Abstract
Zirconium based alloys are used in almost all types of nuclear reactors as cladding of nuclear fuel, separating fuel from cooling water. During LOCA accidents (when the temperature of coating exceed 800 °C) intense heat and pressure triggers a reaction between zirconium cladding and the surrounding water / steam. The high temperature oxidation of zirconium is accompanied by hydrogen and heat production and can lead up to the degradation of coating and than to the contamination of the primary circuit by fission products. A solution to the problem is to cover the surface with a thin film of a protective substance.

Coatings

PCD
- Substrate: Zirlo and Zircaloy-2
- Plasma Enhanced Microwave Chemical Vapor Deposition
- Seeding was used to create diamond structure
- PCD – mixture sp^3(diamond) and sp^2 (graphite) phase.
- Coating thickness is 200 – 500 nm (700 nm).
- Only outer surface fully coated.

CrAlSiN
- Commercially available coating
- Substrate: Zircaloy-2
- Composition: 37% Al, 5 % Si, 58 % Cr
- Coating prepared by PVD method
- Primary designed for improving properties of cutting devices (drills etc.)
- 2 – 45 μm thickness
- Only outer diameter coated
- Roughness Ra 0,15 – 0,20 μm

Coating Testing

Long term exposure of PCD coated in operation (p, T) conditions - PCD coated samples has lower weight gains (See Fig. 1) compared to uncoated samples in autoclave conditions simulating nuclear reactor environment.

High temperature steam oxidation simulating accidental conditions. Weight gain (weight change to surface area) and composition of outgoing gas was measured for PCD and CrAlSiN coated samples. Only outer surface was coated.

![Fig 1. Weight gain of PCD coated samples after long term exposure](image1)

Thermogravimetry experiments were performed at NETZSCH thermo-balance, using argon as a cover gas. Simple alumina holder was used as sample support. All steam exposures were isothermal without any changes in steam or cover gas flow-rate. All oxidations were realized with argon flow-rate of 3.1 per hour and with steam flow-rate of 3 g per hour. Measured TG data were smoothed using moving average filters, in order to eliminate oscillations of thermo-balance mechanism.

Oxidation kinetics of PCD coated samples is similar to kinetics of uncoated samples at almost all temperatures, but with lower hydrogen production and lower weight gains. Most important difference is in later beginning of breakaway oxidation at 1000 °C, when breakaway oxidation starts on PCD coated sample 20 minutes later.

![Fig 1. Weight gain of CrAlSiN coated samples after long term exposure](image2)

Lower hydrogen production and lower mass gain of CrAlSiN coated sample are visible at temperature 1000 °C. Even at temperature 1100 °C is no hydrogen peak present at the beginning of steam exposure and also weight gain denotes lower reaction kinetics. Exposure at 1200 °C also shows lower oxidation kinetics but hydrogen peak during beginning of oxidations phase is present.

From optical microscopy is clear that PCD coating serves as partial barrier against oxygen diffusion and protective function is based on changes at PCD/Zr interface.

Zirconium dioxide

Zr – oxygen stabilized α phase

Zr prit β phase

![Fig 1. CrAlSiN coated samples – cross section optical microscopy](image3)

Results

- Compared with Zr samples protected with 500 nm of PCD, the hydrogen concentration in the unprotected Zr samples was found to be larger by one order of magnitude after 1 hour at 1100 °C in autoclave.
- After 1100 °C steam oxidation of PCD coated Zr alloy samples, zirconium atoms are incorporated into PCD layer – first fingerprints of zirconium carbide layer were forming.
- Exposure of the PCD coated Zr alloy to high steam (1100 °C, 30 min) caused the diffusion of oxygen and Zr substrate atoms into the protective layer. The protective layer has a constitution of Zr carbide and underwent a phase change from diamond to sp2 phase carbon.
- The Zr element under the PCD protective layer after high temperature steam oxidation differed from the original alloy material composition only very slightly (XPS), proving that the PCD coating increases the material resistance to high temperature oxidation.

Carbon released from the PCD film enters and changes the physical properties of the underlying Zr – this effect plays significant role in PCD protective function.

Conclusions

- Oxidation of the primary chromium, aluminum and silicon nitrides has been detected, via XRD, leading to creation of highly stable and high temperature resistant layers of alumina and chromium oxide.

![Fig 1. XPS data showing carbon entering substrate Zr alloy](image4)

![Fig 1. XPS data – carbides formed on PCD-Zr interface](image5)

Publications

Acknowledgements

Authors would like to acknowledge the support of the Technology Agency of the Czech Republic, project TE01010455 – CANUT and TA04020156 – Zirconium alloys surface protection with composite polycrystalline diamond coating. Zirconium material was kindly provided by Westinghouse Electric. FEAMWOD system reactor was used at Institute of Physics of Czech Academy of Science. High temperature exposures were made at Karlushe Institute of Technology and financially supported by EU Gentile grant.