
Handling Missing Values in Decision Forests in the Encrypted
Network Traffic

Lukáš Sahula

Bachelor’s Thesis

Department of Computer Science

Faculty of Electrical Engineering

Czech Technical University in Prague

Supervisor: Ing. Jan Brabec
Program: Software engineering and technologies
May 2018

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

435008Osobní číslo:LukášJméno:SahulaPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Softwarové inženýrství a technologieStudijní program:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Neúplná Data a Rozhodovací Lesy v Úloze Klasifikace Šifrovaného síťového provozu

Název bakalářské práce anglicky:

Handling Missing Values in Decision Forests in the Encrypted Network Traffic

Pokyny pro vypracování:
The thesis addresses the problem of training a classifier from data with missing values. More specifically, a Random Forest
is to be trained to classify malware from proxy log data. Themain focus is on implementing missing-valuehandling method(s)
that would lead to improved classification performance, measured by precision and recall.
The concrete goals are:
1) Review prior art in the area of handling missing values in sparse datasets that are applicable to decision forest based
classifiers and choose methods suitable for implementation in the thesis´ context.
2) Consider if a modification of existing tools or proposal of entirely new method would be beneficial for the specific case
of proxy log classification.
(optional)
3) Implement the chosen methods in Python and connect them to a framework for model training and evaluation (developed
prior as part of the software engineering project).
4. Evaluate and compare the classification performance (precision, recall) of implemented methods on a provided test set
to the baseline method based on replacing missing values by a constant.

Seznam doporučené literatury:
[1] Criminisi, A., Shotton, J., & Konukoglu, E. (2011). Decision forests for classification,
regression, density estimation, manifold learning and semi-supervised
learning. Microsoft Research Cambridge, Tech. Rep. MSRTR-2011-114, 5(6), 12.
[2] Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning
2nd edition.
[3] Stekhoven, D. J., & Bühlmann, P. (2011). MissForest?non-parametric missing value
imputation for mixed-type data. Bioinformatics, 28(1), 112-118.
[4] Feelders, A. (1999). Handling missing data in trees: surrogate splits or statistical
imputation?. Principles of Data Mining and Knowledge Discovery, 329-334.
[5] Lin, W. C., Ke, S. W., & Tsai, C. F. (2017). When Should We Ignore Examples with
Missing Values?. International Journal of Data Warehousing and Mining
(IJDWM), 13(4), 53-63.
[6] Saar-Tsechansky, M., & Provost, F. (2007). Handling missing values when applying
classification models. Journal of machine learning research, 8(Jul), 1623-1657.

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 1 z 2CVUT-CZ-ZBP-2015.1

Jméno a pracoviště vedoucí(ho) bakalářské práce:

Ing. Jan Brabec, katedra počítačů FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: 25.05.2018Datum zadání bakalářské práce: 09.02.2018

Platnost zadání bakalářské práce: 30.09.2019

prof. Ing. Pavel Ripka, CSc.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Jan Brabec

podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 2 z 2CVUT-CZ-ZBP-2015.1

Acknowledgement

First of all, I want to thank my supervisor Ing. Jan Brabec for his guidance,
support, and for offering me such an interesting (and exhausting) topic while
back in 2017 I did not know anything about machine learning and the only
thing I was really interested in was to find something ”cool” to do with the
Python programming language.

I also want to give my thanks to my family for their support and the trust
they put in me. Especially to my brother Peter for regularly putting things
in perspective.

An immeasurable amount of thanks also goes to my friend Tomáš, for he was
ready to explain and talk about anything even remotely related to mathe-
matics at all times.

Declaration

I declare that the presented work was developed independently and that I
have listed all sources of information used within it in accordance with the
methodical instructions for observing the ethical principles in the prepara-
tion of university theses.

..................... in Prague, on the 25th of May 2018

Abstract

This thesis examines the problem of malware classification using the random
forest classifier trained on network traffic dataset. The dataset contains hun-
dreds of millions of labeled objects, some of which are related to malware
infection. However, roughly half of the datasets values are missing and these
missing values have to be handled before or during the process of classifica-
tion. The thesis discusses a number of existing approaches to missing data
imputation and compares the results of those that are relevant to datasets of
this scale. Furthermore, this work provides an analysis of the dataset itself in
order to find the correlations between pairs of features and their missingness.

Keywords: malware, classification, random forests, supervised learning,
missing values, imputation, feature, correlation

Tato práce zkoumá problém klasifikace malware za použit́ı klasifikátoru
náhodných les̊u trénovaných na datasetu źıskaném ze śıt’ového provozu.
Tento dataset obsahuje stovky milion̊u kategorizovaných záznamů, z nichž
některé jsou spojené s určitým druhem malwarové infekce. Avšak zhruba
polovina hodnot v datasetu chyb́ı a s těmito chyběj́ıćımi hodnotami je nutno
se vypořádat, at’ už před procesem klasifikace, nebo během něj. Práce ukáže
několik existuj́ıćıch zp̊usob̊u imputace chyběj́ıćıch dat a porovná výsledky
těch, které jsou vhodné k použit́ı s datasetem těchto rozměr̊u. Dále práce
poskytne analýzu použitých dat se záměrem nalezeńı mı́ry korelace mezi
páry jednotlivých atribut̊u a toho, za jakých podmı́nek jednotlivé atributy
chyb́ı.

Kĺıčová slova: malware, klasifikace, náhodné lesy, učeńı s učitelem, chyběj́ıćı
hodnoty, imputace, feature, korelace

Table of contents

Introduction 11

1 Malware and classification 12
1.1 Malware . 12
1.2 Classification . 13
1.3 Malware classification . 14

2 Random forest classifier 15
2.1 Decision trees . 15

2.1.1 Overview . 15
2.1.2 Strengths . 16
2.1.3 Weaknesses . 17
2.1.4 Growing a decision tree 17
2.1.5 When to create a leaf node 18
2.1.6 How to create a leaf node 19
2.1.7 Finding the best split 19

2.2 Random forests . 21
2.2.1 Bootstrap aggregating 22
2.2.2 Random feature subsets 22

3 Network dataset 23
3.1 Dataset description . 23
3.2 Analysis . 24

3.2.1 Missingness . 24
3.2.2 Correlation matrix . 24
3.2.3 Missingness correlation matrix 27
3.2.4 Conditional probabilities matrix 28
3.2.5 Feature substitution 29

4 Handling missing values 33
4.1 Related work . 33
4.2 Missing data mechanisms . 34
4.3 Selected imputation algorithms 35

4.3.1 Baseline imputation 35
4.3.2 Strawman imputation 35
4.3.3 On-the-fly-imputation 35
4.3.4 Missingness incorporated in attributes 36
4.3.5 Other algorithms . 37

5 Experiments 38
5.1 Evaluation metrics . 38

5.1.1 Confusion matrix . 38
5.1.2 Precision . 39
5.1.3 Recall . 40

5.2 Results . 42
5.2.1 Average overall precision 42
5.2.2 Number of classes with precision above a certain thresh-

old . 44
5.2.3 Average overall recall 44

Conclusion 47

Reference 50

A Enclosed CD contents 51

List of figures

1 Picture of a decision tree with the training data used for its
growth [13] . 16

2 Correlation matrix showing the amount of correlation among
pairs of features . 26

3 Correlation matrix showing the amount of correlation among
pairs of features based on them being missing or not 27

4 Conditional probabilities matrix showing each element’s (i,j)
probability that feature j is not missing when feature i is missing 28

5 Counts of potential substitions based on their non-missingness
probability for each feature with correlation threshold 0.3 . . 30

6 Counts of potential substitions based on their non-missingness
probability for each feature with correlation threshold 0.5 . . 31

7 Counts of potential substitions based on their non-missingness
probability for each feature with correlation threshold 0.8 . . 32

8 Visual representation of precision and recall [24] 41
9 Precision of the tested methods averaged across all positive

classes . 43
10 Recall of the tested methods averaged across all positive classes 45

List of tables

1 The number of classes predicted with precision above a spec-
ified threshold
. 44

Introduction

Machine learning and cybersecurity are two highly significant subjects of
today’s tech industry. With machine learning being utilized in various fields
at an increasing rate, it is no wonder that it has found its uses even in the
field of cybersecurity. This thesis touches both of these subjects in the con-
text of automated malware classification, with the main focus being dealing
with missing values using the random forest classifier.

