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Abstract and contributions

With the growing complexity of current information systems, the testing and quality

assurance of these systems also grow in importance. Manual testing proves to be inefficient

in a number of cases, and test automation is employed as a logical alternative. Automated

tests can be very efficient because of their very low execution costs compared to manual

testing. However, automated tests, especially those that focus on the user interface of the

System Under Test (SUT), also have their issues that need to be solved.

In these tests, one of the main issues is the mutually exclusive combination of the fast

development of automated tests and their subsequent cost–saving maintenance. Test code

maintenance is necessitated by changes made to the SUT, which also implies subsequent

changes in the automated test scripts to keep them up–to–date with the SUT. If the

automated tests are not up–to–date, they can fail in the proper detection of defects, lead

to false defect reports or simply terminate in an error state and not provide any information

about the actual state of the SUT. The developers of automated tests have to ask a question

before the actual start of the project: is our goal to develop tests in an economical way

or to maintain them economically in the later phases of the project or operation? The

prospective test maintenance overhead (which is frequently reported as the main drawback

of the user interface–based test automation) can be reduced by the appropriate structuring

of test scripts and by using reusable code parts such as objects and components. The

identification of these reusable parts can be a tricky task for test automation developers.

Hence, the overall economics of the project and the comfort of the test script developers can

be improved by a semi–automated process for the identification of these reusable objects.

In this thesis, we present an approach for the automated identification of reusable

components in a user interface–based test automation code. The approach mainly focuses

on the identification of the repetitive parts of test scripts and is most efficient in the case

of plainly structured linear automated test scripts, which can be a result of a record and

replay approach or naive test automation programming style (which is still, in the current
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industry praxis, a frequently repeated anti–pattern, thus leading to significant inefficiency

in terms of the prospective maintenance of the created test scripts).

Such an improvement of the conventional test automation approaches like the afore-

mentioned record and replay allows the enhancement of the overall efficiency of both the

creation of automated tests and their subsequent maintenance.

In the proposed approach, we automatically provide suggestions for potential reusable

components for test automation developers to give them continuous guidance to refactor

the created tests. On this point, the proposed approach differs from the standard static

analysis tools, which analyze the source code solely based on the repetitive code fragments.

In a test automation code, a particular sequence of the same actions exercised in the

SUT user interface can be expressed by different notations. In a number of test automation

Application Programming Interfaces (APIs), this case is common. The standard static

analysis of code with the aim of searching for common code elements usually reaches a limit

at this point. Hence, in our approach, we analyze the test step semantics by a proposed

mechanism of abstract signatures, which gives our approach the capability to detect more

relevant potential reusable objects.

The entire proposed process consists of several phases.

1. The source code of the automated tests is converted into a model of the test script,

which abstracts particular implementation details and captures the actual actions

that the tests perform in the SUT.

2. Then, we analyze these abstract signatures using a specially designed solver for evo-

lutionary computations to find the potential common subroutines in the tests.

3. The found subroutines are then postprocessed and filtered, and their relevance is

assessed using a set of proposed metrics.

During the project, we implemented two functional prototypes (an initial and the final

version) of the method, which we verified in a set of experiments. In these experiments,

we exercised the initial and final versions of the prototype against automated test scripts

for web and mobile applications. The obtained results are promising. We achieve a better

efficiency of identification of potential reusable objects than a manual optimization of

automated tests. Moreover, compared to conventional approaches that are solely based on

the direct analysis of structured data searching for duplicate script fragments, our proposed

system localizes more relevant potentially reusable script components.

The main contributions of the thesis can be summarized as follows:

1. A novel approach that can improve the overall efficiency of test automation projects.

The approach can resolve the traditional dilemma between (1) recording or quickly
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creating the automated tests and pay the hidden costs later in terms of the high

maintenance of these tests or (2) investing in suitable test automation architecture

and the identification of the reusable objects, which can return subsequent lower

maintenance costs.

2. An innovative model of automated tests that allows one to abstract the tests and

make them independent of a particular language and/or framework. This abstraction

allows one to conduct a more efficient search for truly relevant potential reusable

objects.

3. A fully parameterizable set of algorithms for the identification of potentially reusable

objects in a set of user interface–based automated tests. The parametrization of the

algorithms increases the flexibility of the method and gives its users an opportunity

to configure the proposed method to various test automation projects, used languages

and test automation APIs.

4. The entire proposed method is implemented as a practically applicable framework

supporting re–factoring process of the automated tests.

5. Experimental data show the results of the framework application for automated tests

in the web–based and mobile domains. These data also provide insight into the par-

ticular parametrization of the proposed algorithms and suggest a suitable paramet-

rization for further applications in industry projects.

Regarding the state of the art, the area of the optimization of recorded test scripts is

relatively unexplored. Individual works such as the BlackHorse project by Carino et al.[1]

can be found, but they do not aim for the exact same goal as ours. The closest area is

a search for common subsequences of source code, which is a part of the static analysis

discipline. However, this thesis focuses on the specific problem of test automation, which

makes this contribution quite original in the research literature and also in the variety of

current industrial test automation frameworks.

Keywords:

Test Automation, Test Scripts, Test Refactoring, Test Recording, Descriptive

Programming, Longest Common Subsequence Problem, Reusable Objects.
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Abstrakt a p̌ŕınosy práce

S rostoućı složitost́ı současných informačńıch systémů roste význam testováńı a procesu

zajǐstěńı kvality těchto systémů. Manuálńı testováńı softwaru se v mnoha př́ıpadech uka-

zuje jako neefektivńı, což vede k logickému využit́ı automatizace test̊u. Automatické testy

mohou být velmi efektivńı z d̊uvodu velmi ńızké ceny vykonáváńı test̊u. Nicméně tech-

nologie automatizovaných test̊u, a to zejména test̊u zaměřených na uživatelské rozhrańı

testovaného systému, má i své problémy, které je zapotřeb́ı systematicky řešit.

Jedńım z hlavńıch problémů v těchto testech je vzájemně se vylučuj́ıćı se kombinace

rychlého vývoje test̊u a jejich následných ńızkých náklad̊u na údržbu. Údržba kódu test̊u je

vynucena změnami v testovaném softwarovém systému. Jestliže automatické testy nejsou

aktualizované, mohou selhávat v řádné detekci defekt̊u, což vede k falešným chybovým

hlášeńım, nebo jednoduše skonč́ı v chybovém stavu a nemohou tak poskytnou žádnou in-

formaci o stavu testovaného systému. Vývojáři automatických test̊u si před skutečným

počátkem praćı na projektu muśı položit otázku: Je naš́ım ćılem vyvinout testy s ńızkými

náklady, nebo je s ńızkými náklady později spravovat a udržovat? Potenciálńı náklady s

údržbou (které jsou často označovány jako hlavńı nevýhoda automatizace test̊u pracuj́ıćıch

s uživatelským rozhrańım testovaného systému) mohou být sńıženy vhodným strukturováńı

testovaćıch skript̊u a využ́ıváńım znovupoužitelných část́ı kód̊u jako jsou objekty a kompo-

nenty. Identifikace těchto znovupoužitelných část́ı může pro vývojáře automatických test̊u

být obt́ıžným úkolem. Z tohoto d̊uvodu mohou být celková ekonomika projektu automa-

tizace test̊u a komfort vývojář̊u zlepšeny poloautomatickým procesem identifikace těchto

znovupoužitelných objekt̊u v kódu test̊u.

V této disertačńı práci představujeme metodu pro automatickou identifikaci opětovně

použitelných komponent v automatizovaných testech založených na interakci s uživatelským

rozhrańım testovaného systému. Metoda se zaměřuje předevš́ım na jednoduše strukturo-

vané lineárńı automatizované testovaćı skripty, které mohou být výsledkem použit́ı metody

Record a Replay (nahráńı a přehráńı test̊u) nebo naivńıho stylu strukturováńı automatizo-

vaných test̊u. Tento neoptimálńı styl je stále v současné pr̊umyslové praxi často opakovaný
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antivzor, vedoućı k významné neefektivitě z pohledu budoućı údržby vytvořených testo-

vaćıch skript̊u.

Automatizovaná identifikace opětovně použitelných komponent v automatizovaných

testech umožńı vylepšeńı celkové efektivity jak tvorby automatických test̊u, tak jejich

následné údržby.

Principem navrhované metody je automatizovaný analýza kódu test̊u, která posky-

tuje návrhy potenciálńıch znovupoužitelných komponent vývojář̊um automatických test̊u.

Tyto návrhy jsou vývojáři využity při refaktoringu vytvořených test̊u. V tomto bodě se

navržený postup lǐśı od standardńıch nástroj̊u statické analýzy, které analyzuj́ı zdrojový

kód výhradně na bázi opakuj́ıćıch se fragment̊u kódu.

V kódu automatických test̊u mohou totiž být konkrétńı posloupnosti stejných akćı

v uživatelském rozhrańı testovaného systému vyjádřeny r̊uznými notacemi. Tato situace

je v současné pr̊umyslové praxi zcela běžná. Standardńı statická analýza kódu s d̊urazem

na vyhledáváńı společných element̊u je z tohoto pohledu obvykle výrazně neefektivńı. Na

rozd́ıl od běžných postup̊u statické analýzy, v navržené metodě analyzujeme sémantiku jed-

notlivých krok̊u test̊u pomoćı navrženého mechanizmu abstraktńıch signatur. Dı́ky tomuto

př́ıstupu má navržená metoda schopnost detekovat v́ıce relevantńıch potenciálně opětovně

použitelných objekt̊u.

Celý proces se skládá z několika fáźı:

1. Zdrojový kód automatických test̊u je konvertován do modelu automatizovaných tes-

tovaćıch skript̊u, který odstiňuje konkrétńı implementačńı detaily a zachycuje skutečné

akce, které test vykonává v testovaném systému.

2. Poté analyzujeme tyto abstraktńı signatury s pomoćı speciálně navrženého modulu

pro evolučńı výpočty tak, abychom nalezli potenciálně znovupoužitelné sekvence

v jednotlivých testech.

3. Vyhledané sekvence jsou poté následně zpracovány a filtrovány a jejich relevantnost

ohodnocena pomoćı sady navržených metrik.

Během experimentálńıho ověřováńı navržené metody jsme implementovali dva funkčńı pro-

totypy řešeńı (pr̊uběžný a výsledný). V experimentech jsme otestovali jak pr̊uběžnou verzi

prototypu, tak i jeho výslednou verzi s několika sadami automatizovaných testovaćıch

skript̊u pro webové a mobilńı aplikace. Źıskané výsledky jsou slibné. Dosáhli jsme lepš́ı

efektivity v identifikaci potenciálně opětovně použitelných objekt̊u než při ručńı optimali-

zaci automatických test̊u. Nav́ıc v porovnáńı s konvenčńımi postupy, které jsou výhradně

založeny na př́ımé analýze strukturovaných dat vyhledávaj́ıćı duplicitńı fragmenty kódu,

naše řešeńı lokalizuje v́ıce relevantńı potenciálně znovupoužitelné komponenty v kódu au-

tomatizovaných test̊u.
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Hlavńı př́ınosy této práce jsou předevš́ım:

1. Inovativńı řešeńı, které může vylepšit celkovou efektivitu projekt̊u automatizace

test̊u. Metoda řeš́ı tradičńı dilema mezi (1) nahráváńım automatizovaných test̊u po-

moćı specializovaného nástroje nebo jejich rychlou tvorbou a pozděǰśımi vysokými

skrytými náklady ve smyslu údržby těchto test̊u nebo (2) investićı do vhodné archi-

tektury automatizace test̊u a nalezeńı opětovně použitelných objekt̊u, které mohou

vrátit investici v podobě nižš́ıch náklad̊u na údržbu.

2. Inovativńı model automatických test̊u umožňuj́ıćı abstrahovat akce vykonávané těmito

testy a zajistit jejich nezávislost na konkrétńım programovaćım jazyku anebo fra-

meworku. Tato abstrakce umožňuje provést efektivńı vyhledáváńı skutečně rele-

vantńıch potenciálně opětovně použitelných objekt̊u.

3. Algoritmy pro identifikaci potenciálně opětovně použitelných objekt̊u v kódu auto-

matizovaných test̊u založených na uživatelských rozhrańıch. Parametrizace algoritmů

zvyšuje flexibilitu metody a dává uživateli př́ıležitost konfigurovat navržené řešeńı pro

r̊uzné projekty automatizace test̊u, použité programovaćı jazyky a API nástroj̊u pro

automatizaci test̊u.

4. Celé navržené řešeńı je implementováno jako prakticky aplikovatelný framework,

který podporuje proces refaktoringu automatických test̊u.

5. Experimentálńı data ukazuj́ı výsledky aplikace frameworku pro automatické testy

v doménách webových a mobilńıch aplikaćı. Tato data rovněž poskytuj́ı detailněǰśı

informace o vhodné parametrizaci navržených algoritmů a navrhuj́ı vhodné nastaveńı

parametr̊u pro daľśı budoućı aplikace řešeńı v softwarových projektech.

Oblast optimalizace nahraných testovaćıch skript̊u je nedostatečně pokryta stávaj́ıćım

výzkumem. Existuji jednotlivé práce jako projekt BlackHorse od autor̊u Carino a kol. [1],

ale nezaměřuj́ı se přesně na stejný ćıl jako je ćıl této disertačńı práce. Nejbližš́ı oblast́ı

je vyhledáváńı shodných posloupnost́ı ve zdrojovém kódu, které je součást́ı discipĺıny sta-

tické analýzy kódu. Nicméně tato teze se zaměřuje na specifický problém optimalizace kódu

v doméně automatizace testováńı, což je jak ve výzkumné literatuře, tak rovněž v současném

spektru použ́ıvaných framework̊u pro automatizaci test̊u poměrně originálńı počin.

Kĺıčová slova:

automatizace testováńı, testovaćı skripty, refaktoring test̊u, nahráváńı test̊u, deskrip-

tivńı

programováńı, problém nejdeľśı společné posloupnosti, znovupoužitelné objekty
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Chapter 1

Introduction

In this chapter, we introduce the area of test automation, which is the subject of this thesis.

We describe the current problems, which represent the motivation for our research. Then,

based on this motivation, we summarize the goals of this thesis, including the theoretical

and practical aspects of the problem. Here, we also introduce the achievements of the

thesis (thesis highlights). Finally, we introduce the structure of the thesis.

The increasing complexity of contemporary software systems, including new architec-

tures and technologies, brings new challenges for software developers. Cloud computing

[2], Virtualization [3], and Software as a service [4] replace old systems and concepts of how

software is developed and sold. However, in parallel with that, software project budgets

and resources for new tools are usually limited. The demand of customers for new soft-

ware features and added value from every investment is constantly present. Additionally,

with the growing dependency of users on the implemented systems, better performance

and scalability, reliability and high on–line availability are often required. Facing this

competitive software market pressure, the market leaders compete to provide cutting edge

technologies and use efficient approaches to be able to deliver software projects successfully.

In this process, the usage of open source–based tools and frameworks, instead of buying

traditional commercial software tools, grows in importance.

The costs of software testing usually represent an important part of the total costs of

software development. For instance, study [5] estimates these costs to be even between

40 % and 80 % of the total costs of software development.

In such a situation, the automation of the software tests represents a prospective ap-

proach to achieve a better efficiency for the software testing. However, automated testing

requires considerably significant investments for test development and the subsequent main-

tenance. This initial investment can be returned by a very economical repetitive execution

of the automated tests. If the right test automation approach is chosen, the benefits of

test automation may outweigh the investment, while if an improper approach is used, the

investment might not be returned.
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Every team planning a test automation project faces some of the following issues and

challenges. These include not having enough knowledge and expertise to develop the

automated tests, technological issues, required test automation tools that might not be

available, the testability of the System Under Test (SUT) by automated tests, a mana-

gerial requirement for the fast and cheap development and execution of automated tests,

the challenging maintenance of developed tests, and the requirement to test the SUT on

multiple platforms or configurations.

In this thesis, we focus on the automated tests which are interacting with

the SUT by invoking actions and events in its user interface, as well as retrieving

information from this user interface. Further on, when using the term “automated tests”,

we mean this type of tests, unless stated otherwise explicitly.

A very frequent issue in automated testing is the maintenance of the developed tests

[6, 7, 8]. Test scripts become inaccurate and obsolete as the SUT changes. As a result, the

teams responsible for testing reduce their usage of automated testing to only regression

tests, smoke tests and performance and load tests, and even in these cases, maintenance

problems can cause the test automation project to fail. The usage of automated testing to

replace conventional manual testing is quite rare [7, 8].

Current research has dealt with those issues and presents solutions for some of them,

such as automated test development and maintenance [9, 10]) that may increase the ef-

ficiency of the test automation. A number of techniques, approaches and tools for the

acceleration of the test automation process and the increase of its efficiency have already

been adopted by many quality assurance teams such as mockup techniques [11] and test

case generation from application models [12]. Mockups of the system under test (SUT)

are a necessity in short Agile software development style sprints, in which testing teams do

not have a working prototype of the SUT available (or they do not have enough time to

deliver automated tests with the SUT features actually being developed). Agile software

development methodologies [13] increase the need for the development of automated tests.

This software development style justifies the Record and Replay test automation ap-

proach (examples of particular solutions include the Selenium IDE1 and the Robotium

Recorder2). The recording of automated tests in the SUT front–end is very popular and

fits the need for fast test development. Time–consuming preparation is not needed in

those cases because no sophisticated test automation framework or advanced test code

architecture is developed.

Practically, in the Record and Replay style, testers can start to develop their automated

tests immediately. However, this approach usually suffers from significantly high mainten-

ance costs [14, 15]. The created test recordings are not automatically well–organized into

a reasonable architecture (reusable objects, flexible building blocks and test suites), and

1https://www.seleniumhq.org/projects/ide/
2https://plugins.jetbrains.com/plugin/7513-robotium-recorder
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tests usually contain a number of duplications, making the update of the tests to the actual

state of the SUT costly and prone to developers’ mistakes.

To improve the quality and maintainability of the automated test code, these duplica-

tions shall be refactored into reusable functions or objects. In the case of the Record and

Replay approach, an effort to refactor the duplications might be significant, and so an auto-

mated method aiding in this refactoring would decrease the overall test automation costs

significantly. However, this refactoring step is rarely performed in industry projects, and

this missing optimization is responsible for increased costs later on when the automated

tests have to be updated and maintained.

Development teams follow various test management approaches and test automation

approaches. Companies that need to sell their products in markets and to compete on price

pursue an indicator of the returns on investments in which every decision that is taken has

to be considered and evaluated from a number of viewpoints. Typically, is it worth making

an investment in the development of automated tests, or is it sufficient to perform only

manual tests? Can we achieve returns on the investments? Ultimately, how much does

it cost us to run automated tests? Apart from the financial limitations, projects are also

limited by agreed–upon deadlines, dependencies on third parties and various technical

limits including the testability of the SUT by automated tests.

1.1 Motivation

In the software development process, the typical responsibility of the developers is to

propose an architecture for the system and develop it, while testers develop tests and

conduct them. On this point, test automation might increase the productivity for both

the testing team and the developers. They can run the automated tests to verify that

they did not introduce any regression defects during the feature development or removal

of reported defects. The testing team can concurrently focus on the development of new

tests to increase the test coverage.

On the other hand, automated tests can also require more time for the test script

preparation and their maintenance, and so the testing team could have less time for the

actual testing. If the balance is improper, the situation could lead to increased costs of

testing, and the return on investment can be put at risk. Better and more innovative test

automation approaches might help achieve this balance and improve the overall efficiency

of the test automation project.

In the current test automation praxis, various approaches allow one to achieve different

goals but, unfortunately, not all of them concurrently. From the test script preparation

viewpoint, the most economical option is to employ a plain test script Record and Re-

play approach unless there is a requirement for the automation of a complex test case

testing across multiple environments with verifications of complex data. In this approach,
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a standard test case based on a simple use case can be created in a reasonable time that

is comparable to the time required for the manual test preparation. However, the main-

tenance costs of the automated test scripts created by such an approach are typically the

highest of all of the options because the recording creates unstructured linear test scripts

with a number of potential code duplications.

In contrast, test automation approaches based on Descriptive Programming (one

of typical examples is WebDriverIO3 for Node.js4) require significantly more resources for

preautomation activities (based on the definition of the test automation architecture, agree-

ment on the coding style rules and the structuring of the tests) and for subsequent test

development, particularly compared with the recording approach. Descriptive Program-

ming is the usual approach taken by experienced test automation staff who organize their

test scripts into maintainable building parts and usually perform continuous refactoring

of the created test automation code. As a result, the maintenance costs of the code are

significantly lower. This style also enables more flexible and economical updates of the

tests to make them fit with the SUT.

Logically, hybrid approaches can also be used to achieve the advantages of the Record

and Replay and Descriptive Programming while minimizing their disadvantages.

These approaches, which are usually implemented by various test automation frame-

works (for instance Mocha5 or the already mentioned Robot Framework), may help de-

crease the test preparation and maintenance overhead, but they still struggle to achieve a

low script preparation time and low maintenance time simultaneously.

In our work, we focused on the minimization of the mentioned weaknesses of the Record

and Replay and Descriptive Programming approaches. Based on our research, development

and industrial experience, we understand that more efficient code refactoring support is an

important factor in minimizing these drawbacks.

The automated support of the refactoring of the code to create reasonable reusable

objects can significantly decrease the maintenance of the source code in both major test

automation approaches, which can improve the overall efficiency of the process.

Therefore, our main goal was to make the refactoring of the created code easier and

more accessible to smaller teams and more junior test automation developers, and we

achieved this by an automated method to search for potential reusable objects. In this

thesis, we proposed a method that is more efficient than the conventional analysis of source

code, as it reflects the specific context of the test automation and the fact that particular

actions performed by the test can be expressed by various notations in the source code and

test automation Application Programming Interface (API).

3http://webdriver.io/
4https://nodejs.org/
5https://mochajs.org/
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Figure 1.1: Example of duplicate code fragments causing subsequent test maintenance
difficult [A.1].

1.2 Practical Effect of the Proposed Method

How does the proposed method improve the overall efficiency of the development of user

interface–based automated tests?

In the case of the Record and Replay approach, the method aids in identifying

reusable objects in an automated and efficient way. Through this, it allows the refactoring

of the test automation code, which would otherwise be rarely performed in the industrial

praxis.

Let us recall the technical background. The Record and Replay approach allows users

to record the actions performed in the application under the test front–end and replay them

later using a test automation tool. The resultant code of the automated tests typically

contains many duplicate code fragments, which are the source of increased maintenance

costs and thus an inefficiency of the overall test automation approach. An example is

depicted in Figure 1.1. In four test routines, two code fragments that are performing the

same action in the SUT front–end user interface are repeated. They are depicted by the

black (Steps 11–13) and gray (Steps 2–3) colors.

In front–end–based testing, the duplication may occur in several places of the automated

tests. Usually, we can categorize them into three groups: (i) a common functionality such

as the set–up or tear–down procedure of the test, the clean–up procedure after the test is
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performed, or the seeding of the testing data ; (ii) the localization of the elements of the

front–end user interface and the actions performed with these elements such as clicking

on the links or buttons, inputting data into forms or reading values from the screen; and

(iii) the sequences of steps representing particular steps of a business case procedure (for

instance, a login procedure). Reducing these duplications and replacing them with reusable

objects provides a significant opportunity to decrease the subsequent code maintenance

costs when the SUT changes. The decreased maintenance enables one to extend the test

coverage achieved by the automated tests, enables a better return on investment, and

prolongs the effective lifetime of the created tests. All these factors contribute to the

overall efficiency of the test automation process.

Nevertheless, not only Record and Replay can benefit from the proposed method. In the

case of the Descriptive Programming approach, which is used to develop automated

tests using a conventional way similar to the development of any software product, an

automated refactoring method also finds its application.

In case of the existing sophisticated structuring of the test automation code (the defined

test automation architecture, the defined coding rules, and the identification of reusable

objects and other rules), an automated search for potential reusable objects can reduce

the remaining number of code duplications and make the development team more confid-

ent since the created test automation code is closer to the optimum from the subsequent

maintenance viewpoint. However, the advantage of the proposed method is more signific-

ant when used by a team of inexperienced test automation developers who had taken the

Descriptive Programming approach. Because of their lack of experience with test automa-

tion, they create naively structured, linear automated tests with insufficient levels of coding

rules and the absence or only the partial employment of reusable objects. In extreme cases

(which are not rare in the industry praxis), such a code can resemble the output from a

Record and Replay test automation tool with many code duplications, which makes the

subsequent maintenance difficult.

1.3 Goals of the Dissertation Thesis

To achieve the overall aim described in the previous sections, the goals of this Dissertation

Thesis are as follows.

1. To define a model of an abstraction layer for the optimization of unstructured test

automation scripts that are either recorded or coded in a suboptimal way.

2. To define the data structures that are necessary for the representation of the in-

formation that is needed for processing, such as the internal representation of single

test steps, the structures for test suites, suggestions for the proposed reusable code

fragments and the control parameters.
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3. To propose new algorithms based on the defined formal model for finding potential

common reusable objects in the analyzed code of automated tests. The proposed

algorithms will be more efficient than the current approaches based on text search

algorithms or algorithms for the code refactoring since they will respect (1) the

specific context of the automated tests and (2) the fact that the actions performed

by the test can be expressed by a variety of code notations, which makes the task

more challenging.

4. To design a method for the suggestion of test script refactoring opportunities to the

test developers that finally lead to the easier and more economical maintenance of

the created tests.

5. To implement the proposed method using a framework prototype that aids in the

refactoring of the test automation code. The framework shall be applicable to a vari-

ety of test automation projects and, besides its applicability in the classical waterfall

development model, it shall also be applicable in the Agile development model.

6. To use the implemented framework prototype to conduct experiments to verify and

demonstrate the correctness of the proposed approach and assess its efficiency in

front–end–based test automation for web–based and mobile applications.

Apart from that, two minor goals are closely related to the main goals.

1. To define an architecture of the framework that allows for flexible extensions of the

method and makes it platform–, tool– and language–independent (in the sense that

various test automation languages and APIs can be supported by the framework in

the future).

2. To design open APIs for the flexible and transparent user control of the proposed

method.

1.4 Thesis Highlights

In this Dissertation Thesis, we present the following.

1. A novel method that automatically aids in the code refactoring of automated tests

to reduce the potential duplication in their code and the test code maintenance costs

caused by these duplications. The method is applicable to two major test automation

styles, Record and Replay and Descriptive Programming. The main effect of the

method is to improve the recorded or suboptimally structured test scripts to and

increase the overall efficiency of the test automation process.
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2. An innovative model of automated test scripts that allows for the following.

a) The abstraction of the actual actions performed by the tests interacting with the

elements of the user interface of the SUT. This model enables a more efficient

identification of the potential common parts of the tests that might be achieved

by searching for the repetitive parts of the code or the currently established

code static analysis methods.

b) The verification of the applicability of the approach for various implementa-

tion languages and test automation APIs, which also includes various types of

SUTs such as web–based applications, mobile applications and thick–client type

applications for various operating systems.

3. A set of parameterizable algorithms for the identification of potentially reusable frag-

ments of the test scripts that respects the specific context of the test automation.

The parametrization increases the flexibility of the method and gives its users the

opportunity to adjust the refactoring support to the conditions of the particular test

automation language, APIs, used frameworks or other project specifics.

