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Abstract

Cloud storage services became a viable alternative to other data storage options, however,
their operators are facing an issue of optimization versus privacy. To ensure data confiden-
tiality, clients would like to use end-to-end data encryption, however, proper encryption
renders all of the classic storage optimization techniques, such as data deduplication,
useless. On the other hand, these optimization techniques typically save space by ex-
ploitation of similarities and/or equalities in the data, which, by definition, breaks data
confidentiality.

Data deduplication is an optimization technique that offers very good space-saving
possibility for multi-user cloud storage services, though its deployment raises multiple
security and privacy concerns. To address these concerns, we analyze the (in)compatibility
of deduplication and encryption and propose a novel secure deduplication solution based
on the concept of “data popularity”. Our proposal rests on the real-life assumption
that “a secret shared too many times ceases to be a secret” i.e. that identical data
outsourced to the cloud by many users do not require as strong protection as unpopular
data that are outsourced by few users only. By introducing this distinction, our solution
allows to protect unpopular data in a stronger, deduplication preventing, way, while
providing weaker protection, allowing deduplication, to popular data. Moreover, the
proposed mechanism supports transition between the popular and unpopular states to
happen automatically, requiring only low computational overhead and no direct user
interaction.

While our solution is reasonably cost effective for some datasets, it is not very effi-
cient for others. The same holds true for other secure deduplication proposals – there
is often an advantage accompanied by a disadvantage. To demonstrate efficiency of our
solution we include an extensive performance evaluation as well as comparison of our
scheme to other state-of-the-art secure-deduplication solutions. We analyze the different
approaches and their features and comment on their applicability for deployments with
varying requirements.

Keywords: security, data protection, deduplication, convergent encryption, cloud stor-
age, popularity, threshold cryptosystem, multiple encryption
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Abstrakt

Cloudová úložǐstě se posledńı dobou stala výhodnou alternativou k jiným typ̊um úložǐsť,
jejich provozovatelé se však potýkaj́ı s problémem jak skloubit optimalizaci a ochranu
uložených dat. Pro zajǐstěńı utajenosti svých dat by klienti úložǐstě preferovali šifrovat
data ještě na svém zař́ızeńı, nicméně takové šifrováńı efektivně znemožňuje provozovateli
úložǐstě využ́ıt klasické techniky pro optimalizaci uložeńı dat, jako je např́ıklad dedup-
likace. Na druhou stranu, optimalizačńı techniky určené k úsporněǰśımu uložeńı dat často
využ́ıvaj́ı právě shodnost a podobnost dat, č́ımž, již z definice, porušuj́ı jejich utajeńı.

Deduplikace dat je optimalizačńı technika, která nab́ıźı velmi výhodný zp̊usob jak
šetřit úložnou kapacitu v cloudových úložǐst́ıch využ́ıvaných mnoha klienty, nicméně jej́ı
nasazeńı vyvolává mnoho otázek z hlediska bezpečnosti a ochrany dat. Soustředili jsme
se na tyto otázky a analyzovali jsme možnosti jak skloubit šifrováńı a deduplikaci, čehož
výsledkem je návrh nového řešeńı umožňuj́ıćıho bezpečnou deduplikaci dat založenou na
principu popularity dat. Náš návrh se oṕırá o předpoklad založený na reálném pozorováńı,
že ”tajemstv́ı sd́ılené př́ılǐs mnohokrát přestává býti tajemstv́ım”, tedy, že pokud mnoho
uživatel̊u ukládá shodná data, tato data pravděpodobně nevyžaduj́ı takovou ochranu, jako
data uložena pouze několika málo uživateli. S využit́ım tohoto děleńı dat, navržené řešeńı
umožňuje chránit ”nepopulárńı data” bezpečněǰśım zp̊usobem, který znemožňuje dedu-
plikaci a chránit ”populárńı data” o něco méně bezpečným zp̊usobem, který však dedu-
plikaci umožňuje. Navržený mechanismus nav́ıc podporuje automatický přechod mezi
nepopulárńımi a populárńımi daty bez potřeby uživatelova zapojeńı do tohoto procesu a
je úsporný z hlediska požadovaného výpočetńıho výkonu.

Přestože naše řešeńı poskytuje rozumnou volbu pro některé skupiny dat, existuj́ı i
skupiny dat, pro které se nehod́ı. To samé lze obecně ř́ıci o jakémkoliv v současnosti
známém návrhu bezpečné deduplikace - typicky pro každou výhodu existuje i nějaká, k
ńı vztažená, nevýhoda. Abychom demonstrovali efektivitu našeho řešeńı, udělali jsme
poměrně rozsáhlé porovnáńı jeho výkonnosti s výkonnost́ı daľśıch state-of-the-art řešeńı
pro bezpečnou deduplikaci. Analyzovali jsme rozd́ılné př́ıstupy k implementaci bezpečné
deduplikace a jejich vlastnosti a popsali jsme jejich využitelnost v prostřed́ıch s r̊uznorodými
požadavky.

Kĺıčová slova: bezpečnost, ochrana dat, deduplikace, konvergentńı šifrováńı, cloudové
úložǐstě, popularita, kooperativńı kryptosystémy, v́ıcenásobné šifrováńı
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Chapter 1

Introduction

Cloud solutions introduce a viable cost-effective alternative to standard in-house IT solu-

tions for various clients, be it private users or big companies. However, migration to the

cloud requires clients to outsource their data – instead of residing in a specific place on

a specific disk, the data may end up virtually anywhere where the cloud service provider

has his storage warehouses. This poses a big challenge for both clients and cloud providers

– clients typically do need to process their data and cloud providers need to deploy stor-

age optimization techniques to save space in their storage, thus it is not possible for the

client to encrypt the data before outsourcing them to cloud and retain the key locally.

Without the key, the cloud provider cannot decrypt the data, which effectively prevents

both data processing and storage optimization. Straightforward solutions such as sharing

the key with the cloud provider or renting security as a service (letting someone else do

the “security stuff”) means the user is giving up control over his data, which might not

be acceptable for various reasons (e.g. law regulations). Solving the cloud-data security

issue in a general manner that would suit everyone is a nearly-unsolvable problem, as

the different approaches typically introduce restrictions that are not acceptable for some

of the use-cases. Therefore, research focusing on cloud security typically does not try

to encompass the whole issue of outsourced data and, instead, tries to ensure improved

security only for a subset of use cases.

There are two major research areas focusing on cloud data security – the first focuses

on processing of encrypted data and its ultimate goal is to allow arbitrary processing of

encrypted data without their actual decryption; the second approach focuses on storage

optimization techniques for encrypted data. While both areas seem similar (both attempt

to enable some mechanism for encrypted data), they differ notably and the requirements

are contradictory. The first typically requires more storage space to offer more generic

processing whereas the second focuses primarily on saving storage space. In our research,

we initially tried to tackle both areas at once, but since a general approach proved overly

1



CHAPTER 1. INTRODUCTION 2

conflicting, we chose to focus more on the latter approach – enabling storage space saving

and optimization techniques while retaining as high level of security as possible.

Encrypted data processing therefore falls out of scope of this thesis, though for people

interested in that area we recommend to start with the dissertation thesis of Craig Gen-

try [1] and follow with works that cite it and/or use the “homomorphic encryption” key

words.

A cloud provider can deploy various storage optimization techniques to save some

storage space. All share a common denominator – to save space, they exploit some

similarity in the data being stored. This is in direct contradiction with the user-required

data confidentiality, which requires that no information about the protected data can be

extracted. Additionally, considering encryption as the protection mechanism of choice

for data confidentiality, proper encryption generates ciphertexts with very high entropy,

reducing efficiency of any similarity- or equality-based storage optimization technique to

near-zero. To provide an example, we took a file that is likely to be heavily copied and

shared, encrypted it and then compared the files for similarities (for simplicity we used

the default Microsoft Word 2013 encryption and an on-line tool for binary comparison),

see Figure 1.1. As the results demonstrate, encryption using different keys produces

very different ciphertexts and thus plaintexts that are very similar (even equal) produce

ciphertexts with little-to-none similarity, effectively preventing deduplication.

Researching various storage-optimization techniques, we identified data deduplication

Figure 1.1: Demonstration of how encryption breaks similarities. Note that some minor
similarity remains even after encryption – this is caused by the Microsoft Word file format
that encrypts only text contents and properties, but leaves default templates and file
structure unchanged.
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as potential candidate for a secure storage-optimization scheme. Data deduplication is

an optimization technique that achieves enormous data reduction rate for some datasets

(e.g. over 99% reduction for typical backup scenarios [2]). Since multi-user cloud storage

services storing, among other data, popular songs, photos and movies seem to be a good

fit for highly-efficient deduplication, we analyze how encryption and data deduplication

can be combined to achieve both a storage-efficient and secure storage service.

Data deduplication is a process where the storage provider stores only a single copy

of a file (or its part) stored by several users. This way, if there are four owners of

an identical file, who all store the file using the same cloud-storage service, the cloud

provider can only store the file once, saving space equal to three-times the file size. To

avoid full-size file comparisons, deduplication uses indexes (sometimes also called tags or

locators). To obtain an index the file is first processed using an indexing function (typically

a collision-resistant hash function) and then the comparison is done using the indexes

instead of comparing entire files. Based on the location where the index computation

actually occurs, we differentiate between client-side and server-side deduplication. Client

side deduplication, as the name suggests, computes the index in the client application

and then sends only the index to the storage service. The storage service checks whether

it already has a file with this index stored, and if so, file upload is not necessary and

the client is just added as another owner of the already-stored file. This way, client-side

deduplication also benefits from network bandwidth savings – instead of transferring the

whole file, only the index is being transferred. Server-side deduplication requires the client

to upload the whole file, which is then processed on the provider-side.

While security was not an integral part of early deduplication designs, its need soon

became imminent with users requiring protection of their data. The first attempt to

combine encryption and deduplication to a “secure deduplication” solution came in 2002

under the term of convergent encryption [3]. Convergent encryption is a special form of

deterministic encryption, in which the encryption key is derived from the plaintext and

thus any owner of the same plaintext generates the same ciphertext. This way, if two users

encrypt the same file, they obtain the same encrypted file, which, in turn, can be dedu-

plicated when stored using the same storage service. Convergent encryption thus seems

like a perfect secure-deduplication solution – data is encrypted and, at the same time,

deduplication is possible. Unfortunately, convergent encryption was proven insecure [4].

Moreover, a follow-up work of Bellare et al. proved that a general impossibility result

holds stating that classic semantic security is not achievable for schemes implementing

plain convergent encryption [5]. Despite the general impossibility result, multiple research

teams refused to drop the secure deduplication idea, ours included.

Our core idea formed around a real-life assumption that “a secret shared many times
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ceases to be a secret”. Based on this assumption, we created the notion of “data popular-

ity” – if data (i.e. a file) is stored by a few users only, it is unpopular and should be well

protected; once data is stored by a certain threshold amount of users, it becomes popular

and the level of protection can be decreased. Arguably, if the user stores a copy of his

personal documents, his payslip or a draft of an unsubmitted scientific paper, there will

likely be not many more users (if any) storing the same file and the file remains unpopu-

lar and thus strongly protected. On the other hand, if the user stores a popular song or

video, there will likely be many more users storing it too – being already widely-shared,

such a file does not require such a strong protection and the level of protection can be

decreased. Note that this popularity-based differentiation also automatically solves the

issue how to automatically choose whether a file should or should not be deduplicated –

it is not necessary to split the files between those potentially sensitive that should not

be deduplicated and those that could, since all data are first considered unpopular (and

thus non-deduplicable) by design and change the state to popular automatically, once a

popularity condition is met.

The technical challenge is to design a solution that implements the data popularity idea

– the stronger protection required for unpopular data has to be some sort of semantically

secure encryption whereas the weaker protection must allow deduplication. We decided to

solve this challenge using two-layered encryption – the outer layer is semantically-secure

encryption and the inner layer convergent encryption. Once enough users share the same

file, the outer layer can be automatically peeled off, revealing the inner, convergent, layer.

Convergently encrypted file can then be immediately deduplicated. The trickiest part of

the process is the automatic transition of file from unpopular to popular – this requires

to be triggered by some event initiated either by the users themselves or by some trusted

third party. For simplicity, we decided to introduce a trusted third party in the initial

design, but later in the work we discuss ways how to reduce the data-related knowledge

and trust required by this third party.

Since our solution is quite complex by design, introducing a trusted third party and

two layers of encryption, in this work we include an overhead evaluation, demonstrating

its cost effectiveness (or ineffectiveness, for some cases). Also, as mentioned, there are

multiple other teams working on different secure deduplication solutions. After finalizing

and testing our solution, we have analyzed also the results of others and compared all

the different solutions using multiple factors. Interestingly, the comparison proved that

there is no clear winner – each solution has its own specific requirements, offers different

security notions and different efficiency for various datasets. We focused on identification

of the differences and offer discussion regarding suitability of the solutions for concrete

use cases based on various processing, security and dataset requirements and properties.
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The core contributions of this work can be summarized as follows:

• we present Eµ, enhanced threshold cryptosystem that leverages popularity and allows

fine-grained trade-off between security and storage efficiency and exploit it for the

construction of a secure deduplication scheme

• we analyze security of the proposed deduplication scheme and comment on its pos-

sible strengthening and its cost

• we provide analysis of scheme deduplication efficiency based on popularity properties

of real datasets

• we compare our secure deduplication scheme with other state-of-the-art schemes in

terms of security and efficiency and comment on their specific differences

The rest of this work is organized as follows: Chapter 2 describes the preliminary

knowledge, concepts and notation necessary for understanding the work; Chapter 3 sum-

marizes the history and evolution of secure date deduplication and lists related state-

of-the-art works; Chapter 4 provides an introductory overview of our scheme, including

the system and security models; Chapter 5 describes our secure deduplication scheme in

detail, listing scheme participants, properties and algorithms; Chapter 6 presents security

analysis of our scheme, including security proofs and alternative settings; Chapter 7 con-

sists of extensive performance evaluation of scheme properties and efficiency; and Chapter

8 concludes the work



Chapter 2

Preliminaries

In this chapter we describe the knowledge base that our secure deduplication solution

builds upon. Since the terms and notation often vary in the deduplication-oriented and

cryptography-oriented literature, we also define uniform terms and notation that will be

used throughout our work.

2.1 Data Deduplication

Data deduplication is a storage optimization technique aiming at, as the name suggests,

eliminating duplicities. The core idea of data deduplication is simple – if a dataset con-

tains some (part of) data in multiple copies then one can easily store only one copy of

such duplicate data and thus save storage space. Efficiency of deduplication is typically

expressed in the form of deduplication ratio (also called duplicity ratio) DR that is a ratio

of the original dataset size compared to the size after deduplication. The deduplication

process is depicted in Figure 2.1.

Figure 2.1: Illustration of the data deduplication process. Objects represent different files.
Deduplication ratio (DR) in the shown example is DR = 4 : 1.

6
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In practice, the trivial core deduplication idea gets a bit more complicated since the

implementation has to solve the issues of

1. identifying the duplicate data

2. removing the duplicate data

3. storing the information about the removed duplicate(s)

in some uniform and easy to manage way.

Identifying the duplicate data requires splitting the dataset into pieces that will be

compared for equality. Two typical approaches are file-based and chunk-based. File-

based approach simply compares the data on the file level – if some file in the dataset has

equal contents as some other file, contents are stored only once. Chunk-based approach is

more coarse-grained – each file is processed using some splitting function (typically a fixed-

offset partitioning or rolling hash) and the newly obtained chunks are then compared. The

advantage of file-based approach is simplicity in implementation and lesser computation

resource consumption, the advantage of chunk-based approach is better deduplication

ratio (since it is able to eliminate duplicates caused by minor in-file changes and common

in-file parts). Technically, each deduplication solution can work as file-based or chunk-

based, though chunk-based typically requires notably more effort, as the file-level dataset-

splitting offered by common filesystems needs to be refined by additional processing.

Another important aspect of identifying duplicate data is when and/or how often the

process is done. If we want to deduplicate an already existing dataset, we need to process

it as a whole at least once. However, if the dataset is only being formed and/or is dynam-

ically changing (as is typical for cloud storage services), it is more efficient to keep the

dataset always in a deduplicated state then to re-do the deduplication process of the whole

dataset once in a while. This approach is called on-line or real-time data deduplication –

each new piece of data that should be added to the dataset is first processed to obtain it’s

deduplication index (or indexes, if split to chunks), the index is then compared to a list

of already stored contents and if a hit is found, the data is deduplicated on-the-fly (note

that the index is sometimes also called tag or locator in deduplication-oriented literature).

There exists also a special version of on-line data deduplication that is called lazy or post-

poned where the duplicate existence is found in real-time but the actual deduplication

process is postponed until some special condition occurs. This special version is often

used in secure deduplication solutions.

Focusing on our cloud-based storage service scenario, there are two “deduplication

participants” – data producer (also called owner, source, client) and data consumer (cloud

storage service, often called just server). Based on where the processing required to find
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the duplicate data (i.e. splitting and index computation) is happening we speak about

client-side (source-based) or server-side (target-based) data deduplication. Client-side

requires more computing resources at the client but has the advantage that it is not

necessary to transfer the actual deduplicated data – only indexes are being sent to the

server if a hit is found, the file/chunk in question does not need to be transferred. Server-

side requires no computing resources at the client, as all processing is happening at the

server-side, though this requires that all data (even data that would be deduplicated)

needs to always be transferred from the client to the server.

Once the duplicate data has been identified the removal process is straightforward –

the duplicate data are either deleted from storage (if already stored) or simply not stored

(in the on-line deduplication case where identification precedes storing). However, this

causes the challenge of how to store information about the deleted/not stored duplicates.

If client A stored file F and client B wants to store the same file F and thus deduplication

occurs, the cloud storage service still has to record the information that client B is the

owner of file F as well. In practice this is often solved by decoupling the data and the

metadata information – data files (or chunks) are stored indexed by their deduplication

indexes in one copy only and metadata are stored and managed separately either in

some unique per-file per-client form or in some aggregate form, depending on the actual

storage capabilities and properties. Each data file must have a counter specifying how

many clients own it at a time. If the counter reaches zero, the file is deleted.

To sum-up, data deduplication can be either file-based or chunk-based (granularity

level) and either client-side or server-side (processing location). For secure deduplication

solutions, the granularity level is often less important and most of the solutions can work

in both versions, however, the processing location is of utmost importance as it typically

has direct influence on data security. Since it is necessary to formalize the descriptions,

we cover how to model deduplication in the next section.

2.1.1 Modeling Data Deduplication

To model deduplication in our cloud-based storage service scenario, we define the two

deduplication participants – a storage provider (S) that offers storage space with enabled

cross-user deduplication and a set of users (U) who store data content on the server.

For simplicity of notation, we assume that deduplication happens at the file level. Note

that to model chunk-level deduplication one can simply substitute chunk C instead of

file F . To identify files and detect duplicates, the scheme uses an indexing function I:

{0, 1}∗ → {0, 1}∗; we will refer to IF as the index for a given file F . As the metadata

is typically unimportant from the deduplication perspective (size should be marginal

compared to data), we simplify the storage provider’s back-end model as an associative
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array DBS mapping indexes produced by I to records of arbitrary length e.g. DBS[IF ] is

the record mapped to the index of file F . Each record contains two fields, DBS[IF ] .data

and DBS[IF ] .users. The first contains the content of file F , the second is a list of users

that have so far uploaded F . In practice, the DBS[IF ] .users list would be replaced by a

simple counter and the actual users would have their own metadata-based file abstractions

with file properties (such as date of creation/storage, size, date of modification, type etc.)

stored in a separate storage structure. Note that we only chose our simple model to easily

describe which users and how many do own the actual data contents of a file. Evolving the

simple model into a real cloud-based storage service structure scenario should nevertheless

be quite straightforward.

The storage provider and users interact using three user-invoked algorithms: Put, Get

and Delete. Depending on whether we are modeling client-side or server-side deduplica-

tion, the indexing function I is computed either by the client or by the server. In the

following algorithms we model the client-side version (server-side version can be directly

derived by substituting IF with F and adding I computation and IF propagation back

to the user in the Put algorithm):

Put(IF ,Ui, F ): user Ui sends IF to S. S checks whether DBS[IF ] exists and if so, appends

Ui to DBS[IF ] .users. Otherwise, it requests Ui to upload the content of F , which will

be assigned to DBS[IF ] .data. DBS[IF ] .users is then initialized with Ui.

Ui −→ S: IF , Ui

S: if(DBS[IF ] 6= ∅)
DBS[IF ].users← DBS[IF ].users ∪ {Ui}

else
Ui ←− S: provide file contents
Ui −→ S: F
S: DBS[IF ].data← F ; DBS[IF ].users← {Ui}

Figure 2.2: The Put(IF ,Ui, F ) algorithm.

Get(IF ,Ui): user Ui sends IF to S. The latter checks whether DBS[IF ] exists and whether

DBS[IF ] .users contains Ui. If it does, S responds with DBS[IF ] .data. Otherwise, it

answers with an error message.

Ui −→ S: IF , Ui

S: if(Ui ∈ DBS[IF ].users)
Ui ←− S: return DBS[IF ].data

else
Ui ←− S: return error

Figure 2.3: The Get(IF ,Ui) algorithm.
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Delete(IF ,Ui): user Ui sends IF to S. The latter checks whether DBS[IF ] exists and

whether DBS[IF ] .users contains Ui. If it does, S removes Ui from DBS[IF ] .users and

if the list is empty after the removal, whole record DBS[IF ] is deleted. Otherwise, it

answers with an error message.

