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Abstract

The current development of computer networks brings convenience and comfort to the
users. Unfortunately, the computer networks are increasingly attacked, which poses secu-
rity threats to the legitimate users. Nowadays, the network security focuses primarily on
detecting the malicious activities to mitigate the attacks. These security measures may be
effective in a short time, however, in a long time the adversaries adapt and learn how to
overcome the security measures. Therefore, it is necessary to deploy the defense measures
strategically, taking into account the attacker’s adaptation in the long run.

Game theory provides strong theoretical and mathematical foundation to model ad-
versarial decision-making problems, and algorithms to compute strategies for the involved
parties. We can use game theory to model the security configuration problems, where the
network administrator selects configuration actions for the network(s) that he protects, and
the attacker chooses an attack plan for each of the observed network.

This thesis presents a specific game model for the security configuration problems to
model two specific problems. The first problem focuses on strategically configuring and
deploying honeypots (fake services used as decoys) that are used in the networks to detect
and/or delay ongoing attacks. We use attack graph, a compact representation of all possi-
ble action sequences to compromise the network, to represent the attacker’s set of attack
plans. The second problem focuses on the data exfiltration detection in the computer net-
works. The network administrator configures the detectors (selects the thresholds), while
the attacker chooses the amount of data to exfiltrate in each time step.

The challenges stem not only from appropriately capturing the problem essentials of the
problem in the game models but also from computing the strategies of the players in such
large and complex games. In both of our problems we use compact representations of the
attacker’s possible attack plans and develop algorithms that work over these representations.
We develop novel suboptimal algorithms for both problems that scale better than the exact
algorithms. We experimentally analyze the scalability of the algorithms and the quality of
the produced strategies. For one of the problems we compare the optimal strategies with
the human behavior and analyze the differences. Finally, we also demonstrate how game
theory can be used to answer interesting and important questions to the network security
researchers.
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Abstrakt

Vývoj všudepř́ıtomných poč́ıtačových śıt́ı přináš́ı uživatel̊um pohodĺı. Śıtě čeĺı neustále ros-
toućımu počtu útok̊u, které uživatele těchto śıt́ı ohrožuj́ı. V současnosti se śı̌tová bezpečnost
soustřed́ı hlavně na detekci a zmı́rněńı zlomyslných aktivit. Tyto bezpečnostńı techniky jsou
efektivńı kráktodobě, ale útočńıci se přizp̊usobuj́ı a uč́ı se tato opatřeńı překonávat. Proto
je d̊uležité nasazovat bezpečnostńı opatřeńı strategicky a brát v potaz jejich dlouhodobý
efekt a přizp̊usobivost útočńık̊u.

Teorie her nab́ıźı teoretické a matematické podklady pro modelováńı hráč̊u v rozhodovaćıch
problémech a zároveň i algoritmy pro výpočet strategíı pro zúčastněné strany. Teorie her
může být použita pro modelováńı problému bezpečnostńı konfigurace, kde śı̌tový admin-
istrátor vyb́ırá konfiguraci śıtě, kterou bráńı, a útočńık vyb́ırá útočný plán, který vykoná
v pozorované śıti.

Tato práce představuje obecný herńı model pro problémy bezpečnostńıch konfiguraćı a
aplikuje ji na dva konkrétńı bezpečnost́ı problémy. Prvńı problém se soustřed́ı na strategické
nastaveńı honeypot̊u (falešných ćıl̊u) v poč́ıtačových śıt́ıch pro detekci nebo zpomaleńı útok̊u
na śıtě. Útočńık zde vyb́ırá plán útoku podle útočného grafu, který kompaktně reprezentuje
všechny známé zranitelnosti zař́ızeńı v śıti. Druhý problém se soustřed́ı na detekci exfiltrace
dat v poč́ıtačových śıt́ıch. Śı̌tový administrátor konfiguruje detektory (voĺı prah na množstv́ı
odeslaných dat) pro každé zař́ızeńı, kdežto útočńık vyb́ırá množstv́ı exfiltrovaných dat v
každém časovém okně.

Náročnost této práce spoč́ıvá nejenom ve správném zachyceńı podstatných aspekt̊u
problémů v herńım modelu, ale také ve výpočtu hráčových strategíı v komplexńıch herńıch
stromech, které často rostou exponenciálně s velikost́ı zadaného problému. Práce využ́ıvá
kompaktńı reprezentace útočńıkových strategíı a představuje herně-teoretické algoritmy,
které pracuj́ı s těmito reprezentacemi. Představujeme nové suboptimálńı algoritmy pro
obě dvě instance problémů, které se škáluj́ı lépe než ty exaktńı. Experimentálně analyzu-
jeme škálovatelnost algoritmů a výkonnost vypočtených strategíı. Dále ukazujeme, jak lze
využ́ıt teorii her ke zodpovězeńı d̊uležitých výzkumných otázek pro odborńıky v oblasti
zabezpečeńı poč́ıtačových śıt́ı.
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Chapter 1

Introduction

Computer systems play a critical role in daily life, commercial interests, and military op-
erations. System security configuration is crucial to protect the computer systems against
sophisticated intruders including both criminal organizations and state actors is one of the
most important challenges for national security. Network administrators often face chal-
lenging decisions in how to assess the effectiveness of security configurations, and how to
optimize the way these configurations are selected and deployed for several reasons. The
networks complexity is constantly increasing which dramatically increases the defenders’
possible configuration space to consider. The automated tools of the adversaries become
more sophisticated and strategic in compromising the networks. Defenses that appear to be
effective in the short term may become less effective as strategic attackers learn and adapt
to the latest security policies.

Although there is an increasing volume of research in computer network security, the
main focus of the research is on specific technical methods and identification of vulnerabil-
ities, and the suggested approaches often lack rigorous foundations and detailed modeling
of the adversarial interaction between defenders and attackers. This makes it difficult to
compare the effectiveness of different security measures and to select the most suitable
combination of security measures to protect a computer system or network. The lack of the
rigorous foundations is mostly caused by the complexity of the domain and its openness –
in real-world conditions, there are endless options available to the attackers that can never
fully fit into one formal model. In addition, computational scalability of solution methods is
a significant problem for the existing formal models, which often cannot scale to analyzing
realistic networks. In spite of these findings, it is still important to create formal models of
specific situations in the network security and seek for theoretically sound solutions with
well-defined performance metrics.

Algorithmic game theory provides an important theoretical framework for modeling the
interaction between two or more rational decision-makers (players) in a shared environment.
Game theory models the actions, that the players can perform as well as the (limited)
information that each player has about the state of the world, which allows explicit reasoning
about the information manipulation in adversarial settings, including deception and the use
of randomized strategies. Game-theoretic algorithms have been shown to outperform people
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in specialized tasks, such as winning in the chess game and recently in go ([Silver et al.,
2017]) or poker ([Moravč́ık et al., 2017]). Game theory has also been applied in many
physical security scenarios, such as deploying checkpoints at LAX international airport
([Pita et al., 2008]), scheduling air marshals to flights over US ([Tsai et al., 2009]), securing
the maritime transit ([Vaněk et al., 2010]), catching the poachers ([Fang et al., 2017]), or
protecting computer networks ([Mitchell and Healy, 2018]).

We use game theory to model the security configuration problem, where the defender
selects system configuration actions such as configuring intrusion detections and filters.
The attackers selects an action from a wide range of attack actions such as scanning the
network, exploiting vulnerabilities or exfiltrate valuable data. Different security policies
and configurations have varying costs and effectiveness against specific types of attacks.
The defenders aim to find a strategy with the best trade-off between investing the limited
resources into the security measures and their contribution that meets the possible con-
straints (e.g., maximal false-positives rate) and protects the company assets against the
rational attackers.

In this thesis, we present two game-theoretic models for two different security configura-
tion problems. In the honeypot selection problem, we focus on strategically configuring the
honeypots that are deployed into the networks protected by the defender. In this model,
the defender chooses a set of honeypots and their configurations, while the attacker selects
attack plans to attack the networks. The set of plans for the attacker we represent using
attack graphs that compactly represent a rich space of sequential attacks for compromising
a specific computer network. They can be automatically generated based on known vulner-
ability databases. As far as we know, we are the first to combine the complex attack graphs
with game theory to compute the defense strategies. The only previous work known to
us is in [Bistarelli et al., 2006a] that uses defense trees ([Bistarelli et al., 2006b]) to decide
what defense actions should the defender perform. However, in their game the player’s have
perfect information about the network states and the defense trees are less complex and
are created manually.

The second problem focuses on data exfiltration problem, specifically, on threshold se-
lection problem for the detectors. The network administrator selects the thresholds on the
total amount of data, that the hosts in the network can upload, while the attacker chooses
the amount of data to exfiltrate in each time step. We also analyze the impact of the
attacker’s ability to influence the user’s standard traffic at the host during the exfiltration
period on the optimal defense strategies. The model is experimentally analyzed on real-
world data from large enterprise with 5864 users connecting to a Google drive service for
12 weeks.

One of the main contributions of the thesis is the game models for the above-mentioned
problems. Additionally, we present a more general model that captures the essentials of
the security configuration problems that can be used to model other similar configuration
problems. The model is sufficient to capture the attacker’s uncertainty of the attacked
system as well as the defender’s information manipulation for the attacker. We analyze the
properties and limitations of the general game model.

Computing the solutions to specific game models has a great value for the researchers
and security companies. It allows not only finding the optimal strategies to configure the

2
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systems to mitigate the attacks but provides a quantitative measure of security and allows
analyzing the shortcomings of the currently deployed non-strategic defenses.

1.1 Research Goals of Thesis

Based on the motivations mentioned earlier, we state the research questions:

What game structure is appropriate for system configuration problem? We an-
alyze how to represent in a game the information asymmetry of the problem, players’
prior beliefs, and uncertainties. We further put several key requirements that our
model should meet to be realistic. (i) It should inherently model the attacker’s un-
certainty about an attacked system and its configuration, while the defender knows
both. (ii) We require Kirchhoff’s principle that the attacker may have access to all
the algorithms that the defender uses as well, which avoids the security through ob-
scurity. (iii) We require that our model explicitly captures the player’s information,
reasoning, and possible deception.

What algorithms can be used to solve our game models? Game theory provides an
extensive library of algorithms for computing the desired solution concepts, from the
most general games to specific games. Can we use existing algorithms to solve our
game? What heuristic or approximation approaches are appropriate to solve larger
games faster at the cost of loosing the optimality?

How to include compact representation of attacks into the games? Attacker’s com-
plex space of plans is usually represented using a compact data structure, such as at-
tack graphs or parameters of a Markov decision process. Games often require listing
all available actions of the players. The question is, whether it is possible to solve the
game without listing the attacker’s often exponential set of actions for the game.

How game theory can be useful for network security researchers? We use game
theory to answer various questions, e.g., what happens if some of the assumptions
are not met, or what is the defender’s utility loss for optimizing the strategy against
different attack model that the one according which the real attacker attacks. Game
theory is suitable to answer these and other exciting questions.

1.2 Contributions of the Thesis

Game models for security configuration problem. We introduce a specific game model
to capture the interaction between a defender who configures a set of systems, and an
attacker who attacks them based on a complex decision-making process. Our model
assumes realistic properties, such as (i) that the attacker has uncertainty about the
possible systems that he attacks. (ii) The game explicitly models the information and
reasoning of each player during the game and allows the information manipulation
of the defender to possible increase the attacker’s uncertainty about the state of the
attacked system. (iii) Finally, we assume Kirchhoff’s principle, assuming that the
settings of a system (the game, the algorithms, and even the defense strategy) are
known to the attacker.

3
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Game models for two specific security problems. We present two novel game mod-
els for two current network configuration problems. (i) The first problem focuses on
honeypot selection problem for the network administrator. Deciding how to optimally
configure honeypots is a difficult task because it requires estimating how rational
attacker can react to these honeypots and how they reason about the observed infor-
mation about the networks. (ii) The second demonstration applies our game model to
threshold selection problem for data exfiltration detectors. Here, the network admin-
istrator chooses thresholds on the amount of data-upload for the hosts with a false
positive rate constraint.
We use these models to compute the optimal and near-optimal defense strategies
and experimentally evaluate their performance. We show how game theory can be
helpful to answer various research questions, such as impacts of incorrectly assuming
certain properties. Being able to solve these games, allows us to improve the defense
against the adversary by concluding how the network administrators should behave,
by comparing the current strategies to optimal defense strategies and analyzing for
the shortcomings in the strategies.
For the honeypot selection problem, we additionally conducted a survey to learn the
humans’ behavior in a simplified version of this problem and analyze the differences
between their strategies and the optimal defense strategies according to the game
theory.

Algorithms to compute the attacker’s optimal plans. One of our main contributions
is advancing the algorithms to solve the presented games. For honeypot selection prob-
lem, (i) we present novel algorithms that compute the attacker’s optimal contingency
attack policies, that describe how to optimally attack the networks. The algorithm
formulates the problem as finite-horizon partially observable Markov decision process
and uses search algorithms with various optimization techniques to compute the op-
timal attack policy. To solve the game, (ii) we develop set of heuristic algorithms
to compute defense strategies, that are based on more restrictive game assumptions,
such as zero-sum utilities, the attacker having perfect information about the network.
In the threshold selection problem, the attacker is represented with infinite-horizon
partially observable Markov decision process, for which (iii) we extend the Heuris-
tic Search Value Iteration algorithm to compute and iteratively improving defender’s
strategy. For all algorithms we quantitatively compare the scalability of the algo-
rithms and analyze the performance of the computed strategies. We show, that game
theoretic algorithms often outperform baseline strategies.

1.3 Organization of the Thesis

The thesis is organized as follows:

• In Chapter 2 we present technical background, such as Markov decision processes and
game theoretic definitions and algorithms, that we use throughout the thesis.
• In Chapter 3 we present a specific game model that captures the essentials of the

security configuration problem. We extend this model to two specific security config-
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uration problems. We analyze and discuss the game model properties and assump-
tions.
• Chapter 4 states Honeypot Configuration Problem and presents game model to solve

the problem. Presents the concept of attack graphs that compactly represent the
library of possible attack plans for the attacker. The optimal, error-bounded and
several heuristic algorithms that compute the defense strategies are described. The
experimental section experimentally evaluates the algorithms, answer various research
questions about the honeypots and model assumptions. Finally, the game-theoretic
strategies are compared to human strategies learned from the conducted survey.
• Chapter 5 present the threshold configuration problem and a game model for this

problem. Two attack models are discussed and algorithms to compute the defense
strategies against these attack models are presented. In the experimental section, the
algorithms are experimentally evaluated using real-world user data.
• Finally, in Chapter 6 we conclude the thesis with the summary of the work, list of con-

tributions, authors published, and the list future possible directions. In Appendices,
the reader can find list of notations and abbreviations used in the thesis.
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Chapter 2

Background

In this chapter, we introduce fundamental concepts, mathematical frameworks and algo-
rithms for decision-making problems used across this thesis. In the first part, we focus on
single-agent decision problems in an uncertain environment. In the second part, we extend
our focus to problems with multiple agents in a common environment. These problems are
more complex, since each agent must consider what the other agent(s) might do in reaction
on the actions of the first agent to optimize his respective expected utility.

2.1 Markov Decision Process

A Markov Decision Process (MDP) is a general framework to model a decision-making
problem for a single agent in stochastic environment. It is a state-based description of
the environment, where the agent has a set of possible actions to perform in each state.
After an action is performed a stochastic event occurs, which chooses a subsequent agent’s
state according to a known probability distribution to the agent. The agent’s motivation
is described with a reward function, which specifies the reward the agents receives for
transitioning from one state to another using given action.

Definition 1 (Markov Decision Process (MDP)). Markov Decision Process is defined as a
tuple 〈S,A, T,R〉, where:
• S is a finite set of states,
• A is a finite set of actions
• T [s′|a, s] is a stochastic transition function specifying the probability of ending in state
s′ if action a is played in state s, and
• R(s, a, s′) is the immediate reward function that the agent obtains if action a is played

in state s and state s′ is reached.

The MDP algorithms aim to compute the optimal policy for the agent given a problem
formalized using MDP. The optimal policy prescribes an action for each state that the agent
to perform to maximize his objective function.

Definition 2 (MDP Policy). Given an MDP 〈S,A, T,R〉, we define policy π : S → A as
a mapping from states to actions.
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Specifying an initial state s0 ∈ S, where the agent performs his first action, applying
policy π proceeds as follows. In s0 the agent performs action a0 = π(s0) and with probability
T [s1|s0, a0] reaches state s1 and receives immediate reward of r0 = R(s0, a0, s1). If s1 is
reached, then the agent performs action a1 = π(s1), reaches state s2 with probability
T [s2, s1, a2] and obtains r1 = R(s1, a1, s2). And the whole process repeats in a similar
fashion. In reality, only one sequence of states will be realized, but to compute the optimal
policy all possible contingencies must be considered.

There are several objective functions typically considered in the literature that the
agent may maximize. An MDP where the agent can perform only H consecutive actions,
after which the MDP terminates, is called finite-horizon MDP. Here, the agent typically
maximizes the expected reward over the horizon of H steps, computed as

E[

H∑
t=0

rt], (2.1)

where rt is the reward at time t. In the infinite-horizon case, where the agents has no
limit on the number of performed actions, the future rewards are typically discounted by a
discount-factor γ ∈ [0, 1). The agents objective function that he maximizes is then

E[

∞∑
t=0

γtrt]. (2.2)

Discounting future rewards has several justifications. First, from the economic perspective
it supports phrase “a dollar today is worth more than a dollar tomorrow”, which states
that an good investment today will augment the invested value in the future. Second,
the far future is more unpredictable and discount captures a small chance that the new
circumstances will prevent the agent to reach the reward. For small discount γ, the agent is
mainly concerned about immediate rewards, while for γ close to one, the agent is motivated
to maximize also the future rewards.

Let us introduce a value function. For a given state and a given policy it returns the
expected reward that the agent obtains if that policy is applied in that state. For infinite-
horizon MDP, the value function is defined as follows:

Definition 3 (Value function). A value function, denoted as V π : S → R is the expected
utility when starting in state s and following policy π thereafter. For infinite-horizon, the
function is defined recursively as

V π(s) =
∑
s′

T [s′|π(s)s, ](R(s, π(s), s′) + γV π(s′)). (2.3)

For finite-horizon case, the value function requires a small modification: (i) discount
factor γ = 1, and (ii) we track the number of performed actions not to exceed the horizon
limit of H steps.

For given MDP instance problem and initial state s0, the MDP algorithms aim to
compute the optimal policy π with the highest value V π(s0). The algorithms often rely
on Markovian assumption, which states that the probability distribution of the stochastic
events depends solely on the state, in which the agent chooses his next action to perform,
and not on the full history of the states that led to the current state.
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2.1.1 Solving finite-horizon MDP - Forward Dynamic Programming

Finite-horizon MDPs can be solved using basic forward dynamic programming (FDP)
([Bertsekas et al., 1995]) algorithm. It is a variant of depth-first search, which traverses
the state-space from the initial state s0 ∈ S forward. In every state s ∈ S it evaluates the
expected reward of playing each action a ∈ A after which the optimal policy is assumed to
be played. After all actions in a state are evaluated, the optimal policy chooses an action
with the highest expected reward.

During the MDP state space traversal, the same state may be reach via different paths.
To avoid computing the value function of the same state multiple times, a caching (or
memoization, dynamic programming) technique can be used to remember the reward of
evaluated states in the past for future uses. Another speed-up technique uses fast lower
and upper bound computations for actions in a state. If the upper bound of one action a
is lower than the lower bound of action b, then action a can be pruned out, since it will
definitely not be the optimal action to perform.

This algorithm finds optimal policy and always terminates in finite number of steps.
It is so, because player has finite number of actions in each state and only finite-horizon
MDP is considered. We present this algorithm in detail in Section 4.6.1 on a specific MDP
problem and develop heuristic functions to improve its speed.

2.2 Partially Observable Markov Decision Process

Partially observable MDP (POMDP) generalizes MDP by disallowing the agent to directly
observe the underlying state. The agent maintains a probability distribution over the set
of states based on a set of observations and observation probabilities. There are variety
of applications of the POMDP in artificial intelligence [Kaelbling et al., 1998, Cassandra,
1998].

Definition 4 (POMDP (from [Smith and Simmons, 2004])). Partially Observable Markov
Decision Process (POMDP) is defined as (S,A, T,R,O), where S,A, T,R are the same as
in MDP and O[o|s′, a] is a stochastic observation function that specifies the probability of
receiving observation o if action a is played and state s′ is reached.

The agent’s probability distribution over the set of possible states is called agents belief,
denoted as b ∈ ∆(S) = B, where B denotes full belief-space. When action a is performed in
b, the agent observes o and updates his belief to b′ using Bayesian rule:

b′(s′) =
1

η
O[o|s′, a]

∑
s∈S

T [s′|s, a]b(s), (2.4)

where η =
∑

s′∈S O[o|s′, a]
∑

s∈S T [s′|s, a]b(s). Since in POMDP the agent may not be
certain of the current state, the policy prescription maps to each belief an action π : B → A.

2.2.1 Heuristic Search Value Iteration (HSVI)

In this thesis, we use a well established Heuristic Search Value Iteration (HSVI) [Smith
and Simmons, 2004] algorithm that finds ε-optimal policy in discounted infinite-horizon
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POMDP. The algorithm maximizes value function V ∗ : B → R and approximates corre-
sponding ε-optimal policy with maximal ε error in initial belief b0 ∈ B of given POMDP.
We can then derive the optimal action to play in each belief state, i.e. the action π(b), by
solving the following equation

π(b) = argmax
a∈A

[∑
s∈S

∑
s′∈S

T [s′|a, s]b(s)R(s, a, s′) + γ
∑
o∈O

O[o|b, a] · V ∗(τ(b, a, o))

]
(2.5)

where V ∗ is the value of the optimal policy and τ(b, a, o) stands for a Bayesian update of
the belief b based on receiving the observation o when action a was performed as described
in Equation 2.4.

Here we describe the basic idea of the HSVI algorithm, which we complement with
illustrations in Figure 2.1. For more detailed explanation of the HSVI algorithm, we refer
the reader to [Smith and Simmons, 2004]. The algorithm maintains the upper and lower
bounds on the optimal value function V ∗ for each point in the belief space B, as depicted
in Figure 2.1a. The horizontal axis represents the belief space B and the vertical axis
represents the expected utility the agent can achieve (or lower and upper bounds on this
utility, respectively). In each iteration, HSVI performs a single simulation, starting from the
initial belief b0, in which the agent performs certain actions and certain obtains observations.
The actions and observations and chosen according to a forward-exploration heuristic, which
aims to maximally decrease the lower and upper bound gap in the initial belief state b0.
Each simulation results in a sequence of belief states, actions and observations for the
agent, as depicted in Figure 2.1b. During the simulation backtrack, the agent updates the
lower bound and upper bounds on V ∗ in the visited beliefs according to Equation 2.5. In
Figure 2.1b we illustrate an example backtrack during which the lower and upper bounds
of b2 are used to improve the bounds of b1 (red colored lines), and those are used to improve
the bounds of b0 (green colored lines). Every iteration the error gap in b0 can only diminish

b0

UB

LB

optimum

(a)

b0

UB

LB

optimum

b1b2
a0, o0a1, o1

(b)

Figure 2.1: HSVI algorithm: (a) initial upper bound (UB) and lower bound (LB) on the
(unknown) optimal value function V ∗. HSVI aims to minimizes the gap between UB and
LB in the initial belief b0. (b) Shows a simulation into depth 2, after which tighter bounds
of LB and UB are computed.
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and when the error gap is less than or equal to ε, the algorithm terminates with ε-optimal
policy.

The outline of the HSVI algorithm is presented in Algorithm 1. First, it initializes the
upper and lower bounds. The lower bound is computed by fixing the policy to play always
action a and chooses such a, that their expected reward is maximized ([Hauskrecht, 1997]).
The upper bound is computed by assuming the agent’s full observability of the states,
which turns to be a MDP ([Astrom, 1965]). Then, the algorithm calls exploration function
in Algorithm 2, which simulates one run of the POMDP into a such depth, that the error
gap weighted by the discount factor γt(UB(b)−LB(b)) is smaller than the desired ε error.
During the backtracking from depth t, the explore function updates the upper and lower
bounds and decreases their gap at every reached belief. The updating functions are more
complex and we direct the readers to see the original paper [Smith and Simmons, 2004] for
more details.

Algorithm 1 HSVI algorithm.

1: procedure HSVI(ε)
2: Initialize the bounds UB and LB
3: while UB(b0)− LB(b0) > ε do
4: EXPLORE(b0, ε, 0)
5: end while
6: return π
7: end procedure

Algorithm 2 Explore subroutine.

1: procedure explore(b, ε, t)
2: if γt(UB(b)− LB(b)) ≤ ε then
3: return
4: end if
5: select a∗, o∗ according to the for-

ward exploration heuristics
6: EXPLORE(τ(b, a∗, o∗), ε, t+ 1)
7: update bounds UB and LB at b
8: end procedure

2.3 Game Theory

So far we focused on optimal decision-making of a single agent in a stochastic environment.
However, the environment may contain other decision-makers, perhaps even adversarial,
that react on the actions carried out by the agent. Game theory is a mathematical frame-
work to model the interaction between two or more independent, self-interested agents
(players) in a common environment. It provides fundamental concepts, guarantees and
algorithms that aim to compute a description of the optimal behavior of the players in a
shared environment with limited information. A game consists of (i) players, (ii) strategies
(actions) available to each player, and (iii) utilities for each player depending on the joint
choices of all players.

2.3.1 Normal-Form Games

One-shot games where the players perform their actions simultaneously are called normal-
form games (NFG). In this thesis we focus primarily on games with two players, defined as
follows:

11
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Table 2.1: An example of simple normal-form game.

Left Right
Up 1,2 3,0

Down 0,0 2,1

Definition 5 (Normal-Form Game (NFG)). A normal-form game is a tuple (N ,A, u),
where:
• N = {1, 2} is a set of players. We also use i to refer to one player and −i to refer

to the opponent of i,
• Ai is a finite sets of actions available to player i,
• ui : Ai × A−i → R is player i’s real-valued utility for each pair of actions of the

players. Each player i maximizes his utility.

Each player i chooses an action ai ∈ Ai. Two-player NFGs are sometimes called bimatrix
games since they can be represented as a matrix where player 1 choose a row of the matrix
and player 2 chooses a column of the matrix. Such example can be found in Table 2.1. Here,
player one chooses between actions Up or Down, while player 2 chooses between actions
Left and Right. Each cell presents the payoff that player 1 and 2 obtain, respectively, if
that outcome is reached. E.g., if player 1 plays Up and player 2 plays Left, they receive
utility 1 and 2, respectively. In NFG the actions are termed pure strategies, denoted as
Π = Π1 ×Π2, where Πi = Ai.

We define mixed strategies for player i as a probability distribution δi ∈ ∆i = ∆(Πi)
over the pure strategies. A solution profile is a pair of strategies (δi, δ−i), one for each
player, where δi ∈ ∆i, for each i ∈ N . The expected utility of player i in solution profile
(δi, δ−i) is ui(δi, δ−i) =

∑
ai∈Ai

∑
a−i∈A−i δi(ai)δ−i(a−i)ui(ai, a−i).

2.3.2 Extensive-Form Game

Now consider a game of chess, where players must act sequentially instead of simultane-
ously. Sequential games can be represented as a matrix game, where an action of a player
states full contingent behavior of the player. In other words, each action (a row or a col-
umn) in a matrix game contains a reactions of the player to all reachable contingencies in
the chess game. Matrix payoffs in such game can be computed by simulating of the pair of
(contingency) actions: a contingency action of the row player against a contingency action
of a column player, and determining which player has won. Obviously, such game repre-
sentation is inefficient and will result in enormously large matrix game, but conceptually it
is possible to capture any sequential game with NFG.

A more compact representation offers an extensive-form game, which inherently captures
the sequentiality of the players. These games can be visualized by a game tree, where each
node is assigned to a player who acts in that node, as depicted in Figure 2.2a. Here, each
player chooses an action, represented by an edge, to play in each of his decision node.

Definition 6 (Extensive-form game (EFG)). An imperfect-information game is a tuple
(N ,A,H,Z,P, u, C, I), where:
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• N = {1, 2} is a set of players;
• H is a finite set of choice nodes in the game. Each node corresponds to a unique

history of actions taken by all players and Nature from he root of the game. Hence,
we use the terms history and node interchangeably;
• Z ⊆ H is a set of terminal (or leaf) nodes;
• Ai denotes a set of all actions of player i. We overload the notation and use Ai(h) ⊆
Ai to represent the set of actions available to player i in node h ∈ H;
• ui : Z → R is a utility function for each player i. Each player maximizes his utility

function;
• P : H → N ∪{c} assigns each node to a player who takes an action in the node, where
c means that the Chance (or Nature) player selects an action in the node based on a
fixed probability distribution known to all players;
• C : H → [0, 1] denotes the probability of reaching node h due to the Chance player.

It assumes, that all other players play all the required actions to reach node h. The
value C(h) is the product of the probabilities assigned to all actions taken by the Chance
player in history h;
• Ii is a finite set of information sets I ∈ I. I is a partitioning over the nodes assigned

to player i {h ∈ H : P(h) = i}. Every information set I ∈ I contains at least one
node and each node belongs exactly to one information set. Nodes in an information
set of a player are indistinguishable to the player. All nodes in h ∈ Ii ∈ I have the
same set of actions Ai(h). Since each history h belongs to exactly one information
set Ii, we overload notation Ai(Ii) to denote the set of actions defined for any node
h ∈ Ii.

