommender systems competition – the Netflix prize [42]. Ensemble
models combine several simpler models to utilize their advantages and bypass
their limitations. Generally, the combination of models (either of the same
type but with diverse behavior or completely different) lead to models resistant
to overfitting, yet capable of finding complex patterns [43]. There are three
basic techniques of ensembling:

• Bagging (bootstrap aggregation) uses a large number of simple models
that are trained in parallel. To avoid an unwanted situation in which all
models are too similar to each other, a different subset of training data
(samples are chosen randomly) is provided for each model. To aggregate
a final result, voting for classification tasks and averaging for regression

18

2.3. Machine learning

tasks are used. An example of bagging are random forest models, uti-
lizing decision trees with additional random settings to support their
diversity (described in [44]).

• Boosting also uses many simple models (called weak learners), but
those are trained in sequence. The most important concept is that sam-
ples that are not successfully predicted by previous weak learners gain
larger weights for future training [45]. This tells the next models that
such samples should be prioritized. An example of this technique is
gradient tree boosting.

• Stacking is a technique that combines multiple models via a meta-
classifier or meta-regressor. The base models are trained as usual and
then a meta-model (sometimes called stacking model) is trained using
their outputs. Unlike in previous approaches, base learners are often
complex and heterogeneous, i.e. constructed by different algorithms [46].
Meta-model can theoretically be any model, but ensembles of decision
tree and neural networks often outperform simpler models as proved in
many kaggle 5 competitions, for example [47].

2.3.4 Artificial neural networks

Although the concept of artificial neural networks dates back to 1950s [48],
only with the recent improvements of computer performance they became a
truly dominant machine learning model family. The main idea of ANNs is to
simulate the structure of organic brain and its decision-making processes.

The basic unit of ANNs is an artificial neuron unit. It has several inputs
from which the output is computed in the following manner:

y = φ(
n∑

j=1
wjxj + b) (2.9)

where n is the number of inputs, b is a bias, wj is the weight attached
to input j and xj is its value. φ is an activation function (for example a
sigmoid function), which is used to keep the output in some reasonable range
suitable for consequent processing (which is especially important in complex
NN structures).

2.3.4.1 Perceptron

The simplest NN model is the perceptron, which consists of a single neuron.
Initially it was constructed only for classification and thus a Heaviside step
function (yielding 0 for negative argument and 1 for positive one) was used.
Nowadays it is often used with a continuous function, allowing perceptron to

5www.kaggle.com, a website hosting machine learning contests

19

2. Related work

be used in regression tasks. The computational ability of perceptron is very
low, as it behaves like a linear classifier and cannot achieve zero error if the
instances of data are not linearly separable.

2.3.4.2 Multilayer perceptron

Multilayer perceptron (often called feedforward neural network) is a complex
model containing large amount of neurons. These neurons are structured into
several layers, where each neuron is connected to all neurons in the next layer
as shown in figure 2.1. The instances are inputted into the first (input) layer
and the created values are propagated in one direction through all the layers
of the network, using the standard neuron structure with weights, bias and
activation functions. The key parts are the hidden layers which significantly
improves the descriptive ability of this model. MLP is capable to find non-
linear patterns and to solve difficult tasks surprisingly well. The popular term
deep learning is connected to the fact that modern MPLs have many hidden
layers and thus a high depth [49].

Input layer
Hidden layers

Output layerInput 1

Input 2

Input 3

Output 1

Output 2

1 of 1

Figure 2.1: Example of MLP structure

2.3.4.3 Backpropagation

The behavior of neural networks is dependent on a large number of parameters
– weights and biases of neurons. The process of learning therefore aims to find
the best set of such parameters. Neural networks are trained using a gradient
descent optimization method, meaning that the parameters are first chosen
randomly and then iteratively adjusted in order to minimize the error (loss)
function. An effective method of such optimization capable of training even
very complex NNs is called backpropagation.

The key part of this algorithm is that after evaluating an instance, the
error is computed and propagated backwards through the network. This way,

20

2.3. Machine learning

a contribution to the error of every weight in the network can be determined
and in the next step the weights are adjusted in order to lower the error.

2.3.5 Recurrent neural networks

The recurrent neural networks (RNNs) are a special case of NNs extensively
researched beginning in the 1990s. Feedforward NNs are meant for static
tasks, where all instance features are presented to the model simultaneously
and there is no explicitly stated temporal dynamics in the data. On the
other hand, RNNs allow the input to be presented sequentially, simulating the
temporal dimension flow. Data connected to each time step (time is usually
considered to be a discrete quantity for the purpose of RNNs, as a contiguous
deception of time is difficult to use with them according to [50]) is inputted
in the chronological order and the model is expected to utilize the temporal
patterns.

The first generation of RNNs evolved from feedforward NNs. The key idea
was to add previously unused connections – either between neurons in the same
layer (a special case is a self-loop on a neuron) or between neurons in different
layers, but directed in the opposite direction (called feedback connections [51]).
The result was that cyclic structures appeared in the network, and the model
was thus able to memorize pieces of information computed in the previous
steps and to use them later.

While these models gained the ability to use the outputs of neurons from
previous steps and could utilize the temporal dimension, the memorization
ability was seriously limited. The exploding and vanishing gradients problems
(introduced in [52]) prevent these neural networks from utilizing long-time
dependencies as the importance of chronologically distant observation can
either grow or vanish exponentially fast with time. Such observation was
therefore impossible to utilize with this structure.

2.3.5.1 Long short-term memory NN

A solution to these problems was found in 1997 when Sepp Hochreiter and
Jurgen Schmidhuber proposed an innovative technique called long short-term
memory unit in [53]. This unit was meant to replace the standard artificial
neuron and to solve the vanishing and exploding gradient problems. It has
more complicated structure than neuron, with an inner stored state and three
important parts (called gates):

• Forget gate decides what part of inner state should be kept and which
pieces of information should be forgotten.

• Input gate decides which part of the input should be added to the
internal state.

21

2. Related work

• Output gate decides which part of the inner state (already updated by
the other two gates in this step) should contribute to the output value.

Each of these gates has its own parameters, which have to be trained before
the usage. The inner structure is shown in figure 2.2. According to [53], LSTM
networks are capable of processing dependencies longer than 1000 time steps,
which is much more than other models. It has been proven that LSTM NNs
are capable of solving very difficult tasks and nowadays they are successfully
utilized in many fields (for example Graves proved in his 2013 study of speech
recognition that LSTM NNs outperform any other model [54]).

Figure 2.2: The inner structure of a LSTM unit (taken from [55])

2.3.5.2 Gate recurrent unit NN

A variant of LSTM unit called Gated recurrent unit (GRU) was introduced in
2014 by Cho et al. [56]. Its inner structure is simpler compared to the LSTM
unit, with fewer parameters and completely missing output gate. Despite

22

2.3. Machine learning

this, it is still comparable to LSTM NNs in most tasks. There are also many
tasks where the simplicity of GRU allows easier training of models and better
performance compared to LSTM NNs, especially in tasks where only smaller
datasets are available [57].

2.3.5.3 Stacked LSTM NN

LSTM and GRU NNs are typically constructed by several corresponding units
in one layer. Their depth comes not from the count of layers (unlike feedfor-
ward NNs) but rather from their recurrent nature and the number of time
steps. Despite this, in 2013 Pascanu et al. proposed several ways of connect-
ing RNNs into the multiple layer structure [58]. Outputs of each layer are
provided to another, which resembles the feedforward NN structure (although
there are usually significantly less layers because of the extensive computa-
tional cost of LSTM NNs – the original paper experimented with only two
layers). This approach was named Stacked RNNs and situationally can out-
perform other models.

23

Chapter 3
Time series prediction

experiments

The ultimate goal of experiments described in this chapter is to create an
accurate way of predicting whether a user is interested in listening to music at
a certain moment of time. Recommending music at the right time might be
really important for the success of a streaming service. A good example would
be a mobile application that can suggest a song at any time, even when the user
is currently not listening to anything. Showing notifications with suggested
songs may result in a higher usage of the application since many users might
find this feature comfortable. However, if such notifications are shown at an
inappropriate time, users might be dissatisfied with the application and there
is a huge risk of losing customers.

3.1 Summary of used data
Dataset used throughout this chapter was provided by the Recombee 6 com-
pany. It contains records of music listening patterns of over 345 000 real users,
collected from an unspecified music-streaming service. Each user has a history
of playbacks gathered from 30 July 2016 to 23 February 2017 (approximately
200 days). Tracked records are of one of two types:

• Finished playback is a playback of individual song that the user lis-
tened to its end. It contains timestamp of the start of playback and a
short description of the song consisting of unique numerical identifier,
name, performing artists and genre.

• Skipped (unfinished) playback is a playback of individual song that
the user decided not to listen to its end. Generally that means the user
skipped this song or ended his listening session. It contains timestamp

6www.recombee.com

25

3. Time series prediction experiments

of the start of playback and a short description of the song consisting of
unique numerical identifier, name, performing artists and genre. It does
not contain the duration for which the user were listening to this song.