Ui −→ S: IF , Ui

S: if(Ui ∈ DBS[IF ].users)
DBS[IF ].users← DBS[IF ].users \ {Ui}
if(DBS[IF ].users = ∅)

delete the whole DBS[IF ] record
else

Ui ←− S: return error

Figure 2.4: The Delete(IF ,Ui) algorithm.

2.2 Cryptography

To build our secure deduplication scheme we use many cryptographic schemes and prin-

ciples with multiple major and minor modifications. The core of our scheme is based

on symmetric and convergent encryption schemes that are combined in a thresholded

construct exploiting a secret sharing scheme. The secret sharing scheme principle is well

described in the literature [6], the rest of the building blocks are described in this section

(especially to unify notation and terminology).

2.2.1 Symmetric Cryptosystem

A symmetric cryptosystem E is defined as a tuple (K, E, D) of probabilistic polynomial-

time algorithms (assuming a security parameter 1λ). K stands for key derivation function

which takes security parameter 1λ as input and is used to generate a random secret key

k. E stands for encryption function which is used to encrypt a message m with key k and

generate a ciphertext c. D stands for decryption function that is used to decrypt c using

k to produce m. Note that the same key is used for message encryption and decryption

and thus both the user that encrypts and user that decrypts a message have to know the

same key k. Keeping k secret is a strong requirement for a symmetric encryption scheme

to remain secure.

The algorithms are defined as follows:

E .K(1λ)→ (k): generates random key k of bit-length 1λ

E .E(k,m)→ (c): takes as input a message m and produces its encrypted version c under

the key k.
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E .D(k, c) → (m): takes as input a ciphertext c and key k and outputs the cleartext

message m.

2.2.2 Convergent Encryption Scheme

A convergent encryption scheme Ec, also known as message-locked encryption scheme [7],

is similar to a symmetric cryptosystem – it is also defined as a tuple of three polynomial-

time algorithms (assuming a security parameter 1λ) (Ec.K, Ec.E, Ec.D). Differently to

a symmetric cryptosystem E and its key derivation function E .K generating random,

message-independent, keys, keys generated by Ec.K are a deterministic function of the

cleartext message m. As a direct consequence, multiple invocations of Ec.K and Ec.E
(on input of a given message m) produce identical keys and ciphertexts, respectively, as

output. Also note that since k is derived from m, a convergent encryption scheme cannot

pre-generate the encryption key without knowing the message m to be encrypted apriori.

We define the algorithms as follows (note that km specifies k corresponding to message

m):

Ec.K(1λ,m)→ (km): generates message-dependent key km of bit-length 1λ

Ec.E(km,m) → (c): takes as input a message m and produces its encrypted version c

under the key km.

Ec.D(km, c) → (m): takes as input a ciphertext c and key km and outputs the cleartext

message m.

2.2.3 Public-key Cryptosystem

A public-key cryptosystem Epk (often also called asymmetric cryptosystem) is very similar

to a symmetric cryptosystem, only instead of using one key k for both encryption and

decryption it uses a key pair consisting of two keys – a public key pk and a secret key sk.

Public-key cryptosystems do not require the public key to be kept secret (hence the name

public) and are often used as a core building block of a public key infrastructure (PKI) [8].

Since we do not need nor want to get lost in many different ways to exploit asymmetric

cryptosystems, we describe them in their simplest form and usage only defined by the

algorithms as follows:

Epk.K(1λ)→ (pk, sk): generates random keypair (pk, sk) of bit-length 1λ

Epk.E(pk,m) → (c): takes as input a message m and produces its encrypted version c

under the public key pk.
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Epk.D(sk, c) → (m): takes as input a ciphertext c and secret key sk and outputs the

cleartext message m.

2.2.4 Threshold Cryptosystem

Threshold cryptosystem is an evolution of a basic cryptosystem (symmetric or asymmet-

ric) that offers the ability to share the power of performing certain cryptographic opera-

tions (e.g. decrypting a message) among n authorized users, such that any t of them can

do it efficiently. Moreover, according to the security properties of threshold cryptosystems

it is computationally infeasible to perform these operations with fewer than t (authorized)

users.

Threshold ElGamal Cryptosystem A typical example of a threshold public-key cryp-

tosystem is a threshold variant of the popular ElGamal cryptosystem [9] where a threshold

number of users have to cooperate to be able to successfully decrypt a message. Same as

in the original non-threshold version, the threshold version is defined over a multiplicative

cyclic group G and its security is reduced on the discrete logarithm computation problem.

There is only one master secret of the system and each participant obtains a share of this

secret upon joining the system. Public key of the system is published openly. Every

participant can encrypt a message using the public key of the system. As no participant

knows the whole master secret key, decryption is only possible if t+ 1 participants coop-

erate. Labeling EtEG the threshold ElGamal cryptosystem, the following algorithms are

defined:

EtEG.Setup(1λ, n, t) → (pk, sk, S): generates an efficient description of a multiplicative

cyclic group G of order 1λ with generator g. Then it chooses an integer sk from

interval [1 ; 1λ − 1] and computes h = gsk. Public key pk = (G, q, g, h) is published,

secret key sk is distributed among participants in a (t+1)-out-of-n secret sharing

scheme (for example Shamirs’ scheme described in [6]). i-th participant gets share

ski of the master secret key.

EtEG.Encrypt(pk,m)→ (c): takes as input message m and produces its encrypted version

as follows: integer r is randomly chosen from interval [1 ; 1λ − 1] and c1 = gr is

computed. Next, hr is computed and used to form c2 = m ·hr. Ciphertext c is then

a tuple c = (c1 , c2).

EtEG.Decrypt(c) → (m): t+1 decryptors have to actively participate: i-th decryptor

computes a decryption share di = cski1 and provides a tuple (i, di). Once t+1 tuples

from different decryptors are collected, csk1 can be computed using the Lagrange



CHAPTER 2. PRELIMINARIES 13

formula
∏
i∈S

d
λS0,i
i =

∏
i∈S

c
skiλS0,i
1 = c

∑
i∈S

skiλS0,i

1 = csk1 . Finally, m can be decrypted since

c2 = m · hr thus m = c2 · hr and csk1 = gr
sk

= hr which gives m = c2 · csk1 .

Non-interactive Threshold Cryptosystem Threshold ElGamal cryptosystem is not

usable in situations where users cannot actively participate “on-line” when decryption is

required. For these situations a modification is required that allows the users to create so

called “decryption shares” that can be used during decryption without active participation

of the user. Here we provide a generalized description of such a modified threshold public-

key cryptosystem.

A non-interactive threshold public key cryptosystem Et is defined as a tuple (Setup,

Encrypt, DShare, Decrypt), consisting of four probabilistic polynomial-time algorithms (in

terms of a security parameter 1λ) with the following properties:

Et.Setup(1λ, n, t) → (pk, sk, S): generates the public key of the system pk, the corre-

sponding private key sk and a set S = {(ri, ski)}ni=1 of n pairs of key shares ski of

the private key with their indexes ri; key shares are secret, and are distributed to

authorized users; indexes do not need to be secret.

Et.Encrypt(pk,m)→ (c): takes as input a message m and produces its encrypted version

c under the public key pk.

Et.DShare(ri, ski, c) → (ri, dsi): takes as input a ciphertext c and a key share ski with its

index ri and produces a decryption share dsi.

Et.Decrypt(c, St) → (m): takes as input a ciphertext c, a set St = {(ri, dsi)} of t pairs of

decryption shares and indexes (e.g. |St| = t), and outputs the cleartext message m.



Chapter 3

Secure Data Deduplication –

Evolution, Properties and State of

the Art

In this chapter we first describe the issues related to secure data deduplication definition,

then specify the security goals of our secure deduplication solution and describe other

state of the art secure deduplication solutions with focus on how their approach differs

from our proposed solution.

3.1 Secure Data Deduplication

Whereas data deduplication is a well-known mechanism that is relatively simple to de-

scribe (see Section 2.1), secure data deduplication is an actively researched topic and there

is not even mutual agreement on what requirements a secure data deduplication scheme

should satisfy. This issue is caused mainly by the fact that there are multiple views of

“security” that notably differs in various scenarios. In this section we first demonstrate

this “inconsistency” issue via a short history overview, follow with the description of the

actual weakness of deduplication “causing all the problems” and finish with our view or

secure data deduplication requirements and targets, explaining why we chose them.

3.1.1 History of Convergent Encryption and Secure Data Dedu-

plication

Even though the idea to use deterministic keys computed from file contents to encrypt

the corresponding files is quite old (the first note that we were able to confirm is from

1996 mentioned by John Pettitt in the cypherpunks mailing list [10]), the first secure

14
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deduplication solution proposal based on convergent encryption including proper techni-

cal description and analysis was published by Douceur et al. in 2002 [3]. The aim of

convergent encryption was to combine data confidentiality with deduplication and the

implementation was straightforward – first convergently encrypt the file to be stored and

then compute the deduplication index of this file which is then used for equality matching

during deduplication. Since the index is computed over encrypted data, the knowledge of

the index should not be a problem.

For a few years, the convergent encryption-based approach seemed viable and was

adopted in actual production solutions such as Tahoe Least Authority File Storage [11]

or Dropbox [12]. However, in 2008 Drew Perttula was awarded the Hack-Tahoe-LAFS

award for finding a security issue caused by secure deduplication implemented in Tahoe-

LAFS. The issue allowed for the “Learn the Remaining Information Attack” – having a

partial file (e.g. well known document template) that is expected to be already stored in

the storage, the attacker can try to guess the unknown parts of the file and compute the

corresponding deduplication indexes of the “guessed files”; if a computed index results in

deduplication (corresponding file already stored in the storage) the guess is confirmed and

the attacker thus “learns contents of encrypted data” which should not be possible. See

Figure 3.1 for a spot-on weakness-documenting code snippet that Pertulla got printed on

a t-shirt as a reward.

In 2010, Harnik et al. published a paper [4] with a bit more thorough security analysis

of convergent encryption, pointing out several severe exploitations resulting in the possi-

bility to guess file contents (same as demonstrated by Perttula), use storage service as a

covert communication channel or exploit storage service as a content distribution network

(without consent or cooperation of the storage provider). Publication of these findings

led to forming of a new research area – secure data deduplication.

Figure 3.1: Code implementing a simple form of “Learn the Remaining Information At-
tack”. c© Allmydata & Drew Perttula.
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Different teams chose different strategies – some were trying to find “simple modifi-

cations” of deduplication solutions using convergent encryption to thwart (some of) the

attacks described by Harnik et al. [4], some focused on one or more of the concrete at-

tacks and developed independent solutions to thwart them without modifying the actual

convergent-encryption based secure deduplication solution itself. To stay compact, we

don’t describe the individual works here but in a follow-up Section 3.2.

The facts that most of the teams published their results labeled as “secure deduplica-

tion” schemes and solutions independently of whether they were addressing one/some/all

of the attacks described by Harnik et al., improving convergent encryption or coming with

an altogether novel secure deduplication solution, and that many of the “secure dedupli-

cation reviews” address all of the works together independently on their actual targets

confused the field a bit. To clarify our understanding of the “secure data deduplication”

term we first describe the principal weakness exploited by the attacks and then define a

few categories.

3.1.2 The “Weak Point” of Deduplication

For deduplication to work there has to be a mechanism that compares the data to find out

whether or not the same data was already stored before and thus can be deduplicated.

In our model of deduplication, the indexing function I is such a mechanism (see Sec-

tion 2.1.1). From a security standpoint, this mechanism must be perceived as information

leakage and forms the core weak point of simple deduplication, causing it to be generally

insecure.

Independently of whether deduplication (deduplication index computation) is done

by the client-side or by the server-side, the same principal “weakness” in secure dedu-

plication solution based solely on convergent encryption lies in the deterministic nature

of the index and of the encryption key, respectively. If the encryption keys were chosen

randomly (independently of the file contents), both the ciphertexts and the deduplica-

tion indexes for the same file encrypted twice would differ and deduplication would not

work. Convergent encryption “fixes” this by enforcing the encryption key (and thus also

the deduplication index) to be always the same for files with the same contents – key is

deterministically computed from file contents, encryption itself is deterministic and index

is, also deterministically, computed from the ciphertext. This creates a seemingly impos-

sible situation – a deduplication index deterministically dependent on the file contents

and known/shared with the storage provider must exist for deduplication to work yet the

dependency of the index on the file contents creates possibility of contents leakage and

thus must be eliminated.

Harnik et al. [4] focused in their analysis on the client-side (source-based) deduplica-
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tion only to stress the severity of the attacks (any user or even just a traffic observer can

mount the attack). Another valid argument was that source-based deduplication saves

not only storage space but also bandwidth, which is getting more and more important

with the proliferation of mobile devices and mobile Internet connection. We agree with

the arguments presented, though we stress that exactly the same attacks can be mounted

by the storage provider himself in case of server-side (target-based) deduplication. Tech-

nically, all the attacks can be prevented for a “normal” attacker (i.e. not the storage

provider) by using target-based instead of source-based deduplication. However, there

would still be the inquisitive doubts – can we trust the storage provider? And even if so,

should we do it?

3.1.3 Our Secure Data Deduplication Targets

When forming our view of secure data deduplication, we started with the evaluation of

“typical user needs”. Users own a lot of data that they want to store in a cloud storage

for various reasons (e.g. backup copies, ease of accessing data from multiple machines/in

multiple places). Some of the data is of personal nature and the users do not want anyone

to be able to access this data apart from them (e.g. family photos, payslips), some of the

data may be top secret (e.g. medical documentation, work files), some might be of no big

concern (e.g. application binaries, music hits). Users can be motivated to use a storage

service that uses data deduplication, even accepting to do some extra computations on

their side if it saves them time and/or money (e.g. lower prices for deduplicated data,

bandwidth savings by not uploading deduplicated data) but they require confidentiality

for their personal and secret data. Users do not blindly trust the storage provider that he

will not browse/share their data and want to have some provable mechanism for protecting

data confidentiality even from the storage provider himself. Additionally, users should not

be forced to manually classify files as confidential or non-confidential as that could be a

very tedious task, especially in backup scenarios.

Getting back to the weak point of deduplication – for deduplication to work, data must

be compared for equality but such a comparison always leaks information about the data.

Encrypting the data convergently does not help, encrypting the data non-deterministically

breaks deduplication. Simply put, data that require perfect confidentiality (in the sense of

semantic security [13]) should never be deduplicated, since deduplication inherently breaks

perfect confidentiality (a comparison mechanism i.e. a leakage has to exist). This impos-

sibility result seems obvious and was even formally described by Bellare et al. [7]. Apart

from the impossibility result, Bellare et al. described and formalized security notions

that are actually achievable with convergent encryption-like solutions. Unfortunately,

viewed from our typical user perspective, these notions are simply not strong-enough for
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confidential data – non-predictability is quite a hard assumption to accept generally.

Considering user requirements together with the impossibility result, we reached a

conclusion that a secure deduplication solution would need to make sure that confidential

data is never deduplicated and is protected by a semantically secure encryption (to prevent

any information leakage; apart from data size/length – we discuss this limitation in detail

later in the work). For the solution to actually also be “deduplication” and not just

“secure”, we also need a way to distinguish between confidential and non-confidential

data and make sure the non-confidential data gets deduplicated (if possible). Since we

specified in the user requirements that the user should not be forced to classify his/her

data manually, our target is to design a solution that would automatically distinguish

between confidential and non-confidential data and protect the confidential data on the

“semantic security level”, while protecting the non-confidential data on the “convergent

encryption level” that allows deduplication (more formal security definitions are available

in Section 6).

To achieve our target we construct a multi-layered encryption scheme exploiting the

popularity principle to distinguish between popular (“widely-known”) and thus non-

confidential and unpopular and thus potentially confidential data (Section 4). As noted

in the introduction of this section, since other teams researching secure deduplication set

different views and targets for their secure deduplication solutions, we provide extensive

comparison between our scheme and a few other representative secure deduplication works

both in terms of security and performance to demonstrate the similarities and differences

(Sections 6 and 7).

3.2 State of the Art – Related Work

3.2.1 Deduplication (Without Security)

Data deduplication is a very popular storage space optimization technique. Same as

other such techniques, the efficiency of deduplication is highly dependent on the dataset

it is being applied on – deduplication is totally ineffective for datasets composed solely

of unique data with no duplicates and can be very efficient for scenarios where datasets

contain a lot of duplicate data. A compact description of how to measure deduplication

efficiency and what it depends on was provided by Dutch [2]. Harnik et al. [14] commented

on the complexity of deduplication efficiency estimation and presented a novel algorithm

to estimate it, providing both formal and empirical results for their approach.

Many research works focused on the analysis of efficiency of deduplication itself, omit-

ting its (in)security. Meister and Brinkmann [15] studied the influence of different chunk-
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ing approaches on multiple levels and analyzed how changes in the dataset influence

deduplication efficiency based on the chosen chunking approach. Mandagere et al. [16]

provided a comprehensive deduplication taxonomy and compared the different dedupli-

cation approaches using real-world data, measuring not only deduplication efficiency but

also consumed system and time resources.

Aronovich et al. [17] focused on optimization of known deduplication strategies and

proposed a novel similarity-based deduplication system. Instead of using classical hash-

based indexing function for data comparison, the proposal uses a more cost-effective

solution based on similarity signatures and discusses the possibilities how to combine this

new approach with the existing one to optimize deduplication systems.

Zhao et al. [18] present a novel scalable deduplication file system for virtual machine

images. This work demonstrates that there are various ways of introducing deduplication

into cloud deployments to achieve better resource utilization.

3.2.2 Convergent Encryption

The first work that considered security in a deduplication setting was published by

Douceur et al. [3]. While the primary goal of the published research was to reclaim space

from duplicate files in a distributed file system, the work focused also on the possibility

how to combine data confidentiality (i.e. encryption) and deduplication and introduced

convergent encryption to be used for this purpose. It is worth noting that the information

leakage identified as exploitable later by Harnik et al. [4] was openly accepted by Douceur

et al.– their formal security proof was stating, that “convergent encryption deliberately

leaks a controlled amount of information” and they only proved that “we are not acciden-

tally leaking more information than we intend”. The leakage was not seen as a security

issue.

Storer et al. [19] published a paper introducing two secure data deduplication mod-

els – authenticated and anonymous. The protection mechanism of choice in both cases

was convergent encryption and, unfortunately, the security analysis was focusing on ad-

versaries attacking the storage service itself rather than analyzing the properties of the

underlying deterministic convergent encryption. The information-leakage-based attacks

were not considered.

Deduplication research took a major turn towards security in 2010 when Harnik et

al. [4] presented how information leakage caused by client-side (source-based) dedupli-

cation can be exploited to mount three types of attack – identifying files, learning file

contents and misusing a deduplication-enabled storage as a covert communication chan-

nel.

To prevent inadvertent omissions of risks stemming from convergent encryption, Bel-
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lare et al. [7] formalized convergent encryption under the name message-locked encryp-

tion. As expected, the security analysis presented in [7] highlights that message-locked

encryption offers confidentiality for unpredictable messages only, clearly failing to achieve

semantic security.

While not strictly security-oriented, Lou et al. [20] noticed that key management in

the convergent encryption setup can be quite challenging and aims to solve the problem

in an easy-to-handle way. The presented solution solves the key management issue quite

neatly though it does not address the security weakness of convergent encryption in any

way.

3.2.3 Secure Deduplication Solutions (post convergent encryp-

tion only)

Bellare et al. present DupLESS [5], a server-aided encryption for deduplicated stor-

age. Similarly to our proposed solution, DupLESS uses a modified convergent encryption

scheme with the aid of a secure component for key generation. In DupLESS, clients en-

crypt files using message-based keys obtained from a key-server via an oblivious PRF

protocol. This approach enables clients to store encrypted data with an existing storage

service, have the service perform deduplication on their behalf, and yet achieves strong

confidentiality guarantees.While DupLESS offers the possibility to securely use server-

side (target-based) deduplication, our scheme aims at secure client-side (source-based)

deduplication to take advantage of the bandwidth savings.

Puzio et al. [21] present ClouDedup, a solution based on convergent encryption strength-

ened by additional encryption provided by a trusted metadata manager. To achieve as

best efficiency as possible, ClouDedup offers fine-grained block-level deduplication and

addresses the related issue of key management by introducing another component han-

dling key management together with the actual per-block deduplication. The proposed

solution is technically similar to ours, but the metadata manager is quite complex and

also responsible for the actual data transfer, which we try to avoid to prevent existence

of a single point of potential data leakage.

Armknecht et al. present ClearBox [22], a gateway-aided encryption for deduplication

storage with built-in Proof of Ownership mechanism and transparent deduplication pat-

tern attestation. ClearBox extends the primary goal of securing data privacy by enabling

cloud users to verify the effective storage space that their data is occupying in the cloud,

and consequently to check whether they qualify for benefits such as price reductions, etc.

Our solution lacks the built-in PoW but offers additional flexibility for potentially sensi-

tive files – if their eventual deduplication is acceptable, the user does not have to treat
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them differently and they are still strongly protected while unpopular.