We specify ha = h′ ∈ H to be a node h′ reached from node h by executing action
a ∈ Ai(h). The game starts with empty history h = ∅. For history h we denote the sequence
of player i as hi. In this work we deal only with perfect-recall games, where players never
forget the history of their own actions, which can be expressed as ∀h, h′ ∈ I ∈ Ii : hi = h′i.
A game is termed to have stochastic events if in any history h ∈ H in the game the Chance
player P(h) = c is assigned to play; otherwise, the game is without stochastic events.
In perfect-information games all players are certain of their states (each information set
contains exactly one game state). This is the case of games such as chess, go, tic-tac-
toe, etc. If at least one information set contains more than one state, the game is called
imperfect-information. An example of imperfect-information games is poker, battleship
game, etc. A game is called zero-sum if ∀z ∈ Z : ui(z) = −u−i(z); otherwise it is referred
as to general-sum game.

Each normal-form game can be transformed into imperfect-information extensive-form
game. Extensive-form game in Figure 2.2a is identical to the normal-form game in Table 2.1.
Player 1 chooses a row {Up,Down} which leads to an information set I1 ∈ I2 for player 2.
Player 2 cannot observe which action was played and chooses an action from {Left,Right}
to play in information set I1.

The game in our example in Figure 2.2a is imperfect-information perfect-recall general-
sum game. It consists of |H| = 7 nodes and the actions that each player can play are
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(a)

Up Down

Right

Left

Up Down

RightLeft

R1 R2

u1

u2

3

0

2

0

(b)

Figure 2.2: (a) A simple extensive-form game; (b) A simple analysis of information set I1

from (a).

A1 = {Up,Down},A2 = {Left,Right}. Player 1 has one information set (the root of the
game h = ∅), player 2 has one information set I1 ∈ I2 and there are |Z| = 4 leaf nodes.

In extensive-form game, we define strategies similarly to normal-form games. A pure
strategy πi ∈ Πi of player i assigns for each I ∈ Ii an action a ∈ Ai(I), where Πi is
set of all pure strategies. In strategy profile π = (πi, π−i) the player i’s expected utility
ui(π) is computed as an expected utility of the terminal states reached by π. Note, that
more than one terminal node can be reached in strategy with pure strategies because of the
stochastic events of the Chance player. We define mixed strategies δi = ∆(Πi) of player i as
a probability distribution over pure strategies. The player i’s expected utility ui(δi, δ−i) in
strategy profile (δi, δ−i) is the expected payoff of terminal states reached by in this strategy
profile.

Graphical Analysis An information set in EFG with few states and few outgoing actions
can be analyzed graphically. In Figure 2.2b we analyze game in Figure 2.2a. In these plots
player 1 chooses a point on x-axis, which mixes between actions Up Down. For pure
strategies of player 2 (action Right or Left), we depict the expected utility u1 and u2 that
each player obtains. If player 2 plays mixed strategy, the expected utilities of the players are
mixed accordingly. For example, if player 1 plays uniform strategy (middle point of x-axis),
player 2 receives maximal utility by playing action Left (higher on y-axis at the bottom
plot). Using such analysis we can e.g. divide the space into the best response regions for
player 2: in region R1 (resp. R2) player 2’s best response is to play Left (resp. Right)
against the player 1’s mixed strategy. This analysis we be useful for analyzing solution
concept, presented in this chapter.
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2.3.3 Solution Concepts

A solution concept formally describes how a game will be played. Most of the solution con-
cepts make use of best response function BRi(δ−i) that returns a set of strategies of player i
that yield the highest utility for i given that the opponent plays δ−i. We additionally define
ε-optimal version of the best-response function, that returns a set of strategies for player i,
that can be improved by at most 100ε%, if best-response is played instead. Formally,

BRε
i(δ−i) = {δi ∈ ∆i|∀δ′i ∈ ∆i : ui(δ

′
i, δ−i)− ui(δi, δ−i) ≤ ε|ui(δi, δ−i)|}. (2.6)

If δi ∈ BRε
i(δ−i) then by playing any other strategy ∆i the player i cannot improve his utility

by more than 100ε% against strategy δ−i. Setting ε = 0 returns the optimal best-response
strategy. When ε is omitted in BRε

i(), we refer to the optimal best response BR0
i ().

Nash Equilibrium

The most famous solution concept in game theory is the Nash equilibrium (NE), where all
player’s play ε-best response strategy against the opponent’s strategy. Formally,

Definition 7 (ε-Nash equilibrium). Strategy profile (δ1, δ2) ∈ ε-NE belongs to a set of ε-
Nash equilibria, if in (δ1, δ2) both players play best response strategy against the opponents
strategy. Formally, (δ1, δ2) ∈ ε-NE ⇐⇒ ∀i ∈ N : δi ∈ BRε

i(δ−i).

By setting ε = 0 we obtain the exact Nash equilibrium, to which we refer as to 0-NE
(or just NE). Strategy profile in ε-Nash equilibrium is stable since none of the player have
incentive to deviate from that by more than ε. General-sum games may have multiple Nash
equilibria and each equilibrium may result in different utilities to players. However, this
is not the case for zero-sum games, where all NE have the same expected utility to both
players. This utility value is called value of the game, denoted V∗. A strategy profile in
NE of a zero-sum game can be found in polynomial time in the size of a game (tree), e.g.
by formulating it as a linear program and solving it. Computing NE strategy profile of a
general-sum game belongs to harder complexity class PPAD.

Stackelberg Equilibrium

In games modeling security problems the researcher use Stackelberg equilibrium (SE) so-
lution concepts, which is well motivated and justified theoretically and practically (in
[Von Stackelberg, 2010, Tambe, 2011]). In SE one player called leader (with subscript
l) commits to play a strategy δl and publicly announces it. The second player is the fol-
lower (with subscript f) who knows the leader’s strategy δl and chooses a best-response
strategy δf ∈ BRf (δl) to play. This solution concept models a Kirchhoffs’s principle, often
assumed in security problems, which states that the system should be secure even if every-
thing about the system is publicly known. In reality the attackers can learn the defense
strategy either by purchasing identical algorithm used by the defender, or conducting a
surveillance of the defender’s behavior [Tambe, 2011].
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To fully define Stackelberg equilibrium, we need to state which best-response action the
follower chooses if more than one yield him maximal utility. A strong version of Stackel-
berg equilibrium assumes that the attacker chooses such best-response strategy, that also
maximizes the leader’s expected utility. This assumption ensures the existence of the equi-
librium, since other variants, such as weak or average Stackelberg equilibrium, where the
attacker chooses best-response with the lowest or an average expected utility for the leader,
may not exist ([von Stengel and Zamir, 2010]).

Let s(δl) : ∆l → Πf be the attacker’s response function. We define strong Stackelberg
equilibrium (SSE) as follows:

Definition 8 (Strong Stackelberg equilibrium (SSE)). A solution profile (δl, s(δl)) is a
strong Stackelberg equilibrium if and only if:

1. The leader (defender) commits to a strategy that maximizes his utility:

ul(δl, s(δl)) ≥ ul(δ′l, s(δ′l)), for all δ′l ∈ ∆l

2. The follower (attacker) chooses best-response function s:

uf (δl, s(δl)) ≥ uf (δl, πf ), for all δl ∈ ∆l, πf ∈ Πf

3. The follower breaks ties in the favor of the leader:

ul(δl, s(δl)) ≥ ul(δl, π′f ), for all δl ∈ ∆l, π
′
f ∈ BRf (δl).

In words, in a Strong Stackelberg equilibrium the leader’s strategy δl yields maximal
expected utility to the leader assuming that the follower plays a best-response strategy
δf ∈ BRf (δl) and breaks ties in favor of the leader.

Example 2.3.1. Let us analyze game in Figure 2.2a (based on Table 2.1) for NE and SSE.
One can easily see, that for any strategy of player 2, player 1 yields always higher expected
utility for playing Up instead of Down. Therefore, action Down can be eliminated from
consideration of being in NE and smaller version of the game can be analyzed. Here, player
1 must play Up, and player 2’s best-response is to play Left. Indeed, strategy profile (Up,
Left) forms a Nash equilibrium and yields utilities (1, 2) to players 1 and 2, resp.

Let us look at strong Stackelberg equilibrium and let player 1 be the leader and player 2
be the follower. If the leader commits to play Down, the follower best-responds with Right
which already yields higher expected utility of 2 to player 1 than he got in NE. However, the
leader can further improve his expected utility by playing δl(Up) = 1/3 and δl(Down) = 2/3,
represented by dashed line in Figure 2.2b. The follower obtains the same utility for either
of his actions, he plays Right which maximizes the leader’s utility. In this strategy profile,
the leader yields utility 7/3 = 2.333 (compare to expected utility 1 in NE) and the follower
1/3.

This demonstration manifests the first-movers advantage in SSE. In SSE the leader
yields at least as much expected utility as in any NE ([Conitzer and Korzhyk, 2011]). This
proposition can be easily verified. Since in SSE the leader can commit to any strategy,
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he can commit to play his strategy from any NE against which the follower best-responds
in favor of the leader. This ensures him at least the utility of the best NE to the leader.
Because in SSE the leader is not constrained to play a best-response against the follower’s
strategy, the leader can commit to a strategy with potentially even higher utility to him.

Beside the above mentioned disadvantage of NE, it additionally suffers with equilibrium
selection problem: the players have no way of telling which equilibrium they should play if
the equilibrium is not unique, and their mis-coordination may be arbitrarily bad for them.
The Stackelberg equilibrium overcomes this problem by assuming that the follower knows
the strategy of the leader and a plays best response. Therefore, in this thesis we focus on
NE in zero-sum games and SSE in general-sum games.

Correlated Equilibrium

In Nash equilibrium, each player mixes his pure strategies independently. In some cases,
players would benefit if they could correlate their actions. Correlated equilibrium, a gen-
eralization of the Nash equilibrium, solves exactly this problem. It introduces a device or
mediator, that sends signals to the players with recommendation of what pure strategy they
should play, allowing them to coordinate. The traffic lights at the road intersections play
such a device. By signaling the color to the cars allows them coordinating their actions
(drive or stop) and avoiding car accident. For normal-form games, canonical representation1

of correlated equilibrium is as follows:

Definition 9 (Correlated equilibrium (CE)). Let (N ,A, u) be a two-player NFG. Let p =
∆(A1 × A2) be a probability distribution over the game outcomes and p(a1,a2) denote the
probability of outcome (a1, a2), where a1 ∈ A1, a2 ∈ A2. Probability distribution p forms a
correlated equilibrium if it fulfills the incentive constraints that:

(∀a1, a
′
1 ∈ A1) :

∑
a2∈A2

p(a1,a2)u1(a1, a2) ≥
∑
a2∈A2

p(a1,a2)u1(a′1, a2) (2.7)

(∀a2, a
′
2 ∈ A1) :

∑
a1∈A1

p(a1,a2)u2(a1, a2) ≥
∑
a1∈A1

p(a1,a2)u2(a1, a
′
2) (2.8)

The probability distribution p is known to both players. The mediator samples profile
(a1, a2) with probability p(a1,a2) from p and recommends to each player i to play ai without
telling what recommendation was sent to the other player. The incentive constraints state,
that for the players it is optimal to follow the recommendation.

Any Nash equilibrium can be interpreted as a Correlated equilibrium, where the media-
tor signals game outcomes with frequency of that in the Nash equilibrium. In [von Stengel
and Zamir, 2010] the authors showed, that the leader’s expected utility in SSE is at least
as high as the utility in any correlated equilibrium in NFG.

1Canonical representation means, that the mediator signals the players’ pure strategies that they should
play. Other option is to use different signal domain than the players’ pure strategies.
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2.3.4 Smallest Undominated Set (SUS)

Many games can have a large set of actions for the players to choose from, which makes the
computation of the desired solution concept very challenging or infeasible in these games.
However, often not all actions must be considered in these games to provably conclude that
the found strategy profile is the desired solution concept. Let us bring out other useful
concepts that can significantly reduce the size of the game to speed-up the solution profile
computation.

Consider two strategies, δi, δ
′
i of player i. If strategy δi results in a lower utility to

player i than strategy δ′i no matter what strategy the opponent plays, then clearly δi can be
removed from the consideration of being part of the Nash equilibrium. Here, we formally
introduce the domination as follows: Let δi and δ′i be two strategies of player i. Strategy
δi strictly dominates δ′i if ∀δ−i ∈ ∆−i : ui(δi, δ−i) > ui(δ

′
i, δ−i).

A strategy is strictly dominant for a player if it strictly dominates any other strategy for
that player. And strategy δi is strictly dominated for a player if there is any other strategy
of that player that strictly dominates δi. In this thesis by the dominations we always refer
to the strict domination, if not stated otherwise.

Consider game shown in Figure 2.1 and corresponding analysis in Figure 2.2b. The
player 1’s action Down is dominated by action Up, since for any mixed strategy of player 2,
action Up yields a higher utility than action Down. That is why in Example 2.3.1 we could
eliminate action Down from the consideration of being in the NE and readily concluding
that the solution profile (Up, Left) is in the Nash equilibrium.

If there is no strategy δ′i ∈ ∆i that dominates strategy δi ∈ ∆i, then δi is said to be
undominated strategy. Given a set of opponent’s pure strategies Π−i, we further define
player i’s smallest set of undominated strategies (SUS) ([Schwartz, 1970]) as follows:

κi(Π−i) = {πi ∈ Πi|∃δ−i ∈ ∆(Π−i) : π ∈ BRi(δ−i)} (2.9)

In words, κi(Π−i) contains all best response strategies of player i to any mixed strategy of
player −i taken from Π−i. No strategy πi ∈ Πi that πi 6∈ κ(Π−i) will be ever played as a
best response against any mixed strategy ∆(Π−i), therefore, it can be omitted. Restricting
the set of pure strategies of player i to κi(Π−i) does not omit any Nash equilibrium since
the player should never play dominated strategy. Algorithms such as Iterative Removal
of Dominated Strategies iteratively uses this concept for both player’s to reduce the game
before engaging in the computation of a strategy profile in the Nash equilibrium.

However, in the strong Stackelberg equilibrium, only the follower’s set of actions can be
reduced to SUS. Since the leader does not play the best response, reducing his set of pure
strategies to SUS could lead to computing a solution profile that is not the SSE. Consider
an example in Table 2.1, where improperly eliminating action Down of player 1 will result
is a different solution profile in SSE than the SSE solution profile of the full game.

2.3.5 Algorithms

In this section we present the algorithms for the presented concepts.
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Computing SUS in EFG

Given set of the opponent’s pure strategies Π−i, we can reduce the player i’s set of actions
to SUS in NFG with the following approach. We test whether action a ∈ Πi belongs to
κi(Π−i) by verifying whether there exists a probability distribution δ−i over Π−i, such that
a yields higher expected utility to player i than any other a′ ∈ Πi. Testing one action can
be formulated as a linear feasibility program (LFP) (from [Benisch et al., 2010]) as follows:

max: (no objective) (2.10a)

s.t. :(∀a′i ∈ Πi \ {ai}) :
∑

a−i∈Π−i

ui(ai, a−i)δ−i(a−i) ≥
∑

a−i∈Π−i

ui(a
′
i, a−i)δ−i(a−i) (2.10b)

(∀a−i ∈ Π−i) : 0 ≤ δ−i(a−i) ≤ 1 (2.10c)∑
a−i∈Π−i

δ−i(a−i) = 1 (2.10d)

The variables are δ−i(·) and constants are ui(·). Constraint (2.10b) ensures that in the
found probability distribution δ−i(a−i) action ai dominates any actions a′i. The remaining
of the constraints ensure proper probability distribution of δ−i(a−i). If LFP is not satisfied,
then action ai is never best response and it cannot be removed from Πi.

Finding Nash Equilibrium in Normal-Form Games

This thesis focuses only on computing the zero-sum NE. Finding NE is known to be a
polynomial problem in the size of the NFG assignment due to minimax theorem by von
Neumann ([Von Neumann and Morgenstern, 2007]):

max
δi∈∆i

min
δ−i∈∆−i

ui(δi, δ−i) = min
δi∈∆i

max
δ−i∈∆−i

ui(δi, δ−i) = V∗. (2.11)

Intuitively, it states that maximizing the worst-case expected utility and minimizing the
best-case expected utility results in equivalent expected utility to player i. To find player
2’s strategy in Nash equilibrium, we can construct and solve linear program as follows:

minV∗1 (2.12a)∑
a2∈Π2

δ2(a2)u1(a1, a2) ≤ V∗1 ∀a1 ∈ Π1 (2.12b)

δ2(a2) ≥ 0 ∀a2 ∈ Π2 (2.12c)∑
a2∈Π2

δ2(a2) = 1 (2.12d)

In this LP utility u1(·) are constants and only δ2(·) and V∗1 are variables. Let us first
examine constraint (2.12b), which states that for every pure strategy a1, player 1 can obtain
at most value V∗1 given player 2’s mixed strategy δ2. Those pure strategies, for which the
expected utility is exactly V∗1 will be player 1’s best response actions. The remaining of
the constraints ensures, that δ2(·) is a proper probability distribution over strategies in Π2.
Constructing similar LP we can solve for NE of player 1.
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Double Oracle (DO) algorithm ([McMahan et al., 2003]) can be used to solve very large
zero-sum normal-form games, and Bošanský in ([Bošanský et al., 2014]) has extended the
algorithm to zero-sum EFG. It uses similar approaches as column/constraint generation
techniques to arrive to the solution without building the full linear program. Double oracle
begins with a restricted game, which is a game consisting of a subset of actions for both
players. It incrementally extends the game by adding certain actions of the players until a
point is reached when a Nash equilibrium of the restricted game is also a Nash equilibrium
of the original game.

In this thesis, we use a Single Oracle (SO) algorithm, a variant of a double oracle
algorithm, where the action of only one player are restricted. The algorithm on NFG is
presented in Algorithm 3, where G denotes the full NFG and Gm a restricted game in
iteration m, which consists of m+ 1 actions of player i and all actions of player −i.

Algorithm 3 Single-Oracle Algorithm.

1: function single-oracle(G)
2: G0 ⊆ G
3: m← 1
4: repeat
5: (δi, δ−i)← NE(Gm−1)
6: π−i ∈ BR−i(δi, G)
7: if u−i(δi, π−i) > u−i(δi, δ−i) then
8: Gm ← Gm−1 ∪ {π−i}
9: end if

10: m← m+ 1
11: until u−i(δi, π−i) > u−i(δi, δ−i)
12: return (δi, δ−i)
13: end function

In line 2 the algorithm initializes restricted game G0 which contains all the actions of
player i and only one (randomly chosen) action a ∈ A−i. In line 5 the algorithm computes
m-th Nash equilibrium (δi, δ−i) of restricted game Gm−1 (e.g. by solving linear program
2.12a) and in line 6, it computes player −i’s best-response against strategy δi in full game
G. Next, the algorithm simply tests, whether player −i improved his expected utility by
playing a best-response action from G compared to the expected utility in NE of Gm.
If player −i did not improve, then the found NE of Gm is also a NE of the full game.
Otherwise, the best-response action is added into restricted game Gm of next iteration
and the process is repeated. The algorithm always terminates, because every iteration at
least one new action is added. Since there is a finite number of actions for player −i, the
algorithm terminates in a finite number of iterations.

Finding Strong Stackelberg Equilibrium in Normal-Form Games

Computing strong Stackelberg equilibrium in general-sum normal-form games can be done
in polynomial time in the size of the NFG. There are two commonly known approaches
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of finding SSE, as described in [Conitzer and Korzhyk, 2011]. First approach, Multiple
LPs, exploits SSE property that the follower’s best-response is a pure strategy. For each
of the follower’s pure strategy πf ∈ Πf , the algorithm finds the leader’s mixed strategy
δl that maximizes the leader’s utility under a constraint that πf is a best-response to δl
(πf ∈ BRf (σf )), which can be solved with LP. The algorithm iterates over all πf ∈ Πf and
the leader chooses such δl, that had maximal expected utility to him.

The second algorithm, Single LP (SLP), introduced in [Conitzer and Korzhyk, 2011]
avoids iterating over all πf ∈ Πf by combining all the constraints into one LP. This linear
program is |A2| times larger, but allows a linear program solver to optimize the solving
process more efficiently. The SLP formulation is as follows:

max p(al,af )ul(al, af ) (2.13a)∑
al∈Πl

p(al,af )uf (al, a
′
f ) ≤

∑
al∈Πl

p(al,af )uf (al, af ) ∀af , a′f ∈ Πf (2.13b)

∑
al∈Πl,af∈Πf

p(al,af ) = 1 (2.13c)

p(al,af ) ≥ 0 ∀al ∈ Πl, af ∈ Πf (2.13d)

In this linear program p(·) are the only variables and ul(·), uf (·) are constants. The
objective (2.13a) of LP is to find such probability distribution p(·) over the outcomes that
the expected utility of a leader is maximized. The constraint (2.13b) states, that the
follower should not be better off playing action a′f instead of af . The constraint matrix of
this linear program has blocks along the diagonal, one for each af ∈ Πf . If LP solution has
only single active block of nonzero variables, it corresponds to the leader’s mixed strategy
and followers best-response action af . The solver may find an optimal solution with more
than one block where variables takes nonzero values. Nevertheless, from this solution we
can easily compute the solution of the former form with the same expected utility to the
leader and obtain SSE strategy profile. The proof of correctness of this approach and the
transformation is shown in detail in Prop. 1 in [Conitzer and Korzhyk, 2011].
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Computing Correlated Equilibrium in Normal-Form Games

The problem of computing correlated equilibrium of a normal form game can be formulated
as a linear program, as follows:

no objective (2.14a)

s.t. :(∀a1, a
′
1 ∈ A1) :

∑
a2∈A2

p(a1,a2)u1(a1, a2) ≥
∑
a2∈A2

p(a1,a2)u1(a′1, a2) (2.14b)

(∀a2, a
′
2 ∈ A1) :

∑
a1∈A1

p(a1,a2)u2(a1, a2) ≥
∑
a1∈A1

p(a1,a2)u2(a1, a
′
2) (2.14c)

∑
a1∈A1

∑
a2∈A2

p(a1,a2) = 1 (2.14d)

(∀a1 ∈ A1, a2 ∈ A2) : p(a1,a2) ≥ 0 (2.14e)

(2.14f)

The only variables are p(a1,a2), which will compute the probability distribution over the
game profiles. The constraints (2.14b,2.14c) incentivize the players to follow the mediator
recommendation instead of playing any different action a′1 or a′2, resp.

Notice, that removing the player 1’s incentive constraints (2.14b) from LP 2.14 and
adding the objective function to maximize the player 1’s expected utility, we will obtain
LP 2.13. This demonstratively explains why in SSE the leader yields higher or equal utility
than in any CCE. Removing any constraints cannot restrict the solution space and leader’s
utility is maximized.

Sequence-form Representation for Extensive-Form Games

The state-of-the-art algorithms for EFG use sequence-form representation to compactly
represent the players’ set of strategies ([Koller et al., 1996]), since converting EFG to NFG
results in exponential large matrix game.

Definition 10 (Sequence). A sequence σi ∈ Σi is an ordered list of actions taken by a
single player i in a history h ∈ H, where Σi is a set of all sequences of player i.

The set of all possible sequences in a game for all players is Σ = Σ1 × Σ2. A sequence
σi ∈ Σi can be extended by single action a ∈ Ai taken by player i, denoted as σia = σ′i.
In games with perfect recall, all nodes in an information set Ii share the same sequence of
actions σi for player i and we use seqi(Ii) to denote this sequence. We also use seqi(h) to
denote the sequence of actions of player i leading to h and infi(σ

′
i) to denote the information

set in which the last action of sequence σ′i is played (action a in this case). For an empty
sequence, function infi(∅) is the information set of the root node.

Realization plan is the player’s mixed strategy representation in sequence-form repre-
sentation.
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Definition 11 (Realization plan). A realization plan for player i, ri : Σi → [0, 1] satisfies
the following constraints:

ri(∅) = 1 (2.15)∑
a∈A(Ii)

ri(σia) = ri(σi) ∀Ii ∈ Ii, σi = seqi(Ii) (2.16)

ri(σi) ≥ 0 ∀σi ∈ Σi (2.17)

The constraints ensure the “waterfall” effect of the strategy. It states that the sum
of the probabilities of the actions in an information set must equal to the probability of
reaching that information set.

The payoff function gi : Σ1 × Σ2 → R for player i extends the utility function to all
nodes H in the game tree. Function gi represents the expected utility of all nodes reachable
by sequentially executing the actions specified in a pair of sequences σ:

gi(σi, σ−i) =
∑

h∈Z:∀j∈N :σj=seqj(h)

ui(h) · C(h).

If no leaf is reached by sequentially executing all action in sequences σ, then gi(σ) = 0.
This can happen in two cases: (i) either an inner node is reached after all sequences are
executed in σ, for which the utility is not defined; (ii) or for a node h ∈ H \Z the strategy
σ does not define any action a ∈ A(h) to be played.

Computing Nash Equilibrium in Zero-Sum EFG

We can use linear program to find a Nash equilibrium in zero-sum extensive-form game in a
polynomial time in the size of the game tree using realization plans over the sequence-form
representation. The linear program is as follows (from [Shoham and Leyton-Brown, 2008],
p.135):

max v(inf−i(∅)) (2.18a)∑
σi∈Σi

gi(σi, σ−ia) · ri(σi) +
∑

I′∈inf−i(σ−ia)

v(I ′) ≥ v(I) ∀I ∈ I−i,∀a ∈ A(I), ∀σ−i ∈ seq−i(I)

(2.18b)

ri(∅) = 1 (2.18c)∑
a∈A(Ii)

ri(σia) = ri(σi) ∀Ii ∈ Ii, σi = seqi(Ii) (2.18d)

ri(σi) ≤ 1 ∀σi ∈ Σi (2.18e)

In this LP variables are v(·) and ri(·), and constants are gi(·). The solution contains
realization plan for player i in variables ri, and the expected utility for the information
sets of player −i in v(I). In this LP, player i maximizes the expected utility of player i
information sets by selecting the values for the variables of realization plan constrained by
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(2.18c–2.18e). The realization plans are further constrained by (2.18b), so that the player
−i selects in each information set I such action that minimizes the expected utility in this
information set v(I). There is one constraint defined for each sequence for each sequence
σ−i.

Similarly as for NFG, we can use Double Oracle algorithm to find NE fast in EFG
(described in [Bošanský et al., 2014]). The algorithm for EFG additionally has to deal
with two complications that arise during the computation. First, strategy computed in the
restricted game may not be a complete strategy in the original game, because it does not
define behavior for information sets that are not in the restricted game. Second, It may
not be possible to play every action from a sequence that is allowed in the restricted game,
because playing a sequence depends on having a compatible sequence of actions for the
opponent. However, the concept of the algorithms as described in ([Bošanský et al., 2014])
is the same.

Finding Strong Stackelberg Equilibrium in General-Sum EFG

Computing strong Stackelberg equilibria of imperfect information games with stochastic
events is in general case NP-hard [Letchford and Conitzer, 2010]. First algorithms trans-
formed EFG to NFG and used basic NFG algorithm to compute SSE ([Conitzer and Sand-
holm, 2006]). The state-of-the-art algorithm for solving this class of games uses mixed-
integer linear programming (MILP) and avoids exponential representation by using the
sequence-form representation of strategies [Bošanský and Čermák, 2015], which we use in
this thesis. Recently in [Čermák et al., 2016a] the authors extended the algorithm to use
iteratively approach to converge to SSE via commitment to correlated equilibrium solution
concept. This approach allows reducing the number of binary variables in MILP and leads
to faster computations.

In this thesis, we use the MILP approach described in ([Bošanský and Čermák, 2015]) as
presented in Equations 2.19. In this MILP p(·), ri(·), v(·) and s(·) are variables. The MILP
formulation exploits the fact, that the follower best-responds with a pure strategy, therefore,
his realization plan can be represented as a binary variable rf ∈ {0, 1}. Notice, that the LP
is very similar to LP for NE in zero-sum EFG. The difference is basically in the fact, that
the follower is allowed to play only pure strategies (2.19h). The sequences that the follower
plays rf (σf ) = 1 force the slack variables sσf = 0, which in turn forces these sequences
to be best-responses in Constraint (2.19b). Additionally, the objective is to maximize the
leader expected utility, which is achieved similarly as in LP 2.13 for computing SSE of
NFG. It finds such probability distribution pz over the terminal states Z, that maximizes
the leader’s expected utility. Constraints (2.19f–2.19g) ensure, that probabilities of reaching
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the terminal nodes pz is consistent with realization plans of the players.

max
∑
z∈Z

pzul(z)C(z) (2.19a)∑
σl∈Σl

gf (σl, σfa) · rl(σl) +
∑

I′∈infl(σla)

v(I ′) + sσf = v(I) ∀I ∈ Il, ∀a ∈ A(I),∀σl ∈ seql(I)

(2.19b)

ri(∅) = 1 ∀i ∈ N (2.19c)

ri(σi) =
∑

a∈A(Ii)

ri(σia) ∀i ∈ N , ∀Ii ∈ Ii, σi = seqi(Ii) (2.19d)

0 ≤ sσf ≤ (1− rf (σf )) ·M ∀σf ∈ Σf (2.19e)

0 ≤ pz ≤ ri(seqi(z))C(z) ∀i ∈ N , z ∈ Z (2.19f)∑
z∈Z

pz = 1 (2.19g)

rf (σf ) ∈ {0, 1} ∀σf ∈ Σf (2.19h)

ri(σi) ≤ 1 ∀σi ∈ Σi (2.19i)

25



Chapter 2

26



Chapter 3

Security Configuration Problem

The network administrators face a challenging decision-making problem of finding the best
system security configuration for a set of systems that they secure. The complexity of
the problem stems from the combinatorial expansion of the available configurations actions
to the network administrator, and the reasoning about the opponents reaction to defense
measures.