The distribution of playbacks can be seen in figure 3.1. There is an addi-
tional category (called repeated) for depicting playbacks which were unfinished
because the user chose to repeat the song in a certain moment. Such play-
backs were labeled in the dataset as skipped but in fact they make up their
own category and can be considered as a sign that the user enjoyed such song.

Figure 3.1: Distribution of playbacks of 14 random users during one day

Although the number of users in this dataset is huge, majority of them
did not use the service for long enough to provide a sufficient amount of data.
Because of that, the decision for the following experiments was to select only a
set of the most active users. The main criterion for this selection was the total
number of playbacks (not taking into account whether finished or skipped).
Only users with more than 1 000 playbacks and less than 5 000 playbacks
were included in this set. As the playbacks were recorded in the span of
approximately 200 days, it can be roughly thought of as a set of users who
played 5 to 25 songs per day on average (or even more for users who were
not active the whole period). The reason why these limitations were chosen
is simple. Less active users have the average of only a few records per day
at most which makes it much more difficult to discover patterns in the data.
As shown later in this chapter, even the data of the most active users are
sparse with a high level of noise. The upper bound for number of playbacks

26

3.2. Data preprocessing

is meant to exclude a small amount of outliers in the data. Playing more
than 5 000 songs signifies either a really untypical user who listens to music
far more than the rest of the population or potential abuse of the service,
for example continuous playback of music in public places like stores. Either
way, including those users would introduce data that are possibly biased in
an undesired manner. Only 64 outliers (0.02 % of the dataset) were removed
for having too much playbacks, yet those had over 3 % of total playbacks.
The selected set of most active users contains 1 810 users. Comparison of the
whole provided dataset and selected set is shown in table 3.1. In the rest of
this chapter, only this selected set is used and may be referred as the dataset
or similarly.

Table 3.1: Comparison of the whole dataset and the selection of most active
users

Whole dataset Selected users
Number of users 345 234 1 810
Total number of playbacks 17 547 599 3 085 899
Average number of playbacks 51 1 705
Median of playbacks 10 1 430
Percentage of finished playbacks 72.6 % 72.3 %

3.2 Data preprocessing

3.2.1 Discretization of time

In order to transform the problem of predicting user behavior into a time se-
ries prediction task, it is necessary to change the format of the input. Initially
the data for each user were in the form of playback records with an attached
timestamp denoting the starting time using seconds as the lowest resolution
unit. A much more suitable representation of input for experiments in this
chapter is using a categorical variable denoting time instead of a numerical
one. Through the process of discretization (often called binning), time is trans-
formed into series of categories, each containing all playbacks that happened
during a short period of time. A uniform value of 15 minutes was chosen as a
suitable duration for each time period, which results in an amount of 96 time
bins per day and approximately 20 000 time bins per the span of the whole
dataset. Usage of such value preserves most of information but provides a
good level of generalization. Most of the songs in the dataset are labeled as
pop or rock songs, which implies the length of a typical song in the dataset
is three to five minutes. Therefore the value of 15 minutes per bin is high
enough to not affect the data in a harmful way. For example when there is a
bin without any user activity, it is safe to assume that the user did not listen

27

3. Time series prediction experiments

to anything during that period, rather than that he listened to a song with
the length of 20 minutes starting near the end of previous period.

Time expressed as a categorical valuable is more suitable for various mod-
els, especially those related to recurrent neural networks which usually expect
uniform time step that separates following observations. Discretization is also
often used to reduce the amount of noise in the data, which might be another
benefit of this preprocessing.

3.2.2 Binning of activity

It was also chosen to apply binning operation to the measures of activity.
After time discretization each user had a series of time bins, each having
three variables – number of finished, skipped and repeated playbacks. These
were replaced by one variable with only two possible values. Either there
was at least one record of activity in a particular time bin (regardless whether
finished, skipped or repeated playback) and user is thus considered to be active
in this time bin, or there was none and user is considered inactive. An idea
behind this generalization is that the amount of recorded playbacks made by
user in a particular time bin is highly dependent on various circumstances
as song length, temporal distractions of users or the quality of suggestions
provided by the service used to record this dataset. All of these can be seen
as noise. Therefore in the following experiments, two users of whom one
skips 10 playbacks and repeats his favorite part of one song few times and
the second one who listens to two long songs with a short break between
them are considered equally active during this time interval, even though the
first generates much more records of activity in the dataset. Throughout the
experiments (and in source codes), this variable is recorded as a binary value
where 1 stands for activity and 0 for inactivity of a user. The preprocessing
done so far is shown in figure 3.2.

3.2.3 Transformation into a supervised ML task

Supervised learning tasks require a format of data consisting of pairs of feature
vectors – one containing input features and the second containing output
features. Such pair is called sample. Training and test sets contain multiple
samples. To transform the user activity sequence into this format, initially
a simple rolling window method was used to extract a vector of lag features
(observations from the past) as inputs and the one following observation as
output. This simulates a basic situation where in each moment a sequence of
past observations is available and the task is to predict the activity value for
the following time step in the future. This process is depicted in figure 3.3.

However, this proved to be an unsatisfactory way of preparing the data.
A preliminary series of experiments (which are omitted from this text) using
various models showed that this approach leads to results that are very close

28

3.2. Data preprocessing

Timestamp
19:05:32 10/2/2017

19:09:21 10/2/2017

19:15:10 10/2/2017

19:15:39 10/2/2017

19:51:23 10/2/2017

Item
1754

523

16872

325

7261

Playback status
FINISHED

FINISHED

SKIPPED

FINISHED

FINISHED

18:45
10/2/2017

19:00
10/2/2017

19:15
10/2/2017

19:30
10/2/2017

19:45
10/2/2017

20:00
10/2/2017

0 1 1 0 1 0

Figure 3.2: Binning preprocessing of raw data into an activity sequence

1 0 0 1 1 0 0 0 0 0 0

0 1 1

1

0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 1

0

0

0

1

0 0 0 0 0 0

1

1

1

1

1

1

Input sequence

Lag features Measured activity

Figure 3.3: Initial extraction of samples

to the persistence forecast model. This is a simple time series prediction model
that always predicts the last observed value, or a value highly influenced by
it (a further explanation and example of persistence forecast model can be
found at [59]). It is indeed a very successful model in terms of accuracy,
because two consecutive activity values in this task are strongly correlated –
users usually listens to music continually for multiple subsequent time intervals
before becoming inactive for a prolonged period of time. The problem is

29

3. Time series prediction experiments

that this model’s behavior is absolutely undesirable from a business point of
view. A primary goal of this thesis is to predict moments when the user
is in a good mood to listen to music, but is not currently listening. None
such situation would be predicted if a last activity value was predicted every
time. Persistence forecast model also predicts that active user would stay
active forever, which is a major flaw. An example of such observed predicting
behavior is shown in figure 3.4

Figure 3.4: Example of persistence forecast prediction behavior

To solve this issue, two changes in data preprocessing were made. The first
one is related to the distribution of activity values. An important observation
is that users are mostly inactive. An average user in the dataset is active only
2 % of time. This issue is known as the class imbalance problem and it is a
common issue when working with real-world datasets in the field of machine
learning (its description and possible solutions can be found in [60, 61]).

A trivial solution to this problem is to apply sample weighting (in certain
sources called sampling) to increase the importance of the less frequent class.
Samples of this class are given positive weights larger than one (which is a
default weight for samples) and the loss function during model training and
testing is computed with emphasis on these samples because their prediction

30

3.2. Data preprocessing

error is multiplied by their weights. This approach (called oversampling)
would be most likely functional, but a slight alteration is used in this thesis.
Instead of assigning each sample where the expected output is “active” a larger
weight, it was done so only in cases where the last (most recent) observed lag
feature is “inactive”. That is because the main goal is to predict changes in
user activity from the value of 0 to 1 (e.g. when inactive user becomes active).
Samples in which the last observed lag feature is “active” remain weighted by
the default value of 1. A weight for samples, which has their weight increased,
can be compute in the folowing way:

• First, a value inactivity period length is computed. It is the count of
consecutive 0 values in the lag features vector, which are followed by no
value 1 in this vector (eg. length of part of the sequence which ends at
the end of lag feature vector where only 0 values are present).

• A sample weight is then computed using the following function.

f(inactivity_period_length) = a log2(inactivity_period_length) + b (3.1)

The purpose of that is to increase the importance of samples describing
situations in which user becomes active after a longer period of time. Correctly
predicting that the user would become active after three days of not listening
to music is clearly more desirable for potential business usage than predicting
that the user would return after a 15-minutes break. This computation uses
logarithm function, to avoid assigning undesirably high weights in situations
in which user becomes active after an extensively long period of time (eg.
several months). The values of constants a and b were chosen experimentally
as a = 3 and b = 5, which ensures that the total importance of both output
classes is approximately the same for users within this dataset. This approach
is depicted by green markers in figure 3.5.