Liu et al. [23] present a solution based on a password-authenticated key-exchange

(PAKE) protocol to alleviate the need for a trusted third party. In a PAKE setup the

deduplication information is distributed among the users of the system and the users are

required to be on-line to participate in the deduplication process. This setting notably

limits the processing that needs to be handled by the storage provider and prevent an

honest but curious storage provider from getting contents of files stored by the users yet

it puts more processing and requirements on the users, needing them to participate when

deduplication of files that they also stored is required. Our solution aims to minimize the

necessity of user involvement, even though it does require a trusted third party to work.

Meye et al. [24] present a two-phase data deduplication scheme trying to solve the

known convergent encryption issues. While the work methodically addresses each issue

and presents per-issue solutions including proofs, the proposed solutions are often quite

inefficient with respect to practical usability (e.g. masking deduplication with bogus

transfer). We strive to address all the issues in a compact one-solution way.

Duan [25] presents a solution similar to that of DupLESS [5] but instead of a one-

component key server he suggests using a threshold scheme for pseudo-convergent key

generation. Using a threshold component is similar to our proposal, even though it is

used for a different purpose.

Xu et al. [26] present a Proof of Ownership-incorporating secure deduplication scheme

allowing client-side deduplication in a weak-bounded-leakage setting. Security proof in a

random oracle model for the solution is provided, however, the weak leakage setting is a

quite strong assumption and low-entropy files are not being addressed. Our solution aims

specifically to cover also the low-entropy files that pose the greatest risk in the “learning

file contents” attack.

Li et al. [27] present a solution based on hybrid cloud – trusted private cloud is used

for sensitive metadata management and public cloud is used for the actual data storage.

The solution provides authorized deduplication, adding user roles and priviliges to the

standard deduplication setting and additionally incorporates also the Proof of Ownership

mechanism. While provably secure in the presented security model, the solution requires

trusted private cloud and does not eliminate the vulnerabilities pointed out by Harnik et

al. [4] for users with overlapping privileges. Our solution aims to eliminate the mentioned

vulnerabilities for unpopular files.

Chia-Mu [28] presents two novel variants of secure deduplication schemes abbreviated

SDedup and XDedup. The schemes combine the approach of DupLESS [5] with the

approach of Liu et al. [23] and are based on a Merkle puzzle. While being secure against

user-adversaries, the cloud storage provider is given the deduplication index of the stored
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files allowing him to mount attacks based on this information.

3.2.4 Proofs of Ownership (PoW)

Apart from attacks identified by Harnik et al. [4] one more attack vector against source-

based deduplication was identified by Halevi et al. [29] – deduplication allows to obtain a

potentially large file stored by a legitimate user by presenting only the short deduplication

index. Since deduplication identifies files via indexes, a user that does not own a file but

possesses its deduplication index can falsely ask to store the file identified by this index.

Since deduplication is enabled, the actual file upload would not be required and the user

will become one of the legitimate owners of the file and can thus download it from the

storage. Note that the same weakness can be used to misuse a deduplication-enabled

storage as a content distribution network (upload file once, distribute hash, download

many times). To thwart such attacks, Halevi et al. [29] introduced the concept of Proof

of Ownership (PoW) – the user is first required to prove that he really has the file before

the file is deduplicated and he is accepted as its rightful owner.

The proofs of ownership were researched e.g. by DiPietro and Sorniotti [30], dif-

ferent variants were suggested and optimized [31]. Note that while mitigating another

deduplication weakness, proofs of ownership are somewhat parallel to the “core” secure

deduplication research as they do not target the issue of end-user data confidentiality.

Indeed, PoWs can be often used along the other listed secure deduplication solutions

(with some exceptions that already bundle them in the solution, such as the works by

Armknecht et al. [22], Xu et al. [26] or Li et al. [27]).



Chapter 4

Proposed Solution – Principles and

Overview

This chapter provides a compact overview of our proposed secure data deduplication

solution, summarizing the requirements it tries to satisfy and the principles employed

to do so. We start with a short explanation of suitability of our solution for different

scenarios and follow with a description of the core principle our solution builds upon and

how the whole proposed secure data deduplication scheme is organized.

4.1 Introduction

As the analyses demonstrated (e.g. [2, 14]), efficiency of each deduplication system is

highly dependent on the actual type (and structure) of data expected to be stored. Our

secure data deduplication solution was designed with the idea of popular multi-user cloud

data storages in mind but is generally applicable in many scenarios where cross-user

deduplication is deployed. In this respect, our scheme was tailored specifically for datasets

likely to contain relatively few instances of some data items and many instances of others

which is what we expect from a typical multi-user cloud data storage. Other scenarios

where our solution is expected to have good efficiency are e.g. those working with datasets

generated by backup tools for multiple machines and users, hypervisors handling linked

clones of VM-images for many clients and alike. Notice that the more duplicates there are

in the dataset, the better efficiency of our solution is. On the other hand the efficiency

of our solution would be very low for scenarios with low numbers of users or with low

presence of duplicates. We analyse the efficiency in-detail in Section 7.

The main intuition behind our scheme is that, in general, different data require dif-

ferent degrees of protection. Indeed, organizations such as governments, agencies and

companies typically do have a classification system that categorizes every file based on

23
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its contents into a clearly-defined class (e.g. top secret, confidential, public) and do have

policies corresponding to these categories (e.g. top secret must be always encrypted by

AES-256-CBC in transit and storage and must never leave the secure perimeter of the

intranet; public is published on the web in documents archive). Unfortunately, in the case

of user-managed data there are typically no classes and no universal metrics, recommen-

dations or algorithms that could be used to categorize data. Even worse, it is practically

impossible to design such sorting mechanisms based on the data contents only since the

required degree of protection is typically unique per-file. To give an example – a computer

game configuration file would likely be less important than a personal photo, unless the

file was tuned by the gamer specifically to give him an edge in the game and the photo is

already published on multiple social networks, in which case the importance is reversed.

To solve this “unsolvable” issue, we propose a popularity principle for categorization –

instead of deciding based on data contents, we suggest deciding based on how popular a

datum is (e.g. how many users already own it).

The popularity principle is an implementation of the saying that “open secret is not

a secret”. Phrased differently, if “almost everyone already knows it”, there is no point

in trying to keep it secret. Based on this principle, data can be either categorized as

unpopular (known/owned by a few users only) which require strong protection or as

popular (known/owned by many users) which do not require such a strong protection (still

some protection can be useful; even popular data must not be “given for free to anyone”).

In the world of multi-user cloud storage services, the implementation is straightforward

in theory – protect the data “strongly” until they are uploaded by “enough” users and

then weaken the protection. And that is exactly what we propose in our secure data

deduplication scheme: defining what is “strong protection”, “weak protection” and how

to set the “engouh” a bit more formally.

To implement the data classification idea and the popularity principle in our secure

data deduplication solution we use a cryptographic construct called multi-layered cryp-

tosystem. All files are initially declared unpopular and are encrypted with two layers, as

illustrated in Figure 4.1: the inner layer is applied using convergent encryption (“weaker

encryption”), whereas the outer layer is applied using a semantically secure cryptosystem

(“stronger encryption”). Uploaders of an unpopular file provide not only the ciphertext

but also a decryption share usable to reconstruct the key for the upper encryption layer

once enough shares are collected. The decryption shares are stored together with their

convergent index (i.e. hash of their convergent ciphertext) by a trusted third party (TTP).

In this way, when sufficient distinct copies of an unpopular file have been uploaded, the

upper layer can be removed. This step has two consequences:

1. security notion for the now popular file is downgraded from semantic to standard
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Figure 4.1: The multi-layered cryptosystem used in our scheme. Unpopular files (F2 and
F3) are protected using two layers, whereas for popular files (F1 and F4), the outer layer
can be removed. The inner layer is obtained through convergent encryption that generates
identical ciphertext at each invocation on the same file. The outer layer (for unpopular
files) is obtained through a semantically secure cryptosystem.

convergent (see [7]), and

2. properties of the remaining convergent encryption layer allow deduplication to hap-

pen naturally.

Security is thus traded for storage efficiency, as for every file that transits from unpopular

to popular status, storage space can be reclaimed. Once a file reaches the popular status,

space is reclaimed for the copies uploaded so far, and normal deduplication can take place

for future copies.

There are two further challenges in the secure design of this scheme. Firstly, without

proper identity management, Sybil attacks [32] could be mounted by spawning sufficient

Sybil accounts to force a file to become popular: in this way, the semantically secure

encryption layer could be forced off and information could be inferred on the content of

the file, whose only remaining protection is the weaker convergent layer. While this is

acceptable for popular files (provided that storage efficiency is an objective), it is not

for unpopular files whose content – we postulate – has to enjoy stronger protection. The

second issue relates to the need of every deduplicating system to group uploads of the same

content. In client-side (source-based) deduplicating systems, this is usually accomplished

through an index (also called tag or locator) computed deterministically from the content

of the file so that all uploading users compute the same. The client then provides only the

index to the storage provider who checks whether he already stores data associated to the

same index. If so, data upload is unnecessary. However, the index leaks information about



CHAPTER 4. PROPOSED SOLUTION – PRINCIPLES AND OVERVIEW 26

the content of the file and therefore violates semantic security which is unacceptable for

unpopular files. Deduplication systems using plain convergent encryption compute the

index from the convergent ciphertext, thus the same weakness holds. We tackle these

issues by introducing two additional entities in our system model.

4.2 System Model

Our solution focuses primarily on the scenario of multi-user cloud storage services and

requires strict user authentication and obfuscation of the deduplication index (see Sec-

tion 4.1). Our system model is composed of:

• users of the system (physical beings)

• a set of user identities Ui ∈ U identifying users participating in the system (using

the cloud storage service)

• storage provider S offering storage services

• identity provider (IdP) is a trusted third party (TTP) deploying a strict user

identity control and hinders Sybil attacks

• index repository service (IRS) is a TTP providing secure indexation for unpop-

ular files

A user who wants to start using the storage service is required to register by the IdP to

be assigned a user identity Ui used during interaction with other system participants. As

the user, as physical entity, is not identified by any other means than by user identity Ui

(in this work), we often simply refer to “user Ui” meaning the user that was assigned user

identity Ui by IdP when joining the system. The actual implementation of IdP or concrete

structure of the user identity are transparent from the system point of view and can be

implemented by any existing registration mechanism. The only requirement is that IdP

does not assign multiple identites to one physical user. Similarly, S stands for the storage

provider, but is often used meaning the storage provider service as a whole.

Once the user joins the system he can start using the storage service. A file is iden-

tified within S via a unique file identifier (I), which is issued by the index repository

service IRS during the file upload process. The IRS also maintains a record of how many

distinct users have uploaded a file and stores also the associated decryption shares. The

concrete algorithms provided by the system are described in Section 5, an overview of

user interaction during the registration process and during an unpopular file upload are

shown in Figure 4.2.
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Figure 4.2: Illustration of our system model. The schematic shows the main four entities
and their interaction for registration and unpopular file upload process.

4.3 Security Model

The primary objective of our scheme is the confidentiality of user content. Specifically,

two different security notions, depending on the nature of each datum, are achieved:

1. Semantic security [13] for unpopular data;

2. Conventional convergent security [7] for popular data.

Note that integrity and data origin authentication exceed the scope of this work. The issue

of deduplication index misuse to fake data ownership is also not addressed inherently by

our scheme, but many of the proposed proof of ownership solutions [29–31] are compatible

with our scheme and can be deployed to address this issue.

In our security model, the storage provider S is honest but curious (HBC) – he is

trusted to reliably store data on behalf of users and make it available to any user upon

request but might be interested in compromising the confidentiality of user content or

controlled by the adversary. We also assume that the adversary can control (corrupt) up

to nA users and that the goal of the adversary is only limited to breaking the confidentiality

of content uploaded by honest users.

To be able to model security formally, we need to first formally define popularity. We

introduce a system-wide popularity limit, plim, which represents the smallest number of

distinct, legitimate users that need to upload a given file F for that file to be declared

popular. Note that plim does not account for malicious uploads. Based on plim and nA, we

can then introduce the threshold t of our system, which is set to be t ≥ plim +nA. Setting

the global system threshold to t ensures that the adversary cannot use its control over

nA users to subvert the popularity mechanism and force an unpopular file of its choice to
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become popular. A file shall therefore be declared popular when at least t uploads for it

have taken place. Note that this accounts for nA possibly malicious uploads.

Fixing a single threshold t arguably reduces the flexibility of the scheme. While for

the sake of simplicity of notation we stick to a single threshold in our work, extension to

multiple thresholds is possible quite straightforwardly albeit for the cost of performance

decrease. The simplest way of relaxing the single-threshold requirement would be to create

multiple instances of the scheme, each with different values of t, and issue as many keys to

each user. Naturally, the higher the value of threshold t, the more copies are required for

a file to become popular. Storage provider could use this difference e.g. to set different

pricing levels (higher t means more storage required, means more expensive). Users are

then free to choose the threshold that best fits their need (e.g. highest for financial data,

lowest for common stuff etc.). Note that a file uploaded with a given threshold t1 does

not count towards popularity for the same file uploaded with a different threshold t2

(necessary performance decrease since otherwise malicious users could easily compromise

the popularity principle to extract information of a file encrypted with higher threshold

using the lower threshold). Additionally, a label identifying the chosen threshold (which

does not leak other information) must be uploaded together with the ciphertext and the

index repository service needs to be modified to keep indexes for a given file and threshold

separate from those of the same file but different thresholds.

The IRS and IdP are modeled as trusted third parties (TTP) and thus assumed to

be trusted and to abide by the protocol specifications. If either of these components

gets compromised by the adversary then the security of all user content is degraded to

standard conventional convergent security (i.e. the semantic security of unpopular files is

lost). We provide more detailed analysis of potential corruption consequences and discuss

possibilities how to alleviate this limitation in Section 6.



Chapter 5

Proposed Solution – Algorithms and

Implementation

In this chapter we describe a secure deduplication scheme based on the concept of popu-

larity. Our scheme guarantees semantic security for unpopular data (where deduplication

is not possible) and enables their automatic transparent transition to only convergently

encrypted (and thus deduplicable) popular data.

The core of the scheme is formed by a threshold convergent cryptosystem Eµ described

in Section 5.1 and two trusted third parties – the identity provider IdP and the index

repository service IRS described in Section 5.2. The scheme as a whole is presented in

Section 5.3 together with the algorithms it is composed of.

5.1 Threshold Convergent Cryptosystem Eµ
Eµ is a special-purpose threshold cryptosystem that allows all users to encrypt arbitrary

messages m of fixed length λ associated with some label ` in such a way that once

enough (more than some threshold t) of the users provide their decryption shares (created

using the same label `), all the messages associated with ` can be decrypted. Differently

from classic threshold cryptosystems described in Section 2.2.4, the Encrypt interface now

includes the added label ` and the decryption process is designed to be non-interactive.

Additionally, modification of the DShare interface is required – the decryption share is

created using the label l instead of using the ciphertext c and is stored in some repository

(separately from the ciphertext) until required for decryption. Note that the modifications

enable multiple different plaintext messages to be associated with the same label during

encryption and thus the same decryption shares (once enough are collected) can be used

to decrypt all of them. This makes the cryptosystem flexible and usable in different

scenarios, even though we do not use this property in our scheme.

29
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For the purpose of the Eµ cryptosystem as well as in the remainder of this paper we

will make use of Λ = {λ, q,G1,G2,GT , g, ḡ, ê} where λ is a security parameter which corre-

sponds to the bitlength of the exploited symmetric encryption scheme key and determines

the bitsize of prime q (for 128-bit security one would set λ to 128 and bitsize of q two

times larger i.e. |q| = 256 as recommended in the literature [33, 34]). G1,G2,GT are pair-

ing groups satisfying the Symmetric eXternal Diffie–Hellman (SXDH) assumption [35];

G1 = 〈g〉, G2 = 〈ḡ〉 are of prime order q, and ê : G1 × G2 → GT is an efficiently com-

putable, non-degenerate bilinear pairing. SXDH requires the decisional Diffie–Hellman

problem (DDH) to be intractable in both G1 and G2. We will also use two cryptographic

hash functions H1 : {0, 1}∗ → G1 and H2 : GT → {0, 1}λ, a semantically secure symmetric

cryptosystem E and a convergent encryption scheme Ec. t is used to denote the threshold

i.e. the number of decryption shares necessary to decrypt a ciphertext (both decryption

shares and ciphertext must be generated using the same label `).

Cryptosystem Eµ is defined as a tuple (Setup, Encrypt, DShare, Decrypt), consisting of

four probabilistic polynomial-time algorithms (in terms of a security parameter 1λ) with

the following properties:

Eµ.Setup
(
λ, n, t

)
→
(
pk, sk,

{(
ri, ski

)}n
i=1

)
: at first, Λ is generated as described in the pre-

vious paragraph. Next, let secret key sk←R Z and generate n key shares
{(

ri, ski

)}n
i=1

such that any set of t shares can be used to reconstruct sk [6]. Also, let ḡpub ← ḡsk.

Public key pk is set to
{

Λ, H1, H2, ḡpub
}

Eµ.Encrypt
(
pk, `,m

)
→
(
c
)
: Let r ←R Z and let E ← ê

(
H1

(
`
)
, ḡpub

)r
. Next, set

c1 ← H2

(
E
)
⊕m, c2 ← ḡr. Compose the ciphertext c as

(
c1, c2

)
.

Eµ.DShare
(
ri, ski, `

)
→
(
ri, dsi

)
: let dsi ← H1

(
`
)ski .

Eµ.Decrypt
(
c; St =

{(
ri, dsi)

})
→
(
m
)
: parse c as

(
c1, c2

)
. Using all decryption shares in

St compute

∏
(ri,dsi)∈St

dsi
λ
St
0,ri =

∏
(ri,ski)∈S

′
t

H1(`)
skiλ

St
0,ri = H1(`)

∑
(ri,ski)∈S

′
t

skiλ
St
0,ri

= H1(`)
sk

where λSt0,ri are the Lagrangian coefficients of the polynomial with interpolation points

from the set S
′
t = {(rij , skij)}t−1j=0. Note that sk cannot be reconstructed from neither

the decryption shares nor from H1(`)
sk.

Thanks to the properties of bilinear pairings it holds that:

∀x : ê (H1(`)
x, ḡr) = ê (H1(`), ḡ)rx = ê (H1(`), ḡ

x)r



CHAPTER 5. PROPOSED SOLUTION – ALGORITHMS AND IMPL. 31

Setting x = sk, we get:

ê
(
H1(`)

sk, ḡr
)

= ê (H1(`), ḡ)rsk = ê (H1(`), ḡ
x)sk

Using c1 = H2

(
E
)
⊕m, c2 = ḡr and H1(`)

sk we can now decrypt m by computing

Ê as ê
(
H1(`)

sk, c2
)

and m = c1 ⊕H2(Ê).

This equality satisfies considerations on the correctness of Eµ.

Eµ has a few noteworthy properties:

1. The decryption algorithm is non-interactive, meaning that it does not require live

participation of the entities that executed the Eµ.DShare algorithm;

2. It mimics convergent encryption in that the decryption shares are deterministically

dependent on the plaintext label. However, in contrast to plain convergent encryp-

tion, the label does not need to be related to the actual message being encrypted

in any way and if it is not (such as in our scheme presented in the next section), it

cannot leak any information about it;

3. The cryptosystem can be reused for an arbitrary number of messages, i.e., the

Eµ.Setup algorithm should only be executed once.

Finally, note that it is possible to generate more shares skj (j > n) anytime after the

execution of the Eµ.Setup algorithm, to allow new users to join the system even if all the

original n key-shares were already assigned.

5.2 The Role of Scheme Participants

Apart from typical deduplication scheme participants – the user wanting to store his

data remotely and the storage provider offering his service and wanting to benefit from

deduplication, our scheme requires the presence of two additional entities – the identity

provider IdP and the index repository service IRS.

IdP serves as the identity authority as well as the trusted dealer of the secret shares

of the Eµ master secret. Upon scheme deployment, IdP is responsible for execution of

Eµ.Setup. Each user interacts with IdP only once, when joining the scheme, and the

interaction only includes IdP ensuring that the user is new (i.e. hasn’t participated in

the scheme yet) and providing the identity credentials and secret share. Security-wise,

IdP is used to hinder exploitation of the threshold cryptosystem Eµ by means of Sybil

attacks [32] and master secret leakage.
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IRS serves as a secure index generator and decryption share storage. To store data, IRS

maintains an associative array DBIRS[IFc ] with three fields: DBIRS[IFc ].ctr - counter keeping

track of how many different users uploaded data to this record; DBIRS[IFc ].idxes - random

index used by the user to identify data corresponding to encrypted Fc in the storage

provider space; DBIRS[IF ].dshares - decryption shares associated with IFc . The array

is initialized empty and the records are added according to GenSecIdx implementation

(Figure 5.1). The associative array is indexed by IF defined in Section 4.2. IF is then

disclosed to the storage provider S during Put. Being generated deterministically, IF
leaks information about file contents (notice that convergent encryption does not fix this

leakage since the encryption is deterministic too). IRS is used to prevent this leakage

by offering its secure index generation service GenSecIdx (Figure 5.1) to the user – for a

(leaky) convergent index IFc the user is given a random index Irnd. Note that if the user

invokes GenSecIdx more times with the same IFc he will always get the same index Irnd
and the popularity counter will not increase. This prevents potentially corrupted user to

force state transition of an unpopular file. Another, albeit much more limited, leakage

could occur through the decryption shares used in Eµ– encryptions using the same ` (and

pk) by the same user Ui produce equal decryption shares, thus leaking information that

the ciphertexts were encrypted using the same label. To prevent this leakage, instead of

storing the decryption share together with the ciphertext to S, we store it separately to

IRS. To suit the needs of our scheme, the decryption share store request is grouped with

the secure index generation request in GenSecIdx. Additionally, if the stored decryption

share was not yet used in the decryption process, the user is allowed to delete it from IRS

via RemDShare (Figure 5.2).