System mis-configuration may results in vulnerable systems that adversaries can exploit
to harm the users. To address this problem, a discipline security configuration manage-
ment was established that aims to devise and deploy policies that carry out organization
requirements to oppose the attackers ([Couch, 2008, Bellovin and Bush, 2009]). Its major
challenge is scaling for large system, since configuring 1,000 or 10,000 of devices securely
and consistently is significantly more difficult from configuring each machine independently.
Configuring one machine may have a direct or indirect influence on the other machines. E.g.,
increasing the protection of one machine can result in the adversary attacking different ma-
chine instead.

Security organization also address the problem by designing best-practice standards
such as NIST 800-41-rev1, a guideline on firewall security configuration. Automatic secu-
rity configuration tools exists that usually verify the security configuration checklist (e.g.,
[Peterside et al., 2015] for Cisco IPsec VPN) or best practices ([Fitzgerald et al., 2013] for
the smart phones). However, these tools are design for specific devices and do not consider
the attacker’s strategic reasoning and counteractions to the configuration actions.

In this chapter, we introduce a specific game-theoretic model that captures the interac-
tion between the defender, who configures multiple networks and the attacker, who attacks
them. Our game explicitly models the attacker’s knowledge about the possible real systems
and the observed information about the configured systems during his attack. Formalizing
the attacker’s reasoning about the systems allows us developing defense strategies against
the attackers that act optimally given the available information to them. The model cap-
tures essentials of information reasoning in configuration problem and in Chapters 4 and 5
is extended to specific security problems.
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3.1 Game-Theoretic Model

Consider a motivating problem with a game-tree depicted in Figure 3.1 as follows. The
network administrator aims to protect three of his systems s1, s2 and s3. For each system
the defender can choose either to increase its security (action cs), or to modify the system
to mimic a different system (actions cm). The defender can mimic system s1 only as s2

(action cm12), system s2 as system s1 or s2 (actions cm21, cm23, resp.), and system s3 as
s2 (action cm32). Here, the defender faces dilemma: playing action cs in each system will
increase their security. However, the attackers can observe the configured state exactly and
perform tailored attack for that system. On the other hand, if the defender mimics some
(or all) systems as a different system, the attacker is uncertain of the attacked system,
therefore, does not know what attack to perform. However, mimicking systems leave them
more vulnerable. Each of these extreme cases have some advantages and disadvantages and
the defender must weigh benefits and drawbacks of each approach. We use this running
example to present our general extensive-form general-sum game theoretic model.

3.1.1 Chance Actions

Skilled attackers have good knowledge about the possible systems in the real-world that
they may encounter during an attack. In the first stage of the game, we model the attacker’s
beliefs about possible systems by a Chance (or Nature) player who makes an initial random
move. The Chance player chooses a system s ∈ Ac with probability C(s) which corresponds
to the attacker’s belief of the likelihood that he will attack system s. In Figure 3.1 the
attacker knows that there are three systems and he may encounter any of them with an
equal probability of 1/3.

Figure 3.1: A simple game tree with three systems s1, s2 and s3 chosen by the Chance each
with probability 1/3. The defender configures each system from 2 possible configurations
and the attacker chooses among six different attacks in total.
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3.1.2 Defender’s Actions

In the second stage, the defender chooses a configuration action c ∈ Ad(s) to deploy in
system s ∈ Ac. Configuration c applied on system s results in configured system sc. Here,
we present an abstract configuration action. In a specific problem it can represent as simple
action as selecting a threshold parameter, or as complex action as fully configuring a system
(e.g. honeypots). In our running example, the defender choose either to secure a system
(action cs) or to mimic a system as a different system (actions cm).

3.1.3 Attacker’s Information and Actions

After the defender acts, the attacker observes configured system sc (not the configuration
action per se). Some configured systems may look alike to the attacker and since the
attacker cannot tell them apart, they belong to the same information set I ∈ Ia. In the
third stage of the game, the attacker chooses an optimal attack action a ∈ Aa(I) for every
information set I ∈ Ia. Although a particular attacker in reality attacks only a single
system (depending on the choice of Chance), to fully characterize the attacker’s behavior
we need to describe their behavior in every possible scenario that may occur to the attacker.
The attackers’ actions can be as simple as verifying if service on port is alive (e.g., pinging)
or as complex as stochastic decision policy of sequential exploits.

In Figure 3.1, the attacker faces five information sets I1, I2, I3, I4 and I5, where he makes
his first decision about an attack action. E.g., information sets I2 consists of two states and
the attacker cannot be certain whether he faces a system s1cm12 or s2cm21. The attacker
must choose the same attack action for all the state in an information set since they are
indistinguishable to him. But different information sets may have different attack actions
to choose from.

3.1.4 Player Utilities

For terminal state with history sca ∈ Z we denote the player payoffs as:

ud(sca) = −Rd(sca)− Cd(sc) (3.1a)

ua(sca) = Ra(sca)− Ca(sca) (3.1b)

where:

• Rd(sca) ≥ 0 is the defender’s loss (−Rd(sca) is his reward) in system s for configuring
it with c and having it attacked with a. This component may capture a company’s
financial costs and other ramifications using utilitarian valuation.
• Ra(sca) is the attacker’s reward for attacking system sc with attack a, e.g., reward

for selling the stolen data on gray market.
• Cd(sc) is the defender’s cost for deploying security configuration c on system a.
• Ca(sca) is the attacker’s cost for executing attack action a on configured system
sc. It may include purchasing and exploiting a zero-day vulnerability, cost for being
detected, etc.
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Additionally, the attacker typically gains less than or equal to the value that the defender
looses (Ra(sca) ≤ Rd(sca)). Otherwise, the defender could gain by giving up the systems on
his own. In some cases, we even assume it as a zero-sum component (Rd(sca) = Ra(sca)).

3.1.5 Game Properties and Assumptions

In this section is devoted to discussions about the game assumptions and properties.

Chance Probabilities are Common Knowledge

Our game assumes that the probabilities of Chance player actions are known to both play-
ers. The administrators indeed have knowledge about the systems that they secure. The
attackers may not have as precise knowledge about the systems as the defender, but they
can often estimate it based on other information, such as from systems in similar com-
panies, from the published work of the security researchers, etc. Moreover, the attacker’s
small belief fluctuations are not as important for our model as their average belief over
many attackers being close to the correct probabilities of the Chance actions.

System Types

The scalability of the algorithms is one of the major problems in algorithmic game theory.
In our game, systems that manifest similar and indistinguishable properties to the attacker
can be grouped together into a system type. The probability of a system type equals to
the sum of probabilities of individual systems of that type. Hereafter, we refer to system
si as a type of a system. In this case, the complexity of the model scales with the number
of system types rather than the number of the systems itself, which can allow significant
model reduction without any loss of solution optimality.

In our running example, each system s1, s2 and s3 can represent hundreds or thousands
of real systems. If the defender plays mixed strategy in these systems, he randomly samples
a pure strategy for each system of a given system type based on the strategy. We use such
system aggregation into system types in both of our domain-specific problems and refer to
systems as system types.

Attacker’s Sequential Actions

In our running example in Figure 3.1 the attacker performs single attack action after which
the game ends. In reality the attack models are sequential. For instance, the attacker
may perform series of probing and based on their results the attacker decides what attack
action to perform next. The attacker’s sequential decision can be straightforwardly used
in our game model. However, sequential representations significantly increase the SSE
computation, since each of the attacker’s action introduces one binary variable to the MILP.
These MILPs are often infeasible to solve and other techniques must be used. For this
reason, in Chapter 4 we represent each sequence of actions as a single action, but use SUS
to significantly reduce the final set of actions.
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Information Manipulation

A key feature of our game model is that the defender can influence the attacker’s likeli-
hood of observing the configured systems in the information sets. The extent to which the
defender can influence the attacker’s observations depends also on the Chance player prob-
abilities. In our example in Figure 3.1, the defender could choose to secure the systems,
which does not introduce any uncertainty for the attacker; or to mimic one system as a
different system and increase the attacker uncertainty about the state of a system, that
the attacker attacks. In the case the attacker does not know the real system exactly (more
than one systems are likely in an information set), the attacker chooses such action, that
yields him the highest expected reward given the probability distribution of the systems
in the information sets. Therefore, increasing the attacker’s uncertainty in the information
sets may push the attacker to perform broad and weaker attacks.

Defender Protects All Systems

Our model currently assumes that single defender configures all the system after the Chance
plays, and that the defender maximizes the expected reward of all the systems. A reasonable
question is what if the defender does not control all the systems after the Chance player?
In reality, the network administrator may control only part of the systems (e.g., only those
that are within the same company). In this section, we discuss the complexity that the
relaxation of the assumption arises and the explain why we restrict our research to the cases
with the above-mentioned assumption.

The systems, that are out of the defender’s control, could be either (i) set statically
prior to the defender’s strategy computation without ability to adapt to the defender’s
strategies, or (ii) controlled by other self-interested rational decision-makers that react
on the defender’s strategy. To model the first case, the systems that are not under the
defender’s control can be replaced with Chance nodes with a static distribution of the
actions corresponding to a static strategy that is played in those systems. Additionally,
the defender’s payoffs in the leaf nodes rooting from the new Chance nodes must be set
to zero, since the defender has no motivation to protect them (while the attacker’s payoffs
are kept unchanged). However, assuming non-reactive defenders is myopic since owners of
these systems will experience losses and eventually will decide to react. This corresponds
to the second case discussed below and thus, the first case we omit in our analysis.

The second case assumes that other systems could be under control of different decision-
makers, which then results in game with more than two players. In [Smith et al., 2014, Lou
et al., 2015, Lou and Vorobeychik, 2015] authors attempted to extend strong Stackelberg
equilibrium for games with multiple leaders (defenders). The main problem with multiple
leaders is that each leader assumes that the follower (the attacker) will break ties in his
favor. This assumptions obviously cannot be always met, because there may be the cases
that the attacker cannot play in favor of both (or more) leaders at the same time. Since
the attacker must choose an attack, for some leader the assumption will be violated, which
means that this solution concept may not always exist.
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In ([Smith et al., 2014]) authors introduced an Average-case Stackelberg Equilibrium,
where the attacker breaks ties at random. This assumes that all defenders simultaneously
commit, each to their mixed strategy, and the attacker subsequently chooses a best-response
uniformly at random. However, this solution profile does not necessarily always exists either.
In the paper, the authors overcome the issue by computing ε-Nash Equilibrium, with the
smallest ε such that the equilibrium exists.

In [Laszka et al., 2016b] the authors define alternative solution concept Stackelberg
Multi-Defender Equilibrium. It assumes that all defenders play a best response against
the others, assuming that the attacker will always play a best-response strategy. This
solution concept assumes that the defenders play NE among each other and the attacker
best responds to defenders’ strategies. In their specific game, if such strategy profile exists
all the players play pure strategies. The attacker does not have to choose one out of
multiple best responses, which avoids the typical problem which best-response should he
chose. However, even for their game such strategy profile does not necessarily exist. Since
our payoffs do not allow concluding that all players play pure strategies, this solution
concept is not applicable to our game either. Let us demonstrate a simple example, where
no stable solution exists to see the difficulties of the multi-defender games.

Example 3.1.1. Consider a game tree depicted in Figure 3.2a with two systems s1, s2. Each
has probability 1/2 of reaching due to the Chance player and is controlled by a different
defender. Let defender of s1 (resp s2) denote with d1 (resp. d2). Both defenders can
configure their system to be either in information set I1 or I2, or mixing between the two.
In each information set the attacker chooses which system to attack: actions a2, a4 attack
system s1 and actions a1, a3 attack system s2. Terminal state present the attacker’s payoffs
and let the game be zero-sum.

Both defenders prefer that the attacker attacks the other defender in the information
sets. However, in this example at least one defender can always change his strategy to
make the attacker to attack the other defender in at least one of the information sets. We
can graphically demonstrate the defender’s cycle reactions in Figure 3.2b. It shows the
defenders’ full strategy spaces. Defender d1 chooses action c1 (right), c2 (left), or mixes
the two. Defender d2 chooses action c3 (top), c4 (bottom), or mixes the two. Each point in
the square represents the defenders’ strategies and the attacker’s beliefs in the information
sets. Diagonal lines represent the attacker’s belief when he is indifferent whether to perform
attack a1 or a2 in I1 (right line). Similarly diagonal I2 (left line) separates the beliefs where
the attacker best-responds with a3 and a4. From this, we can define three regions, each with
different strategy of the attacker. In Region 2 the attacker attacks s1 in both information
sets (actions a2 and a4), and in Region 1 and 3 the attacker attacks s2 at least in one
information set. Now we are ready to see the defenders’ cycle in reasoning. The defender
d1 can always play a strategy to result in a point outside of Region 1, while the defender
d2 can always adjust his strategy to a result within Region 2. Therefore, there is no stable
solution profile where both defenders would not be incentivized to change their strategies.

The reason why game in Example 3.1.1 has no stable solution is that in SSE the attacker
plays pure strategy. If we allow the attacker to play a mixed strategy, then there exists a
stable solution profile, namely Nash equilibrium, where no player has an incentive to deviate
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Figure 3.2: (a) Game, where Strong Stackelberg equilibrium does not exist if two systems
(s1 and s2) are configured with two different rational decision-makes. (b) Attacker’s best-
response regions.

from it unilaterally. However, there is no particular reason why should the attacker play this
specific mixed best-response strategy in NE. Moreover, in Nash equilibrium, the defender’s
give up the first-mover’s advantage and may obtain lower utility that they possibly could.

As a result of this discussion, for the defender it is better to cooperate and to jointly
commit to a strategy that maximizes their overall expected utility instead of maximizing
their individual expected utilities. They could, e.g., use an insurance mechanism to mitigate
the loss of the frequently attacked defender by paying him a premium. The premium should
be high enough to incentivize this defender to play the strategy profile. We believe that
using insurance mechanism the stable solution profile will exist. However, this requires
further analysis which we leave for future work.

Due to the above-mentioned reasons, we restrict our research to a case, where a single
defender (e.g. an insurance company) configures all the systems with a single objective to
maximize his expected utility.

3.2 Related Models

Game theory provides library of different models, e.g., Bayesian games, congestion games,
graphical games, that are suitable for modeling and solving different classes of the prob-
lems. For these classes often more efficient algorithms can be used and/or more compact
representation of the problems exist, that would otherwise result in exponentially large
extensive-form representation game trees. In this section, we list two game theoretic mod-
els that are closely related to our game, but unfortunately, none of them is found to be
suitable for our problem. Therefore, we use general EFG to model our problem and EFG
general algorithms to solve it.
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Bayesian games model the players’ incomplete information about their opponents, such
as their payoffs, using Harsanyi’s transformation ([Harsanyi, 1967]). The transformation
assumes, that players know the probability distribution of all possibilities of the payoffs,
that the opponents might have, and modifies the original game by introducing an initial
Chance player that chooses the player’s type with the associated payoffs of that player.

Notice the similarity to our game, where in our case the Chance player selects the system
types. However, our game is more general than a typical Bayesian model. In our game, the
defender may have different set of actions for each system type, since the administrators
of different systems might have different applicable configuration actions. Bayesian games
typically assume, that for each type the player has an identical set of actions to choose
from.

Graphical games is a compact representation that models limited interactions between
two or more players in a game. This representation exploits the fact that the payoffs of
one player can depend on a subset of the players’ action choices instead of all the players.
Graphical games represent these relations by a graph: each node represents a player, and
each edge connects two nodes only if their payoff functions are depended on the actions
choices of the players represented by the two nodes. Stated differently, if there is no edge
between nodes i and j, then player i’s choice of action does not influence the payoff of
player j and vice versa. In Figure 3.3(left) is a graphical game with three players, where
payoffs of the players represented with ds depend only on the player represented with node
a. Graphical games have been used to show e.g., that n-player two-action games with
tree-structure graphical games can be solved in polynomial time ([Kearns et al., 2001]),

In the case that our game is modeled with multiple defenders (that now we model as a
single defender), the deviations of one defender have no impact on the utility of the other
defender. Therefore, each defender plays a direct game only with the attacker. This could
be represented as a graphical game with a star-like shape: the attacker is the center node,
and each defender is the leaf node directly connected to the center node. However, as far
as we know, the graphical models have no way of modeling the information sets that the

(a) (b) (c)

Figure 3.3: Graphical game in (a) corresponds to extensive-form game in (b). In (b) the
order of the payoffs is d1, d2, a. In (c) is an example of our game models that cannot be
modeled with graphical games.
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defender plays into to deceive the attacker. E.g., consider a graphical game in Figure 3.3a
that models the interaction between one attacker and two defenders, where each player has
two actions. This game corresponds to the EFG depicted in Figure 3.3b. The attacker
does not know which action each defender has chosen. However, he knows exactly what
original system the attacker attacks. In contrast, our game is more general, as is depicted
in Figure 3.3c, where the attacker is uncertain about the original system that the graphical
games are incapable of modeling.

As far as we know, the general-sum imperfect-information EFG with stochastic events
is the most specific class of games that is suitable for our problems. We use this class to
model our problems and algorithms of this class to compute the desired solution concepts.

35



Chapter 3

36



Chapter 4

Honeypot Selection Problem

The increasing complexity of securing modern computer networks makes decision support
systems an important tool for administrators. A challenge many existing tools fail to address
is that attackers react strategically to new security measures, adapting their behavior in
response. Game theory provides a methodology for making decisions that take into account
these reactions, rather than assuming static attackers. In this chapter, we present how game
theory can be used to inform one type of security decision: how to optimally place honeypots
in a network. The network administrator allocates honeypots, a fake services, into the
networks to detect the malicious activity. While the attacker attacks the networks according
to compact representation of all known vulnerabilities for the networks, called attack graphs.
This problem can be formulated as a three-staged game, presented in Chapter 3. In this
chapter we demonstrate this approach and present models, exact and heuristic algorithms
that compute SSE.

4.1 Introduction

We demonstrate our methodology for a case where a network security administrator uses
honeypots (fake hosts or services added to a computer network) to harden a network against
possible attacks ([Qassrawi and Hongli, 2010]). Legitimate users do not interact with hon-
eypots, so the honeypots act as decoys that distract the attackers from real hosts and waste
their resources. Honeypots can also send intrusion detection alerts to the administrator,
and/or gather detailed information about the attacker’s activity ([Provos, 2004, Grimes,
2005]). Believable honeypots, are costly to set up and maintain, and a well-informed at-
tacker may anticipate the use of honeypots and try to avoid them. To capture the strategic
decision of both attackers and defenders, we model the problem as system configuration
problem, where by configuration we mean deciding which services or host to deploy as
honeypots.

In this chapter, we heavily use a compact representation of strategies for attacking
computer networks called logic-based attack graphs. They can be automatically generated
based on known vulnerability databases ([Ingols et al., 2006, Ou et al., 2006]) and they
are used in network security to identify the minimal subset of vulnerabilities/sensors to be
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fixed/placed to prevent all known attacks ([Sheyner et al., 2002, Noel and Jajodia, 2008]), or
to calculate security risk measures, e.g., the probability of a successful attack ([Noel et al.,
2010, Homer et al., 2013]). We use attack graphs to represent an attack plan library, from
which a rational attacker will choose an optimal contingency plan. In real attack scenarios
attackers do not know everything about the target network, and must make decisions based
on imperfect information. We model this uncertainty that attackers have by introducing
attack graph games with imperfect information. Here, the main idea is that attackers
have beliefs about what realistic networks look like, and use this to distinguish between
hosts/services that are likely to be real and those that are likely to be honeypots. However,
generalizing our models in this way dramatically increases the computational challenge of
solving the models, since attackers may believe that a vast number of networks are possible.
We present the exact, error-bounded and a variety of heuristic algorithms for computing
Stackelberg equilibria for attack graph games with imperfect information.

The structure of this chapter is as follows. In Section 4.2, we present the related work;
in Section 4.3, we introduce attack graphs, which are used to compute the attacker’s attack
policies. In Section 4.4, we present our game-theoretic model for honeypot selection problem
and concepts of the heuristic approaches and in Section 4.6 we describe the algorithms we
use to computing strong Stackelberg equilibrium. In Section 4.7, we analyze our algorithms,
including the scalability and quality of the strategies that they found as well as network
security related questions using our models.

4.2 Related Work

4.2.1 Attack Graphs

In the context of network security, attack graphs identify all known attack paths the attacker
could follow to exploit known vulnerabilities to compromise a specific network. State-based
attack graphs ([Sheyner et al., 2002]) consist of network states, which scales exponentially
with the increasing number of logical statements about the network. Therefore, a more
efficient logic-based attack graphs representation was introduced, consisting of fact nodes,
that can be either true or false, and the action nodes, that can modify the facts. There are
number of tools that generate such attack graphs, such as topological analysis of network
attack vulnerability (TVA) from [Jajodia et al., 2005, Noel et al., 2010], a network security
planning architecture (NETSPA) from [Lippmann et al., 2002] and multi-host, multistage,
vulnerability analysis (MulVAL) from [Ou et al., 2005].

Attack graphs are used to check the existence of sequences of actions that could lead to
compromising the network ([Ritchey and Ammann, 2000]), a minimal set of vulnerabilities
that must be patched to guarantee that the intruder cannot achieve their goal ([Barik
et al., 2016, Sheyner et al., 2002, Jha et al., 2002]), or perform network risk assessment
([Cheng et al., 2014, Nandi et al., 2016]). In papers [Buldas and Stepanenko, 2012, Ou and
Singhal, 2012, Wang et al., 2008a] and [Hu et al., 2017] the authors analyze attack graphs
with probabilistic outcomes of the actions and introduce various quantitative metrics for
networks risk assessment. These probabilities can be estimated from historical data, red
team exercises or Common Vulnerability Scoring System (CVSS) presented in [Schiffman
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et al., 2004] that compute the overall score of the vulnerability based on vulnerability
attributes. We use probabilistic actions in attack graphs as well.

Attack Planning

The attack graphs with deterministic actions are also used in combination with the classical
planning, where researchers find a sequence of actions that lead to a specific goal ([Boddy
et al., 2005]) or plans that meet certain constraints ([Polatidis et al., 2017]). These plans can
be used to predict the attacker’s behavior or for penetration testing to automate generating
of the attack scenarios to ease the task of searching the likely exploitable attack paths ([Obes
et al., 2013]). Recently, in [Speicher et al., 2018] the authors introduce a new discipline
Stackelberg planning. It consists of two decision-makers, where leader plans a sequence of
actions from initial state to a state s, and then the follower plans from s to a goal state.
Both players use STRIPS planning formalism, which results in large state space; on the
other hand, the full game is deterministic and perfect-information. In [Sarraute et al., 2012]
the authors introduced a POMDP model that includes the attacker’s uncertainty about the
network configuration, while actions are still deterministic.

Planning with probabilistic actions is more complex since plans are not linear anymore
but contingent, specifying the attacker course of actions in the case the previous attempt of
action failed. Algorithms that find optimal contingency plans do not scale well ([Durkota
and Lisý, 2014]) and heuristic algorithm have been presented ([Sarraute et al., 2012]). In [Bi
et al., 2016, JIA and Zhi-Chang, 2010, Borbor et al., 2017] the researchers focus on finding
the most probable attack paths to identify areas to improve the security, or to replan if
previous action should fail [Krautsevich et al., 2012].

Attack Graph Games

The main motivation to use game-theory in combination with the attack graphs is to model
the dynamics of the attacker’s complex reaction to the defender’s defense measures. Static
defense measures, such as presented in [Barik et al., 2016, Sheyner et al., 2002, Jha et al.,
2002] can result in more expensive security measures than are necessary to demotivate the
attacker from attacking a network. Modeling the attacker’s possible reactions to the defense
strategies can lead to more efficient and robust defense strategies.

In [Bistarelli et al., 2006a] the authors published the first attack tree game, where the
attacker chooses a path from the root to a leaf (goal) according to the attack tree, and the
defender chooses a defense measure. A game-theoretic model similar to ours is presented in
[Letchford and Vorobeychik, 2013], where the attacker chooses an attack based on the attack
graph that maximizes his expected utility and the defender decides which vulnerabilities to
fix in the attack graph to maximize his own expected utility. In contrast to this work, we do
not assume deterministic actions outcomes; additionally, we compute strategy for multiple
networks at once, which allows exploiting the attacker’s uncertainty about the attacked
networks.
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4.2.2 Honeypots

Decoy-based deception mechanism, e.g. honeypot, is a network component that serves to
deceive the attacker into believing that it is a valuable target ([Almeshekah and Spafford,
2016]). In [Spitzner, 2003b] the researchers use honeypots to detect and analyze attackers’
behavior and the tools they use. For example, the Honeynet Project in [Spitzner, 2003a]
provides software and literature describing the knowledge acquired about the attackers.
Companies use honeypots as intrusion detection systems (IDS), e.g., a hardware product
called Canary produced by company Thinkst is a simple honeypot that can emulate various
operating systems.

One of the basic deception game was introduced in [Carroll and Grosu, 2011], where
the authors use signaling game to analytically compute a strategy, which prescribes when
a production host should pretend to be a honeypot and when a honeypot should pretend
to be a production host. In [Hayatle et al., 2012] the authors introduce the game, where
a botmaster (attacker) tries to discriminate the honeypot services from the production
services by executing testing and attacking actions. On the other hand, the honeypots
decide what to reply to the attacker to be as believable real service as possible, and whether
to execute or not the attacker’s potentially dangerous command. In [Albanese et al., 2016,
Jajodia et al., 2017] the authors investigate the responses the defender should reply to the
attacker to maximize the defender’s utility in more detail.

In this work, we investigate where in the network to deploy the honeypots and what
services they should provide rather than what answer they should respond to the attackers.
In [Garg and Grosu, 2007, Ṕıbil et al., 2012] the authors model game-theoretically the
situation without attack graphs, where the attacker has a direct visibility of the hosts
and decides which hosts to probe and then to attack. Our work is distinguished from the
above in several aspects. We consider the attacker’s contingency plans based on the attack
graphs generated by MulVAL, which fully characterize the attacker’s behavior and allows
the defender to strategize against all possible scenarios. Parts of our work were published
in [Durkota and Lisý, 2014, Durkota et al., 2015b], where the attackers are assumed to
have perfect information about a network; in [Durkota et al., 2015a] we introduce heuristic
algorithms and compared them to a upper bound on the defender’s utility in Stackelberg
equilibrium; in [Durkota et al., 2016] we compared game-theoretic strategies to human
strategies and analyzed when the game-theory is superior to humans and otherwise.

4.3 Attack Graph

An attack graph (AG) compactly represents all known sequences of attack actions for a
specific network.

Definition 12 (Attack Graph). For network s we define an attack graph AG(s) as a tuple
〈T, F,A, pa, ca, τa, rf 〉, where:

• T is the set of host types in network s.
• F is the set of facts about network s that can be either true or false (e.g., whether the

database has a specific exploit or not).
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• A is the set of atomic actions available to the attacker. Each action a ∈ A has a set of
preconditions pre(a) ⊆ F that must be true before the action a can be performed, and
the set of effects eff(a) ⊆ F that becomes true if action a is successfully performed.
• p : A → [0, 1] is the success probability of action a ∈ A. It represents the likelihood,

that the attacker successfully executes the exploits and achieves the action’s effects.
We use pa to denote this probability. The probabilities can depend on the attacker’s
expertise or even on the behavior of the user at the attacked host.
• c : A → R+ is the attacker’s cost for performing action a regardless of whether the

action succeeded or not. The cost represents the time and resources that the attacker
spends to perform the action.
• τ : A → 2T is the set of hosts that action a interacts with. We use τa to denote the

set of hosts. We assume, that the first time the attacker interacts with a type t ∈ T ,
a specific host of that type is selected with a uniform probability. Future actions with
the same host type interact with the same host. There is no reason to interact with
a different host of the same type because (1) rewards, preconditions and effects are
defined based on the types, so there is no additional benefit, and (2) interacting with
another host increases the probability of interacting with a honeypot and ending the
game.
• r : F → R+ is the attacker’s reward for making fact node f true (e.g., an attacker

gains reward by gaining access to a particular host or compromising a specific service).
We use rf to denote the reward for reaching fact node f .

We overload notation and use eff(f) = {a ∈ A : f ∈ pre(a)} and pre(f) = {a ∈ A :
f ∈ eff(a)} to denote the fact’s effects and preconditions, respectively. We use the common
monotonicity assumption from [Ammann et al., 2002, Ou et al., 2006, Noel and Jajodia,
2004] that once a fact becomes true during an attack, it can never become false again as
an effect of any action.