The second change done to the data format is altering the output feature.
Previously it was just the measured value of the following time step. Pre-
liminary experiments showed that a better choice for the output feature is a
more generalized value, computed as a maximum of values of the 4 following
time steps. This can be seen as a value signifying whether a user is predicted
to become active during the following hour (as one time step is 15 minutes).
This has three advantages:

• It reduces the level of noise as there are fewer changes caused by temporal
inactivity periods of users.

• It slightly increases the number of samples with output feature of value
1, which in addition to the sample weighting solves the class imbalance
problem.

• It predicts the user activity “earlier” – there is usually a larger gap
between the moment a model predicts user activity and the moment the

31

3. Time series prediction experiments

user becomes active. This is the most important part. The ability to
forecast user activity in the following hour instead of 15 minutes might
be beneficial for usage in real-world recommender systems. Predictions
could be potentially computed less frequently and during the larger gap
there would be more time for additional tasks like running a collaborative
filtering model to predict an item that would be afterwards suggested
to the user. This is however just a speculation without knowing the
structure of the recommender system.

The overall impact on resulting predictions is that they are more robust
and useful. This change is also shown in figure 3.5.

1 0 0 1 1 0 0 0 0 0 0

0 1 1

1

0 0 0

0 0 0 0

0 0 0 0 0

1

1

1

1

1

Input sequence

Lag features
Measured
activity

0

0

1

1

0

One-hour
activity

f(2)

f(3)

Sample
weight

Figure 3.5: Advanced extraction of samples

3.3 Structure of experiments

3.3.1 Overall structure

This section describes shared aspects of all experiments conducted in this
chapter. The main thing to notice is that a different model is constructed,
trained and evaluated for each user, using only the collected data of this
user. This is a purely academical approach, which cannot be used in real
production environment because of the extensive computational and memory
costs for having such a high number of models. This issue is addressed in the
next chapter where shared models are used for predicting multiple users.

To gather comparable results from various different models, a common
schema of providing data to them is used. For each user (and corresponding
model) the preprocessed samples are divided into two sets by their chrono-
logical order – the first set contains all samples that hold information about

32

3.3. Structure of experiments

actions before a chosen threshold date and the second contains the rest. The
first set is available to the model in the training phase while the second is
hidden during training later used for evaluation of the model. The testing set
contains 3 996 samples (20 % of the total count), which corresponds to testing
models over a period of approximately 42 days of simulated usage.

The models predict future activity in a one step ahead manner, which
means that they have knowledge of all previous time steps when predicting
the next one.

3.3.2 Model behavior

The task of predicting whether a user is expected to be active or inactive
can be easily considered a classification task (with two classes). However,
such solution might not be the best from a business point of view. A strict
division into two classes can be harder to utilize as it does not reflect the level
of uncertainty of predictions. Because of that, regression models are used to
solve this task. A value predicted for every step is an expected probability that
a user will be active. That means this value is a real number from range [0, 1].
Certain used models can naturally produce a value higher or lower. Because
of that, outputs of these models are normalized by using sigmoid function
with range [0, 1]. An important advantage of regression approach is that
the resulting activity predictions can be subsequently tuned and utilized in
numerous ways, for example by adjusting the threshold for selecting intervals
in which the user is expected to be active.

3.3.3 Measuring results

To measure an overall accuracy of models, ROC curve is used. The whole
curves can be compared, but most of the time their AUC is a sufficient metric.
If multiple results are evaluated and their results have to be added together
(for example when evaluating multiple models in one experiment), an area pre-
serving algorithm is used (as it is described in [62] in section Non-parametric
methods for receiver operating characteristic curve averaging). The use of
ROC explains why there is no loss in prediction accuracy when normalizing
outputs to fixed range. Sigmoid function is monotonic and thus using it does
not affect ROC curve.

Although ROC AUC is a reliable metric, it is not convenient to use it
for actions like model validation or as a loss function when training models
such as neural networks, mostly due to its computational cost and complexity.
Because of this, MSE (mean square error) or RMSE (root mean square error)
is used when training and validating models. These metrics are used as a
surrogate metrics (simpler metrics providing accuracy approximation).

33

3. Time series prediction experiments

3.3.4 Further data selection

The only issue with using ROC AUC in this task is the consequences of dealing
with class imbalance in the original data. ROC curve that is computed when
not enough samples of one class are available can be highly inaccurate (with
AUC close to 0 or 1). In the dataset, there are number of users that were
active only several times or even never during the testing time interval. To
obtain more meaningful results, it was chosen to exclude all users that were
active during less than 60 time bins in this interval (from the total of 3 996,
i.e. 1.5 %, while the average ratio of active bins amongst users is 2 %).

The resulting count of users is 946. This number can be considered to
be fully sufficient for the purpose of this thesis. As it is a good practice in
machine learning not to perform model selection and optimization on the same
data that are used for final results evaluation, these users were divided into
two disjunctive sets:

• Set of 757 users (80 %) that are used for model training (especially for
multi-user models discussed in the next chapter) and for model selection
and hyperparameter optimization of such models

• Set of 189 users (20 %) that are used solely for evaluation of selected
models

3.3.5 Implementation and environment

All models and experiments were implemented in the programming language
Python (version 3.5). The most important package used in this thesis is the
Keras framework [63]. It is a modular library used for the construction of
neural network models implementing a variety of deep learning structures and
algorithms. Keras uses Tensorflow framework [64] as a backend for computa-
tions. All neural network models used in this thesis were built in Keras. For
storing the original dataset and additional preprocessed data, PostgreSQL
9.5.12 was used.

Experiments were run on a mid-range notebook having Intel Core i7 CPU
(4 cores, 2.2 GHz), 8 GB RAM and Linux Mint 18.1 operating system. This
proved to be a limiting factor during several computationally difficult exper-
iments. Especially hyperparameter optimization of complex neural network
models was conducted only in a simplified way. There is no doubt that bet-
ter results can be achieved, should the experiments be repeated using more
resources.

34

3.4. Used models

3.4 Used models

3.4.1 Baseline statistical models

This set of simple models was created to explore some basic data patterns and
to provide baseline results.

The first model (later in this thesis called Time of day model) is a very
trivial one. It groups all action bins by their time of day (thus there are 96
groups) and then calculates the ratio of those in which the user was active
for every such group. The prediction is then the ratio for the appropriate
time of day. This model utilizes the assumption that the actions of users are
periodical in the timespan of 24 hours and a particular user is likely to be
active at the same time of day as he was in the past. Although this model
is simple and requires no expensive training, it performs rather well with an
ROC AUC value of 0.747 on test data (0.775 on training data). This is a
strong indication that time of day is an important feature for predictions.

The second model is similar, but it groups action bins by the corresponding
day of the week (there are 7 groups). With an AUC of 0.568 on test data
(0.590 on training data) it is worse than the first model, but still better than
an uninformed (random) classifier which means user actions are also slightly
periodical in the timespan of a week.

The last model is the combination of the previous two. Both the time of
day and day of the week are taken into consideration (which corresponds to
672 groups). The resulting AUC is 0.731 on testing data (0.861 on training
data), which is worse than the first model – the higher number of groups
do not allow the model to generalize so well. The resulting ROC curves are
compared in figure 3.6.

Figure 3.6: Comparison of simple baseline models

35

3. Time series prediction experiments

3.4.2 Perceptron model

Another simple model is a single perceptron. It is the most trivial example of
neural network with no hidden layers and a very limited expressive power. It
behaves as a linear regressor, meaning that the output is a linear combination
of input features. A validation set containing randomly chosen 33 % of samples
is excluded from training data. Validation using these data helps to stop
the training process as soon as no significant improvement is measured on
validation set.

The resulting ROC AUC of 0.718 on test data (0.882 on training data) is
nothing remarkable. A more interesting output of this model is the feature
importance, which can be determined by measuring the absolute value of
weights trained for each input feature 7. This value signifies how important
each input feature is for the resulting output. The results (generated by
averaging the values gathered over the set of testing users) are shown in figure
3.7. In this figure, the features are sorted in chronological order (as is implied
in the preprocessing section), where feature indexed -1 is the latest.

Feature importance gathered by a simple model can provide a convenient
way to explore some basic patterns in the data. In this case it can be seen
that features corresponding to lag observations from the same time of the
day for which the prediction is made (depicted by dotted vertical lines) are
more important. A significant increase in importance can also be observed in
periodical peaks every 7 days.

3.4.3 Gradient boosted trees model

Gradient tree boosting is capable of finding patterns that linear model is
unable to express and it is a popular and versatile model. However, in this
particular task it did not yield good results. Both the basic and stochastic
variant of gradient boosting were used with similar results. Basic variant
has the ROC AUC of 0.692 on test data (0.908 on training data) and the
stochastic variant has AUC of 0.693 on test data (0.900 on training data).
The only difference was that the stochastic variant was almost two times
faster to train.