4. The created method is implemented as a practically applicable TestOptimizer frame-

work, which aids in the test automation code’s refactoring by searching for potential

common subroutines.

a) The framework is designed and implemented as a platform–independent open

method that is flexible to configuration and further extension due to its modular

architecture and the defined set of open APIs that control the framework.

b) The framework is applicable to various development styles spanning from the

waterfall model to Agile development styles. It can also be flexibly extended

and configured to support various test automation languages and APIs. In the

presented prototype, the Java, Selenium and Appium languages and APIs are

directly supported.

5. A set of experimental data from the pilot applications of the developed framework

for automated tests for web–based and mobile SUTs, their discussion and their eval-

uation. These experimental data also provide feedback for the parametrization of

the proposed method to allow for its future practical applications.

The proposed method implemented in the TestOptimizer framework prototype can be

flexibly used in test automation projects as follows:

◦ for the optimization of the recorded automated tests, which presents a significant

opportunity to decrease the potential maintenance of the recorded tests and thus

increases the applicability of this approach in the industry praxis;
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◦ for the optimization of naively or suboptimally structured automated tests created

by descriptive programming, which, by decreasing the potential maintenance over-

head, reduces the risks of the test automation project and enables a better return on

investment of the test automation activity; and

◦ as an auditing mechanism for current test scripts to assess duplications in the tests

and the level of employment of reusable objects in the created test automation code.

From the test automation project viewpoint and the viewpoint of the practical applic-

ability of the proposed approach, the main contributions of the proposed method and the

implemented framework can be summarized as follows.

1. The method decreases the time that is required for the refactoring and optimization

of the automated tests to make them more robust and stable in terms of their pro-

spective maintenance. The methods aids in the refactoring of the tests so that they

are less affected by changes in the front–end user interface (UI) of the SUT, which

contributes to the easier and more economical maintenance of the test code.

2. As a consequence, the applicability of the automated tests might increase in a num-

ber of projects. The tests can be used in project scopes where it was not possible

previously because of negative return on investment predictions.

3. The lower maintenance and increased stability of the created tests also allow for

the better coverage of the SUT by automated tests. With this higher test coverage,

the created automated tests exercise the front–end of the SUT with all its underly-

ing functionality more intensely, and the probability of finding defects in the SUT

increases.

4. The previous effects decrease the production risks caused by the potential SUT’s

improper functionality, as the more efficient test automation method provides the

opportunity to test the SUT intensively in a given amount of time.

1.5 Structure of the Dissertation Thesis

The Dissertation Thesis is organized into nine chapters as follows.

1. Introduction: This chapter introduces the problem domain and discusses the main

challenges that form the motivation for this doctoral project. It briefly summarizes

the proposed approach from a conceptual view and outlines its applicability. Then,

it defines the goals of the thesis. Finally, it summarizes the contributions of this

dissertation thesis.
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2. Overview of Industrial Practice: To obtain the context of the problem domain, this

chapter provides the necessary theoretical background and discusses common indus-

trial practices in the area of automated testing. This chapter discusses the problem

from an industrial viewpoint.

3. State of the Art : This chapter summarizes the state of the art in research. As several

areas overlap in the scope of this thesis, all of them are discussed in this chapter,

namely current approaches to test automation, a generation of test cases and test

data used as a test oracle, and code refactoring and employment of reusable objects

in the test automation code.

4. Introduction to the Proposed Approach: This chapter provides an overall picture of

the proposed method and framework from a conceptual viewpoint. Its goal is to give

the reader a complete picture of the method and its functionality before discussing the

particular details of the model, algorithms and technical issues of the implemented

framework.

5. Abstract Model of Analyzed Test Code: This chapter explains the concept of signa-

tures that is the core of the model of the automated test code. The model abstracts

the actual actions of the test scripts from the particular notation in the test automa-

tion language or APIs. The defined model serves as a basis for the formulation of the

algorithms and the definition of the data structures of the implemented framework,

which are described in the following chapters.

6. Algorithms to Solve the Problem: This chapter describes the algorithms that are

employed in the search for potential common parts in a set of automated test scripts.

The algorithms are presented in a pseudo–code notation, and their parametrization

is explained.

7. Framework Prototype: This chapter describes the architecture of the framework that

implements the proposed method, presents its implementation and other technical

details and gives an overview of the APIs through which the framework is controlled.

8. Experiments : This chapter describes the experimental verification of the proposed

approach, starting with a description of the experiment design. Then, it defines the

metrics that are used to evaluate the results, presents the experimental data and

finally discusses the results and the threats to its validity. In this chapter, the results

of experiments on two framework prototypes are presented, and a comparison of them

is made.

9. Conclusions : The final chapter of this thesis summarizes the results of our research,

suggests possible topics for further research, and concludes the thesis.
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Chapter 2

Overview of Industrial Practice

The goal of this chapter is to introduce the context of this thesis from an industrial praxis

viewpoint. The chapter introduces the necessary theoretical background and discusses com-

mon industrial practices in automated testing. We discuss different testing approaches, the

structure of the software testing process and the principal approaches to test automation.

Then, we introduce different techniques for test automation and various types of test auto-

mation frameworks and tools. Finally, the chapter concludes with a discussion of the test

automation praxis in different software development methodologies.

2.1 Quality Assurance

The development of any software product (of nontrivial functionality and size) is a complex

process that involves a number of activities. Having a satisfied customer at delivery re-

quires a development team with considerable experience, good management and excellent

communication skills.

At the beginning of the project, software company representatives interview the cus-

tomer to acquire the basic requirements concerning the software product. In larger soft-

ware teams, business analysts work with the customer or customer representatives to define

requirements for the software product. They usually prepare a solution proposal in cooper-

ation with software architects. The architects are then responsible for the technical side

of the proposal. They should ensure that the solution is feasible, define the technology

and tools to be used during development and propose a production environment. Business

analysts with project managers break the requirements down into atomic pieces (e.g., a

user story in Agile Scrum) that can be processed unambiguously by production teams. The

management chain (project management, development lead, and quality assurance lead)

prepares a development plan based on the analysis and available resources. Depending

on the chosen process model, e.g., Agile or Waterfall, the project requirements and line

management drive the entire process.

11



2. Overview of Industrial Practice

Software testing and Quality Assurance (QA) are essential to the success of a software

project; they evaluate the quality of the product being developed and identify risks in

implemented functionality as well as in nonfunctional requirements. The sooner defects

can be found, the less costly it is to detect them, as was observed by Barry W. Boehm more

than 30 years ago [16, 17]. It is economically more logical to correct SUT defects revealed

during early development than to fix defects found by the customer during user acceptance

testing (UAT) or during the production run of the SUT. Generally, earlier defect detection

helps to complete the project on time, within budget, and at a defined quality level. When

the product is released, maintenance engineers become responsible for customer support

and for resolving defects in the delivered product.

Quality Assurance involves undertake systematic activities such as systematic meas-

urements and comparisons against standards defined in a quality system to ensure that

the product or service fulfills the requirements. In contrast, software testing is a subset

of quality assurance. Software testing represents an investigation that provides product

owners with information about the quality of the product under test.

2.1.1 Testing Approaches

In software testing, development teams may follow many approaches for assessing if the

software meets certain criteria, required needs and required level of quality and reliability.

Available resources (for example, size of the available testing team), project budget or

a type of the SUT play important roles when the team decides what approach to take.

Test automation is also one of these options. For some types of tests, as usability tests or

accessibility tests, manual testing is a logical choice, as these types of tests can be hardly

automated. On the other hand, load, performance and stress tests are hardly feasible to

be performed manually without any automation. Unlike usability and accessibility tests

where human users are subject of observations when they work with software, or they try

to asses a level of accessibility for users with disabilities, load and performance tests can

be hardly executed with 10,000 manual concurrent users for instance. There is a high need

to run automated scripts in such scenarios. Otherwise, it is almost impossible to manually

measure, e.g., a response of the system under test or an average transaction processing

time. Human testers cannot reach such level of testing in comparison to specialized tools.

However, the most frequent type of tests which are being employed in the software

projects is functional tests aiming at detection of defects in the SUT functionality. In this

type of tests, both manual and automated tests can be and are employed in the current

industry praxis. Manual functional testing may win over automated testing in certain

cases. For instance, if a senior tester conducts an experience–based testing and searches

for new defects or anomalies (e.g. to avoid a pesticide paradox [18]), test automation can

hardly replace such an activity efficiently.

Testers use different testing techniques based on their knowledge of a SUT (in this
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2.1. Quality Assurance

point, let’s not substitute the knowledge of SUT for the knowledge of the business domain,

in which the processes supported by the SUT are performed). If the SUT implementation

(e.g., a complete system architecture, technology or a source code) is known to the testers,

this situation is referred to as the white box testing style. If testers do not know the

implementation details, black box testing is established as a term describing such style. A

situation when testers have limited knowledge about implementation details so they can

design more efficient tests based on them is called grey box testing. White box testing is

typical to the software developers and design of unit tests. QA and testing teams usually

do not design tests at this level of detail. User Acceptance Testing can be seen as an ideal

representative of black box tests in contrast to white box tests.

2.1.2 Common Structuring of the Testing Process

Business requirements play an important role in the software development process (see

the top left part of Figure 2.1). Requirements define the functionality of the SUT as well

as the user interface desired by the investor of the software project. Test cases exercise

features and the expected behavior of the SUT. For this purpose, testers use the user

interface to control the SUT and verify that behavior of the SUT corresponds to the

defined requirements.

Let us imagine the following example. A customer wants to track all shipments and

wishes to see top sold items from the stock. Now let’s discuss a difference how software

development team (for this example consider it as a team of software developers only)

and software testers process the business requirements and which consequences it has for

the subsequent software development process and duplications in the created software test

cases. Software developers design and implement a solution based on the requirements.

Furthermore, they select an implementation technology fulfilling their and customer’s re-

quirements. The software testers and quality engineers verify that implemented SUT fea-

tures work as expected and validate that the product does what is supposed to do. Most

often, they compare the actual functionality of the SUT to the requirements, which are

processed in the form of test cases.

In our example with the shipment overview required by the customer, the feature is

going to be implemented as a Model–View–Controller–based application. A model is stored

in a relational database, a web user interface represents the view, and a controller handles

the user interaction and calls saved SQL procedures to get required data from the database.

The testing team should focus on several tasks when testing particular features of the SUT.

First of all the testing team should verify whether components of the SUT work according

to the SUT specification.

For example, the components under test are exercised if a connection to the database

works properly in all required cases, if web pages of SUT user interface present correct data

from the SUT database or if the application controller reacts on user actions in different web
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Test Case N
Test Case N

Test Case N

User Interface

Test Case 

Business 
Requirement

System Under Test

Objects

Features

Data

Behavior

implements

verifies
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has

Functional 
specification

comes out

defines

definesbased on

Figure 2.1: A relationship among business requirements, test cases and the system under
test.

browsers. Moreover, testers should validate whether the application provides an output to

the customer what he/she wanted. In our example, are displayed top sold items from the

stock in the way the customer wanted? During the validation, testers do not focus only

on the functionality but also on methods how the functionality is achieved, and if it is in

accordance with the customer’s expectations.

Further, in the software development process, a functional specification defines required

features, mockups or wireframes of the user interface, and requested behavior of the ap-

plication. Well–written tests should be based on business requirements. Otherwise, the

team may test something else that was not previously required by the investor, because

all parties may introduce their different point of view of the problem and different in-

terpretations of the particular requirements may occur. The more vaguely defined the

software requirements are, the higher this risk of misinterpretation is and, subsequently,

the probability of software defects caused by these misinterpretations is increased.

As a standard software testing practice, the test cases are based on the functional
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specification and on the business requirements to verify that the SUT complies with the

business requirements. During the analytical phase of the software project, sets of business

requirements are usually grouped into one SUT feature (an example of the situation is

depicted in Figure 2.2).

In such a situation, if the testing team focuses only on covering the whole SUT features

by tests and do not reflect on also covering the business requirements, some of these re-

quirements might be forgotten. Therefore, covering business requirements by tests might

seem as more suitable approach compared to covering the SUT features by the tests. On

the other hand, covering business requirements by tests might represent a source of poten-

tial duplications in created test cases – the tests may overlap, and a particular business

requirement might be covered by them several times.

Test Case N
Test Case N

Test Case N
Test Case N

Test Case N

Business Requirement A Business Requirement B Business Requirement C

Test Cases 
covering A 

Test Cases 
covering B

Test Cases 
covering C

Feature A Feature B

Figure 2.2: The feature A contains the requirements A, and B. Currently, the test cases A,
and B cover the business requirements A, and B. The Feature B implements the requirement
C, and it is covered by one test case C.

The Figure 2.2 illustrates an example of the described situation. Feature A represents

business requirements A and B. The feature B includes the requirement C. In our model
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example, a testing team prepared three sets of test cases covering all the requirements.

For instance, the first requirement A represents an option to print a text file in a

Windows format, the requirement B asks to print a text file in a Unix format. To do that,

the user has to login to a user interface. The feature A represents the following workflow:

the user opens a wizard in the SUT, logs in to the system, and displays the file in the

required format. This workflow is the same for the requirements A and B, only the format

of the file differs. However, both requirements shall be tested by different sets of test

cases – test cases A and test cases B in the Figure 2.2.

In such a situation, it is more than likely that the created test cases would contain

similar steps. A problem may arise when the team is asked to update those tests because

of changes in the SUT caused by a change in the workflow specification. Such updates

might take the significant amount of resources of the testing team, which is missing in the

actual testing effort. This problem increases, when the created tests are automated, as we

explain later in this thesis.

In automated testing, the best practice is to extract common test steps into a separate

reusable procedure (Figure 2.3), and employ this procedure in relevant test cases. Unfor-

tunately, in many cases, testing teams do not design and create tests according to the best

practices – usually due to time constraints and lack of experience. This fact has a funda-

mental impact on the complexity of subsequent test maintenance and arises especially in

the case of automated tests.

To better understand the issues related to the maintenance of software tests, let’s ana-

lyze the IEEE 829 Test Case Specifications. The IEEE standard defines a test case as

a set of (i) the Test Case Specification Identifier, (ii) Test Items, (iii) Input and Out-

put Specifications, (iv) Special Procedural Requirements, and (v) Intercase Dependencies.

Furthermore, it can include a Test Procedure Specification. The Test Case Specification

Identifier serves as a unique identifier of the test. Test Items define a subject of deliverable

and test. Input Specifications specify user inputs or files, and Output Specifications define

expected results, including screens, files, and timing. Special Procedural Requirements

define possible operator interventions and required permissions.

The special procedural requirements can influence testability of the SUT by automated

tests. Let us give the following example from the payment application domain. The user

is asked to use a credit card when paying an invoice. Conducting a manual test is simple

in this case because all actions are carried out manually, but automated tests are almost

impossible to carry out without any human intervention. The operator has to swipe the

credit card in the middle of the transaction to finish the transaction.

Testing of complex software systems requires to define Intercase Dependencies between

individual test cases, which are in other methodologies also referred as preconditions. Let

us explain a precondition by an example from the payment application. If we are expected

to execute a test for a credit card payment, we need to have a test infrastructure up and

running, e.g., a server processing the payment transactions and a terminal for the credit
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IEEE 829 Test Case Specification

Test Case Specification Identifier

Test Items

Input/Output Specifications

Special Procedural Requirements

Intercase Dependencies

IEEE 829 Test Procedure Specification

Test Procedure Specification Identifier

Purpose

Special Requirements

Procedure Steps

Figure 2.3: IEEE Test case and procedure specification.

card.

Preconditions help testers to set expectations in which state the SUT prior to the

execution of particular test case should be. As we already mentioned above, the recognized

best–practice in the domain is to create test cases as independent units, so in order of their

execution does not influence the ability to execute them or their result. Otherwise, a

test execution may fail if one or more tests in the cascade fail. Tests (and especially

automated ones) need to have the system in a known and defined state in accordance with

preconditions. If this promise is not fulfilled, tests may report the defects that are not

relevant, or they may even damage the testing data in the SUT.

Finally, a test procedure specification describes running of test cases. It includes the

following sections:

1. Test Procedure Specification Identifier,

2. Purpose,
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3. Special Requirements,

4. Procedure Steps.

The Purpose states what tests shall be run. The Special Requirements section describes

requirements on testers, what permissions are necessary, and how environment shall be

configured (for example, data must be seeded in the system under test before testing takes

place). Procedure Steps list typical activities within the pre–testing such as login or set–up

(for instance, it corresponds to @Before annotation, i.e., setUp() methods in JUnit),

and within the post–testing such as a measurement of results, clean up, shutdown or restart

if needed (again imagine a JUnit example – this part corresponds to @After annotations

and tearDown() methods). The overall situation is outlined in Figure 2.4. The Test

Step Definition provides an exact description of an object under test, i.e., object locators

or unique properties like id or name in the SUT (in the Figure 2.4 depicted as Test Object

Definitions). Then it specifies an action being carried out either by an action in the SUT

(for example, open contacts in an e–mail client) or by the tester and/or automation tool –

like verify the data in the SUT mapped to actual results and compare them with expected

results of the test. Parameters are used to distinguish between cases having identical

test objects and actions but covering different semantics, e.g., a test of a login procedure

involving different usernames and so roles in the SUT.

System Under TestTest Step

Expected Results

Test Object 
Definitions

Action

Objects

Actions

Actual Results

interacts with

compares gets

Parameters

Data

Figure 2.4: An interaction of the tester with the application represented by the test step.
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2.1.3 Manual Testing

As the software project budgets are usually limited, a number of these projects require

to find a good balance of resources spent on the quality assurance process and getting

an appropriate resultant quality of the software product. Costs on software testing are

usually minimized minimum unless the SUT is not mission critical. For these purposes,

manual testing with ad–hoc approaches [19, 20] have their justification. Manual testing is

beneficial if tests are executed only once without repetitions, or tests are only run on an

irregular basis and quite rarely. If standard functional tests are repeated regularly, it is

usually more effective to consider employing automated tests to cut down costs on multiple

test runs.

Tasks that require intensive testing including repetitive test runs may appear as ideal

candidates for test automation. However, some of them such as accessibility testing should

be excluded from automation efforts. In the accessibility testing, it is crucial to evaluate

and asses the system under tests from a human viewpoint, which is very difficult to record

in automated tests. Furthermore, each person is an individual, and what is working for

one human user it is not working for someone else.

Software methodologies like TMap NEXT1 allow to introduce the structured testing

process that increases a systematic nature of testing and thus its efficiency. However,

despite this methodological effort, main issues of manual testing remains. Manual test

runs are not consistent over their different runs, which is typically caused by random

errors during the test execution or a different interpretation of test steps by different

human testers. This issue is more relevant for tests with a low level of details and/or for

testers on a contractor basis that change from test run to test run. Furthermore, some test

steps can be omitted during the test execution if testers do not pay proper attention to

testing. All those issues speak against manual testing for regression testing and tests with

a significant number of repetitions.

2.1.4 Test Automation

The efficiency of a testing process can be improved in several ways such as a better test

analysis, employing test data optimization methods like Constrained Interaction Testing

[21], or automation of the test execution. If a testing team adopts well this technique

well, automated tests offer a number of advantages in comparison to manual testing. First

of all, automated tests can be run repeatedly on multiple platforms and with different

configurations. As a result, test execution costs are low. Secondly, they provide more

accurate results than manual tests. Last but not least, automated tests can be executed

in non–productive time slots during a software development cycle — they perfectly fit into

a Continuous Integration (CI) concept.

1http://tmap.net/tmap-next/
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Table 2.1: Typical script preparation and maintenance times of principal test automation
approaches.

Type Script Preparation
Time

Script Maintenance
Time

Plain recording of test cases low high

Test scripting using a program-
ming language

high medium

Test automation frameworks
(Data–driven frameworks,
Keyword–driven frameworks
and Model–based frameworks)

medium medium

Hybrid approaches May decrease the over-
head

May decrease the over-
head

Requirements of software
industry

medium low

However, the test automation has also its disadvantages. An effort to prepare the

automated tests is usually higher than an investment into the preparation of manual tests

cases. Automated tests always run according to a predefined scenario and do not offer a

space for a creative human improvisation. That means if the SUT changes (and a change

does not have to be drastic like a complete change of a use case) automated tests usually

fail. In contrast, human testers use in those cases their intelligence, so they are able to

overcome small inconsistencies in the definition of the test case and to continue in tests.

Consider an example of a small change in the name of a button from Cancel to Discard,

when a name of the button is used to identify the button. Human tester very likely

continues with the test, differently to an automated test, which might fail, because it has

not found the Cancel button.

Moreover, if automated tests are developed in a sub–optimal manner or if changes in

the SUT are frequent, maintenance costs of the automated tests might grow rapidly.

From our observations [6] and other publications [7, 14, 8, 22], relatively high main-

tenance of automated tests is considered as one of the biggest challenges in the domain of

automated testing, see the comparisons in Table 2.1. Moreover, the issue occurs regardless

of a test organization model being employed and influences the test automation process

[23]. Typically, high costs of maintenance are closely related a simulation of user actions

in the front–end of the system under test, which is required for functional user interface

tests.
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2.2 Techniques in Automated Testing

The following subsections give an overview of the main techniques used for automated

functional tests. We start with a problem of generating data used as a test oracle2, then

we introduce the most common approaches in software test automation, and we finish with

a list of currently available test automation tools and frameworks.

2.2.1 Initial Overview

Automated testing represents a complex domain of methods, techniques and approaches

for validation and verification of software. In the broader context, this discipline starts with

an automated preparation of testing data, generation of tests from SUT models or specific-

ations of the SUT, continues with an automated test execution and it finally ends with an

automated verification of the test results. Test automation is usually understood as a

subset of automated testing. It is focused only on automating of test execution, with the

aim to replace human testers with specialized software or physical machines. Currently, a

number of test automation methods is available. These methods are starting from naive

approaches such as a simple test recording that basically captures a user activity when the

user interacts with the system under tests. Senior test automation experts usually prefer

descriptive programming, which is similar to developing scripts or employs various frame-

works based on data–driven, keyword–driven or hybrid approaches. Those frameworks

may be developed proprietary or developers can adopt open source frameworks like a Ro-

bot Framework3 for instance. Their main contribution is to speed up test development,

simplify test maintenance and to enable beginners to develop automated tests.

A recent growing trend in test automation is using a visual recognition of objects.

This recognition is based on the Optical Character Recognition (OCR) approach, which

helps to recognize user controls in a way like humans do. Furthermore, this technology

introduces a platform–agnostic approach so test developers do not need to deal with, for

example, a Document Object Model (DOM) of a web page or mobile application, but they

work immediately with the visual object such as buttons, sliders, etc. An ability to run the

same test on different platforms (web, mobile) and in various front–ends (iOS, Android) but

with the same look and feel, is impressive. However, this approach has also its drawbacks

– when the user interface of the SUT changes, the new recording of the respective screen

part has to be done, which could imply considerable maintenance overhead, compared to

advanced, well–structured descriptive programming approach.

2In software testing, we understand this term as a mechanism that allows deciding if a particular test
passed or failed.

3http://robotframework.org/
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2.2.2 Test Data Generation

Test data generation plays an essential role during the software verification process. The

test data determine the initial state of the SUT before the actual test, and in this sense,

they are essential to ensure this state. Moreover, various test data enables to exercise the

test cases in a number of variants and possible combinations, increasing the probability to

detect important defects in the SUT.

Apart from manual methods of test data preparation, test oracles are usually used to

generate the test data for more complex cases. A test oracle can be created by several

methods. The simplest method can be applied in cases in which a legacy system with an

already proved functionality, same or similar to the SUT is available. Then we may use

the data from the legacy system as a test oracle when an upgrade of the system to the

newer version or a new platform is tested.

When a completely new SUT is developed, practically usable test oracle might not be

available, and if the SUT is not based on computations (for example, a system perform-

ing computations according to math equations), the creation of a test oracle may be a

challenging task.

However, the test oracles are one of the favourite subjects of test automation. Particular

state of he art in this area is further discussed in Section 3.1.2.

2.2.3 Test Automation Approaches and Frameworks

When a testing team decides what strategy to automate functional user interface tests to

chose, it has two principal options. The tests can be created quickly, and subsequent test

maintenance is going to be complicated and demanding, or the test can be created slower

with higher initial costs, but the test maintenance is not going to be demanding like in the

first case. Finding a right trade–off between development speed and maintenance could be

a challenging task. The principal approaches to the user interface based test automation,

as already mentioned in the introduction to this Thesis, are:

(i) Record and Replay, which is based on capturing all steps what the test engineers

conduct in the application front–end by a test automation tool, and

(ii) Descriptive Programming, which is similar to coding any program and is based

on the writing of an automated test script.

Both methods can be combined to achieve the better balance between the test script

preparation speed and subsequent maintenance costs. In the beginning, we may want to

develop first drafts of tests quickly, so we record user walkthroughs in the SUT user in-

terface. In the second phase, we need to stabilize tests and to add needed verifications;

22



2.2. Techniques in Automated Testing

eventually may want to add additional logic to drive the test execution and data flow.

Then we script tests using descriptive programming. The test recording approach is gen-

erally considered as a fast method of development of tests but very inefficient from a test

maintenance point of view [24, 25, 26].

In the effort to asses the maintenance viewpoint, usually, we cannot easily determine

what an optimal level of the record and replay and the descriptive programming approaches

is since many conditions and factors come into the place.

Firstly, how complex the SUT is, i.e., how many screens are available, what typical use

cases are, or what data are required and processed by the system (consider an example

of a calculator vs an integrated development environment). Secondly, a required structure

of automated tests and a level of knowledge of the development team. Thirdly, we have

to consider a technological side of the system under test as well as what test automation

tools are available, and last but not least, what is a purpose of tests.

In general, a conclusion is that the Record and Replay approach creates not enough

robust tests, but costs on development are relatively low. The Descriptive Programming

approach helps to create tests robust enough using more advanced techniques like manually

choosing best descriptive properties for locators of user interface elements or using escape

strategies for scenarios when some objects are not found or when errors occur. Descriptive

programming demands, on the other hand, a higher initial investment but a resultant test

script quality may be significantly higher. Test maintenance costs are then lower [24, 27].

We can confirm these observations, as we witnessed this effect in a number test automation

projects in our industry praxis.

From a technical viewpoint, Record and Replay, as well as descriptive programming

conducted in a naive and unstructured mode, usually results in test scripts having a po-

tentially high ratio of repeating fragments (an example has been depicted already in Fig.

1). These code–fragment duplications may cause issue and may lead to an increased need

for maintenance. Moreover, they cause tests are not robust to small issues during the

test execution. Suppressing duplications in the code of automated test scripts has been

considered as an approach that can have a significant impact on the economics of testing

[28].