Example 4.3.1. An example attack graph is depicted in Figure 4.1. Diamonds (resp. rect-
angles) are fact nodes that are initially false (resp. true). Rounded rectangles are actions,
which are labeled with a triplet (pa, ca, τa). The attacker attacks in a top-down manner and
his goal is to achieve root privileges in database host for which he gets reward +1000. At the
beginning, the attacker can perform actions 6:Exploit Vulnerability, 7:Exploit Vulnerability
or 8:execCode(PC, User), since their preconditions are initially true. The action 6:Ex-
ploit Vulnerability has precondition {9:vulExists(WebServer, ’CVE-2012-0572’, MySql)},
and effect {5: netAccess(Database, ’139’, TCP)}. If this action is performed, the attacker
immediately pays 5, and interacts with a WebServer host type. With probability 0.2 the
action’s effect becomes true and the attacker can additionally perform actions 2:Exploit Vu-
lenrability and 3:Password Brute Force. The attacker obtains reward 1000 only in the case
that fact 1:execCode(Database,Root) becomes true during an attack.

We use freely available MulVAL tool to generate the networks logic-based attack graphs.
These attack graphs consist of the attacker’s exploit actions that target a specific vulner-
ability in a host and pivot (or hop) actions that allow the attacker to execute exploits on
the hosts visible from the already compromised host. Successfully executing an exploit
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1:execCode(Database,Root)
+10000

2:Exploit Vulnerability
(0.4,5,Database)

3:Password Brute Force
(0.1,9,Database)

4:vulExists(Database,
'CVE-2010-0020',Windows_2000) 5:netAccess(Database,'139',TCP)

6:Exploit Vulnerability
(0.2,5,WebServer)

7:Exploit Vulenrability
(0.3,8,PC)

8:execCode(PC,User)
(0.8,2,PC)

9:vulExists(WebServer,
'CVE-2012-0572',MySql)

10:vulExists(PC,
'CVE-2013-0811',Internet_Explorer)

11:Browsing a
malicious website

Internet

WebServer

10xPC

Database

PC

Figure 4.1: A network (right) and an attack graph (left), that represents the ways to gain
the access to the database

results in the attacker gaining privileged or non-privileged access to that host. Previous
works (e.g., [Sawilla and Ou, 2008]) show that the information about the costs and success
probabilities for different actions can be estimated using the Common Vulnerability Scor-
ing System ([Mell et al., 2006]) values available for example in the National Vulnerability
Database ([Bacic et al., 2006]), historical data, red team exercises, or be directly specified
by the network administrator.

Correlated Actions The actions in the attack graph are currently assumed to be
uncorrelated, which means that performing one action does not change the cost or the
probability of any other action. This assumption tremendously simplifies the optimal strat-
egy planning. This is similar assumption to naive Bayes in the classification problems.
However, in reality the actions may be correlated: when the attacker performs e.g. scan-
ning of the network it could change his estimation about the cost or probability of a certain
action that he knew he could have performed earlier anyway, but with different cost or
probability. Nevertheless, obtaining the actions’ relationships is a difficult task, as there
are N(N − 1) direct relationship couples, where N is a total number of actions. Given that
there are couple of hundred actions, this task becomes infeasible by to manage by hand.
However, there might be some relationship between the actions based on their preconditions
and effects, from which the actions’ correlation could be computed.

Action Probabilities The basis for the optimal policy planning is the attack graph
structure, action costs and probabilities. The MulVAL tool mainly focuses on creating good
attack graph structure. It also provides an option to calculate the action probabilities,
however, in very simplistic way. In particular, MulVAL offers two options: (i) “with metric
artifact”, which statically assigned to every action rule one of the following probabilities:
1.0 (certain), 0.8 (likely), 0.5 (possible) or 0.2 (unlikely), or (ii) “with metric”, which sets
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probability based on a possible values of Access Vector (high, medium or low) from Common
Vulnerability Scoring System1 as {high→ 0.9,medium→ 0.6, low→ 0.2}.

However, in our experience these options are too limiting and all the probabilities often
result in bimodal values, e.g., for (ii) either high or low. Therefore, in our experiments
we sample the probabilities from the normal distribution to simulate the lager and more
realistic spectrum of probability values.

Action Costs represent the attacker’s effort for attempting to perform an exploit.
There are few reasonable cost interpretations, e.g., duration of the exploit (this metric
is useful for penetration testers who maximize the number of successful attacks during
the limited time of period), communication complexity between the attacker and networks
(the lower communication complexity, the lower the probability of being detected with
e.g., network anomaly detectors) or monetary (amount of money that the attacker pays
for obtaining the exploit code). Extracting the relevant information from these sources to
calculate the attacker’s action costs can be done using machine learning techniques. We
leave it as a future work and focus primarily on game-theoretic aspects of the problem.

Pseudorules The MulVAL tool contains also actions, that do not represent any action
to perform in reality, but merely the attackers knowledge. Example of such action is the
action canAccessHost or canAccessFile. These actions have the success probability set to
1.0 (certain) by MulVAL. However, this knowledge costs nothing the attacker and has
no probability of interacting with honeypots thus we have set both, their costs and the
probability of interacting with honeypot, to zero.

4.3.1 Attack Graph Updates

Notice, that only unreached (or false) facts (diamonds in Figure 4.1) restrict the attacker
choice of possible exploits that can be performed. True facts, that have been already
reached (rectangles in Figure 4.1), can be omitted in the attack graphs without changing
its semantic. Let g be an attack graph. After an action is performed (successfully or not)
the attack graph can be updated using the following rules:

Rule 1 (remove true facts): If for any fact f ∈ F in g : pre(f) = ∅, then remove f
from g. This rule removes all the facts from g that are already true (they have no
preconditions) and their removal does not change attack graph semantic.

Rule 2 (remove facts with no effects) If for any f ∈ F in g : eff(f) = ∅ and rf = 0,
then remove f from g. This rule removes all the facts from g that the rational attacker
would not want to attack. These are the facts that have no reward for the attacker
nor they belong into the precondition of any action.

Rule 3 (remove unnecessary actions): If for any a ∈ A in g : eff(a) = ∅, then remove
a from g. This rule removes all the actions from g that have empty set of effects.
Rational attacker has no incentive to perform them, since all rewards are assigned to
facts.

1www.first.org/cvss
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Rules 1–3 remove facts and actions that the rational attacker would never perform. We
define function AG-CLEAN(g), which sequentially modifies g using the rule as long as they
are applicable, and returns modified attack graph.

If action a is performed successfully, Algorithm 4 is called, which removes fact a and all
the facts, that became true due to action a. If action a fails, Algorithm 5 is called, which (i)
removes action a; (ii) removes set of facts F ′ that can never become true anymore, because
there is no alternative sequence of actions, besides a, that could have made them true, and
finally; (iii) it removes actions that can never be performed, because at least one of their
preconditions are in F ′.

Algorithm 4 Action a succeeded.

1: function Succ(g, a)
2: A← A \ {a}
3: for all f ∈ eff(a) do
4: F ← F \ {f}
5: end for
6: g′ ←AG-CLEAN(g)
7: return g
8: end function

Algorithm 5 Aciton a failed.

1: function Fail(g, a)
2: A← A \ {a}
3: for all f ∈ eff(a) do
4: if 6 ∃a ∈ A : f ∈ eff(a) then
5: F ← F \ {f}
6: R = {a ∈ A : f ∈ pre(a)}
7: for all a′ ∈ R do
8: Fail(a′)
9: end for

10: end if
11: end for
12: g′ ←AG-CLEAN(g)
13: return g
14: end function

Example 4.3.2. Let us show a simple use examples of the rules over the attack graph in
Figure 4.2. Assume the initial attack graph as depicted in Figure 4.2a. Applying Rule 1
results in the attack graph in Figure 4.2b. Next, assume that action a2 is performed suc-
cessfully in Figure 4.2b and Succ(g, a2) is called. This function removes only facts f4 and
f5, but Rule 3 additionally removes action a1. If action a2 is performed and fails, function
Fail(g, a2) is called. (i) It removes a2; (ii) since there is no other action that could make
f5 true, f5 can be removed; and (iii) consequently it removes action a4, which contains at
least one infeasible fact (f5) and the final attack graphs is depicted in Figure 4.2d.

4.3.2 Attack Policy

In this section, we formally introduce the attacker’s contingent attack policy over an attack
graph that fully characterize the attacker’s behavior. It prescribes the attacker’s next action
in case the previous action failed or succeeded. This allows identifying not only the actions
likely to be executed by a rational attacker, but also the order of their execution. This is
necessary to evaluate effectiveness of deploying honeypots or any other intrusion detection
sensors. Figure 4.3 depicts the optimal attack policy for the attack graph in Figure 4.1.
Here, the attacker first attempts to perform action 8:execCode(PC,User). If the action is
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Figure 4.2: (a) Initial attack graph. (b) Attack graph after removing true preconditions.
(c) and (d) are attack graphs after action a2 succeeds (resp. fails) in attack graph from (b).

successful, he follows the success (solid edge) subpolicy, thus performing action 2:Exploit
Vulnerability, otherwise the fail (dashed edge) subpolicy is followed, starting with action
6:Exploit Vulnerability, and so on.

Formal Attack Policy Definitions

Definition 13 (Attack policy). An attack policy ξ is an oriented binary tree (V,E), where
V are vertices and E = E+ ∪ E− are edges. Each vertex v ∈ V is mapped to an action
action(v) ∈ A, and each edges e ∈ E represents either success (e ∈ E+) or failure (e ∈ E−)
of the parent action and E+ and E− are disjoint.

Definition 14 (Attack path). A path(ξ, vl) = (v1, e1, . . . , vl−1, el−1) is an ordered sequence
of vertices and edges in attack policy ξ from the root to some vertex vl (excluding node vl).

Definition 15 (Executable action). Action a is executable if and only if its preconditions
are satisfied.

Let us define useful notation for attack path path. Let V (path) be the set of all
vertices along the path, and V +(path) ⊆ V (path) (resp. V −(path) ⊆ V (path)) be the
set of vertices that preceded a successful (resp. unsuccessful) edge. Let eff+(path) =
∪v∈V +(path)eff(action(v)) be the set of effects that became true along the path.

Definition 16 (Valid path). A path is valid if and only if all actions along the path are
executable.

Definition 17 (Valid attack policy). Attack policy ξ = (V,E) is valid if and only if all
attack paths in it are valid.
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8:execCode(PC,User)
Exp. Util = 395

6:Exploit Vulnerability
Exp. Util = 186.4

2:Exploit Vulnerability
Exp. Util = 449.6

7:Exploit Vulnerability
Exp. Util = 126.9

2:Exploit Vulnerability
Exp. Util = 449.6

2:Exploit Vulnerability
Exp. Util = 449.6

3:Password Brute Force
Exp. Util = 91 T

+1000.0
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+1000.0

3:Password Brute Force
Exp. Util = 91 T

+1000.0

T

+1000.0

3:Password Brute Force
Exp. Util = 91 T

+1000.0

T

+1000.0

Figure 4.3: Optimal attack policy for the attack graph in Figure 4.1. The policy begins with
root action no. 8. If the attempted action succeeds (resp. fails), then solid (resp. dashed)
edge is followed. At each stage of the policy the attacker’s expected utility is denoted. T
denotes the termination action.

Let ξv be a subtree of valid attack policy ξ rooted at vertex v with action a = action(v).
The expected utility of an attack policy ξ on attack graph g is defined recursively as follows:

U(ξv, g) =pa(U(ξv+ , g) + IR(ξv, g)) + (1− pa)U(ξv− , g)− ca (4.1a)

= pa(R(ξv+ , g) + IR(ξv, g)) + (1− pa)R(ξv− , g)︸ ︷︷ ︸
R(ξv , g)

+ (4.1b)

paCg(ξv+ , g) + (1− pa)Ca(ξv− , g)− ca︸ ︷︷ ︸
C(ξv , g)

(4.1c)

=R(ξv, g) + C(ξv, g) (4.1d)

where ξv+ (resp. ξv−) is the subtree of ξv after action a succeeds (resp. fails). IR(ξv, n) =∑
f∈eff(a)\eff+(path(ξ,v)) rf is an immediate reward for successfully performed action a. It

can be decomposed into the attacker’s expected reward R(ξv, g) (in Equation 4.1b) and
expected cost C(ξv, g) (in Equation 4.1c), which we will further make use of. Let A(g)
denote the set of all valid attack policies for attack graph g. The set A(g) is finite because
the attacker never performs the same attack action more than once and on each host
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the attacker can perform a finite set of exploits. ξ∗ ∈ A(g) is optimal attack policy if
∀ξ ∈ A(g) : U(ξ∗, g) ≥ U(ξ, g).

4.4 Honeypot Selection Game Model

Let us now formally define Honeypot Selection Problem (HSP) as follows:

Definition 18 (Honeypot Selection Problem (HSP)). Let be given a set of networks Ac,
their probability distribution C, host type values rt of type t, and the defender’s cost cd(t) for
deploying honeypot of type t. Find strong Stackelberg equilibrium solution profile (δd, πa),
where the defender’s strategy δd consists of honeypot allocations (number of honeypots
h(n,τ) ∈ N of type τ to allocate into network s ∈ Ac) and the attacker plays best-response
strategy πa, which prescribes an attack policy for every reachable network extended with the
honeypot strategy by δd.

In this section, we describe how to represent this problem using game model described
in Chapter 3.1 and compute SSE solution profile. Due to algorithmic complexity of the
problem, we further introduce heuristic approaches that we use to solve the game.

4.4.1 Chance Actions

Let Ac denote the set of networks the Chance chooses form, where each network s ∈ Ac
consists of st ∈ N0 hosts of type t ∈ T . Chance selects network s with probability C(s). In
example in Figure 4.1, host types are T = (A,B, router, target) and Chance chooses from
three networks in Ac ={(2,0,1,1), (1,1,1,1), (0,2,1,1)} each with probability C(s) = 1

3 .

4.4.2 Defender’s Actions

The defender chooses at most k honeypot and their types to deploy into each network
s ∈ Ac. Formally, the set of all the defender’s actions is Ad = {c ∈ NT0 |

∑
t∈T c

t ≤ k},
where k is the number of available honeypots and ct is the number of honeypots of type t.
Performing action c ∈ Ad on network s ∈ Ac results in a network with st real hosts of type
t and ct honeypots of type t. The attacker’s action on host type t interacts with a honeypot
with probability ct

st+ct . In the example in Figure 3.1 the defender deploys exactly k = 1
honeypot and the set of the defender’s actions is Ad = {(2, 0, 0, 0), (1, 1, 0, 0), (0, 2, 0, 0)}.
Applying all actions in each network results in 9 different networks for the attacker.

Attacker’s Actions

An information set is a set of indistinguishable networks by the attacker. In Figure 3.1
we depict information sets I1 through I5 for the attacker, where he makes his first decision
about an attack action. The attacker chooses a full attack policy a ∈ Aa(I) in each I,
where Aa(I) is a set of all valid attack policies for an attack graph of a network in I.
Note, that the attacker can update his belief about the honeypot placement along the
execution of an attack policy (along an attack paths), which must be taken into account
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Figure 4.4: The game tree for a simple network with host types A, B, router and target
(T). Chance plays uniformly into three possible networks; each contains two hosts of A or
B. The defender chooses possible combinations of allocating two honeypots in each possible
network; the defender’s optimal strategy is depicted with probability values of choosing
each action (y1, y2 or y3). The attacker selects attack policy ξ1 through ξn according to the
networks’ attack graphs

during the optimal attack policy computation. Formally, two states z = (szczpath(ξ, vl))
and w = (swcwpath(ξ′, vk)) belong to the same information set I ∈ Ia if and only if
∀t ∈ T : stz + ctz = stw + ctw and path(ξ, vl) = path(ξ′, vk), where ξ and ξ′ are attack policies
and vl and vk are some nodes in the attack policies, respectively. In words, if two networks
after the defender’s move result in the same number of hosts of each host type and the
attack performed exactly the same attack path on both of them, than the attacker still
cannot tell the two networks apart. Networks in states z, w ∈ I ∈ Ia have the same set
of vulnerabilities, therefore, the same attack graph structure for the attacker. The only
difference is in probabilities of interacting with honeypots.

4.4.3 Players’ Utilities

We use rt to denote value of a host of type t to both players (e.g., value for possess-
ing classified documents in that host). We assume that the defender’s cost for deploying
honeypot of type t is cd(t) = γcrt, which is proportional to rt by factor of γc, but our
model is not limited to this. For terminal state z = szczaz ∈ Z, the attacker’s expected
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payoff in z is ua(szczaz) = R(szczaz) − Ca(szczaz) and the defender’s expected utility is
ud(szczaz) = −R(szczaz)− Cd(szcz), where:

1. R(szczaz) – is the attacker’s expected reward for executing policy az on network
sz with honeypots deployed according to cz. This component can be viewed as a
zero-sum component (the more the attacker gains the more the defender loses).

2. Cd(szczaz) =
∑

t∈T cd(t)c
t
z – the defender’s cost for deploying honeypots according to

c, where ctz is the number of honeypots of type t.
3. Ca(szczaz) – the attacker’s cost for executing policy az on network sz with honeypots

deployed according to cz.

The values for R(szczaz) and Ca(szczaz) we compute equivalently to Equations (4.1b) and
(4.1c). The only difference is in the case that action az interacts with host type t for the

first time along its attack path as described in formulas. Then with probability ctz
stz+ctz

the

attack ends and the attacker receives zero, and with probability stz
stz+ctz

the attack continues.
In Figure 3.1 the first value is the defender’s utility and the second value is the attacker’s
utility.

In strategy profile (δd, δa) the defender’s expected utility is ud(δd, δa) = −R(δd, δa) −
Cd(δd, δa), where the first component is the defender’s expected loss and the second com-
ponent is the expected honeypot deployment cost, computed from expected payoffs in the
terminal states of the game reached by the strategy profile. The attacker’s expected utility
is ua(δd, δa) = R(δd, δa)− Ca(δd, δa), where R(δd, δa) is the expected reward and Ca(δd, δa)
is the expected policy execution cost, which depends on both, the defender’s and the at-
tacker’s strategies. For example, if the attacker interacts with a honeypot at the beginning
of the attack, the attacker is detected and does not pay for executing the remaining of the
attack policy.

Touching Honeypot

In our work, we assumed that the defender immediately blocks the attacker’s activity when
the attacker touches the honeypot. However, there are more possibilities how the defender
could react, i.e., the more sophisticated defender might observe the attacker’s activity to
learn about his intentions or to even trace him back to find out how did the attacker got
into the network (if the interacted honeypot is not immediately accessible from the Internet,
but lies in the inner structure of the network) in the first place. The simple blocking of
the attacker leaves him the knowledge how he reached to the honeypot and which types of
machines contain a honeypot. So we can assume that the attacker knows how to reach the
state right before he performed the action that interacts with the honeypot. Nevertheless,
in this point could perform the action again, hoping that this time it would be on a real
machine instead of the honeypot. We could model this type of attacker by allowing him
to repeat the action and paying some penalty each time he is detected by the honeypot,
which is a reasonable assumption. There are various ways of setting the penalty, i.e.,
proportionally to cost of actions he performed just before interacted with the honeypot, as
he has to perform them again (with the different IP). However, there are other options for
the attacker, i.e., having bounded number of repetitions of each action.
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4.5 Heuristic Approaches

Computing Stackelberg equilibria of imperfect information games with stochastic events
is in general case NP-hard, as shown in [Letchford and Conitzer, 2010]. The state-of-the-
art algorithm for solving this class of games, presented in [Bošanský and Čermák, 2015],
uses mixed-integer linear programming (MILP) and the sequence-form representation of
strategies. Our case of attack graph games is also hard because there is exponential number
of attack policies for the attacker to consider with the natural parameters that characterize
the size of a network. Additionally, the set of actions for the defender grows combinatorially
with increasing number of honeypots k, which further limits the scalability of algorithms.
Therefore, we focus here on a collection of heuristic algorithms that find strategies close to
SSE in polynomial time in the size of the game tree. These algorithms compute the optimal
solution profiles of different solution concepts or pose more restrictive assumptions on the
game. We present the general idea of several heuristic methods first, and then discuss the
specific details of the algorithms.

4.5.1 Perfect Information Heuristic (PI)

A straightforward game relaxation is to remove the attacker’s uncertainty about the actions
of the Chance player and the defender, which results in a perfect information game. Al-
though the authors in [Letchford and Conitzer, 2010] showed that in general, the PI game
with chance nodes is still NP-hard to solve, the structure of our game allows us to find a
solution in polynomial time. the Chance player acts only once and only at the beginning
of a game. After the Chance’s move the game is a PI game without chance nodes, which
can be solved in polynomial time in the size of the game tree, as shown in [Letchford and
Conitzer, 2010].

In our game it corresponds to the defender securing each network separately, without
exploiting the attacker’s imperfect information. In [Durkota et al., 2015b] it was shown
that in PI games the defender protects the network by (i) either duplicating the targeted
host, if few honeypots are available or (ii) if more honeypots are available, then duplicating
the host types at the ”choking points” of a network (hosts, through which the attacker
must always pass to compromise the network, e.g., all entry nodes into the network). This
approach is likely to find these suboptimal strategies.

4.5.2 Zero-Sum Heuristics (ZS)

In [Korzhyk et al., 2011] the authors showed that under certain conditions approximating
the general-sum (GS) game as a zero-sum (ZS) game can provide an optimal strategy for
the GS game. In this section, we use a similar idea to construct ZS game heuristic, for
which we compute a NE that coincides with SSE in ZS games. However, in our case this
approach does not provide any optimality guarantees of the results as in [Korzhyk et al.,
2011], but it may result in strategies close to the optimal SSE. A Nash equilibrium can be
computed in polynomial time in the size of the game tree using the LP from [Koller et al.,
1996].
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Recall that in our game the defender’s utility is ud(sca) = −R(sca)− Cd(sca) and the
attacker’s utility is ua(sca) = R(sca)−Ca(sca), where sca ∈ Z. Since R(sca) is a zero-sum
component, the smaller |Cd(sca) + Ca(sca)| is, the closer our game is to a zero-sum game.
Therefore, for small costs, we expect this heuristic to compute strategies close to SSE. We
propose several variants of ZS game:

• (ZS1) Both players consider only the zero-sum component (ud(sca) = −R(sca)). Both
player costs are neglected, which means that the attacker performs attacks and the
defender deploys honeypots at no cost. We expect the defender to deploy all the
available honeypots prioritizing the valuable host types first.
• (ZS2) Only the attacker’s payoffs are considered (ud(sca) = Rd(sca)+Ca(sca)). Since

it omits the defender’s honeypot deployment costs, he is motivated him to deploy
them in such a way, that the attacker’s policies become costly. However, it is hard to
conclude how the defender will allocate honeypots to achieve this.
• (ZS3) Only the defender’s payoffs are considered (ud(sca) = Rd(sca)−Cd(sca)). Here,

the defender’s honeypot deployment costs are considered, therefore, he will balance
their deployment cost with their return in terms of network protection. Since the
attacker cannot influence the defender’s honeypot deployment cost (Cd(sca) depends
only on sc and not on a), the attacker is not additionally motivated to increase the
honeypot deployment cost to the defender. However, the attacker’s attack costs are
neglected, therefore, he may perform attacks which may incur loss to him if the costs
were regarded.
• (ZS4) The defender keeps his original utility with adversarial motivation to harm the

attacker (ud(sca) = Rd(sca) − Cd(sca) + Ca(sca)). Here, the defender is willing to
put his network at higher risk if it results in more expensive attack policies for the
attacker. However, in reality the defender does not care about the attacker’s costs.

The larger the individual costs Ca(·) and Cd(·), the further the original game is from the
zero sum game, therefore, the worse strategies the zero sum heuristic should find, as was
shown in [Durkota et al., 2015a]. These approaches could perform well in games with
relatively small player costs compared to their rewards.

4.5.3 Correlated Stackelberg Equilibrium Heuristic (CSE)

The main motivation for this heuristic is the concept of correlated equilibria and an exten-
sion of the Stackelberg equilibrium in which the leader commits to a correlated strategy. In
[Conitzer and Korzhyk, 2011] this concept has been used in normal-form games, in [Čermák
et al., 2016b] for extensive-form games and in [Letchford and Conitzer, 2010] for stochastic
games. In this case, the leader is not only committing to a mixed strategy but also signals
to the follower an action that the follower should take such that the follower has no incen-
tive to deviate. By allowing a richer set of strategies, the leader can gain at least the same
utility as in the strong Stackelberg equilibrium solution concept. However, the defender’s
commitment to signal the attacker the action to play impedes this solution concept from
being applied in practice, since the defender may not be able to communicate with the
attackers.
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Computing a correlated equilibrium of normal-form games can be done with polynomi-
ally large linear program to the size of the game. But, computing correlated Stackelberg
equilibrium in extensive-form games with imperfect information and chance nodes is an
NP-hard problem (follows from Theorem 1.3 in [von Stengel and Forges, 2008]) in general.
However, we can exploit a specific structure of our game to compose a polynomially large
linear program in the size of the game tree. Specifically, because the Chance acts only once,
we can represent the game-tree as a set of normal-form games, one for each of the attacker’s
information sets. Additionally, a global constraint required that connects all normal-form
games due to the Chance player probabilities. We describe this algorithm in Section 4.6.3.
This solution concept can be used twofold: (i) the defender’s expected utility in CSE is an
upper bound for the defender’s expected utility in SSE, and (ii) the computed defender’s
strategy may provide a strategy close to SSE, so it can serve as a polynomial heuristic to
compute reasonable strategy. In [Durkota et al., 2015a] we used CSE as an upper bound
on SSE to measure the maximal error of other heuristics to the optimal SSE. In this thesis,
we use CSE to compute the heuristic strategy only.

All three heuristics we use to compute strategies in polynomial time to the size of the
game tree. However, developing a reasonable theoretical bounds on the defender’s utility
loss for playing heuristic strategy instead of the SSE strategy in an imperfect-information
game is difficult due to complexity of the problems. All our attempts resulted in very loose
bounds, which are practically useless. Therefore, in Section 4.7 we experimentally evaluate
the quality of the heuristic strategies and compare them to the SSE strategies.

4.6 Algorithms

In this section, we describe algorithms for computing the exact and heuristic defense strate-
gies for Honeypot Selection Problem. One of the major computational difficulties is in
computing the attacker’s attack policies for the game. Different heuristic algorithms solve
this problem in a different way.

The structure of this section is as follows. First, we present novel algorithms that com-
pute the attacker’s attack plans. These algorithms are key components for constructing the
games and computing the attacker’s best responses. Then, we introduce novel algorithms
to compute the exact and heuristic strategies.

4.6.1 Computing Optimal Attack Policy for Single Network using MDP

This algorithm is used primarily in perfect information approximation, since it assumes that
the attacker knows exactly the original network and the defender’s honeypot deployment
action. Despite the fact that attacker knows the number of deployed honeypots of each
host type in a network, by attacking a host type he cannot influence which particular host
of that type to attack. This algorithm computes the attacker’s optimal attack policy using
several pruning techniques. These techniques are further reused in other algorithms that
compute the attacker’s best-response strategies.
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We represent the problem of computing the optimal attack policy for an attack graph
g = 〈T, F,A, pa, ca, τa, rf 〉 as a finite-horizon Markov Decision Process [Bellman, 1956]. The
MDP is defined as a tuple 〈AMDP , SMDP , T,R〉, where:
• AMDP = A∪{aT } is the set of in the attack graph with additional termination action
aT .
• SMDP is the set of states s = (gs, τs), where gs is a possibly modified attack graph g,

and τs ⊆ T is the set of host types that the attacker has interacted with so far. The
initial MDP state is s0 = (g, ∅).
• T [s′|a, s] is the probability that performing action a in state s leads to state s′.

Performing action a may lead to three possible states. (i) a interacts with a honeypot
with probability h = 1 −

∏
t:τa\τs(

st

ct+st ) and his attack immediately ends (leads to
terminal states sT ); (ii) action a does not interact with a honeypot and is successful
with probability pa(1− h), it reaches state s′ = (Succ(gs, a), τs ∪ {τa}). or (iii) action
a does not interact with a honeypot neither is successfully performed with probability
(1 − pa)(1 − h) and reaches state s′ = (Fail(gs, a), τs ∪ {τa}). Functions Succ(·) and
Fail(·) defined in Algorithm 4 and Algorithm 5.
• R(s, a, s′) is the attacker’s reward for performing action a in state s leading to s′. It is

based on the set of facts that became true, the action cost ca and whether a interacts
with a honeypot.

This is a finite-horizon MDP, since the attacker can perform each exploit actions at
most once and there are finite set of actions in an attack graph. Thus, we apply Forward
Dynamic Programming algorithm from Section 2.1.1 to compute the optimal attack policy.
The algorithm is based on the depth-first search with several pruning techniques to speed
up the search. In every state s ∈ SMDP the algorithm computes the expected utility for
every executable action from a ∈ αs, assuming that then the optimal policy is followed. The
algorithm constructs the optimal policy by prescribing to state s the action with the highest
expected utility. In the case there are more actions with the same expected utility to the
attacker, the attacker chooses the one that maximizes the defender’s utility by maximizing
the defender’s reward R(ξ, z) to ensure that it finds strong Stackelberg equilibrium. To
speed up the algorithm, we use various techniques which avoid computing the expected
utility of the unpromising actions. First, we describe the techniques in high level, and in
the remainder of this section in more details.