In order for a classification algorithm to work, it has to be trained on some
set of data. In this case the datasets are encrypted network traffic and as
such they contain a moderate amount of missing data. Missing data, also
referred to as missing values mark the absence of a value somewhere inside
the dataset. Most classification algorithms are not designed with an implicit
way of dealing with missing values and thus they have to be handled before
or during the classification process.

Over the past two decades [1][2][3], a moderate amount of methods for deal-
ing with missing data has been introduced, but none has yet shown superior
results that would put it above the others. Plenty of methods are somewhat
situational and work only with specific cases of missing data. Thus it is not
clear which method to choose at which time. This thesis studies these meth-
ods along with analysing the network traffic datasets in order to find out
the most efficient one.

The dataset used in this thesis contains real and huge data spanning across
more than a hundred of enterprises. As such, one of the concerns in choos-
ing the methods for handling missing data are its computational speed and
memory demands.

The thesis consists of several sections. At the beginning, there is a brief
introduction to malware classification, followed by an explanation of the
classification algorithm often connected to the missing data problem - the
random forest classifier. The next chapter provides an analysis of the net-
work datasets. The chapter after that concerns itself with missing data mech-
anisms and gives a summary of known algorithms for missing data imputa-
tion. The last section is dedicated to the conducted experiments and results
of this thesis.

11

1 Malware and classification

This chapter serves both as a general introduction to the term malware and
as an introduction to machine learning, specifically to one of its subsets,
classification. After explaining both terms, there is a short section dedicated
to connecting the two terms.

1.1 Malware

Malware is an abbreviated form of the term malicious software. It is often
used when referring to viruses, spyware, ransomware, and other software
designed to cause harm to a computer, server, network or a mobile device.
[4]

Viruses are computer programs with the goal of spreading from one file
to another across one or multiple devices through a network undetected and
without consent of the user. A common misinterpretation of viruses is that
they are programs designed to delete or move data, however, this damage is
often a side effect. The definition of a virus is that it spreads itself. [4]

Spyware is a form of computer program that runs on the infected com-
puter and tracks its user’s habits to form a pattern that can be then used
for advertisements or sent to the spyware’s creator. [4]

Ransomware is a potentialy very dangerous software that threatens to delete,
block or publish the target’s data if the program’s author’s requirements are
not met. [5]

When malware spreads through the network, or when it communicates with
their command and control servers, it leaves a detectable trace in the network
traffic. What more, these traces can often be found much sooner (ranging
from weeks to months) than researchers are able to capture a sample of
the invading malware. [6] This only emphasizes the importance of utilizing
machine learning in the context of malware detection, manual systems and
blacklists are not enough today.

According to the five years long study by Georgia Institute of Technology,
the endpoints with which specific malware communicates do not change in
long time periods (years). This means that once a node in the network sus-
picious of being infected is found, it is possible to look for traffic going in

12

and out, which in turn can help with identifying other infected devices. [6]

1.2 Classification

In statistics and machine learning, classification is the process of assigning a
specific category, or a class, to which a new object or an observation belongs.
[7] This assignment, or prediction, is done after processing a set of previously
categorized data, often called the training dataset. [7] This is done by a clas-
sification algorithm, known as a classifier. [7] This classifier learns from a
set of data, for example emails labeled as spam or non-spam, in order to
predict the category of new incoming emails. That way an email client can
move unwanted spam to the spam folder and keep the relevant mail in the
inbox. Another is predicting whether a patient’s tumor is benign or malign,
based on the hospital records with data from other patients. Or, as will be
the case in this thesis, whether an instance of network traffic is the related
to (and which) malware, based on data gained from network proxy logs.

Within the terminology of machine learning, classification is in the cate-
gory of supervised learning. [8] Supervised learning means that the classifier
learns from the training dataset with labeled data. This dataset is often
processed into the form of a matrix X in order to make the work with it
more convenient. The rows in this matrix contain the observed attributes,
called features, of each individual object. The rows are sometimes called
feature vectors, labeled x = (x1, x2, x3, ..., xi) where i denotes the number
of features. Feature vector sometimes refers to the column, containing all
values of a single feature across all objects. However, in this thesis, feature
vectors refer to the rows. These features are quantifiable and can be categor-
ical (smoker or non-smoker), integer-valued (age of the patient in years), or
real-valued (patient’s body temperature). Since the learning is supervised,
the dataset also includes a column with the class labels of each observed
object labeled Y.

When the classifier is trained, it can predict the classes of new objects based
on their features. The mathematical function implemented by the classifier
maps input feature vectors x of a matrix X to a class c from the set of
classes C. The performance of the classifier is usually tested on another set
of data called the testing dataset. That is done to avoid overfitting - ”the
production of an analysis that corresponds too closely or exactly to a par-
ticular set of data, and may therefore fail to fit additional data or predict
future observations reliably”. [9] According to this definition, an overfitted

13

classifier could be able to predict the classes of the objects in its train-
ing dataset accurately, yet completely miss the classes of new objects. The
opposite of overfitting is underfitting, which can also be avoided by measur-
ing the classifier’s performance on the testing dataset. In machine learning,
overfitting and underfitting is sometimes also called ”overtraining”and ”un-
dertraining”respectively.

Classification does not always have to be binary, meaning the data can be
of more than two categories. This is called multiclass classification. Return-
ing to the example of e-mail classification, some classifiers could be trained
to predict whether an incoming e-mail belongs to work, school, or personal
categories.

There are also other forms of classification, like the multilabel classification.
In multilabel classification, multiple classes can be assigned to an observa-
tion. This makes sense in cases where the categories are not mutually exclu-
sive. However, this thesis will be focusing only on the problem of multiclass
classification.

1.3 Malware classification

As was mentioned in the malware section of this chapter, malware can often
be detected very early by monitoring the incoming and outgoing network
traffic of the observed device. However, this is not something that every com-
puter user can do, and even then it can prove to be a relatively tedious task.
In this day and age there can be thousands of individual network requests
performed by a computer and going through them manually is impossible.
As such, the reasonable thing to do would be to take all the data and feed
it to a machine learning algorithm to do the work instead. Another point
to be made is that current solutions such as static rules defined by domain
or server blacklists do not work very well as they do not work dynamically
and new entries have to be added manually.