IRS: if (DBIRS[IFc ].ctr ≥ t)
IRS −→ Ui: return IFc
IRS: Irnd ← PRF(σ,Ui||IFc)

if (Irnd /∈ DBIRS[IFc ].idxes)
increment DBIRS[IFc ].ctr
add Irnd to DBIRS[IFc ].idxes
add (ri, dsi) to DBIRS[IFc ].dshares

if (DBIRS[IFc ].ctr = t)
IRS −→ S: Deduplicate(DBIRS[IFc ].idxes,

DBIRS[IFc ].dshares)
IRS −→ Ui: return Irnd

Figure 5.1: The GenSecIdx(IFc , (ri, dsi)) algorithm. Popularity is evaluated by comparison
of per-index counter and threshold t. Behaviour corresponding to a popular file index is
highlighted in green (the lightest color), unpopular file index part is in blue (the darkest
color) and part corresponding to popularity switch is in red.Note that the last line is com-
mon to both unpopular and switching state situations. The complementary Deduplicate
implementation is described in Section 5.3.
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IRS: if(Irnd ∈ DBIRS[IFc ].idxes)
with DBIRS[IFc ] do
.idxes← .idxes \ {Irnd}
.dshares← .dshares \ (ri, dsi)
.ctr← .ctr − 1

Figure 5.2: The RemDShare(IFc , Irnd, ri) algorithm.

Implementation-wise, IRS uses a Pseudo-Random Function (PRF) that takes a concate-

nation of the requesting user identity Ui and convergent index IFc on the input (domain),

uses a secret seed σ of length λ (key) and produces a random index Irnd (range) i.e.

PRF : {0, 1}λ×{0, 1}|Ui|+κ → {0, 1}κ. σ is generated upon IRS instantiation once and used

in each invocation of PRF, to assure that same input always generates same output.

5.3 Storage Scheme

We formally introduce our scheme, detailing the interactions between a set of n users Ui,

a storage provider S and the two trusted entities, the identity provider IdP and the index

repository service IRS.

S is modeled as an indexed associative array DBS supporting the Put, Get and Delete

operations, same as the deduplication model described in Section 2.1. IRS is modeled as

described in Section 5.2. Examples of the the records maintained by S and the records of

IRS are available in Fig. 5.3.

E is a semantically secure (indistinguishable under chosen-plaintext attack; IND-CPA)

symmetric cryptosystem and Ec is a convergent encryption scheme (see Section 2.2). Eµ
is our convergent threshold cryptosystem.

When a new user wants to join the scheme, she contacts IdP in a secure way. IdP

verifies her identity; upon successful verification, it issues user credentials Ui and a secret

IRS

index ctr idxes dshares

1A35BC127CC36958 51 ∅ ∅

82090A161718192A 2
{A112927132910012, {(1302;1A85227..),
C05B228C48371BC7} (0124;545D114..)}

S

index data owners

1A35BC127CC36958 1B100510955476AC4125.. 0015,0098,1023,..
A112927132910012 DD845A3362C5487FF14.. 1302
C05B228C48371BC7 1CAA5767052A4443720.. 0124

Figure 5.3: Examples of S and IRS records. Note that threshold t is set to 50 for this
example. Index starting 1A represents a popular file, Index starting 82 an unpopular file.
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key share ski (generating a brand new ski if necessary). From this point onwards, the user

becomes the user Ui towards other participants in the scheme.

For simplicity and clarity, the core API offers only three user-invoked algorithms –

Upload to put data into the storage, Download to get data from the storage and Remove

to erase data from the storage. To keep complexity at a reasonable level we intentionally

do not provide extended API, but any functionality achievable in classic deduplication

schemes should be achievable in our scheme too since the scheme design does not generally

limit the functionality.

The initial deployment of the scheme starts with the Init algorithm:

Init: IdP executes Eµ.Setup, publishes the public key pk and keeps key shares {ski}n−1i=0

secret. The algorithm is run only once throughout the whole lifetime of the scheme.

Invoking Init again corresponds to deployment of a new scheme.

Once the scheme is initialized, all interaction is always started by the user invoking

once of the three following algorithms:

Upload(F,Ui)[Fig. 5.4]: The user Ui encrypts file F convergently and generates the index

IFc which he uses in request to IRS.

If IRS returns the index unchanged then the file is already popular and the

following Put operation only adds the invoking user into the list of owners for file

Fc, no data upload occurs. The user then stores the index IFc and the convergent

key kc to be able to download his file in the future.

If IRS returns a different index Irnd then the file is unpopular and it is neces-

sary to encrypt the convergent ciphertext again, using a random key k and encrypt

the random key k using the convergent threshold cryptosystem with label Fc. The

doubly-encrypted file together with the encrypted random key are then transferred

to the storage during the Put operation. This way, the unpopular file will be se-

mantically secure until there are more than t of its copies uploaded. The user stores

the index obtained from the IRS and the random key together with the convergent

key and the convergent index.

Note that transition from unpopular to popular state is indeed triggered by the

Upload algorithm but does not influence its actual processing. Upload is always

processed the same way as described in Fig. 5.4. If the file state transition (dedu-

plication) is to take place it is triggered during GenSecIdx processing and managed

by Deduplicate (see Fig. 5.1 and Fig. 5.7)

Note that additional strengthening measures can be deployed at S to improve the

security provided (such as PoW [29] that allow checking, whether the user really

owns the popular file he tries to upload).
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Ui: kc ← Ec.K(F )
Fc ← Ec.E(kc, F )
IFc ← I(Fc)
(ri, dsi)← Eµ.DShare(ri, ski, Fc)

Ui −→ IRS: Iret ← GenSecIdx(IFc , (ri, dsi))
Ui: if(Iret = IFc)
Ui −→ S: Put(IFc ,Ui, Fc)
Ui: F ← (kc, IFc)

else
Ui: k ← E .K();

c← E .E(k, Fc)
cµ ← Eµ.Encrypt(pk, Fc, k)
F ′ ← (c, cµ)

Ui −→ S: Put(Iret,Ui, F
′)

Ui: F ← (k, Iret, kc, IFc)

Figure 5.4: The Upload(F,Ui) algorithm. Popular file upload part is highlighted in green
(lighter color), unpopular file upload part in blue (darker color).

Download(F,Ui)[Fig. 5.5]: If the user uploaded the file as unpopular (i.e. F = (k, Iret, kc,
IFc)) he first tries to get it from the Iret index location. If he succeeds, he can decrypt

the unpopular content to recover his file. If he fails, the file must have gotten popular

in the meantime so he replaces F (i.e. F = (kc, IFc)) and retries the download. If

the file is popular, the user gets the popular content from IFc and he can decrypt it

to recover his file.

Ui: if(F = (k, Iret, kc, IFc))
Ui −→ S: ret← Get(Iret,Ui)
Ui: if(ret 6= error)

ret → (c, cµ); Fc ← E .D(k, c)
F ← Ec.D(kc, Fc)

else
F ← (kc, IFc); Download(F,Ui)

else
Ui −→ S: ret← Get(IFc ,Ui)
Ui: if(ret = error)

download failed
else

ret → Fc; F ← Ec.D(kc, Fc)

Figure 5.5: The Download(F,Ui) algorithm. Unpopular file download part is highlighted
in blue (the darkest color), part corresponding to file switch caused by the file being
uploaded as unpopular but changed status to popular before download is in red and
popular file download part is in green (the lightest color).
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Remove(F,Ui)[Fig. 5.6]: If the file is unpopular, the user first tries to delete it as un-

popular (i.e. invokes Delete(Iret,Ui)) and, if he succeeds, he additionally requests

removal of his decryption share from the IRS database. If he fails then the file

got popular in the meantime and he deletes it as popular. Popular file deletion is

straight invocation of Delete(IFc ,Ui).

Note that a file that is popular can never become unpopular again and the Remove

algorithm is designed to prohibit such a transition. Allowing a popular file to become

unpopular would break the scheme security properties.

Notice that secure deletion of content requires storage provider S to be trusted, while

it is “honest but curious” in our setting. Therefore S may well pretend to delete

the actual content, and yet store it for later information extraction (notice that this

makes sense for unpopular files only). However, the index repository service, which

is a trusted entity, would perform the deletion step honestly by removing the random

index and the corresponding decryption share generated for the file and decreasing

the popularity. This alone however does not guarantee any security. Indeed, we

may be faced with the scenario in which the popularity threshold has not yet been

reached (that is, the storage provider has not been given the set of indexes), and yet

more than t encrypted contents exist at unknown locations (since S didn’t delete

some of them when it properly should). However, since S does not know which

indexes are the “right ones” and the ciphertexts cannot be linked by any means

(no information can be extracted, as we prove in section 6), the only gain for S for

not deleting the file contents when supposed to is to have some storage occupied by

useless data (useless since the legitimate user who wanted to download it deletes his

local copies of decryption keys and thus the encrypted data become irrecoverable).

Ui: if(F = (k, Iret, kc, IFc))
Ui −→ S: ret← Delete(Iret,Ui)
Ui: if(ret 6= error)

RemDShare(IFc , Iret, ri)
else
F ← (kc, IFc); Remove(F,Ui)

else
ret← Delete(IFc ,Ui)

if(ret = error)
remove failed

Figure 5.6: The Remove(F,Ui) algorithm. Unpopular file remove part is highlighted in
blue (the darkest color), part corresponding to file switch caused by the file being uploaded
as unpopular but changed status to popular before removal is in red and popular file
remove part is in green (the lightest color).
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Deduplicate(idxes, dshares)[Fig. 5.7]: With the deduplication request from IRS, S receives

t indexes and t decryption shares. S checks that records for all provided indexes

exist and if not, it waits (synchronization purpose, waiting for the last copy of F

to be uploaded). S recovers the decryption keys using the decryption shares and

decrypts all the data contents of all the indexes provided in the notification (for

performance reasons, decryption of a subset of indexes is preferable). As a result,

S ideally obtains t equal convergent ciphertexts, computes the “convergent index”

IFc = I(Fc), stores the ciphertext to a new record under the convergent index IFc
and deletes all the now-excessive copies. If the convergent ciphertexts differ then

some of the uploading users must have cheated; S aborts deduplication and leaves

the stored files unmodified. Optionally, S could notify IRS that deduplication failed

and allow it to collect additional decryption shares before trying deduplication again.

S: F ← ∅; U ← ∅
foreach(Ii ∈ idxes)

(c, cµ)← DBS[Ii].data
K ← Eµ.Decrypt(cµ, dshares)
Fc ← E .D(k, c)
F ← F ∪ {Fc}; U ← U ∪ DBS[Ii].users

forall(Fc ∈ F) check equality; fail → abort
IFc ← I(Fc)
execute Put(IFc ,U , Fc)
delete all records indexed by idxes

Figure 5.7: The Deduplicate(idxes, dshares) algorithm.



Chapter 6

Security Analysis

In this section we focus on the security aspect of our proposed secure deduplication scheme.

Since the proposed scheme is quite complex we first list all the cryptographic building

blocks (cryptosystems) and their respective usage in the scheme along with the data

that are being encrypted by the respective cryptosystems. Next we formally analyze the

security of the core building block of our scheme – the Eµ cryptosystem. Since the Eµ
cryptosystem introduces the concept of decryption shares we formally demonstrate that

the decryption shares themselves do not leak any information, specifically that it is not

possible to find out whether or not decryption shares were created using the same label.

Then we analyze the scheme as a whole, analyzing the view of each scheme participant and

discuss its corruptability as well as the possible information leakage caused by collusion

of corrupted participants. Finally, we provide comparison of security properties of our

scheme with other current secure deduplication proposals [5, 21–23].

6.1 Scheme Building Blocks – A Security Overview

Recall from Section 5, the proposed scheme incorporates three different cryptosystems –

a semantically secure symmetric cryptosystem E , a convergent encryption scheme Ec and

a novel convergent threshold cryptosystem Eµ. For a new file F to be processed by our

scheme we need to make sure it is first convergently encrypted (i.e. file contents encrypted

using a convergent encryption scheme) Fc = Ec.E(kF , F ) and a deduplication index IFc =

I(Fc) is computed over this convergently encrypted file. Next, the convergently encrypted

file has to be encrypted using a semantically secure cryptosystem with a random key

krnd, Fs = E .E(krnd, Fc) and the encryption key krnd used during this encryption must

be encrypted using Eµ : c = Eµ.Encrypt(pk, Fc, krnd) where pk is the public key of our

scheme. Finally, decryption share dsi = Eµ.DShare(ri, ski, `) must be computed to allow

later (during deduplication) to decrypt key krnd and transfer from unpopular file Fs to a

38
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popular file Fc. Note that to make sure that the decryption shares produced by Eµ will

correspond to the same convergently encrypted file, the whole convergently encrypted file

itself is used as a label for Eµ encryption and decryption share generation.

From a security standpoint, knowledge of the deduplication index I, convergently en-

crypted file Fc as well as knowledge of the decryption share dsi can be considered potential

threats if they constitute some leakage (i.e. can be used to devise some information about

the contents of the original file F ). Since I is deterministically computed from Fc which is

deterministically-encrypted with a deterministically-derived key from F , these two surely

do constitute a leakage and we eliminate this threat by letting only a trusted third party

IRS to know I for unpopular files (we discuss consequences of IRS corruption later in

this section). For popular files the leakage is accepted as reasonable. Whether or not

a decryption share constitutes a leakage is not directly clear (recall that Fc is used as a

label for
(
ri, dsi

)
creation). We therefore define a property of Eµ called “unlinkability of

decryption shares” that makes sure that decryption share does not leak any information

about the label it was created with (i.e. the convergently-encrypted Fc) and formally

prove it.

Note that we do not prove that E is semantically secure nor that Ec is convergently

secure, as we simply choose such cryptosystems that already meet these requirements. For

syntactical completeness we specify that “convergent security” as used in this work corre-

sponds to a formal definition of a PRV$-CDA STC message-locked encryption scheme [7].

6.2 Security Analysis of Eµ
Differently from classic encryption schemes Eµ produces not only ciphertexts but also

decryption shares. For a security analysis to be complete, we first address the decryption

shares and prove that they are “unlinkable” i.e. that they do not leak any information

about the label nor secret key share that they were created with. Informally, we show

that having multiple different decryption shares, there is no way of saying whether some

of them were created with the same label. We can postulate an even stronger property

that it is not possible to say whether or not they are valid decryption shares at all. Then

we analyse the security of the ciphertexts and show what the attacker is (or is not) able

to devise from the ciphertext.

Note that both the unlinkability of decryption shares and the security of the ciphertexts

is by design bounded by the number of corrupted users – if the attacker is able to corrupt

more than nA users (where nA must be lesser than t− plim − 1, see Section 4.3) then the

security is broken. This stems from the threshold nature of the cryptosystem and must

be always taken into account.
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6.2.1 Unlinkability of Decryption Shares

Informally, in DSµ-IND, the adversary is given access to two hash function oraclesOH1 , and

OH2 ; the adversary can corrupt an arbitrary number nA < t−plim−1 of pre-declared users,

and obtains their secret keys (i.e. key shares ski) through an oracle OCorrupt. Finally, the

adversary can access a decryption share oracle ODShare, submitting a label ` of her choice

and a non-corrupted user identity Ui. For each label that appears to ODShare-queries, the

challenger flips a fair coin flip b` and based on its outcome it responds with a properly

constructed decryption share that corresponds to label ` and secret key share ski as defined

in Eµ (when b` = 1), or with a random bitstring of the same length (when b` = 0). At the

end of the game, the adversary declares a label `∗, for which up to t− nA − 1 decryption

share queries for distinct user identities have been submitted. The adversary outputs a bit

b′`∗ and wins the game if b′`∗ = b`∗ . Eµ is said to satisfy unlinkability of decryption shares,

if no polynomial-time adversary can win the game with a non-negligible advantage.

Formally, unlinkability of decryption shares is defined using the experiment DSµ-IND

between an adversary A and a challenger C, given security parameter 1λ:

Setup Phase C executes the Eµ.Setup algorithm with λ, and generates a set of user

identities U = {Ui}n−1i=0 . Further, C gives pk to A and keeps {ski}n−1i=0 secret. At this

point, A declares the list UA of |UA| = nA < t− plim− 1 identities of users that will

later on be subject to OCorrupt calls.

Access to Oracles Throughout the game, the adversary can invoke oracles for the

hash functions H1 and H2. Additionally, the adversary can invoke the corrupt oracle

OCorrupt and receive the secret key share that corresponds to any user Ui ∈ UA.

Finally, A can invoke the decryption share oracle ODShare to request a decryption

share that corresponds to a specific label, say `, and the key share of a non-corrupted

user, say Ui /∈ UA. More specifically, for each label ` that appears in ODShare-queries,

the challenger chooses at random (based on a fair coin flip b`) whether to respond to

ODShare-queries for ` with decryption shares constructed as defined by the protocol,

or with random bitstrings of the same length. Let
(
ri, dsi

)
denote the response of

a ODShare-query for ` and Ui. b` = 1 corresponds to the case, where responses in

ODShare-queries for ` are properly constructed decryption shares.

Challenge Phase A chooses a target label `∗. The adversary is limited in the choice

of the challenge label as follows: `∗ must not have been the subject of more than

t − nA − 1 ODShare queries for distinct user identities. At the challenge time, if the

limit of t − nA − 1 has not been reached, the adversary is allowed to request for

more decryption shares for as long as the aforementioned condition holds. Recall

that C responds to challenge ODShare-queries based on b`∗ .
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Guessing Phase A outputs b′`∗ , that represents her guess for b`∗ . The adversary wins

the game, if b`∗ = b′`∗ .

The following lemma shows that unlinkability of decryption shares is guaranteed in Eµ
as long as the SXDH problem is intractable [35].

Lemma 6.2.1. Let H1and H2 be random oracles. If a DSµ-IND adversary A has a non-

negligible advantage AdvADSµ-IND := Pr[b′m∗ ← A(m∗, ds∗,m∗) : b′m∗ = bm∗ ] − 1
2

, then, a

probabilistic, polynomial-time algorithm C can create an environment where it uses A’s

advantage to solve any given instance of the SXDH problem.

Proof. SXDH assumes two groups of prime order q, G1, and G2, such that there is no

efficiently computable distortion map between the two; a bilinear group GT , and an

efficient, non-degenerate bilinear map ê : G1 × G2 → GT . In this setting, the Decisional

Diffie-Hellman (DDH) holds in both G1, and G2, and the bilinear decisional Diffie-

Hellman (BDDH) holds given the existence of ê [35].

Challenger C is given an SXDH context q′,G′1,G′2,G′T , ê′ and an instance of the DDH

problem 〈q′,G′1, g′, A = (g′)a, B = (g′)b,W 〉 in G′1. C simulates an environment in which

A operates, using its advantage in the game DSµ-IND to decide whether W = (g′)ab. C
interacts with A in the DSµ-IND game as follows:

Setup Phase C sets q ← q′, G1 ← G′1, G2 ← G′2, GT ← G′T , ê = ê′, g ← g′; picks a

random generator ḡ of G2 and sets ḡpub = (ḡ)sk, where sk←R Z∗q. C also generates the set

of user identities U = {Ui}n−1i=0 . The public key pk = {q,G1,G2,GT ê,OH1 ,OH2 , ḡ, ḡpub}
and U are forwarded to A. A declares the list UA of nA < t−plim−1 user identities that

will later on be subject to OCorrupt calls. Let UA = {Ui}nA−1i=0 . Next, C picks t− plim − 1

random integers yi ←R Z∗q. Let P be a t−plim−1 degree Lagrange polynomial implicitly

defined to satisfy P(0) = sk and P(i) = yi for i = 1, .., t− plim − 1. C then sets the key-

shares to (i, ski)← yi, i ∈ [1, t− plim − 1] and assigns (i, ski) for i ∈ [1, nA] to corrupted

users.

Access to Oracles C simulates oracles OH1 , OH2 , OCorrupt and ODShare:

OH1 : to respond to OH1-queries, C maintains a list of tuples {v, hv, ρv, cv} as explained

below. We refer to this list as OH1 list, and it is initially empty. When A submits an

OH1 query for v, C checks if v already appears in the OH1 list in a tuple {v, hv, ρv, cv}.
If so, C responds with H1(v) = hv. Otherwise, C picks ρv ←R Z∗q, and flips a coin

cv; cv flips to ′1′ with probability δ for some δ to be determined later. If cv equals
′0′, C responds H1(v) = hv = gρv and stores {v, hv, ρv, cv}; otherwise, she returns

H1(v) = hv = Bρv and stores {v, hv, ρv, cv}.
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OH2 : The challenger C responds to a newly submitted OH2 query for v with a randomly

chosen hv ∈ GT . To be consistent in her OH2 responses, C maintains the history of

her responses in her local memory.