The most likely explanation is that the preprocessing made is not suitable
for gradient boosting as there are too much features, which also tend to be
noisy. Both variants of gradient boosting started to overfit after approximately
500 iterations of boosting. The scikit-learn [66] implementation of this model
was used.

7While determining feature importance from any linear regression model is straightfor-
ward, it is interesting that the same approach (i.e. measuring weights on neurons in the
input layer) can be (to some extend) used for an approximation of feature importance in
more complex neural network models. This is partially shown in [65].

36

3.4. Used models

Figure 3.7: Relative importance of features

3.4.4 Multilayer perceptron model

Multilayer perceptron is a standard feedforward neural network model capa-
ble of extracting complex patterns. By a simple grid search a structure of 15
hidden layers each containing 50 neurons was found optimal. A 33 % of train-
ing data was used once again for validation of model and for determining the
optimal stoppage point of the training process. More robust approaches like
cross validation could not be used due to the high computational cost of train-
ing neural networks. Two variants of MLP were constructed and optimized
– a basic model with no regularization method and a MLP using dropout as
a regularization method. A dropout rate of 0.3 was found the best during
by a series of experiments. Additional settings were used as advised in the
original paper concerning dropout [67].

Nevertheless, MLP has proven to be an unsuitable model for this task.
The basic variant accomplished an AUC of 0.683 on test data (0.884 on train-
ing data) and the dropout variant 0.654 on test data (0.849 on training data).
The problem is that the MLP model quickly overfits no matter what hyperpa-
rameter optimization is done. This behavior is discussed later in this chapter.

3.4.5 LSTM model

The last model constructed in this chapter is a LSTM neural network. In
theory, this model should be the most accurate as recurrent neural networks
are especially successful at solving time series prediction tasks. A stateless

37

3. Time series prediction experiments

variant (inner states are randomized for each instance, in contrast to stateful
variant) with only one layer of LSTM blocks were used. Adam was chosen as
a stochastic optimizer during the training process (as described in its original
paper [68]). By multiple hyperparameter optimization experiments, a struc-
ture of 40 LSTM blocks was found optimal. This LSTM model scored a ROC
AUC of 0.631 on test data (0.914 on training data).

As the dropout regularization application on recurrent neural networks is
not yet researched enough and is generally not recommended (according to
[69, 70]), a standard L2 weight regularization (as explained in [71]) is used.
The higher the regularization parameter the more are large weights in the
internal structure of neural network penalized and the model becomes more
generalizing. This can be seen in figure 3.8, which depicts results of experi-
ments run over the set of 40 training users. Regularization clearly helps with
reducing overfitting in this case. The value of 0.005 emerged as the best set-
tings. With this regularization method, the resulting AUC is 0.678 on test
data (0.865 on training data).

Figure 3.8: Comparison of model performance with varying regularization
settings

3.5 Conclusion of results

The measured performance of all models is compared in table 3.2. The last
column shows an average training time per one model. It can be observed
that simple models perform better than the complex ones.

38

3.5. Conclusion of results

Table 3.2: Comparison of performance of basic models

Model Test
AUC

Training
AUC

Training
time (s)

Time of the day baseline 0.747 0.775 <1
Day of the week baseline 0.568 0.590 <1
Combined baseline 0.731 0.861 <1
Linear regression – perceptron 0.718 0.882 35
Gradient tree boosting 0.692 0.908 86
Gradient tree boosting – stochastic 0.693 0.900 52
Multilayer perceptron 0.683 0.884 120
Multilayer perceptron – dropout 0.654 0.849 193
LSTM 0.631 0.914 267
LSTM – weight regularization 0.678 0.865 287

This can be most probably interpreted as a problem with input data format
– and indeed there are issues with it. Before adjusting the weights of samples,
the models behaved too similarly to persistence forecast model and there was
a severe class imbalance in the input data. Both issues were solved by the
proposed variant of oversampling, but this brought another problem. A typical
situation for data of one user is that amongst the total approximatively 15 000
samples in training set, there are several hundred samples, which weights are
adjusted by a large factor (commonly 30–50). This is shown in table 3.3. As
a consequence, complex models are likely to lose their generalization potential
and to overfit, which is a well-known issue of oversampling [61]. The structure
of experiments, where one model is constructed for each user, might seem
optimal because each model is fully personalized. However, the number of
samples labeled active for each user is too small, which enhances the negative
effects of oversampling.

Table 3.3: Comparison of relative count and importance of samples grouped
by their sample weight determined during preprocessing

Weight Relative count Importance
1-9 97.82 % 58.33 %

10-19 0.27 % 2.40 %
20-29 0.46 % 6.80 %
30-39 0.94 % 18.86 %
40-49 0.42 % 10.89 %
50-59 0.07 % 2.23 %
60-69 0.01 % 0.33 %
70-79 0.00 % 0.15 %

39

3. Time series prediction experiments

The main problem of experiments in this chapter is therefore the lack of
data, which prevents from solving the described problems without making
models prone to overfitting. In the next chapter a different model structure
and data preprocessing are used, adjusted according to observations made in
this chapter.

40

Chapter 4
Advanced experiments

As previously stated, there is couple of problems with the one user – one
model structure. An alternative way of preprocessing and model construction
is proposed in this chapter to mitigate issues observed during previous exper-
iments. The key change is that only one model is constructed and shared by
all users. This lowers the personalization aspect but helps to solve the lack
of data problem and the connected issue with rapid overfitting of complex
models.

4.1 Data preprocessing

Most of the preprocessing remains the same as in the previous chapter. The
samples of all users are prepared in an unchanged way using discretization of
time, binning of activity and the same format of transformation into super-
vised learning task and sample weight computation. The key difference is the
way in which those weights are used.

4.1.1 Selection of training data

As described in the previous chapter, there are two sets of users – training
set containing 757 users and test set containing 189 users. For the purpose of
training the model, data of 657 users from the training set was used (the data
of the remaining 100 users was used later for hyperparameter optimization and
therefore had to be excluded from this set). If all data from such 657 users
had been simply added together and used, the training set would contain ap-
proximately 9.5 million samples. Not only that would require memory space
of hundreds of gigabytes (in Python implementation), but the computational
cost for training models would be too high. Such set of samples would further-
more once again suffer from class imbalance and the models would be prone
to simulating persistence forecasting as explained in the previous chapter.

41

4. Advanced experiments

The difference in this case is that there is enough data to avoid the need
to use oversampling to remove the class imbalance. A simple undersampling
which takes sample weights into account is used instead. Undersampling in
its basic form is a process of removing certain samples from the dataset. In
this case, the samples to be removed are chosen randomly, but the probability
of a sample to remain in the set is adjusted by its weight. For example, a
sample with weight 30 is thirty-times more likely not to be removed compared
to a sample with weight 1. This way the desired layout of data is achieved
and all remaining samples are considered to be of equal importance. The final
number of samples chosen is 198 977. This set of samples is the same for all
experiments in this chapter and is used solely for training models. The process
of testing the models remains unchanged.

4.2 Used models

4.2.1 Perceptron model

As a baseline model for this chapter, linear regression in the form of a single
perceptron model was used. The resulting ROC AUC was 0.733 on test data
(0.789 on training data). That is much better performance than what was
accomplished by the same model using the one user – one model structure
(which resulted in an AUC of 0.718 on test data and 0.882 on training data).
The difference in training data AUC values promises that overfitting is less
likely to happen to models with this input data structure.

4.2.2 Multilayer perceptron model

This model is much alike its counterpart in the previous chapter. The only dif-
ference in the implementation is that the hyperparameter optimization is not
done by a simple grid search but instead by a Python package Hyperas [72].
This is a simple tool for Keras build upon the Hyperopt [73] framework. Hy-
peropt can be used to automatically search for the best hyperparameters of a
neural network, utilizing a Tree of Parzen Estimators method for accelerating
the search (this method is described in [74]).

First, a model with no additional regularization was constructed. Using
the presented tool a structure of 6 hidden layers with 20 neurons in each
was selected. This model was evaluated to have ROC AUC of 0.741 on test
data (0.801 on training data). A second model used dropout as a way of
regularization. Using Hyperopt, a structure of 6 hidden layers with 40 neurons
in each and a dropout ratio of 0.266 was chosen. This model performed sligthly
better with AUC of 0.743 on test data (0.820 on training data).

42

4.2. Used models

4.2.3 LSTM model

The advantage of recurrent neural networks lays in the ability to better un-
derstand sequential nature of time series prediction tasks than regular feed-
forward neural networks. This expectation was confirmed as a basic LSTM
model outperformed all previous models with a resulting ROC AUC of 0.750
on test data (0.819 on training data). That means that this model is the first
that finally achieved better results than the first baseline model that consid-
ers only the time of day. It is interesting that to accomplish this accuracy,
only 50 LSTM blocks were needed and adding more did not help to improve
performance. Even with lower number of blocks the model performs very well
as shown in figure 4.1 (notice that the AUC values were measured during the
phase of model selection on set of validation users and are different from the
value optained during testing).