Lanubile et al. [29] presented a study in agile software development environments fo-

cused on software inspections. They studied quality attributes of automated tests with the

main focus on unit tests and proved that several approaches such as a software inspection

could significantly improve the quality of resultant automated tests. Advanced test auto-

mation approaches for a semi–automation are based on models being used for a test case

generation, for example [30, 31, 32, 33, 34]. If the system under test is changed, the model

or the specification is updated, and new test cases can be re–generated. When a detailed

model of the system under test does not exist, this fact makes use of the model–based

methods difficult and a total efficiency of those methods disadvantageous. Another option

for harnessing a test automation is using of partial models that can represent only one fea-
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ture or story and so they can be quickly developed. It simplifies the preprocessing phase

and makes the whole process of test generation more flexible in comparison to complex

models of the whole system. For rapidly changing systems not available models in case

of limited resources or team skills, testers directly script tests or record them. These test

development approaches, however, require a manual work and overall costs on automated

tests then significantly rises with a number of changes in the system under test. Manual

development of test scripts can be accelerated by automation frameworks. Garcia defined a

testing framework as ”a set of abstract concepts, processes, procedures and the environment

in which automated tests will be designed, created and implemented” [35].

The Automated Testing Institute4 recognizes three generations of frameworks:

◦ 1st generation frameworks represent a linear development of automated test

scripts by record and replay approaches,

◦ 2nd generation frameworks introduce a concept of re–usability and

◦ 3rd generation frameworks involve advanced approaches for driving the execution

by keyword and allow to generate automated tests based on SUT models.

First generation frameworks represents a linear approach for the development of

test scripts. Tests are usually developed using the Record and Replay approach and are

understood as an extension of their manual opposites. They are not structured and do not

handle duplication in the test source code. Furthermore, they do not provide any added

value in the sense of a quality of the product. On the other hand, they are easy to use

and usually work fine in small–sized projects. Return on investment is achieved faster (is

the SUT does not change) but maintenance costs are typically very high. The Second

generation frameworks are typically improved in two aspects. They also employ linear

scripts, but data are stored in a database (Data–driven frameworks) that allows reusing

one test with multiple parameters, i.e., it introduces test parameterization. Secondly, these

frameworks introduce a functional decomposition (reusable code), so test creators can build

tests on existing components. Finally, the Third generation frameworks are divided

into two main groups:

1. Keyword–driven frameworks and

2. Model–based frameworks.

Keyword–driven frameworks process automated tests being represented as tables with a

set of keywords, i.e. available actions of the framework associated with application–specific

or framework–specific functions and scripts. A framework runner interprets actions with

4http://www.automatedtestinginstitute.com/
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data parameters, and the interpreted actions are executed by a test automation tool to

control interactive user controls in the user interface of the SUT.

Model–based frameworks are provided with additional information about the SUT,

i.e., a specification or a model, which is used to generate test cases automatically and

execute them in a semi–intelligent manner. With model–based frameworks, automating

tests actually means to develop a model of the system under tests and not to develop tests

themselves. Initial costs of development of the automated tests are better for the first two

framework generations, however, the third generation is more suitable if a higher demand

on test maintenance is expected.

In the following paragraphs, we give an overview of currently available and the most

known and applied test automation frameworks.

Microfocus Application Lifecycle Management (formerly HP)5 is a suite of

software quality tools for test management, requirements, and the whole application life-

cycle. The current suite is built on top of products from the Mercury Interactive Corpor-

ation, which was acquired by HP, and the newly created HPE software division from HP

was sold to the Microfocus corporation later on. It comprises a Microfocus Application

Lifecycle Management web–based tool for the test management, Microfocus Unified Func-

tional Testing integrating graphical user interface functional tests and API service tests in

one tool (formerly HP QuickTest Professional).

IBM Rational Quality Manager6 is a suite of products helping to drive quality

of the system under tests through its application lifecycle. Similarly as the Microfocus

ALM, it contains tools for functional testing (Rational Functional Tester), test manage-

ment (Rational Quality Manager), performance testing (Rational Application Performance

Analyzer) or security testing (IBM Security AppScan).

Selenium7 is an open–source framework for web applications in the browser. Therefore,

it can be used not just for the creation and execution of automated tests but also for

automation of different tasks in web browsers. It is being developed under the Apache 2.0

license, and everyone can contribute. Selenium consists of several projects. Apart from the

Selenium IDE, which is an add–in for a Firefox browser that allows to record and replay

actions taken in the system front–end, it includes other projects:

◦ Selenium WebDriver – original Java-based testing system.

5https://software.microfocus.com/en-us/solutions/software-development-lifecycle
6https://www.ibm.com/us-en/marketplace/quality-management
7https://www.seleniumhq.org/
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◦ Selenium Remote Control – a client/server system to control web browsers locally or

on remote machines,

◦ Selenium Grid – system for parallel test execution.

ThoughtWorks that originally developed Selenium, also developed a framework Twist8

for the creation of tests, their maintenance, and finally for the test execution using any

Java or Groovy–based test driver. The Twist framework supports out–of–the–box many

popular open source automated software–testing drivers.

Robotium9 is a test framework, which allows users to write robust automated black–

box tests for Android applications. With the support of Robotium, testers can write

functional test scenarios, spanning multiple Android activities. It offers better robustness

of test cases due to the run–time binding to GUI components.

AutoIt10 is a freeware scripting language (similar to the BASIC programming lan-

guage) designed for automating a Windows graphical user interface. It was initially de-

signed for automation and configuration of thousands of PCs. Since it supports complex

expressions, user functions, or loops, it can be also used for the test automation of func-

tional tests.

Parasoft SOAtest11 provides a comprehensive solution for a cloud, SOA, and API test-

ing. It is designed for automation of complex scenarios across a web user interface, service

layer, ESBs, databases, and mainframes. The SOAtest is shipped with a Parasoft Load

Test. Both the tools can be integrated with Parasoft Language products such JTest.

SilkTest12 was a tool formerly develop by a Borland corporation. Currently, the pro-

ject is maintained by the Microfocus corporation. It is a tool for automated functional and

regression testing of enterprise applications. The whole solution ensures that the applica-

tion being developed meets business needs and increases an test efficiency.

The Software Testing Automation Framework (STAF13) is an open source, multi–

platform, and multi–language framework offering reusable components for test creation.

The idea of the framework is to remove the tedium of building an automation infrastruc-

ture and enable the user to focus on building the automated tests.

8https://www.thoughtworks.com/products/twist-agile-testing/
9http://www.robotium.org/

10https://www.autoitscript.com/site/autoit/
11https://www.parasoft.com/products/soatest/
12https://www.microfocus.com/products/silk-portfolio/silk-test/
13http://staf.sourceforge.net/
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TestComplete14 is an automated testing tool for creating, managing and running tests

for desktop, web or rich client applications. Tests can be recorded, manually scripted or

created in a script–free mode and for the playback. WATIR15 (Web Application Testing

in Ruby) is an automated testing tool using the Ruby language to control web browsers.

The tests are scripted in Ruby and executed in the web browser.

A Robot16 framework is a generic test automation framework mainly for acceptance

tests and acceptance test–driven development. It utilizes a keyword–driven test approach

and its capabilities can be improved by custom Java or Python libraries.

Cucumber17 in comparison to the Robot framework merges a design specification and

test documentation into one single source of SUT specification. This framework principally

supports the behavior–driven development style.

Perfecto Mobile18 provides a cloud–based platform for testing on mobile devices and

provide integration with all major test frameworks.

Espresso19 is a framework for Android UI tests. Requirements on cross–platform test-

ing, unfortunately, exclude this solution from the radar of many test automation teams.

Soasta20 focuses on load and performance testing, optimization and measuring with a

capability to simulate different network conditions with test clients from all over the world.

Mocha21 is a popular JavaScript framework running on Node.js and in the browser. It

allows asynchronous testing.

Appium22 is an open source test automation framework aimed at mobile web applic-

ations and native mobile applications. Appium supports multi–platforms and drives iOS,

Android, and Windows applications using the WebDriver protocol.

14https://smartbear.com/product/testcomplete/overview/
15http://watir.com/
16http://robotframework.org/
17https://cucumber.io/
18https://www.perfecto.io/platform/test-automation/
19https://developer.android.com/training/testing/espresso/
20https://www.soasta.com/load-testing/
21https://mochajs.org/
22http://appium.io/
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2.3 Specifics of Test Automation in Different Software

Development Methodologies

In this section, we analyze and discuss specifics of the test process and its consequences for

test automation process in waterfall–type and Agile software development methodologies.

Understanding this context would help to get a better overall picture of the current test

automation issues in the industry praxis.

2.3.1 Test Automation in Waterfall Methodologies

Waterfall software development methodology became a standard in the software in the

past decades as it allows software development teams to drive development in an organized

and scheduled manner. All activities are broken down into phases and a next activity does

not start until the previous is finished, hence it is named waterfall. Testing phase follows

the end of the development phase – in consequence the testing team is usually not involved

in test–as–you–go activities before a handover of the SUT to testers. Later versions of

the waterfall methodologies encourage the testers to start creating test scenarios during

the development phase of the project, when design phase is finished. However, still, this

later involvement of the testers to the process may be understood as a potential limitation

of the method in comparison to agile approaches. On the other hand, this characteristic

simplifies a test plan creation because all features to be implemented are actually done

before testing starts.

From the test automation viewpoint, Waterfall methods (either a standard version or

a modified Waterfall with iterations) can remove potential obstacles that developers of

automated tests may experience. Such obstacles typically are: (1) a definition of the user

interface is not ready yet, (2) not all functions of the front–end are ready, or, for instance

(3) alternative measures must be taken in order to proceed with test activities according

to the use case, as the SUT is not completely finished in the time of development of the

automated tests.

In Waterfall development style, project actions run sequentially and the number of po-

tential dependencies to other team members or features is reduced to a minimum. The

testing scope is then more clear which results in simpler test automation that is not inter-

rupted by not an unavailable functionality or unstable environment. However, this does

not apply in the situations, when the SUT is already developed, but the presence of de-

fects in it is so high, that this state practically postpones the start of the test automation

activity.
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2.3.2 Test Automation in Agile Environments

Unlike the Waterfall software development style, Agile methods (e.g. Scrum or Kanban)

introduce new challenges for the testing teams since project activities run less sequentially

and more in parallel in shorter development cycles. A benefit of those dynamic approaches

is less costly fixing because when the defect is introduced in early development phases, it can

be fixed sooner than at the end of the product cycle. This is an essential property of Agile

methods because testers may test earlier than in the Waterfall planned test phase. This

advantage is also one of the reasons, why many teams decide to employ Agile methodologies

in the current software development praxis.
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Figure 2.5: A comparison of a testing separated from SUT feature development and testing
aligned with SUT feature development (features are depicted by letters) in Agile environ-
ments.

In Agile environments, testing can be driven in several possible modes. A set of test

automation practices for Agile development environments were presented by Collins [36].

In this overview, we discuss two typical options for organization of software testing in such

environment [37]. In the first method (left side of Figure 2.5), testing is separated from

development. While the first feature A is under development in the first sprint, testers

wait for the feature to be completely developed, and they start to test it the next sprint.

In this model, testing is always at least one sprint behind.
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Such an approach is similar to a Waterfall approach at a low scale of single sprints.

Developers and testers are not aligned and do not work on the same set of features in

one sprint. Developers elaborate and implement the user stories in the first sprint. While

the testers conduct preparation activities for the upcoming tests, i.e., they install a test

infrastructure, analyze requirements or define acceptance tests. Alternatively, testers can

participate in a feature design phase and review of functional requirements as well as the

technical design. After the first sprint, the development team starts to work on the user

stories of the second sprint and testers start to test features developed in the first sprint.

In this style, developers have enough time to fix found defects (they can use the whole

sprint to fix them), which, in the ideal case, should result in a situation where the backlog

of issues to be fixed does not grow during the project. A complete sprint available for

testers gives them an opportunity to develop automated tests. Mockups techniques are

usually not necessary in this style, as the SUT functions to test are available.

The second option of testing in Agile software development methodologies is a parallel

alignment of testing and development activities. This approach represents an extreme

challenge for the testing team if they want to automate tests for stories being developed

in the actual sprint. It requires a very good collaboration among all core team members

and spreads traditional well–bounded roles between developers and testers at the same

time. Aligning testing with feature development brings new issues for testers. At the

beginning of the sprint, testers have to wait until a partial development is done and they

can start to propose tests based on the implemented features. It is obvious if a feature

being implemented is not in a runnable state, automated tests cannot be developed. In

such cases, test engineers may use SUT mockups to prepare tests based on them and to

speed up test development during the final phase at the end of the sprint when the feature

is delivered. This style results in a very limited time that test engineers have to design,

create and debug automated tests, and to test the user stories.

A figure 2.6 shows a proposal for a collaboration of the core team members. The

development team is assigned with a user story. Then developers start to work on this

user story – they design and discusses an initial proposal with the tests during the first

week of the sprint. Based on that, testers prepare requirements on the test cases according

to test recommendations from developers. At the same time, development uses the test

requirements as a checklist of what is going to be validated by the testers. Before testers

start to create the test cases, they should have a UI wireframe sketch of the user interface

or proper mockups. Otherwise, they will not be able to define locators of the SUT user

interface elements to be handled by the automated tests, and basic behavior of the tests.

Every delay then pushes the testing team in a situation when they will not be able to verify

the developed feature by automated tests. Not later than in the third week, developers

should have the first prototype ready. This is the key moment of the sprint because the

testers can finish the creation of tests based on the real SUT prototype, and start to
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Figure 2.6: A sample model of a collaboration of testing aligned with feature development.

conduct initial tests of the user story. The sooner is the SUT prototype available for

test development, the better quality and efficiency of automated can be achieved, and it

prepares more space for an actual verification of the SUT feature. In the last week of the

sprint, the final SUT deliverable should be ready, and development should also freeze the

SUT code with the exception of defect fixes. At this moment, testers run tests over and

over again to verify the user story using the defined acceptance criteria and developers focus

on fixing of found defects as much as possible. However, in this model, test automation

may be difficult or even impossible because testers may face an incomplete user interface

design or unstable application.

A typical four–week sprint (Figure 2.6) gives the testing team approximately only two

weeks for test automation. However, test scripts based on application prototypes delivered

during this period are usually not stable and have to be updated as the new builds are

available. As the particular feature is implemented a list of implemented sub–features

grows and so it may change a resultant user interface as well a behavior of the SUT. In

this volatile environment, it is quite difficult to develop, stabilize and deliver automated
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tests exercising the developed SUT features. Testing aligned with feature development is,

on the other hand, comfortable for product owners because they get new features with

every end of the sprint. Furthermore, resultant deliverables are verified and signed off by

the quality assurance team in the same sprint.
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Figure 2.7: An impact of test maintenance on a team capability of testing team to develop
new tests in Agile environments.

As development of the product continues and the core team finishes more and more

SUT features (based on the user stories) within sprints, testers then have to not only

develop new automated tests for features being developed but they have also to start to

maintain the current automated tests because the tests may get obsolete due to changes

in the SUT. The problem is depicted in Figure 2.7. Green rectangles represent the count

of tests that are maintained in the given sprint, and the grey polygon depicts a capability

of testing team to develop new tests.

In an initial sprint, the team capability to develop new tests is not impacted by a need

to maintain tests since they are up to date and their number is not significant. However,

with the growing number of developed automated tests, the team capacity decreases and

the need to maintain tests becomes more influent. Hence, the team cannot develop so

many new automated tests as it could do in the beginning. An ability to maintain tests
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easily is then crucial for successful test automation on projects, regardless if the software

development style is Waterfall or Agile based.

2.4 Summary

In this chapter, we introduced a necessary theory and background related to the problem

of test automation and testing of software products in different methodologies. We also

analyzed issues that arise during a user interface automation in Agile environments.

We also summarized current available frameworks and tools for automation of func-

tional tests. Apart from that, we introduced different generations of test frameworks and

explained the differences among these categories.

Finally, we analyzed differences of test automation process in the Waterfall based and

Agile based development styles. We arrived at the conclusion, that maintenance of the

created automated tests is critical to the success of test automation activity.

This chapter has given the overview of the area from an industrial praxis viewpoint. In

the next chapter, we are going to summarize and analyze state of the art from the research

and development viewpoint.
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Chapter 3

State of the Art

This chapter summarizes and discusses related works in areas relevant to the scope of this

doctoral project. Here, we summarize the methods and approaches for test automation,

test data generation, automated test case generation, common substring search algorithms

on both unstructured and structured data and automated test refactoring.

3.1 Current Approaches to Test Automation

We start the state of the art survey by first summarizing and then providing a deeper

analysis of the current mainstream approaches employed in user interface (UI)–based test

automation. In addition to conventional approaches to test automation (Record and Replay

and Descriptive Programming), other alternatives have been published and employed in

individual industry projects—mainly model–based and specification–based approaches.

3.1.1 Conventional Approaches

The current widely used test automation approaches in the software industry can be divided

into two principal groups:

1. Record and Replay approaches that record user actions and transform them to a set

of UI–based tests using a special tool or framework

2. Descriptive Programming approaches use standard software development techniques

to create automated tests.

While test recording is usually suitable for less experienced teams, for ad hoc automation

of functional tests in the user interface, or in cases when programming is not economic-

ally feasible, descriptive programming is a better fit for more advanced test automation
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developers or when the SUT is changing rapidly and requires mature methods to reduce

the brittleness of test scripts (e.g., the UI changes with every system release).

Because of the relatively fast speed of automated test creation, the Record and Replay

approach can be considered suitable for the Agile development style. Automated test cre-

ation was investigated by Meszaros [38], who focused on the experiences of a development

team using this method during both test automation and test executions, and concluded

that Record and Replay approach is beneficial for automation of regression test suites of

legacy systems without any automated tests. He also suggests to develop a support for

test recording directly in the SUT if no other tools are available.

A study in the domain of developing robust and helpful automated tests for dynamic

web applications using the TestComplete tool 1 was conducted by Al-Zain et al. [39]. The

authors introduced a robust solution test script that does not depend on the TestComplete

recorder tool and addresses some issues of the dynamic web, i.e., changes in a hierarchy of

objects under test and in their attributes.

Another study focused on comparing popular Record and Replay tools and was conduc-

ted on both a custom application and on three popular industrial applications downloaded

from the Google Play store [40]. They used three popular industrial applications according

to downloads from the Google Play store to evaluate those tools. They concluded that none

of tools used in the study was convenient for developers to use on real test automation

projects.

As an alternative, study by Hammoudi et al. analyzed methods based on test recording

[41] and addressed a stability of recorded tests, taxonomized the causes of defects in the

subsequent test execution and developed automated techniques to repair them. Moreover,

this method presented techniques to prevent test failures from occurring during test runs

and developed frameworks for root cause analysis.

Unlike the test recording and playback approaches, the descriptive programming ap-

proach, when implemented properly, can reduce test maintenance overhead. One contri-

bution in this area was a method to avoid the overhead of maintaining a TestObject map

file with the script [42], allowing test scripts to run independently.

The classical approaches mentioned in this section can be aided by several accelerators

or concepts supporting the test automation process. In the case of web applications,

crawlers can be used to analyze the SUT front–end user interface structure [43, 44, 45];

this approach can also be used to assess automated testability of the SUT [46] by calculation

of indicative metrics [47] as presence of element IDs, attributes, difficult front–end elements

and others.

Also, attempts to define a system for assessing the level of structuring of created auto-

mated tests in the economic context of the test automation project has been done [48]. To

better synchronize the changes in SUT with the automated tests, the system to aggregate

1https://smartbear.com/product/testcomplete/overview/
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the information about possible change and propagate it to the test maintenance process

has also been proposed [49].

3.1.2 Generation of Test Cases and Test Data Used as Test Oracle

In software testing, an ability to determine if a test passed or failed is essential, and proper

data for exercising the SUT or expected test results is a key property of a good test. A

verification of large and complex systems may benefit from a generation of test data that

would be very difficult to prepare manually. In the next paragraphs, we summarize the

current state of the art in this area.

Feather [50] discusses a process for an automated generation of test oracles. Authors

explain potential issues that may appear when test data are automatically generated and

they present it on examples of case studies up to their implementations. They discuss

required properties of test oracles if one wants to efficiently verify the system under test.

Smaragdakis et al. [51] shows issues of test data generation and lists semantic constrains

what test data must fulfill: (i) records in a given table must contain a unique selected

values (the cell is a key), (ii) a part of the table can be a subset of another table, and (iii)

values in any cell of a record shall be within a defined range.

Data modeling languages such as the Unified Modeling Language (UML) [52]) or

Object–Role Modeling Language (ORM), which is a conceptual modeling language fo-

cused on database applications, can be used to define presented constraints on test data.

Models of SUT are suitable for a generation of large test data volumes. However, this

approach has one drawback preventing it from using the method in large scales. Test

data generation is a complex problem resulting in a complexity of NP–hard problems (a

satisfaction constraint problem), which also applies for significant simplifications of the

generation of test data. Furthermore, a complexity of validations of real constraints is

typically more difficult and results in more than exponential computational complexity

[51]. Sabharwal [31] presented an approach to solving the problem of generated data using

a genetic algorithm. [30] employed modified SAT solvers; [51] reduced a complexity of the

problem by reducing a subset of data modeling language to solve it in a reasonable time.

A problem of the generation of suitable test data for web applications was discussed

by Sabharwal et al. [31]. Their approach is based on UML state diagrams and a genetic

algorithm with a variable length of a chromosome that encodes states and transitions.

They do not generate standard test data, i.e., inputs, from database tables, but sequences

of triggers for the UML state diagram. They consider sequences as test cases.

Smaragdakis et al. [51] based a solution for test data generation on a data modeling

language ORM. They concluded the satisfaction constraint problem of an ORM diagram

as an NP–hard problem. Moreover, the problem is undecidable for certain formulations of

the ORM language. They observed that simple computations based on a brute–force or

by using SAT solvers may not bring reasonable results because current SAT solvers cannot
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find data that would satisfy defined constraints and a condition of uniqueness in a real

time. Moreover, it applies also to small instances of the problem. The presented approach

uses a constrained subset of the ORM language; they can decide in a polynomial time

whether given constraints are consistent or rather if constraints can be used to generate

test data.

Fujiwara et al. [30] utilized a UML class diagram supported by an OCL language

(Object Constraint Language). They used the language to specify a behavior of the system

under test and data constraints. Authors made an observation of an ability to describe key

behaviors of web applications as well as data constraints (constraints on foreign keys) using

constraints on a table size. A principle of the method is to transform an OCL specification

to an equivalent constraint specification using an expression for the table size. Test data are

later on generated from those transformed data by a solver Satisfiability Modulo Theories

(SMT). However, the SMT solver does not accept the OCL language; the authors had to

propose an iterative process to simplify defined constraints. The proposed data method

works with test data that correspond to a state before, and have to satisfy all conditions

before and data constraints. Apart from generating test data, they can also generate a

set of test cases covering all different behavior of the system under test. Authors carried

out experiments and compared time demands on a manual preparation of test data with

time spent when their approach is used. Their approach may generally speed up test data

preparation and shorten the time needed to up to one–third of a time for conventional

approaches, but it requires modeling the system under test in both the UML and the

OCL. From reasons, the approach does not have to be suitable for agile software projects,

where a model of the system is usually missing and/or not appropriate for the test data

generation.

3.1.3 Model–based Approaches

Model–based approaches play a significant role among descriptive programming approaches

as it allows to generate tests directly from models of the SUT without a need to actually

code the test scripts (or they might reduce the amount of work of the programmers by

generation initial parts of the automated tests). Model–based approaches generally bring

a higher level of agility and help to test applications in a more scalable and manageable

way. This approach has also its drawbacks, which is a high initial investment to set–up

the whole process and necessity to update the model to be actual with the SUT.

Peleska et al. introduced an automated model–based test case and data generation that

is based on constraint types for real–time systems [53]. In their approach, an expected be-

havior of the system is represented by a model and generated symbolic test cases represent

logical constraints for calculations over the model. During the test case generation pro-

cess, they exclude invalid test cases to accelerate searching for a solution. However, the

presented approaches are limited to real–time systems. Xu presented an Integration and
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System Test Automation tool for automated test generation and execution from models

[12]. They employ high–level Petri nets as finite state test models. The specification of

the system under tests contains the Petri net as well as mapping functions from the Petri

net elements to implementation constructs. The resultant source code can be generated

in various scripting languages. Koopman et al. describe a model–based testing system

for on–the–fly testing of thin–client web applications that are defined by Extended State

Machines [54]. The approach is based on a simplification of web applications into a plain

HTML, i.e., they do no support flex parts, or Java–applets or AJAX. The system under

tests is modeled by states and transition functions specifying reachable states over outputs.

Plasmeijer and Achten replaced a plain text, i.e., HTML, by an internal data representation

named iData [55, 56], but in this approach, some limitations remain like an impossibility

to execute operations for data comparison within web pages or data comparisons with

third–party applications.

Beek presented an approach for conformance testing of web applications [57, 58]. The

main focus is on black–box testing of a behavior of the system under tests however without

a need to conduct a data validation. Besson et al. introduced an interesting approach for

automation of testing within Acceptance Test–Driven Development [59], i.e., test case

modeling and their execution. They employ two tools: (i) first enables customers to write

acceptance tests and unifies test requirements, and (ii) the second tool is a framework for

automated testing powered by Selenium. Tests are internally represented as an acyclic

graph which they call Test Tree. Every path in the tree represents another test case.

Finite state machines are quite popular for modeling systems under test in test automa-

tion. States of the system are represented by states, i.e., nodes, and actions to be taken in

the front–end are represented by transitions, i.e., edges. Andrews et al. presented a testing

at a system level that can be used for a hierarchical modeling of the system under test [60].

They generate subsequences of states of the finite state machine as test requirements so

they natively reduce a state space to states that are reachable by performed actions in the

front–end, for example, if the user clicks a button and a dialog appears. Nevertheless, test

requirements cannot define requirements on data validation such as correct values, data

comparisons or data flow in the systems. Resultants tests can be created by combining

subsequences into oriented paths in the graph.

3.1.4 Specification–based Approaches

A natural language is comfortable to humans for expressing and describing objects and it

is widely used to define test requirements in test automation as well as to specify the SUT.

However, to achieve more exactness of the specification, which is crucial for a smooth run

of the project, specific, formally defined and machine–processable languages shall be used.

Stepien et al. introduced a web application testing [61] with a TTCN–3 language [62]. A

test specification language can be used for a specification of tests with a different level of
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abstraction. Using an abstractions takes some advantages: (i) test case development does

not need to wait for final deliverables of the system, (ii) tests are robust to changes in the

front–end because the abstraction allows overcoming such issues.

However, such an effort may be counterproductive on small projects or for teams who

did not a certain level of maturity in test automation as there is a strong need of right skills

and expertise to create automated tests from formal specifications. Moreover, specification–

based approach adopters need to solve issues with technological stack and overcome in-

consistency of heterogeneous environments with AJAX, Adobe Flash or JavaScript. Jia

and Liu presented an Extensible Markup Language (XML) specification–based approach

of testing of web applications [63]. They specify test cases in XML documents that hide

actual implementation details and introduce an abstraction of tests. Those XML files are

used as inputs for their testing tool. Object locators are defined by XPath2 expressions

and they use regular expressions for data validation. The testing tool parses XML input

files and based on them, it generates test scripts for a JUnit framework.

3.1.5 Other approaches

Niese et al. presented a system for a graphical representation of tests and a complex

business logic exercised by these tests [64]. The application behavior is depicted graphic-

ally and third–party testing tools are supported by a CORBA/RMI–based communication

layer but they an identification of identical objects remains unsolved. Duplications are

handled manually by users, the system does not offer any support for them. Benedikt et

al. developed a VeriWeb tool for a systematical exploring of paths in web applications

(a web crawler) [65]. In contrary to conventional crawlers which are able to explore only

static links, the proposed VeriWeb tool can explore user objects in web applications. This

approach, unfortunately, reaches its limit, because many frameworks for user interfaces

define their own object and a simple navigation based on HTML tags may be impossible.