OCorrupt: C responds to a OCorrupt query involving user Ui ∈ UA, by returning the

coordinate yi chosen in the Setup Phase.

ODShare: simulation of ODShare is performed as follows. As before, C keeps track of

the submitted ODShare queries in her local memory. Let 〈Ui, `〉 be a decryption query

submitted for label ` and user identity Ui. If there is no entry in H1-list for `, then C
runs the OH1 algorithm for `. Let {`, h`, ρ`, c`} be the OH1 entry in C’s local memory

for label l. Let P′ ← P \ P(0). C responds with
(
ri, dsi

)
where ri corresponds to Ui

and dsi =

(
g

∑
(rj,skj)∈P′

skjλ
P′
ri,rj

XλP
′

ri,r0

)ρm

where X ← A iff c` = 0, and X ← W iff c` = 1.

In both cases, C keeps a record of her response in her local memory.

Challenge Phase A selects the challenge label `∗. Let the corresponding entry in the

OH1 list be {`∗, h`∗ , ρ`∗ , c`∗}. If c`∗ = 0, then C aborts.

Guessing Phase A outputs one bit b′`∗ representing the guess for b`∗ . C responds

positively to the DDH challenger if b′`∗ = 0, and negatively otherwise.

It is easy to see, that if A’s answer is ′0′, it means that the ODShare responses for `∗

constitute properly structured decryption shares for `∗. This can only be if W = gab and

C can give a positive answer to the SXDH challenger. Clearly, if c`∗ = 1 and c` = 0 for

all other queries to OH1 such that ` 6= `∗, the execution environment is indistinguishable

from the actual game DSµ-IND. This happens with probability Pr[c`∗ = 1 ∧ (∀` 6=
`∗ : c` = 0)] = δ(1 − δ)QH1

+1, where QH1 is the number of distinct OH1 queries. By

setting δ ≈ 1
QH1

+1
the above probability becomes greater than 1

e·(QH1
+1)

and the success

probability of the adversary can be bounded as AdvADSµ-IND ≤ e · (QH1 + 1) · AdvCSXDH.

6.2.2 Indistinguishability of the Eµ Ciphertexts

Similarly to the decryption shares, we need to prove that ciphertexts do not leak any

information about the plaintext unless, of course, there are more than t eligible users

which would lead to decryption and plaintext revelation.

To define and analyze the security of Eµ we use a straightforward adaptation of the

IND-CPA experiment (INDistinguishability under Chosen Plaintext Attack), henceforth

referred to as INDµ-BCPA (B for Bounded). The experiment requires the adversary to

declare upfront the set of users to be corrupted, similarly to selective security [36].
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Informally, in INDµ-BCPA, the adversary is given access to two hash function oracles OH1 ,

and OH2 ; the adversary can corrupt an arbitrary number nA < t− plim− 1 of pre-declared

users, and obtains their secret keys through an oracle OCorrupt. At the end of the game,

the adversary outputs a message m∗ and label `∗; the challenger flips a fair coin b, and

based on its outcome, it returns to A the encryption of either m∗ or of another random

bitstring of the same length. The adversary outputs a bit b′ and wins the game if b′ = b.

Formally, the security of Eµ is defined through the INDµ-BCPA experiment between an

adversary A and a challenger C, given a security parameter λ:

Setup Phase C executes the Eµ.Setup algorithm with λ, and generates a set of user

identities U = {Ui}n−1i=0 . Further, C gives pk to A and keeps {ski}n−1i=0 secret. At this

point, A declares the list UA of |UA| = nA < t− plim− 1 identities of users that will

later on be subject to OCorrupt calls.

Access to Oracles Throughout the game, the adversary can invoke oracles for the

hash functions H1 and H2. Additionally, the adversary can invoke the corrupt oracle

OCorrupt and receive the secret key share that corresponds to any user Ui ∈ UA.

Challenge Phase A picks the challenge message m∗ and label `∗ and sends it to C. C
chooses at random (based on a coin flip b) whether to return the encryption of m∗

i.e. Eµ.Encrypt(pk, `∗,m∗) (b = 1), or of another random string of the same length

(b = 0); let c∗ be the resulting ciphertext, which is returned to A.

Guessing Phase A outputs b′, that represents her guess for b. The adversary wins the

game, if b = b′.

The following lemma shows that INDµ-BCPA is guaranteed in Eµ as long as the SXDH

problem is intractable [35].

Lemma 6.2.2. Let H1, and H2 be random oracles. If an INDµ-BCPA adversary A has

a non-negligible advantage AdvAINDµ-BCPA := Prob[b′ ← A(c∗) : b = b′] − 1
2

, then, a

probabilistic, polynomial-time algorithm C can create an environment where it uses A’s

advantage to solve any given instance of the SXDH problem.

Proof. Challenger C is given an instance 〈q′, G′1,G′2,G′T , ê′, g′, ḡ′, A = (g′)a, B = (g′)b, C =

(g′)c, Ā = (ḡ′)a, B̄ = (ḡ′)b, C̄ = (ḡ′)c,W 〉 of the SXDH problem. The algorithm C simu-

lates an environment in which polynomial-time bounded adversary A operates, using its

advantage in the game INDµ-BCPA to decide whether W = ê (g′, ḡ′)abc. C interacts with

A within an INDµ-BCPA game:
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Setup Phase C sets q ← q′, G1 ← G′1, G2 ← G′2, GT ← G′T , ê = ê′, g ← g′, ḡ ← ḡ′,

ḡpub = Ā. Notice that the secret key sk = a is not known to C. C also generates the list

of user identities U = {Ui}n−1i=0 . C sends pk = {q,G1,G2,GT ê,OH1 ,OH2 , ḡ, ḡpub} and U

to A. A declares the list UA of nA < t − plim − 1 user identities that will later on be

subject to OCorrupt calls. Let UA = {Ui}nA−1i=0 . Next, C picks t− plim− 1 random integers

yi ←R Z∗q. Let P be a t − plim − 1 degree Lagrange polynomial implicitly defined to

satisfy P(0) = a and P(i) = yi for i = 1, .., t − plim − 1. C then sets the key-shares to

(i, ski)← yi, i ∈ [1, t− plim − 1] and assigns (i, ski) for i ∈ [1, nA] to corrupted users.

Access to Oracles C simulates oracles OH1 , OH2 and OCorrupt:

OH1 : to respond to OH1-queries, C maintains a list of tuples (v, hv, ρv, cv) as explained

below. We refer to this list as OH1 list, and it is initially empty. When A submits an

OH1 query for v, C checks if v already appears in the OH1 list in a tuple (v, hv, ρv, cv).

If so, C responds with H1(v) = hv. Otherwise, C picks ρv ←R Z∗q, and flips a coin

cv; cv flips to ′1′ with probability δ for some δ to be determined later. If cv equals
′0′, C responds H1(v) = hv = gρv and stores (v, hv, ρv, cv); otherwise, she returns

H1(v) = hv = Bρv and stores (v, hv, ρv, cv).

OH2 : The challenger C responds to a newly submitted OH2 query for v with a randomly

chosen hv ∈ {0, 1}λ. To be consistent in her OH2 responses, C maintains the history

of her responses in her local memory.

OCorrupt: C responds to a OCorrupt query involving user Ui ∈ UA, by returning the

coordinate yi chosen in the Setup Phase.

Challenge Phase A submits m∗ and `∗ to C. Next, C runs the algorithm for re-

sponding to OH1-queries for `∗ to recover the entry from the OH1-list. Let the entry

be (`∗, h`∗ , ρ`∗ , c`∗). If c`∗ = 0, C aborts. Otherwise, C computes E∗ ← W ρ`∗ , sets

c∗ ← (m∗ ⊕ H2(E∗), C̄) and returns c∗ to A.

Guessing Phase A outputs the guess b′ for b. C provides b′ for its SXDH challenge.

If A’s answer is b′ = 1, it means that she has recognized the ciphertext c∗ as the

encryption of m∗; C can then give the positive answer to her SXDH challenge. In-

deed, W ρ`∗ = ê (g, ḡ)abcρ`∗ = ê ((Bρ`∗ )a, ḡc) = ê
(
H1(`∗)

sk, C̄
)
. Clearly, if c`∗ = 1 and

c` = 0 for all other queries to OH1 such that ` 6= `∗, then the execution environment

is indistinguishable from the actual game INDµ-BCPA. This happens with probability

Pr[c`∗ = 1 ∧ (∀` 6= `∗ : c` = 0)] = δ(1 − δ)QH1
−1, where QH1 is the number of

different OH1-queries. By setting δ ≈ 1
QH1

+1
, the above probability becomes greater

than 1
e·(QH1

+1)
, and the success probability of the adversary AdvAINDµ-BCPA is bounded as

AdvAINDµ-BCPA ≤ e · (QH1 + 1) · AdvCSXDH.
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6.3 Security Analysis of the Scheme

In chapter 4 we set the goal of our scheme to provide convergent security for popular files

and semantic security for unpopular files. We claim that the goal was reached by our

scheme under the assumptions that IRS and IdP are trusted (and thus not corruptable

by an adversary) and there are no more than nA corrupted users. In this section we

first sketch a proof of this claim and then discuss the individual assumptions and what

would happen with the security provided by the scheme in case they were violated. We

demonstrate the security properties by the “views” of each of the scheme participants and

compare the views in our scheme and in other secure deduplication proposals to show the

differences.

Note that our work systematically focuses on security only, setting the privacy aspect

aside. This is intentional since user identities are handled by IdP and the concrete im-

plementation and deployment of IdP and authentication is a complex problem orthogonal

to our main goals. To at least briefly comment on privacy, we note that in our setting,

user privacy is closely connected to user data confidentiality: it should not be possible

to link a particular file plaintext to a particular individual with better probability than

choosing that individual and file plaintext at random. Clearly, within our protocols, user

privacy is provided completely for users who own only unpopular files (this was proven in

the previous section; provided that IRS is trusted), while it is degraded for users who own

popular files. One solution for the latter case would be to incorporate anonymous and un-

linkable credentials for authentication [37, 38]. This way, a user who uploads a file to the

storage provider will not have her identity linked to the file ciphertext. On the contrary,

the file owner will be registered as one of the certified users of the system. Undoubtedly,

this would lead to a more complex IdP that would need to handle “obfuscation” of user

identities (e.g. for the billing purposes) which falls out of scope of our work. Note that

if we relax the trusted requirement of the IRS (such as we do in section 6.5) then in the

case when only IRS gets compromised, the privacy is not breached since IRS view consists

only of a set of indexes {ri} corresponding to the owners of the unpopular files, but does

not contain the actual user identities {Ui}.

6.3.1 Semantic Security of Unpopular Files

Convergent security was formally analyzed by Bellare et al. [7] and our scheme implements

classic convergent encryption for popular files. Semantic security for unpopular files is

assured by the semantically-secure cryptosystem E . What remains to show is that our

scheme does not inadvertently break the security level for unpopular files i.e. that an

adversary cannot break the security of an unpopular file without breaking the security
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assumption of trusted IdP, IRS and threshold of corruptable users.

Claim: Adversary A cannot break semantic security of any unpopular file F (i.e.

having obtained the ciphertext created by E .E he cannot extract any additional informa-

tion revealing anything about the plaintext F ) if he can only corrupt the storage provider

S and a set of users U where |U| ≤ nA.

Proof. A can obtain any unpopular file record from S (note that an intrinsic property

of unpopular files is to be associated with a single user in the storage provider database

DBS). Let the obtained record be indexed I containing data DBS[I].data = (c, cµ). Since

I was obtained by PRF using the secret seed and input unknown to A, it does not leak

any information. c was obtained using a semantically secure cryptosystem E and cµ

was obtained by cryptosystem Eµ guaranteeing INDµ-BCPA (as proved earlier), both also

guaranteeing no leakage. A cannot use corrupted users U to enforce deduplication since

|U| ≤ nA and the deduplication threshold was defined as t ≥ plim + nA and cannot

invoke deduplication in S since he does not have the required input (i.e. index mapping

and decryption shares). Having no other information conduit, A cannot break semantic

security of unpopular file F .

6.3.2 Analyzing the Consequences of Broken Assumptions

Maintaining semantic security of unpopular files even in presence of corruptable honest

but curious storage service provider S and nA corrupted users is no small feat, but requires

very strong assumptions that the adversary does not corrupt IdP, IRS and more than nA

users. To analyze the situation where an adversary could violate these assumptions, we

provide the view of all scheme entities regarding popular and unpopular files in Table 6.1.

IdP Corruption / Corrupting an Unbounded Number of Users

We start with the identity provider IdP since it’s view is the easiest to analyze. We

also demonstrate that IdP corruption and corrupting an unbounded number of users (i.e.

breaking the “no more than nA corrupted users” assumption) are equivalent in terms of

our security model.

Table 6.1: Scheme Participant Data Views

Popular File Unpopular File

IdP ∅ ∅
IRS IFc IFc , ctr, {

(
ri, dsi

)
}ctr1 , {I}ctr1

S Fc, {Ui}pF1 Irnd, (c, cµ),Ui
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Regarding the actual data being stored by the storage service, the IdP observes (and

thus can provide) no information. The reason why IdP has to be trusted is thus not

directly related to the data, but to the user identities. If the adversary A is allowed to

corrupt IdP, he can exploit the user-generating process to spawn an unbounded number

of corrupted users and thus decrypt the upper (semantic security) encryption layer of any

unpopular file for which he knows the label ` = H1(Fc). The decryption is possible since

the adversary can generate t valid decryption shares
(
ri, dsi

)
with the corresponding label

` (recall that dsi ← H1

(
`
)ski). Having a set of enough decryption shares, the adversary

can invoke Eµ.Decrypt.

Depending on the IdP implementation, the adversary could also extract the master

secret skof the Eµ cryptosystem upon IdP corruption (unless the implementation stores

skin some inextractable way e.g. in a hardware security module). Notice that knowledge

of skhas exactly the same consequences as generating an unbounded number of corrupt

user identities since the adversary can skip the decryption share combination step of

Eµ.Decrypt

∏
(ri,dsi)∈St

dsi
λ
St
0,ri =

∏
(ri,ski)∈S

′
t

H1(`)
skiλ

St
0,ri = H1(`)

∑
(ri,ski)∈S

′
t

skiλ
St
0,ri

= H1(`)
sk

and compute H1(`)
sk directly. The rest of the decryption algorithm can run as usual.

Notice that the attack is only possible if the adversary is able to guess (or obtain from

some other source) the encryption label ` = H1(Fc). Since the label is not stored in S,

the adversary cannot choose some record of an unpopular file copy inside S (consisting of

index Irnd and ciphertext c) and force that particular file to become popular since there is

no way how to extract label ` from Irnd or from c. The adversary cannot decrypt c since

ha lacks the sufficient number of decryption shares and cannot generate them without `.

The only way for the attacker to force an unpopular file with unknown label ` to become

popular would thus be to enforce all files in the storage to become popular, which is

infeasible.

Also note that apart from the data-related information, a corruptable IdP can be seen

as a potential privacy breach since it has to validate (and thus know) the real user identity

and knows the real user identity to scheme user identity mapping. This issue is a complex

one to address and it falls out of scope of this thesis, yet there are works dedicated to this

issue countering it with pseudonymity and anonymous authentication in various scenarios

– see e.g. works by Camenisch et al. [37] or Lysyanskaya et al. [38].
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IRS Corruption

The index repository service IRS contains a lot of information for each unpopular file F

– the deduplication (convergent) index IFc , it’s mapping to the random indexes {I}ctr1

(used to index ciphertexts in S) and the corresponding decryption shares {
(
ri, dsi

)
}ctr1 .

While the random indexes do not constitute any leakage (computed via PRF) and the

decryption shares are unlinkable i.e. label is not extractable from them (see Section 6.2.1)

the remaining piece of information is vital – IFc = H1(Fc) is both the label ` used in

Eµ.Encrypt and the deduplication index I. Since H1 is collision-resistant, the attacker can

use the index to mount the same attacks as against convergent encryption thus security

of all unpopular files is degraded from semantic to convergent.

Differently from IdP corruption, the attacker knows the label ` = H1(Fc), but similarly

as in the IdP corruption case, he also cannot choose some record of an unpopular file in

S and decrypt its upper layer since he is not able to generate the necessary decryption

shares. The situation in both cases is the same, but stems from different reasons. Note

that in the case of IRS corruption, the attacker does not need the actual data contents

stored in S to mount an attack – knowledge of the index is sufficient, since there are

no collisions and thus the index always corresponds to the (correctly guessed) plaintext

(convergently-encrypted plaintext, respectively). The fact that IRS does neither store nor

ever has access to the actual data (nor their size) is vital for the strengthening measures

suggested in section 6.5, focusing on the possibility to remove the need of a trusted IRS.

6.4 Security Comparison with Other Secure Dedu-

plication Solutions

As described in chapter 3, different secure deduplication solutions often have different

goals and thus design different ways to achieve them. As we have demonstrated in our

security analysis, our scheme meets the goals we defined (i.e. semantic security for un-

popular files, convergent security for popular files, if the defined assumptions hold) and

is the only secure deduplication scheme that we know of that implicitly allows corruption

of the storage provider and up to nA users without compromising semantic security of

unpopular files. On the other hand, it undeniably also exhibits the single point of failure

(and potential leakage) vulnerability by requiring participation of a trusted IRS. Here we

compare our scheme security-wise with four other state of the art secure deduplication

schemes to demonstrate the differences.

DupLESS [5] uses a key server similar to our IRS but instead of index obfuscation,

the key server actually changes the key used for file encryption – instead of encrypting
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a file with deterministically derived convergent key kc and then obfuscating index IND,

the key kc itself is “obfuscated”. The undeniable advantage of this approach is that the

key server does not store (and never actually sees) the deduplication index nor the key kc

since the user communicates with the key server using an oblivious transfer protocol and

the key server only uses its own private secret key to obfuscate kc. Since DupLESS was

designed for target-based deduplication, it inherently counters attacks typical for conver-

gent encryption, though, for the same reason it cannot prevent the honest-but-curious

storage provider to check for file equality nor mount attacks based on the knowledge of

the deduplication index (i.e. file hash).

ClearBox [22] uses gateway G similar to DupLESS key server to achieve server-aided

key generation. G can prevent known-hash-based attacks thanks to incorporated PoW but

it cannot prevent attacks based on the known (guessed) content – a user may learn whether

a file was stored before. Interestingly, ClearBox does not consider this to be a threat in

its security model and it even implements an Attest procedure that eventually “leaks”

approximately how many users stored each file. This is caused by the different security

goals set by the ClearBox authors which prioritize undeniable deduplication estimates

over the “learn if file was stored” leakage. A suggested solution of adding high-entropy

strings to low-entropy files to counter guess-based attacks is rather tedious and requires the

user to somehow identify such low-entropy files. Our scheme offers automatic protection

against such attacks (assured by the IRS) if the popularity principle is acceptable by the

user (i.e. if the user agrees that the property may be lost in case more than t − 1 other

users also upload the same file). One more slight difference between our scheme and

DupLESS compared to ClearBox is that G actually has access to the encrypted files (and

thus knows also some additional properties such as the file size).

Liu et al. [23] present a scheme that does not require the trusted component in form

of IRS, G or a key server and instead delegates the trust among the individual users

of the system. The server component itself participates only minimally in the actual

process of deduplication, most of the “sensitive” computation is done by the users. While

the “user-trust-based” approach is definitely interesting, the presented scheme cannot

prevent an honest but curious storage provider S to check for file equality and is prone

to user collusion attacks. Our scheme prevents the user collusion attacks by introducing

a concrete bounded limit for the number of corrupted users.

ClouDedup [21] isolates the storage provider from the deduplication procedure com-

pletely, not leaking any information. However, to achieve such a perfect isolation ClouD-

edup introduces two quite complex trusted components. The security setting of ClouD-

edup is more suitable for corporate-like environments where the “private network” with

users can redirect data through the introduced trusted component(s) to enable their se-
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cure storage in some “outside” cloud storage provider. Our scenario is slightly different

and our trusted components a bit more “lightweight” whereas ClouDedup is undeniably

better suited for actual practical deployment. Security-wise the general approach in both

solutions is quite similar – layered encryption, eliminating known-hash-based attacks and

prioritizing data confidentiality over other goals.

6.5 Relaxing the Requirement of the Trusted IRS

While our scheme does reach its goal, the requirement of two trusted components, IRS

and IdP, is a very strong one. While a trusted IdP is quite common, since practically

every system and network has to have some identity provider and management, a trusted

IRS is not so common. Moreover, the fact that the IRS knows all the deduplication

indexes and decryption shares and can thus bruteforce the deduplication index to gain

some information about the stored data content (confirmation of file attacks and learn the

remaining information attacks typical for convergent encryption) makes it very powerful

and a potential viable target for an attack. Since transferring the ideal trusted third

party model to real world is not that easy, we discuss the possibility how to make IRS

potentially corruptable without (entirely) sacrificing the “better security assurance” for

unpopular data.

In section 3.1.2 we have described the weak point of deduplication – the deduplication

index. Knowledge of the index gives the ability to compare data contents with some

other data contents and find out if they match, even if they are convergently encrypted.