This thesis is based on the work done on labeled network datasets con-
taining observations of more than two hundred different classes of malware.
The goal is not only to be able to predict whether a computer is infected
with malware, but also to decide which class of malware infection it is. It is,
therefore, a case of multiclass classification.

14

2 Random forest classifier

Random forests or random forest classifiers are the central focus of this thesis
because they are most suited for the malware classification problem. They
can handle multiclass classification, evaluate data relatively fast and they
are not heavily affected by imbalanced datasets. [10] They run efficiently on
large amounts of data and give estimates of what feature variables are im-
portant for classification. [11]

This chapter explains in detail how random forests work and how they can
be implemented. As the name implies, random forest is an ensemble of learn-
ing algorithms called decision trees. In order to understand random forests,
decision trees are the first thing that needs to be explained.

2.1 Decision trees

2.1.1 Overview

Decision tree classifier is a classification algorithm named because of its
structure resembling a tree known from graph theory. Another variation of
a decision tree is the regression tree, which only differs in that the predicted
outcome is not a class but a real value. One of the most significant pub-
lications about decision trees is Classification and Regression Trees by L.
Breiman. It introduces the CART algorithm for growing both classification
and regression trees. [12] Other algorithms for growing decision trees also
exist, for example the ID3 algorithm or the C4.5 algorithm.

Prediction using a decision tree can be interpreted as a set of questions
asking about the attributes of the observed object. For example, predicting
whether a picture is taken outdoors or indoors could work as follows:

• Is the top of the picture blue?

– If yes, the picture was taken outdoors.

– If no, is the bottom of the picture green?

∗ If yes, the picture was taken outdoors.

∗ If no, the picture was taken indoors.

As can be seen in the example, a grown tree is built from a root node, deci-
sion nodes and terminal nodes, also called leaves. All leaves are associated
with the resulting prediction class. Each decision node contains information

15

Figure 1: Picture of a decision tree with the training data used for its growth
[13]

about its split, which consists of the selected feature and its value. When an
observed object is analysed to predict its class, the value of the feature in
question is compared with the value stored at the decision node. Depending
on the result of this comparison, the object is then sent to the left child or
the right child of the node. When the object reaches a leaf node, it is given
the class that is associated with it. This explanation is visualised in Figure
[1].

2.1.2 Strengths

In comparison with other classification algorithms, decision trees have vari-
ous strengths and advantages, like:

• They require little data preparation, for example data normalisation
is not needed like in other techniques. [14]

16

• They work with both numerical and categorical data. [14]

• They perform well with large datasets within reasonable time. [11]

• They are easily interpretable by most people after a brief explanation.
The graphical representation of the tree is also very easy to follow and
the decision making process is similar to how people generally make
decisions in real life. [14]

2.1.3 Weaknesses

However, decision trees are not perfect as classifiers go because they also
have some weaknesses, for example:

• They are not as accurate as other approaches. [14]

• They are not very robust, a small change in training data can lead to
a big change in the decision tree, leading to different results. This is
called overfitting. [14]

All these disadvantages are going to be addresed again in the random forests
part of this chapter.

2.1.4 Growing a decision tree

Training a decision tree classifier is done by recursively partitioning the input
data according to the best calculated split. The split specifies the feature and
value at which the data is partitioned into two parts. Once the data is parti-
tioned, a new node ti is created and the process continues at its children, see
algorithm [1]. If it is for some reasons impossible or not needed to split the
input dataset, a leaf node is created and the recursion does not continue. [10]

To expand on the notation, the nodes are numbered in breadth-first or-
der, starting with the root node t0. Since all the trees encountered in this
thesis are binary, the left child of node ti can be denoted as tLi and the right
child can be denoted as tRi . Since the dataset is being recursively partitioned,
the subset of samples belonging to node ti can be denoted as Si. The subset
of samples belonging to the left child of node ti is denoted as SL

i and the
one belonging to the right child as SR

i . It follows that Si = SL
i ∪ SR

i and
that SL

i ∩ SR
i = θ for every inner node. [10]

17

Algorithm 1 This algorithm shows how the decision tree classifier is grown
recursively. It uses the dataset Si as the input and returns the root node t0
of the tree. [10]

1: function GrowTree(Si)
2: if ShouldCreateLeafNode(Si) then
3: return CreateLeafNode(Si)
4: end if
5: θ ← FindBestSplitParameters(Si)
6: SL

i , S
R
i ← SplitDataset(Si, θ)

7: tLi ← GrowTree(SL
i)

8: tRi ← GrowTree(SR
i)

9: return ti
10: end function

2.1.5 When to create a leaf node

Multiple conditions are checked before the dataset Si is split, depending
upon which the split may not even take place and a leaf node gets created.
The conditions may differ among different implementations of the tree. The
ones used for the purposes of this thesis are the following:

• Check the number of unique classes in dataset Si. If all the samples
are of the same class, there is no need to split further and a leaf node
can be created. [10]

• Check if it is possible to split the dataset Si at least once. It is possible,
that all the feature vectors in Si are the same, but their classes differ.
If that is the case, a leaf node is created. [10]

• One of the hyperparameters of a decision tree is usually the minimum
number of samples required to split the dataset (minSamplesToSplit).
If |Si| < minSamplesToSplit then a leaf node is created. This param-
eter is often set low in random forests because it allows the trees to
grow deeper. [10]

Other implementations also include themaxDepth hyperparameter, limiting
the maximum depth of a tree, or the change in impurity measure (informa-
tion gain) as the stopping condition during node splitting. [10]

18

2.1.6 How to create a leaf node

The leaf node contains the subset of sampled associated with it. Upon ar-
riving in a leaf node during prediction, the most common choice is to return
the class with maximum frequency in the samples. Different implementa-
tions can return the whole normalized histogram of classes in the samples,
where each value represents the probability of the object belonging to the
given class.

2.1.7 Finding the best split

The best split out of all possible splits of the dataset is defined as the one
that provides the largest information gain. Information gain corresponds to
the decrease in impurity in the node’s children. Impurity measure of node’s
subset Si is a function i(Si) ∈ R. The purer the data (the lower the impu-
rity measure), the more confidence can be given in the node’s prediction.
Therefore, the split θi that reduces the impurity in the node’s children the
most, is also the best split. To find it, all possible splits have to evaluated.
The decrease in impurity is defined as follows:

∆i(Si, θi) = i(Si)−
|SL

i |i(SL
i) + |SR

i |i(SR
i)

|Si|
(1)

There are several impurity measures, most common of which are Gini im-
purity and entropy. Studies show that there is not a significant difference
between the two and therefore can be used interchangebly. [15] Only en-
tropy is used for the purposes of this thesis. Entropy is defined as:

H(X) = −
n∑

c∈C
p(c) log p(c) (2)

Where C is the set of classes and p(c) is the frequency of class c in the
node’s subset Si. [10] If the class is not in the subset at all, it does not add
to the sum anything either. The entropy is at its maximum if the classes in
the subset Si are equally distributed. If all the objects belong to the same
class, the entropy equals to zero. As was stated earlier, information gain
corresponds to the decrease in impurity ∆i(Si, θi). [10]

To select the best split, all splits along every dimension have to be eval-
uated. [10]. This can be optimised, as is shown in algorithm [2]. The data
points are grouped together to reduce duplicities. This means that out of

19

50 objects having the same coordinate in the evaluated dimension, we only
remember the class counts of those 50 objects and the coordinate itself. Fur-
ther work in finding the split is done only with the class counts. [10] Since