Dynamic programming significantly enhances the performance of the algorithm.
Since the same states in the MDP can often be reached via more than one sequence of
actions, we cache the expected rewards and corresponding policies of the visited states and
reuse it when possible. E.g., in Figure 4.3 can be seen the repetition of the subpolicies,
which we compute only once because of the dynamic programming. The second technique
uses sibling-class pruning in every state s ∈ SMDP to prune out the actions that are
guaranteed to be suboptimal. Intuitively it states, that if in state s the attacker can perform
two actions and both have the same effect, he first executes the action with the highest
success probability to cost ratio (the succeed-fast-and-cheap strategy). Similarly, if the
attacker must perform two actions to reach fact f , he first executes the action with the
highest fail probability to cost ratio (the fail-fast-and-cheap strategy). Third, we apply
branch and bound techniques to further eliminate not promising actions in state s. For
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that, we compute lower and upper bounds of the expected utility of each action in s. If the
upper bound of action a is lower than the lower bound of action b, we prune out a.

Sibling-Class Pruning

The complexity of the optimal attack planning originates in the need to explore all possible
orderings of actions. The sibling-class theorem states that in some situations, the optimal
order for executing actions can be determined directly without any search. This theorem
was proven in [Greiner et al., 2006] in the context of “probabilistic AND-OR tree resolution”
(PAOTR). The AND part of the theorem is proven in the context of simplified attack graphs
in [Buldas and Stepanenko, 2012]. In both of these works, the actions can be present only
in the leafs of the AND-OR graph, without any preconditions. The inner nodes represent
only the conjunctions and disjunctions and do not have any costs or probabilities of success.
Moreover, the theorem in [Greiner et al., 2006] is proven only for AND-OR trees in which
no node can have more than one parent. There is no notion of reward, and the AND-OR
tree is evaluated until the root of the tree is resolved.

In the attack graphs generated by existing network security tools (e.g., MulVAL [Ou
et al., 2006]), attack actions are present in the inner nodes of the attack graphs, which can
also be cyclic graphs. Furthermore, we assume that the attacker can obtain intermediate
rewards for activating subsets of fact nodes and not only for reaching the root of the attack
graph. Here we generalize the sibling-class theorem to handle these additional cases. We
provide only a proof sketch here based on the original proof. We find that the original proof
holds with minor modifications. To describe the theorem, we first need to define several
additional concepts.

Definition 19. OR-sibling class is a set of executable actions each of which have the same
set of effect facts f ⊆ F in the attack graph and do not have any other effect besides f .
AND-sibling class is a set of executable actions X ⊆ A in the attack graph, such that there
is a “grandchild” action ag ∈ A that can be executed if an only if all of the actions in X
are successful (pre(ag) ⊆

⋃
a∈X eff(a)&∀b ∈ X pre(ag) \

⋃
a∈X\{b} eff(a) 6= ∅) and none of

the actions has an effect that would help enable other actions, besides ag:

∀a1, a2 ∈ X; ag, a
′
g ∈ Aeff(a1) ⊆ pre(j1)&eff(a2) ⊆ pre(a′g)⇒ ag = a′g.

Definition 20. We define the R-ratio of actions in sibling classes as

R(a) =
pa
ca

if action a is in OR-sibling class; and (4.2)

R(a) =
1− pa
ca

if action a is in AND-sibling class. (4.3)

The sibling theorem states that actions in the optimal policy for an attack graph that
belong to the same sibling class are always executed in decreasing order of their R-ratios.

Theorem 4.6.1 (Sibling class theorem). Let AG be an attack graph and let ξ∗ be the
optimal policy for the attack graph. Then for any actions x, y in the same sibling class,
such that R(y) > R(x), x is never performed before y in ξ∗.
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Figure 4.5: Illustration of the proof of the sibling theorem taken from [Greiner et al., 2006]

Proof. The proofs for the AND and OR sibling classes are symmetric; hence, we focus only
on the OR sibling class. The proof of this theorem in [Greiner et al., 2006] relies on a lemma
about attack policies. If we denote a tree rooted in action x with left subtree ξ+ and right
subtree ξ− by (x; ξ+; ξ−) then the lemma can be rephrased in the following way:

Lemma 4.6.1. Let x, y ∈ A be actions in the same OR-sibling class of an attack graph
such that R(y) > R(x). Let ξxy be an optimal policy for the attack graph in the form
(x; ξ+; (y; ξ+; ξ−)), then ξyx = (y; ξ+; (x; ξ+; ξ−)) is a valid policy with a higher expected
reward than ξxy.

The proof of the Sibling class theorem in [Greiner et al., 2006] works by induction on
the number of attack actions in the optimal policy. It is demonstrated on Figure 4.5 taken
form the article. For contradiction, assume that there are actions x and y in the wrong
order in the optimal attack policy. Without loss of generality, assume a case with an action
x in the root of the policy and its sibling y at several places in the negative branch of x
(Figure 4.5(a)). The positive branch does not include y, because it is an OR-sibling of
x, which means that the fact achieved by y is already achieved by x, if it is successful.
The proof shows that the expected utility of the policy is not decreased if it starts as the
negative branch of x and action x is executed just before action y would be executed in
the original policy (Figure 4.5(b)). Then the proof uses the Lemma 4.6.1 to show that if
each instance of the actions x and y are switched (Figure 4.5(c)), the utility of the policy
is increased if the R-ratio of y is higher than R-ration of x.

We argue that a very similar proof is applicable for the more general case of attack
graphs defined above. The differences between the model in [Greiner et al., 2006] and our
model are:

i) The attack graph is in general a cyclic graph and not a tree.
ii) The attack graph has actions with a probability of success and costs in the inner nodes,

and not only in the leaves. This creates preconditions for the actions.
iii) Different attacks give different rewards and it is not necessary to resolve the root node

of the attack graph.
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iv) The attack terminates when the expected cost of continuing the attack is higher than
the expected reward, not when the root of the AND-OR tree is resolved.

The proof is based on properties of the optimal policy with very little reference to the
structure of the AND-OR graph. The only use of the AND-OR graph is to assure that
after the transformations, the policy is still a legal policy. From the definition of the sibling
classes, any action that belongs to a sibling class is a leaf of the attack graph. It does
not have any preconditions and it can be executed at any place in the policy. The inner
nodes of the attack graph are not moved in the tree and the transformations preserve any
preconditions the following actions might have. This means that properties (i) and (ii) do
not have any effect on validity of the proof.

The policy in [Greiner et al., 2006] does not have any rewards, only costs for the actions.
The proof assumes that each subtree of the policy has an expected cost of execution, but it
never requires the costs of the sub-trees to be positive. We can define the expected reward
(or negative cost) of a leaf node n as the sum of the rewards acquired in the path path(ξ, n).
Afterwards, we can treat this leaf as any other subtree in the proof. This resolves difference
(iii).

The last difference between the models is caused by changing the point when the attack
stops. The attack stops at leaf n if the expected value of the optimal sub-policy continuing
from this node is negative. This is a solely a property of the successors of a node in the
policy tree. The transformations used in the proof do not change which actions can be
executed below a current leaf in the policy and they do not change what other facts can
be activated below the current leaves. Therefore, it cannot be optimal to prolong any
branch after the transformations. Furthermore, no attack would be terminated earlier due
to the transformations. The attacker stops an attack if the expected reward of some subtree
would become negative. The proof initially assumes an optimal strategy and shows that
the expected utility of the strategy stays the same when x is moved just before y. If the
expected cost of playing the subtree rooted at the new position of x were positive, stopping
the attack at that place would increase the utility of the whole strategy, which contradicts
the optimality of the original strategy. The same holds after switching the positions of x
and y. The original proof states that the utility is increased when the two are switched.
If in addition, some of the subtrees would have negative expected reward after the switch.
Removing the subtree would increase the expected utility even more, which still means that
the original strategy was suboptimal.

Therefore, when we consider which action to perform at a decision point we can consider
only those with the highest R-ratios in each sibling-class and those that have multiple par-
ents or grandparents. After some actions in the attack graph are executed the inner nodes
in the attack graph can become leaf nodes and the sibling theorem is then applied to those
nodes as well. Unfortunately, the attack graphs with honeypots violate the monotonicity
property of actions (assumed in the proof of Sibling Class Theorem). These actions cannot
be pruned or preferred to other actions, therefore, we apply the sibling-class theorem only
to actions that do not interact with honeypots.

Example 4.6.1. Let us demonstrated the Sibling-Class theorem on an example in Fig-
ure 4.1. Actions number 6, 7 and 8 belong to the same OR sibling class and their respective
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R-ratios are 0.2
5 = 0.04, 0.3

8 = 0.0375, and 0.8
2 = 0.4. Sibling class theorem states, that if

optimal attack strategy begins with an action from this sibling class, then it must start with
the one that has maximal R-ratio. In our case, the attacker orders the actions in decreasing
R-ration order: first attempts to perform action 8, if fails then 6, and if even that fails then
7.

Sibling-Class Theorem with Honeypots The global effect of the honeypots can vio-
late the monotonicity property of actions in attack graph that is used to prove the Sibling
Theorem presented previously. The results can still be used in some cases, but applying
the result is somewhat more complicated because we must take into account the presence
of honeypots. Follows an example that demonstrates inapplicability of the Sibling-Class
theorem on attack graphs with honeypots.

Example 4.6.2. Consider an example depicted in Figure 4.6 with two actions a and b.
Action a succeeds with probability pa = 1, costs ca = 10 and interacts with host type
τa = {pc1}. Action b succeeds with probability pb = 0.5, costs cb = 1 and interacts with host
type τb = {pc2}. Both types consist of a real host and a honeypot of that type, therefore, both
actions have probability of interacting with a honeypot ha = hb = 1

2 . Since both actions have
the same effect, they belong to the same OR-sibling class. Thus 0.1 = 1

10 = R(a) < R(b) =
0.5
1 = 0.5. According to the sibling-class theorem it is optimal to first perform action b and

then perform action a (strategy ξb,a). However, performing the sequence in the opposite
order (strategy ξa,b) yields higher expected utility. Compare ξb,a = (1− hb) · (pb · 100 + (1−
pb)((1 − h − a)(pa · 100) − 10)) − 1 = 34 and ξa,b = (1 − ha) · (pa · 100) − 10 = 40). The
reason is that if action b interacts with a honeypot, the attacker will not get a chance to
perform action a anymore, that has success probability 1. Thus, it is better for him to start
with action a, despite the fact that its R-ratio is lower than of the action b.

+100

a
(10,1,pc1)

b
(1,0.5,pc2)

Figure 4.6: Sibling-Class theorem
counterexample when actions can in-
teract with honeypots.

Therefore, we use the sibling-class theorem only
for actions that do not interact with a honeypot,
which is (i) if attacker already interacted with a real
host of a type or (ii) if there is no honeypot of that
type.

Branch and Bound Technique

The branch and bound needs to compute the lower
and upper bounds on the expected utilities of the
states. We use lower and upper bounds on the at-
tacker’s expected utilities of the states to quickly
prune out those, that have upper bounds lower than
the lower bound of an alternative reachable states to
the attacker. The lower bound LB in state s we

set to the exact expected utility of some action a ∈ αs performed in s. If there is no action
for which the exact expected utility has been computed then lower bound is set to zero,
which corresponds to the termination action aT .
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The upper bound for state s we compute by performing a depth-first search on the
attack graph relaxed in two ways. We set action costs to zero, and the probabilities of
touching honeypot to zero. One can easily see that this can only increase the attacker’s
expected utility in the modified attack graph. In the relaxed attack graph for each fact
node f with reward rf > 0, we compute the upper bound on the probability that fact f
becomes true. The probability is determine by calculating the probability that at least
one of the actions in pre(f) will have all its preconditions pre(a) satisfied and action a will
be performed successfully. This leads to a recursive computation of the probabilities that
the action’s preconditions in pre(a) becomes true, etc. The algorithm terminates either by
reaching the facts that are already true, or reaching the facts that can never be satisfied
(pre(f) ∩A = ∅). To avoid complications caused by cycles, during the traversal we restrict
each fact node to be precondition of at most one action in the attack graph. Removing
preconditions for the actions can only increase the resulting probability because fewer facts
are required to fulfill the preconditions of that action. Let Ptrue[f |s] be the computed upper
bound on the probability that fact f will become true in state s. The final upper bound
on the expected utility is

∑
f∈{f∈F |rf>0} Ptrue[f |s]rt. We use standard branch and bound

technique to prune out provably suboptimal actions.

When we compute the expected utility of a, which was not pruned out, we first com-
pute the expected utility of the success branch of the action. This allows us to com-
pute tighter lower bound for the case the action fails. Namely, we bound it by LB =
M+ca−paUa(ξa++IR(ξa+ ))

1−pa , where M is the highest expected utility for an action in s for which
the exact expected utility has been computed. We used this algorithm for computing the
perfect information heuristic, but its pruning techniques we reuse in the other algorithms
for computing attacker’s attack policies.

Cycles in Attack Graph

The literature usually deals with an acyclic attack graphs, since introduction of the cy-
cles raises certain difficulties to the algorithms or the algorithm may not even terminate.
In [Wang et al., 2008b] the authors deal with the three types of cycles, depicted in Fig-
ure 4.7. For each type of the cycle they propose how to deal with them: either they can be
ignored, broken or must be dealt with in a non-trivial way. The cycle types differ from each
other in a way they are entered. We argue, that our MDP approach can solve all mentioned
cycles without need of their removal or other procedures.

An example of the first type of cycles is depicted in Figure 4.7a. This cycle can be
entered either with action e1 or e2. However, both have a precondition which is an effect of
the other action. Our MDP approach will never enter this cycle, since action e1 or e2 will
never have its preconditions true.

An example of the second type of the cycle is depicted in Figure 4.7b, which has an
entering point through the fact c2. In the contrary to the first type, this cycle can be entered.
When our MDP approach enters the cycle through c2, the action e2 will be removed by
AG-CLEAN(·) function presented in Section 4.3.1, therefore, MDP will not experience the
cycling.
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Figure 4.7: Three types of cycles in attack graph from [Wang et al., 2008b].

Finally, the third type, where two (or more) entering points exist, and both are through
the fact nodes. According to the authors in [Wang et al., 2008b], this cycle cannot be either
removed nor simply broken. For our approach this is not an obstacle either, as our MDP
will enter the cycle either from c4 or c3. Without loss of generality, let us assume it enters
through c4, which is consequently removed but action e3 cannot be removed, because it has
effect c5. If e4 is performed in future, it set true only c5 (c4 has been removed), so no cycle
appears.

4.6.2 Optimal Attack Policy for Multiple Networks in Information Set

The previous algorithm assumes that the attacker knows precisely the attacked network.
In this section, we relax the assumption of perfect observability and introduce two novel
algorithms that allows attacker’s uncertainty. There are two degrees of uncertainty that
the attacker may have: either he knows the probability distribution of the networks, or he
does not know even that.

Known Probability Distribution Of Networks

Finding the optimal attack policy for a set of networks in an information set I with a
known prior probability distribution over them can be solved by extending the previous
algorithm. For each network in I we create an MDP as described in Section 4.6.1 with a
prior probability of the initial state of in that MDP equal to the probability of that network
in an information set. The result is a large POMDP, where the attacker has probability
distribution over the initial states. We use similar algorithm as in Section 4.6.1 to solve the
POMDP with minor modifications described below.

In Figure 4.8 is an example of the attacker’s two MDPs for two networks in information
set I1. The MDPs are created according to the actions in the attack graphs of the networks.
E.g., in nodes in I1 (labeled with a) the attacker chooses an attack action from A(g) (in our
example A(g) = {a1, a2, a3}). After each action, there is a chance that the action interacts
with a honeypot (edge h), or does not interact with a honeypot in which case it can succeed
(edge s) or fail (edge f). In Figure 4.8 are depicted all edges only for action a2 at I1. The
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same attack paths lead to the same information sets in the POMDP since the attacker
cannot tell them apart. For example, path (a2, s, a1, f) in the left and in the right subtrees
in Figure 4.8 leads to the states that belong to the same information set I5 ∈ I. However,
the same action in different MDPs (which are part of the POMDP) may have different
transition probabilities, so we use Bayes rule to update the probability distribution among
the MDPs based on the action probabilities. The algorithm returns a single attack policy
ξ with the highest expected utility given the probability distribution over the states in I.
During the computation, we use pruning techniques described in the previous section. The
above-mentioned algorithm for MDP is modified for POMDP purposes as follows. First,
the it keeps the attacker’s belief over the MDPs and uses Bayesian rule to update the
belief after each action. Second, the algorithm propagates upward expected utility over the
MDPs, weighted by the attacker’s belief. This algorithm is at least NP-hard since finding
the optimal attack policy for one MDP is already NP-hard.

Unknown Probability Distribution Of Networks

In the case the attacker does not know the probability distribution of the networks, there
is no specific best-response attack policy that the attacker should play. We compute the
smallest set of undominated strategies (SUS) for the attacker that could be best responses

Figure 4.8: The attacker’s POMDP consisting of two MDP’s, each for a different state in
information set I1. Attacker acts in decision nodes labels with “a” according to the attack
graphs of the networks; and the Chance player acts in nodes labeled with “c”. After each
of the attacker’s actions, the Chance determines whether the action: interacted with a
honeypot (h), did not interact with a honeypot and succeeded (s) or failed (f).
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in I. It significantly reduces the attacker’s possible attack actions for further computations
of SSE.

We reuse notation κa(I) to refer to the smallest set of undominated strategies (SUS)
for the attacker in I. To compute κa(I) we use a variant of the incremental pruning algo-
rithm [Cassandra et al., 1997], a backward induction algorithm, which in every attacker’s
decision state propagates the SUS upwards. The Algorithm 6 computes attacker’s SUS
κa(I) in information set I.

Algorithm 6 SUS computation for information set I.

1: function κa(I)
2: S ← ∅
3: for all a ∈ A(I) do
4: Ia,succ ← perform(I, a, succ)
5: Ia,fail ← perform(I, a, fail)
6: SUSs ← κa(Ia,succ)
7: SUSf ← κa(Ia,fail)
8: for all ξ1 ∈ SUSs do
9: for all ξ2 ∈ SUSf do

10: ξ′ ← create new policy a(ξ1,ξ2)

11: S ← S ∪ {ξ′}
12: end for
13: end fore
14: end for
15: ξ∅ ← create new policy aT (∅,∅)
16: S ← S ∪ {ξ∅}
17: S′ ← ExactSUS(S)
18: return S′

19: end function

Function perform(I, a, succ) (resp. perform(I, a, fail)) returns the information set reached
by the attacker after action a is successfully (resp. unsuccessfully) performed in I. a(ξ1,ξ2)

creates a new policy that begins with action a and follows with ξ1 (resp. ξ2) if a succeeds
(resp. fails). For each action a ∈ A(I) the algorithm computes SUSs for the case that the
action succeeds (SUSs) and the case it fails (SUSf ). Then, it creates a set of policies S as
a combination of the policies that begins with action a and continues with ξ ∈ SUSs if a
succeeds and with ξ′ ∈ SUSf if a fails. This can create policies that do not belong to SUS
of I, therefore, function ExactSUS(·) is called to eliminate the policies from S that do not
belong to SUS, as described in the next section.

Function ExactSUS(S)

Let Ua(ξ, z) be the attacker’s utility for choosing policy ξ ∈ S in state z ∈ I. Here, we apply
linear program described in Section 2.3.5 to determine which strategies do not belong to
SUS. If there exists a probability distribution over states in I, such that ξ yields maximal
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expected utility to the attacker with regards to all policies in S, then ξ is undominated and
ξ ∈ κa(I). For each policy ξ ∈ S we use linear feasibility program (LFP) to determine if
there exists a probability distribution over states in I, such that ξ yields maximal utility
(from [Benisch et al., 2010]):

s.t. :(∀ξ ∈ S \ {ξ∗}) :
∑
z∈I

Ua(ξ
∗, z)pz ≥

∑
z∈I

Ua(ξ, z)pz (4.4a)

(∀z ∈ I) : 0 ≤ pz ≤ 1 (4.4b)∑
z∈I

pz = 1 (4.4c)

The only variables are pz representing the probability of state z ∈ I. The LFP finds
probabilities pz over I, such that policy ξ is the best response. If the LFP does not have
a feasible solution, then policy ξ is never the best response and can be removed from S,
otherwise it is kept in S.

Algorithm 7 computes the exact SUS. For each action it runs function SolveLP- 4.4
which tests if the action is undominated. Algorithm 7 already eliminates the vast majority of
dominated attack policies, however, in some cases SUS may still contain numerous policies.
During our experiments, we encountered the case, where the SUS resulted in many policies
that were undominated in a very small probability region or even just in a single point.
Removing these policies introduces often insignificant errors to the players. Next, we present
an approach to further reduce strategies that introduce at most ε error either player.

Algorithm 7 Computes exact SUS
given set of policies S.

1: function ExactSUS(S)
2: for all ξ ∈ S do
3: κa ← ∅
4: LP ←SolveLP-4.4(ξ, S)
5: if ∃ feasible solution then
6: κa ← κa ∪ {ξ}
7: end if
8: end for
9: return κa

10: end function

Algorithm 8 Compute error-bounded SUS given
set of policies S and error ε.

1: function ErrorBoundedSUS(S, ε)
2: κ̂a(I)← S
3: for all ξ ∈ κ̂a do
4: εa ← AttackerError(ξ, κ̂a)
5: if εa ≤ ε then
6: for all ξ′ ∈ κ̂a \ {ξ} do
7: εd ← DefenderErr(ξ, ξ′, κ̂a)
8: εmaxd = max{εmaxd , εd}
9: end for

10: if εmaxd ≤ ε then
11: κ̂a ← κ̂a \ {ξ}
12: end if
13: end if
14: end for
15: return (κ̂a, εa, ε

max
d )

16: end function
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Error-Bounded SUS

In order to further reduce the attacker’s action space, we allow the attacker and the defender
to make a small ε error. Intuitively, if removing strategy ξ will not cause a utility difference
more than ε for either player, then we can remove it from κa(I). This is similar to weaker-
than-weak elimination of dominated strategies studied for Nash equilibrium in [Cheng and
Wellman, 2007]. We will denote with κ̂a(I) ⊆ κa(I) the set of policies that remain after
removing all policies from κa(I) that incur smaller then ε error to both players.

Before the technical explanation of the algorithms, let us present the intuition behind
the error computation over the example in Figure 4.9. Both plots depict information set
I = {z1, z2}, where the x-axis is the probability distribution over I. Y-axis represents
the attacker’s utility Ua (top plot) and the attacker’s reward R (bottom plot). The plots
present the attacker’s utilities for four different attack policies applied over different beliefs
about the states in I. Now, let us analyze how the removal of the strategy ξ∗ impacts
the players’ utilities. If ξ∗ is removed, the attacker will play the second best action on the
region, where ξ∗ was undominated (labeled as Region 1). The attacker can experience at
most εa error, which is the maximal difference between ξ∗ and an alternative best response
action on the Region 1. To conclude the maximal defender’s error, we analyze only the
R component of his utility, since the attacker’s actions have no impact on the defender’s
honeypot deployment costs Cd. If ξ∗ is removed, we know that the attacker will play either
ξ′ or ξ′′. To determine the error for the case that ξ′ is played, we find the maximal difference
in R between the ξ∗ and ξ′ over the intersection of the regions where ξ∗ was undominated
(Region 1) and where ξ′ is the attacker’s best response after ξ∗ is removed (Region 2).
Similar computation for ξ′′ results in ε′′ error. After computing errors for all the attacker’s
alternatives, the defender can experience at most the error equal to the maximum of all
errors, in our case εmaxd = max{ε′d, ε′′d}. Let us describe the algorithms that determine
whether ξ∗ can or cannot be removed.

Algorithm 8 iterates over all policies and returns error-bounded SUS κ̂a(I). For each
strategy ξ ∈ κa(I) the algorithm calculates the attacker’s maximal loss εa due to removal of
policy ξ (line 3). If εa is less then or equal to a given ε, then strategy ξ becomes a candidate
for removal from κa(I). All alternative policies κa(I) \ {ξ} must be considered (a for-loop
in line 5), on region where ξ was undominated. In lines 6 and 7 the algorithm computes
the maximum utility difference εmaxd . If εmaxd ≤ ε, then ξ can be removed This algorithm
uses linear programs, described below, as a subrutines to compute the players’ errors.

Algorithm 8 in line 15 returns set of policies κ̂a(I), and the attacker’s and the de-
fender’s maximal errors εa and εmaxd , respectively. The errors are propagated upwards in
the POMDP to the earlier information set, where they are taken into account to deter-
mine the errors of the policies in that information set. For example, assume that some
strategies were removed from I4 and I5 in Figure 4.8, which introduced errors to both
information sets. Now, if a policy recommends to the attacker to performs action a1 in
I2, then the errors from I4 and I5 are reflected in this action. Let εa(I) and εd(I) denote
the attacker’s and defender’s maximal errors in I. If action a is successfully (resp. unsuc-
cessfully) performed in I which leads to I ′ (resp. I ′′), then the propagated error to I is
εa(ξ, I) = paεa(I

′) + (1 − pa)εa(I ′′), where pa is the success probability of action a and ξ
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is any policy that begins with action a. For the defender we compute the errors analogi-
cally with εd(I) values. These errors must be also considered when the error for the policy
removals are computed,

Function AttackerError(·) In Algorithm 8, function AttackerError(ξ∗, κa(I)) com-
putes the attacker’s maximal error by building and solving Linear Program 4.5 as follows:

max: εa (4.5a)

s.t.: (∀ξ ∈ κa(I) \ {ξ∗}) :∑
z∈I

Ua(ξ
∗, z)pz + εa(ξ

∗, I)− εa ≥
∑
z∈I

Ua(ξ, z)pz − εa(ξ, I) (4.5b)

(∀z ∈ I) : 0 ≤ pz ≤ 1 (4.5c)∑
z∈I

pz = 1 (4.5d)

In this LP, constraint (4.5b) restricts the probability space over I to an upper bound region
(due to the errors), where ξ∗ could be undominated. It maximizes the difference εa that
the attacker receives for choosing ξ∗ and all other policy in κa(I) \ {ξ∗} over that region.
The objective function εa contains the attacker’s error if ξ∗ is removed including the errors
εa(ξ

∗, I) and εa(ξ, I).

z1 z2

ξ∗

ξ′

εa

z1 z2

ξ∗

ξ′

Reg. 2

Region 1

ε′d

R

Ua

ξ′′

ξ′′

ε′′d

Figure 4.9: Illustration how linear programs 4.5 and 4.6 work. X-axis corresponds to
probability distribution between z1 and z2. Ua and Rd is the attacker’s utility and the
defender’s reward, respectively. Solid lines are four strategies in the information set. The
εa, ε

′
d and ε′′d represents the attacker’s and defender’s maximal utility errors if strategy ξ∗

is removed.

64



Honeypot Selection Problem

Function DefenderError(·) Given candidate policy to be removed ξ∗ and alternative
policy ξ′ that the attacker plays instead, function DefenderError(ξ∗, ξ′, κa(I)) computes
the upper bound on the defender’s utility error on region where ξ′ (after removing ξ∗) is
undominated. The linear program is as follows:

max: εd (4.6a)

s.t.: (∀ξ ∈ κa(I) \ {ξ∗}) :∑
z∈I

Ua(ξ
∗, z)pz + εa(ξ

∗, I) ≥
∑
z∈I

Ua(ξ, z)pz − εa(ξ, I) (4.6b)

(∀ξ ∈ κa(I) \ {ξ∗, ξ′}) :∑
z∈I

Ua(ξ
′, z)pz + εa(ξ

′, I) ≥
∑
z∈I

Ua(ξ, z)pz − εa(ξ, I) (4.6c)

|
∑
z∈I

R(ξ∗, z)pz −
∑
z∈I

R(ξ′, z)pz|+ εd(ξ
′, I) + εd(ξ

∗, I) ≥ εd (4.6d)

(∀z ∈ I) : 0 ≤ pz ≤ 1 (4.6e)∑
g∈G

ps = 1 (4.6f)

where R(ξ, z) denotes the attacker’s reward if the attacker performs policy ξ in state z. It
computes the defender’s upper bound on the maximal utility difference between ξ∗ and ξ′,
where ξ′ becomes a new best response policy. Constraint (4.6b) restricts LP to the region,
where ξ∗ dominated, taking into account the possible policy errors (εa(ξ

′, I) and εa(ξ
∗, I)).

Constraint (4.6c) further restricts LP to the region, where ξ′ is a new undominated policy
(yields higher utility than any alternative policy ξ ∈ κa(I)\{ξ∗}). Constraint (4.6d) ensures
that εd finds the maximal upper bound on the defender’s reward difference between policy
ξ∗ and ξ′, including the policy errors.

The full algorithm for computing the error-bounded SUS is the same as algorithm for
computing the exact SUS κa(I) (Algorithm 6), except that in line 14 ErrorBoundedSUS is
called (Algorithm 8) with ε parameter instead of the ExactSUS (Algorithm 7).

Function ErrorBoundedSUS sequentially eliminates the policies from S, therefore, the
players’ final errors can sum to more than ε. Fortunately, we can control the total error
by discontinuing the further policy eliminations from S, when the error reaches a maximal
allowed bound. However, experiments showed that the accumulated errors are neglectable.