Garćıa presented a complex approach for functional test automation of web applica-

tions [35]. The method is based on a validation of the SUT with a browser that carries out

transitions from a state to state according to a pre–built navigation model. Each applic-

ation state represents one step in the model. Three possible inputs are possible: (i) UML

models, (ii) XML files, and (iii) recorded scripts. The UML language is in the present

time understood as a de–facto standard for modeling of software applications, which leas

Garćıa to focus on this notation. To automatically process the navigation model, three

UML diagrams are necessary: a use case diagram, an activity diagram, and a presentation

diagram. Since a presentation diagram is not usually available on commercial software pro-

jects (in contrast to using case and activity diagrams) authors decided to use Navigation

Development Techniques [66] to model web applications with UML. The second suppor-

ted format is an XML–based file defining a model of the navigation according to an XSD

2https://www.w3schools.com/xml/xpath intro.asp
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schema in the system under test. The website meta–model that supports an event–driven

nature of web applications defines then for a given web a complete navigation structure as

a collection of states and transitions in the XSD schema. The last option for the input is

to use recorded scripts. The authors conclude that the Record and Play approach is more

comprehensive in comparison to the models created in UML or XML because the recording

is carried out with a real application while other approaches only model a behavior of the

system under test. They introduce an enhancement of adding expected results, i.e. a test

oracle, in the navigation model so they can use recordings as a data source for a generation

of the application model based on the meta–model.

However, a full verification of the SUT behavior, as well as data presented on screens

according to the user activity when the user interacts with the SUT controls, requires the

testing approach to be more comprehensive than the presented one. Consider an example

of a data grid that is presented on a web page or in a mobile application. The user can

change an order of columns and also can filter data presented in all columns. He/she wants

to verify a sum of values from different columns and rows. Moreover, the sum has to match

with a pre–defined value; for example, a sum of three fields should equal to one hundred

percent. In our opinion, a generation of scripts for automated tests that cover the required

functionality from the recordings may result in NP–hard problems because information on

relationships between controls and data may be completely missing. The tester actually

checks the table without any interaction as he/she uses only a visual check. Garćıa tried

to cover the whole process and to automatically build the navigation model [67, 68] of the

SUT from the inputs, and to use this navigation model to automatically generate test cases

that cover all navigation paths in the model as well as to automatically generate the test

data.

A simple solution of the problem of covering edges of the navigation model (based

on a graph theory, which is combined with an option to manually provide an additional

input and output) may not be sufficient for a test case that requires to validate data

in one application with data in another application. Such a case would need to develop

mapping functions and additional test logic that simply cannot be captured during the test

recording. Moreover, the presented approach does not represent test cases in a higher level

of abstraction so the solution is not applicable to different scripting languages for other tools

like VBScript or Python. Furthermore, the approach is based on computations performed

with application states and transitions between them, objects of the user interface captured

by the test recording are not involved in the verification. In consequence, test developers

cannot design their tests in an object–oriented way. For example, the test developer needs

to verify on–the–fly whether an error warning related to an input box shows an error while

the user types an invalid input. Testing tools record only the testers’ activity in the SUT

front–end user interface but they do not capture responses of the SUT.

Besides using the UML specifications to generate the automated test from the model,

usage of the Interaction Flow Modeling Language (IFML) has been also previously explored
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[69, 70]. In the context of this thesis, this type of modeling is closer to the user interface

based test automation, as the IFML3 models user interaction and control behavior of the

front–end of software applications.

3.2 Code Refactoring and Employment of Reusable

Objects

Optimizations of automated test scripts in terms of removing potential duplications and

replacing them with reusable objects or reusable functions is a subject of an intensive

research. A research focused on a structural and an architectural level brought a number of

approaches and frameworks for resolving reusability issues [28, 71, 72, 73]. The latest trend

aims at an Object Character Recognition (OCR) approach which seen as an alternative

approach [26] that may reduce maintenance costs of the automated tests. Generally spoken,

an automation framework or architecture may be usually inspired by such approaches and

it means an initial investment to define a proper structure that would support reusable

objects or blocks of code. The approach proposed in this thesis brings a new perspective

into this problem as it automatically analyzes test recordings and/or test scripts developed

by descriptive programming approaches in a naive or suboptimal style.

The problem of reusability has been continuously solved and partially resolved in the

top used test automation platforms such as former HP QuickTest Pro (now called Micro

Focus Unified Functional Testing) or Test Complete and Selenium WebDriver [74, 75].

Although these platforms address the reusability issue and provide some functionality that

optimizes the test recordings it is only focused on atomic reusable objects, i.e., to avoid

duplications in terms of object locators, but not on reusable blocks of code, i.e., reusable

functions. A direct mechanism for reducing of potential duplications in recorded tests is

not available.

A need to reduce potential duplications rises a question of estimating a reusability of test

components in automated testing. Kaner proposed a method based on a model of return

on investment [22]. They can then estimate a minimum reusability of an automated test

component. This work inspired Kan to focus on this problem in more depth to propose

a method for estimating the potential reusability of test automation components [76].

Those results inspired us to propose a model of test automation architecture that enables

to estimate potential code reuse in a design phase [6]. Moreover, it allows the proposed

TestOptimizer to be used for estimates of the potential reusability ratio in the analyzed

automated test scripts, however, we did not intend this as a primary use case of the method.

At the unit test refactoring level, an identification of repetitive code is covered much

more better [77, 78, 79, 80] than at the level of functional tests for a system under test

front–end [81]. A domain of recorded functional tests is covered significantly less than

3 http://www.ifml.org/
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refactoring of the unit tests. In recorded tests, the BlackHorse project [1] is close to our

intentions including its goal: to record tests and then optimize them to make them more

robust, and it is definitively relevant to our proposal. However, we identified major dif-

ferences between the BlackHorse project and our approach in TestOptimizer that are in

both implementations as well as the general intended use case. Carino et al. developed

and employ a proprietary recording tool to save test traces that are later on converted

into a Java code in order to minimize potential consequences of changes in the applica-

tion front–end. Moreover, it serves for a better test robustness that prevents tests from

being out–of–date. In contrast, TestOptimizer analyzes already created test scripts, which

can be recorded by any tool that can produce scripts in various supported languages, and

it searches for potential common subroutines that are offered to test creators as sugges-

tions for test refactoring. In contrast to BlackHorse framework, the TestOptimizer is then

naturally platform–agnostic.

In the BlackHorse project, the concept of test traces is conceptually similar to our

concept of signatures but goals and implementations of these two concepts are different.

The BlackHorse approach is based on using the test traces from test script recordings as

an input to create the final test scripts in Java. In our approach, we use the signatures

to describe steps of tests and to identify potential common test steps from a business

logic point of view. Moreover, we abstract the tests from particular source code notation.

These significant use case differences make very difficult to directly compare TestOptimizer

with BlackHorse and as a result, we decided not to compare these two frameworks in the

experimental verification of the TestOptimizer.

Fang and Lam introduced a method for the identification of test refactoring candidates

based on assertion fingerprints [82] encoding a control flow. Their method is relevant to

our research intentions as they aim to detect duplications in the test scripts caused by

copy and paste, which result in maintenance overhead. They use tailored static analysis

techniques to find similar test cases. To identify similar test cases, they determine an

ordered set of assertion calls in test methods. However, we identified several points that

limit the usage of their approach in comparison to the TestOptimizer framework. The

proposed method supports only Java sources and JUnit tests. Furthermore, the authors

rely on direct detection of assertions. However, many functional tests are based on some

design patterns (for example, a page object pattern), and assertions may be encapsulated.

Moreover, their approach cannot detect tests that are similar but do not contain any

assertions (for instance, load tests).

Vahabzadeh et al. presented an automated method for eliminating fine–grained re-

dundancies [83] in automated tests. They enable automated test reorganization within

test cases at the test step level, and they preserve the test coverage and assertions of the

test set. In the TestOptimizer framework, we focus more on the localization of reusable

subroutines in tests with variable semantics than on automated refactoring of the test set.

Another method of increasing a reliability of automated tests is introduced by Kumar.
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In this alternative method, authors determine if a result of an automated test shall be

inspected manually by a human tester based on an analysis of the system front–end [84].

They compare baselines of the SUT front–end and if a difference between baselines is found,

they use it for the subsequent analysis.

An approach aiming at increasing quality of the automated test is presented by Chen

and Wang [85]. They analyze automated test cases to detect code smells of automated

tests and propose refactoring methods that can be applied to remove them from automated

tests.

When we refactor automated tests, we need to regression test in order to prevent

automated tests from failing in detecting defects in SUTs. Bladel and Demeyer introduced

a tool [86] that can help test automation engineers to verify whether a refactored test set

preserves its behavior before and after refactoring.

Apart from the test refactoring, we need to pay an intention to a source code refactoring,

which is also conceptually similar to the TestOptimizer use case. In this area, there is a

number of previous solutions, for instance, [87, 88, 89]. Tools for the source code refactoring

are proposed to analyze a general source code, and they do not reflect the specifics of

automated test scripts. In the domain of automated tests, two different fragments of the

test script source code can carry out practically the same action in the front–end user

interface of the SUT. However, in this context, the functionality of tools supporting code

refactoring can be compared to the functionality of the proposed TestOptimizer framework.

In the experimental evaluation in this thesis, We used the copy–paste–detector (CPD) [90]

from the commonly available solutions for a comparison with TestOptimizer. Results of

these experiments are in presented in Chapter 8. CPD is part of the PMD Eclipse plug–in

project 4 and employs the Karp-Rabin algorithm for string matching.

For searching for common subsequences in two strings, relevant initial algorithms were

published already some 40 years ago [91]. An algorithm that solves the problem in quadratic

time and linear space was presented by Baker [92]. Pessoa et al. [93] presented an improved

technique for a detection of code duplications in a Java–based source code using a dynamic

statistical process calibrated by expert’s knowledge.

In the problem solved in this thesis, we search for common subroutines in larger sets

of strings and that is principally an NP–complete problem [94] in which evolutionary

computations techniques such as genetic algorithms gain satisfactory results in a reasonable

time [95, 96]. Inspired by these results, we used the genetic algorithm for the longest

common subsequences (LCS) problem as the basis of the TestOptimizer Solver component.

3.2.1 Analysis of Textual Information and Text Search Algorithms

Automated tests can be represented by many textual notations, spanning from standard

programming languages like Java or Python to other types of descriptive languages, which

4PMD plug–in for Eclipse project, http://pmd.sourceforge.net/

44



3.2. Code Refactoring and Employment of Reusable Objects

are actually proprietary dialects of particular test automation frameworks. In contrast to

understanding automated tests as sole scripts written in conventional programming lan-

guages, some approaches suppose to work only with simple commands written in plain

English (as a successful example, we can give a behavior–driven testing concept imple-

mented in the Cucumber framework5). Those formats can be considered as a set of text

strings and their purpose is to help product managers or customers to define automated

tests without a need to actually know how to programme. Therefore, automated tests

can be processed in the same way as text documents and the problem of searching poten-

tially reusable code can be transformed to the problem of a finding of the longest common

subsequences of test steps.

In automated testing as well as in manual testing, test cases represent structured data

that define what is tested (object under test), how to conduct the test (test steps), and what

is expected (expected results). Test automation introduces a higher level of the complexity

of the problem. Tests can be represented by various programming languages with a different

grammar and even within the same test suite. Locators of the SUT interface elements

controlled by the tests as well as user expected results are usually parametrized, and tests

are usually chained into cascades. Apart from that, test scripts contain a complementary

code, which is not relevant for actual actions performed by the test in the SUT, but it

is necessary to run the automated tests. As an example, we can give various try–catch

blocks, error handling or test tracing.

In our approach, we consider the automated tests to be analyzed as plain unstructured

text. Hence, in this survey, we should not forget to analyze string search algorithms for

the plain text. They are subject of research for decades and with some modifications, they

can be tailored to be applicable to the longest common subsequences problem, which is

understood as a special case of string search algorithm. The Boyer–Moore algorithm [97]

is an efficient string search algorithm that is generally considered as a standard benchmark

for other string search algorithms. This algorithm employs preprocessed patterns, i.e,

strings being searched for, to accelerate the searching. However, the input text itself is not

preprocessed. When compared to brute–force searches of all occurrences, the Boyer–Moore

algorithm takes an advantage of information gathered during the preprocessing step to skip

sections of the text as many as possible. The result is a lower constant factor than many

other string search algorithms have. Moreover, the algorithm gives better results compared

to other algorithms as the pattern length grows.

The Rabin–Karp algorithm [98] is an example of another string searching algorithm

that is based on hashing to find some occurrences from a set of string patterns in the

input text. The algorithm gives a try to accelerate tests of pattern equalities in the input

text by using a hash function instead of using a sophisticated skip like the Boyer–Moore

algorithm. The hash function converts every string into a numeric value and the Rabin–

5https://cucumber.io/
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Karp algorithm works on a premise that if two strings are equal, their hash values are also

equal. Good results of the algorithm rely on the choice of the hash function. Hash values

should be tiny otherwise memory demands would be potentially enormous for various texts.

It means that some different strings have identical hashes, which is, of course, a violation

of the assumption that two strings are equal if their hash values are equal. To preserve

the solution consistent, additional tests are necessary to verify that the strings are equal.

This can take a long time for long substrings however with a good hash function on most

reasonable inputs, this issue does not occurs too often.

The Knuth–Morris–Pratt algorithm [99] improves skip search algorithms. It uses buck-

ets of positions for each character of the alphabet and consists of two phases: the phase is

dedicated to preprocess a shift table that is utilized later on in the second searching phase.

The algorithm searches for occurrences of a string in the input text. When a mismatch

occurs (i.e., when single characters of both strings being processed do not match), the

algorithm utilizes observations that the string itself contains enough information to find

where the next match could begin with the help of the shift table. A better efficiency is

achieved by bypassing re–examination of previously matched characters.

3.2.2 Advanced Search Approaches

In contrast to plain text, structured data contain also elements being used to organize data.

These elements or tags do not convey any information but they define a structure of the

text document like in, for instance, XML. Usually, it does not make a sense to use the tags

without an actual content either in a form of tag attributes or tag values. A document that

contains hybrid data is a text supplemented by tags, i.e., it contains both the structured

and unstructured data. Although tags may appear irrelevant for an analysis, they are

necessary for an advanced text search on hybrid data.

Zhu et al. observed that a text search on hybrid data may result in bad ranks of

search results [100]. They demonstrated and proofed on an example with structured data

why the text search fails or gives improper results when structured data are not taken into

account. They defined cosine as a similarity function and showed that some valid results are

discarded because their similarity score for the query text is low. Zhu et al. see a solution

to this problem in finding of a method for measuring of a relevance between records and the

query text. They remark that taking structured data into account would definitely improve

the text search so they re–defined the relevance function and defined additional rules for

the structured data being used to filter duplicate results. They conducted experiments and

verified that their newly defined relevance function is adequate, and the proposed approach

is effective.

The XML format is suitable for a representation of test cases because it allows rep-

resenting descriptions of user activities in the system under test front–end in a structured

way. Apart from standard text search approaches for searching of the longest common
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sequences of test steps, there is another option to conduct semantic searches in XML docu-

ments. Search engines over these XML documents can be divided into two main categories:

(i) information retrieval and (ii) database–oriented. The database–oriented approach [101]

is based on a decomposition of XML documents which are stored then in relational data-

bases. A query processing may become very expensive for this method due to an excessive

number of joins that are required to recover all the information from fragmented data. In

contrast to the database–oriented approach, information retrieval approaches employ other

computational techniques like genetic algorithms [102] to overcome the complexity of the

problem.

Srinivasa et al. introduced an advanced approach for a mechanism of information re-

trieval from XML documents [103]. They explored how to retrieve and rank XML fragments

based on keyword queries. The authors employ genetic algorithms to learn information

about XML tags, i.e., to classify the XML tags as frequently or occasionally used, and this

information is used together with a proposed distance metric between keywords among the

XML documents to retrieve semantically interconnected fragments of a document. In their

viewpoint, XML tags represent data semantics and they can contribute to improving an

accuracy of the keyword search. The chromosome keeps two types of information: (i) a set

of tag weights, and (ii) a total number of distinct tags appearing in the document. The

genetic algorithm uses two indices; the first stores the information for frequently used tags

and the second keeps occasionally used tags. Authors also discuss a generalization of the

problem and they suggest to build create several indices that are prioritized according to

the frequency of their usage.

3.2.3 Evolutionary Computational Algorithms

Evolutionary computational algorithms may when they are appropriately configured, achieve

interesting results in a reasonable time even for problems with a non–linear operational

time complexity. A research focused in this area on the longest common subsequence prob-

lem was conducted by Hinkemeyer et al. They employed a modified genetic algorithm to

search for a solution; candidate sequences are encoded as binary strings as long as the

shortest of given string [96]. A proposed fitness function penalizes sequences not found

in all the strings and the population is initialized conventionally with random genotypes.

They conducted experiments with several problem instances and demonstrated that their

method always found an optimum solution. Moreover, they showed that it runs in a reas-

onable time even on large instances. Apart from the experiments with different problem

instances, they compared the proposed method with a dynamic programming algorithm,

which runs faster on small instances, but they proofed that for larger instances, the overall

time required to find an optimum solution by the genetic algorithm is lower the for dynamic

programming.

Julstrom and Hinkemeyer observed that evolutionary algorithms may find solutions
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good enough quicker when a problem is one of constrained optimization and the initial

population is empty [95], i.e., genotypes of an initial population are represented by empty

solutions. This premise allows the algorithm to construct valid solutions as much as search

for them. Experiments showed that results for the approach based on the initial population

with encoded empty sequences are better than results of the population with encoded ran-

dom sequences. The initial population with encoded empty sequences shortened according

to the experiments the time required to identify an optimum subsequence by one third up

to four–fifths.

We were inspired by this report in a definition of the proposed method and construc-

tion of the TestOptimizer Solver module, but in our concept, we completely changed the

representation of the genotype and introduced the concept of signatures as we explain later

in Chapter 5.

3.3 Summary

In this chapter, we summarized current related work that is relevant to the scope of our

project. This survey covers fields of test automation, generation of test data, automated

generation of test cases as well as common substring search algorithms on unstructured as

well as structured data and refactoring of automated tests.

We discussed the advantages and potential issues of analyzed approaches and methods.

We also discussed the reasons that led us to propose the new approach solving a problem

of optimization of automated test scripts.
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Chapter 4

Introduction to the Proposed Approach

In this chapter, we introduce the proposed method from a conceptual viewpoint and provide

a broad overview of the TestOptimizer framework and its functionality. The goal is to give

the reader an overall grasp of the entire concept before discussing particular automated

test models, algorithms to search for potential common subroutines and other technical

details of the framework.

4.1 Principle of the Proposed Method

To solve the problem of reducing potentially duplicate fragments in a set of automated

test scripts, we were inspired by concepts in test automation that are generally understood

as best practices in the field. Generally, these use an abstraction layer to reduce test

brittleness and adopt an automation framework concept to hide the internal complexity of

the method from end users. Moreover, our goal was to create an open, scalable, platform–

agnostic and tool–agnostic design as well as to choose approaches that would not require

developing a new recording tool or cause vendor or specific–solution lock–in issues. Hence,

we propose the following concept.

We first explain the basic principles of the TestOptimizer framework and briefly intro-

duce the novel parts of our approach. The proposed method provides a computer–aided

optimization of recorded and/or suboptimally structured automated tests to the testers or

test automation developers. The framework automatically analyzes a set of test scripts.

Then, based on this analysis, it suggests the potentially reusable subroutines that can be

used in a subsequent refactoring process. At this point, we leave the final decision con-

cerning whether a particular identified subroutine is reusable up to the developer because

the desired optimization level depends on many factors, such as how the test suite should

be structured or user preferences. For example, users may prefer only longer reusable sub-

routines for a common functionality to a large number of shorter subroutines. After the

automated analysis, we create a list of available subroutines and specify their positions in
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the test source code. Based on this list, the user can determine the reusable objects or

refactor the test script.

During the identification of repetitive fragments, we consider fragments of the test

scripts that have the same semantics regarding the actions performed in the SUT user

interface. In contrast, if we were to consider only physically identical source code fragments,

our approach would identify only trivial cases of source code redundancy. To better grasp

this issue, consider an example: one method that takes one parameter. This method occurs

twice in the code but both times with a different value. Using only a common substring

search, these methods would not be considered identical. Although this example is trivial,

many more complex cases of this test redundancy exist; these are discussed in more detail

in Section 5.1.

Given this approach, we can objectively assert that our semantic analysis still yields

only approximate results: it cannot detect all possible refactoring opportunities as human

users can. However, using this approach, we can achieve higher efficiency than is possible

through simple source code–fragment comparisons. More detail is presented in Chapter 5.

In the proposed approach, we do not differentiate between complete reusable routines

and partially reusable routines. This flexibility is maintained intentionally. Based on the

suggestions of the potentially reusable parts of the analyzed tests, test developers can

decide what structure of the subroutine fit their needs. They can manually exclude certain

steps from the proposed subroutine or add new steps if suitable, for example, add assertions

to verify data or the application state.

The proposed TestOptimizer framework can be practically applied with any testing

tool or a test automation language because it only analyzes a resultant source code from

automated tests. No code dependencies are imposed by using this framework. If a par-

ticular testing tool or test management tool does not allow to integrate directly with the

TestOptimizer by available API, we can still integrate at the level of source code via ver-

sion control systems. Test scripts can be written in any supported programming languages

such as Java for Selenium WebDriver 1 or in a domain specific language for a particular

tool, for instance, Selenese 2. The current version of the TestOptimizer supports Java,

Selenium WebDriver for automation of tests for web–based SUTs and Appium for automa-

tion of tests for mobile applications. Support for other languages or test automation APIs

can be easily created by adding a new Converter component to the framework modular

structure.

Figure 4.1 depicts main principles of this method. In the beginning, test scripts are sub-

mitted to the TestOptimizer server (step 1). In step 2, the source code of the automated

tests is converted into an abstract layer which captures the semantics of the individual

steps of the converted tests. Then the analysis of repetitive parts is carried out over the

abstraction of the automated tests (steps 3 and 4). In the last step (5), a set of identified

1http://www.seleniumhq.org/projects/webdriver/
2http://www.seleniumhq.org/docs/02 selenium ide.jsp
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potential reusable subroutines is prepared and offered to the user. The user can utilize

provided information in the refactoring of the automated test scripts. The parameters for

the analysis rules are saved in a configuration file.

Source aut. test scripts Abstracted automated 
test script

Source automated 
test scripts - cache

User's test automation tool TestOptimizer server

Potential common 
subroutines

Used in refactoring 
of the scripts

Potential common 
subroutines

Conversion

Repetitive parts of the 
test scripts

Search for repetitive parts

Analysis of
subsequences

Request for 
analysis

Provided 
results

3

2

4

1

5

Figure 4.1: The conceptual schema of the proposed method [A.1].

4.2 Summary

The principle of the proposed method is to analyze input automated test scripts and to

transform them into abstracted, particular language–independent shape. Then we process

these abstracted scripts in several iterations to find potentially reusable components. We

use newly proposed algorithms to filter raw data and to exclude inaccurate subroutines

from a final set of test script refactoring suggestions offered to the user.

In the proposed approach, we do not directly conduct automatic refactoring of the

automated test scripts. This responsibility is left on test developers because a decision on

the optimal reusable part of the code cannot be completely left to an automated algorithm.

Optimal structure and size of test suites and reusable objects may vary from project to

project and many factors might play role in such a decision.

In the described features, the proposed method differs from previous work done in this

area [1], as discussed in the Chapter 3.

In the following chapters, we describe the entire process in more detail. Following the

process steps outlined in Fig 4.1, Chapter 5 describes step 2, Chapter 6 describe steps 3 and

4, respectively, and Chapter 7 describes the TestOptimizer server interface, corresponding

to steps 1 and 5.
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Chapter 5

Abstract Model of Analyzed Test Code

In the following sections, we introduce the concept of test step signatures which are used in

an abstract model of analyzed automated test scripts. The abstract model enables search-

ing for relevant common parts of the tests rather than searching for code subsequences

based solely on string similarity. Through this abstraction, the method is independent of

specific implementation details in diverse test scripts that use various coding styles, test

automation languages or particular test automation APIs.

In the further text of this thesis, we refer to this abstract model as to the “set of

abstracted test scripts”. The set of abstracted test scripts is formally defined in Section

6.2 using the concepts defined and explained in this Section.

5.1 Concept of Abstract Signatures

The advantages of introducing abstraction into the automated test script analysis process

and converting the analyzed scripts into abstracted data before conducting further analyses

are as follows:

◦ the abstraction ensures the method’s platform–independence;

◦ during automated test analysis, this approach reflects the true code semantics; hence,

the analysis is not limited to the source code similarity level;

◦ the abstraction hides differences caused by different notations and coding styles in

the test scripts; therefore, it enables analysis of automated test scripts created in

different programming styles or in situations when parts of the scripts are coded in

a domain–specific language of an automation framework.
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The proposed approach offers all of the above advantages. However, it also preserves

the ability to reuse existing algorithms when searching for longest common subsequences,

which is a text–based operation.

Analysis of the code of automated tests performed by the TestOptimizer framework is

based on a modified genetic algorithm that was previously explored for the LCS problem

[95].

In case of automated tests, analysis of the real semantics of their steps is important to

make a proper decision which parts of the code can be identified as a reusable fragment.

Therefore, we introduce a concept of test step signatures. In this concept, each step

of the analyzed test script is converted to a signature. These signatures hide specifics of

programming languages, unifies their syntax a reduces differences in their grammars. As a

result, the signatures enable to compare steps of test cases at the semantic level. Sequences

of identical signatures promise potentially common subsequences of test scripts. We use

this property to find repetitive parts in the analyzed test code with higher effectiveness

and relevance than a pure comparison of the source code fragments might provide.

Let’s illustrate the problem on an example before describing the problem formally.

Automated tests consist of sequences of steps, typically expressed by commands of the

programming language in which the test is created (or recorded). Those commands usually

represent actions performed by the automated test in the user interface of the SUT, but

not exclusively. Some commands may represent an assertion of the data displayed in the

SUT interface, or other auxiliary commands, needed for the run of the automated test.

The problem is, that syntax of high–level programming languages is richer in comparison

to low–level languages, so one particular action in the user interface can be expressed

by several different notations in the source code of the automated test. To be able to

process such tests implemented in high–level languages, we need to make an abstraction

of the actions actually performed by these tests, instead of parsing the source code. As

an example, listing 5.1 presents two possible implementations of one identical test step in

Java and Selenium WebDriver.

// case 1

driver . findElement(By . id ( ”login” ) ) . click ( ) ;

// case 2

Element e = driver . findElement(By . id ( ”login” ) ) ;

e . click() ;

Listing 5.1: An example of differences in the syntax of two different test steps that have

the same semantics (API objects appear in bold, methods in italics, and user–defined

parameters are underlined)
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In general, the automated test code that performs particular actions in the SUT user

interface is mainly composed of test steps that consist of:

◦ test automation API objects,

◦ methods of these objects, defined by these API, for instance, click on an element in

the user interface, and

◦ parameters of these methods, such as identification of user interface elements that

are handled by the script, or testing data to be entered to the SUT via the user

interface by an automated test.