Algorithm 2 This algorithm shows how to find the split with the highest
information gain. [10]

1: function FindBestSplitParameters(Si)
2: maxGain∆ ← −∞
3: for alldimensions do
4: countsL ← (0, 0, ..., 0)
5: countsR ← GetClassCounts(Si)
6: coordinates← find unique coordinates in dimension
7: Sort(coordinates)
8: for point ∈ coordinates do
9: countsL ← add class counts present on point

10: countsR ← remove class counts present on point
11: currentGain∆ = ComputeGain∆(countsL, countsR)
12: if currentGain∆ > maxGain∆ then
13: maxGain∆ ← currentGain∆

14: θi ← create split parameters from point and neighbor
15: end if
16: end for
17: end for
18: return θi
19: end function
20: function ComputeGain∆(countsL, countsR)
21: sizeL ← Sum(countsL)
22: sizeR ← Sum(countsR)

23: return − sizeL×H(countsL)+sizeR×H(countsR)
sizeL+sizeR

24: end function

many features can have only a very limited set of values, this optimisation
can give a significant performance boost to the algorithm. [10] By sorting
the coordinates, the class counts can be added to countsL and removed from
countsR in an organised way. That is done by iterating over all of the sorted
coordinates throughout the dimension. This approach also makes the time
of each entropy calculation constant because it is dependent only on the
number of classes, instead of the number of objects. [10]

After finding the best possible split θi, the dataset Si is then partitioned

20

into SL
i and SR

i by a threshold set by the splits feature and value. Con-
sidering the number of dimensions and classes are constant, the worst case
time complexity of this algorithm is O(|Si| log Si). The worst case is the one
where there are no data points with duplicate coordinates and the sorting
of the coordinates will equal to sorting the whole dataset. In practice, how-
ever, it can be expected that the performance will be better, but still highly
dependant on the given data. [10]

2.2 Random forests

Since single decision forests tend to overfit to the training data [14], are
not making very accurate predictions, and tend to change significantly with
small alterations to the datasets, they do not look very good compared to
other approaches. However, an ensemble method called random forests deals
with these issues. It groups multiple randomized decision trees together and
builds a much stronger classifier. There are two categories of ensemble meth-
ods, boosting methods and averaging methods. Boosting methods cre-
ate the weak classifiers sequentially and every classifier is an improvement of
the previous one. [10] Boosting methods are not in the scope of this thesis,
so only averaging methods are going to be discussed.

Averaging methods build the classifiers in parallel and average their pre-
dictions. This averaging decreases the potentially high variance of the weak
classifiers. Random forests belong to this category. [10] Depending on the
implementation, the predictions are aggregated either by majority voting or
by soft voting. Majority voting chooses the most frequent class among the
predictions of all the trees, while soft voting averages the class probability
results from each tree. [16] For random forests to bring an improvement over
decision trees, each tree in the forest has to be different. This is where the
”random”in the name comes from. Randomness is injected into each tree
in different ways, depending on the implementation. It is usually done by
introducing randomness to the node splitting process, or by selecting a ran-
dom subsample from the training dataset. [10] Breiman forests [11], by far
the most commonly used random forest algorithm, combine bootstrap aggre-
gating and random feature subsets at each node to inject randomness into
the forest. This is done in this thesis as well.

21

2.2.1 Bootstrap aggregating

Bootstrap aggregating, also called bagging, was first introduced in [17]. For
a forest of size m and training dataset of size n, bagging assigns a dataset of
size n′ to each of the m trees. These datasets are created by selecting random
samples with replacement from the training dataset. This means that some
objects are not present in the sampled dataset and some objects might be
repeated. The trees are then trained on their corresponding sample. The size
of the bootstrapped datasets is usually parametrized in the forest, but the
most common choice is to select n′ = n.

2.2.2 Random feature subsets

Random feature subsets inject randomness directly into the growing process
of the decision tree. When looking for the best possible split, a standard
decision tree looks across all dimensions of the training data. [2] However,
trees in Breiman forests only use a random subset of the dimensions, sampled
for each split node individually. The number of dimensions selected by this
sampling is another hyperparameter of the random forest, denoted in this
thesis as maxFeatures. The value of this parameter affects the correlation
between individual trees. [10] The least corellation would be achieved by set-
ting maxFeatures = 1. Selecting maxFeatures = numberOfDimensions
removes all randomness from the individual trees’ splitting process, leav-
ing only the randomness induced by bagging. That, however, is usually
not enough. More so when the training dataset contains a big amount of
objects. In this particular case, the forest would not bring many advan-
tages over a decision tree. An empirically tested rule of thumb says that
splitFeaturesCount =

√
numberOfDimensions is a reasonable default for

classification tasks. [18] Curiously enough, the default for regression classes
seems to be equal to the number of dimensions. [18]

22

3 Network dataset

This chapter centers on the network datasets used for malware classification.
The following subsections provide a description of the dataset as well as an
analysis done to gather more information on the correlation among pairs
of features. The last part of this chapter tries to answer why most of the
studied algorithms do not provide satisfying results.

3.1 Dataset description

The data comes from network traffic of more than a hundred large enterprises
taken on five days of early 2017. The dataset contains roughly 600 million of
individual records. Out of these, only 4 million are labeled as positive, mak-
ing the dataset heavily imbalanced. Imbalanced dataset means that ”at least
one of the classes constitutes only a very small minority of the data.”[19] In
this case, each of the positive classes are a minority while the negative class
is an overwhelming (more than 99%) majority. However, a random sampling
of the negative objects was done in order to allow faster computation, which
also deals with this issue. Out of all the negative objects, only 1.5 million of
objects was sampled to make the proportion between classes more balanced.

Each object in the dataset consists of 55 columns. The first column rep-
resents the class to which the object belongs. The next 3 columns contain
metadata information of the object and are not used for training and predic-
tion. Those are the timestamp, user and host and they are used in aggregated
evaluation of the classifier, described later in Chapter [5]. The remaining 51
columns are the features. Because of the sensitivity of the data, we are un-
able to publish their exact meaning. However, some examples of the features
could be the number of bytes transmitted or received, duration of the net-
work event, direction of the packet, the amount of incoming and outgoing
packets, the IP address of the destination, etc. The data comes from three
different sources. One of them is the network flow, one is the output of
Cisco CTA engine, which detects the periodicity of connections as an ex-
ample. The third source is computed globally, for instance the number of
users connecting to the server or the information from DNS. The individual
values of these features are represented by integers and real numbers.

The objects in the dataset all come from a set of 115 classes in total.

An important thing that needs to be taken into consideration when working

23

with a dataset like this is the fact that the samples are taken from various
days. This could potentially mean that a classifier can perform better on
data taken from the same day or from the day after, but worse with data
from the next month, or even a year. The samples analysed in this thesis
are from days week apart in January, with one day from the beginning of
March. In this small scale, however, no significant differences in performance
that could be attributed to this were found.

3.2 Analysis

This subchapter examines the dataset and attempts to analyse the nature
of missingness of its missing data. The first step of the analysis was to look
at the features and see how often and when are they missing. After that,
a correlation matrix was constructed to see the correlation among pairs of
the features. Another correlation matrix was constructed from an altered
dataset where each value was replaced by 1 and each missing value was
replaced by 0 to see the how correlated the features’ missingness is. A matrix
of conditional probabilities was also created to provide information on how
often is one feature not missing when the other one is missing.