4.6.3 Solving Games

Exact and Error-Bounded Algorithm (MILPs)

We use MILP 2.19 formulation described in Section 2.3.5 to compute the SSE strategy
profile. For each attacker’s policy, the MILP formulation requires creating one float variable
(slack slackσf ) and one binary variable (rf (σf )). Since there are exponentially many attack
policies for an attack graph, the MILP formulation would result in too many binary variables
and solving MILP would be computationally very challenging. Therefore, we restrict the
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attacker’s strategies to exact or error-bounded SUS, which reduces the number of considered
attack policies and speeds up the MILP computation. By allowing ε errors in SUS to both
players we can solve games for up to medium sized network topologies. We call error-
bounded MILP the MILP version, where function ErrorBoundedSUS is called to compute
the attacker’s policies in the information sets. In the remainder of this section, we present
a collection of heuristic algorithms that find strategies close to SSE in polynomial time in
the size of the game tree.

Solving Perfect Information Heuristic (PI)

The perfect information approach assumes, that the attacker can perfectly tell apart the
states in the information sets. To model it, we can create an identical game tree to the
original game, but changing the information set structure so that each state is in unique
information set. This game can be solved using backward induction. After the Chance acts,
for every defender’s action we compute the attacker’s optimal attack policy with algorithm
described in Section 4.6.1 and choose the action for the defender that maximizes his expected
utility. These games can be solved in polynomial time in the size of the game [Letchford
and Conitzer, 2010].

Solving Zero-Sum Heuristic (ZS)

In zero-sum games, any Nash equilibrium yields the same utility to the leader as any
strong Stackelberg equilibrium, thus, we can apply efficient algorithms for ZS games. First,
we convert the original game to a zero-sum game using (ZS1)–(ZS4) rules, as described in
Section 4.5.2. Then use single oracle (SO) algorithm, as described in Section 3, we solve the
game. The advantage of the single oracle algorithm is that it does not require computing all
the attacker’s attack policies in advance, but computes and adds to the game the attacker’s
attack policies during the computation as needed. The single oracle algorithm requires
BRa(δd), which returns the attacker’s best-response strategy given the defender’s strategy.
We compute the attacker’s optimal attack policy in each of the attacker’s information sets
separately. From the defender’s strategy δd we compute the probability distribution of states
in each information set, and then apply algorithm described in Section 4.6.2 to compute
the attacker’s optimal attack policies. The attacker’s final strategy is an ensemble of the
attack policies for all information sets.

Correlated Stackelberg Equilibrium (CSE)

In [Conitzer and Korzhyk, 2011] the authors present an LP that computes SSE of a normal-
form game in polynomial time. The LP finds the probability distribution over the outcomes
in the matrix with maximal utility for the defender under the condition that the attacker
plays a best response. Here, we represent our game as a collection of normal-form games, one
per attacker’s information set, and solve it using this LP. The defender selects a probability
distribution over the states in an information set and the attacker chooses an attack action
in that information set. We can formulate one LP that finds strong Stackelberg equilibrium
for each information set (which is translated into a normal-form game). We additionally
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add a global constraint to obtain a realization plan for the defender, and add the objective
function to maximize the defender’s expected utility over all information sets. However,
the solution of this LP does not result in the SSE of the original game, but in a correlated
SSE, where the mediator sends signals to the follower what action should he play. The
probability distribution over the terminal states allow the attacker to distinguish the states
in the information sets via the Chance player actions, which can be interpreted as the
follower receiving signals in the information sets.

For each of the attacker’s information set I ∈ Ia we construct a normal-form game as
follows. The defender chooses action c ∈ Ad that leads to a state in that information set and
the attacker chooses an attack policy a ∈ κ̂a(I). The outcomes in the matrix game coincide
with the outcomes in the original game. Additionally, we restrict the sum of probabilities of
the outcomes that originate from nature’s action s to be equal to C(s). The LP formulation
follows:

max
∑
z∈Z

pzud(szczaz) (4.7a)

s.t. :(∀I ∈ Ia, a1, a2 ∈ κ̂a(I)) : (4.7b)∑
h∈I

pz′=ha1ua(shcha1) ≥
∑
h∈I

pz′=ha1ua(shcha2) (4.7c)∑
z∈Z

pz = 1 (4.7d)

(∀z ∈ Z) : pz ≥ 0 (4.7e)

(∀s ∈ Ac) : C(s) =
∑
c∈Ad

∑
a∈κa(sc)

pz=sca (4.7f)

Here, the only variables are pz. It finds probability distribution over terminal states that
maximizes the defender’s expected utility (objective). Constraint (4.7c) ensures that the
attacker plays policy a1, which yields higher expected utility than any other alternative
a2, therefore, best-responds. Because there is no constraint that forces the attacker to
play pure strategy, the attacker can correlated his strategy with the correlation device that
chooses outcome of a game z ∈ L with probability pz. κa(sc) refers to κa(I), such that
history sc ∈ I.

Example 4.6.3. An example follows to demonstrate our approach on the game in Fig-
ure 4.10b. Information sets I1 and I2 in the game in Figure 4.10a correspond to the two
matrix games in Figure 4.10b. The defender chooses probability distribution over states in
I1 with actions c1 and c3 (similarly in I2 with actions c2 and c4). The probabilities of the
terminal states of the game tree correspond to the probabilities of the outcomes in the matrix
games (p1 through p8). Additionally, the probabilities of outcomes p1, p2, p3, p4 must sum to
C(s1), since they root from the same action s1 of the Chance player (the same case for s2).

This LP has weaker restrictions on the solution compared to the MILP formulation for
SSE [Bošanský and Čermák, 2015], since it does not restrict the attacker to play a pure
best response. Similarly to SSE, it maximizes the defender’s expected utility. Therefore,
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Figure 4.10: The extensive-form game in (a) translated into two normal-form games in (b).

the defender can obtain the same or higher utility than in SSE. Formulating game with a
CSE has a similar drawback as the MILP formulation, namely, that it requires computing
SUS for each of the attacker’s information set in advance of the game solving.

4.7 Experiments

In this section, we experimentally evaluate the proposed algorithms in terms of runtime
and the quality of the found strategies. The structure of this section is as follows: in
Section 4.7.1 we describe the individual networks and attack graphs used in the experiments,
in Section 4.7.2 we compare proposed algorithm to compute the optimal attack policy with
the domain-independent solvers; in Section 4.7.3 we compare the runtimes of the exact,
error-bounded and heuristic algorithms for SSE and the quality of the computed solutions,
in Section 4.7.4 we answer several problem-related security questions, and in Section 4.7.5
we compare the game theoretic strategies against the human behavior.

4.7.1 Experimental Setting

We use five different computer network topologies, as depicted in Figure 4.11, with varying
complexities to generate the attack graphs for the games. Labels (remote, local, client) at
the hosts denote the number of remote, local and client vulnerabilities of that host type in
an attack graph.

We use MulVAL to generate the attack graph structures for these networks. Unfortu-
nately, MulVAL provides very limited spectrum of the action probabilities, usually with
only two or three different values, while the action costs are not provided at all. To simu-
late more realistic cases with various action costs and probabilities, we decided to draw the
probabilities and costs from the normal distributions. The action costs we draw (in dollars)
from the normal distribution with mean 50 and standard deviation 50 (in dollars), which
assumes that the exploits are not too expensive, as they are often available online (e.g., in
Metasploit2). On the other hand, attempting to perform them is not completely for free, as
the attacker still spends some time by installing the tools and executing the exploits. The

2www.metasploit.com
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action success probabilities we draw from the normal distribution with mean 0.7 and stan-
dard deviation 0.2 with interval bounds [0, 1]. We experimentally chose these values, where
the probabilities are not too low to demotivate the attacker from attacking immediately
and not too high to allow the attacker’s to easily always compromise the networks.

For each network, as depicted in Figure 4.11, we generate the Chance’s actions Ac as
follows. Each network consists of exactly one host of a black host type by default. The
Chance player extends the default network by adding up to N hosts from T host types,
which includes black and gray host types. After the Chance player, there are |Ac| =∑N

i=0 |T |i networks for the defender to configure.

For each network, the defender similarly chooses up to k honeypots to deploy from T
host types, resulting in |Ad| =

∑k
i=0 |T |i different possible honeypot allocations. Increasing

the parameter T , increases the complexity of the network attack graphs, the number of
Chance’s and the defender’s actions. Next, each network topologies is explained in detail.

Business network is inspired by a network in [Homer et al., 2013], and resembles a
smaller company computer network. For T = 3, 4, . . . , we increase the network complexity
by adding host types VPN, Firewall, PC2, PC3, etc., which results in attack graphs with
7, 13, 16, 22 attack actions, in this order.

Chain network consists of PC types in a grid-shaped topology with two rows and a
variable number of columns. We increase the network’s complexity by adding a column
of PC’s, where all hosts in the last column have direct visibility to the database. For
T = 3, 4, . . . , the attack graphs consist of 7, 15, 23, 31 attack actions, in this order.

LocalPlus is a simple network topology. For T = 4, 5, . . . , the attack graphs consist of
8, 11, 14, 17 attack actions, in this order.

TV network is inspired by a network used during cyber security exercises in Swedish
Defence Research Agency in 2012 ([Sommestad and Sandström, 2015]), where the networks
were deliberately left vulnerable to the attacks. For T = 5, 6, . . . , the attack graphs consist
of 26, 29, 32 attack actions, in this order.

Unstructured (unstr) is a synthetic network consisting of host types that are directly
visible to the attacker from the Internet. Because the atomic actions are not dependent on
each other, these attack graphs provide the largest number of possible attack policies with
all possible action combinations. For T = 1, 2, . . . , the attack graphs consist of 3, 6, 9, 12
attack actions, in this order.

In all networks, the values of the host types are set as follows: rDatabase = rStudio =
5000, rServer = 2500, rPC = rV PN = 500. The honeypot cost factor is set to γc = 0.02,
which corresponds to 2% of the host type purchasing cost.

4.7.2 Optimal Attack Planning

In this section, we evaluate the effectiveness of the pruning techniques that we use for the
computation of the optimal attack policies, as described in Section 4.6.1. We compare our
MDP approach to two domain-independent MDP solvers.
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Figure 4.11: Networks used in the experiments

Pruning Techniques Evaluation

We evaluate the contribution of the Sibling Theorem (ST), and for branch and bound
technique the lower bound (LB) and upper bound (UB) separately. In all evaluations,
we use dynamic programming (caching). Since techniques may prune the same branches,
we measure each technique’s contribution by measuring the algorithms slowdown after
disabling the pruning technique. Thus, we compare 5 settings: none (no techniques is
used), all (all techniques are used), -ST (all but ST), -LB (all but LB) and -UB (all
but UB). For each setting in Figure 4.12 we show the optimal attack policy computation
runtimes for different sizes of Business and Chain networks. In Business network, adding
vulnerabilities to a workstation creates large decision points. Since all added vulnerabilities
have the same effect, they belong to the same OR-sibling class and are effectively pruned by
the sibling-theorem. Therefore, the optimal action is selected without additionally extensive
computation (compare all to -ST ). In Chain network the branch and bound helps the most
(-LB and -UB). This experiments were ran for LocalPlus networks also, with similar results
as for Chain network, thus, we omit the results for LocalPlus. In all experiments, we apply
all techniques since they do not seem to have any negative impact and can dramatically
speed up the computation.

70



Honeypot Selection Problem

Table 4.1: (a) Computation times (in seconds) of computing optimal attack policies by DP,
GUIDO and SPUDD. (OoM) - Out of Memory, (Err) - planner exited with segmentation
error.

Problem # Actions Our approach UID SPUDD
LocalPlus-3 16 <1 71 1
LocalPlus-6 28 3 (OoM) 125
LocalPlus-8 36 406 (OoM) 1951

Chain-3 20 <1 21,68 7
Chain-5 32 <1 (OoM) 2646
Chain-7 44 <1 (OoM) Err

Comparison with Other MDP Algorithms

We compare our algorithm for computing the optimal attack policies on the attack graphs
to other two approaches. The first approach converts an attack graph to an Unconstrained
Influence Diagram (UID) as described in [Lisý and Ṕıbil, 2013] and uses GUIDO [Isa et al.,
2007] to solve it. The second approach translates attack graph to probabilistic planning
problem, which can be solved using SPUDD solver ([Hoey et al., 1999]), which iteratively
improves the policy until it is optimal. SPUDD solver won 3rd place at the International
Planning Competition (IPC) in the MDP track in 2011. We chose SPUDD because it
guarantees to return an optimal contingency policy, while the other two winning planners
from IPC do not.

In Table 4.1, we present the runtimes of each algorithm. Our algorithm dramatically
outperforms the other two approaches, where the hardest network LocalPlus-8 was solved
5x faster than by SPUDD planner. For larger problems, the UID solver exceeded the limit
of 8GB and the computation was terminated.
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Figure 4.12: Time comparison of the pruning techniques. Legend: none - no pruning
technique, (-LB) - all but lower bound, (-UB) - all but upper bound, (-ST) - all but Sibling
Theorem, (all) - all pruning techniques.
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4.7.3 Game Theoretic Algorithms Comparison

Scalability of the Algorithms

Here, we analyze the size of the problems that each game-theoretic algorithm is able to
solve. For each network, we ran three instances with different random seeds to draw the
action success probabilities and the costs in the attack graphs. We increase the problem
complexity by increasing parameters T , N , and k. For each experiment we set 2 hour time
limit.

In Figure 4.13 we show the average, minimal and maximal runtime (as error bars) for
each algorithm and network type that finished within the given time limit. The number on
each bar denotes the number of finished instances (if less than 3). The results indicate that
computation of the error-bounded strategies scales worse than the heuristic approaches. It
found a solution in only 49% of the problems within the 2-hour time limit. CSE was able to
solve larger instances than the MILP, and 88% of the problems in total. Both algorithms,
first, have to compute SUS for each information set in the game before engaging in the
computation of the solution concepts.

All zero-sum approaches have similar scalability, so we present only ZS1. The zero-sum
and PI approaches do not require constructing SUSs in advance, so they were able to solve
97% and 99% of the problems, respectively. We were able to reach their limits in the game
with TV network topology (T = 8, n = 3, k = 3) which consists of |Ac| = |Ad| = 585
actions for the Chance player and the attacker and 3552 information sets for the attacker.
In all instances, PI was faster than zero-sum approach.

Solution Quality

In this section, we analyze the quality of the strategies computed by the heuristic approaches
and compare them to the error-bounded MILP. We use the concept of relative regret to
capture the relative difference in the defender’s utilities for using one strategy instead
of another. The relative regret for playing strategy δd instead of δ∗d is ρ(δd, δ

∗
d) = 100 ·

ud(δ∗d ,BRa(δ∗d))−ud(δd,BRa(δd))

|ud(δ∗d ,BRa(δ∗d))| [in %]. It captures the defender’s relative loss assuming that

the attacker responds with the best-response against both strategies. The higher the regret
ρ(δd, δ

∗
d) the worse strategy δd is compared to strategy δ∗d for the defender. In the case

the defender’s strategy yields zero utility we do not add this instance in the total average
due to the division with zero. It can happen, when the attacker’s actions have low success
probabilities and high action costs, so the attacker does not attack even if no honeypots are
deployed. This happened only for unstructured network topology in 9 out of 144 instances.
Additionally to the heuristic game-theoretic approaches, we examined the quality of three
baseline strategies.

Baseline Strategies Uniform (Uni) strategy deploys all honeypots as any host type
with an equal probability. This strategy produces high uncertainty for the attacker in the
information sets. However, it does not consider that the attacker focuses primarily on
attacking the valuable host types. The second, most-rewarded (Rew) baseline approach,
deploys only honeypots of the most valuable host type. While it may protect the most
valuable host type, the attacker can confidently attack the remaining unprotected host
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(d) TV network
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(e) Unstructured network

Figure 4.13: Average, minimal and maximal (the error bars) runtimes in seconds for each
algorithm, network topology, number of host types T , parameter to generate networks for
the Chance player N and number of honeypots k.
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(a) Business network (37 instances).
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(b) Chain network (32 instances).
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(c) LocalPlus network (60 instances).
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(d) TV network (16 instances).
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(e) Unstructured network (74 instances).

Figure 4.14: The defender’s average relative regret and standard error (error bars) for
the strategies computed by the heuristic algorithms and the baseline approaches for each
network

types. The last baseline is weighted-reward (Wei), which is a mixture of the previous two
baseline methods. In each network, it deploys a honeypot of type t with the probability
proportional to the value of that host type. Formally, for type t the probability is rt∑

t∈T r
t .

This is a reasonable assumption that the defender protects host types proportionally to
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their values, however, this (and other baseline methods) completely neglects the attack
graph structure.

In Figure 4.14, we present a comparison of the defender’s utility regrets if the heuristic
strategies are used instead of the error-bounded MILP (notice logarithmic y-axis). We
compute the regrets only for the settings, where all the algorithms found strategies within
the 2 hour limit (including MILP). The result shows that CSE found strategies with the
lowest overall regrets and in 88% of the problems it computed a strategy with zero regret,
which is optimal with regards to the error-bounded MILP.

Concerning the zero-sum heuristics, ZS4 performs the best in all networks except the
unstructured network. In the ZS4 approach the defender’s utility is augmented to prefer
outcomes with expensive attack policies for the attacker. Therefore, the ZS4 approach works
well for networks where long attack policies are produced (e.g., TV or Chain networks) but
worse in the cases, where the attack policies are cheap, such as the unstructured networks.
PI heuristic had relative regret of 2% for all the networks except the unstructured network
again. This heuristic can be useful for solving the problems, where the algorithms with
lower regrets are intractable since this algorithm is the fastest. The defense strategies for
the problems with unstructured network topology have higher regrets compared to the other
networks because there is no such highly-valued host type as are in the other networks. The
defender’s utilities in the unstructured networks are closer to zero, thus smaller changes in
the utility result in higher regrets.

Although ZS4 heuristic performed the best among the zero-sum heuristics, each of these
heuristics present certain drawbacks that we would like to discuss. In the ZS1 and ZS2 the
defender ignores his costs for deploying the honeypots; these strategies often deploy the
honeypot of database type, which is the most expensive action. For example, the ZS2
strategies deploy a database in 74% of the problems, while the CSE only in 43% of the
problems. Strategies computed by the ZS3 and ZS4 are more difficult to analyze. They
often miss the precise probability distribution of the states in the information set that makes
the attacker indifferent between two or more attack policies, in which case the attacker does
not always choose the policy in favor of the defender as it is expected in SSE. However, we
were not able to find a general error that the zero-sum heuristic strategies make.

The baseline strategies, that do not consider the attacker’s possible reactions to the
defense strategies, resulted on average relative regret about 56%. Even the worst game
theoretic algorithm (PI) performed better than any baseline solution. This shows that
game-theory is essential and should be considered while security defense strategies are
developed.

Finally, let us present the player’s utility errors for using error-bounded SUS in the
MILP and CSE algorithms. For the error-bounded SUS algorithm we set ε = 10−5 and for
all experiments gathered the accumulated maximal errors that both players may experience.
The maximal relative error for the defender and the attacker across all experiments is only
5.4 × 10−3% and 1.6 × 10−2%, respectively. In practice, such small relative regrets can
be neglected, since other estimates, such as game utilities or the Chance probabilities may
result in higher regrets for the defender than this. In some information sets in problems
with TV network, the error-bounded SUS reduced the number of policies from 500 to 4,
which significantly decreased its runtime.
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4.7.4 Essential Network Security and Honeypot Related Analysis

The presented game-theoretic framework can be used to answer interesting questions. For
instance, what is the optimal number of the honeypots to deploy into the network, what
is the defender’s regret for not using the honeypots, or for not exploiting the attacker’s
imperfect information in the game? In this section, we answer some of the representative
questions using our game-theoretic framework to demonstrate the potential usefulness of
this work and game theory in general.

Sensitivity Analysis
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Figure 4.15: The defender’s regret
for perturbed action success proba-
bilities, action costs, and host type
values

The defender’s optimal strategy highly depends on
the attack graph structure, the action costs, suc-
cess probabilities, and rewards. In real-world sce-
narios, the defender can only estimate these values.
Since the ZS4 approach has a good trade-off between
its scalability and the solution quality, we analyze
the sensitivity of the defender’s strategies computed
with the ZS4 to perturbations in action costs, suc-
cess probabilities, and values of host types in attack
graphs.

We generate the defender’s attack graph estima-
tion by perturbing the original attack graph actions
as follows: (i) action success probability are cho-
sen uniformly from the interval [pa − δp, pa + δp] re-
stricted to [0.05, 0.95] to prevent it becoming impos-
sible or infallible, (ii) action costs are chosen uni-
formly from interval [ca(1− δc), ca(1 + δc)], and (iii)
rewards for host type t uniformly from the interval
[rt(1 − δr), rt(1 + δr)], where δp, δc, δr ∈ [0, 1] are perturbation parameters. The action
probabilities are perturbed absolutely (by ±δp), but the costs and rewards are perturbed
relative to their original value (by ±δcca and ±δrrf ). The intuition behind this is that the
higher the cost or reward values, the larger the errors the defender could have made while
estimating them, which cannot be assumed for the probabilities.

We compute (i) the defender’s strategy δd on the game with the original attack graphs
and (ii) the defender’s strategy δpd on the game with the perturbed attack graph. In Fig-
ure 4.15 we present the mean and standard errors of the defender’s relative regret for using
perturbed (estimated) attack graph instead of the attacker’s (real) attack graph. In both
cases, the attacker best-responds according to the attacker’s attack graph. The relative

regret is computed as follows: 100 · ud(δd,BRa(δd))−ud(δpd ,BRa(δpd))

|ud(δd,BRa(δd))| [in %], where BRa() are
computed on non-perturbed attack graphs.

For instance, 20% error in the action probabilities (δp = 0.2) results in a strategy with
25% lower expected utility for the defender than the strategy computed based on the true
values. However, the same 20% error in the action costs or host type rewards results in only
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Table 4.2: The defender’s relative utility regret [in %] for not using up to k in the network.

Network

k business chain localPlus TV unstructured

1 52.9 87.6 49.4 90.5 682.64

2 117.8 170.8 120.4 217.7 1083.15

3 184.54 233.3 185.8 364.2 1183.94

5% lower utility. According to the results, the regret depends significantly on the action
success probabilities, then on the rewards, and depends least on the attacker’s action costs.
This is an important result for consideration of the future direction of this work. It suggests,
that estimating the action probabilities should be done as precisely as possible.

Honeypot Contribution to Network Security

It is important to quantitatively measure how honeypots contribute to securing the networks
Organization often require some estimates before decision is made whether or not to deploy
the honeypots. In Table 4.2, we present the defender’s average relative utility regret for
not deploying any honeypot instead of deploying strategically up to k honeypots according
to the error-bounded MILP. For example, if the defender uses no honeypots for business
network, the attacker can harm the defender on average by 184.54% more compared to the
case that the defender uses up to 3 honeypots.

The regrets differ across the network, since some of them are initially harder to ex-
ploit, e.g., the Chain network has Database located far from the Internet and the attacker
needs to compromise many intermediate host types. Additionally, notice an interesting
observation, that for all networks (except the unstructured) the regret for not deploying
two honeypots (k = 2) is larger than twice the regret for not using one honeypot (k = 1).
Stated differently, the defender can intelligently allocate two honeypots to produce even
higher utility benefit than the sum of the benefits from the individual honeypots. For some
networks, the same holds for three honeypots, but the benefit of each additional honeypot
is expected to decrease, as we will see later in this section. Knowing how much the honey-
pots contribute to the network security may play an essential role for the companies future
security decisions.

Regret for PI

In [Durkota et al., 2015b] it was shown that in games where the attacker has perfect
information (PI) about the network, the defender either (i) duplicates the most valuable
host type, or (ii) deploys honeypots of the host types in the ”choke-points” of the network,
which is a set of hosts that the attacker must always pass in order to compromise a target or
a valuable host. In games where the attacker has imperfect information about the networks,
the defender’s decision-making is more complicated, as he must weigh whether to adopt one
of the previously mentioned PI strategies or to exploit the attacker’s imperfect information
in the information sets.
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In Table 4.3 we present the defender’s regret for playing the perfect information strategy
instead of the MILP strategy (these values can also be seen in Figure 4.14). The average
relative regret is only 2.5% to 3%, which suggests that the attacker’s uncertainty can be
exploited to the defender’s benefit, but not by much. This is a very important result,
showing that we can use a fast PI heuristic to compute the defense strategy at the cost of
relatively low utility loss.

Attacker’s Uncertainty in Information Sets

Let us examine how the MILP strategy exploits the attacker’s imperfect information in the
game. We aim to understand the degree of the uncertainty that the attacker faces in the
information sets due to the defense strategies. We use widely known Entropy to measure the
unpredictability of each state in the information set for the attacker. In Table 4.4 we show
the weighted average entropy across all of the attacker’s information sets computed by MILP
and PI strategies. The higher the entropy is, the less predictable states are for the attacker
in the information sets. Although the PI heuristic strategy does not explicitly exploit the
attacker’s imperfect information, in some cases it may play to the same information set
by chance and create uncertainty for the attacker, as can be seen in the table. Thus, the
entropy for the PI can be considered as a baseline value.

The entropy measure is not easy to interpret in terms of state probabilities, nevertheless,
we can see that the MILP strategy has twice as much entropy as the PI strategy, thus, the
attacker faces higher uncertainty in the information sets. MILP is more active in exploiting
the attacker’s imperfect information than PI, which increases the defender’s expected utility
by the above-mentioned 1–3%.

Incorrectly Assuming Imperfect Information

Let us now consider what happens if the imperfect information assumption, assumed and
exploited by the MILP strategy, is not met. This may result in high utility loss for the
defender. In Table 4.5, we show the defender’s relative utility loss for assuming (and
playing optimally against) that the attacker has imperfect information, while the attacker
has perfect-information according to which he best-responds. The defender’s relative utility
loss for playing strategy δd and the attacker switching from δa to δ′a we compute as 100×
ud(δd,δa)−ud(δd,δ

′
a)

ud(δd,δa) [in %].

For Business, Chain and Local network the regret can be as high as 9%, which is almost
three times as large as the defender’s relative regret for playing PI strategy instead of
MILP (see Table 4.3). The perfect-information attacker can exploit the defender’s attempt
to exploit the attacker’s incorrectly assumed imperfect information. In fact, considering the

Table 4.3: For each network topology we show the defender’s relative regret for playing PI
instead of MILP.

unstructured business chain local TV

MILP vs PI 100.69± 18.53 2.95± 0.28 2.87± 0.40 2.94± 0.23 1.01± 0.36
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Table 4.4: For each network topology we show the weighted average Entropy for the attacker
in the information sets due to MILP and PI strategies.

unstructured business chain local TV

Entropy for MILP 0.45 ± 0.1 0.48 ± 0.1 0.44 ± 0.1 0.51 ± 0.1 0.32 ± 0.1
Entropy for PI 0.02 ± 0.1 0.26 ± 0.1 0.28 ± 0.1 0.28 ± 0.1 0.27 ± 0.1

results, the defender should use MILP strategy only in the case when the attacker believes
that the attacker has imperfect information with likelihood higher than 1/3. Otherwise,
it is better to play a safe PI strategy, which does not attempt to exploit the attacker’s
imperfect information and at the same time does not put the defender at risk.

Defender’s Utility Cost Components

Companies are often interested in the individual cost components of the solutions. Here, we
analyze the defender’s different cost components (−R and −Cd) that the defense strategy
yields. In Figure 4.16 we present the defender’s cost for having compromised the network
(solid lines) and the expected cost for the deployed honeypots (dashed lines) for different
honeypot cost factors. We scale the number of the available honeypots for the defender
(k = 1, . . . , 15) with two different honeypot deployment cost factors, cheap honeypots
(γc = 0.02) and expensive honeypots (γc = 0.1). We choose ZS4 for its scalability and
low relative utility regret for the defender. With 0 honeypots, the defender receives utility
-3000 for having a vulnerable network and 0 for the honeypot costs. With only 1 honeypot,
the utility for the network increases to -2000 at relatively low cost for the honeypots. With
γc = 0.02 and k = 12 we can see that the network is almost secure and most expenses
are spent due honeypot costs. This analyses allows estimating the return value of the
investment into the honeypots.

Optimal Number of Honeypots

Another natural question that arises is how many honeypots the defender should deploy,
taking into account the honeypot costs, to maximize the defenders expected utility. To
find the optimal number of honeypots, we increase the maximum number of allowed hon-
eypots k and for each find ZS4 strategy. In Figure 4.16, we show the average number of
honeypots that the defender deploys in each of the networks after the Chance player. For
the honeypot cost factor γc = 0.1 the defender uses 4.6 honeypots on average, while with
cheaper honeypots (γc = 0.02) the defender deploys 11.5 honeypots on average. Deploying

Table 4.5: The defender’s relative loss if the defender assumes and plays optimally against
the attack with imperfect information, while the attacker best-responds with a perfect
information.

unstructured business chain local TV

MILP vs MILP-PI 515.21 ± 73.6 9.07 ± 0.5 9.46 ± 1.2 9.08 ± 0.4 2.84 ± 1.1
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Figure 4.16: The defender’s cost for having his network compromised Rd(δd, δa) (solid line)
and cost for deploying honeypots Cd(δd) (dashed line) for different number of honeypots
k in business network with N = 1, T = 3. For each k we depict the expected number of
honeypots (values) used in each network for different honeypot cost factors.

any additional honeypot costs the defender more than the honeypot contributes to securing
the network. Converging to a specific number of honeypots does not necessarily imply that
with k + 1 honeypots the defender’s strategy would not deploy k + 1 honeypots, but it is
unlikely.