Since our lower layer of encryption is convergent and we need to know which unpopular

files have the same content, the deduplication index has to be stored somewhere. Our

original security model considers an honest but curious (HBC) storage provider S, up to

nA corrupted users and a trusted IRS. If we modify the model to allow IRS to be honest

but curious (same as S), security of unpopular files will be automatically degraded to

convergent (see section 6.3).

For deduplication to work in our scheme, the deduplication index has to be known to

some of the scheme participants i.e. to IdP, IRS, S or users. IdP is out of scope, as it is

included only to manage user identities and not to participate in the scheme otherwise.

Splitting the information among users owning files with the same index would require

notable redesign of the whole scheme and users to stay online most of the time, which

we want to avoid. If such a requirement is acceptable, we recommend the work of Liu et

al. [23], where a secure deduplication model based on this principle is described. That

leaves two possibilities – IRS, where the index is stored in the current scheme, and S.

Setting S as trusted does not make practical sense – if S were trusted, the proposed
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complex deduplication scheme would not be required at all. This creates a seemingly

impossible situation – IRS must store the index, yet we wish to make it corruptible.

To move further, we need to analyze the deduplication index weakness in the specific

case of our scheme in more detail. For this we use the “confirmation of a file” attack

scenario – the attacker who knows, or can guess, content of a file can use the index to

find out if the file was already uploaded by someone else. Consulting the IRS view (see

Table 6.1) this can be devised by computing the index of the known file and checking that

a record in IRS indexed by this index exists. If so, the file was already stored. If there

are any associated decryption shares, the attacker can be “near-sure” that i) the file was

uploaded by ctr users and ii) is unpopular. The attacker can be “near-sure” since the

indexing function is collision resistant and thus a chance that one index will be associated

with more different files is extremely low. Note that if there are no shares associated with

the index but ctr is non-zero, the attacker can be sure that the file was also uploaded and

is popular (since deduplication already correctly happened).

Thus, even though the attacker that compromises IRS does not have access to the

ciphertext (and even if he had access, the ciphertext is encrypted using semantically secure

encryption and thus not decryptable unless t valid shares were already collected), our

scheme is still prone to a “confirmation of file” attack if IRS is corrupted since IRS provides

a “near-sure” confirmation of the file presence. Using this knowledge, we aim at modifying

our scheme to achieve a situation where the “near-sure” confirmation will be removed,

thus the attacker wouldn’t be able to prove his guess and the security model would allow

a corruptable IRS. In the rest of this section we analyze two possible relaxations of the

trusted IRS requirement – a “weaker” one where the attacker may compromise either S

or IRS, but not both, and a “stronger” one, where he can corrupt both. We note upfront

that the sketched modified scheme proposals are by far not as simple and efficient as

our original scheme, which is why we decided not to implement them in our core scheme

proposal.

6.5.1 Adversary Can Corrupt either IRS or S

Let us first consider a security model where the attacker can corrupt up to nA users and can

corrupt either S or IRS, but not both. Thanks to the fact that the attacker cannot corrupt

both IRS and S in this new model, we can decide not to store the deduplication index in

any one of them, but to split it among them instead. Indeed, this constitutes a potential

leakage of information about file contents inside S, which was fully prevented in the

original setting, but it allows to lift the strong requirement for incorruptible IRS, replacing

it by a weaker “either S or IRS can be corrupted” notion. Undoubtedly, corrupting two

separate systems that have different implementation, can be placed in different places and
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protected by different mechanisms is a much more complex task than finding a weakness

in one target system. Additionally, the scheme modification sketched in this section is

very versatile and allows to vary the degree of information leakage obtainable for both S

and IRS in this new setting. The typical attacks against deduplication systems, such as

the “confirmation of a file” attack scenario thus can be mitigated (up to some predefined

degree of acceptable probability).

To modify our scheme to fit the new model, we need to implement the following:

Index splitting To be able to split the deduplication index into parts, one to store inside

IRS and one inside S. It is not necessary to split the index into equal halves and

it is also possible to split it to more than two parts (even though just two will be

shared). This can be configured depending on the size of the index and acceptable

leakage in the IRS and S.

Deduplicability feedback function Since the IRS newly stores only a part of the in-

dex, the decryption shares indexed with this part can correspond to different files.

Thus, there has to be a deduplicability feedback function through which the IRS

could ask S whether the set of random indexes likely corresponds to the same file

(and thus it makes sense to try deduplication) or not.

Deduplication result Once a file is successfully deduplicated, the S has to notify the

IRS, providing the whole IFc (since it is unknown to IRS).

Popular file list Since the user cannot use the whole IFc when checking if a file is

popular (since that would leak IFc to IRS, which is not desired) there has to be

a list of popular files published (and updated) by the IRS. We denote the list as

PLIST.

Since the new approach requires the user to split IFc and not to share the whole index

with either IRS or S until the user is sure that the file is already popular (otherwise the

split of the index to parts wouldn’t really make sense), we introduce a new mechanism to

the scheme – the popular file list PLIST. The list is maintained and published by the IRS.

A new deduplication index of a file is added to the list once IRS invokes the Deduplicate

algorithm and obtains a success result for it. The user is responsible to download (or

update, if he already downloaded a previous version) the popular file list as a first step

when invoking Upload. Since the list of popular files is publicly available in this modified

scheme, it is highly recommended to add also a Proof of Ownership (PoW) mechanism

to protect against the covert file distribution attack. The PoW should be added to a

deduplicable Put request algorithm.
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Ui: kc ← Ec.K(F )
Fc ← Ec.E(kc, F )
IFc ← I(Fc)

Ui −→ IRS: PLIST← current PLIST
Ui: if(IFc ∈ PLIST)
Ui −→ S: Put(IFc ,Ui, Fc)
Ui: F ← (kc, IFc)

else
IFc|1IFc|2 ← IFc
(ri, dsi)← Eµ.DShare(ri, ski, Fc)

Ui −→ IRS: Iret ← GenSecIdx(IFc|1 , (ri, dsi))

Ui: k ← E .K();
c← E .E(k, Fc)
cµ ← Eµ.Encrypt(pk, Fc, k)
F ′ ← (c, cµ, IFc|2)

Ui −→ S: Put(Iret,Ui, F
′)

Ui: F ← (k, Iret, kc, IFc)

Figure 6.1: Modified Upload(F,Ui) algorithm. Popular file upload part is highlighted in
green (lighter color), unpopular file upload part in blue (darker color).

To implement the index-splitting, we modify our scheme as follows: The convergent

index IFc that is computed during the Upload algorithm is split to two parts IFc− >

IFc|1 , IFc|2 . Only the first part IFc|1 is being sent to the IRS as part of the GenSecIdx

algorithm. The second part IFc|2 is stored locally and only in case that actual data

upload is required (file not yet popular) the second part IFc|2 is attached to the data

that is being uploaded to S. We present the modified version of the Upload algorithm

in Figure 6.1. We define a new parameter dedidx in the S record (i.e. for an S record

indexed by idx we define DBS[idx].dedidx) to store the IFc|2 . Note that if there is a

requirement on higher level of “uncertainty” for the potential attacker, the index could

be split into three parts and the third parts kept local, not shared with IRS nor with S.

Note that this additional strengthening measure comes with a cost of (potentially many)

more deduplicability feedback requests.

When a GenSecIdx request that would cause invocation of Deduplicate in the original

scheme arrives at IRS, IRS invokes the deduplicability feedback function Deduplicable in-

stead. Deduplicable is defined in Figure 6.2. The purpose of Deduplicable is to find out if

all the “random indexes” indexed by the same IFc|1 inside IRS correspond to the same file

or not. S can answer this question since it stores IFc|2 in the records indexed by the “ran-

dom indexes” provided as parameters in Deduplicable – if there are at least t same IFc|2 in

the checked records, the corresponding records do belong to the same file and thus can be

deduplicated. In such a case S returns True and a set of indexes having the same IFc|2 .
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S: Darr← [0, 0, .., 0]; Rarr← [∅, ∅, .., ∅]; i← 1
foreach(I ∈ idxes)

if(∃j : DBS[I].dedidx = Darr[j]))
Rarr[j]← Rarr[j] ∪ I

else
Darr[i] = DBS[I].dedidx; Rarr[i]← Rarr[i] ∪ I; i← i+ 1

if(∃j : |Rarr[j]| ≥ t))
return (True; Rarr[j])

else
return (False; ∅)

Figure 6.2: The Deduplicable(idxes) algorithm. For a set of indexes of records inside S
returns if at least t of the records do contain the same IFc|2 value. If yes, it returns a list
of such indexes.

If there is no set of records of size at least t that would share the same IFc|2 , Deduplicable

returns False and IRS would need to re-try later, when there are more candidates in its

respective record. The GenSecIdx function has to be modified to account for these re-tries

and a new parameter needs to be introduced to specify when the re-try should occur. A

reasonable option might be to retry every time the counter reaches a multiplied value of

threshold t (e.g. 2t, 3t etc.) – in this case we don’t even need to specify a new parameter

and can modify the GenSecIdx as shown in Figure 6.3.

Providing a deduplication result in the form of IFc from S to IRS after a successful

deduplication (such that IRS can update and publish the popular file list) is the last

required modification. This can be easily achieved by adding return IFc at the very end

of the Deduplicate algorithm from the original scheme.

Analysing the proposed modified scheme, we can see that the actual security properties

IRS: Irnd ← PRF(σ,Ui||IFc|1)
if (Irnd /∈ DBIRS

[
IFc|1

]
.idxes)

increment DBIRS

[
IFc|1

]
.ctr

add Irnd to DBIRS

[
IFc|1

]
.idxes

add (ri, dsi) to DBIRS

[
IFc|1

]
.dshares

if (DBIRS

[
IFc|1

]
.ctr = mt; m ∈ N)

IRS −→ S: ret ← Deduplicable(DBIRS

[
IFc|1

]
.idxes)

if(ret = (True; retidxes))

IRS −→ S: IFc ← Deduplicate(DBIRS

[
IFc|1

]
.retidxes, DBIRS

[
IFc|1

]
.dshares)

IRS: PLIST = PLIST ∪ IFc

Figure 6.3: Modified GenSecIdx(IFc|1 , (ri, dsi)) algorithm. There is no green part related
to popular file since popular files are directly uploaded to S once found in PLIST. The red
part related to deduplication is extended to account for the new Deduplicable algorithm.
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highly depend on the specific setup and dataset. Considering an index size |IFc | = κ, if

we decide to split it such that |IFc|1| = κ − 1 and |IFc|2| = 1 then the “uncertainty” of

the attacker that corrupted IRS when trying to guess if file F was uploaded is minimal

since κ is chosen high enough to allow for collision-resistant I, thus possible “hit” still

means the attacker can be near-sure the file was uploaded (the probability that someone

uploaded file F2 whose hash would match that of the guessed file F but for the last bit is

very low). If we decide to split the index in equal halves (i.e. |IFc|1| = |IFc|2| = κ/2), then

the “uncertainty” for an attacker that corrupted IRS is substantially higher – considering

a guess of file F and computing index IFc , the attacker can check if there is any record for

IFc|1 . However, if there is, it can either correspond to F or to any other uploaded file whose

index has the same IFc|1 (i.e. there are 2κ/2 other options). Note that the “uncertainty”

of the attacker that corrupted S is the same in this respect since he can theoretically check

the values of all records, comparing the IFc|2 . If this level of uncertainty is not acceptable,

it is possible to split the index to three parts and increase size of IFc|3 (thus decrease

size of |IFc|1 | and |IFc|2|) to a required level. Note though that such behavior inherently

decreases efficiency of the scheme as the number of Deduplicable and failed Deduplicate

requests would notably increase.

6.5.2 Adversary Can Corrupt both IRS and S

The previously described modification where the adversary can corrupt either IRS or S

for the cost of performance decrease does not completely solve the limitation posed by

the requirement of a trusted third party since either IRS or S has to be trusted (i.e. not

corrupted by the same attacker). Here we try to eliminate the trusted party completely

(apart from IdP, as discussed earlier). In our new security model we postulate that the

attacker can corrupt up to nA users and both S and IRS are honest but curious. Note

that this new security model allows the attacker to corrupt both IRS and S thus it is

not possible to split the index between them as the attacker could simply “reassemble” it

using the information he gets from IRS and S.

Considering the situation, the only possible approach that we identified is to sacrifice

the part of the index shared with S. The scheme would look exactly as in the modification

proposed in Section 6.5.1 but will not share IFc|2 with S (i.e. there will be no IFc|2 inside

the S records, the S records are exactly the same as in the unmodified scheme presented

in Section 5). This also influences Deduplicable, which cannot be implemented. Thus,

instead of invoking Deduplicable as defined in the modification in Section 6.5.1, we would

always need to invoke Deduplicate and S would need to try all the possibilities.

Note that if there are more than t deduplication shares during deduplication compu-

tation, the only way to successfully deduplicate is to try (in the worst case all) possible
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combinations. Having t + x decryption shares in the Deduplicate request, this means(
t+x
t

)
combinations of decryption shares where for each combination the shares have to

be combined (H1(`)
sk) and file contents have to be decrypted and compared. It is easy to

see that for higher values of x this quickly becomes computationally infeasible, thus the

“uncertainty” of the attacker has to be kept relatively small (to make that Deduplicate

will have high probability to succeed for reasonable values of x).

Due to the described complexity, this modification is quite impractical and serves more

as a theoretical concept than a useful proposal. Finding a better solution that would allow

to have both IRS and S corruptible is an open problem.

In our proposed modifications we have noted “performance degradation” due to various

factors. To get a better idea about how to compute and measure performance of the

scheme in general (and therefore also how big the described performance degradations

may be) kindly refer to chapter 7.



Chapter 7

Performance Evaluation

Our scheme was designed to provide more fine-grained trade-off between security and

space efficiency compared to the “classic” deduplication scheme exploiting convergent en-

cryption [3]. Specifically, deduplication efficiency is decreased for the benefit of increased

security of unpopular files. This section presents both theoretical equations and practical

measurements to demonstrate scheme performance and efficiency both in terms of space

reduction and in computation and communication cost. We compare the results to those

of classic deduplication and to other secure data deduplication solutions.

First, we modify the deduplication ratio (DR) definition, used for classic deduplication

efficiency evaluation, to formulate a space reduction ratio (SRR) that can be used to

easily compare the efficiency of our scheme to that of classic deduplication, using the

dataset properties only, without the need to apply deduplication to the dataset. Next, we

present evaluation of the SRR efficiency of our scheme on artificial and real datasets, to

demonstrate which factors influence it, and how. Second, we focus on resources required

by the scheme in terms of computation and communication split between the individual

algorithms and their phases. Additionally, we comment on the expected user-perceived

delay, comparing to storage services without deduplication or with classic convergently

secured deduplication.

7.1 Storage Space Reduction Ratio

A classic deduplication scheme uses a simple metric called deduplication (or duplicity) ratio

(DR) to evaluate the space-saving efficiency of deduplication applied to a concrete dataset.

Deduplication ratio is defined as “size of dataset before deduplication” divided by “size

of dataset after deduplication” or, in a simpler way, as DR = bytes in/bytes out [2]. Tech-

nically, deduplication ratio is applicable to every deduplication scheme (ours included),

however it is necessary to first deduplicate the whole dataset. To prevent this necessity

57
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of the actual dataset deduplication process (which can be quite resource-intensive), we

present the Space Reduction Ratio (SRR) that can be used to compute deduplication ef-

ficiency based solely on known properties of the individual dataset files. Specifically, for

each unique file F in the dataset we only need to know its size |F| and its popularity pF

(i.e. in how many copies it is present in the dataset).

Having a dataset described using unique files, their sizes and popularities, a clas-

sic deduplication scheme removes all excessive copies of a unique file, keeping only one.

Therefore we denote classic deduplication as perfect deduplication for which it holds that

a per-file space reduction ratio for file F is equal to its popularity pF (since the non-

deduped size pF × |F | is reduced to |F | by deduplication). For our scheme, the space

reduction occurs only for popular files i.e. files where pF ≥ t, whereas there is no space

reduction for unpopular files (reminder from Section 4.3, t ≥ plim + nA). The concrete

deduplication efficiency of our scheme thus depends directly on two factors – the threshold

t (tunable parameter of the scheme) and the popularity distribution of files in the dataset

(determined by the dataset, non-settable).

To define formally, having a dataset F = {Fi}Ni=1 where file Fi has popularity pFi , the

SRR of a perfect deduplication scheme is SRR =
∑N

i=1(|Fi| × pFi)/
∑N

i=1 |Fi|. To compute

the SRR for our scheme, we have to choose t and split the dataset into a set of popular

files Fp = {Fi |pFi ≥ t} and a set of unpopular files Fu = {Fi |pFi < t}. The space

reduction ratio SRR is then computed as:

SRR =
N∑
i=1

(|Fi| × pFi)/(
∑
F∈Fp

|F |+
∑
F∈Fu

(|F | × pF ))

For simpler comparison (to directly see how much space was saved, percentually) we define

the space reduction percentage SRP as

SRP = (1− 1/SRR)× 100

Note that SRR = 1 (SRP = 0) means no deduplication occurs (zero efficiency).

Note that same as DR, SRR is computed over the actual file contents only, not counting

associated metadata (such as when the file was accessed, modified etc.). For deduplication

to be efficient, it is expected that metadata are marginal in size compared to actual file

contents. Since our scheme generates some additional metadata that are not being counted

by the SRR, we also address the metadata overhead later in this section and show that it

is likewise marginal to the actual file contents size.
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7.2 Analysis of Space Reduction Efficiency

As described, the space reduction efficiency of our scheme is directly dependent on two

factors – the threshold t and the popularity distribution of files in the dataset. We first

present an analysis of space reduction efficiency of our scheme using simple artificial

distributions to demonstrate the influence of choice of threshold t and then perform the

analysis using two real-world datasets, to show the influence in practice.

7.2.1 Artificial Datasets

To demonstrate the influence of the factors on storage space efficiency of the scheme

without concrete data we use artificial datasets with files of uniform size |F | = 1. This

simplifies the SRR equation to

SRR =
N∑
i=1

(pFi)/(
∑
F∈Fp

1 +
∑
F∈Fu

(pF ))

First we use a very basic example where popularity is constant i.e. for every file F

in the dataset, the popularity pF = c, where c is a natural number greater than zero (we

deliberately prevent a dataset without duplicates). With constant popularity, the SRR

can be easily computed, based on the value of t as:

1. t ≤ c perfect deduplication (maximum efficiency) is achieved since all files are

popular i.e. Fu = ∅ thus

SRR =
N∑
i=1

(pFi)/(
∑
F∈Fp

1) = pF

2. t > c no deduplication (zero efficiency) is achieved since all files are unpopular i.e.

Fp = ∅ thus

SRR =
N∑
i=1

(pFi)/(0 +
∑
F∈Fu

(pF )) = 1

The constant-popularity example clearly shows the basic limits but does not demonstrate

the gradual changes of SRR. To show these we use a uniform distribution.

Using a discrete uniform distribution as the dataset popularity distribution nicely

demonstrates the influence of step-by-step increasing t on the SRR. Considering a discrete

uniform distribution with lower bound a and upper bound b described with a probability

mass function as f(x) = 1/n for x ∈ 〈a, b〉 and n = b− a+ 1 (i.e. having a set of discrete

values a, a + 1, .. , b − 1, b that are equally likely to be observed), the efficiency of the
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proposed scheme based on the value of t can be expressed as:

1. t ≤ a, perfect deduplication (maximum efficiency) is achieved since all files are

popular i.e. Fu = ∅ and thus

SRR =
N∑
i=1

(pFi)/(
∑
F∈Fp

1) = pF

2. a < t ≤ b, less efficient than perfect deduplication is achieved since files with

popularity lower than t are popular and those with popularity higher or equal to t

are not and thus the general equation must be used

SRR =
N∑
i=1

(pFi)/(
∑
F∈Fp

1 +
∑
F∈Fu

(pF ))

3. t > b, no deduplication (zero efficiency) is achieved since all files are unpopular i.e.

Fp = ∅ and thus

SRR =
N∑
i=1

(pFi)/(0 +
∑
F∈Fu

(pF )) = 1

For better illustration how the SRR changes let us use a simple example of a storage

containing 5 base files with popularity distribution Unif(2, 6) so 20 files in total. SRR of

perfect deduplication in this example is 4, SRR and SRP values of our scheme for different

values of t are listed in Tab. 7.1 along with number of files remaining in the dataset after

deduplication. Note that the number of files remaining in the dataset after deduplication

does not increase linearly with increasing t, but grows faster with higher t. Based on

this observation, using our scheme with a dataset containing a few files with very high

popularity (pF >> t) and many files with very low popularity (pF << t) could still have

reasonable deduplication efficiency.

Table 7.1: Scheme Efficiency for Discrete Uniform Popularity Distribution, Unif(2, 6), 20
Files

t SRR SRP files after dedup.

2 4.00 (4:1) 75 5
3 3.34 (10:3) 70 6
4 2.50 (5:2) 60 8
5 1.82 (20:11) 45 11
6 1.34 (4:3) 25 15
7 1.00 (1:1) 0 20
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Figure 7.1: Graphical example: Deduplication over dataset with Pareto popularity distri-
bution. Values for t=5, t=10 and t=20 are emphasized. Values for larger data sets and t
values are in Table 7.3.