Figure 4.1: Comparison of model performance with varying number of LSTM
blocks

A second model was constructed to use regularization to determine whether
its addition would improve the result. Identically to LSTM model in the pre-
vious chapter, L2 regularization of weights of the model was used instead of
dropout. Using Hyperas, it was determined that a structure of 61 LSTM
blocks with regularization rates of 0.004 for forward connections and 0.01 for
recurrent connections in the network is optimal. This model achieved an ROC
AUC of 0.750 on test data (0.812 on training data), which means a perfor-
mance identical to the variant without regularization.

43

4. Advanced experiments

4.2.4 Stacked LSTM model

To further elevate the pattern-descriptive ability of previous model, multiple
layers of LSTM blocks were added together. Using 50 LSTM blocks in each
layer, the optimal number of layers was found to be 5. More layers not only
slowed down the training process, but also performed worse on both training
and test data. No weight regularization was used because it was observed
that it negatively affected the resulting performance. Stacked LSTM model
achieved a ROC AUC of 0.754 on test data (0.822 on training data) which
is a further improvement over one-layer LSTM model. This structure, which
utilizes the deep learning approach of more layers, clearly allows the model to
find more complex patterns in the data than the basic variant. An improve-
ment of 0.004 in AUC might seem to be marginal but in such a task where
most errors could be addressed to a noise in the data, every improvement
above certain level becomes more and more difficult.

4.2.5 Stacked GRU model

A GRU variant of recurrent neural networks is often considered to be viable
replacement over LSTM NNs. Because the GRU is simpler than the LSTM
unit, there are many tasks that can be solved by GRU NNs with comparable
or better performance and less computational time – however, this cannot be
stated generally for every task. Interestingly, the GRU variant also performed
best with 5 layers, each containing 50 blocks – the same inner structure as
the LSTM model. Despite the expectations, Stacked GRU model performed
worse than LSTM NN, with ROC AUC of 0.749 on test data (0.821 on training
data). A slightly shorter training time is the only advantage of this model.

4.2.6 Ensemble model

Combining multiple models together is a commonly used strategy to overcome
limits of individual models. Although the models described in this chapter
perform well and have several advantages over models constructed in previous
chapter, there are two critical drawbacks:

• Although every sample provided to the system contains a part of user’s
historical data, having one model for every user means that the predic-
tions are not fully personalized. This is an undesired behavior as many
examples from the fields of recommender systems and machine learn-
ing show how important personalization is in order to process user data
accurately.

• Every sample is preprocessed to contain historical data from the last 14-
day window only. Patterns spanning over longer period of time cannot
be recognized. Although this limitation is reasonable for simplifying the

44

4.3. Conclusion of results

model construction process, the system does not utilize all data available
and therefore is likely not to achieve optimal results.

On the other hand, the baseline Time of day model (described in section
3.4.1) is fully personalized and takes all measured data into consideration.
Furthermore, it is decently accurate and also very simple. It is not able to
recognize more complex patterns and so behaves in an opposite manner to
more advanced models like Stacked RNNs. This makes the baseline model an
ideal addition to such models. The ensemble model therefore consists of two
separate models:

• Stacked LSTM or Stacked GRU model, shared by all users

• Baseline Time of day model, unique for every user

Both models were run at once and their output values were aggregated
by a third component – the stacking model. In this case it is a rather simple
feedforward neural network. Its structure consists of 5 layers with 5 neurons
in each of them, making it capable of more than just a linear combination of
inputs but ensuring good generalization ability through the model’s simplicity.
It outputs a single value with the same meaning as previous models, i.e. the
predicted probability of user’s activity for a single time step. It is trained by
standard backpropagation algorithm using the set of validation users (which
were not used during training of Stacked RNN model nor are used for testing
the models) and outputs from the two already trained base models to minimize
the RMSE. The structure of such ensemble model and the layout of used data
during training process are depicted in figure 4.2.

The prediction quality fulfilled the expectation and was superior to all
other models. Using Stacked LSTM model, the ROC AUC was 0.768 on test
data 8 while the usage of Stacked GRU proved to be slightly worse with AUC
of 0.766. The ensemble model is clearly better than the rest of the evaluated
solutions. Its detailed description and usage analysis can be found in the next
chapter. This model is proposed by this thesis as the best solution for the
original task.

4.3 Conclusion of results

The overfitting issues observed in previous chapter were mitigated by perform-
ing different preprocessing and using a more general structure of one model
shared by all users. A visualization of predictive behavior comparison of the
structure used in the previous chapter and the shared-model structure used
in this chapter can be found in the appendix B. This appendix also contains

8Notice that measuring the performance on training data makes little sense as all com-
ponents of the ensemble were trained using different data.

45

4. Advanced experiments

Stacked RNN model

Stacking model

Time-of-the-day model

1 0

Lag features

0.621 1

16:15

Time of the day

0.31

0.68

Result

Training users

Validation users

Test users

Held-out historyAvailable history

Used for evaluating results

Used for model training

(shared)

(shared)

(unique)

Figure 4.2: Structure of ensemble model

visualizations of predictive behavior of selected models used on a set of 5 users
belonging to the test group.

The complete comparison of results of described models can be found in
table 4.1. The last column shows an average training time per one model.
Duration of training is intentionally omitted in cases where it depends on
the number of users by design. Unsurprisingly the recurrent neural networks
performed better than any other model because they are most suitable for
time series tasks. By far the best results were achieved by ensemble models
that use two completely different models.

46

4.3. Conclusion of results

Table 4.1: Comparison of performance of advanced models

Model Test
AUC

Training
AUC

Training
time (s)

Time of day baseline 0.747 0.775 –
Linear regression – perceptron 0.733 0.789 63
Multilayer perceptron 0.741 0.801 658
Multilayer perceptron – dropout 0.743 0.820 610
LSTM 0.750 0.819 450
LSTM – weight regularization 0.750 0.812 510
Stacked LSTM 0.754 0.822 1215
Stacked GRU 0.749 0.821 1094
Ensemble – stacked LSTM 0.768 – –
Ensemble – stacked GRU 0.766 – –

47

Chapter 5
Proposed solution

Although there are plenty of possible approaches to the time series prediction
tasks and many more experiments could be conducted, the results observed
during previous chapters clearly favor certain solutions above others. Specif-
ically, the ensembling of different models proved to perform the best. In this
chapter, this solution is thoroughly analyzed with emphasis on possible usage
in real-world situations. The solution is presented in a detailed but general
form with no assumption on its exact implementation and used technologies
and run environment.

For the purpose of visualization of the proposed solution a very simple
interactive application was made. It can be found on the attached storage
medium.

5.1 Description
The main goal of the proposed system is to predict the level of activity of users
in a forthcoming short period of time. The system is constructed to yield the
best results according the business requirements described previously, i.e. to
make predictions in a way that can be used for sending recommendations to
the users.

Other aspects of this process are not solved by this thesis. The actual
sending of notifications to users is dependent on the interference and should
be maintained by the providing subject of such service. The system proposed
in this thesis also does not explicitly declare in which moments a notification
is to be sent to a user. This should be decided by other connected unit that
processes the output predictions of users’ level of activity created by this
system. Construction and fine-tuning of such unit is out of the scope of this
thesis because that can be expected to be a time-consuming task requiring
online user testing to guarantee the satisfaction of future users with such
service. Selecting which items should be recommended to users is also not
solved by the system as it is not the goal of this thesis.

49

5. Proposed solution

5.1.1 Structure

The system is expected to be run as a part of recommendation engine. The
system on regular basis gathers data about the activity of users, processes
them and returns predictions that can be utilized by the main recommendation
engine. This set of computations should be done every 15 minutes as this is
the time window for which predictions are made. Each time, a list of users
active during the previous 15 minutes should be inputted into this system,
which in return provides a prediction of activity for every user monitored by
the system.

The inner structure is derived from the experiment described in section
4.2.6. A predictive ensemble model is composed of Stacked LSTM model,
simple Time of day model for each user and a stacking model which generates
the resulting values. The ensemble model’s structure remains the same as
shown in figure 4.2 in the previous chapter.

In order not to make the computationally difficult preprocessing from
logged data each time a prediction is needed, for each user there are two data
structures containing records in a format suitable for the models. The first is
a list of 1 344 binary values which signify the chronologically ordered activity
values measured during the preceding 14 days. These are used as lag features
inputted into the Stacked LSTM part of the model. Every 15 minutes, when
a new observation is gathered from the user actions, the corresponding value
is added to the list and the chronologically oldest value is removed from the
list. The second data structure is a table containing the number of times user
was active and inactive during a specific time of day (in the form of 15-minute
intervals). These values are used for computation in the Time of day part of
the model. This table has a fixed size of 96 integer values.