3.2.1 Missingness

In the whole dataset, there are only 4 features that are not missing from any
of the objects. 12 features, on the other hand, are missing in more than 90%
of the time. The average missingness throughout the dataset is roughly 51%.
Some features are closely tied together and when one of them is missing, the
others are missing as well. Therefore the assumption is that some of the
features are not missing at random. [4.2] Other features, however, do not
fulfill this assumption and could possibly be used when others are missing
if they are somehow correlated.

3.2.2 Correlation matrix

The second step in this analysis was to figure out how are the features
correlated to each other. For that, the Pearson correlation coefficient was
used, defined as: [20]

ρX,Y =
cov(X,Y)

σXσY
(3)

24

In this equation X and Y are features and the result is the amount of
correlation between them. Correlation is bound between -1 and 1: [20]

− 1 ≤ ρX,Y ≤ 1 (4)

The closer the correlation is to 1, the stronger the positive linear depen-
dence between the features is and vice versa, the closer the correlation is to
-1, the stronger the negative linear dependence between the features is. For
the purposes of this thesis it is not required to differentiate between positive
and negative correlation because both are equally important. Therefore an
absolute value of correlation is used in the following analysis.

Computing this correlation for each existing pair of all the features in the
dataset we get a 51 x 51 symmetric matrix with the number 1 on the main
diagonal. Every element in this matrix symbolizes the correlation between
the feature represented by the element’s row, and the feature represented by
the element’s column. The matrix is symmetric because the pair of features
(X, Y) has the same correlation as the pair (Y, X). Furthermore, the main
diagonal is full of 1s because a feature is completely correlated with itself.
However, in some cases it is impossible to compute the correlation, and that
is when the feature is always missing. In this thesis, its correlation value is
replaced by 0. With this matrix, it is possible to create a heatmap in order
to provide a more visual representation, seen in Figure [2]. It is possible to
see that some pairs of features in fact are highly correlated.

25

Figure 2: Correlation matrix showing the amount of correlation among pairs
of features

26

Figure 3: Correlation matrix showing the amount of correlation among pairs
of features based on them being missing or not

3.2.3 Missingness correlation matrix

The same way as before, it is possible to create a correlation matrix from
the dataset where every not missing feature is replaced by number 1 and
every missing feature is replaced by number 0. This correlation matrix tells
us how correlated the missingness of pairs of features is. To put it in other
words, it shows how dependent the fact that a feature is missing on another
feature being missing or not missing. A heatmap of this matrix is in Figure
[3]. However, the features that are never missing, or the ones that are always
missing, have no variance because their value is either always 1 or always 0.
Their correlation therefore could not be computed and set to 0. It is possible
to see that the most correlated are the features that are next to each other,
meaning that they come from the same source or that they are connected to
each other. This ties together with the assumption that those features are
not missing at random [4.2].

27

Figure 4: Conditional probabilities matrix showing each element’s (i,j) prob-
ability that feature j is not missing when feature i is missing

3.2.4 Conditional probabilities matrix

The conditional probabilities matrix represents the probability that feature
X is not missing when feature Y is missing [5]. This matrix is not symmetric
because the probabilities differ for pairs (X, Y) and (Y, X). [4] The yellow
belt going from the top to bottom symbolizes the features there are never
missing. The probability that the first four features are missing is zero,
therefore the conditional probability that other features are not missing
when the first four are is also zero. The value on the i-th row in the j-th
column gives the probability that feature j is not missing when feature i is
missing.

Pnotmissing|missing(X,Y) (5)

28

3.2.5 Feature substitution

Combining the conditional probabilities matrix with the correlation matrix,
it is possible to set a correlation threshold and pick only those pairs of fea-
tures that are correlated above that threshold. With this list of pairs it is
then possible to look at the conditional probabilities matrix and see how
often is one of the features not missing when the other one is. That way,
an algorithm like the surrogate splits [22] could take these highly correlated
pairs into account. If there were a feature that is missing everytime another
feature is not missing, the algorithm could base the decision on the value of
the other feature.

In other words, let us for example say that feature A is highly correlated
with feature B. Feature A is missing 70% of times while feature B is missing
only 20% of the time. Since they are highly correlated, the classifier can base
its decision on feature B instead of on feature A when feature A is missing.
The next part of this analysis looks at each feature and studies how many
different features can be used in the classification instead of them when they
are missing.

Setting the correlation thresholds to 0.3, 0.5 and 0.8 showed that a small
amount of features have some correlated features that could substitute for
them. With the threshold set to 0.3, there are 20 features that have at
least one candidate. [5][6][7] The figures show each feature and the number
of their correlated counterparts. This count of correlated features depends
on the conditional probability of them being not missing when the feature
they are correlated to is missing. The numbers on the y axis are the con-
ditional probability thresholds. As expected, when this threshold increases,
the amount of correlated features decreases.

29

Figure 5: Counts of potential substitions based on their non-missingness
probability for each feature with correlation threshold 0.3

In Figure [5] it is possible to see that the most prominent features are features
13, 14 and 15. When they are missing, there is at least a 10% probability
that 9 other features are present that could take their place. As the required
probability increases, up until 60% there are 6 of those features.

30

Figure 6: Counts of potential substitions based on their non-missingness
probability for each feature with correlation threshold 0.5

Figure [6] shows that with correlation threshold set to 0.5, only 8 relevant
features remain, with the maximum of 4 correlated features for feature 20.
The probability threshold is also much lower than in the previous case.

31

Figure 7: Counts of potential substitions based on their non-missingness
probability for each feature with correlation threshold 0.8

Correlation threshold of 0.8 further reduces the number of relevant features
to 6 [7]. The maximum of correlated features in this case is only 2.

A conclusion can be made, that although there are some features that can
be substituted by other features when they are missing, the probability of
the substitution features not being missing is not very high. Also, as the
demand for correlation between these features increases, the amount of po-
tential candidates decreases rapidly.

32

4 Handling missing values

In statistics, missing values or missing data mark the absence of value in a
feature variable of an observed sample. Missing data within a dataset make
it impossible for conventional machine learning algorithms to properly learn
from it. Many of these algorithms require complete data and do not have
an implicit way of handling missing values. In order for the statistical anal-
ysis to work, the missing data have to be somehow dealt with beforehand. [1]

There are various ways of handling missing data, some as simple as drop-
ping the samples containing any missing values altogether, leaving only those
samples with all data present. [2] This however, cannot be done when there
are missing data somewhere in most of the observations. Another simple
method, the strawman imputation [1] would be replacing missing data with
the mean or median of all the non-missing values of the feature in question.
The process of replacing the missing data is called imputation. Only the
imputation methods related to random forests are examined in this thesis
because of the nature of the analysed data. Also, most of the interesting
imputation methods already are in this subset.

More sophisticated methods of imputation also exist and they are discussed
more thoroughly in this thesis. Some methods work better with smaller
datasets, or with datasets with low missingness ratio. The amount of cor-
relation between feature variables can also be important to some methods
and not that important to others. [1] Some imputation algorithms are very
slow and using them in experiments with big datasets can get seriously time-
consuming. In other words, choosing a relevant method of imputation for a
given dataset is not a simple task and it can prove useful to do an analysis of
the data as well as an analysis of the imputation algorithm itself beforehand.