While it is generally impossible to model popularity distribution with a clean sim-

ple function-based distribution, analyses of different empirical data show that power-law

distributions appear in most of the human-generated and human-managed data from dif-

ferent areas [9]. Based on these observations, we used Matlab to analyze the efficiency

of the proposed scheme for a power-law popularity distribution. We used the generalized

Pareto distribution with all parameters (i.e. shape, scale and threshold) equal to 1 as an

illustrative example. First we generated a random vector ~x of length 100, sampling the

chosen distribution. The impact of various choices of t in one generated example is illus-

trated in Fig. 7.1. Note that the concrete numbers will differ per every new measurement

since the filesize distribution is obtained by finite sampling from an infinite distribution,

with an infinite expected value. To smoothen the results, we repeated the experiment

100 times and computed the arithmetic averages that are presented in Tab 7.2. It is

important to take these results as basis for general implications about their relation and

dependency instead of considering them to be “hard numbers”. To demonstrate how the

situation scales up from the very small dataset, we varied the vector length and t values,

average results over 100 samples are available in Tab. 7.3.

The above illustrative examples demonstrate how threshold t and the file popularity

distribution in the dataset influence the resulting efficiency of the scheme (not very good

in either case). Indeed, if the datasets really did have constant popularity per file, or

uniform or Pareto distributions, our scheme would not be a very good fit for them. Note

that we specifically stressed this in the scheme overview section 4, stating that “outsourced
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Table 7.2: Average SRR for Generalized Pareto Popularity Distribution, 100 Experiments,
Dataset with 100 Files

t Our Scheme Perfect Deduplication

5 5.9
9.910 4.3

20 3.4

dataset contains few instances of some data items and many instances of others”. Neither

of the classic distributions used so far satisfy this requirement, yet they were useful to

demonstrate the interdependence of factors, specifically the threshold t, file popularity pF

and its distribution, all influencing efficiency of our our scheme. In the rest of this section

we focus our analysis on real-world examples and discuss scheme efficiency for them.

7.2.2 Real Datasets

To analyse the efficiency of our scheme on real data we use two publicly available datasets

– the PB dataset comprised of data collected by F. Hecht, T. Bocek and D. Hausheer

from the popular BitTorrent tracker Pirate Bay [39], representing an example of user

data backup from multiple users, and the UPC dataset, similar to the one used by Liu

et al. [23], consisting of data provided by the Ubuntu Popularity Contest [40] (snapshot

taken on March 15, 2016) and representing an example of a system hard drive backup

from multiple users.

The PB dataset is a collection composed mostly of audio, video and software. Since

no information about torrent contents (i.e. file-level granularity) is provided, we consider

each torrent to correspond to one file for the purpose of our measurement (note that this

simplification does not positively impact the results – on the contrary, the savings would

only be better in case some file was shared among the different torrents). This way, we

obtain 679 515 unique files of size ranging from 0 to 224 GB. To compute popularity of

each of these files we sum the number of “seeders” i.e. peers already having the whole file

Table 7.3: Average SRR for Generalized Pareto Popularity Distribution, 100 Samples

t
Number of files

10 000 1 000 000

Our Scheme
20 6.24 5.52
50 4.78 4.24
100 4.08 3.6

Perfect ded. 18.6 16.46
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Figure 7.2: File popularity distributions in the evaluated datasets, logarithmic scale.

and “leechers” i.e. peers having only part of the file at the moment, but intending to get

the whole file in near future. File popularity ranges between 0 and 124 975. We remove

files with zero size or zero popularity (inactive torrents), getting a dataset consisting of

442 332 unique files with popularity ranging from 1 to 124 975. The dataset contains

10 836 260 files in total (including duplicates) and has total size of 23,149 petabytes.

The UPC dataset represents a collection of Ubuntu software packages including the

information about how many users downloaded and installed each package. Using the list

provided by the Ubuntu Popularity Contest[40] and the apt-cache command on a Ubuntu

15.10 x86 64 machine, we extract sizes of the packages ranging from 736 B to 1.01 GB,

omitting unavailable packages. This way we obtain a dataset consisting of 46 040 unique

files with popularity ranging from 1 to 2 755 245. There are 3 641 060 666 files in total in

the dataset, with the total size of 2,282 petabytes.

Popularity distributions of both datasets are shown in Figure 7.2. To compare the

efficiency of our scheme to perfect deduplication, we provide SRP comparison for both

datasets in Figure 7.3.

As the SRPs demonstrate, our scheme offers very good reduction for the UPC dataset,

even for quite high values of threshold t (99,68% reduction for t = 1 000) whereas for

the PB dataset efficiency decreases faster and the reduction capabilities for high values

of threshold t are much lower (26% reduction for t = 1 000). The difference in scheme

efficiency in the two evaluated datasets is caused by the difference in their popularity

distribution. Even though both datasets have the total size in the order of petabytes, the

PB dataset contains only two files with popularity larger than 100 000 whereas the UPC

dataset contains 3267 such files. Note that the higher the popularity of a file, the better

the reduction by its deduplication.

Using the results of the analysis of the two datasets, we postulate the following obser-
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Figure 7.3: Space reduction percentage (SRP) comparison of our scheme and perfect
deduplication schemes for the PB dataset and the UPC dataset.

vations regarding efficiency of our scheme:

1. for datasets containing many files with very high popularity (such as the UPC

dataset) the efficiency is very good even for quite high values of t;

2. for datasets having the popularity distribution close to a power-law distribution

(such as the PB dataset) the efficiency is notably worse compared to perfect dedu-

plication for very high values of t, but a compromise between security and efficiency

can be found for reasonable values of t (e.g. SRP = 67,95 for t = 100 in the PB

dataset);

3. for datasets having steep long-tailed popularity distribution (i.e. many files with

low popularities, only a few files with high popularity) the efficiency of our scheme

is poor and it should not be used for such datasets.

These observations fit well with the original goal of targeting outsourced datasets contain-

ing few instances of some data items and many instances of others.

7.3 Metadata Overhead Analysis

As described in the SRR definition (Section 7.1), this metric works over file contents

only, ignoring metadata as insignificant and marginal in size. To make sure our scheme

does not introduce any new metdata of significant size, we do a metadata size analysis,
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Popular File Unpopular File

user’s local storage |index|+ |key| 2× (|index|+ |key|)

IRS storage |index|+ |ctr| (pF + 1)× |index|+
pF × |dshare|+ |ctr|

Table 7.4: General metadata overhead analysis.

providing equations to compute metadata size and evaluate its respective concrete sizes

for the real-world UPC and PB datasets.

In our scheme, metadata are stored in the users local storage and in the IRS storage

only. Table 7.4 summarizes the equations to compute a per-file metadata overhead for

both users local storage and for IRS storage. Note that we do not consider the metadata

stored in the storage providers space S (specifically information about owners and dedu-

plication index required by our scheme) since these have to be an integral part of the

storage provider file metadata anyway, independent on whether or not a deduplication

scheme is used.

To evaluate the metadata overhead concretely we can use the datasets from Section 7.2

and set λ = 128 (thus |key| is 8 bytes), index size |index| to 32 bytes, popularity counter

size |ctr| to 2 bytes and |dshare| size to 64 bytes (all settings that we actually use for

practical measurements analysis later). Considering the highest measured value t = 1 000

to obtain the highest unpopular to popular file ratio (and thus the highet metadata

overhead), we computed the metadata overheads listed in Table 7.5.

Note that metadata overhead is independent on the actual file size, though for very

small files the overhead could still be seen as significant. From the user’s perspective,

for deduplication to make sense the file must be larger than 80 bytes (size of metadata

needed to be stored locally per unpopular files, not affected by the value of t). From the

IRS perspective, the metadata size is highly influenced by the value of t – unpopular files

with the highest popularity take up the most space having to store the index mappings and

decryption shares. For the considered highest value of t = 1000 we can take a worst-case

example file with popularity pF = 999 causing corresponding IRS metadata to be almost

96 kB. Thankfully, due to the nature of dataset popularity distribution and the fact that

also huge part of the metadata-taken space is reclaimed when the file gets popular, the

Table 7.5: Metadata overhead analysis for the PB and UPC datasets (in MB).

PB dataset UPC dataset

user’s local storage 25,86 2,94
IRS storage 803,12 503,71
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IRS metadata also remains insignificant in case of the PB and DPC datasets 7.5.

7.4 Computation and Communication Cost Analysis

In this section we analyse the computation and communication cost of our scheme, by

dissecting scheme algorithms to individual components and analyzing their cost based

on parameter variables. For practical measurements, we implement a prototype of our

scheme and measure the respective components. Knowledge from this section can be

used to evaluate computation and communication cost of our scheme for any dataset.

Finally we provide comparative measurements of our prototype to implementations of

other secure deduplication solutions.

7.4.1 Analysis Setup

To measure consumption of computational and communication resources in practice and

provide comparison to other schemes, we implement a prototype of our scheme consisting

of a client program that performs file upload and download operations, a server IdP

program that sets up the system parameters and user share generation, a helper server

deduplication application and an IRS that creates secure connection (TLS) with the user

and generates secure indexes. For comparison with other schemes, we use the publicly

available prototype of DupLESS [5], a prototype kindly provided by Liu et al. [23] and our

prototype implementation of ClearBox [22] (authors could not provide their code due to

company policies). The Attest procedure of ClearBox was not implemented as neither of

the other solutions provides such functionality. To eliminate measurement discrepancies

caused by implementation, we prototyped our scheme and ClearBox mostly in Python

using DupLESS code as basis, and used the Crypto and hashlib Python libraries for

symmetric cryptography operations and hashing, and a wrapper for the C-implemented

PBC library [34] for pairing-based cryptography operations. The prototype by Liu et al. is

implemented in Javascript and we used it “as is” with one modification – to be comparable

with others, instead of storing files locally at the server, the server uses Dropbox for the

actual file storage and internally stores only a hash of the file for comparison purposes.

To prevent confusion, we use the term “client” for the client-side application, “server” for

the server-side application (i.e. our IRS, gateway in ClearBox, KS in DupLESS, S in the

scheme of Liu et al.) and Dropbox as the cloud storage backend. All implementations

were tested on an Intel Xeon E3-1220 machine with 4 CPU cores 3.1 GHz, and 16GB of

RAM running Ubuntu 14.04.

To keep prototypes as aligned as possible we set the general bit-security to 128 – we use

AES-128-CTR as symmetric encryption, SHA256 for hashing and type F bilinear pairing
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provided by the PBC library [34] for group operations, where applicable. Note that if

bit-security 256 or larger is required, we recommend to use newer curves introduced by

Aranha et al. [41] since the PBC library tends to get rather slow for such settings. Our

scheme specific settings include the bitsize of the order of the exploited groups |q| = 256

and threshold t = 1 000. We use SHA-256 as the indexing function and also whenever

hash functions are needed.

To emulate WAN network delay (since we only use one testing server), we use the

tc Linux command shaping all traffic using a Pareto distribution with mean 20 ms and

variance of 4 ms, same as Armknecht et al. [22].

7.4.2 Network Communication

Network communication consists of relations between the scheme participants. We split

and sort the individual data transfers by scheme algorithms in Table 7.6. Note that GetIdx

is part of each Upload (i.e. Upload.Unpopular and Upload.Popular).

Considering that scheme deployment only makes sense in cases where actual data

contents are much larger than the corresponding metadata (see Section 7.3), we observe

that most of the bandwidth is consumed by transfer of the actual encrypted file contents

i.e. the unpopular file upload and (both popular and unpopular) file download operations

between user and S. Compared to |file|, all other sizes are marginal.

Note that while the interaction between user and IRS consists of very small messages,

it occurs quite frequently and, moreover, it must be secure (at least in the “user to IRS”

direction) for the scheme security properties to hold. Implementation-wise this could

impose additional communication cost (e.g. the TLS handshake) and we recommend that

the client application should create batch requests or use the same secure connection for

more requests to reduce this unaccounted-for communication cost.

7.4.3 Computational Resources

Consumption of computational resources is split among the scheme participants as follows:

IdP performs computation during scheme initialization and upon new user credentials

generation

IRS computes a pseudorandom function (PRF) per each first “unique” request (unique

combination of user identity and deduplication index; the index is the input to the

PRF)

S uses most computational resources during the actual file deduplication process
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Table 7.6: Data Transfers per Scheme Algorithm

Algorithm From To Payload Size

GetIdx (Upload)
user IRS |index|+ |dshare|
IRS user |index|

Upload.Unpopular user S |index|+ |file|
Upload.Popular user S |index|

Download
user S |index|

S user |boolean|+ |file|

Delete

user S |index|
S user |index|

user IRS |index|+ |ri|
S IRS |index| or 0

Deduplicate IRS S t× (|dshare|+ |index|)

user Ui spends most computational resources during encryption and decryption of data

All participants are required also to do some database lookups but these are implementation-

specific and should be quite fast and simple, thus we do not include them in our analysis.

Since the PRF computation is always performed over a short hash only, the processing

cost is negligible. Therefore, we focus on the more interesting Init, Upload, Download and

Deduplicate algorithms in more detail.

Init

We evaluate the time required to initialize the scheme using the Eµ.Setup implementation

consisting of two logically independent processes – “scheme parameters generation and

initialization” and “user share generation”.

The first process includes the generation of {G1,G2,GT , ê, g, ḡ, ḡpub} and of the secret

sk. Using the PBC library for pairing implementation, most of the time consumed by

Eµ.Setup is taken by the process of pairing parameter generation (i.e. finding suitable

groups and pairing based on the value of the security parameter λ). The results for varied

values of the security parameter λ are available in Table 7.7, value of threshold t plays no

role in this phase. Note that the scheme initialization cost is very low compared to the

parameters generation cost.

The second process implements secret user-share generation in the most straightfor-

ward way – master secret sk is the zeroth coefficient in a polynomial of order t, user share

is generated by polynomial evaluation using the Horner scheme. The number of users

is practically unlimited, a new secret share can be generated anytime by evaluating the

polynomial at the next point (if the last shared secret was evaluated at n, the next one

would be evaluated at n+ 1 etc.). Depending on the t value, the generation process takes
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from 3 ns for t = 50 to 1.04 ms for t = 1000. These values are negligible compared to

other measured processes, since share generation occurs only once per new user.

Undoubtedly, the processing time of almost 30 seconds that the Eµ.Setup operation has

when 1λ = 2048 would not be acceptable if the operation was to occur frequently during

scheme operation. Thankfully, the Eµ.Setup operation is performed by the IdP only once,

at the moment of the initial system deployment, and is therefore not significant for regular

scheme runtime.

File Upload and Download

We analyze the upload operation first. We split the cost of the operation into smaller

isolated components that we analyze separately, and then compose into the total operation

cost.

Upload(F,Ui) (see Figure 5.4) of an unpopular file can be decomposed into the following

operations:

UP1 Convergent encryption and tag generation

UP2 Decryption share generation

UP3 Secure index obtaining

UP4 Symmetric encryption of the convergent ciphertext

UP5 Threshold encryption of the symmetric key

UP6 Data transfer

For a popular file upload, UP4 and UP5 are missing and UP6 transfers only an

index instead of file contents. UP1 is common for all deduplication schemes exploiting

convergent encryption and its cost is filesize dependent. UP2, UP3 and UP5 represent

the cost of operations present only in our scheme and are filesize independent. UP4

represents the cost of operation present only of our scheme and is filesize dependent. UP6

is both filesize and bandwidth dependent and is present in all deduplication schemes.

Table 7.7: Scheme Parameters Generation and Initialization (in seconds)

λ Parameter Generation Scheme Initialization

512 0.45 0.023
1024 4.25 0.023
2048 28.40 0.023
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To evaluate the cost of operations independently of the filesize, we used a 1 KB file

and repeated the upload process 100 times (without UP6). Table 7.8 lists the results.

Since the value of UP3 highly depends on the distance and link quality between IRS

and the user (the computation takes 4 ms only), we present three values – the first value

corresponds to IRS and user in the same country (CZ), direct distance appx. 200 km,

the second corresponds to the same continent (CZ-IT), appx. 1 000 km, and the third

to different continents (CZ-JPN), appx. 9 100 km. Note that UP3 can be split further

into subcomponents UP3.1 secure channel establishment, UP3.2 over-the channel data

transmission and UP3.3 secure index generation. To minimize cost, we recommended to

do UP3.1 only once for batch uploads and re-use the established secure channel.

To evaluate the cost of operations UP1 and UP4 (dependent on the filesize) we split

the operations further into subcomponents. UP1(|F |) = {SHA256(|F |)+AES128.E(|F |)+
SHA256(|F |)} and UP4(|F |) = {AES128.K+AES128.E(F )} (AES128.K is just a random

number generation). Since both hashing and symmetric encryption should scale almost

linearly with the filesize we have used two test files of size 1 MB and 64 MB and repeated

the upload procedure for each of them 100 times (without UP6) to compute the average

throughput. The resulting approximate throughput for UP1 is 100 MBps and for UP4

500 MBps.

Since UP6 represents the actual data upload, we can perceive UP1 to UP5 as an

unpopular file upload overhead incurred by our scheme compared to a plaintext remote

storage scheme without any deduplication and encryption. The overhead is composed of

constant cost Tconst = T (UP2) +T (UP3) +T (UP5) and filesize-dependent relative cost

of Trel(|F |) = T (UP1(|F |)) + T (UP4(|F |)). From the measurements, it is clear that the

constant cost would be the major overhead for small files and with the increasing filesize,

the relative cost would become predominant. To obtain concrete numbers we adopted

the approach suggested by Bellare et al. [5] and generated a set of random content files

of size 22i kB for i ∈ {0, 1, .., 8} (i.e. from 1 kB to 64 MB) and uploaded them using

only the Dropbox API (i.e. plain non-encrypted upload, only UP6) and then using our

scheme (i.e. using UP1 to UP6 for unpopular file and UP1 to UP3 + UP6 [index

Mean Standard Deviation

T (UP2) 5.14 0.01
T (UP3) 26.3; 112.5; 1 090 0.93; 2.18; 17.45
T (UP5) 36.48 2.55

Table 7.8: Cost of operations independent of the filesize (in milliseconds). The three
T (UP3) values correspond to different geographical settings (same country; same conti-
nent; different continents).
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Figure 7.4: Upload duration comparison for plain Dropbox and Dropbox with our scheme.

only] for popular file; using T (UP3) = 112.5 ms). We repeated the experiment 10x to

avoid single-measurement errors, the results are available in Figure 7.4.

While Figure 7.4 demonstrates that the overhead incurred by our scheme for unpopular

file upload is minimal (especially for bigger files), it is caused mainly by the very low upload

speed to the Dropbox storage. If the upload speed was higher then the cost would be

proportionally bigger since the time to upload the actual data would shorten. Due to the

constant cost Tconst it is not possible to compute throughput of our scheme, but we can

compute relative throughput per filesize considering sequential upload of uniform-sized

files like THR(|F |) = (1/(Tconst + Trel(|F |))). Using concrete values, the THR(1kB) =

6.45kBps, THR(1MB) = 6MBps and THR(64MB) = 69.4MBps. To conclude, if the user

would upload files of average size 1 MB he would not perceive any notable delay if the

upload speed to the storage provider would be lower or equal to 6 MBps (respectively 48

Mbps). Note that the computation does not include the per-file storage provider upload

initialization cost so the actual real speeds would be even higher.

The cost of the Download(F,Ui) operation is very easy to analyse since it corresponds

either to 1x AES128.D(|F |) for popular file or 2x AES128.D(|F |) for unpopular file plus

the actual data transfer from the storage to the user. Since throughput of AES128.D on

our testing machine is over 1 GBps (thanks to parallelization of the decryption process)

it is unlikely that the cost would be noticeable compared to the actual data transfer.

Deduplication

The Deduplicate(indexes, shares) algorithm can be decomposed into the following opera-

tions:

DE1 IRS sends a set of indexes and decryption shares to S
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DE2 S threshold-decrypting symmetric key(s)

DE3 S symmetrically-decrypting unpopular file(s)

DE4 S discards unpopular files and stores one popular file

Since DE1 is transfer of filesize-independent sets of indexes and shares, it is of near-

constant cost and, assuming reasonably good connection of 1 MBps, t = 1 000 and ping

RTT from S to IRS as 200ms, the T (DE1) = 600 ms. DE2 is filesize-independent and

has a measured constant cost T (DE2) = 266.3 ms (standard deviation 1.42). DE3 is

filesize dependent and corresponds to AES128.D which reaches 1 GBps throughput in our

test setting. DE4 is the cost incurred by S implementation.

While the cost of deduplication is substantial, it occurs only once per file transiting

states and the computationally-intensive part can be scheduled by the storage provider

upon need. A greater limitation is the need to implement the functionality itself in the

storage provider S. While the implementation is straightforward and should not be diffi-

cult to be performed by S “inside”, it is almost impossible to achieve it by modifications

done “from the outside”.

7.4.4 Performance Comparison of Different Solutions

Since scheme initialization and user registration procedures are varied among the different

solutions and are relatively rare (compared to file manipulation operations), we leave them

out of the comparison. For completeness we stress that in neither of the tested prototypes

these procedures took longer than a few seconds. Instead, we focus mostly on the Put

(respectively Upload) operation for deduplicable files (since that is the most important

from the practical usage perspective) and compare the costs for the different prototypes

and a plain Dropbox service (without deduplication). Afterwards we briefly analyze the

Get operation, communication cost and analysis of its specific deduplication operation

cost.