5.2 Overview of usability

5.2.1 Computational and memory cost

As both the data structures mentioned previously are unique for each user,
the system requires a considerable amount of storage memory. Although this
is largely dependent on the implementation, an estimate is several kB per
each user. That is however an amount low enough for modern enterprise
environments and should not cause any issues. Other parts of the ensemble
model are shared amongst all users and thus do not require significant amount
of memory.

The used ensemble model is rather simple and the process of predicting is
not computationally difficult. Because the activity of each user is predicted
independently, the whole computation can be also easily parallelized. Huge
advantage of the proposed system is the fact that the ensemble model does
not need to be retrained later with additional data. Both the Stacked LSTM

50

5.3. Potential improvements

part and the stacking part are trained with data containing a large number
of users and thus are able to recognize the most common patterns in data. It
is not reasonable to expect huge changes in all users’ general behavior over
time and the additional data available for training is not likely to improve the
performance of the system.

5.2.2 Analysis of predictions

The fact that the proposed model performed better than any other that were
examined in the previous chapters is evident from the measured values of
ROC AUC. However, much more important is the usability of predictions in
real-world situations. This section analyses the behavior of the system under
conditions and aspects that may occur during usage.

A key ability of this system is the robustness of predictions. The parts of
the ensemble model shared by all users are trained using data of large number
of users which means the predicted behavior is largely generalized. The model
might be slightly unprecise in predicting the activity of untypical users, but it
is unlikely that the system would produce unnatural and outlying predictions,
which might severely impact the satisfaction of users.

The system is able to predict the activity of new coming users as well. The
Stacked LSTM part can make predictions following general patterns even with
a small number of data gathered for a particular user. It might be needed to
temporarily lower the importance of Time of day part of the ensemble until
enough data is gathered to avoid overfitting, but this should not significantly
affect the accuracy of predictions.

It is also worth noting that although there is a part of the ensemble model
shared by all users, there is no problem caused by users living in different time
zones. The format in which the data is preprocessed as an input to the model
secures that this cannot impact the predictions.

5.3 Potential improvements

The system is capable of making robust and reliable predictions and is suitable
for usage as a part of a commercial recommender system. However, there is a
lot of room for improvement, especially concerning the accuracy of predictions.
There are limitless possible approaches to solving such prediction task and this
thesis explores only a small part of them. Changes in data preprocessing or
model construction might bring significant improvements and enhance the
usability of the solution.

A particular improvement can be reasonably expected by grouping the
users by their behavior and constructing a single Stacked RNN model for each
group instead of having only one model shared by all users. This would fur-
thermore increase the personalization of the predictions and probably improve

51

5. Proposed solution

the accuracy while predicting the activity of untypical users. Yet, such struc-
tural change is not trivial as there is a lot of research to be done to correctly
decide in which way the users are to be grouped and how to adjust the model
construction for this change.

52

Conclusion

In this thesis, state of the art of several domains was reviewed. The first
researched topic was the field of recommender systems with a special focus
on music recommendations and its specific aspects. Next, techniques of col-
laborative filtering were thoroughly described. The last theoretical review
was connected to machine learning and especially to modern recurrent neural
networks and their ability to predict time series tasks.

In the experimental sections, the total of 19 model variations were com-
pared with two different approaches to the overall structure and preprocessing.
Series of experiments led to the ensemble model utilizing Stacked LSTM NN
as one of its base learners. This model was proved not only to be superior
in terms of prediction performance, but also to be most likely fully functional
given the possible restricting in real-world usage.

The behavior of this model was analyzed and potential future challenges
pointed out. This means the goals of this thesis were completed and its results
can be utilized by various subjects.

53

Bibliography

1. SPOTIFY. Company info [online]. 2018 [visited on 2018-05-08]. Available
from: https://newsroom.spotify.com/companyinfo/.

2. MELVILLE, Prem; SINDHWANI, Vikas. Recommender Systems. In: En-
cyclopedia of Machine Learning and Data Mining. Boston, MA: Springer
US, 2017, pp. 1056–1066. ISBN 978-1-4899-7687-1.

3. SCHAFER, J. Ben; KONSTAN, Joseph; RIEDL, John. Recommender
Systems in e-Commerce. In: Proceedings of the 1st ACM Conference on
Electronic Commerce. Denver, Colorado, USA: ACM, 1999, pp. 158–166.
ISBN 1-58113-176-3.

4. RICCI, Francesco; ROKACH, Lior; SHAPIRA, Bracha. Recommender
Systems Handbook. 2nd ed. New York, NY, USA: Springer US, 2015.
ISBN 978-1-4899-7637-6.

5. AMATRIAIN, Xavier; BASILICO, Justin. Netflix Recommendations:
Beyond the 5 stars (Part 1) [online]. 2012 [visited on 2018-02-21].
Available from: https://medium.com/netflix-techblog/netflix-
recommendations-beyond-the-5-stars-part-1-55838468f429.

6. KORDÍK, Pavel. Personalized push notifications enabled by artificial in-
telligence [online]. 2018 [visited on 2018-05-07]. Available from: https:
//medium.com/recombee-blog/personalized-push-notifications-
enabled-by-artificial-intelligence-8ac057bc97ba.

7. ADOMAVICIUS, G.; TUZHILIN, A. Toward the next generation of rec-
ommender systems: a survey of the state-of-the-art and possible exten-
sions. IEEE Transactions on Knowledge and Data Engineering. 2005,
vol. 17, no. 6, pp. 734–749. ISSN 1041-4347.

8. LOPS, Pasquale; GEMMIS, Marco de; SEMERARO, Giovanni. Content-
based Recommender Systems: State of the Art and Trends. In: Recom-
mender Systems Handbook. Boston, MA: Springer US, 2011, pp. 73–105.
ISBN 978-0-387-85820-3.

55

https://newsroom.spotify.com/companyinfo/
https://medium.com/netflix-techblog/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429
https://medium.com/netflix-techblog/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429
https://medium.com/recombee-blog/personalized-push-notifications-enabled-by-artificial-intelligence-8ac057bc97ba
https://medium.com/recombee-blog/personalized-push-notifications-enabled-by-artificial-intelligence-8ac057bc97ba
https://medium.com/recombee-blog/personalized-push-notifications-enabled-by-artificial-intelligence-8ac057bc97ba

Bibliography

9. DE GEMMIS, Marco et al. Semantics-Aware Content-Based Recom-
mender Systems. In: Recommender Systems Handbook. Boston, MA:
Springer US, 2015, pp. 119–159. ISBN 978-1-4899-7637-6.

10. AGGARWAL, Charu C. Recommender Systems: The Textbook. Cham:
Springer International Publishing, 2016. ISBN 978-3-319-29659-3.

11. FENU, G.; PAU, P. L. Modeling user interactions for conversion rate
prediction in M-Commerce. In: 2015 IEEE Symposium on Computers
and Communication (ISCC). 2015, pp. 309–314.

12. JANNACH, Dietmar; RESNICK, Paul; TUZHILIN, Alexander;
ZANKER, Markus. Recommender Systems – Beyond Matrix Com-
pletion. Commun. ACM. 2016, vol. 59, no. 11, pp. 94–102. ISSN
0001-0782.

13. BEEL, Joeran; LANGER, Stefan. A Comparison of Offline Evaluations,
Online Evaluations, and User Studies in the Context of Research-Paper
Recommender Systems. In: Research and Advanced Technology for Dig-
ital Libraries. Cham: Springer International Publishing, 2015, pp. 153–
168. ISBN 978-3-319-24592-8.

14. KOHAVI, Ron; LONGBOTHAM, Roger. Online Controlled Experiments
and A/B Testing. In: Encyclopedia of Machine Learning and Data Min-
ing. Boston, MA: Springer US, 2017, pp. 922–929. ISBN 978-1-4899-7687-
1.

15. AMATRIAIN, Xavier; BASILICO, Justin. Netflix Recommendations:
Beyond the 5 stars (Part 2) [online]. 2012 [visited on 2018-02-21].
Available from: https://medium.com/netflix-techblog/netflix-
recommendations-beyond-the-5-stars-part-2-d9b96aa399f5.

16. SHI, Yue; LARSON, Martha; HANJALIC, Alan. Collaborative Filtering
Beyond the User-Item Matrix: A Survey of the State of the Art and
Future Challenges. ACM Comput. Surv. 2014, vol. 47, no. 1, pp. 3:1–
3:45. ISSN 0360-0300.

17. JENSEN, Jesper Højvang. Feature Extraction for Music Information
Retrieval. 2009. Available also from: http : / / vbn . aau . dk / files /
19151090/thesis.pdf. Ph.D. thesis. Aalborg University.

18. SCHEDL, Markus et al. Music Recommender Systems. In: Recommender
Systems Handbook. Boston, MA: Springer US, 2015, pp. 453–492. ISBN
978-1-4899-7637-6.

19. PANDORA MEDIA, Inc. About The Music Genome Project [online].
2018 [visited on 2018-05-09]. Available from: https://www.pandora.
com/about/mgp.