From business perspective, this shows that if the honeypot cost drops from γc = 0.1 to
γc = 0.02 (by 80% cheaper), the defender would purchase 12 honeypots instead of 5.

Choice of Honeypot Types

Finally, notice in Figure 4.16 that for γc = 0.1 and k = 2 the honeypot costs are higher
than with an additional honeypot (k = 3). With the third honeypot the probability of
deploying the cheaper server honeypot has increased from 0.51 to 0.73, while the probability
of deploying the twice more expensive database honeypot has decreased from 0.37 to 0.02.
With three honeypots, the defender has lower honeypot deployment cost (dashed line) and
secures better the networks (solid line). The defender is able to deploy cheaper honeypots
in more strategic locations (e.g., network bottlenecks). Therefore, deciding which honeypot
types to deploy should be thought through in advance and strategically, as for different
k the deployed honeypot types may be very different. (In practice it means that one
cannot purchase and optimally allocate n honeypots first, and later purchase an additional
honeypot and allocate them optimally; since the optimal strategy with n+1 honeypot may
require completely different honeypot types than the strategy for n honeypots.)

4.7.5 Case Study

We conducted a survey to compare the performance of the game-theoretic solutions to hu-
man opponents. The 45 respondents were participants in a four-day-long forensic malware
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Figure 4.17: Respondent’s defense strategies and a clustering of the strategies. Each triangle
represents the space of possible defender strategies for the network in Figure 3.1 (each corner
is a pure strategy).

Table 4.6: Defender’s utility, standard deviation, 10th and 90th percentile for the defender’s
strategies (rows) and attacker’s strategies (columns). BRa - attacker’s best-response strat-
egy to defense strategy; MRd,MRa - mean respondent defense (resp. attack) strategy.

Defense / Attack Best Response BRa Mean Respondent MRa

mean std 10th, 90th percentile mean std 10th, 90th percentile

Optimal (OPTd) -207 131 -350, -50 -189 181 -350, 100
Respondent (Rd) -285 236 -500, 100 -167 208 -360, 100
Mean Respondent (MRd) -262 266 -500, 100 -164 207 -360, 100
Baseline uniform -317 322 -800, 100 -162 240 -500, 100
Best Response (BRd) -302 187 -500, -50 -111 200 -500, 100

seminar, members of multi-agent technology group at CTU, and employees of two computer
security companies. The survey was presented as a competition among the respondents to
motivate the respondents to create effective strategies.

To avoid overwhelming participants with too much information, we used the simple
networks in Figure 4.4 and set all honeypot costs and attack action costs to zero. We kept
the reward of 1,000 for target host T and added penalty of 200 for the attacker if detected
(as a part of the attacker’s cost), and the exploit success probabilities of 0.2 and 0.8 for
host-types A and B, respectively. Attacking routers and host-type T is always successful,
but the attacker can initiate attack only from host-types A or B.

4.7.6 Respondent Behaviors

Analysis of 45 collected responses revealed five main clusters in the respondents’ defense
strategies. We compared this clustering to clustering of 500 uniformly random data sets
using five standard quality metrics. The quality of our clustering was better than the 95th
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percentile indicating that the clusters are not likely to appear by chance. A strategy belongs
to a cluster if its L1 distance from a hand-selected centroid strategy is less than 1/3.

For each cluster we present the percentage of the strategies in that cluster and defender’s
average expected utility (ud) of the strategies against a worst-case attacker. The clusters
can be described as follows:

1. Optimal Strategy (OPTd) (15%, ud = −236 ± 23) is a cluster around the game
theoretic solution.

2. Perfect Information (PId) (26%, ud = −267±21) defends each network in isolation
by playing into I1, I4 and I5, not exploiting the attacker’s uncertainty.

3. Single Information Set (SISd) (11%, ud = −343 ± 16) in contrast to PId plays
always to I5.

4. Biased Uniform (BUd) (26%, ud = −292 ± 22) mostly allocates one honeypot to
each side, and with probabilities 0.1 and 0.2 both honeypots to A and B, respectively.

5. Both to B (BBd) (15%, ud = −255 ± 24) protects more vulnerable host-type B
always with two honeypots.

6. Outliers (OLd) (13%, ud = −334 ± 111) are defense strategies with larger distance
than 1/3 to any centroid strategy.

We visualize the individual defense strategies in Figure 4.17. Each triangle represents
one possible network and the points represent the normalized probability distributions over
pure strategies (each corner represents a pure strategy).

4.7.7 Survey Analysis

In Table 4.6 is a summary of the strategy analysis. Each entry contains the defender’s mean
utility, standard deviation (std), 10th and 90th percentile from 106 simulations for a pair
of a defense strategy (row) against an attack strategy (column).

The OPTd strategy maximizes the defender’s utility against worst-case attacker. Col-
umn BRa is best-response (worst-case) attack strategy against each defense strategy, which
shows how exploitable a defense strategy is. The Rd represents the respondents’ defense
strategies in our dataset. We generated a single “mean” respondent strategy by averag-
ing the individual strategies, labeled MRd. By comparing these strategies to the baseline
uniform strategy, we see that respondents played better than the random baseline.

The respondents’ mean attack strategy MRa reveals some interesting observations. MRd

against MRa has lower mean utility than the optimal strategy OPTd against MRa. It means
that against the human attackers, it might be better to defend with human defense strategy
MRd rather than OPTd. However, MRd may not be a good strategy in the long-term
perspective. Attackers will likely learn from experience and move towards the best-response
BRa by increasing the frequency of successful attacks and reducing failed ones [Kalai and
Lehrer, 1993]. Instead of playing OPTd, it might be better to begin with MRd strategy,
but switch to OPTd as the attackers start adapting.

However, we can develop even better defense strategy than OPTd or MRd, which exploits
the human behavior. BRd is the defender’s best-response defense strategy against the
human MRd attack strategy. This results in highest utility for the defender; however, there
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is added risk because it is vulnerable against BRa attackers who specifically exploit this
strategy.

Our strategies have large standard deviation due to two factors. First, networks have
different levels of security (Network 3 is more vulnerable than Network 1) and more vul-
nerable networks will naturally have lower utility. For example, with strategy OPTd the
administrator of Network 1, 2, and 3 has expected utility−23, −247, and−350, respectively.
Second, randomized strategies are necessary to minimize the strategy’s predictability, but
they also result in variability in outcomes. The OPTd strategy has the lowest standard
deviation against both types of attackers, which can be a desirable property.

4.8 Conclusion

In this chapter, we demonstrate that it is possible to use game theory to model complex con-
tingency plans for an attacker using attack graphs, and integrate these into a game-theoretic
analysis of how the defender should optimize security resources. We can model the realistic
uncertainty that an attacker may have about the network structure, and incorporate this
into the analysis of the optimal defensive policy. We focused on a set of deception-based
strategies for defenders based on deploying honeypots in a computer network. Finding the
optimal deployment when considering both the complexity of possible attack plans and
uncertainty about network structure is computationally challenging, but we were able to
find effective algorithmic strategies for solving these problems by considering approximation
and heuristic strategies.

Our contribution is the attacker’s behavior model using the concise attack graph rep-
resentation and the algorithms that compute the attacker’s optimal attack policies using
(PO)MDP models. We developed and experimentally evaluated the effective pruning tech-
niques to avoid building the full (PO)MDP state search space. These algorithms are used
as a subroutine for game-theoretic algorithms that compute players’ SSE strategy profile.

Our second main contribution is the game model and set of algorithms to solve them
optimally and suboptimally. By introducing a neglectable error to both players, we were
able to significantly reduce the size of the game and compute the error-bounded strong
Stackelberg equilibrium strategies for small and medium-sized problems. In addition, we
introduced and evaluated several heuristic approaches based on more restrictive assump-
tions, e.g., that the attacker has perfect information, or that the game has zero-sum utilities.

One of the most interesting approaches, CSE reaches greater scalability than the error-
bounded MILP solver and in 88% of the cases found the same solution. The zero-sum game
heuristic (ZS4), where the defender’s utility is positively augmented by the attacker’s cost,
has even better scalability and provides a good trade-off between scalability and solution
quality. The perfect information heuristic had the best scalability at the cost of finding
worse strategies than ZS4. Nevertheless, it had a relative regret less than 3%. Therefore,
this heuristic can be used to solve problems that are too complex for the algorithms that
find strategies with lower regrets. To show the regret of heuristic approaches, we had to
develop and solve the algorithms that compute optimal defense strategies.

83



Chapter 4

All game-theoretic heuristics significantly outperformed the baseline approaches, such as
placing honeypots uniformly or proportionally to the host type value. This shows that even
if we are not able to find the exact solution to a complex game-theoretic model, finding
good heuristics can be computed quickly and can result in acceptable outcomes for the
defender.

For honeypot selection problem, we compared the game theoretic strategies with hu-
man strategies obtained from 45 responses of the survey participants. Their tasks were to
decide where to allocate honeypots in one scenario and to choose an attack plan to per-
form in a different scenario. The average participants’ defense strategy, despite being more
exploitable than the optimal defense strategy against the worst-case attacker, performed
better than the optimal defense strategy against the average participants’ attack strategy.
In other words, it is better to defend with human strategies against the human attackers.
However, it neglects the aspect of player’s long-term adaptation against the opponent’s
strategy. The attacker learn by trial and error which attack plans work and shift to it,
which corresponds to the worst-case attackers. In such case the game theoretic strategies
outperform the strategies of the participants.

We can use our algorithms to investigate general questions about security policy and
illustrate the usefulness of the honeypots in securing the networks. Our analysis shows that
there are interesting strategic questions in deciding how many and what type of honeypots
should be used to harden a network. We showed that deploying fewer honeypots may result
in a higher contribution to network security and in a higher honeypot deployment cost than
intelligently deploying more honeypots. In the sensitivity analysis, we show that it is very
important to accurately estimate the success probabilities of the attacker’s actions, rather
than the action costs or host type values. We also showed that the attacker’s imperfect
information can be exploited by the defender to increase his relative utility by up to 3% for
medium-sized networks, and less for the larger networks.
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Threshold Selection Problem

In this chapter we study the problem of data exfiltration detection problem in the com-
puter networks. We focus on the performance of optimal defense strategies with respect
to an attacker’s knowledge about typical network behavior and his ability to influence the
standard traffic. Internal attackers know the typical upload behavior of the compromised
host and may be able to discontinue standard uploads in favor of the exfiltration. External
attackers do not immediately know the behavior of the compromised host, but they can
learn it from observations.

This problem can be also modeled as a three-staged game with imperfect information
presented in Chapter 3, where the network administrator selects the thresholds for the
detector, while the attacker chooses how much data to exfiltrate in each time step. We
present novel algorithms for approximating the optimal defense strategies in the form of
Stackelberg equilibria. We analyze the scalability of the algorithms and efficiency of the
produced strategies in a case study based on real-world uploads of almost six thousand
users to Google Drive. We show that with the computed defense strategies, the attacker
exfiltrates 2-3 times less data than with simple heuristics; randomized defense strategies are
up to 30% more effective than deterministic ones, and substantially more effective defense
strategies are possible if the defense is customized for groups of hosts with similar behavior.

5.1 Introduction

A common type of cyber attack is a data breach which involves the unauthorized trans-
fer of information out of a system or network in a process called information exfiltration.
Information exfiltration is a major source of economic harm from cyber attacks, including
the loss of credit card numbers, personal information, trade secrets, unreleased media con-
tent, and other sensitive data. Many recent attacks on high-profile companies (e.g., Sony
Pictures and Target) have involved large amounts of data theft over long periods of time
without detection1. Improving strategies for detecting information exfiltration is therefore
of great importance for improving cybersecurity.

1https://en.wikipedia.org/wiki/List of data breaches
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We focus on methods for detecting information exfiltration activities based on detecting
anomalous patterns of behavior in user upload traffic. An important advantage of this class
of detection methods is that it does not require knowledge of user data or the ability to
modify this data (e.g., to use honey tokens). To better understand the strategic aspects
of anomaly detection and information exfiltration we introduce a two-player game model
that captures the defender’s and attacker’s decisions in a sequential game. While we focus
mainly on the information exfiltration example, note that raising alerts based on detecting
anomalous behavior is a common strategy for detecting cyber attacks, so our model and
results are relevant beyond just information exfiltration.

One of the novel aspects of our game model is that we consider both insider and outsider
threats. A recent McAfee report [mca, 2015] states that 40% of serious data breaches
were caused by insiders trusted by the organization, while the remaining 60% are due
to outside attackers infiltrating the enterprise. Since both types of attacks are prevalent
we consider both cases. There are significant differences between insiders and outsiders for
information exfiltration. One difference is that an insider knows his typical behavior already
and can use this knowledge to evade detection, while an outsider must learn this behavior
from observation. A second difference is that insiders may be able to replace their normal
activity with malicious activity, while an outsider’s actions will be observed in addition to
the normal activity. We model both of these key differences and examine how they affect
both attacker and defender behavior in information exfiltration.

We introduce a sequential game model in which the objective of the attacker is to
exfiltrate as much data as possible before detection, and the objective of the defender is
to minimize the data loss before detection. The defender monitors the amount of data
uploaded to an external location (e.g., Dropbox or Google Drive) and raises an alert if
the traffic exceeds a (possibly randomized) threshold in a give time period. Some network
companies use only uploaded data volume as feature to detect the data exfiltration. In our
paper we follow this approach, however, our algorithm allows using more features as well.
The defender is constrained to policies that limit the expected number of false positives that
will be generated. The attacker chooses the amount of data to exfiltrate in each time period.
We model both insider and outsider attackers, and both additive and replacing attacks. In
the additive attack the total traffic observed is the sum of the normal user activity and
the attack traffic, while in the replacing attack only the attack traffic is observed by the
defender. Outsider attackers also receive an observation of the user traffic in each time
period that can be used to learn the behavior pattern (and therefore infer something about
the likely threshold for detection).

In his part, our first main contribution is the exfiltration game model that considers
the differences between insider and outsider attackers. Our second contribution is a set of
algorithms for approximating the optimal strategies for both defender and attacker players
in these games. For outsider attackers, we use Partially Observable Markov Decision Process
(POMDP) to model the learning process for the attacker. We also consider randomized
policies for the defender, since it has been shown that static decision boundaries can be
quickly learned ([Comesana et al., 2006]) and randomizing can mitigate successful attacks
([Lisý et al., 2014]). Our third main contribution is an experimental analysis of a case
study based on real-world data from a large enterprise with 5864 users connecting to a
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Google drive service for 12 weeks. We compute optimal strategies against different classes
of attackers, and examine the characteristics of the strategies, the effects of randomization
and attacker learning, and the robustness of strategies against different types of attackers.
We show that with the computed defense strategies, the attacker exfiltrates 2-3 times less
data than with simple heuristics; randomized defense strategies are up to 30% more effective
than deterministic ones, and substantially more effective defense strategies are possible if
the defense is customized for groups of hosts with similar behavior.

5.2 Related Work

Several previous works focus on detection and prevention of data exfiltration. A common
approach is anomaly detection, e.g., a system can automatically learn the structure of stan-
dard database transactions on the level of SQL queries and raise alerts if a new transaction
does not match this structure ([Lee et al., 2002, Fadolalkarim et al., 2016]). An alternative
option is to create signatures of the sensitive data based on their content and detect if
this content is sent out ([Liu et al., 2009]). The signatures should be resilient against the
addition of noise or encryption, such as wavelet coefficients for multimedia files, which are
resilient against added noise. Data exfiltration can also be partially mitigated by intro-
ducing automatically generating honey-tokes, a bait documents that rise alarm when are
opened or otherwise manipulated ([Bowen et al., 2009]). These works do not consider vol-
ume characteristics of the traffic as means of detecting data exfiltration and do not study
the learning process of the external attacker, which are the focus of this paper. A com-
monly studied option of exfiltration is to use a covert channel and hide the communication
in packet timing differences of DNS requests ([Zander et al., 2007]). If the covert channel
increases the volume of traffic to some service, the methods presented in this paper can
help with its detection. More general data exfiltration motivations and best practices to
protect the data are described in [Liu and Kuhn, 2010].

Data exfiltration and similar security problems have been previously studied in the
framework of game theory. In [Liu et al., 2008] the authors propose a high level abstract
model of insider threat in the form of partially observable stochastic game (POSG). They
propose computing players’ strategies using generic algorithms developed for this class of
games, which have very limited scalability. The instance of the game they analyze in the
case study focuses on data corruption and not exfiltration. Our work can also be seen as a
special instance of POSG, but we provide more scalable algorithms to solve it and analyze
the produced strategies in the context of data exfiltration.

Similar to our work, in [Laszka et al., 2016a] the authors investigates selecting thresholds
for intrusion detection systems protecting distinct subsets of a network. The goal is to find
optimal trade-offs between false positives and the likelihood of detection of an attack, which
is simultaneously executed on a several subsets of the network. The attacker cannot decide
what action to execute, only which systems to attack; nor he has an ability to learn the
possible thresholds before the attack is conducted. In [Mc Carthy et al., 2016] the authors
use POMDP to compute defender’s optimal sequence of (imperfect) sensors to accumulate
enough evidence whether data exfiltration over Domain Name System queries is happening
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in the network or not. However, unlike our work, they assume non-adaptive attackers. The
authors in [Lisý et al., 2014] investigated the effect of randomization of detection thresholds
to strength of attacks and their overall cost to the defender. Our modeling of insider attacks
is similar to this work. In contrast to our work, the attacker has perfect knowledge about
the detector and the attacked system before the attack.

5.3 Game Theoretic Model

We model the problem of data exfiltration as a dynamic (sequential) game between the
defender (network administrator) and the attacker trying to exfiltrate data over the network.
We first discuss the basic setting of the game and focus on the fundamental differences
between the insider and outsider and whether their activity is added to or replaces the
normal traffic of the host. Then, we define the exact interaction between the attacker and
the defender.

The defender monitors the volume of data uploaded by each network host2 to a specific
service over time, in time windows of constant length, e.g., 6 hours. His action is to select
a detection threshold c from the set of available thresholds Ad. If a host uploads higher
data volume than c in a time window, an alarm is raised and the activity of that host is
inspected by the administrator.

The attacker controls one of the users and tries to upload as much data as possible to
the selected service before being detected. His actions are to choose the amount of data
a ∈ Aa ⊆ N0 he exfiltrates in the next time window. If this amount (possibly) combined
with the host’s standard activity is below c, the attacker immediately receives reward a
and the defender suffers a penalty proportional to a. In this latter case, the attacker can
act again in the following time window.

Since each host in a company may have different pattern of standard activity, the
defender might want to set the threshold for each of them individually. However, this
approach can be laborious in big companies and individual users rarely produce enough
data for creating high quality models of their behavior. Therefore, it is common to create
groups of hosts with similar behaviors and reason about these groups instead. In our models
we refer to each group as a host type s from a set of all types Ac. We assume both players
know the probability C(s) that a randomly selected host in the network is of type s. Each
host type is characterized by its common activity pattern in the form of the probability
P (o|s) that a host of type s transfers the amount of data o ∈ O ⊆ N0 in a time interval. We
call these amounts observations, since they are the information observed by the external
attackers.

The standard host’s activity can sometimes surpass the selected threshold even without
any attacker’s activity and the host is still inspected. These false positives take a lot of
time for the administrator to investigate and are typically a key concern in designing IDS.
To capture this constraint we require the defender’s strategies to have an expected number
of false positives bounded by a constant FP .

2Hosts are non-strategic actors in the game considered to be part of the environment.
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5.3.1 Outsider vs. Insider

The outsider is an external attacker who compromises a host in the computer network
to exfiltrate data. Although the outsider may know what types (groups) there are in the
company (secretaries, IT administrators, etc.), they often do not know which host type they
compromised. However, they can observe the activity of the compromised host in each time
window and update their belief about its type. Starting an aggressive exfiltration is likely
not the best strategy, since once attacker surpasses a threshold, he is detected and the
attack is stopped. However, conducing too much observation may cause that the host is
disconnected or turned off before any exfiltration was conducted; or that the user’s normal
traffic surpasses the threshold, in which case the host is inspected and the attacker may
be detected; or the data may become useless. We model this risk by discounting future
rewards t time steps ahead with γ, where γ ∈ (0, 1). The outsiders must cautiously weigh
how much to exfiltrate at the current time step versus how long to learn the host type
to increase future rewards. Typically, he would first emphasize learning with little data
exfiltration, and proceed to more aggressive exfiltration when he is more certain about the
host type.

The insiders are the regular users of the network and they know their host type and the
deployed defenses. If the defender sets a fixed threshold for each host type, an insider can
exfiltrate exactly at that threshold (we assume that the amount of data has to surpass the
threshold to trigger the alarm). Such a defense strategy is not optimal, and the defender
should minimize the insiders certainty about the threshold by randomization of her choices.

5.3.2 Additivity vs. Replacement

Consider a situation where the host uploads oMB and has set threshold c. Then the attacker
can exfiltrate at most c − o, if he does not want to surpass the threshold. Additivity
is important mainly for the external attacker operating on the host without its user’s
knowledge. However, we allow additivity even for the insider in our model so that we can
analyze the effect of incomplete knowledge of the external attacker with all other conditions
equal. Assuming that the attacker completely replaces the existing host traffic with the
exfiltration is more natural for the insider. However, even the external attacker can, in
principle, throttle or to completely block the standard user’s traffic to increase his own
bandwidth for exfiltration. We analyze combinations of scenarios when the attacker is
insider/outsider and when the user’s normal traffic is and is not present.

5.3.3 Formal Definition of Game Model

We have introduced the following components: Ac is the set of host types and C(s) the
probability of occurrence type s ∈ Ac; O (resp. Aa) is the set of possible amounts of data
that the hosts (resp. attackers) can upload; P (o|s) describes host’s standard activity; Ad is
the set of thresholds the defender can choose; FP is the defender’s maximal false positive
rate; γ is the discount factor.

In our model, we assume that the network administrator models the user’s normal traffic
using discrete representation, e.g., histograms. In that case, the attacker and defender’s
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action are also discrete, as they have no incentive to choose actions between the discrete
values.

Defender’s Strategy

We allow mixed (or randomized) strategies in form of δd(sc), where the defender chooses
a probability distribution of thresholds c given host-type s. A valid defender strategy δd
must satisfy the false positive constraint

∑
s∈Ac

∑
c∈Ad δd(sc)C(s)FP (c|s) ≤ FP , where

FP (c|s) =
∑

o∈O:o>a P (o|s) is type s’s amount of false positives if threshold is at c.

Attacker’s Strategy

In the course of the attack, the attacker follows a policy which prescribes what action he
should take when he played actions a1, . . . , ak and saw observations o1, . . . , ok so far ([Braz-
iunas, 2003]). We assume, that the defender chooses his threshold strategy first, and the
attacker acts afterwards, knowing the defender’s strategy. In such a case, the attacker acts
only against the nature, without adversarial actor, and Partial Observable Markov Decision
Processes (POMDPs) can be used to reason about (approximately) optimal attacker’s poli-
cies for the attacker. In the POMDP the attacker is not required to remember the entire
history of his actions and observations. Instead, he can capture all relevant information he
has acquired in the course of the interaction in the form of a belief state b ∈ ∆(Ac ×Ad),
which is a probability distribution over possible host types and threshold settings. We can
then define attacker’s policy based on his belief as πa : ∆(Ac ×Ad)→ Aa. In the course of
the interaction, the attacker keeps track of his belief b using a Bayesian update rule when he
takes the last action and observation into account. Based on his current belief, he chooses
action πa(b) to play. We denote the set of all belief-based policies as Πa.

Note that the insider knows the host type from which he exfiltrates the data (it is his
own host machine), therefore, there is no need to update belief based on the observation.
Therefore, the insider chooses an action from Aa that he plays in all time windows. Mixed
strategies are probability distribution among these choices.

Utilities

We define the attacker’s expected utility as ua(δd, πa), which is the discounted total expected
amount of exfiltrated data using policy πa against the defense strategy δd. We define the
defender’s utility as ud(δd, πa) = −Cua(δd, πa), where C > 0. That means, that players have
opposing objectives and their payoffs are proportional. Typically C > 1, which means that
the defender suffers more than the attacker gains. For simplicity, we ignore the attacker’s
and defender’s individual action costs.

Because of the linearity axiom ([Straffin, 1993]), multiplying the defender’s payoffs with
with a constant 1

C will not change the player’s strategies, and the game becomes a zero-sum
game. In zero-sum games, all the attacker’s best responses have the same expected utility
to the defender and the attacker, therefore, there is no need to distinguish between specific
best responses as in SSE. Because we use approximative algorithm to compute the attacker’s
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policy, we focus on finding ε-optimal SE. The defender’s strategy in ε-SE guarantees, that
the defender’s utility cannot be improved by a factor of more than 1 + ε in the exact SE.

Definition 21 (ε-optimal Stackelberg equilibrium (ε-SE)). Let ε ∈ (0, 1]. Solution profile

(σ∗, π∗) where π∗ ∈ BRa(σ∗) belongs to ε-SE, if ∀σ ∈ Σ, ∀π ∈ BRa(σ) : ud(σ,π)−ud(σ∗,π∗)
|ud(σ∗,π∗)| ≤

ε.

Note, that we use multiplicative definition of approximate solution concept ([Feder et al.,
2007]), rather then more typical additive approximation. In our opinion, the multiplicative
approximation is slightly more reasonable for our domain. However, the algorithm can be
easily modified to return additive ε-SE.

5.4 Algorithms

In this section, we present two algorithms. First algorithm computes the exact SE against
the insider. Second algorithm computes ε-SE against the outsider.

5.4.1 Optimal Defense Strategy Against Insiders

Since we assume that the insider knows from which user type he exfiltrates data (they have
complete information), we can model the interaction between the attacker and each host
type as a normal-form game, where the attacker chooses a probability distribution over ac-
tions Aa for each host type and the defender chooses probability distribution over thresholds
Ad for each host type. Because false-positive rate is a global constraint across all host types,
we must compute the optimal defense strategy for all host types globally and not for each
host type independently. We formalize the game between all host types and the attacker
as one problem by extending the zero-sum normal-form linear program (LP) [Shoham and
Leyton-Brown, 2008] with multiple host types and a false-positive constraint.

min
rd

Ua (5.1a)

s.t. : (∀s ∈ Ac, ∀a ∈ Aa) :
∑
c∈Ad

ua(sca)rd(sc) ≤ Ua,s (5.1b)

∑
s∈Ac

C(s)Ua,s ≤ Ua (5.1c)

(∀s ∈ Ac) :
∑
s∈Ac

rd(sc) = 1 (5.1d)

(∀s ∈ Ac∀c ∈ Ad) :rd(sc) ≥ 0 (5.1e)∑
s∈Ac

∑
c∈Ad

C(s)rd(sc)FP (c|s) ≤ FP (5.1f)

The variables in the LP are: rd(sc), Ua and Ua,s. rd(sc) denotes the probability of sequence
sc, where s is the host type and c is the threshold. The objective (5.1a) minimizes the
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attacker’s expected utility Ua, which consists of expected utilities Ua,s of each type, weighed
by its probability (5.1c). Constraints (5.1b) ensure that the attacker plays a best response
in each host type against the given defense strategy; (5.1d) and (5.1e) ensure that the
defender’s strategy is a proper probability distribution; and (5.1f) ensures that the strategy
meets the required false-positive rate. The solution of the LP will return the defender’s
realization plan in variables rd. This LP does not return the attacker’s strategy, however,
since we seek for the attacker’s pure strategy in SE, finding an action that yields maximal
utility to the defender is just an evaluation of a polynomial formula.

The attacker’s expected payoff in terminal node with history sca we compute as follows:

ua(sca) =

{
a

1−γ if c ≥ a
0 otherwise.

(5.2)

The value a
1−γ = a + γa + γ2a + . . . is the attacker’s cumulative discounted reward for

selecting a ≤ c. For the attacker with additivity the expected payoff is computed as follows:

ua(sca) =
aP [o+ a ≤ c|s]

1− γP [o+ a ≤ c|s]
(5.3)

where P (o + a ≤ c|s) =
∑

o∈O:a+o≤c P [o|s] is the probability that the user’s action o
combined with the attacker’s action a is below threshold c for type s. The equation,
similarly as the previous one, sums the attacker’s expected utility for action a with γ
discount and takes into account, that with probability P [o+a ≤ c|s] the attacker surpasses
threshold c. To compute the defender’s pure strategy, we replace Equation 5.1e with (∀s ∈
Ac∀c ∈ Ad) : rd(sc) ∈ {0, 1}, which forces the defender’s realization plan for sc to be either
zero or one.

5.4.2 Optimal Defense Strategy Against External Attacker

The outsider observes the activity of the host in an attempt to learn and infer its type.
Due to the learning process, the strategies of the attacker are more complex, compared to
the insider case, as the strength of the attack can vary over time. We can reason about
attacker’s behavior under this uncertainty using Partially Observable Markov Decision Pro-
cesses (POMDPs) and his optimal, best-response strategy can be computed by algorithms
for solving POMDPs. Originally, POMDPs were designed to reason about actions of a
single decision maker. However, since the defender only decides the initial belief of the
POMDP and the defender then has no influence on the dynamics of the system, we can
extend the POMDP framework to solve our game-theoretic problem.