In practice, it is definitely a not rare situation that two test steps performing the

identical action in the SUT user interface have different specific notations in the actual

source code, even in the same programming language and in the same test automation

API. We solve this issue by translation of particular test steps into their signatures. A

signature s is defined as follows:

s =< o,Xo, a,Xa >

where o is an object, a is an action, Xo is a set of additional attribute parameters

to identify object o in the SUT user interface and Xa is a set of parameters that specify

testing data used by the action a.

Object o =< c, n > represents an abstraction of a user interface element, e.g., an input

box or a button. This abstraction does not depend on the physical implementation of this

element in HTML or another markup language for a web–based user interface of the SUT.

An object o is composed of a pair: a class, c, and a name, n. The class defines the

type of object (for example a radio button or input text box), while the name acts as a

unique identifier for a given instance of the object and it also links the object to its physical

representation in the SUT user interface.

The object o represents an atomic element of the SUT user interface that can be accessed

by the automated test (technically, which is controlled by the test automation tool or API

during the test). In the real applications, the object name n is not sufficient to identify the

user interface element in some cases uniquely (for instance, several elements of the SUT

user interface can have the same IDs, despite the fact, that this can be considered as a flaw

in the user interface programming, considered as an anti–pattern making test automation

more difficult). To overcome such a situation, other attributes from Xo can be used for its

identification.

An attribute parameter, x ∈ Xo, is a pair of an attribute name and its value.

An action, a, is executed on an object o in the user interface of the SUT (as an example,

we can give a navigation from one screen to another one by clicking a button). A is the list

of all possible actions based on possible capabilities of a particular test automation API.

55



5. Abstract Model of Analyzed Test Code

Further, S is a set of all signatures derived from the set of all analyzed automated test

scripts. The signature has to be represented in a text form for a further processing since

the search for potential common subsequences in the test scripts is based on text data.

Hence, for further processing, we represent the signature as a text string, defined by the

following regular expression:

obj:<class>{.<object name>{+<attribute parameter>=<value>}}&
act:<action>{+<parameter>:<value>}

The individual elements of text representation of the signature are explained in Table

5.1:

Table 5.1: Elements of a test step signature.

Element Description
obj Keyword
class Class c of the object o
object name Name n of the object o
attribute parameter Name of attribute parameter x. The attribute parameters are

used for a specification of a physical representation of an object
o if the object name is not sufficient to localize uniquely the
element in the front–end.

act Keyword
action Action a identifier
parameter It specifies what data are used when the action is performed
value General parameter value type of String

Our proposal employs three types of signatures with different levels of detail that are

listed in Table 5.2.

Table 5.2: Levels of test step signatures.

Signature
Level

Signature

0 obj:<class>&act:<action>
1 obj:<class>.<object name>{+<attribute parameter>=

<value>}&act:<action>
2 obj:<class>.<object name>{+<attribute parameter>=

<value>}&act:<action>{+<parameter>:<value>}
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Although the signatures seem to be similar to a real code, using signatures takes three

significant benefits. Firstly, the signatures allow us to isolate the TestOptimizer core

algorithms from the specifics and complexity of particular possible notations used in the

source code of the automated test scripts – we are able to analyze different parts of the

source code that actually means the same action performed by the automated test in the

SUT user interface. Secondly, TestOptimizer can be applied to multiple languages like

Python, Java or C# and different notations in the automated tests. The isolation creates

conditions for a modular extension of the TestOptimizer framework without the need to

make any changes to the core algorithms. Finally, defined signatures support a flexibility

in a level of detail to configure which parts of the automated test scripts are relevant for

the analysis, and which can be neglected during this process.

The signature levels defined in Table 5.1 have the following practical applicability in

the search for potentially reusable parts in the code of automated tests:

◦ The Level 0 signature describes only the objects of the SUT user interface and

actions performed on these objects. If the Level 0 is used for an analysis, we search

for groups of potentially similar actions performed on objects of the same classes (i.e.,

practically identical types of the objects). The analysis at this level does not depend

on any particular elements of the SUT user interface and it is suitable for a high–level

search for potential candidates for common reusable objects and procedures.

◦ The Level 1 signature defines particular physical elements of SUT user interface

and actions performed with these elements by an automated test. However, the

parameter values of actions are not reflected by the analysis. At this level, we can

identify repeating common subroutines that carry out a certain action on a particular

element of the SUT user interface.

◦ The Level 2 signature analysis is the most detailed. It takes the parameter values of

performed actions into account. To achieve more accurate comparison when searching

for repeated common subsequences, instead of the original parameters that have a

variable length and may contain special characters, we use their hashed values that

replace long data strings in the signatures. We convert only action parameters but

not object locators.

Domain–specific languages of various test automation frameworks of different test auto-

mation APIs do not allow to represent single tests steps by signatures of all levels defined

in Table 5.1. For instance, the original Micro Focus Unified Functional Testing frame-

work is based on Visual Basic Script Edition (VBScript) language; not just its syntax but

also its capabilities enable to use signatures for all three levels, i.e., 0–2. However, auto-

mated tests developed in Selenium WebDriver can be expressed only using the levels 1-–2.

The limitation here is not the programming language, (mainly Java in case of Selenium
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WebDriver), but capabilities of the Selenium WebDriver API, which does not support the

object repository concept.

The principal difference between the signatures of type Level 1 and 2 is in the manner

how the parameters of individual actions are handled. We considered an option to dis-

tinguish between identical steps of the automated tests that differ only by parameters of

particular actions as very useful as they may represent the different semantics of an actual

test step. There are use cases where developers want to preserve the observed differences

in the automated tests, e.g., in role–based tests, such test fragments with identical steps

are then complemented by verification steps after creating the tests to check a particular

behavior of the SUT. Test automation developers can then use Level 2 signatures for those

cases. When the action parameters are not important, Level 1 signatures can be used for

the analysis instead.

Table 5.3 compares examples of these levels using sample commands of Micro Focus

UFT and Selenium WebDriver. A sample command for Micro Focus UFT in VBScript is,

for example:

WebField("username").Set "john"

This is a construction of UFT VBScript working the object repository that uses object

location properties stored there. The value username servers as a unique identificator of

the object and may not be related to any particular value in the DOM of the SUT. An

equivalent command in Java for Selenium WebDriver is then:

driver.findElement(By.id("username")).set("john");

Data that we process and extract from the commands of the automated test scripts at a

particular signature level are presented (as underlined bold text) in Table 5.3.

Now we explain the process of conversion of the test steps of the particular test auto-

mation language to a set of signatures. An example of the conversion is depicted in the

Figure 5.1. We proposed a converter that uses a lexical and semantic analysis of the source

code to convert the original tests into an abstract test t = (s1, s2, . . . , sn). In the lexical

analysis, we tokenize the input code and classify every token as one type from a group of

numbers, keywords, special characters, etc. The processed tokens are subsequently used in

the semantic analysis of the test code.

Since our intention was to have a full control over the whole process of conversion, we

did not employ any existing parser for Java language and we implemented our semantic

analyzer based on the reference grammar defined by Oracle 1. The semantic analyzer

parses the tokens from the lexical analysis and creates a syntax tree of the code being

analyzed. The resultant syntax tree is used then to translate source code statements to

defined test step signatures. In the pilot implementation of the TestOptimizer framework,

1https://docs.oracle.com/javase/specs/jls/se7/html/jls-2.html
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Table 5.3: Examples of information extracted from automated test commands for signature
levels 0, 1 and 2 in different frameworks.

Signature
Level

Information extracted from
Micro Focus UFT command

Information extracted from
Selenium WebDriver
command

0 WebField(”username”)
.Set ”john”

not relevant

1 WebField(”username”)
.Set ”john”

driver.findElement(
By.id(”username”))
.set(”john”);

2 WebField(”username”)
.Set ”john”

driver.findElement(
By.id(”username”))
.set(”john”);

we implemented and debugged the model parser in the method with Java for Selenium

WebDriver and the JUnit2/TestNG3 frameworks. In the final version of prototype we

verified that Selenium WebDriver commands for Appium are also correctly parsed.

As not all steps are interesting and relevant for the potential optimization of automated

tests we classified these steps as:

◦ convertible test steps, which represent test actions in the front–end user interface

of the SUT; they are translated to test step signatures, and

◦ non–convertible code, which is not relevant from a test semantics point of view,

hence we do not translate it to the signatures.

The convertible test steps represent actions performed in the SUT front–end user in-

terface that change the state of the SUT and assertions of the expected results. In Table

5.4 we give some examples of convertible and non–convertible steps. Examples in the first

two rows are considered as convertible steps because WebDriver navigates to a particular

page of the SUT front–end user interface in the first row, and then in the second row, the

user checks if a given element is present in the front–end under test. However, in the third

row, the step causes WebDriver to shut down, which does not actually represent a change

of the system under tests state. JUnit or TestNG test frameworks annotations other than

@Test such as @BeforeSuite, @AfterClass, and @BeforeMethod typically do not

involve operations in the SUT user interface as they serve as common methods for test

setup, data preparation or clean up after the test execution. Therefore, they are not part

of the analysis. Moreover, commands in such annotated methods were already identified

by developers of the automated tests as a reusable component.

2https://junit.org/junit5/
3https://testng.org/doc/index.html
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Test script 1 Suite metadata

Test suite 1 Abstracted test suite 1

Abstracted test script 1          t

Convertible test step 1

Non-convertible code 1

Non-convertible code 2

Convertible test step 2

Convertible test step 3

...

...

Signature s1

Signature s2

Signature s3

...

...

Test script metadata

Location metadata 1

Location metadata 2

Location metadata 3

Figure 5.1: A conversion of source automated test scripts to their abstractions [A.1].

Table 5.4: Examples of convertible and non–convertible steps in an automated test scripts
developed in Selenium WebDriver and in the JUnit format.

Type of Step Example of Source Code
convertible An action in SUT front–end

d r i v e r . get ( baseUrl + ”/ u i / index . html” ) ;

convertible Assertion of results

as se r tTrue ( i sElementPresent (By . id ( ”empTab” ) ) ) ;

not convertible JUnit framework code except @Test

@After
public void tearDown ( ) throws Exception {

d r i v e r . qu i t ( ) ;
. . .

}

60



5.2. Summary

For the analysis, we defined and stored parsing rules in the converter configuration.

The converter then makes decisions based on these rules whether the step is convertible or

it is not. Since it is important to trace the transformation of original test script steps to

the signatures, we use location metadata (see Figure 5.1) for this task. Location metadata

describe the respective code line–number range of the analyzed test as well as the original

code fragment. We do not process the metadata during the analysis, they are only used

for debugging purposes. Apart from that, every abstracted test script contains a comple-

mentary set of metadata (refer to Figure 5.1) and that includes the source filename and

the count of signatures. The analyzed test suite (refer to the suite metadata depicted in

Figure 5.1) contains then both the source code and a count of the analyzed test scripts.

5.2 Summary

In this chapter, we introduced the concept of signatures used in the analysis of automated

tests with the goal to identify potential repetitive parts in the code. The abstraction

achieved by the test step signatures brings a universal approach that does not depend on

any particular platform, and it helps to focus on the core of the problem. Besides that, it

allows us to search for the potentially repetitive parts of the tests with higher relevance –

by this approach, we are able to find the code fragment doing actually the same actions in

the SUT user interface, despite the fact, that particular notations of these actions might

differ in the source code.

The analysis can be performed at three different levels of details, allowing better flex-

ibility of the analysis in the particular cases. We classify test steps as convertible or

non–convertible if they are not relevant for the analysis.

In the next chapter, we present details of the algorithms that are used to identify

potential common subroutines in the textual representation of the created test step signa-

tures. The algorithms are used in the TestOptimizer framework, which is a pilot practical

implementation of the method proposed in this thesis.
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Chapter 6

Algorithms to Solve the Problem

The chapter describes the algorithms used in the proposed method. The chapter starts

by defining the inputs and outputs of the main algorithm; then, it presents the proposed

metrics used to evaluate the method quality, and finally, it defines all the algorithms that

compose two main algorithms to solve the problem.

6.1 Algorithm Overview

The proposed method employs several algorithms that process abstracted automated test

scripts. The whole process starts by selecting prospective tests to be analyzed (details are

described in Section 6.3). In a set of these test scripts, search for the longest common

subsequences is performed (its strategy is described in Section 6.4).

The next step is finding of common test steps in the analyzed abstracted test scripts

(the Algorithm 6.1 described in Section 6.5).

When the individual common steps of the automated tests are identified, we analyze

them using the Algorithm 6.2 for finding particular common subroutines described in

Section 6.6. This part employs two auxiliary algorithms to find candidate subroutines –

the Algorithm 6.3 and Algorithm 6.4 to filter the identified candidate subroutines.

The Section 6.7 of this chapter discusses the available modes in which the TestOptimizer

framework can be operated. An evolutionary computational technique used in our approach

allows the user to choose between a manual mode (Algorithm 6.5 described in Section

6.7.1), when the user is interested to analyze if a particular subroutine occurs in the rest

of the test automation code, or an automatic mode (Algorithm 6.6 described in Section

6.7.2), when TestOptimizer analyzes general occurrences of potential common subroutines.

In both cases, users set criteria that determine what they prefer, i.e., what the quality of

any resulting reusable routines should be. For example, some users prefer less usage but

longer routines, while other may prefer shorter routines with many occurrences.
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6.2 Input and Output

The input of the analysis is a set of abstracted test scripts, TA = t1, t2, . . . , tn. Each of

tests is composed of an ordered sequence of signatures: tx = (s1, s2, . . . , sn), s1, s2, . . . , sn ∈
S, tx ∈ TA.

We denote a potential common subroutine as p = (s1, s2, . . . , sm), s1, s2, . . . , sm ∈
S, where p must be present in two or more abstracted test scripts from TA. Then, TF is a

set of analyzed abstracted test scripts in which p is present, TF ⊆ TA.

The output of the analysis is a set of potential common subroutines, P . In general,

more potential common subroutines can exist in TA.

6.3 Selection of Prospective Tests to Analyze

When the analyzed automated test scripts are converted to the textual representation of

sets of tests signatures, the next step in the process is to identify the longest common sub-

sequences in TA. Because we are processing the text strings, we can reuse already defined

algorithms for the problem of finding LCS, which generally represents an NP–complete

problem. In the proposed method, we employed the genetic algorithm that was suggested

for the LCS problem previously by [95, 96]. As we mentioned in the previous paragraph,

metadata of an abstracted test script are not taken into account during the analysis based

on the LCS search.

To optimize the input set TA prior to run of the LCS search genetic algorithm, we

reduce the TA set by excluding test scripts that do not have at least one common sig-

nature with the other test scripts in TA. This optimization contributes to a better per-

formance of the genetic algorithm as it does not search reusable test fragments in disjunct

tests. For this reduction, we implemented the function SELECT PROSPECTIVE TESTS,

where TP denotes a set of prospective test scripts to analyze, TP ⊆ TA, and TP := SE-

LECT PROSPECTIVE TESTS(TA). The function is based on an adopted Karp–Rabin

string matching algorithm [98]. The SELECT PROSPECTIVE TESTS function is de-

signed to search for simple duplications in signatures among the set of analyzed abstrac-

ted test scripts, TA. An abstracted test script, tn ∈ TA, is excluded from TP when

∀sn ∈ tn : ∀to ∈ TA/{tn} : sn /∈ to.
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6.4 LCS Search Algorithm

Once the input set TA is reduced to TP , we start the LCS search on TP . The chromosome

of the genetic algorithm is denoted as tc ∈ TP . The analysis runs in a pre–defined number

of iterations. In every iteration, the solver evaluates potential variants of results using

the proposed fitness function to select the best current population as the set of candidate

sequences. Moreover, the solver applies genetic operation like mutations and cross–selection

when it evolves the population. We experimented with several strategies trying to find an

optimal configuration of the fitness function for the LCS of test steps. In this effort, we

focused on a proposal of the fitness function that will prefer the longest possible sequences

and the sequences that occur most often. The overall results of the analysis depend on

a selection of the chromosome tc (a major factor) and also on the selection of control

parameters (a minor factor) for the LCS algorithm. These parameters are listed in more

detail in Table 7.1.

In the further explanation of the algorithms let’s assume given chromosome tc. More

details to the process by which the chromosome is determined are explained later in Section

6.7. The LCS search algorithm we use is a modified genetic algorithm based on [95, 96]

with an empty initial population. Computations start from scratch without any random

initialization and we utilize an elitism to preserve promising individuals. To evolve the

population, we use genetic operators for a mutation and crossover as well as a selection

of the best individuals to the elite population. We apply genetic operators based on a

roulette wheel selection.

6.4.1 Metrics Used to Evaluate the Quality of the Found Method

The optimization of the automated tests focused on reusable components rises a question

what is more interesting for test developers from a refactoring point of view. Is it a few

long common subroutines or a large set of shorter common subroutines? Instead of making

a conclusion which option to prefer we left those decisions on the end user, because the

coding style of automated tests and their structure may depend on many factors as an

intended maintenance or a strategy of test suite design.

The user may be then interested in suggestions at different levels, and that is why we

introduced set of parameters that can be used to express the user’s preferences and metrics

to select the best result for the potential common subroutines in the set of analyzed scripts,

i.e.,: Subroutine Quality (SQ), defined by Eq. (1), and Analysis Variant Quality (AVQ),

defined by Eq. (2).

SQ(p, Ta) = |p| · |Tp| (1)
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TF is a set of analyzed abstracted test scripts in which p is present, and TF ⊆ TA.

AV Q(P, TA) = Σp∈PSQ(p, TA) (2)

The user can control the analysis by adjusting lengthWeight and testCountWeight

parameters, which are real number constants whose values are set before the analysis of the

automated test set is initiated. The user can determine the best values for both parameters

experimentally by running several iterations of the analysis with different values.

If the user increases the lengthWeight parameter then longer potential common sub-

routines are preferred during the analysis but they tend to occur less often in analyzed

automated test scripts. If the testCountWeight parameter is increased then potentially

shorter common subroutines are preferred during the identification of subroutines, and

these cases occur more often in analyzed automated test scripts.

We defined that:

lengthWeight + testCountWeight = 1, lengthWeight > 0 and testCountWeight > 0.

6.4.2 Fitness Function Used in the LCS Algorithm

We use the lengthWeight and testCountWeight parameters in several parts of the analysis.

First of all, we use these parameters in the proposal of the fitness function for the LCS

search performed by the genetic algorithm. This configuration is presented in Listing 6.1.

fitness = |p| ∗ lengthWeight + |TF | ∗ testCountWeight ;

i f ( | p | == | tc | ) then {
fitness = fitness ∗ 10 ;

}
i f ( |TF | == |TP | ) then {

fitness = fitness ∗ 5 ;

}

Listing 6.1: The definition of the proposed fitness function for Longest Common Sub-

sequences (LCS) search

At the end of the analysis, if P = ∅, it may mean that:

1. either there are no common steps in the analyzed abstracted test scripts TA,
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2. or the user set inappropriate values for the configuration of one or more input para-

meters.

Consequently, the solver has a natural tendency to find a local optimum in a single

test. If this case occurs we recommended the user to restart the analysis with a different

configuration of the control parameters.

6.5 Search for Common Test Steps

The chromosome tc is encoded as a binary string by the following method. If a given

signature that represents a test step of chromosome tc is present in at least in one abstracted

test scripts TF , TF ⊆ TP , tc /∈ TF , it is encoded by 1 in the binary string. If the signature

does not have any multiple occurrences in any of abstracted test scripts TF then the

signature is encoded by 0. Other tests in the analyzed test set are represented by simple

arrays that contain references to test step signatures. Since Julstrom [95] proved on an

example of unstructured text that genetic algorithm achieves better results when it starts

from scratch, i.e., the initial population is empty (encoded by zeros) and it is not initialized,

we did not adopt an approach to set up the population at the beginning.

t1= tc

t2

t3

t4

t5

Figure 6.1: A sample output of the LCS algorithm: potential common steps for the chro-
mosome tc [A.1].

Figure 6.1 illustrates an example with TP = {t1, . . . , t5}, t1 = tc is the chromosome and

TF has not yet been computed. Potential common steps from tc will be analyzed with an

objective to find potential common subroutines, and are depicted by black rectangles. Steps

that are not part of the set of potential common steps are depicted by white rectangles.

After identifying the potential common steps with the chromosome tc, we identify these
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steps in TP \ {tc} using the Algorithm 6.1. The asymptotic complexity of the algorithm is

determined by the count of found signatures in the chromosome, the size of the analyzed set

and by the number of signatures in a test from the analyzed set. It yields O(|TP ||tc||tmax|),
where tmax is an abstracted test script with the highest number of signatures, tmax ∈ TP .

Algorithm 6.1 FIND COMMON STEPS
Searching of the potential common steps in the abstracted test scripts based on the common
sequence in the chromosome.

Require: tc 6= empty and TP 6= empty
1: for all sc in tc do . for each signature from the chromosome
2: for all t in (TP \ {tc }) do . for each abstracted test script in the analyzed set,

excluding the chromosome
3: for all s in t do . for each signature from the analyzed abstracted test script
4: if sc = s then
5: s.common(sc)
6: end if
7: end for
8: end for
9: end for

10: return TP

t1= tc

t2

t3

t4

t5

Figure 6.2: The potential common steps identified in the set of abstracted test scripts TP

[A.1].

A sample output of Algorithm 6.1 is presented in Figure 6.2: potential common steps

are localized in the set of analyzed abstracted test scripts. The results promise that a

set of abstracted test scripts {t1, t2, t4, t5} may contain potential common subroutines as
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abstracted test scripts t1, t2, t4 and t5 are expected to potentially contain two subroutines:

one three–step subroutine and one two–step subroutine. The abstracted test script t4 is

only expected to contain a three–step subroutine. The next step is the identification of the

common subroutines based on the localized potential common steps.

6.6 Search for Potential Common Subroutines

As the subsequent step, the Algorithm 6.2 finds a set of potential common subroutines P

in the set of prospective tests TP . This algorithm takes one parameter tequiredMinLength

on input that specifies a minimal length of potential common subroutines (minimal number

of test step signatures) that will be identified. During the computation, we use an array

occurrence to keep information about the number of abstracted test scripts from TP in

which a particular signature occurs, and a temporary max occurrence variable that con-

tains the largest number of abstracted test scripts in which some of the signatures occurred

during the processing so far.

Asymptotic complexity of this algorithm is determined by the size of a set being ana-

lyzed and the number of signatures in the test being processed for the first phase. The

second phase of computation is influenced by the number of detected potential subroutines.

It yields O(|Tp|(|tmax| + |tmax||Rmax|)), where tmax is the abstracted test script with the

highest number of signatures, tmaxTP , and Rmax represents the largest of the sets of detec-

ted potential common subroutines created for each abstracted test script in the analyzed

TP .

The implementation of the algorithm is extended by an auxiliary data structure that

saves a pointer to a physical location of the test step represented by a signature. This

structure connects signatures with the original analyzed source code so any third party

tool can integrate with TestOptimizer and process suggestions of reusable components.

The auxiliary data structure contains two principal records then for each of the signatures:

1. A location of signature s in the abstracted test script, t ∈ TP and

2. location of the signature s in the original analyzed test script, captured by the location

metadata presented in Section 7.1 (refer to Figure 5.1).

In our example, the Figure 6.3 illustrates two potential common subroutines that are

marked as Subroutine A and a Subroutine B. Steps being common for several tests are

depicted by black rectangles while unique steps are depicted by white rectangles.

It holds that ∃ T1 ⊆ TP : |T1| > 1,∀ tx ∈ T1 : A ⊂ tx and ∃ T2 ⊆ TP : |T2| > 1,∀
tx ∈ T2 : B ⊂ tx. As depicted in Figure 6.3, the potential common subroutine B follows

the subroutine A in each of the abstracted test scripts where they are present. However,
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BA

t1= tc

t2

t3

t4

t5

Figure 6.3: All the potential common subroutines identified in abstracted test scripts being
analyzed [A.1].

this is only an example, and we cannot generally conclude that in all cases, the order of

detected potential common subroutines found by TestOptimizer corresponds to the actual

order in the analyzed automated test code. The order of subroutines can be the other way

around, i.e., the subroutine B could occur before the subroutine A. However, for the final

presentation of results to the user of the TestOptimizer, this issue is not relevant.

Algorithm 6.2 FIND SUBROUTINES
Finding common subroutines in in the abstracted test scripts.

Require: tc 6= empty and TP 6= empty and requiredMinLength ≥ 1
1: setoccurrence[] to 0 . set all elements of the array to 0
2: max occurrence← 0 . set max occurrence to 0
3: occurrence← FIND CANDIDATES(tc, TP , requiredMinLength, occurrence[],max nce)

. build potential candidate subroutines from common steps in tests
4: C← empty set . reset the sequence of candidate steps
5: P← empty set . reset the set of final detected potential common subroutines
6: P← FILTER CANDIDATES() . exclude low quality candidate subroutines
7: return P

The Algorithm 6.2 uses the Algorithms 6.3 and 6.4 as its subroutines. The Algorithm

6.3 iterates over the TP and assembles a candidate subroutine from steps that occur in

other tests of TP . The algorithm adds the step into the candidate sequence and if the

sequence is longer than the set threshold, it is saved in the set of candidate sequences R.

During the analysis, we update the information about the count of step occurrences in the

subroutines.
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Algorithm 6.3 FIND CANDIDATES
The algorithm for finding candidate sequences from the test steps of TP .

Require: tc 6= empty and TP 6= empty and requiredMinLength ≥ 1 and nce[] 6= empty
and max occurrence ≥ 1

1: for all t in (TP \ {tc }) do . for each abstracted test script in the analyzed set
2: C← empty set . reset the potential sequence of common steps
3: R← empty set . reset the set of detected potential common subroutines
4: for all s in t do . for each signature from the analyzed abstracted test script
5: if s being marked as common with any other signatures then
6: C←(C,(s)) . append the potential common step sequence by signature s
7: else
8: if C.Length≥ requiredMinLength then
9: R← R ∪ {C} . add the potential sequence of common steps C to the

set of detected potential common subroutines
10: end if
11: C← empty set . reset the potential sequence of common steps
12: end if
13: if C.Length≥ requiredMinLength then
14: R← R∪ {C} . add the potential sequence of common steps C to the set of

detected potential common subroutines
15: C← empty set . reset the potential sequence of common steps
16: else
17: C← empty set . reset the potential sequence of common steps
18: end if
19: end for
20: for all r in R do . for each of detected potential common subroutines
21: for all s in r do . for each signature in a detected potential subroutine
22: occurrence[s]← occurrence[s] + 1
23: if max occurrence < occurrence[s] then
24: max occurrence← occurrence[s]
25: end if
26: end for
27: end for
28: end for
29: return occurrences[]
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The Algorithm 6.4 is a subroutine of Algorithm 6.2 and it filters candidate common

subroutines found in the chromosome tc.

In principle, the algorithm counts the occurrences of the abstract test steps in the

candidate sequences. If an occurrence of the particular step equals max occurrence we

append the step into the current sequence C and if the candidate subroutine exceeds the

given value of requiredMinLength we save it as a resultant common subroutine. The

algorithm returns the set of potential common subroutines P , which is the result of the

analysis.