Deduplicable Put request: To compare the prototypes practically we use the UPC

dataset from Section 7.2. To avoid the initialization period with an empty storage and

no deduplication, we model a situation where every file F from the dataset was already

uploaded approx. pF/2 times. Next, we randomly sample 100 files from the dataset,

generate 100 Put requests for these files per each prototype and measure processing time

using the Python time (respectively JS Date) module. The aggregate results plotted in

Figure 7.5 demonstrate that solutions not interacting with Dropbox for a deduplicated

file upload (ClearBox and Liu et al.) have much better results. The outliers suggest a

few Put requests taking significantly longer than the others. Interestingly, even though
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Figure 7.5: Average processing time of a Put request for a deduplicable file from a ran-
domly chosen 100-file sample from the UPC dataset.

our scheme uses Dropbox only to store a short hash per file, interaction with Dropbox

takes similar time as the plain Dropbox solution that always stores the entire file. This

suggests that for most files in the sample, connection initiation and request set-up with

Dropbox take significantly more time than the actual file transfer.

To provide a more detailed analysis, we have chosen two Put requests – one with the

lowest processing time and one with the highest processing time (across all prototypes) and

split the processing times into client computation, server computation, communication

between client(s) and server and interaction between client/server and Dropbox, as shown

in Figure 7.6.

To demonstrate that file size is likely the major influence factor we use a dataset of

random content files of size 22i KB for i ∈ {0, 1, .., 8} (i.e. from 1 KB to 64 MB), pre-

upload them enough times to make them popular and then measure Put requests for each,

see Figure 7.7. The results demonstrate that ClearBox is the best for deduplicable small

files, but for larger files the client-side processing is increasing notably (mostly due to the

complex FID computation). The prototype by Liu et al. shows very smooth results, only

lightly dependent on the file size (initial file hashing) but has the biggest communication

cost. Our scheme and DupLESS are highly influenced by interaction with Dropbox and

would benefit from a cloud backend with much faster connection initiation. Interestingly,

Dropbox is obviously slower during the initial upload request (first file for our scheme and

DupLESS) than during the following ones.



CHAPTER 7. PERFORMANCE EVALUATION 74

Figure 7.6: Put request with the lowest (left; 157 KB file) and the highest (right, 33 MB
file) processing time split into individual costs (same sample as Figure 7.5).

Communication cost: We use tcpdump to measure communication on the network

interface for a deduplicable 1MB file (cost is file-size-independent, provided that PoW in

ClearBox is capped for 64 MB buffer as suggested). We repeated the Put operation 100x

to avoid single-measurement errors. Both in our scheme and in DupLESS the client only

sends one request and receives one reply, together these correspond to less than 1 KB

(including the DupLESS-based session tracking and rate limiting information). ClearBox

uses three requests and responses per Put (key request, FID and PoW challenge). The

cost depends on the PoW parameters, for the tested settings it did not reach 10 KB. The

proposal of Liu et al. contains significant cost due to the PAKE processing (set to default

30 requests) and averaged at 110 KB per Put.

Non-deduplicable Put request: All prototypes inherit the Dropbox interaction

cost of DupLESS (see Figure 7.7, DupLESS, yellow bar) corresponding to the actual data

upload, ClearBox adds intensive PoW computation on the server-side, the proposal of

Liu et al. spares some PAKE communication and our scheme adds additional encryption

layer (which is quite fast and corresponds only to about 1/3 more client computation

cost). DupLESS retains the cost as it does not differ between Put for deduplicable and

non-deduplicable file. Even though ClearBox has the highest cost, it happens only once

per file (first upload), but potentially more times for Liu et al. and t times for our scheme.

Whichever scheme is used, the initial deployment cost will be considerably higher than

the processing cost once the storage “fills in” reasonably.
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Figure 7.7: Processing time of Put requests for deduplicable files of size 22i KB for i ∈
{0, 1, .., 8} (plotted left to right per prototype).

Get request: The comparison of Get requests processing reveals that all schemes

perform near-equally. ClearBox adds computational cost by generating the download

URL, the proposal by Liu et al. was originally designed to use storage directly on server

so the data flows through it from Dropbox to client. Our scheme and DupLESS allow the

clients to connect directly to Dropbox and get their files; our scheme requires an additional

decrypt in case of an unpopular file. All the added costs are marginal compared to the

cost of Dropbox interaction and the actual data download.

Deduplication: The actual deduplication process is nearly “free” (comparison of

hashes or encrypted data) for all prototypes but that of our scheme. In our scheme,

deduplication must be implemented in the cloud backend and consumes approx. 850ms

(considering 1MBps link between IRS and S) + symmetric decryption of the upper en-

cryption layer for at least one file (more if checks are required). This cost, while higher

than for other schemes, is still under 1s for a 100MB file. This measurement was done on

a separate cloud application as Dropbox does not support it.

7.5 Summary

Chapter 7 presented a metric to measure the space reduction efficiency of our scheme

– the Space Reduction Ratio (SRR), and covered an analysis of the computation and
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communication cost of our scheme and of representative examples of other secure data

deduplication schemes.

With respect to the space reduction efficiency, ClearBox and DupLESS implement a

perfect deduplication scheme and thus achieve the highest possible SRR for any dataset.

Our scheme and the scheme proposed by Liu et al. have varying efficiency, based on the

parameters of the scheme and properties of the dataset. Plain Dropbox was used only for

comparison and does not offer any deduplication, thus no space reduction.

Considering the computation and communication cost, all analyzed schemes have very

low server computation cost, allowing the server components to serve multiple clients and

scale well when needed. Comparison with a plain Dropbox service shows that deployment

of the analysed schemes lowers the user-perceived latency for popular file Put requests

(with the exception of DupLESS which only increases the latency by less than 1/10 per

Put) and adds only a minimal overhead cost for Get requests. Considering the offered

storage space reduction, all solutions create a win-win situation for both users and storage

providers.

The results of the comparative analysis of performance of the different schemes from

the computation and communication cost point of view demonstrate that there is no

“winner” in this respect, each analyzed scheme has its pros and cons. Using the results of

Put measurements, we demonstrate that, depending on the cloud back-end performance,

our scheme is on par with ClearBox for smaller files and outperforms it for bigger files,

the scheme of Liu et al. outperforms other schemes for bigger files but is ineffective for

small files. However, the increased cost of ClearBox for bigger files is largely caused by

the included Proof of Ownership mechanism that is not integrated in the other schemes

and the ineffectiveness of the scheme by Liu et al. for small files is caused by the need

to process the request also by other client(s) than only the uploading one, which, on the

other hand, enabled the scheme to limit the amount of potentially exploitable information

stored in the server application. Considering the ease of deployment, apart from ClearBox,

all schemes require modification of the cloud back-end. This is cumbersome, but viewed

from a different perspective, it enables the possibility to download files even if the server

component of these schemes is down (which is impossible in the case of ClearBox).

Despite the fact that all the analysed schemes offer secure data deduplication, they are

very different in many aspects. We recommend potential adopters to evaluate their needs

and choose the scheme that best fits their requirements and environment from functional,

security and performance perspectives. In Table 7.9 we list a few of the differentiating

features we identified, that might help in the decision process. We stress that each feature

can be considered as an advantage from one perspective and as a disadvantage from

another perspective and the schemes could be modified to support some of the features
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they do not include in their original design. The table should therefore serve more as a

basic view of what features each scheme offers out of the box as it was originally published

and designed.

Table 7.9: Feature comparison of different deduplication schemes; x - feature present; o -
feature not present; x∗ - not measured in our performance analysis, based on information
from the source paper
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Perfect deduplication x o o x x

No Indexing Server-like component o x o o o

No active participation of users on deduplication x o x x x

Transparent deduplication pattern attestation x o o o o

Automatic differentiation of popular and unpopular files o o x o o

Inherent resilience to storage-service-based side-channel attacks o o x o x

Limited file-size influence on deduplicable Put cost o x x o x∗

Incorporated Proof of Ownership mechanism x o o o o



Chapter 8

Conclusion

This thesis deals with the inherent tension between well established storage optimization

methods and end-to-end encryption in a practical example of a cloud storage service sce-

nario. Concretely, we focus on the issue of secure data deduplication, analyzing different

views of security versus deduplication. Based on the analysis we build a secure dedupli-

cation scheme implementing the idea of popularity where different data require different

protection based on how much they are shared (i.e. popular) among users. We present a

construction of our scheme, evaluate it from both security and performance views, discuss

it’s limitations and possible ideas for their alleviation and compare our scheme with other

state of the art secure data deduplication schemes.

Differently from the approach of related works that assume all files to be equally

security-sensitive, we vary the security level of a file based on how popular that file

is among the users of the system. This is a major switch in view of file security – the

traditional view that takes file contents as the major factor when considering file sensitivity

and potential level of protection of the file is replaced by a view that instead of contents

considers file popularity and argues that once a file is “widely known”, there is no point

in keeping it “heavily protected”. This novel view may be of independent interest.

Our proposed secure data deduplication scheme has two major advantages (provided

the popularity-based classification is acceptable for the scheme users) – the users no

longer need to manually classify sensitive files (since all files are first unpopular and

thus protected using a semantically secure cryptosystem), and the transition between

unpopular and popular state is automatic and does not require active user participation.

The advantages come at the cost of disadvantages – our scheme has lower deduplication

ratio than perfect deduplication schemes and the computation cost of scheme operations

is not negligible.

To ease possible adoption of a secure deduplication scheme by cloud storage service

providers we provide an extensive performance and security evaluation of our scheme and

78
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compare it with other state of the art schemes. Our evaluation shows that there is no

clear “winner” (i.e. the best secure deduplication scheme) among the proposals – each

scheme has some pros and cons. Performance-wise, none of the evaluated schemes outper-

forms others under all conditions, each has advantages and disadvantages with regards

to a particular data mix, environment and requirements. Security-wise, our scheme is

resilient to user-collusion attacks (up to a clearly defined point) and to an honest but

curious storage provider. By automatically differentiating between popular and unpopu-

lar data, our scheme alleviates the user’s need to handle low-entropy files differently (if

their eventual deduplication is acceptable) and surpasses the other schemes in the fact

that it never deduplicates unpopular files nor leaks whether there are any duplicates of

unpopular files in the storage (unless the indexing server is compromised).

Admittedly, secure data deduplication schemes (ours included) are not perfect and

their concrete performance highly depends on the underlying dataset. However, the

steeply increasing amount of data being stored in cloud storage services calls for us-

age of storage optimization methods and deduplication seems a viable candidate. This

thesis can help the readers to understand the risks related to data deduplication and make

decisions regarding potential secure data deduplication scheme adoption based on their

concrete requirements and setup.

Despite existence of multitude of secure data deduplication scheme proposals, all of

them use the deduplication index. The deduplication index is, by its nature, a leakage

of information about file contents. However, without the deduplication index, it is not

possible to find out that two files are the same (and thus can be deduplicated). All the

schemes analysed in this work, including ours, solve this index-caused security weakness

by handling it by a trusted component or requiring active participation of users storing

the respective indexes locally. Finding a solution that would not use the deduplication

index but rather some other innovative approach, without the inherent security weakness

introduced by the deduplication index, is still an open problem.



Appendix A

PhD Studies – Overview and Results

Due to quite changing topics of interest during my PhD studies there is a lot of research

that is not included in this thesis but was part of my PhD studies. For completeness I

present a short time-ordered summary of my PhD studies and the respective publication

results.

I started my PhD studies in 2011 with the original topic of SIP (Session Initiation

Protocol), respectively VoIP (Voice over IP) security. The initial research showed that

SIP servers (core building blocks of SIP infrastructure) are very prone to Denial of Service

(DoS) attacks and there is no suitable protection available. To attract attention to the

issue we first published (together with my supervisor) a paper describing the issue [42],

including a simple SIP DoS attack tool as a proof of concept that the threat is real.

Afterwards I designed and evaluated a few possible approaches how to defend against

such attacks. The result of this research was another publication describing design of

a DDoS protection solution tailored specifically for SIP servers [43]. During the SIP-

oriented research, I found myself constantly lacking sources of real or at least real-like

traffic. Therefore we decided to collaborate with a testing-oriented free SIP network

iptel.org, represented by Jiri Kuthan, and prepared an analysis of real SIP traffic [44].

As the next step, we implemented a tool to anonymize SIP traffic such that it can be

shared with public without risking potential disclosure of client/confidential data, and a

portal where such anonymized traffic can be shared. To prove that anonymization does

not remove interesting factors from the data we published an analysis of anonymized data

yielding useful results [45]. When preparing the infrastructure and doing processing of

the collected data, I became more familiar with cloud technologies and noted a new vast

field of potentially very interesting security problems. After playing with the provided

cloud solutions a bit, we decided with my supervisor that it might be worth switching

topics to cloud security as this field was rapidly expanding and offering quite a few novel

security challenges.
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In the beginning of my “cloud security” PhD era I did an exploratory work to see

what was already done, what is available and what is a likely candidate to pursuit. This

preliminary work resulted in a short review summarizing fully homomorphic encryption

(FHE) and multiple sources regarding the current state of the art research in the cloud

security research area. Despite being very interesting, the FHE topic was already being

researched by multiple teams around the world and the amount of “familiarization work”

required to become an active part of this research was too high to be feasible for me

at that, already advanced, stage of PhD studies. Not to waste the concise FHE survey

that resulted from the exploratory work, I discussed with my colleagues at the university

and we decided that it might be useful to attract students to the topic. Thus I have

re-formed, simplified and translated the survey to Czech language and provided it is a

study material for students of the “Introduction to Information Security” course. Next

to the FHE topic, I also ended up with many other viable research options. We discussed

them with my supervisor and formulated a few most promising topics to be pursued in

further research. To evaluate the “attractiveness” of the topics to the research community

I joined an open call offering student internships at IBM Research – Zurich and discussed

the topics with their research team during the applicant interviews. As a result I was

accepted for the internship with the topic focusing on secure deduplication. I started my

6-months internship and secure deduplication-oriented research in mid-2012 and continued

till 2016, having a chance to do another 6-months internship at IBM Research – Zurich in

2014. The results of this research are described in this thesis and were also published in

form of one patent [46], one conference publication [47] and one journal publication [48].

As part of the work at the internships I also participated in the backup and storage

research area and, together with my IBM colleagues, we formulated a mechanism how to

efficiently implement secure deduplication also for tape-based storages. This work also

resulted in patent application [49]. Despite being very-well perceived by the research

community, secure deduplication did not get much practical applications yet, since the

solutions providing reasonable security levels are also more resource-requiring. At the time

of the research, companies either didn’t move to public cloud at all, preferring isolated

private clouds, or used legal-based forms of security (Service Level Agreements with legally

binding clauses) rather than technical security solutions. A few big companies created

dominant cloud platforms that “are supposedly secure”, though noone really explained

how exactly this security is assured and didn’t formalize (or disclose) the threat models

and actors. This attitude is slowly changing now and secure deduplication is, among

other cloud-security related technical solutions, very likely to become also practically

adopted (or at least it seems from the growing number of patents being issued in the

field). However, in 2016 it seemed the practical adoption will take a few years and after
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a more theoretical research I was striving for some hands-on security that will likely be

practically adopted quickly. A chance came in form of the emerging Internet of Things

(IoT) – hitting the market very fast means very likely very poor security which inherently

means a lot of potential for applied security research.

My research towards IoT security started as a joint work between university and a

private company that started to replace their traditional production with smart (i.e.

connected) devices. The first results of research were documents evaluating security of

design of an Over the Air Update solution proposed for the new smart devices and security

evaluation of a prototype smart device. Unfortunately, due to the confidential nature of

the results (since security flaws, planned patches and new, more-secure, system designs

must not be published to keep the company secure and business-like ahead of competitors)

publication of these results is currently not possible. Also, a lot of the results of this work

are concerning applied security, which is very interesting for in-field deployment, but not

as much interesting to the research community. Evaluating my current research results, we

concluded with my supervisor that the most impactful research that is already published

is the work that focuses on the secure deduplication and so I decided to finish my PhD

studies (i.e. write this thesis) focusing on this topic. It is very likely that in the future,

the situation will change and IoT secure system designs will be widely published whereas

the for-now mostly-theoretical field of secure deduplication will become more applied. But

waiting for that time might well prove to be too long and since some new topic might

gain my interest in the meantime, it seems a much better idea to finish PhD now, not to

be doing it “virtually forever” [smileys are not to be included in a serious research work].
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This list covers all publications, that I authored or co-authored during my PhD studies.

Publications are sorted according to their citation count reported by Google Scholar (GS)

and Web of Science (WoS). Data snapshot taken in February 2018.
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This list covers all publications, that I authored or co-authored during my PhD studies.
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pation is not specifically noted then participation of all co-authors of the work was equal.

C.1 Publications Related to Thesis Topic

Publication Type

Author participation (if not equal)

J. Stanek, A. Sorniotti, E. Androulaki, and L. Kencl, “A secure data
deduplication scheme for cloud storage”, in International Confer-
ence on Financial Cryptography and Data Security, 2014

Indexed by ISI*
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plication scheme for cloud storage”, IEEE Transactions on Depend-
able and Secure Computing, vol. PP, no. 99, 2016
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pact Factor

R. Cideciyan, J. Jelitto, S. Sarafijanovic, and J. Stanek, US patent
application 20140358871, 2014. [Online]. Available: http://www.
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J. Stanek, L. Kencl, and J. Kuthan, “Characteristics of real open
SIP-server traffic”, in International Conference on Passive and Ac-
tive Network Measurement, 2013

Other publica-
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Stanek 50%, Kencl 25%, Kuthan 25%

J. Stanek, L. Kencl, and J. Kuthan, “Analyzing anomalies in
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plicit formulas for computing pairings over ordinary curves”, in Advances in Cryp-
tology - EUROCRYPT 2011 - 30th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Tallinn, Estonia, May 15-19, 2011.
Proceedings, 2011, pp. 48–68. doi: 10.1007/978-3-642-20465-4_5. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-20465-4_5.

[42] J. Stanek and L. Kencl, “SIPp-DD: SIP DDoS flood-attack simulation tool”, in
Computer Communications and Networks (ICCCN), 2011 Proceedings of 20th In-
ternational Conference on, IEEE, 2011, pp. 1–7.

http://dx.doi.org/10.1007/3-540-45748-8_24
http://dx.doi.org/10.1007/3-540-45748-8_24
http://dx.doi.org/10.1007/3-540-45748-8_24
http://dx.doi.org/10.1007/s00145-004-0311-z
http://dx.doi.org/10.1007/s00145-004-0311-z
http://dx.doi.org/10.1007/s00145-004-0311-z
http://dx.doi.org/10.1007/s00145-004-0311-z
http://crypto.stanford.edu/pbc/
http://crypto.stanford.edu/pbc/
http://eprint.iacr.org/2005/385
http://dx.doi.org/10.1145/1180405.1180418
http://dx.doi.org/10.1145/1180405.1180418
http://doi.acm.org/10.1145/1180405.1180418
http://dx.doi.org/10.1007/11832072_10
http://dx.doi.org/10.1007/11832072_10
http://dx.doi.org/10.1007/3-540-46513-8_14
http://dx.doi.org/10.1007/3-540-46513-8_14
http://dx.doi.org/10.1007/3-540-46513-8_14
http://dx.doi.org/10.1007/3-540-46513-8_14
http://www.csg.uzh.ch/publications/data/piratebay.html
http://popcon.debian.org/
http://popcon.debian.org/
http://dx.doi.org/10.1007/978-3-642-20465-4_5
http://dx.doi.org/10.1007/978-3-642-20465-4_5


BIBLIOGRAPHY 90

[43] ——, “SIP protector: Defense architecture mitigating DDoS flood attacks against
SIP servers”, in 2012 IEEE International Conference on Communications (ICC),
IEEE, 2012, pp. 6733–6738.

[44] J. Stanek, L. Kencl, and J. Kuthan, “Characteristics of real open SIP-server traffic”,
in International Conference on Passive and Active Network Measurement, Springer,
2013, pp. 187–197.

[45] ——, “Analyzing anomalies in anonymized SIP traffic”, in Networking Conference,
2014 IFIP, IEEE, 2014, pp. 1–9.

[46] J. Jelitto, T. Mittelholzer, S. Sarafijanovic, A. Sorniotti, and J. Stanek, US PATENT
9292532: Remote data storage, 2016. [Online]. Available: http://www.freepatentsonline.
com/9292532.html.

[47] J. Stanek, A. Sorniotti, E. Androulaki, and L. Kencl, “A secure data deduplication
scheme for cloud storage”, in International Conference on Financial Cryptography
and Data Security, Springer, 2014, pp. 99–118.

[48] J. Stanek and L. Kencl, “Enhanced secure thresholded data deduplication scheme
for cloud storage”, IEEE Transactions on Dependable and Secure Computing, vol.
PP, no. 99, pp. 1–1, 2016, issn: 1545-5971. doi: 10.1109/TDSC.2016.2603501.

[49] R. Cideciyan, J. Jelitto, S. Sarafijanovic, and J. Stanek, US patent application
20140358871, 2014. [Online]. Available: http://www.freepatentsonline.com/
y2014/0358871.html.

http://www.freepatentsonline.com/9292532.html
http://www.freepatentsonline.com/9292532.html
http://dx.doi.org/10.1109/TDSC.2016.2603501
http://www.freepatentsonline.com/y2014/0358871.html
http://www.freepatentsonline.com/y2014/0358871.html