56

https://medium.com/netflix-techblog/netflix-recommendations-beyond-the-5-stars-part-2-d9b96aa399f5
https://medium.com/netflix-techblog/netflix-recommendations-beyond-the-5-stars-part-2-d9b96aa399f5
http://vbn.aau.dk/files/19151090/thesis.pdf
http://vbn.aau.dk/files/19151090/thesis.pdf
https://www.pandora.com/about/mgp
https://www.pandora.com/about/mgp

Bibliography

20. DUNN, Jeff. Pandora has gained 5 million users in the past 3 years,
while Spotify has gained 100 million [online]. 2017 [visited on 2018-05-
09]. Available from: http://www.businessinsider.com/pandora-vs-
spotify-total-subscribers-chart-2017-6.

21. CIOCCA, Sophia. How Does Spotify Know You So Well? [online]. 2017
[visited on 2018-05-09]. Available from: https://medium.com/s/story/
spotifys-discover-weekly-how-machine-learning-finds-your-
new-music-19a41ab76efe.

22. JAWAHEER, Gawesh; SZOMSZOR, Martin; KOSTKOVA, Patty. Com-
parison of Implicit and Explicit Feedback from an Online Music Rec-
ommendation Service. In: Proceedings of the 1st International Work-
shop on Information Heterogeneity and Fusion in Recommender Systems.
Barcelona, Spain: ACM, 2010, pp. 47–51. ISBN 978-1-4503-0407-8.

23. JAWAHEER, Gawesh; SZOMSZOR, Martin; KOSTKOVA, Patty. Char-
acterisation of Explicit Feedback in an Online Music Recommendation
Service. In: Proceedings of the Fourth ACM Conference on Recommender
Systems. Barcelona, Spain: ACM, pp. 317–320. ISBN 978-1-60558-906-0.

24. AMATRIAIN, Xavier; PUJOL, Josep M.; OLIVER, Nuria. I Like It... I
Like It Not: Evaluating User Ratings Noise in Recommender Systems.
In: User Modeling, Adaptation, and Personalization. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 247–258. ISBN 978-3-642-02247-0.

25. OARD, Douglas; KIM, Jinmook. Implicit Feedback for Recommender
Systems. In: Proceedings of the AAAI Workshop on Recommender Sys-
tems. 1998, pp. 81–83.

26. PAN, Rong et al. One-Class Collaborative Filtering. In: Proceedings of
the 2008 Eighth IEEE International Conference on Data Mining. Wash-
ington, DC, USA: IEEE Computer Society, 2008, pp. 502–511. ISBN
978-0-7695-3502-9.

27. LERCHE, Lukas. Using Implicit Feedback for Recommender Systems:
Characteristics, Applications, and Challenges. 2016. Available also from:
https://eldorado.tu- dortmund.de/bitstream/2003/35775/1/
Dissertation_Lerche.pdf. Ph.D. thesis. Technischen Universität Dort-
mund.

28. KORDUMOVA, Suzana et al. Personalized Implicit Learning in a Music
Recommender System. In: User Modeling, Adaptation, and Personaliza-
tion. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 351–362.
ISBN 978-3-642-13470-8.

29. LEE, Dongjoo et al. Exploiting Contextual Information from Event Logs
for Personalized Recommendation. In: Computer and Information Sci-
ence 2010. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 121–
139. ISBN 978-3-642-15405-8.

57

http://www.businessinsider.com/pandora-vs-spotify-total-subscribers-chart-2017-6
http://www.businessinsider.com/pandora-vs-spotify-total-subscribers-chart-2017-6
https://medium.com/s/story/spotifys-discover-weekly-how-machine-learning-finds-your-new-music-19a41ab76efe
https://medium.com/s/story/spotifys-discover-weekly-how-machine-learning-finds-your-new-music-19a41ab76efe
https://medium.com/s/story/spotifys-discover-weekly-how-machine-learning-finds-your-new-music-19a41ab76efe
https://eldorado.tu-dortmund.de/bitstream/2003/35775/1/Dissertation_Lerche.pdf
https://eldorado.tu-dortmund.de/bitstream/2003/35775/1/Dissertation_Lerche.pdf

Bibliography

30. SARWAR, Badrul; KARYPIS, George; KONSTAN, Joseph; RIEDL,
John. Item-based Collaborative Filtering Recommendation Algo-
rithms. In: Proceedings of the 10th International Conference on World
Wide Web. Hong Kong, Hong Kong: ACM, 2001, pp. 285–295. ISBN
1-58113-348-0.

31. SU, Xiaoyuan; KHOSHGOFTAAR, Taghi M. A Survey of Collaborative
Filtering Techniques. Adv. in Artif. Intell. 2009, vol. 2009, pp. 4:2–4:2.
ISSN 1687-7470.

32. GOLUB, Gene H; REINSCH, Christian. Singular value decomposition
and least squares solutions. Numerische mathematik. 1970, vol. 14, no.
5, pp. 403–420.

33. SARWAR, Badrul; KARYPIS, George; KONSTAN, Joseph; RIEDL,
John. Incremental singular value decomposition algorithms for highly
scalable recommender systems. In: Fifth International Conference on
Computer and Information Science. 2002, pp. 27–28.

34. KOREN, Yehuda; BELL, Robert. Advances in Collaborative Filtering.
In: Recommender Systems Handbook. Boston, MA: Springer US, 2015,
pp. 77–118. ISBN 978-1-4899-7637-6.

35. SYMEONIDIS, Panagiotis; ZIOUPOS, Andreas. Matrix and Tensor
Factorization Techniques for Recommender Systems. Springer, 2016.
Springer Briefs in Computer Science. ISBN 978-3-319-41357-0.

36. KOREN, Y.; BELL, R.; VOLINSKY, C. Matrix Factorization Tech-
niques for Recommender Systems. Computer. 2009, vol. 42, no. 8, pp.
30–37. ISSN 0018-9162.

37. CARBONELL, Jaime G.; MICHALSKI, Ryszard S.; MITCHELL, Tom
M. Machine Learning: An Artificial Intelligence Approach. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 1983. ISBN 978-3-662-12405-5.

38. SILVER, David et al. Mastering the game of Go without human knowl-
edge. Nature. 2017, vol. 550, pp. 354–.

39. BRADLEY, Andrew P. The use of the area under the ROC curve in the
evaluation of machine learning algorithms. Pattern Recognition. 1997,
vol. 30, no. 7, pp. 1145–1159. ISSN 0031-3203.

40. CHAI, T.; DRAXLER, R. R. Root mean square error (RMSE) or mean
absolute error (MAE)? Geoscientific Model Development Discussions.
2014, vol. 7, pp. 1525–1534.

41. LEWIS, David D. Naive (Bayes) at forty: The independence assump-
tion in information retrieval. In: Machine Learning: ECML-98. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1998, pp. 4–15. ISBN 978-3-540-
69781-7.

58

Bibliography

42. NETFLIX, Inc. Netflix prize [online]. 2009 [visited on 2018-05-17]. Avail-
able from: https://www.netflixprize.com.

43. DIETTERICH, Thomas G. Ensemble Methods in Machine Learning. In:
Multiple Classifier Systems. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2000, pp. 1–15. ISBN 978-3-540-45014-6.

44. CUTLER, Adele; CUTLER, D. Richard; STEVENS, John R. Random
Forests. In: Ensemble Machine Learning: Methods and Applications.
Boston, MA: Springer US, 2012, pp. 157–175. ISBN 978-1-4419-9326-7.

45. DIETTERICH, Thomas G. An Experimental Comparison of Three
Methods for Constructing Ensembles of Decision Trees: Bagging,
Boosting, and Randomization. Machine Learning. 2000, vol. 40, no. 2,
pp. 139–157. ISSN 1573-0565.

46. ZHOU, Zhi-Hua. Ensemble Methods: Foundations and Algorithms. 1st.
Chapman & Hall/CRC, 2012. ISBN 978-1439830031.

47. TITERICZ, Gilberto. 1st PLACE SOLUTION - Gilberto Titericz &
Stanislav Semenov [online]. 2015 [visited on 2018-06-26]. Available from:
https://www.kaggle.com/c/otto-group-product-classification-
challenge/discussion/14335.

48. ROSENBLATT, F. The Perceptron: A Probabilistic Model for Informa-
tion Storage and Organization in The Brain. Psychological Review. 1958,
pp. 65–386.

49. SCHMIDHUBER, Jürgen. Deep learning in neural networks: An
overview. Neural Networks. 2015, vol. 61, pp. 85–117. ISSN 0893-6080.

50. MEDSKER, LR; JAIN, LC. Recurrent neural networks. Design and Ap-
plications. 2001, vol. 5. ISBN 9781420049176.

51. DORFFNER, Georg. Neural Networks for Time Series Processing. Neu-
ral Network World. 1996, vol. 6, pp. 447–468.

52. BENGIO, Y.; SIMARD, P.; FRASCONI, P. Learning long-term depen-
dencies with gradient descent is difficult. IEEE Transactions on Neural
Networks. 1994, vol. 5, no. 2, pp. 157–166. ISSN 1045-9227.