4.1 Related work

Various works comparing different imputation methods were published in
the last years. Multiple imputation methods meant for decision trees are
well explained in [3].

Another work worth mentioning that focuses on random forests and missing
data imputation is [21]. It introduces a new type of random forests along
with the adaptive tree imputation method. However, this method can be
used with regular random forests as well.

33

Perhaps the most recent work on this topic is [1] which is a continuation
of the previous work by one of the same authors. In this paper, multiple
approaches to imputation using random forests are discussed in detail and
tested on multiple datasets with different attributes. A comparison of their
imputation accuracy is made as well. The datasets used in this work are
both real and synthetic. However, the missingness is induced manually [1]
and thus the results of the experiments can be biased.

4.2 Missing data mechanisms

Missing data are usually divided into three categories, depending on the
characteristics of their missingness. These categories are also called missing
data mechanisms. [2] It is important to understand these mechanisms in
order to make an educated assumption about the dataset in question. If an
assumption is made that the values are missing completely at random while
they are missing systematically, an analysis based on this assumption may
be biased.

• If the samples with missing data are a random subset of all observed
samples, they have a similar distribution. There is no relationship be-
tween whether a value is missing and any other value in the data set,
be it missing or observed. These values are missing completely at ran-
dom (MCAR). [2] When a dataset has missing values that are MCAR,
it can still be analysed with unbiased results, provided that there are
enough observed samples. However, data that are truly MCAR are not
encountered often.

• When the missing data is somehow dependent or related to other
non-missing values in the observation, the data is missing at random
(MAR). [2] There is no definitive way of distinguishing between MCAR
and MAR data. The assumption of it being one or the other is only as
good as the knowledge of the data and the field of the one proposing
the assumption. A good example of MAR data would be that males
are less likely to fill a depression survey, although it does not have any
connection to their level of depression.

• The last missing data mechanism is missing not at random (MNAR).
It means that there is a relationship between value of the variable

34

that is missing and the reason why it is missing in the first place. For
example a male suffering from a strong depression can decide not to
fill a depression survey because of said depression.

4.3 Selected imputation algorithms

This section contains a list of imputation algorithms that were taken in
consideration when deciding which ones to implement.

4.3.1 Baseline imputation

This method will be used throughout the thesis as the baseline reference
value. It replaces the missing data with a constant value outside of the
features’ interval before growing the tree. Thus, when an object is evaluated
and the relevant feature is missing, the object is always sent either to the
left or to the right, based on the value that was chosen at the start.

4.3.2 Strawman imputation

Strawman imputation [1] is a simple method for handling missing values. It
works very fast compared to other methods and its implementation is very
simple. The missing values are imputed before the forest is grown by calcu-
lating the median of non-missing values in the feature column. An altered
variation of strawman imputation uses the mean instead of the median.

4.3.3 On-the-fly-imputation

Adaptive tree imputation [21] later named as On-the-fly-imputation [1] (OTFI)
is a method of imputing missing data at the time of growing the tree. That
is also where its name comes from. It draws a random value from the non-
missing in-bag dataset within the current node to impute the missing values.
The algorithm works as follows:

1. First, the best split is calculated as usual, using only non-missing data.

2. After finding the best split, random values from the non-missing in-bag
data within the current node are used to impute the missing values.

3. Once the data are imputed, the node is split into the left and right
children nodes and the imputed data are reset back to missing.

35

The values the algorithm uses to impute the missing data are stored within
the decision node while growing the tree along with the respective frequen-
cies in which they occur within the node’s dataset. These are then used again
to impute the missing values in the testing dataset at the time of prediction
to decide whether the observation belongs to the left or to the right child.
After being sent to the child node, the imputed data is reset to missing again
and the process repeats.

The implementation of OTFI algorithm used for experiments in this the-
sis had to be improved in order to increase imputation speed and reduce the
memory used. Instead of storing the non-missing values and their frequen-
cies, only the probability of the node going left or right is saved at the node.
That way, when a new object with a missing value at the relevant feature is
examined, the missing value is not imputed at all.

4.3.4 Missingness incorporated in attributes

Missingness incorporated in attributes [3] (MIA) works similarly to OTFI
in that it also imputes missing data during the forest growing process. It
searches for the best split in three different approaches to the missing data.
Let X be a numeric feature used to split a node and s a possible split value
of X. Over all split values, the method looks at the following:

• Split A: { X ≤ s or X = missing } versus { X > s }.

• Split B: { X ≤ s } versus { X > s or X = missing }.

• Split C: { X = missing } versus { X = not missing }.

After finding the best split in each approach separately, the algorithm then
chooses which one of them provides a better information gain and then it
splits the dataset accordingly. As in the OTFI method, the MIA implemen-
tation used in this thesis makes the decision node remember which split type
it had used in order to decide how the testing data should be propagated
during prediction.

This algorithm is in practice an extension of the method that was used
as a baseline. The baseline in fact does the same thing as split A in here. It
follows that this method takes approximately three times more time than
the baseline.

36

4.3.5 Other algorithms

Other notable imputation algorithms were also considered, such as surrogate
splits [22] or missForest [1]. However, surrogate splits perform less reliably as
the amount of missing data increases [22] and are slow when used with larger
datasets. [21] The low computational speed is a problem for missForest as
well, making it ”100’s of times”slower than methods like OTFI or MIA. [1]
Since the network traffic dataset is very big and a big portion of its data
is missing [3], these methods are not very relevant and they are not in the
scope of this thesis.

37

5 Experiments

This chapter focuses on the experiments done with network data regarding
the performance of several imputation methods. The first part describes
the measures used for evaluation and why they were used. The second part
looks at the results of the experiments and their comparison. All of the
experiments were done on the same data, that is the network traffic logged
on three days of January 2017, each of them a week after the previous one,
was used as the training dataset, whereas the testing dataset was a single day
of March of the same year. Each experiment was evaluated in three different
ways - unaggregated, aggregated, and aggregated relaxed. Unaggregated means
that the performance is evaluated in a regular per-row manner. Aggregated
(by one of the metadata column, for example a user) evaluation is done
in order to remove duplicities (multiple records marking the same user as a
suspect of malware infection) and removes negative records if there is at least
one positive one. This makes sense because if a user is infected, the network
traffic he produces can be either regular or point to some malware infection.
This aggregation removes the arguably unimportant, clean data. It is done
to reflect the seen performance by the customers who are not interested in
flows, but in users. Going a level further, the aggregated relaxed evaluation
clears the differences between different classes of malware and reduces the
classification problem into the binary case - infected, or not infected. Yet
the classifier itself still remains multiclass.

5.1 Evaluation metrics

There is a plenty of measures that can be used to determine the classifier’s
performance. The most commonly observed is perhaps the classification er-
ror [10]. The problem with classification error is that it does not say much
when the dataset is imbalanced, as is the situation with the network data.
For example if we had a dataset where there are 10,000 samples and only 1 of
them belonged to a positive class, the classifier could classify all samples as
negative and it would achieve a classification error of 0.01%. In this project
we are interested in two different measures, precision and recall. In order to
compute them, we also need the confusion matrix.

5.1.1 Confusion matrix

In binary classification, we can label the two classes as positive and negative.
Confusion matrix [23] divides the classification results into the following
categories:

38

TP: True positives. The number of positive objects the classifier labeled as
positive.

FP: False positives. The number of negative objects the classifier labeled
as positive.

TN: True negatives. The number of negative objects the classifier labeled
as negative.