Algorithm 6.4 FILTER CANDIDATES
Filters candidate subsequences, excludes not relevant subsequences and returns a set of
potential common subroutines.

Require: tc 6= empty and TP 6= empty and requiredMinLength ≥ 1 and occurrence[] 6=
empty and max occurrence ≥ 1 and C 6= empty and P 6= empty

1: for all sc in tc do . for each signature from the chromosome
2: if occurrence[sc] = max occurrence then
3: C ← (C, (sc)) . append the potential common step sequence by signature s
4: else
5: if C.Length≥ requiredMinLength then
6: P ← P ∪ {C} . add the potential sequence of common steps C to the set of

detected potential common subroutines
7: end if
8: C← empty set . reset the potential sequence of common steps
9: end if

10: end for
11: return P

6.7 The Main Algorithms and Processing Modes Related

to the Chromosome Selection

Apart from the selection of configuration parameters for the genetic algorithm for the LCS

search, overall results significantly depend on the selection of chromosome tc. The better

the chromosome is the more valuable results are. Let us illustrate the problem in the

following example. Let’s have a set of abstracted test scripts A,B,C and D, where scripts

A,B and C have common test steps while the script D not. In such a case, selection of

the script D as the chromosome does not make any sense – no common test step can be

found in the chromosome.

Moreover, the problem of the selection of a suitable abstracted test script as the chro-

mosome has another dimension. Let’s consider the lengths of the abstracted test scripts in
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our example. For instance, the script A has 11 steps, the script B 58 steps, and the script

C 120 steps (we do not consider the test D as it is not relevant to be a chromosome), it

may not be worth to select the shortest test A as the chromosome. When selecting A, we

may miss some potential subroutines between the test B and C. Therefore, we proposed

two modes of operation for the TestOptimizer framework:

◦ The user wants to check if a particular subroutine (e.g., an already defined reusable

subroutine) is present in a set of analyzed test scripts. In this case, we set a test that

contains this subroutine as the chromosome tc.

◦ The user wants to know whether there are some potential common subroutines in

the test suite in general. In this case, the chromosome tc is not known in advance.

This leads us to define two operation modes, CHROMOSOME MANUAL and CHRO-

MOSOME AUTO. Table 6.1 presents the details of these modes.

Algorithm 6.5 CHROMOSOME MANUAL SEARCH
Processing in the CHROMOSOME MANUAL mode.

Require: TA 6= empty and requiredMinLength ≥ 1 and 0 ≥ lengthWeight ≤ 1 and
0 ≥ testCountWeight ≤ 1

1: TP ← SELECT PROSPECTIV E TESTS(TA)
2: LCS(tc, TP , lengthWeight, testCountWeight)
3: FIND COMMON STEPS(tc, TP )
4: P ← FIND SUBROUTINES(tc, TP , requiredMinLength)
5: return P

6.7.1 Chromosome Manual Mode

Algorithm 6.5 defines the computations in the manual mode (CHROMOSOME MANUAL).

The algorithm reduces TA to TP by calling the SELECT PROSPECTIVE TESTS (de-

scribed in Section 6.3). In the next steps, we run algorithms LCS, FIND COMMON STEPS

(Algorithm 6.1) and FIND SUBROUTINES (Algorithm 6.2) for the given tc.

6.7.2 Chromosome Semi–automated Mode

Algorithm 6.6 processes data in an semi–automated mode (CHROMOSOME AUTO

option). It starts with optimization of the input test set TA to exclude disjunctive tests

using the SELECT PROSPECTIVE TESTS (described in Section 6.3) and it yields TP .

Based on the TP , we select prospective chromosomes TC , TC ⊆ TP . For each chromosome

73



6. Algorithms to Solve the Problem

Table 6.1: Methods of a selection of the chromosome.

Method Selection of
tc

Description

CHROMOSOME MANUAL by the user Principle: The user has
a full control over the pro-
cess and she/he selects the
chromosome and the set of
test scripts to be analyzed.
Task: To find out if a partic-
ular reusable routine occurs in
some tests across the test set.
Algorithm: CHROMO-
SOME MANUAL SEARCH,
Algorithm 6.5 defined later in the
text.

CHROMOSOME AUTO automated,
for selec-
ted suitable
tc ∈ TP

Principle: The user chooses a
set of test scripts to be analyzed
and the chromosome is selected
by the solver automatically.
Task: To find out if some
common subroutines exist
in the given set of scripts.
Algorithm: CHROMO-
SOME AUTO SEARCH, Al-
gorithm 6.6 is defined further
on.

in TC , the LCS search is performed, followed by FIND COMMON STEPS (Algorithm 6.1)

and FIND SUBROUTINES (Algorithm 6.2). At the end of the analysis, we collect the

results and select the best results according to the AVQ value. The lengthWeight and

testCountWeight user parameters are then very important as they influence a selection of

the final results.

The SELECT PROSPECTIVE CHROMOSOMES function identifies tests that are

suitable to be used as a chromosome. To do that, we utilize the Karp–Rabin [96] al-

gorithm, which counts duplications in the abstracted test scripts from TP . We use these

results (the number of duplicates found) to select the abstracted test scripts whose steps

are as different as possible. Such identified tests are then considered as the prospective

chromosomes TC .

The asymptotic complexity of Algorithm 6.6 is given by the asymptotic complexity of

the LCS search algorithm, which is O(n|Tp|), where n is the sum of |t| for all t ∈ TP [104].
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The parameter iterationsCount drives the count of iterations for various chromosomes and

it servers as a limit for performance reasons. The maximum value of iterationsCount is

given by |TC |.

Algorithm 6.6 CHROMOSOME AUTO SEARCH
Processing in the CHROMOSOME AUTO mode.

Require: TA 6= empty and requiredMinLength ≥ 1 and 0 ≥ lengthWeight ≤ 1 and
0 ≥ testCountWeight ≤ 1 and iterationsCount ≥ 1

1: X ← empty set . reset the potential sequence of common steps
2: TP ← SELECT PROSPECTIV E TESTS(TA) . select prospective tests to analyze
3: TC ← SELECT PROSPECTIV E CHROMOSOMES(TP ) . select prospective

chromosomes
4: if iterationsCount >| TC | then
5: iterationsCount←| TC | . adjust the number of iterations
6: end if
7: for all tc in Tc do . for all prospective chromosomes
8: if iterationsCount > 0 then . start a new iteration if not zero
9: LCS(tc, TP , lengthWeight, testCountWeight) . longest common subsequence

search
10: FIND COMMON STEPS(tc, TP ) . post–processing, see algorithm 1
11: F ← FIND SUBROUTINES(tc, TP , requiredMinLength) .

post–processing, see algorithm 2
12: X ← X ∪ {F} . save potential results
13: iterationsCount← iterationsCount− 1 . decrease iteration counter
14: end if
15: end for
16: P ← x, x ∈ X, x is having the highest AVQ(x, TP ) . select the best results according

to user’s preferences
17: return P

6.8 Summary

In this section, we presented the algorithms for the search for potentially reusable sub-

routines in a set of abstracted automated tests, including input and output of this pro-

cessing and metrics that are used to evaluate the method quality.

In this chapter, we also discussed the problem of the selection of the chromosome that

significantly influences the resultant quality and a usability of the results. TestOptimizer

can operate in two modes The first offers the manual selection in which the user defines

a subroutine which will be searched in other automated tests, while in the second mode,
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TestOptimizer runs in the automatic mode and selects chromosomes automatically. In this

mode, a general search for common parts of the tests is identified.

The user controls the whole processes with the help of defined parameters to achieve

the best result of the analysis tailored to the particular project context.
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Chapter 7

Framework Prototype

In this chapter, we present an API specification to control the initial prototype

TestOptimizer framework. Then, we describe the implementation details of the final

prototype TestOptimizer framework used for experimental verifications of the proposed

method.

7.1 API of the TestOptimizer Framework

Proper parameter settings that achieve mutual balance are crucial in obtaining useful

results from the proposed method during the analysis process. From our experiments, we

concluded that an inappropriate combination of control parameters, even when executed

against highly suitable data, may affect the analyzed results and cause the refactoring

suggestions to not be optimal for further usage. Hence, to increase the applicability of

the proposed method, the process is flexibly parameterized so that users can find the best

configuration for applying the TestOptimizer framework to a particular test automation

project. The parameters can be entered via the framework API.

In this section, we explain the parameters used in the TestOptimizer API. Table 7.1

summarizes all the parameters fundamental to test analysis and/or for controlling the entire

process. We use these parameters to describe an output set of suggestions of potential

common subroutines returned by the framework that serves as the basis for subsequent

test script refactoring.

Table 7.2 defines the result of analysis, which consists of technical metadata and a set

of resulting potential common subroutines indicating potentially reusable objects in the

automated test scripts. For each of these subroutines, details about particular scripts and

individual repetitive signatures are provided.

Information concerning the location of the potential common subroutines in the scripts

includes records regarding a particular script name, the starting and ending offset of the

repetitive subroutine within the script and a copy of a code fragment that is considered part

77



7. Framework Prototype

of this subroutine. The details about repetitive signatures include the signature name and

pointers to relevant code fragments. Based on these results, the end user can manually

refactor the test scripts. To simplify this process, we provide the user with subroutine

quality metrics that can help in determining which identified potential subroutines to

consider.

An example of result data is depicted in Figure 7.1. Technical metadata such as an ID

of the request, an ID of the server cache record and a link to a log is not depicted in the

figure.

TestOptimizer response: SUBROUTINE SET      P

SUBROUTINE 1 p1P

...

...

...

SCRIPT 1

Common signature s1p1 localization

Common signature s2p1 localization

SCRIPT 2

...

Common signature s1p1 localization

Common signature s1p1 localization

...

Figure 7.1: Structure of analysis results provided by the TestOptimizer server [A.1].

For an easier association of signatures with scripts, we pair the parameters as scriptName,

lineNumberFrom and lineNumberTo (location metadata) with the signatures. The para-

meter codeFragment is determined from the source scripts stored in the cache. For this

purpose, the location metadata saved in this cache are employed. At the script level, we

assembly allocation data in blocks according to their order in which signatures of the po-

tential common subroutine are present in the physical automated test script.
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Table 7.1: Request parameters influencing the analysis.

Parameter Description
requestID ID of the request specified by the user. The ID allows tracking the

submitted request during processing on the TestOptimizer server
converterType The type of converter to use (which translates original test scripts

to their abstractions). TestOptimizer provides different converters
for different languages and test automation APIs.

startPoint The user can select one of the following options: NEW UPLOAD
– Set of automated test scripts for analysis are uploaded to the
server. The scripts are then converted to abstracted test scripts
TA and analyzed for potential common subroutines by specified
parameters. SCRITPS CACHED – Uploaded scripts are taken
from cache and converted to abstracted test scripts TA, then ana-
lyzed for potential common subroutines by specified parameters.
ABSTRACTION CACHED – Created TA is analyzed again with
different parameters.

scriptCacheID In case of SCRITPS CACHED: ID of set of already uploaded test
scripts for analysis.

scripts In case of NEW UPLOAD: Stream of automated test scripts for
analysis to upload.

signatureLevel Level of detail, which is captured by signatures during the con-
version to abstracted test script. For an overview of levels,
refer to Table 5.2. Expected in case of NEW UPLOAD and
SCRITPS CACHED options.

requiredMinLength A minimal length of potential common subroutines, which will be
identified (refer to requiredMinLength parameter in Algorithm
6.2, 6.3, 6.4)

lengthWeight A preference of longer potential subsequences in less test scripts by
lengthWeight parameter (refer to fitness function in LCS and 6.5)

testCountWeight A preference of shorter potential subsequences in more test scripts
by testCountWeight parameter (refer to fitness function in LCS
and Algorithm 6.5)

chromosomeMode CHROMOSOME MANUAL (user’s preference to manually select
a chromosome) or CHROMOSOME AUTO mode, refer to Table
6.1.

chromosome In case of CHROMOSOME MANUAL mode: an explicit selection
of chromosome tc ∈ TA

iterationsCount In case of CHROMOSOME AUTO mode: iterationsCount para-
meter, specifying how many iterations for various chromosomes will
be executed (refer to Algorithm 6.6)
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Table 7.2: A structure of the response, including parameters that influenced the analysis.

Parameter Description
Technical Metadata
requestID requestID (copied from the request call)
scriptCacheID ID of the server cache record in which the analyzed original test

scripts are saved
Log An access to the log, which lists details from the conversion and

analysis process (a link to the log file stored on the server)
SUBROUTINE SET For the set of potential common subroutines P
totalNumberOfScripts A total number of analyzed test scripts, |TA|
lengthWeight lengthWeight parameter specified in the request
testCountWeight testCountWeight parameter specified in the request
AVQ AVQ(P, TA, lengthWeight, testCountWeight) value to help the

user to decide, if the analysis result is good enough for particular
TA, or if to try to analyze TA again with different parameters.

Subroutine For each potential common subroutine p ∈ P :
subroutineID ID of a potential common subroutine p
SQ SQ(p, TA) value to help the user to decide, which of the potential

subroutines to prefer in identification of reusable objects.
numberOfScripts A number of test scripts, where the potential common subroutine

p occurs
scriptNames A list of names of test scripts, where the potential common sub-

routine p occurs
Script For each of test scripts, where the potential common subroutine p

occurs
scriptName A name of test script, where potential common subroutine p occurs
lineNumberFrom A number of line in the original test script code, where potential

common subroutine p starts.
lineNumberTo a number of line in the original test script code, where potential

common subroutine p ends.
codeFragment An aggregated fragment of analyzed original test script code.
Signature For each occurrence of signature sp in an original test script
subroutineIDref Reference to ID of potential common subroutine p
scriptName Names of test script, where s occurs
lineNumberFrom A number of line in the original test script code, where signature s

starts.
lineNumberTo A number of line in the original test script code, where signature s

ends.
codeFragment A fragment of analyzed original test script code. Can be different

for individual signatures from p.
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The reasons why we include the codeFragment parameter are the following:

1. Automated test scripts are abstracted in order to capture the semantics of their

steps. The abstraction may hide potential differences of two identical signatures at

the source code level.

2. The codeFragment field enables more easy integration with third–party tools.

3. A presence of this parameter simplifies testing of TestOptimizer framework because

the returned codeFragment value can be quickly compared to the fragment of the

original source code that is specified by the triple of parameters: scriptName,

lineNumberFrom and lineNumberTo.

7.2 Conceptual Architecture of the TestOptimizer

The user can connect to the TestOptimizer server web console via the API and carry out

main administrative tasks or she/he can use the command–line interface of the TestOp-

timizer server. Figure 7.2 presents the high–level architecture of the TestOptimizer system

from a conceptual viewpoint. We illustrated storage components as gray rectangles whereas

arrows indicate main data flow in the process. Storage components are implemented by a

PostgreSQL relational database.

Test 
automation 
IDE

TestOptimizer server

Plugin API
Script 
cache

Convertor

Solver

Suggestions 
moduleTestOptimizer 

web console

Convertor
Converter

Script 
abstraction 
cache

Results 
storage

D
isp

atch
er

Figure 7.2: An architecture overview of the TestOptimizer prototype [A.1].

81



7. Framework Prototype

The whole process is implemented as a modular pipeline in which all the individual

parts can be flexibly adopted according to the user needs. In the beginning, the user sends

a request to optimize scripts, which is handled by the runAnalysis API function at the

beginning of the pipeline. When the user uploads test data to the server via the REST

API, TestOptimizer saves analyzed scripts in the Script cache to reduce an amount of the

network traffic and to shorten the processing time. This feature is important if the user

decides to re–run the analysis with a different set of parameters on the same set of scripts.

We use the startPoint parameter in the runAnalysis request for this purpose.

The Converter module is responsible for converting original tests to the abstracted

test scripts (refer to Chapter 5). The module is flexible to be adapted to a particular

programming language and test automation API (for instance Java with the Selenium

WebDriver API or WebdriverIO with Mocha JavaScript) but it requires to implement

the particular extension of the converter for the given combination. Our implementation

supports Java in its specification 7 and Selenium WebDriver API 1 including Appium.

The selection of the particular converter that is used for the analysis is made by the

converterType parameter of the runAnalysis request.

We keep the abstracted test scripts in the Script Abstraction cache and we link them

with the source code of analyzed automated test scripts. When the user starts the optimiza-

tion with the startPoint parameter defined as ABSTRACTION CACHED, TestOptimizer

checks whether the previously created abstractions for the specified scriptCacheID and

signatureLevel are cached. If the records are loaded in the cache then the cache is used as

the main data source. If relevant data are not found in the cache then the analysis process

is executed again with the new configuration.

In the next step, the analysis continues in the Solver component. This module is re-

sponsible for finding the longest common subsequences in the chromosome using the core

LCS algorithm. Apart from that, Solver identifies common steps in the analyzed abstrac-

ted automated tests (FIND COMMON STEPS specified in Algorithm 6.1) and assembles

the potentially reusable subroutines from these common steps (FIND SUBROUTINES

specified in Algorithm 6.2). On demand, the Solver can analyze the input test suite

using the CHROMOSOME AUTO mode (CHROMOSOME AUTO SEARCH specified in

Algorithm 6.6). After the computations, results are saved in the Results storage and

further processed by the Suggestion module in order to prepare a response for the user.

Since the processing is time demanding, we implemented API calls as asynchronous.

To start the analysis, the user sends a runAnalysis request. Once the runAnalysis is

called, the system assigns to the job a requestID that the user uses to track the status

of the job. The Dispatcher component controls the execution in the whole pipeline and

manages the pool of possible concurrent requests to the TestOptimizer sever.

1https://seleniumhq.github.io/selenium/docs/api/java/
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7.3 Physical Architecture of the TestOptimizer

To increase its practical applicability, our goal was to implement the TestOptimizer frame-

work prototype in an open, scalable and high–performance architecture that would enable a

parallelization of the test code analysis in the future. Therefore, we proposed a server–client

architecture with a server being responsible for all the time–demanding and performance

requiring computations, and a client being used as a user interface and a proxy for the

server.

A server architectural layout uses a layered pattern for which we choose reference Oracle

Enterprise Java Beans (EJB) as a core technology 2. The implementation is written in Java

Enterprise Edition 7. Java Beans are very suitable for developing enterprise applications

as they allow to create distributed, transactional and scalable applications that can be

deployed on several nodes grouped in clusters.

The Figure 7.3 presents the implementation layers of the TestOptimizer prototype. We

use a PostgreSQL relational database (the database layer) to store abstracted test scripts

and auxiliary data structures described in Chapter 5. For the persistence layer, we used a

Hibernate framework for an object–relational mapping and we implemented entities being

processed as data access objects. All the major computations during the analysis are

carried out in the business layer that encapsulates its API using the presentation layer.

This presentation layer publishes a REST API and servers as main endpoints for the client

applications. It is implemented as a facade for the underlying APIs. The application is

deployed on a WildFly3 application server (formerly JBoss).

7.4 Final Version of Prototype

Based on the feedback from the first phase of the experiments, we adjusted the TestOp-

timizer in the several areas. In this thesis, we refer to the version of the prototype with

these adjustments as to the final prototype.

Firstly, we reworked the LCS search part of the method. We changed genetic operators

for a mutation and crossover, and also tailored the process of applying these operators

on the population. In the initial prototype, we applied mutation and crossover based

on a roulette wheel selection. In the final prototype, we changed the roulette to prefer

particular operators depending on a phase of the computations. At early phases, when the

population does not contain any useful longer subsequences, it is not worth to crossover

the blank population but it is better to prefer mutation to crossover because there is a

quite good chance that some test steps in mutated individuals or their parts become a part

of the final solution. Secondly, we made changes to a representation of population and

2http://www.oracle.com/technetwork/java/index-jsp-140203.html
3http://www.wildfly.org/
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Figure 7.3: An overview of implementation layers of the method.

the selection process. We emphasized the concept of elitism but we focused on a higher

diversity of the population meaning that we do not preserve all the candidate individuals

with high rates but similar sequences. In contrast to that, we also support candidates with

lower rates but with significantly different test steps.

7.5 Summary

In the proposal of the TestOptimizer architecture and its APIs, we laid an emphasis on

several qualities that we understood as critical: user’s experience, a capability to integrate

TestOptimizer with third–party tools and a possibility to trace and evaluate the analysis.

A rich REST–based API gives the user a good opportunity to tailor settings of the tool to
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the best results of the analysis. Furthermore, it makes easier to integrate TestOptimizer

to other development, test management tools or eventually source code management tools

because the RESTful APIs are today considered as a standard for a communication between

two systems.

The selected Java–based technology allows running the TestOptimizer framework on

different platforms including Linux/Unix based systems or Windows environments. The

modular structure of the framework enables adding a new functionality (for instance, a

support for another test scripting language) without a need to change the application

dramatically. Moreover, the architecture of the framework is prepared for a future paral-

lelization of the analysis. In the present time, we use only one node to run TestOptimizer

on the application server, but using EJBs, we can improve the performance out–of–the–

box by deploying other instances on additional nodes and thus, to process larger sets of

analyzed test scripts and/or process a higher count of user requests.
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Chapter 8

Experiments

We start this section by definition of the research questions, which are answered by the

experimental results. Then, we describe the method used in the experiments and provide

their results, which helped us to adjust configuration details of the proposed method and

verified its practical functionality. In the first part of this chapter, we present details of the

experiments conducted with an initial prototype of the TestOptimizer applied on several

sets of automated tests created for web–based applications. In the second part of this

chapter, we describe the experiments conducted with the final prototype of the framework,

which was applied on several sets of automated tests created for SUTs with the web–based

user interface, as well as for mobile applications.

8.1 Research Questions

For the verification of the proposed concept, we proposed a set of experiments, in which

several sets of automated tests developed within various real test automation projects were

analyzed by the TestOptimizer. In the experiments, focused on the following principal

issues:

1. A functional aspect of the proposed method: is the proposed approach suitable

for different automated tests and able to process them, and does our approach achieve

better results than conventional methods for an identification of repetitive fragments

of the source code?

2. An applicability aspect of the whole method on test automation projects:

we were interested in a fact whether test automation developers using the TestOp-

timizer save time during the refactoring of automated test scripts.

To evaluate the proposed method, we defined the following research questions, which

are answered by the conducted experiments described further in this thesis:
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RQ 1 Does the TestOptimizer framework identify potentially reusable subroutines,
which are relevant for the optimization of the automated tests?

RQ 2 What is the performance of the proposed method in comparison to manual
identification of the potentially reusable subroutines in terms of accuracy of
the method (real relevance of the identified subroutines)?

RQ 3 What is the performance of the proposed method in comparison to manual
identification of the potentially reusable subroutines in terms of time effect-
iveness of this process?

RQ 4 What is the performance of the proposed method in comparison to the selec-
ted currently established mainstream tool used for code refactoring in terms
of accuracy of the method (real relevance of the identified subroutines)?

RQ 5 What are the usability of the proposed method and the TestOptimizer frame-
work in comparison to the selected currently established mainstream tool
used for code refactoring.

RQ 6 How flexible is an application of the proposed method to the automated
tests created for another type of SUTs than systems with the web–based
user interface.

The experiments performed with the initial prototype of the TestOptimizer framework

answers research questions RQ 1, RQ 2, RQ 3 and RQ 4. Additional set of experiments

conducted with the final prototype of the framework provides answers to research questions

RQ 1, RQ 4, RQ 5 and RQ 6.

8.2 Experiments With Initial Prototype

We started verification of the proposed method and the pilot implementation of the TestOp-

timizer framework after finalization of its first prototype. In this Section, we present re-

spective details.

8.2.1 Experiment Design

To answer RQ 1, RQ 2, RQ 3 and RQ 4, in the experimental verification of the first

TestOptimizer prototype, we used several sets of automated test scripts, which were pro-

cessed by the proposed approach. Table 8.1 presents properties of these automated tests.

The test scripts were taken from selected real software development projects since our main
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Table 8.1: Test suite properties used for experiments with the initial prototype.

Script
Set ID

Language Number of Scripts Lines of Code

1 Java, JUnit Selenium
WebDriver

70 6728

2 Java, JUnit Selenium
WebDriver

99 9345

3 Java, JUnit Selenium
WebDriver

50 4507

4 Java, JUnit Selenium
WebDriver

150 16347

5 Java, JUnit Selenium
WebDriver

120 11704

objective was to conduct tests with real test data and not artificial tests. The test scripts

were recorded with the Selenium IDE and exported to the Java and JUnit format with

Selenium WebDriver API. We selected this scenario since we wanted to simulate the main

use of TestOptimizer, which is the optimization of recorded automated tests.

Furthermore, to answer RQ 4 we need to conduct a comparison of TestOptimizer

framework with another common approach for code refactoring, being based on a direct

analysis of repetitive fragments of the source code. From the group of tools offering the dir-

ect analysis, we selected a static source code analyzer PMD1 for the Eclipse IDE employing

the modified Rabin–Karp string search algorithm to search for code duplicates.

During the experiments aimed at answering RQ 1, RQ 2 and RQ 3, we analyzed

prepared sets of automated test scripts (Table 8.1) using the proposed TestOptimizer

framework.

In addition, in the experiments aimed at answering RQ 4, we analyzed prepared sets

of automated test scripts (Table 8.1) using both the PMD tool and the TestOptimizer.

Since our intention was to perform fine–grained comparison from various aspects, we

introduced an Averaged Value of Sequence Quality (ASQ) metric in addition to the Ana-

lysis Variant Quality (AVQ) metric defined in Section 6.4.1

ASQ(p, TA) = Σp∈PSQ(P, TA)/|P | (3)

1https://pmd.github.io/
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As the next step of the experiment, we performed a manual analysis of the potentially

reusable subroutines found by the TestOptimizer and PMD, as we had to decide which of

the identified potentially reusable subsequence are really relevant for the test refactoring.

Not all identified reusable subsequences are suitable to be a generally reusable function for

automated tests, so a manual verification of the results had to be performed, despite the

fact that this verification was considerably resource demanding during the experiments.

The manual analysis assessing the true relevance of the identified potential reusable

subroutines was carried out by two subject matter experts in test automation. We asked

them (i) to exclude all identified subroutines that were already included in any longer

subroutine, (ii) to exclude all the subroutines in which object descriptors were marked as

the action parameters, and (iii) to exclude all the subroutines in which instances of classes

and static members are wrongly identified (for instance, a driver.findElement test

step may be wrongly identified as assertion like Assert.AssertThat as both commands

contain only an instance of a class and its method). To reduce human errors, we let each

expert perform the manual analysis independently and then we cross–compared the results

twice.

8.2.2 Experimental Results

Table 8.2 present the following information gathered to answer RQ 1 and RQ 4 during

the experiments: (i) raw data acquired by the applied PMD and TestOptimizer, (ii) truly

relevant subroutines filtered by manual analysis of the raw data, and (iii) their relative

ratios. For the first part, we evaluated all the identified potentially reusable common

subroutines with the AVQ metric. In the second part of Table 8.2, the manual analysis

described in the previous subsection excluded irrelevant results and we evaluated only truly

relevant candidates for reusable subroutines using the same metric. In the last section of

Table 8.2, we calculated the relative ration of relevant candidate subroutines. We used the

same organization (raw data, truly relevant subroutines and their relative ratio) also for

Table 8.3, but with evaluated by the ASQ metric.