53. HOCHREITER, Sepp; SCHMIDHUBER, Jürgen. Long short-term mem-
ory. Neural computation. 1997, vol. 9, no. 8, pp. 1735–1780.

54. GRAVES, A.; MOHAMED, A. r.; HINTON, G. Speech recognition with
deep recurrent neural networks. In: 2013 IEEE International Conference
on Acoustics, Speech and Signal Processing. 2013, pp. 6645–6649. ISSN
1520-6149.

55. YAN, Shi. Understanding LSTM and its diagrams [online]. 2016 [visited
on 2018-06-27]. Available from: https://medium.com/mlreview/under
standing-lstm-and-its-diagrams-37e2f46f1714.

59

https://www.netflixprize.com
https://www.kaggle.com/c/otto-group-product-classification-challenge/discussion/14335
https://www.kaggle.com/c/otto-group-product-classification-challenge/discussion/14335
https://medium.com/mlreview/understanding-lstm-and-its-diagrams-37e2f46f1714
https://medium.com/mlreview/understanding-lstm-and-its-diagrams-37e2f46f1714

Bibliography

56. CHO, Kyunghyun; MERRIENBOER, Bart van; GÜLÇEHRE, Çaglar;
BAHDANAU, Dzmitry. Learning Phrase Representations using RNN
Encoder-Decoder for Statistical Machine Translation. CoRR. 2014. Avail-
able also from: http://arxiv.org/abs/1406.1078.

57. CHUNG, Junyoung; GULCEHRE, Caglar; CHO, KyungHyun; BEN-
GIO, Yoshua. Empirical evaluation of gated recurrent neural networks
on sequence modeling. CoRR. 2014. Available also from: http://arxiv.
org/abs/1412.3555.

58. PASCANU, Razvan; GÜLÇEHRE, Çaglar; CHO, Kyunghyun; BENGIO,
Yoshua. How to Construct Deep Recurrent Neural Networks. CoRR.
2013. Available also from: http://arxiv.org/abs/1312.6026.

59. BROWNLEE, Jason. How to Make Baseline Predictions for Time Series
Forecasting with Python [online]. 2016 [visited on 2018-06-06]. Available
from: https://machinelearningmastery.com/persistence- time-
series-forecasting-with-python/.

60. GUO, X.; YIN, Y.; DONG, C.; YANG, G.; ZHOU, G. On the Class
Imbalance Problem. In: 2008 Fourth International Conference on Natural
Computation. 2008, vol. 4, pp. 192–201. ISSN 2157-9555.

61. LONGADGE, Rushi; DONGRE, Snehalata. Class Imbalance Problem
in Data Mining Review. International Journal of Computer Science and
Network. 2013, vol. 2. ISSN 2277-5420.

62. CHEN, Weixuan; SAMUELSON, Frank W. The average receiver oper-
ating characteristic curve in multireader multicase imaging studies. The
British journal of radiology. 2014, vol. 87 1040, pp. 20140016.

63. CHOLLET, Francois et al. Keras [https://keras.io]. 2015.
64. ABADI, Martin et al. TensorFlow: Large-Scale Machine Learning on

Heterogeneous Systems. 2015. Available also from: https://www.tenso
rflow.org/.

65. AL IQBAL, Ridwan. Empirical learning aided by weak domain knowl-
edge in the form of feature importance. CoRR. 2010. Available also from:
http://arxiv.org/abs/1005.5556.

66. PEDREGOSA, F. et al. Scikit-learn: Machine Learning in Python. Jour-
nal of Machine Learning Research. 2011, vol. 12, pp. 2825–2830.

67. SRIVASTAVA, Nitish; HINTON, Geoffrey; KRIZHEVSKY, Alex;
SUTSKEVER, Ilya; SALAKHUTDINOV, Ruslan. Dropout: A Simple
Way to Prevent Neural Networks from Overfitting. Journal of Machine
Learning Research. 2014, vol. 15, pp. 1929–1958.

68. KINGMA, Diederik P.; BA, Jimmy. Adam: A Method for Stochastic
Optimization. CoRR. 2014. Available also from: http://arxiv.org/
abs/1412.6980.

60

http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1312.6026
https://machinelearningmastery.com/persistence-time-series-forecasting-with-python/
https://machinelearningmastery.com/persistence-time-series-forecasting-with-python/
https://keras.io
https://www.tensorflow.org/
https://www.tensorflow.org/
http://arxiv.org/abs/1005.5556
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

Bibliography

69. BAYER, J. et al. On Fast Dropout and its Applicability to Recurrent
Networks. ArXiv e-prints. 2013.

70. ZAREMBA, Wojciech; SUTSKEVER, Ilya; VINYALS, Oriol. Recurrent
Neural Network Regularization. CoRR. 2014. Available also from: http:
//arxiv.org/abs/1409.2329.

71. NAGPAL, Anuja. L1 and L2 Regularization Methods [online]. 2017 [vis-
ited on 2018-06-12]. Available from: https://towardsdatascience.
com/l1-and-l2-regularization-methods-ce25e7fc831c.

72. PUMPERLA, Max. Hyperas [https://github.com/maxpumperla/hype
ras]. 2016.

73. BERGSTRA, James. Hyperopt: Distributed Asynchronous Hyper-
parameter Optimization [https : / / github . com / jaberg / hyperopt].
2013.

74. BERGSTRA, James S.; BARDENET, Rémi; BENGIO, Yoshua; KÉGL,
Balázs. Algorithms for Hyper-Parameter Optimization. In: Advances
in Neural Information Processing Systems 24. Curran Associates, Inc.,
2011, pp. 2546–2554.

61

http://arxiv.org/abs/1409.2329
http://arxiv.org/abs/1409.2329
https://towardsdatascience.com/l1-and-l2-regularization-methods-ce25e7fc831c
https://towardsdatascience.com/l1-and-l2-regularization-methods-ce25e7fc831c
https://github.com/maxpumperla/hyperas
https://github.com/maxpumperla/hyperas
https://github.com/jaberg/hyperopt

Appendix A
Acronyms

AI Artificial intelligence

ANN Artificial neural network

AUC Area under curve

GRU Gated recurrent unit

LSTM Long short-term memory

ML Machine learning

MLP Multilayer perceptron

MSE Mean square error

NN Neural network

RMSE Root mean square error

RNN Recurrent neural network

ROC Receiver operating characteristic

SVD Singular-value decomposition

63

Appendix B
Visualizations of predictive

behavior

Figure B.1: Comparison of the behavior of LSTM model using different ex-
perimental settings

65

B. Visualizations of predictive behavior

Figure
B
.2:

Exam
ple

ofpredicting
behavior

ofselected
m
odels

1

66

Figure
B
.3:

Exam
ple

ofpredicting
behavior

ofselected
m
odels

2

67

B. Visualizations of predictive behavior

Figure
B
.4:

Exam
ple

ofpredicting
behavior

ofselected
m
odels

3

68

Figure
B
.5:

Exam
ple

ofpredicting
behavior

ofselected
m
odels

4

69

B. Visualizations of predictive behavior

Figure
B
.6:

Exam
ple

ofpredicting
behavior

ofselected
m
odels

5

70

Appendix C
Contents of attached storage

medium

readme.txt...............................file with contents description
thesis.pdf thesis text in PDF format
thesis_text...............directory of LATEX source codes of the thesis
visualization..........directory containing a visualization application

71

	Introduction
	Goals of this thesis

	Related work
	Recommender systems
	Approaches
	Evaluation
	Music recommendation systems

	Collaborative filtering
	Representation of user-item interactions
	User-based and item-based approaches
	Processing of user feedback
	Determining similarity of users or items
	Model-based collaborative filtering

	Machine learning
	Key concepts
	Overview of basic models
	Ensemble models
	Artificial neural networks
	Recurrent neural networks

	Time series prediction experiments
	Summary of used data
	Data preprocessing
	Discretization of time
	Binning of activity
	Transformation into a supervised ML task

	Structure of experiments
	Overall structure
	Model behavior
	Measuring results
	Further data selection
	Implementation and environment

	Used models
	Baseline statistical models
	Perceptron model
	Gradient boosted trees model
	Multilayer perceptron model
	LSTM model

	Conclusion of results

	Advanced experiments
	Data preprocessing
	Selection of training data

	Used models
	Perceptron model
	Multilayer perceptron model
	LSTM model
	Stacked LSTM model
	Stacked GRU model
	Ensemble model

	Conclusion of results

	Proposed solution
	Description
	Structure

	Overview of usability
	Computational and memory cost
	Analysis of predictions

	Potential improvements

	Conclusion
	Bibliography
	Acronyms
	Visualizations of predictive behavior
	Contents of attached storage medium