FN: False negatives. The number of positive objects the classifier labeled
as negative.

These categories are then used to compute other, more interesting measures.

In multiclass classification, the confusion matrix gets more complicated.
Consider a dataset with 3 different classes A, B and C. If the classifier
takes a sample that belongs to class A and labels it as B, then it counts as
FN for class A, but as FP for class B.

This gets even more confusing with the network datasets. The samples are
either negative and thus belonging to one specific class, or positive, which
means one of multiple positive classes. For that reason, samples belonging
to the negative classes that are classified as negative do not count as TP.
Similarly, when a positive sample is labeled as positive but a different class,
it should not be counted as FN, rather as TPish. As for TNs, it does not
make much sense to distinguish them from TPs, since they basically are TPs
for the negative class. This is a way of reducing the multiclass problem to a
binary problem. In the context of this project, a one-vs-all confusion matrix,
which evaluates one class at a time, is computed. Furthermore, TNs do not
get counted and the TPs of the negative class are optionally filtered out in
the process.

5.1.2 Precision

Precision, or positive predictive value [23] is defined as:

Precision =
TP

TP + FP
(6)

Precision is the fraction of positive objects among all objects that the clas-
sifier labeled as positive. It can also be interpreted as the probability that
a positively labeled object is truly positive. A precision score of 1.0 means

39

that every object labeled as positive by the classifier is truly positive. It does
not say, however, anything about the classifier’s ability to recognize all truly
positive instances. In multiclass environment, precision of every class varies
because it is computed separately.

5.1.3 Recall

Recall, or sensitivity [23] is defined as:

Recall =
TP

TP + FN
(7)

Recall is the fraction of positive objects that the classifier labeled as posi-
tive among all truly positive objects. It can be interpreted as the probability
that a truly positive object is labeled as positive. A recall score of 1.0 means
that every truly positive object is labeled as positive by the classifier. This
could be achieved simply by labeling all objects as positive, recall does not
say anything about the number of false positives. Recall of every class varies
among all classes in multiclass environment.

For a better comprehension of precision and recall, Figure [8] shows what
they represent.

40

Figure 8: Visual representation of precision and recall [24]

41

5.2 Results

This subsection presents the results of the individual experiments. The main
focus is the average prediction precision, recall and also the number of classes
that were predicted with precision above specific thresholds. The following
tables will always show all three evaluation approaches (unaggregated, ag-
gregated, relaxed) for every tested method. The tested methods are the
baseline [4.3.1] method, the Strawman [4.3.2] imputation method both with
mean and median values, the OTFI [4.3.3] method and the MIA [4.3.4]
method. The two variations of the Strawman method are further referred to
simply as mean and median.

The randomness factor of random forests gives the resulting precision and
recall a variance of about 1%. So if one method has a precision of 10% and
another one only 8%, we can assume that their performance could be the
same.

5.2.1 Average overall precision

The first metric to look at is the overall precision averaged across all classes.
However, in this case only the positive classes are relevant, so the negative
class is excluded. Looking at Figure [9], it can be seen that the OTFI method
does not bring any improvement compared to the baseline and its results are
actually even weaker. This could be happening because the OTFI method
computes the split statistic from the not missing data and therefore does not
have enough data to grow the trees sufficiently. The MIA method performs
slightly better than the baseline while the Strawman imputation using mean
value performs equally. The Strawman using median proved to be worse.

42

Figure 9: Precision of the tested methods averaged across all positive classes

B
as

el
in

e

M
ea

n

M
ed

ia
n

O
tfi

M
ia

0.2

0.3

0.4

0.5

0.6

Unaggregated Aggregated Relaxed

43

Table 1: The number of classes predicted with precision above a specified
threshold

Method
U / A / R

Baseline Mean Median OTFI MIA

of classes
prec > 0.5
avg recall %

70

74

61

83

63

84

70

76

59

82

63

82

65

70

52

80

52

80

25

27

22

25

22

25

74

74

67

85

68

85

of classes
prec > 0.8
avg recall %

54

74

37

87

39

88

54

77

38

87

41

87

45

71

32

85

32

85

25

27

21

26

21

26

60

74

40

86

41

86

of classes
prec > 0.9
avg recall %

44

73

28

86

31

87

48

78

31

85

33

86

39

71

26

84

26

84

25

27

19

25

19

25

53

74

34

86

35

86

of classes
prec > 0.95
avg recall %

37

71

25

85

29

86

38

75

26

84

28

85

36

70

23

83

23

83

24

26

19

25

19

25

45

71

33

87

35

86

of classes
prec = 1.00
avg recall %

22

56

22

83

27

85

21

63

23

83

26

84

19

57

20

81

20

81

18

16

18

26

18

26

28

62

28

85

31

86

5.2.2 Number of classes with precision above a certain threshold

Average overall precision works as a metric to give a solid first view of the
classifier’s performance. However, it does not say much about the balance
of the classifier. If the testing dataset had for example 90 objects of class 1
and the remaining 10 objects were of 10 different classes, the average overall
precision could be 0.9. Sadly, that does not say if the classifier recognized
all the classes, or only the one with 90 samples.

Because of that, it is good to look at the number of classes that were pre-
dicted with precision above some chosen threshold. The thresholds chosen
for this experiment are 0.5, 0.8, 0.9, 0.95 and 1.00. Table [1] shows the num-
ber of classes with precision above these threshold for each method and each
evaluation aproach along with the average recall of the classes in question
underneath them.

5.2.3 Average overall recall

Apart from precision, the second studied measure was recall. As with the
precision, the recall is averaged across all classes except for the negative one.
OTFI method’s very small recall again shows how ineffective the method is

44

Figure 10: Recall of the tested methods averaged across all positive classes

B
as

el
in

e

M
ea

n

M
ed

ia
n

O
tfi

M
ia

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Unaggregated Aggregated Relaxed

when it is used on the network data. [10]

45

From the results it can be clearly seen that the Strawman imputation,
both with the mean value or the median value, work similar to the baseline
imputation, if not a little worse. As could have been expected, the MIA
imputation method on the other hand works a little better than the baseline
method, which is because it contains the baseline in its own implementation,
and then looks a little longer to see if it can find a better split. The OTFI
method, however, did not work so well. The reason for that is that the
network dataset has more than a half [3.2] of its values missing and the
algorithm only uses the data that is not missing when finding the best split.

46

Conclusion

The focus of this thesis was to examine the problem of handling missing val-
ues in network traffic datasets. The thesis introduced a number of existing
methods for imputation of missing data, but not all of them are relevant to
the network datasets. Most of the algorithms do not scale well with bigger
amounts of data missing or they run very slow on big datasets, so only the
relevant were implemented.

The implemented methods were tested and compared, showing that the
MIA imputation method provides a slight improvement in both prediction
precision and prediction recall over the method used as the baseline. While
the baseline’s unaggregated averaged precision was 61%, the MIA method’s
averaged precision was about 65%. In the aggregated approach, baseline’s
score is 52% and MIA’s 56%. The relaxed precision is 53% for the baseline
and 58% for MIA. As for recall, baseline’s average is 57% unaggregated, 65%
aggregated and 66% relaxed, while MIA scored about one percent higher
with 58% unaggregated, 66% aggregated and 68% relaxed.

The OTFI method on the other hand provided much worse results than
the baseline, showing that it also belongs to the methods that do not scale
well with heavy missingness because it uses only the non-missing data in
computing the split statistics.