For experiments with all the test suites except the test suite 2, we set the length-

Weight parameter to 0.9 and testCountWeight parameter to 0.1. However we wanted

to emphasize the length of candidate sequences in the test suite 2 so we set the length-

Weight parameter to 0.95 and testCountWeight parameter to 0.05. Apart from that,

we set the chromosomeMode to CHROMOSOME AUTO and iterationsCount to 5.

During the analysis, we considered only candidate sequences whose length was longer

or equal 3 test steps, i.e., p >= 3. For the verification with the direct analysis of repetitive

fragments using the PMD tool, we used the standard configuration from Eclipse (Kepler

edition 2016). For PMD, we also set the minimal length of common code blocks to three.

Based on the findings presented in Tables 8.2 and 8.3, we can make several conclusions.
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Table 8.2: A comparison of TestOptimizer results with PMD by AVQ metrics.

Script
Set ID

AVQ for
PMD

AVQ for
TestOptimizer,
signatureLevel
= 0

AVQ for
TestOptimizer,
signatureLevel
= 1

AVQ for
TestOptimizer,
signatureLevel
= 2

Raw data
1 320 363 176 98
2 502 1421 798 181
3 324 197 183 66
4 700 652 312 120
5 592 438 288 158

Truly relevant potential subroutines after manual analysis
1 215 233 172 96
2 411 671 798 162
3 179 154 179 63
4 312 425 312 112
5 282 259 284 155

Relative ratio of relevant potential subroutines
1 68.0 % 64.2 % 97.7 % 98.0 %
2 81.9 % 47.2 % 100.0 % 89.5 %
3 55.2 % 78.2 % 97.8 % 95.5 %
4 44.6 % 65.2 % 100.0 % 93.3 %
5 47.6 % 59.1 % 98.6 % 98.1 %

Considering the initial data without further assessment of the relevance of the found

potential reusable subroutines, PMD achieves better results in average based on the AVQ

metrics on the experimental sets of automated tests, TestOptimizer can compete for the

PMD tool only with the lowest signatureLevel. However, PMD was worse in the case

of the second script set. We analyzed a root cause of this effect. The reason was, that

TestOptimizer selected an ideal test with many common test steps as the chromosome,

which resulted in a high count of valid subroutines.

After the manual analysis, assessing the real relevance of the findings, the AVQ metrics

show that TestOptimizer produces a comparable count of relevant potential subroutines

(signatureLevel = 1 and 2) for an automated test script optimization than PMD but

with a better relevance (RQ 4). When we compare relative ratios of relevant poten-

tial subroutines, PMD reaches an interval approximately between 45 and 85 %, whereas

TestOptimizer reaches an interval 80 up to 100 % for signatureLevel equals to 1 and 2.

Similar effect can be observed for the ASQ results (Table 8.3, part for Raw data).
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Table 8.3: A comparison of TestOptimizer results with PMD by ASQ metrics.

Script
Set ID

ASQ for
PMD

ASQ for
TestOptimizer,
signatureLevel
= 0

ASQ for
TestOptimizer,
signatureLevel
= 1

ASQ for
TestOptimizer,
signatureLevel
= 2

Raw data
1 40 60.5 35.3 18.9
2 167.3 355.3 199.5 90.5
3 36 49.3 43.5 24.8
4 140 163 122 60
5 74 109.5 48 39.5

Truly relevant potential subroutines after manual analysis
1 26.9 38.8 34.7 18.4
2 137 167.8 199.5 81
3 19.8 38.5 42.8 23.3
4 104 106.3 122 56
5 47 64.8 47.3 38.8

Relative ratio of relevant potential subroutines
1 67.2 % 64.2 % 98.1 % 97.4 %
2 81.9 % 47.2 % 100.0 % 89.5 %
3 54.9 % 78.2 % 98.5 % 93.9 %
4 74.3 % 65.2 % 100.0 % 93.3 %
5 63.5 % 59.1 % 98.6 % 98.1 %

Without subsequent manual verification the relevance of potential common subroutines for

signatureLevel = 0, TestOptimizer achieved better results than PMD. For the analysis

with a higher of detail at signatureLevel = 1 and 2, it might seem, that the PMD tool

performed better.

However, when subject matter experts analyzed the results returned by the TestOp-

timizer and PMD and excluded all irrelevant potential common subroutines (presented

in “Truly relevant potential subroutines after manual analysis” sections of Table 8.2 and

Table 8.3), different conclusions can be made:

1. The finest level for signatures (signatureLevel = 2) is very specific, which prevents

TestOptimizer from finding candidate subsequences that occur in more analyzed

automated test scripts. TestOptimizer at this level also considers the specific testing

data being used in actions. Such data do not repeat usually across the analyzed

scripts, for example, consider a particular combination of a username and password.

As a result, at this level, TestOptimizer locates a lower number of potential common
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subroutines than PMD (RQ 4).

2. The analysis of data after excluding irrelevant potential common subroutines shows

that the initial signatureLevel = 0 is too abstract and the TestOptimizer finds a

high number of common subroutines that are not relevant from the test automation

point of view, and thus it decreases the efficiency of the whole approach. Analyzing

the test script source code at this level makes sense in cases when the user wants to

check whether unknown test suites may contain some reusable routines to process

it later on at a different level but it is not practical from the refactoring suggestion

point of view.

3. Experiments yield signatureLevel = 1 as the best option when considering the level

of abstraction to the relevance of the suggestions. The values of AVQ and ASQ met-

rics show that TestOptimizer is very efficient at this level and identified potentially

reusable candidates are relevant. Moreover, the overall results of TestOptimizer are

better than results returned by the PMD tool when compared at the middle level of

abstraction (RQ 4).

4. When focused on a structure of automated test scripts and their specific context (see

Table 8.2 and 8.3, the section “Relative ratio of relevant potential subroutines”),

we can conclude that the TestOptimizer framework at signatureLevel = 1 and 2,

identifies more relevant results than the general search for common code fragments

by the PMD (RQ 4).

The results of experiments with the initial prototype demonstrated that TestOptimizer

finds and localizes more relevant potential reusable subroutines, while the general PMD

tool with a direct analysis simply reports on the number of sequences (RQ 1, RQ 4).

Results provided by the PMD were less relevant from the automated test semantic view-

point because it mismatches commands having a completely different semantic meaning

for automated test steps and considers them as an identical command across the identified

set of potentially reusable subroutines (RQ 4).

To answer RQ 1 in more depth, we need to answer two sub–questions: (i) are the

suggested reusable subroutines meaningful from an automated test script refactoring point

of view, and (ii) is the original functionality of automated tests preserved? Regarding the

first sub–question, we conducted a manual review, which task was to exclude invalid or

irrelevant subroutines. Relative ratios of relevant potential subroutines show that TestOp-

timizer meets this requirement. For the problem of an intact functionality of automated

tests, we proposed a verification of the method by a direct comparison of test runs with

SUTs. We ran all tests with stable SUTs prior to the optimization, recorded test results

and then, we ran all tests after the optimization made in accordance with TestOptimizer

suggestions (after the manual analysis of relevance of the tests) again. Afterwards, we
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Table 8.4: An efficiency of TestOptimizer in relation to manual processing.

Script
Set ID

ASQ for performed
manual analysis

ASQ for
TestOptimizer,
signatureLevel = 1

ASQ for
TestOptimizer,
signatureLevel = 1,
after manual
revision

1 38.4 35.3 34.7
2 218.1 199.5 199.5
3 30.1 43.5 42.8
Script
Set ID

Average time spent
by developers
performing the
manual analysis
[hours]

Time spent using
Test Optimizer
[hours]

Time saved by
using Test Optim-
izer [percentage]

1 3.2 0.9 71.88 %
2 4.1 1.5 63.41 %
3 1.7 0.6 64.71 %

compared test results from both test runs and double–checked that the test results are

identical. We performed these tests for the sets 1–3. Functionality and results of the

refactored automated tests has been maintained.

Regarding the RQ 2 and RQ 3, we focused on testing of the practical applicability of

the method. In this phase, we conducted a comparison of independent manual analyses of

the potential common subroutines being carried out on three sets of the automated test

scripts with the results obtained from the TestOptimizer framework. We evaluated:

1. The relevance of the potential common subroutines found (RQ 2), and,

2. The time savings when using the automated analysis with the TestOptimizer frame-

work (RQ 3).

We asked 5 senior and 25 junior Java developers to carry out the independent review of

the test scripts and to analyze and determine reusable code components. All reviewers were

trained in Selenium WebDriver and test code refactoring principles for test automation. We

did not lay any restrictions on a usage of any refactoring or code duplication search tools

during the manual analysis except the TestOptimizer tool. The results of this experiment

are concluded in Table 8.4.

The Time spent using TestOptimizer column does not include the server computation

time. This experiment showed that:
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1. The scores of relevance expressed by the ASQ metric of both the manual analysis

and the TestOptimizer results are comparable for the automated test script sets used

in these experiments (RQ 2),

2. Employing our approach significantly reduced the time required for processing lin-

early processed test scripts (by 65% on average) (RQ 3).

The measured times are in hours. However, the main advantage and contribution

of TestOptimizer are the following: when the test suite refactoring tasks are conducted

repeatedly, the time savings accumulate during test automation. As a result, such time

savings are then more significant and justify employing the proposed method in software

development projects (RQ 3).

8.3 Experiments With the Final Prototype

Based on the feedback from the first phase of the experiments, described in Section 8.2, we

adjusted the prototype of the TestOptimizer framework (these adjustments are described

in Section 7.4). With this final prototype and we conducted another set of experiments to

provide more data to the research questions RQ 1 and RQ 4 (already addressed in the

first phase of the experiments) as well as answer the research questions RQ 5 and RQ 6.

8.3.1 Experiment Design

In the second phase of experiments with the final prototype, we analyzed automated tests

created for SUTs with a web–based user interface as well as for mobile applications to test

a practical application of TestOptimizer in different environments.

In addition to the automated tests created in Java, JUnit and SeleniumWebdriver API

used in the first phase of the experiments (Table 8.1), in this phase, we used another set of

automated tests for the mobile applications implemented in Java, JUnit and SeleniumWeb-

driver and Appium. Properties of these tests are summarized in Table 8.5. Also here, we

put emphasis on employing automated test scripts from real software projects. However,

recording of user actions in the front–ends of mobile applications is not so straightforward

as in the case of web applications, due to the following possible technical limitations:

1. Different operating systems such as Android and iOS that require to use

different test automation tools producing different test scripts for the same test case.

Furthermore, both platforms may differ in a structure of the mobile SUT and IDs

used.
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2. Native mobile applications on for example an Android platform do not simply

expose their structure and require to use special SDK tools2 to scan and analyze them,

while web–based mobile applications can be simply investigated using a Chrome3

browser.

3. Web–based contexts are not exposed in hybrid applications on real hardware

devices that combine a native with the web–based context within one mobile applic-

ation. The web–based context of applications in a release mode is out a control of

test automation tools.

Moreover, development of web applications is established for the last two decades, but

development of mobile applications is incomparably younger discipline, which also influ-

ences the available test automation tool for the mobile platforms. As a result, test recording

tools are generally less mature and capable than their web counterparts. For these reasons,

we could not use just simply recorded tests we used for the previous experiments but we

had to use automated scripts developed by test developers manually using the descriptive

approach and to simulate naive, sub–optimal programming style in this process. How-

ever, this set–up is perfectly relevant for the experiment, as a number of current industry

test automation projects are challenged by using of this naive, sub–optimal descriptive

programming, having a significant impact on subsequent maintenance of the tests.

Hence, for the experiments, we selected sets of automated tests, in which their de-

velopers have not used advanced approaches as reusable components (objects, functions)

or a page object design pattern to mimic the test recording approach as much as possible.

The automated test scripts were developed directly in Java, JUnit, and Selenium Web-

Driver with Appium. We selected as the test runner again the JUnit framework. Never-

theless, our approach supports TestNG as well and there is no significant difference from

the analysis point of view between these two Java test frameworks.

In this phase of experiments, we followed the same method as described in Section 8.2

to evaluate the correctness of the results for given sets of automated test scripts and to

investigate whether TestOptimizer results are of a higher quality than conventional analysis

that does not reflect specifics of the analyzed problem. Also in this phase, we benchmarked

the TestOptimizer results with the PMD code static analyzer.

The properties of sets of automated test scripts used in this phase of experiments are

summarized in Table 8.5. After analysis by TestOptimizer and PMD, we processed the

results in the same way we did it in the experiments with the initial prototype of the

TestOptimizer. Captured records were manually analyzed by two test automation domain

experts in two phases to exclude irrelevant refactoring suggestions. The manual review

included a cross–check to minimize possible human mistakes.

2https://developer.android.com/training/testing/ui-automator
3https://www.google.com/chrome/
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Table 8.5: Characteristics of mobile test suites used for the experiments with the final
prototype.

Script
Set ID

Language Number of Scripts Lines of Code

6 Java, JUnit
Selenium WebDriver with Appium

54 9727

7 Java, JUnit
Selenium WebDriver with Appium

89 10883

8 Java, JUnit
Selenium WebDriver with Appium

195 33042

9 Java, JUnit
Selenium WebDriver with Appium

263 31561

10 Java, JUnit
Selenium WebDriver with Appium

424 62052

8.3.2 Experimental Results

In the second phase of experiments we aimed at answering the research questions RQ 1,

RQ 4, RQ 5 and RQ 6.

Table 8.6 presents the AVQ values for the result raw data as well as AVQ values for the

results after manual analysis to identify truly relevant potential reusable subroutines. Then,

the table presents relative ratios of raw candidate suggestions and truly relevant subroutine

suggestions. In the Table 8.6, benchmark values for PMD tool are also presented.

Since just the AVQ metric does not express all the aspects of quality of common sub-

routines, we evaluated the results including the results from the benchmark using the ASQ

metric. The Table 8.7 presents the results. Obtained results (Tables 8.6 and 8.7) give

an answer to RQ 1 and RQ 4: TestOptimizer identifies potentially reusable subroutines

that were considered after the manual review as valid. Moreover, relative ratios of relevant

potential subroutines compared to the PMD benchmark indicate that the real relevance of

identified subroutines by TestOptimizer at the signature level equals 1 achieve more than

90 % while PMD only 20 – 70 % (RQ 4).

The second round of experiments showed that in larger test suites (more than 100 tests)

with a highly redundant test steps, in terms of initially suggested potential subroutines

without further analysis of their real relevance, TestOptimizer cannot compete with the

used benchmark, and PMD achieves significantly better AVQ values (for script set ID 9

and 10 in Table 8.6) in comparison to all signature levels used by TestOptimizer. In larger
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test suites, TestOptimizer cannot produce so many combinations of potentially reusable

subroutines as PMD because the overall count of subroutines is determined by a length of

its chromosome and aggregation of the partial results from different runs of the analysis.

After the manual analysis, TestOptimizer achieved better results than PMD in the large

test set 8. The AVQ value for signatureLevel = 0 reached 571 and for signatureLevel = 1

293 but the PMD value was 260.

In contrast to the AVQ metric, the ASQ metric (see Table 8.7) does not indicate a

higher potential of PMD to deliver more fine test script suggestions than TestOptimizer.

After the manual analysis of real relevance of the findings, TestOptimizer shows a better

capability to localize potentially reusable subroutines that are more relevant for the user

(RQ 4). In Table 8.7 for script sets 9 and 10, the ASQ values after the manual analysis

are higher by 25 % percent on average for the most relevant signatureLevel = 1 from the

user point of view. However, we did not observe this characteristic for other smaller test

script sets.

In these experiments, we observed that all potentially reusable routines identified by

TestOptimizer were relevant for the large script sets 9 and 10. This fact is a consequence

of relatively high probability to hit a right combination of test steps for a subsequence in

large test sets and long tests, which is simpler than in short tests in small test sets.

For RQ 1, we carried out similar tests as we did in the experiments with the initial pro-

totype. We manually analyzed the suggestions for reusable subroutines to check whether

they are relevant for an optimization of automated tests. Regarding the preserved function-

ality of automated tests, we conducted two test runs (with the original analyzed automated

tests and with these tests refactored by the suggestions provided by the TestOptimizer after

manual analysis of their relevance) and compared their test results if they match. These

tests were performed for the test sets 6–8. The automated tests kept their functionality

and results.

The experiments showed that balancing lengthWeight and testCountWeight para-

meters play an important and essential role for the resultant quality of candidate sub-

routine suggestions. Since one test step usually occurs in many tests concurrently, for ex-

ample a simple command androidDriver.findElementById("btn1").click(),

the testCountWeight parameter when set to a significant level start to dominate and

TestOptimizer has then a tendency to search for local optimums, i.e., to search typically

only two or three step subroutines. Such subroutines have a huge spread across the ana-

lyzed test suite but on the other hand, those subroutines do not make any sense from test

script refactoring point of view.

Based on the results of experiments with the initial prototype, we preferred the length-

Weight parameter and set it to 0.95 and suppressed the complementary testCount-

Weight parameter to 0.05. We tried also the lengthWeight level at 0.9 and we ran

another round of analysis with the lengthWeight parameter set to 0.995. However, these
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Table 8.6: Comparisons of TestOptimizer results with the PMD benchmark using the AVQ
metric.

Script
Set ID

AVQ for
PMD

AVQ for
TestOptimizer,
signatureLevel
= 0

AVQ for
TestOptimizer,
signatureLevel
= 1

AVQ for
TestOptimizer,
signatureLevel
= 2

Raw data
6 1697 1463 468 86
7 1421 1183 308 106
8 998 1047 302 72
9 1763 944 924 95
10 3480 1912 1045 123

Truly relevant potential subroutines after manual analysis
6 444 609 453 81
7 302 439 302 99
8 260 571 293 69
9 948 748 924 94
10 1117 928 1045 113

Relative ratio of relevant potential subroutines
6 23.2 % 41.6 % 96.8 % 94.2 %
7 21.3 % 37.1 % 98.1 % 93.4 %
8 26.1 % 54.5 % 97.0 % 95.8 %
9 53.8 % 79.2 % 100 % 98.9 %
10 32.1 % 48.5 % 100 % 91.9 %

test runs did not prove that additional increase of the lengthWeight parameter yields a

higher average quality of identified reusable subroutines because all possible major sub-

routines were localized within the suites under test.

We also did not prove our working hypothesis that TestOptimizer may find optimal or

suboptimal solutions within fewer iterations if we prefer the lengthWeight parameter be-

cause it will prefer longer subsequences sooner. Increasing the lengthWeight parameter

above the experimentally determined level (0.05) was counter–productive as TestOptimizer

preferred very long subsequences that occurred only in one test. From additional TestOp-

timizer settings, we set the chromosomeMode to CHROMOSOME AUTO and kept the

major iterationsCount to 5 but increased the count of internal minor iterations to 10 per

one major iteration.

For the subsequent manual analysis, we considered again only candidate suggestion

sequences longer than 2 test steps, i.e., p >= 3. For the PMD toll benchmark, we used

its standard configuration as set in Eclipse IDE (Luna edition). Also in the PMD tool, we
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Table 8.7: A comparison of TestOptimizer results with PMD by ASQ metrics.

Script
Set ID

ASQ for
PMD

ASQ for
TestOptimizer,
signatureLevel
= 0

ASQ for
TestOptimizer,
signatureLevel
= 1

ASQ for
TestOptimizer,
signatureLevel
= 2

Raw data
6 242.4 243.8 91.4 30.3
7 118.4 197.2 51.3 26.5
8 58.7 130.9 37.75 12.0
9 135.6 137.2 136.1 23.8
10 165.7 216.8 105.7 25.5

Truly relevant potential subroutines after manual analysis
6 88.8 101.5 87.7 27.8
7 50.3 173.2 50.3 24.8
8 32.5 71.4 36.6 11.5
9 86.2 106.3 136.1 23.5
10 85.9 116.9 105.7 23.8

Relative ratio of relevant potential subroutines
6 36.6 % 41.6 % 95.9 % 91.7 %
7 42.5 % 37.1 % 98.1 % 93.4 %
8 55.4 % 54.5 % 97.0 % 95.8 %
9 63.5 % 77.5 % 100 % 98.9 %
10 51.9 % 53.9 % 100 % 93.5 %

were interested in code fragments with the minimal length of common steps equal to three.

The experiments with the final prototype showed on the ASQ raw data results that

TestOptimizer achieves better results at signatureLevel = 0, whereas the PMD tools used

as the benchmark achieves better results at signatureLevel = 1 and 2. However, after the

manual review of the results, when irrelevant subroutines are excluded from the result set,

TestOptimizer localizes more relevant subroutines.

The experiments show, that TestOptimizer identifies more truly relevant subroutines

than PMD. Let’s analyze this finding in more depth.

We explain the whole problem on examples of two automated tests taken from a real

test automation project. Listing 8.3.2 and 8.3.2 represent parts of tests that were identified

by the PMD tool as redundant. The majority of these steps are similar and have similar

semantics, but these steps actually test completely different features. Furthermore, they

partially use disjunctive code to test features. If the users decide to replace both fragments

by one routine based on the PMD suggestion, then the user introduces a defect into tests

and one feature will not be covered after this optimization anymore.
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Listing 8.1: First sample Selenium WebDriver test fragment in Java used to illustrate the

issue of false identified common subsequence.

Logger . l og ( ) ;

new HomePage( d r i v e r ) . sync ( ) ;

RDBClient c l i e n t = new RDBClient ( ) ;

Menu menu = new Menu( d r i v e r ) ;

menu . t o g g l e ( ) ;

menu . browseAppl i cat ions ( ) . sync ( ) ;

wait ( 1 0 0 0 ) ;

menu . s e l e c t A p p l i c a t i o n ( ” Connections ” ) ;

menu . s e l e c t D e t a i l s ( ) ;

Links l i n k s = menu . s e l e c t L i n k s ( ) ;

l i n k s . syncPopulated ( ) ;

l i n k s . c r e a t e ( ) . setName ( ” R e l a t i o n a l ” ) . c r e a t e ( ) ;

l i n k s . s e l ec tType ( ”SQL Database” ) ;

l i n k s . s e l e c t O b j e c t F o r R e l a t i o n a l ( ” s t o r e d e n t i t y ” ) ;

l i n k s . s e tTab l eRe l a t i ona l ( ”SAMPLES” ) ;

l i n k s . save ( ) ;

wait ( 1 0 0 0 ) ;

c l i e n t . c reateTab le ( ) ;

menu . t o g g l e ( ) ;

Executor executor = menu . s e l e c t E x e c u t o r s ( ) ;

Listing 8.2: Another test fragment in Selenium WebDriver in Java with similar semantics

but a completely different context.

Logger . l og ( ) ;

new HomePage( d r i v e r ) . sync ( ) ;

Menu menu = new Menu( d r i v e r ) ;

menu . t o g g l e ( ) ;

menu . browseAppl i cat ions ( ) . sync ( ) ;

wait ( 1 0 0 0 ) ;

menu . s e l e c t A p p l i c a t i o n ( ” Connections ” ) ;

menu . s e l e c t D e t a i l s ( ) ;

Links l i n k s = menu . s e l e c t L i n k s ( ) ;

l i n k s . syncPopulated ( ) ;

l i n k s . c r e a t e ( ) . setName ( ”NoSQL” ) . c r e a t e ( ) ;

l i n k s . s e l ec tType ( ”NoSQL Database” ) ;

l i n k s . selectObjectForNoSQL ( ” s t o r e d e n t i t y ” ) ;

l i n k s . setTableNoSQL ( ”SAMPLES” ) ;

l i n k s . save ( ) ;
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wait ( 3 0 0 0 ) ;

TestConection te s tConect i on = l i n k s . te s tConnect ion ( ) ;

Assert . a s se r tTrue ( l i n k s . getMessage ( ) .

conta in s ( ”Table c r ea ted ” ) )

menu . t o g g l e ( ) ;

Executor executor = menu . s e l e c t E x e c u t o r s ( ) ;

Table 8.8 summarizes the conflicts that arise when the user makes a decision to use PMD

suggestion. First issue causes a command RDBClient client = new RDBClient(),

which is an extra command related to the second test. Next conflicts are caused by steps:

links.selectObjectForRelational("stored entity")

and

links.setTableRelational("SAMPLES")

that do not have their counter–parts in the second test and cannot be merged. Last

conflict is the command client.createTable() that is also not present in the second

test and in contrast to that, test steps

TestConection testConection = links.testConnection()

and

Assert.assertTrue(links.getMessage().contains("Table created"))

from the second test are missing. TestOptimizer searches for potentially reusable routines

that are an intersection of two or more tests but not a union like the PMD tool. This

property is essential if the automated test scripts shall be refactored without a loss of test

coverage.

After the analysis of experimental results obtained from application of TestOptimizer

to automated tests created for web–based applications (summarized in Table 8.2 and 8.3)

and for mobile applications (summarized in Table 8.6 and 8.7), we can make the following

conclusions:

1. The first level of the signature corresponding to signatureLevel = 0 is excessively

abstract and cannot be used for the suggestions for a test script refactoring. Exper-

iments with larger test suites (> 100 tests) with highly redundant test steps showed

that PMD finds significantly more duplicates, i.e., potentially reusable routines, than

TestOptimizer. However, we investigated after the manual analysis that a usability

of such duplicates in terms of reusable routines is low, and the user is overloaded by

data to process and analyze manually, which significantly decreases the user comfort

of the process.
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Table 8.8: Conflicts in reusable routines based on the PMD tool suggestions.

Reusable Routine Created According to PMD Suggestions Status

Logger . l og ( ) ; Valid step

new HomePage( d r i v e r ) . sync ( ) ; Valid step

RDBClient c l i e n t = new RDBClient ( ) ; Conflict

Menu menu = new Menu( d r i v e r ) ; Valid step

menu . t o g g l e ( ) ; Valid step

menu . browseAppl i cat ions ( ) . sync ( ) ; Valid step

wait ( 1 0 0 0 ) ; Valid step

menu . s e l e c t A p p l i c a t i o n ( ” Connections ” ) ; Valid step

menu . s e l e c t D e t a i l s ( ) ; Valid step

Links l i n k s = menu . s e l e c t L i n k s ( ) ; Valid step

l i n k s . syncPopulated ( ) ; Valid step

l i n k s . c r e a t e ( ) . setName ( ” R e l a t i o n a l ” ) . c r e a t e ( ) ; Valid step

l i n k s . s e l ec tType ( ”SQL Database” ) ; Valid step

l i n k s . s e l e c t O b j e c t F o r R e l a t i o n a l ( ” s t o r e d e n t i t y ” ) ; Conflict

l i n k s . s e tTab l eRe l a t i ona l ( ”SAMPLES” ) ; Conflict

l i n k s . save ( ) ; Valid step

wait ( 1 0 0 0 ) ; Valid step

c l i e n t . c reateTab le ( ) ; Conflict

menu . t o g g l e ( ) ; Valid step

Executor executor = menu . s e l e c t E x e c u t o r s ( ) ; Valid step

103



8. Experiments

2. Experiments with initial and final prototype showed on AVQ and ASQ values of

the results that TestOptimizer achieves the best results when signatureLevel = 1.

Potentially reusable candidate subroutines are relevant and do not contain false test

steps in contrast to the PMD tool. The used benchmark could not compete with

TestOptimizer in sense of solution quality and accuracy (RQ 4).