The Strawman imputation method ended up close to the baseline, but did
not surpass it. The Strawman variation using mean of the features as the
imputation provided better results than the median variation.

Apart from that, an analysis on the dataset was done to find the corre-
lations between the features’ values and their missingness. Some of the fea-
tures proved to be missing exclusively together, but not all of them. Some
features’ values are significantly correlated and in some cases it was found
out that when one the features is missing, then its correlated pair has a
reasonable probability of being not missing. This can be used in the future
to further enhance the classifier’s performance.

47

Reference

[1] F. Tang and H. Ishwaran, “Random Forest Missing Data Algorithms,”
Stat Anal Data Min: The ASA Data Sci Journal, vol. 10, pp. 363–377,
2017, https://doi.org/10.1002/sam.11348.

[2] P. Allison, “Missing Data,” Quantitative Applications in the Social Sci-
ences, vol. 136, 2001.

[3] B. Twala, M. Jones, and D. Hand, “Good methods for coping with
missing data in decision trees,” Pattern Recognition Letters, vol. 29(7),
pp. 950–956, 2008.

[4] R. Moir, “Defining Malware: FAQ,” Microsoft TechNet, 2003, https://
technet.microsoft.com/en-us/library/dd632948.aspx, visited 2018-05-
06.

[5] A. Young and M. Yung, “Cryptovirology: Extortion-based security
threats and countermeasures,” 09 1996.

[6] C. Lever, P. Kotzias, D. Balzarotti, J. Caballero, and M. Antonakakis,
“A Lustrum of malware network communication: Evolution and in-
sights,” S&P 2017, 37th IEEE Symposium on Security and Privacy,
May 23-25, 2017, San Jose, USA, 05 2017, http://www.eurecom.fr/
publication/5177.

[7] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, Second Edition, ser.
Springer Series in Statistics. Springer New York, 2009, https://books.
google.cz/books?id=tVIjmNS3Ob8C.

[8] E. Alpaydin and F. Bach, Introduction to Machine Learning. MIT
Press, 2014, https://books.google.cz/books?id=7f5bBAAAQBAJ.

[9] A. Stevenson, Oxford Dictionary of English, ser. Oxford Dictionary
of English. OUP Oxford, 2010, https://books.google.cz/books?id=
anecAQAAQBAJ.

[10] J. Brabec, “Decision Forests in the Task of Semi-Supervised Learn-
ing,” Czech Technical University in Prague. Computing and Informa-
tion Centre, 2017.

[11] L. Breiman, “Random Forests,” Machine Learning, vol. 45(1), pp. 5–32,
2001.

48

https://doi.org/10.1002/sam.11348
https://technet.microsoft.com/en-us/library/dd632948.aspx
https://technet.microsoft.com/en-us/library/dd632948.aspx
http://www.eurecom.fr/publication/5177
http://www.eurecom.fr/publication/5177
https://books.google.cz/books?id=tVIjmNS3Ob8C
https://books.google.cz/books?id=tVIjmNS3Ob8C
https://books.google.cz/books?id=7f5bBAAAQBAJ
https://books.google.cz/books?id=anecAQAAQBAJ
https://books.google.cz/books?id=anecAQAAQBAJ

[12] L. Breiman, J. Friedman, C. Stone, and R. Olshen, Classification
and Regression Trees, ser. The Wadsworth and Brooks-Cole statistics-
probability series. Taylor & Francis, 1984, https://books.google.cz/
books?id=JwQx-WOmSyQC.

[13] M. Hanselmann, U. Köthe, M. Kirchner, B. Y Renard, E. Am-
stalden van Hove, K. Glunde, R. Heeren, F. A Hamprecht, and
R. H Morgan, “Towards digital staining using imaging mass spectrom-
etry and random forests-technical report,” 04 2009.

[14] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction
to Statistical Learning: with Applications in R, ser. Springer Texts in
Statistics. Springer New York, 2013, https://books.google.cz/books?
id=qcI AAAAQBAJ.

[15] L. Raileanu and K. Stoffel, “Theoretical comparison between the gini
index and information gain criteria,” vol. 41, pp. 77–93, 05 2004.

[16] Z. Zhou, Ensemble Methods: Foundations and Algorithms, ser. CHAP-
MAN & HALL/CRC MACHINE LEA. Taylor & Francis, 2012,
https://books.google.cz/books?id=BDB50Ev2ur4C.

[17] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2, pp.
123–140, Aug 1996, https://doi.org/10.1007/BF00058655.

[18] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,”
Machine Learning, vol. 63, no. 1, pp. 3–42, Apr 2006, https://doi.org/
10.1007/s10994-006-6226-1.

[19] C. Chen and L. Breiman, “Using random forest to learn imbalanced
data,” 01 2004.

[20] M. Taboga, “Lectures on probability and statistics,” 2010, https://
www.statlect.com.

[21] H. Ishwaran, U. Kogalur, E. Blackstone, and M. Laure, “Random sur-
vival forests,” The Annals of Applied Statistics, vol. 2, pp. 841–860,
2008.

[22] A. Feelders, “Handling missing data in trees: Surrogate splits or statis-
tical imputation?” 03 2000.

[23] D. Powers, “Evaluation: From precision, recall and f-factor to roc, in-
formedness, markedness & correlation,” vol. 2, 01 2008.

49

https://books.google.cz/books?id=JwQx-WOmSyQC
https://books.google.cz/books?id=JwQx-WOmSyQC
https://books.google.cz/books?id=qcI_AAAAQBAJ
https://books.google.cz/books?id=qcI_AAAAQBAJ
https://books.google.cz/books?id=BDB50Ev2ur4C
https://doi.org/10.1007/BF00058655
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1007/s10994-006-6226-1
https://www.statlect.com
https://www.statlect.com

[24] Walber, “Precision and recall,” 2014, https://en.wikipedia.org/wiki/
Precision and recall#/media/File:Precisionrecall.svg, visited 2018-05-
22, licence: CC BY-SA 4.0.

50

https://en.wikipedia.org/wiki/Precision_and_recall#/media/File:Precisionrecall.svg
https://en.wikipedia.org/wiki/Precision_and_recall#/media/File:Precisionrecall.svg

A Enclosed CD contents

The root directory on the enclosed CD contains the following items:

thesis.pdf: The PDF file with the thesis.

src: The source directory with all implemented code written in Python.

51

	Introduction
	Malware and classification
	Malware
	Classification
	Malware classification

	Random forest classifier
	Decision trees
	Overview
	Strengths
	Weaknesses
	Growing a decision tree
	When to create a leaf node
	How to create a leaf node
	Finding the best split

	Random forests
	Bootstrap aggregating
	Random feature subsets

	Network dataset
	Dataset description
	Analysis
	Missingness
	Correlation matrix
	Missingness correlation matrix
	Conditional probabilities matrix
	Feature substitution

	Handling missing values
	Related work
	Missing data mechanisms
	Selected imputation algorithms
	Baseline imputation
	Strawman imputation
	On-the-fly-imputation
	Missingness incorporated in attributes
	Other algorithms

	Experiments
	Evaluation metrics
	Confusion matrix
	Precision
	Recall

	Results
	Average overall precision
	Number of classes with precision above a certain threshold
	Average overall recall

	Conclusion
	Reference
	Enclosed CD contents