3. The most specific level of signatures (signatureLevel = 2) is suitable for cases when

the user searches for particular combinations of parameters within a limited set of

actions. For other cases, the middle level is more beneficial and/or if the user does

not search for more specific cases, the general purpose PMD tool may be also helpful

(RQ 4).

4. Changes in the TestOptimizer prototype led to partial improvements observable at all

signature levels but we did not achieve a major enhancement. The current prototype

implementation using the LCS with one chromosome does not allow a significant

improvement as the source set of test steps that could be used in common reusable

routines is limited. Furthermore, the results showed that both tools reached a limit

in a localization of potentially reusable routines in the set of test suites for web–based

SUTs, and further improvements can be potentially achieved in a speed of searching

or an accuracy of the solution rather than in a count of routines or its lengths. Table

8.9 summarizes results of application of the both prototypes to sets of automated

tests 1–5, where L represents the signature level (RQ 4, RQ 5).

The results of both the initial and final prototype proved that the approach proposed

in this thesis achieves better results than a general purpose tool for code static analysis.

Furthermore, it can provide better accuracy and reliability in the sense of usability of

such results. With the proposed approach, users spend less time to review the relevance

of the suggestions for potentially reusable subroutines, which might bring an additional

time–saving. Moreover, this is a critical feature because a small harm in the refactored

test scripts may cause a defect leakage in the application under test.

Based on our observations, we concluded that the user can achieve this level of refact-

oring support with the PMD tool significantly less efficiently (RQ 5). With PMD, there

is much higher risk of a loss of functionality in optimized automated tests.

When we conducted experiments with larger test sets that also contained highly duplic-

ate test steps, we noticed that a manual review and processing of suggested automated test

script duplications may be unfeasible in a real industrial project because of a huge amount

of data. To illustrate this issue, Table 8.11 summarizes the sizes of sets of analyzed data

with duplicates returned by PMD for sets of automated tests 6–9. In these sets, the user

was typically required to manually review hundreds of combinations of test script duplic-

ates. For every combination, the user needs to determine whether a suggested duplicate

test script fragment is valid and matches with other test script duplicates in the given
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Table 8.9: AVQ values for the initial and final prototype applied at sets of automated tests
1–5.

Script
Set
ID

AVQ
L = 0
Initial

AVQ
L = 0
Final

Diff. AVQ
L = 1
Initial

AVQ
L = 1
Final

Diff. AVQ
L = 2
Initial

AVQ
L = 2
Final

Diff.

Raw data
1 363 398 9.6 % 176 188 6.8 % 98 103 5.1 %
2 1421 1385 2.5 % 798 798 0.0 % 181 181 0.0 %
3 197 201 2.0 % 183 177 -3.3 % 66 61 -7.5 %
4 652 670 2.8 % 328 332 1.2 & 120 124 3.3 %
5 438 449 2.5 % 300 317 5.7 % 158 166 5.1 %

Truly relevant potential subroutines after manual analysis
1 233 243 4.3 % 172 182 5.8 % 96 100 4.2 %
2 671 675 0.6 % 798 798 0.0 % 162 162 0.0 %
3 154 157 1.9 % 179 175 -2.2 % 63 58 -7.9 %
4 425 432 1.6 % 312 324 3.6 % 112 116 1.6 %
5 259 270 4.2 % 284 298 4.9 % 155 163 5.2 %

Table 8.10: ASQ values for the initial and final prototype applied at sets of automated
tests 1–5.

IDs ASQ
L = 0
Initial

ASQ
L = 0
Final

Diff. ASQ
L = 1
Initial

ASQ
L = 1
Final

Diff. ASQ
L = 2
Initial

ASQ
L = 2
Final

Diff.

Raw data
1, 6 60.5 66.3 9.6 % 35.3 37.8 6.8 % 18.9 20.2 6.6 %
2, 7 355.3 346.3 -2.5 % 199.5 199.5 0 % 90.5 90.5 0 %
3, 8 49.3 50.3 2.0 % 43.5 40.5 -6.9 % 24.8 23.5 -5.0
4, 9 163 167.5 2.7 % 130 132 1.5 % 60 62 3.3 %
5, 10 109.5 112.5 2.5 % 50 52.8 5.7 % 39.5 41.5 5.1 %

Truly relevant potential subroutines after manual analysis
1, 6 38.8 40.5 4.3 % 34.7 37.2 7.3 % 18.4 19.4 5.4 %
2, 7 167.8 168.8 0.6 % 199.5 199.5 0 % 81 81 0 %
3, 8 38.5 39.3 1.9 % 42.8 42.2 -1.6 % 23.3 22 -5.4 %
4, 9 106.3 108 1.6 % 122 128 4.9 % 56 58 3.6 %
5, 10 64.8 67.5 4.3 % 47.3 49.7 4.9 % 38.8 40.8 5.1 %
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Table 8.11: PMD Analysis Results.

Script
Set ID

Size of Results Set Describing
the Code Duplicates

6 753
7 418
8 815
9 429
10 1265

combination. That means that the overall number of test script fragments to be reviewed

simply exceeds thousands of records and makes the manual processing impossible.

In contrast to that, TestOptimizer cannot produce huge sets of combinations, which is

given by its proposal that is based on the analysis of test steps in one chromosome and

finding its mutual combinations, but at the experimentally determined signatureLevel 1

achieves very good accuracy. The user can then focus on the test script refactoring itself

and can optimize the test suite gradually (RQ 5).

From the experimental results, we could conclude that the proposed method is not

sensitive to the type environment being analyzed and does not depend on the SUT but it

depends more on the semantics of the programming language used in automated scripts

(RQ 6). We analyzed the results that we measured during the experiments on the mobile

platform (Table 8.6 and 8.7) with the web platform (8.2 and 8.3), and we concluded

that the characteristics of TestOptimizer on the mobile platform correspond to results

measured for the web platform. It suggests that TestOptimizer might be even employed

on a cross–platform analysis and optimization (RQ 6), for example, if one set of tests is

implemented in Selenium WebDriver for a web application and another set of automated

tests is implemented in Robotium for an Android mobile application and the UI of the

both applications is principally similar to the extent it can be modeled by the same set of

abstracted test scripts.

However, this cross–platform applicability is a nice–to–have feature of the proposed

approach and has its obvious limits. Namely, if the test steps are not similar to each other

across the inspected test set and the steps represent actions of different environments

with diverse semantics, then TestOptimizer cannot identify potentially common reusable

routines of an identical business process.

8.4 Threats to Validity

Several concerns can be raised regarding the validity of the experimental data provided in

this thesis, which might affect the resultant applicability of the proposed method. In this
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section, we discuss these possible issues and estimate their extent, or describe a mitigation

action taken to minimize these issues.

◦ Relevance of identified potentially reusable subroutines: we let expert test-

automation-code developers conduct the manual analysis of the true relevance of

identified potential subroutines of code fragments. Our primary objective was to

find the best configuration for TestOptimizer in order to conduct an analysis of data

in the most objective way. However, we could not completely suppress subjective

factors during the analysis. We estimate that the subjective factors caused that up

to 10% of the potential subroutines were marked as non–relevant.

◦ Particular test automation platforms used in the experimental data: for

the first set of experiments with the initial prototype, we used 5 sets of real project

test automation code for web applications recorded in Selenium IDE. The tests were

exported to Java for Selenium WebDriver in the JUnit format. For the second ex-

periments with the final prototype, we used the same sets of automated test scripts,

extended by 5 new sets of automated tests, created for applications on mobile plat-

forms. In this case, we used simply structured tests using the descriptive program-

ming (verifying another possible use case of the TestOptimizer framework). Hence

the results are related to these technologies and it might be possible, that the se-

lection of the platforms affects the overall performance of the proposed method. In

other languages, recording styles or test development strategies are used then the

resultant efficiency of the proposed concept may be different.

◦ Size of the experimental data: Another concern may be raised regarding the

size of the sets of automated tests used in the analyses. However, the analysis per-

formed on 10 sets of tests consisting of 1514 individual automated test scripts, having

195896 lines of code in total can be considered as extensive enough sample to draw

conclusions on the effectiveness of the proposed method.

◦ Diversity of the set of automation developers participating in the experi-

ments: In the experiments, we employed the group of 30 test automation developers

for the evaluation of the method efficiency. This size of the group can be considered

as sufficiently extensive. However, only 5 developers were at the senior level and the

majority of developers were at the junior level. The task of identifying potentially

reusable subroutines in the test scripts is also appropriate for the junior expertise

level, but here we might expect that senior test script developers should be faster

in the identification of reusable functions. When we matched the overall perform-

ance of the senior developers with the performance of junior developers in the group,

more experienced senior developers produced more relevant potential subroutines in

less time that was on average by 30 %. However, even with this issue reflected, the

presented results are still valid and significant.
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◦ PMD tool used for comparison with TestOptimizer: A concern can be raised

about the selection of PMD as a benchmark for comparison of the effectiveness and

applicability of the TestOptimizer for refactoring of the automated tests. Other static

analysis tools may yield different results. We selected PMD as the benchmark, as it is

established, well–known, quality method for code refactoring. Moreover, considering

the fact, that another alternative static analysis tools do not employ the principle

abstracted automated test scripts, we can expect the results will be similar in case

of comparison with another code static analysis method.

The results with the initial prototype encouraged us to pursue the experiments and

to improve the whole method including searching for the optimal balance of parameters.

In the experiments with the final prototype, we selected another platform that we used

for the first experiments. We exercised the method with web and mobile applications,

and we also changed the manner how those tests were created and replaced it by a sub–

optimal manual development. Nevertheless, we are aware of the possible issue, that to the

experimental results might be relevant for used test automation platforms (Java, JUnit,

Selenium WebDriver and Appium) and for other platforms, the overall performance may

differ.

8.5 Discussion

The presented method and its implementation on the form of TestOptimizer framework

are directly aimed to search for potential reusable parts in specific test automation code.

Therefore, the achieved results during the search for potential common subroutines are

better than universal tools based on conventional approaches for searching of code duplic-

ations. Moreover, application of TestOptimizer compared with a manual analysis of the

potential reusable parts achieves significant time savings. Although there are still some

possible limitations or features of the proposed method to be discussed.

The overall efficiency of the proposed method in detecting potential common sub-

sequences may be different for various sets of automated tests. In our experiments, we

used real–project automated test scripts on two different platforms to reduce the problem

of non–objective results. Conducting the experiments with automated tests created for

web–based and mobile applications helped us to verify the functionality of the framework

and its applicability on real industry projects.

Based on the conducted experiments, we can conclude that TestOptimizer framework

performs best for:

1. recorded automated tests or automated tests that are coded in a suboptimal and

non–structured (sometimes also called naive) style;
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2. larger test automation projects with test sets containing typically dozens of tests or

more;

3. automated tests that are expected to be run repeatedly over long time spans and

with a need of good internal structure because of an expected maintenance overhead;

and

4. whenever there is a requirement on the repeated refactoring of the set of automated

tests.

The configuration of the Converter module influences what code of automated tests

can be processed and converted to signatures. This feature is one hand a limitation of

TestOptimizer because it can only process programming languages and domain–specific

languages of test automation frameworks, which are currently supported by the Converter

but on the other hand, it allows TestOptimizer to be flexible and dynamically extend a set

of supported languages and work on the different level of parameter details.

The complexity of the problem being solved and the processing time currently limits

the framework to batch processing. The real–time processing on standard hardware con-

figurations and with the prosed architecture is unfortunately not available in the current

version of the method. The batch workflow starts with uploading automated tests to the

TestOptimizer server. Then the analysis is carried out as a batch job, and the user can

send a query to the TestOptimizer server whether the results are ready to be downloaded.

Processing time for the analyzed test sets in our experiments took up to 30 minutes. This

slow response is not suitable for real–time advice in integrated development environments

but as we discussed with several test automation developers, it is not considered as a road-

block for adopting this method in the test automation process. So, real–time processing

remains as one of the features for the future improvements of the proposed method (see

Section 9.2).

In this place we would like to quote one test automation developer giving us the feed-

back on the method during the experiments: ”You say, that it is worthwhile waiting ten

minutes to get the results instead of doing this job manually which can take two days?

You are perfectly right. But only to the point that I would not do the search for refactoring

opportunities for two days. I would just not to bother with it when my boss asks for the new

tests every second hour.” This practitioner’s answer nicely illustrates another benefit of the

proposed method. The TestOptimizer framework can help the more junior test automation

developers to perform the refactoring activities in the situation, when a refactoring would

not be performed at all – leading to significant maintenance costs and possibly even a fail

of the test automation project relatively soon after the initial creation of the automated

tests.

Improvements in the final prototype of TestOptimizer led to the partial improvement of

results (Table 8.9). Since the whole framework is an expert–based system that is sensitive
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to the mutual balancing of parameters used during computations, it is difficult then to

find a general setting that would fit for every possible input test scripts. If it is well–

tuned for some sets of test scripts, it can give significantly worse results on other sets. A

resultant quality of the solution depends on many factors like the size of the test script

being analyzed, a length of tests, a structure of the test set, a redundancy of test steps

and others. Therefore, the settings of TestOptimizer is strongly influenced by the quality

of input training data (in this case, analyzed sets of automated tests). For these purposes,

it would be beneficial to implement an ability for TestOptimizer to self–reconfigure its

settings based on a selection of reusable subroutines by the user.

During the experiments with large test suites (typically more than one hundred tests in

the test suite with a higher level of redundancy of test steps), we observed that the current

prototype implementation with one chromosome is limited in the sense of a possibility to

localize more combinations of test steps in the reusable subroutines. Subroutines consisting

of test steps that are not present in the chromosome cannot be identified, and thus the

resultant size of the set of potentially reusable subroutines is smaller than it potentially

could be in comparison to PMD. We compensate this limitation by an aggregation of results

from several runs with different tests selected as the chromosome. However, this approach

is not efficient from an operational time viewpoint. A possible solution to this problem

may be the usage of multiple chromosomes, so the set of source test steps that are used

covers the majority of test steps in the test suite.

Experiments with large test sets containing many duplications raised an issue of an

ability to perform a manual analysis and processing of automated test refactoring sugges-

tions. On such problem instances, the PMD tool produces a huge number of potentially

reusable subroutine duplications (Table 8.11), which can be very difficult for a manual

analysis as well as their subsequent utilization for the test script refactoring. This issue

raises additional questions: what is an optimal size of the set for test set optimization?

Can it be determined by some characteristics of the test set being analyzed? From our

observations during experiments, hundreds of combinations of test script duplicate from

PMD is too much for manual processing.

Another aspect, playing an important role in the process of optimization of automated

tests is a quality of reusable subroutines. We made a decision to leave the preference

for subroutines types on the user. The user decides what is his/her preference: whether

long subroutines with low occurrences or shorter subroutines with high occurrences or

eventually their combinations. However, the quality of suggestions is not just expressed by

quantitative factors like a length, or a number of occurrences but also by characteristics like

is the suggested subroutines relevant from the test optimization point of view, or are two

suggested subroutines valid from the test case viewpoint (are they identical)? We concluded

that PMD failed in these criteria while TestOptimizer at the experimentally determined

signatureLevel = 1 achieved very good accuracy and the majority of suggestions were

marked as relevant. With the used PMD tool as a common standard for the static code
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analysis and as our benchmark, the user has to resolve many conflicts during the merging

of particular suggestions into one reusable routine.

Last but not least is a question of how TestOptimizer would deal with a full stack

automation involving a test automation of one use case on several platforms with different

scripting languages and automation tools. Such a scenario was not in the scope of this

doctoral project but it is a valid case that would be worthy of further investigations. A

typical case of this scenario is a payment order in an Internet and mobile banking, where

the web part is implemented, for example, in Java with Selenium WebDriver and mobile

parts in Python with WebDriver (Android) and C# with Ranorex4 (iOS). A scan of those

tests can then serve as an auditing mechanism and help to eliminate hidden structural

issues in the test sets. Nevertheless, a direct use case of automated test script optimization

in different scripting languages is not likely.

4https://www.ranorex.com/mobile-automation-testing/ios-iphone-ipad-testing-automation/

111





Chapter 9

Conclusions

In this thesis, we propose a method addressing a major issue in test automation based on

actions in the user interface of the SUT: the maintenance costs of the created automated

tests when the SUT changes in the subsequent phases of the project or product develop-

ment. Generally, this maintenance can be decreased by suitable structuring of the test

automation code and the employment of reusable objects at various levels to minimize the

code’s duplication.

The main goal of the proposed approach is to decrease the expensive and resource–

demanding maintenance of recorded tests or naively structured automated test scripts.

Currently, test automation frequently requires the rapid preparation of automated tests and

their easy updating when the front–end UI of the SUT is changed. These two requirements

are, unfortunately, in practical contradiction.

In a number of industrial projects, the Record and Replay approach and the rapid

unstructured programming of automated tests by an inexperienced team satisfies the first

requirement for the economical creation of automated tests.

The automated identification of refactoring opportunities that is proposed in this thesis

can contribute to satisfying the second requirement for the more economical maintenance

of the created test code. However, the proposed method can also serve experienced test

automation teams to make the refactoring process easier and to audit their test code to

automatically identify new refactoring opportunities.

In the thesis, we introduced a novel approach to source code analysis that is based on

an abstraction of the actions executed by the analyzed tests in the user interface of the

SUT. With this method, test engineers are able to easily identify truly relevant potential

reusable subroutines in the code with a higher accuracy than when using common tools

for code refactoring, such as PMD. Furthermore, the proposed approach cannot cause a

vendor or proprietary solution lock–in problem because it does not create any dependency

of the optimized automated scripts on external tools, and nor is there any library that has

to be compiled with the product code.

113



9. Conclusions

The results of our experiments that were performed on two initial prototypes of the

proposed TestOptimizer framework with automated tests for web–based and mobile applic-

ations are promising. The employment of the framework can reduce the effort needed for

the optimization of large test suites that were recorded and that would need to be updated

manually to make them more robust to changes in the SUT and to decrease the subsequent

potential maintenance costs. An automated process of finding potential common reusable

objects in the developed test scripts helps test engineers identify possible refactoring op-

portunities, which saves the time that would be needed for refactoring. Moreover, it makes

the refactoring process easier for less skilled test automation developers.

The TestOptimizer system takes the specific context of front–end functional automated

test scripts into account so that it can achieve more relevant results than PMD or other

common universal tools for searching for common subroutines in the source code.

During experiments with large test sets having more than 100 tests that also contained

highly redundant test steps, we observed that a manual review of suggestions of reusable

test script subroutines provided by PMD becomes unfeasible because of high amounts of

data to be processed and reviewed. Furthermore, we observed that PMD used as the

benchmark identifies many subroutines that are irrelevant and/or contains invalid steps

causing functional conflicts in the automated tests. The user has to determine for every

subroutine whether it is valid and matches with other reusable subroutines in the given

combination. That means that the overall number of subroutines to be reviewed simply

exceeds thousands of records and makes the manual processing impossible. In contrast

to PMD, TestOptimizer achieves better results of the relative ratio of relevant potential

subroutines: PMD reaches values in the interval between 45 and 85 % on average, whereas

TestOptimizer reaches an interval 80 up to 100 % on average (for signatureLevel = 1 and

signatureLevel = 2).

Although developers have to implement the optimizations suggested by the TestOp-

timizer framework, the achieved time and resource savings are still relevant.

Employing our approach significantly reduced the time required for processing linearly

processed test scripts (by 65% on average). If the test suite, which is a subject of optim-

ization, consists of at least tens of tests with redundant test steps, TestOptimizer saves

time also in a direct comparison to PMD since this tool requires a significant manual

pre–processing before the user can actually start to optimize the test set.

As we explained in the thesis, the framework does not change the source code of the

tests automatically; it only suggests potential common subroutines, which represents an

opportunity for code refactoring.

This semi–automatism is intentional, as the developers maintain complete control over

the source code. Additionally, the manual verification and assessment of the suggestions

provided by the framework is needed (achieving 100% relevance in the suggestions is prac-

tically impossible when we consider the fact that we do not analyze the code solely from
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the text similarity viewpoint, but instead we assess the same actions that the test does in

the actual user interface of the SUT).

The proposed approach employs the signatureLevel concept in which we can specify

the required details of the conducted search for potential common subroutines. During the

experiments, we observed the signatureLevel 1 that defines actions and elements to be the

most efficient level of abstraction. At this level, we do not reflect any particular testing

data.

We designed the TestOptimizer framework as an open and scalable method that pro-

cesses the analyzed automated test scripts in a modular pipeline. It enables future ex-

tensions of the system and the tailoring of the individual units that are participating in

the test code analysis. An integration of the method can be achieved with different IDEs,

such as IntelliJ IDEA or Eclipse, Selenium WebDriver IDE and others, through plugins. If

support for another language, such as Python or C++, is required, it can be achieved by

adding a new parser module into the pipeline. Since the principles of the analysis do not

change, the remaining modules can be used.

9.1 Contributions of this Dissertation Thesis

The contributions of the Dissertations Thesis can be summarized as follows. From the

research and development viewpoint, we can present the following achievements.

1. The proposal of an innovative approach for the automated refactoring of code duplic-

ations in automated tests, which leads to a better structuring of these tests and lower

subsequent maintenance costs. As a consequence, the proposed method enables the

quick development of automated tests combined with the reasonable maintenance of

the created tests from financial and time viewpoints. It also enables the optimization

of the test automation code that is created in the descriptive programming style.

2. The proposal of the model of the automated test scripts allows for the abstraction of

the test automation code. The model uses signatures that are suitable for automated

processing and exhibits two major features:

a) The model removes the dependencies of the proposed approach on a particular

language of the test scripts, test automation framework or test automation API;

and

b) The abstract code model also gives the method better efficiency in its search for

truly relevant potential subroutines, since the actual actions that are performed

by the automated test are analyzed, which is in contrast to the traditional static

analysis approaches that detect potential code duplications.
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3. A set of parameterizable algorithms that search for potential common subroutines

in analyzed test code, abstracted by the defined model. In this section, the genetic

algorithm [95] is adopted to solve the problem.

4. Two functional prototypes (initial and final prototype) of the proposed TestOptim-

izer framework that implement the proposed method and are designed to be highly

applicable for industry projects due to their flexible integration with test–code de-

velopment IDEs and their modular structure, which allows support for other test

automation languages or APIs to be added.

5. Data and practical lessons learned from a set of experiments verifying the applic-

ability of the created framework and from assessing its benefits and possible limits.

These conclusions provide better insight into the framework’s strengths, including

algorithmic configuration, and contribute to its better future applicability.

6. This doctoral project focused on areas that are insufficiently covered by previous

research but that are highly relevant to industrial praxis. While individual prior

attempts to optimize suboptimally structured test automation code can be found,

for instance BlackHorse project [1], the goals and conceptual details of BlackHorse

differ, as explained in the Related Work in Section 3.2. TestOptimizer’s openness,

test automation platform independence, and the independence of the optimized test

automation code supported by the proposed framework represent an original method

in this area.

From an industrial applicability viewpoint, we present the following highlights and

features of the proposed method and the TestOptimizer framework:

1. From a practical viewpoint, the main contribution of the proposed method and de-

veloped framework is that it reduces the refactoring time required by automated tests

to identify and remove code redundancies. Such refactoring is widely recognized as a

best–practice method to improve the robustness of automated tests against changes

in the user interface of the SUT–refactoring contributes to simpler and less resource–

intensive test maintenance.

2. Due to the maintenance effort reduction required to maintain the synchronization

of automated test with the current state of the SUT, the TestOptimizer framework

extends the use of automated tests beyond regression tests with a high number of

test runs; they can be applied to projects with a low number of repetitions to be-

nefit from automation on a broader basis. Because our approach reduces the time

required for test script maintenance and updates, tests can be updated more quickly

following changes in the SUT. Hence, the tests may find regression defects in the

SUT faster. Consequently, this approach introduces an opportunity to improve the
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overall efficiency of the testing process and reduce the production risks arising from

SUT operation because the SUT can be tested more extensively in less time.

3. The method and framework can be used in common projects in the software in-

dustry without any special requirements on a technical equipment nor skill set of

test automation engineers. The proposed method allows even software developers

without any experience with test automation to create tests which are optimized by

the suggestions given by the TestOptimizer framework.

4. In the TestOptimizer framework, the user has full control over the refactoring sugges-

tion process and can tailor it according to the needs of the particular test automation

project.

5. The TestOptimizer framework can be used to refactor and subsequently optimize

recorded automated tests or suboptimally structured tests created by descriptive

programming methods. In addition, it can be used as a support tool to conduct

audits of automated test scripts created by more sophisticated methods.

6. The TestOptimizer framework is platform–agnostic and can be used to refactor user–

interface–based automated tests created for web applications as well as for mobile

or thick–client applications. The current final prototype of the framework provides

support for Java, Selenium WebDriver for web applications and Appium for mobile

applications. Due to the modular framework structure the, adding support for an-

other test automation language or API simply involves creating another Converter

module.

9.2 Future Work

Currently, we are working on improving several areas of the proposed method and frame-

work and on adding future features. First, are developing a future extension (TBD) to

the Converter module that would be capable of parsing the latest features in Java 8 and

9 (for example, lambda functions and factory methods) and creating abstractions based

on the code written to those Java specifications. Furthermore, our goal is to continuously

improve the selection of a set of prospective tests that may help to achieve better results.

Moreover, we plan to enhance the abstraction layer to work with recent tests written

in asynchronous JavaScript. Although JavaScript syntax is similar to Java syntax, the

TestOptimizer framework cannot process the test scripts because it does not support the

features for synchronous test execution, such as callbacks, promises or arrow functions.

Last but not least, there is a need to optimize computations related to the analysis of the

automated test scripts to obtain relevant results at a speed closer to real time. Such an
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improvement would result in increased user comfort and further improve the applicability

of the method.

A potentially very promising feature is fully automated optimization that requires no

human intervention. This feature would allow the system to scan the recorded or generally

available tests and propose (i) an optimal test structure and (ii) optimal system test cover-

age when attached to a model of the SUT. Achieving fully automated optimization requires

solving a number of issues, such as having a testing context available (i.e., a knowledge of

test requirements and their relations to tests that influenced the initial test proposal and

the structure of test suites). However, due to the complexity of the problem, fully auto-

mated test optimization is outside the scope of this doctoral project. We plan to perform

future research and development in this area.

Another field of interest would be a TestOptimizer extension to integrate it with main-

stream Integrated Development Environments (IDEs) and version control systems. This

feature would simplify working with the tool and allow it to become an essential part of

the test development process. Tight integration with IDEs is another possibility for future

improvements, as is adding support for other test execution engines such as Mocha and

automation frameworks such as the Robot framework.

Last but not least, the usability of the method rises significantly when it can produce

results in real time. The current implementation of the framework does not support parallel

processing; however, adding support for parallelism is a source of major potential future

improvements. Current technologies such as Apache Hadoop allow the processing of large

amounts of unstructured and distributed data; thus, finding a mechanism to segment the

analyzed automated test sets into parts that can be processed in parallel or finding ways to

run the analysis in parallel on multiple nodes would improve the TestOptimizer response

time.
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[35] Garćıa, B. Contribution to the Automation of Software Quality Control of Web Ap-

plications. Dissertation thesis, Universidad Politécnica de Madrid, Spain, 2011.
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