The POMDP framework assumes that in every time step, the player chooses an action
and receives an observation from the environment as a result. Based on this observation
he updates his belief over the possible current states of the environment. Additionally, in
each time step the player obtains a reward which depend on the state of the environment
and the action chosen. A solution of the POMDP is a policy which prescribe an action
to use given every possible belief state. Here, we extend a well-established algorithm for
solving infinite-horizon discounted POMDPs, Heuristic Search Value Iteration (HSVI) (from
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[Smith and Simmons, 2004]) to find an ε-Stackelberg Equilibrium, with key ideas inspired
by [Horák and Bošanský, 2016]. The main idea of the algorithm is to iteratively compute
the attacker’s and defender’s best response strategies, which will eventually converge to a
Stackelberg equilibrium. In this chapter, we do not distinguish different versions of the SE
(strong, weak, etc.), because in zero-sum games all versions are equivalent. In this case,

In this section, first, we define POMDP models formally; then we explain the main
ideas of the HSVI algorithm; and lastly, we present our contribution, the Adversarial HSVI
algorithm, aimed to find ε-SE in our game.

POMDP Model

Given the defender’s strategy δd represented as realization plan rd, we define an infinite-
horizon discounted POMDP model as a tuple 〈S,A,O, T,R, P, γ〉, where:

• S = Ac×Ad is set of states, where each state α ∈ S is defined as α = (cα, sα), where
sα is host-type and cα is the chosen detection threshold. We also define a terminal
state αT , which denotes that the attacker got detected and the attack was deflected.
• A = Aa is the set of attacker’s actions;
• O is the set of observations about the traffic on host attacker tries to exfiltrate;
• T [α′|a, α] is the probability that action a in state α leads to new state α′. In

our case, when additivity is considered ∀α ∈ S \ {αT } : T [α′|a, α] = P (a + o ≤
cα|sα), and T [α′|a, α] = 1 − P [a + o ≤ cα|sα]. If there is no additivity, then ∀α ∈
S\αT : T [α′|a, α] = 1a≤cα and T [α′|a, α] = 1a>cα otherwise, where 1A = 1 if A is true
and 1A = 0 otherwise is the indicator function.
• R(α, a, α′) is the immediate reward the attacker obtains for performing action a in

state α leading to α′. In our case R(α, a, α′) = a had the attacker not been detected
yet, R(α, a, α′) = 0 otherwise;
• P [o|a, α] is the probability of observing o ∈ O when action a is taken in state α. In

our case P [o|a, α = (sα, cα)] = P [o|sα].
• γ ∈ (0, 1) is the discount factor.

With B we denote the attacker’s belief space, i.e. the set of all probability distributions
over the states S. We derive the initial belief b0 ∈ B according to the prior distribution
over the host types C(s) and the strategy of the defender, i.e. b0(s) = rd(sc)C(s) for state
α = (s, c).

Adversarial HSVI (A-HSVI)

Recall that the initial belief of the POMDP problem, b0(α) = rd(sc)C(s), can be directly
mapped to the defender’s realization plan rd (and vice versa). Therefore, we search such
initial belief b0 for the defender, that meets the maximal false positive constraint and
minimizes the attacker’s expected utility (POMDP upper bound value at b0). In high level,
our approach iteratively alternates between selecting a promising initial belief b0 (strategy
for the defender) and solving POMDP at that belief b0.

In Algorithm 9 is the pseudocode of Adversarial HSVI algorithm (A-HSVI). The outline
of the algorithm is very similar to the original HSVI algorithm, as presented in Section 2.2.1.
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Figure 5.1: Original and Adversarial HSVI algorithm: (a) initial upper bound (UB) and
lower bound (LB) on the (unknown) optimal value function v∗. HSVI aims to minimizes
the gap between UB and LB in the initial belief b0. (b) After one HSVI iteration, tighter
approximation using LB and UB is computed. (c) In Adversarial HSVI the defender chooses
a new belief b′ where LB has minimal value in every iteration. (d) A possible scenario
when algorithm is converged and a conservative strategy for the defender, based on b∗UB, is
returned.

In detail, to find initial belief in ε-SE and the strategy rd for the defender, the Adversarial
HSVI algorithm extends the original HSVI algorithm in two ways (the A-HSVI algorithm
is illustrated in Figure 5.1). First, instead of having fixed initial belief b0, our algorithm
chooses a new belief b′ in every iteration. This belief, b′ = argminb LB(b), is chosen to
minimize attacker’s lower bound value. Second, we limit the depth D of the HSVI simu-
lation by

√
iter, where iter is the current iteration number. We do this to emphasize the

exploration of the belief space first, and then focus on the computation of more accurate
bounds later on (Figure 5.1). The rest of the algorithm follows the ideas of the original
HSVI algorithm.

Figure 5.1 illustrates one iteration of the algorithm. In Figure 5.1a are presented known
upper and lower bound, the unknown optimal value and current initial b0 corresponding to
the current defender’s strategy. After one HSVI simulation into depth

√
iter, the upper and

lower bounds are updated, as illustrated with red lines in Figure 5.1b. Next, the defender
chooses new initial belief b′ that minimizes the attacker’s value, therefore, the lowest value
of the lower bound that does not violate the false-positive rate (denoted as valid belief
space), as depicted in Figure 5.1c. This process is repeated until the termination condition
of the algorithm is met. Let the algorithm terminate with upper and lower bounds as
depicted in Figure 5.1d and bLB = argminb LB(b) and bUB = argminb UB(b) be the beliefs
with minimal value of lower and upper bounds. We ensure that the algorithm finds ε-SE,
by terminating when the defender’s and attacker’s strategies have maximum relative error
ε and then we return a secure strategy implied by belief bUB. The attacker can guarantee
that he will obtain at least LB(bLB), while the defender can guarantee that he will not lose
more than UB(bUB). Based on these numbers, we compute an upper bound on the relative

improvement of defender’s strategy (i.e. if he plays bLB instead of bUB) as UB(bUB)−LB(bLB)
UB(bUB) .
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Algorithm 9 Adversarial HSVI (A-
HSVI).

1: procedure Find ε-SE(ε)
2: bLB ← minimal Lower bound
3: bUB ← minimal Upper bound
4: iter ← 1
5: while UB(bUB)−LB(bLB)

UB(bUB) > ε do

6: Explore(bLB, 1, iter)
7: bLB ← minimal Lower bound
8: bUB ← minimal Upper bound
9: iter ← iter + 1

10: end while
11: return ra(sc) induced by bUB
12: end procedure

Algorithm 10 Subroutine of A-HSVI al-
gorithm.

1: procedure Explore(b, depth, iter)
2: if depth <

√
iter then

3: a∗ ← best action to explore
4: o∗ ← best observation to ex-

plore
5: b′ ← τ(b, a∗, o∗)
6: Explore(b′, depth+ 1, iter)
7: end if
8: UpdateLB()
9: UpdateUB()

10: end procedure

Proposition 1. Adversarial HSVI (Algorithm 9) returns ε-SE.

Proof. Without loss of generality, we assume the game is exactly zero-sum (i.e., C = 1).
When the algorithm terminates and returns σ(sc) induced by bUB, we know that the best
response of the attacker to the defender’s strategy induced by bUB cannot gain more than
UB(bUB), hence the defender’s cost −ud(σ(sc), BRa(σ(sc)) ≤ UB(bUB). If the defender
played any alternative strategy σ′, we know that the attacker would always be able to
exfiltrate at least LB(bLB) by definition of bLB, hence −ud(σ′, BRa(σ′)) ≥ LB(bLB). If the

termination condition is satisfied, UB(bUB)−LB(bLB)
UB(bUB) ≤ ε. Therefore, it is sufficient to show

that the relative error of the computed strategy

ud(σ
′, BRa(σ

′))− ud(σ(sc), BRa(σ(sc))

|ud(σ(sc), BRa(σ(sc))|
≤ UB(bUB)− LB(bLB)

UB(bUB)
.

Since the defender’s utility is always negative, we know that

|ud(σ(sc), BRa(σ(sc))| = −ud(σ(sc), BRa(σ(sc)).

Hence, the above is equivalent to

1− ud(σ′, BRa(σ′))

ud(σ(sc), BRa(σ(sc))
≤ 1− LB(bLB)

UB(bUB)
and

−ud(σ′, BRa(σ′))

−ud(σ(sc), BRa(σ(sc))
≥ LB(bLB)

UB(bUB)
.

This is true, because from left to right in the last inequality, the nominator can only
decrease and the denominator can only increase.

5.5 Real-world Data

From a large network security company we obtained anonymized data capturing the volumes
of upload of 5864 active Google drive users uploaded during 12 weeks. For each user we
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Figure 5.2: Mean upload size histograms of the identified clusters of users.

computed the amount of data that the user uploads in 6 hour windows. Next, we created
histograms showing how often the user uploaded certain number of bytes per 6 hours, which
can be understood as user’s upload probability distribution.

We used the Partitioning Around Medoids algorithm to find clusters of similar behavior
of the users where similarity was measured by Earth Mover’s Distance [Rubner et al., 2000]
metric. In Figure 5.2 we present 7 histograms corresponding to user’s average behavior in
each cluster and their relative membership. The clusters (in order) contain 25.6%, 5.5%,
17.2%, 8.9%, 11.7%, 11.5% and 19.6% of the total users.

5.6 Experiments

We now demonstrate our framework for a case study based on the real-world data. In
all settings we choose: false positive rate FP = 0.01, the relative error of the strategy
ε = 0.2, and discount factor γ = 0.9. Decreasing the ε error or FP, or increasing discount γ
resulted in too complex problems for A-HSVI to solve in two-hour time limit, as described
in Section 5.6.5. We chose the set of attacker actions |Aa|, the defender’s thresholds |Ad|,
and the observations |O| to be the set of {20, 22, 24, . . . , 234} bytes.

The structure of this section is as follows: In Section 5.6.1 we evaluate how much
an optimal attacker can exfiltrate under various condition, in Section 5.6.2 we present
a visualization of what optimal defense strategies look like, in Section 5.6.3 we evaluate
defender strategies against different attacker models. In Section 5.6.4 we show how the
presence of additivity influences the defense strategy, and finally, in Section 5.6.5 we present
scalability results for computing the defense strategies.
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Table 5.1: Attacker’s utility for different scenarios: (columns) insider or outsider, with
replacement or additivity and (rows) whether the defender plays optimal pure, optimal
mixed or baseline strategy.

Insider [MB] Outsider [MB]
Replacement Additivity Replacement Additivity

Mixed defense 23.71 3.56 (18.68, 24.81) (3.11, 3.43)
Pure defense 33.58 5.03 (24.17, 29.87) (3.78, 4.49)

Baseline single-threshold (mixed) 68.86 14.54 (65.45, 68.86) (13.96, 14.56 )
Baseline single-quantile (mixed) 65.32 12.31 (54.85, 57.58) (10.39, 10.84)

One cluster (mixed) 63.29 12.95 N/A N/A

5.6.1 Defender and Attacker Utilities

We now examine how much different attacker models can exfiltrate in our case study. In
Table 5.1 we present a summary of the attacker’s expected utilities (the attacker maximizes
and the defender minimizes the value) for different types of the attackers. The columns
indicate whether the attacker is an insider or on outsider and whether the attack is with
replacement or with additivity. The rows indicate whether the defender plays a mixed or
pure defense strategy, or a baseline defense. We present utilities against the outsider as the
minimal lower bound and the minimal upper bound values from A-HSVI algorithm.

Note that the insider with replacement can exfiltrate up to about 6 times more compared
to the insider with additivity. In the case with additivity, the typical traffic of a user is added
to the traffic of the attacker; hence, the attacker must choose a less aggressive strategy (i.e.,
upload less data) so that the total data upload does not exceed the threshold. Although the
attacks with additivity are disadvantageous to the attacker, in some cases the additivity is
unavoidable, e.g., when different detectors detect whether the user runs standard processes
(which generate a standard traffic). Next, we see that the user type uncertainty caused up
to 14%–27% decrease in the utility (computed from the lower bounds). To verify that this
outcome does not rely on the fact that some of the host-types have higher prior probability
than the others, we additionally ran experiments with a uniform prior probability of the
users, and the outsider had about 16% lower utility compared to the insider. Finally,
note that if the defender must choose a pure strategy (e.g., due to practical deployment
reasons) the amount of data exfiltrated by the attacker can be 24%-42% higher compared
to randomized strategies.

We compare our strategies against two baseline approaches: (i) single-threshold and (ii)
single-quantile. The single-threshold sets the same threshold value for all host types such
that the total false-positive rate requirement is satisfied. Since we have discrete thresholds,
the defender’s strategy randomizes between two consecutive thresholds to reach the exact
(1 − FP ) false positive rate. The experimental results show that the attacker can exploit
this straightforward strategy and can exfiltrate about 3-times more data than against the
optimal solution. The main reason is that this strategy chooses thresholds for passive users
(e.g., cluster 7) too high, and the attacker easily exfiltrates from them. In the single-
quantile strategy, the defender sets for each host type a threshold at quantile (1− FP ) of
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their upload probability distribution (again, randomizes between two consecutive discrete
values to reach exact quantile (1−FP )). This strategy yields a slightly better utility than
the previous one; however, it sets the thresholds too high for the users with a large data
upload (e.g., cluster 3) to satisfy the false-positive constraint.

Additionally, to show that it is worth developing different defense strategies for different
user types, we computed the optimal defense strategy where all users belong to one cluster
(instead clustering them into 7 clusters). The defender’s expected utilities were 2–3 times
worse than the optimal defense strategy with clustered users. Since there is only one cluster,
the attacker does not need to learn the cluster of the attacked host. Therefore, there is no
difference between insiders and outsiders in this case.

5.6.2 Defender’s and Attacker’s Strategies

Insiders

In this section we present the computed optimal strategies of the defender against the
insiders without additivity. Figure 5.3a shows the defender’s (cumulative) probability of
selecting thresholds (x-axis) for each host type against the insider with replacement. The
cumulative distributions show the probability that attacker exfiltrating data at a certain
rate is detected. In Figure 5.3b is the attacker’s expected utilities for different attacks
on different host types given that the defender uses the strategy depicted in Figure 5.3a.
The defender’s strategy is computed in such a way that it makes the attacker indifferent
between intervals of actions (e.g., for host type 1 the attacker is indifferent between actions
222 through 230), which is typical for game theoretic strategies. The attacker’s best response
is to choose any of the attack actions that have the highest expected utility. Note that the
host types with the highest activity (e.g., host types 3 and 1) result in the highest expected
reward for the attacker. Therefore, these hosts should be monitored thoroughly to avoid
potentially large data loss.

Figure 5.3c shows the optimal strategy of the defender when restricted to pure strategies.
For host types 3, 6 and 7, corresponding to the largest and the two smallest mean upload
sizes, the defender chooses threshold 222. The threshold of 224 is chosen for all the other
types. The expected utility of the attacker depicted in Figure 5.3b has peaks up to 5
MB, since with the pure defense strategies it is impossible to make the attacker indifferent
between multiple actions. By randomizing non-trivially between multiple thresholds the
defender can reduce his data loss.

The defense strategy against the insiders with additivity (in Figure 5.3e) is different to
the previous ones. The optimal defense strategy lowers the thresholds of the most active
users (host types 1 and 3) to restrict their large loss, and increases the thresholds of the
less active users to compensate the false positives. Figure 5.3f shows the attacker’s utilities
for each pure strategy, however, we clusters 1 and 3 are still most exploitable.

Outsiders

The optimal defense strategies against the outsider with additivity (in Figure 5.4a) (resp.
with replacement in Figure 5.4b) are more complex than the strategies against the insiders.
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Figure 5.3: The defender’s strategies and the attacker’s expected utilities for individual
attack actions for: (a,b) mixed defense strategy against insider with replacement; (c,d)
pure defense strategy against insider with replacement; and (e,f) mixed defense strategy
against insider with additivity.

The strategies consider how the attacker attacks and learns from the observations each time
step as well as the fact that the value of the data decreases over time due to the discount
factor. None of the above had to be considered against the insider attacker.

We attempt to explain how the defense strategy takes into account these aspects by
examining the attacker’s long-term behavior. In Figure 5.4c we show the average action
in every time step given that the observations are drawn from a given host type (different
curves) and that the attacker was not detected until the previous time step of the attacker
with additivity. First, the attacker plays safe action 220 since he has now other information
about the host types except his prior belief about them. After receiving the first observa-
tion the attacker updates the probability distribution over the host types and strengthens
his attack accordingly. On the other hand, the defender knows that the first attack action
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Figure 5.4: Defender’s strategy against outsider with (a) additivity and (b) replacement;
the (near) optimal attacker’s response to (a) characterized by (c) the average action played
at certain time step and (d) the probability of reaching the time step when attacking the
given host type.

is going to be 220, therefore, he prefers setting the thresholds for host types 6 and 7 to
220 (which is lower than it was against the insider attackers), which detects the attacker in
31.3% of the hosts during the first attack action (in Figure 5.4d are shown the probabilities
that the attacker is detected until a given time step). Not only does it increase the de-
tection probability, but setting the same threshold for both types also slightly reduced the
information that the attacker obtains. Since thresholds for host types 6 and 7 are lowered,
to compensate the false positives the defender increases the thresholds for host types 2
and 3. The optimal attacker is able to exfiltrate from host type 2, 4 and and 5 that are
almost never detected but represent very low percentage of the users. The greatest risk
present host type 3, who is detected with lower probability than 0.2 and 17.2% of the users
belongs to it, and a host type 1 covering 25.6% of the users. However, in the latter case
the probability of detecting the attacker is almost 0.8 at 9th time window.

This example shows how sophisticated the defender’s strategy against the outsider at-
tacker can be as they must consider a complex behavior of the attacker and all possible
sequences of observations and attacks. To minimize the loss, the defender aims to detect
the attacker as soon as possible. Using the presented defense strategies, the attacker that
attacks host types 1, 6 and 7 (which corresponds to 56.7% of the users) is detected with
higher probability than 0.5 by the third time window.
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Table 5.2: Discounted expected amount of data that the attacker can exfiltrate if defense
strategy (row) is optimized against the attacker in the “Strategy against” column, played
against the different type of attackers (columns). The intervals for the outsiders represent
lower and upper bounds of the optimal value.

Strategy against insider, additive insider, repl. outsider, additive outsider, repl.

m
ix

ed

insider, add 3.56 MB 26.58 MB (3.56, 4.84) MB (23.51, 29.5) MB
insider, rep 5.91 MB 23.71 MB (5.59, 8.33) MB (23.71, 32.72) MB
outsider, add 3.69 MB 27.59 MB (2.67, 3.32) MB (20.24, 27.59) MB
outsider, rep 3.71 MB 27.59 MB (2.42, 3.4) MB (18.59, 26.35) MB

p
u

re

insider, add 5.03 MB 33.59 MB (3.58, 4.43) MB (24.54, 29.95) MB
insider, rep 5.03 MB 33.59 MB (3.58, 4.43) MB (24.54, 29.96) MB
outsider, add 5.03 MB 33.59 MB (3.72, 4.49) MB (24.55,29.95) MB
outsider, rep 5.03 MB 33.59 MB (3.58, 4.42) MB (24.17, 29.87) MB

5.6.3 Different Attacker Models

Computing a defense strategy against the insiders can be done using linear programming,
which is computationally more efficient than the Adversarial HSVI algorithm used against
the outsiders. It raises a question whether the efficiently computed strategies against the
insiders could be used also against the outsider and at what utility loss for the defender.
In Table 5.2 we show the expected attacker’s utilities if different defense strategies are ap-
plied against the different attacker models. The attacker of different types (table columns
except for the column “Strategy against”) plays the best response according to their model
against different defender’s strategies (rows). Each defense strategy was optimized against
the attacker listed in column “Strategy against”. We can use these values to compute the
defender’s regrets for optimizing the defense strategy against a different attack model than
according to which the real attacker attacks. For example, if we optimize the strategy
against the insider with additivity (first row), while the attacker is an outsider with addi-
tivity (fourth column), than the defender’s regret is at most 36% (computed as 4.84−3.56

3.56 ),
based on the upper bound of the Adversarial HSVI.

Now, let us analyze the defender’s regret for deploying strategies and optimizing against
the insider attackers, while in reality the outsiders attack. If the defender correctly guesses
or estimates the attacker’s additivity/replacement, then in the worst case the defender
can experience regret on average of 34% (with additivity) and 25% (with replacement).
However, computing the worst-case regret (due to the A-HSVI bound gap), the defender
can improve by up to 67% (with additivity) and 76% (with replacement). Computing
the more precise values requires much longer simulation of the A-HSVI algorithm. In our
personal opinions, the average regrets around 30% are not too high and in the case that
the A-HSVI algorithm does not scale for the required size of the problem, it can be used.

In the case the defender knows the probability distribution of the attack models, this
cross-strategy table analysis can be used to compute choose the strategy that yields lowest
overall regret to the defender.
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Figure 5.5: Optimal defense strategies for users with standard activity of Normal distribu-
tion with µ = 220 and standard deviations σ = 2i, where i is given parameter.

5.6.4 Effect of the Additivity
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Figure 5.6: The attacker’s expected utility
given a user upload behavior follows normal
distribution with mean equal to 10 and vary-
ing standard deviation (x-axis). It assumes
the defender plays optimally according to Fig-
ure 5.5.

In this experiment, we analyze how the un-
certainty of the user’s behavior affects the
defender’s optimal strategy. In this analy-
sis, we model only one user whose behav-
ior follows the normal distribution with the
mean equal to 10 and the standard devia-
tion varying from 1 to 19. For the purpose
of this experiment, we let |Aa| = |Ad| =
|O| = {0, 1, . . . , 100}. In Figure 5.5, we
present the optimal defense strategy against
the insider with additivity given the stan-
dard deviation of the user’s behavior. The
strategies depict the defender’s cumulative
probability of setting a threshold at a cer-
tain value (for each threshold, the figure
present the probability that this or any
smaller threshold is selected). E.g., for
std=1 the defender mixes only between the
thresholds a = 9 and a = 10 (due to the al-
lowed few false positives the defender play
a = 9 with small probability). Indeed, in
the case that the user’s behavior is almost constant (normal distribution with std=1), the
attacker cannot choose any strong action, since then the sum of the user’s upload (which is
almost certainly 10) and the attacker’s action will almost certainly exceed the threshold and
the attacker will be detected. However, in the case that the user’s behavior is spread (e.g.,
std=19), the pure defense strategy is not effective as it would need to be set at quantile
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1 − FP . The optimal defender’s strategy, as shown in Figure 5.5, mixes between multiple
thresholds making the attacker indifferent across several attack actions (similarly, as the
attacker’s strategy against host type 3 in Figure 5.3b). However, all the attacker’s actions
yield him lower utility than what he would have had if the defender played different mixed
or a pure strategy.

In Figure 5.6, we depict the attacker’s utility for different standard deviations of the
user’s behavior. As the standard deviation of the user’s behavior grows, the defense strate-
gies are less effective and the attacker can exfiltrate more. Indeed, users with large uncer-
tainty in their behavior are difficult to protect, since the thresholds for them must be set
high not to create too many false positives. Which allows for the attacker to exfiltrate more
easily without being detected.

5.6.5 Algorithm Scalability
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Figure 5.8: Algorithm runtimes for
different sizes of set of actions |Aa|,
threshold |Ad| and observations |O|,
with |Ad| = |Aa| = |O|. Legend is
the same as in Figure 5.7.

In Figure 5.7 we present runtimes (note the logarith-
mic scale) for increasing numbers of considered host
types. All experiments were run on an Intel Xeon
E5-2650 2.6 GHz with time limit 2 hours. Strate-
gies against the insider were computed in under 1
second, as they require single linear program compu-
tation. Adversarial HSVI, which iteratively improves
the solution runs between ten seconds and two hours,
depending on the parameters of the problem. Some-
times smaller problems took longer time to solve than
the larger problems. E.g., the problem with only
two host types took about 5 times longer than for
seven host types. The reason is that the algorithm
can temporarily stuck in sequences of solutions with
no or very little improvements. The algorithm suf-
fers with the plateaus during the computations even
more than the original HSVI algorithm. See Fig-
ure 5.9, where we show the progress of the relative error ε in each iteration for the two
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Figure 5.7: Algorithm runtimes for different number of host-types (clusters).
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Figure 5.9: ε error progress during computation strategies for outsider with replacement
with 1 and 4 number of types.

selected cases, with 1 and four host types, that demonstrates well the difference. Despite
the fact that Adversarial HSVI with |Ac| = 4 has 4 times more states, one can see that
the algorithm was able to reach the desired error 20 in 17th iteration, while for |Ac| = 1 at
25th iteration.

Finally, let analyze the algorithms scalability with the increasing number of actions,
thresholds and observations. In Figure 5.8 (the legend is the same as in Figure 5.7) we
plot the algorithm’s runtime (note logarithmic y axis) for different number of the above-
mentioned parameters (we plot only for the case that |Ad| = |Aa| = |O|). The algorithm
was able to compute the problems of sizes |Aa| = |Ad| = |O| = 15, with error ε = 20% and
number of host types |Ac| = 7 within 2 hours. This demonstrates that the algorithm can
be used to solve practically large and real-world problems. In case of a need for faster algo-
rithm, A-HSVI algorithm can be straightforwardly parallelize for concurrent computation
of the algorithm.

5.7 Conclusion

In this chapter we demonstrated how our model and algorithms can be used to compute the
thresholds for the detecting data exfiltration. We proposed two algorithms for computing
the defender’s strategies. Our first contribution, for the case that the attacker does not
need to learn the behavior of the attacked host, is a linear programming formulation for
computing the optimal strategies. This situation typically corresponds to insider attacks,
such as employees, who know the standard behavior of the hosts in the network. Our
second contribution, for the more complex situations, where the attacker learns the upload
behavior of a user, is the Adversarial HSVI, an extension of the existing HSVI algorithm,
to solve the zero-sum extensive-form game. Here, the attacker’s strategies optimally weigh
whether to attack aggressively from the beginning and risk detection or to carefully learn
the host type from the observations and exfiltrate more afterward.

Using real-world user traffic, we validate that the proposed algorithms are sufficiently
scalable to analyze realistic problems. The results of our case study show that richer models
produce substantially better strategies. For example, when facing the external attacker that
does not replace the original traffic, the simple heuristic defense strategies let the attacker
exfiltrate three times more data than the strategy optimized against a perfectly informed
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attacker using the linear program. Similarly, this strategy performs worse than the strategy
optimized by Adversarial HSVI against the learning opponent. However, for too complex
problems to be solved with Adversarial HSVI algorithm the simpler model, which assumes
that the attacker knows the host types, can be used at cost of regret around 30%. Our
results further show that randomized defense strategies can be up to 42% more effective in
preventing data exfiltration compared to pure and deterministic strategies, which supports
the same findings from [Lisý et al., 2014]. This is especially important when the attacker
keeps the existing traffic intact, and the amounts of data transferred by the hosts vary
substantially.

The attackers that know the exact behavior of the compromised host can exfiltrate
by 14%–27% more data than the external attackers who have to learn it. Furthermore,
a substantially more effective mitigation of data exfiltration is possible if the users are
clustered into groups with similar behavior and a different detection strategy is used for
each group. In our case study, the optimal strategy without the clustering allows the
attacker to exfiltrate approximately three times more data than the optimal strategy using
the clusters.

Our analysis showed, that in the case of the attackers with additivity the users with very
unpredictable behavior are the most risky, since threshold for their hosts must be chosen
high not to cause too many false positives. On a contrary, the users with behavior close to
constant can be considered most safe.

Finally, we show that regardless of any other considered assumptions, if the attacker
can replace the standard traffic of the compromised host, he can exfiltrate up to 6 times
more data than the attacker who merely mixes his exfiltration traffic into the host’s typical
behavior. Therefore, monitoring the presence of the standard traffic (e.g., by expecting fake
pre-scheduled transfers) may be a very effective countermeasure for decreasing the possible
harm of data exfiltration.
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Conclusions

Since computer systems, deployed defenses, and attacks are becoming more complex, it
is increasingly more difficult for the network administrators to assess the quality of the
security countermeasures. It is difficult not only because of the enormous space of possi-
ble countermeasures that the administrator chooses from, but also because the attacker’s
reasoning process and his long-run adaptation to the countermeasures must be considered.
Therefore, developing effective computer-aided configuration decision tools to improving
security are essential. Game theory has already demonstrated its strategical strength in
many specific games and physical infrastructures, including the cyber-security. Particularly
in this field the strategic manipulation of information, deception tactics, and randomization
are relevant.

This work was inspired and driven by the currently relevant decision-making problems
in the network security area. In collaboration with the network security experts, we formal-
ized two problems and developed game models for analyzing the interactions between the
involved parties. In both of the presented models, the attacker’s action space is enormous,
and computing strategy profiles with the general state-of-the-art algorithms for imperfect
information EFG with stochastic events is often intractable even for the toy problems. We
overcame this problem by modeling the attacker’s behavior using the POMDP and used its
algorithms to compute the attacker’s best response in combination with the game-theoretic
algorithms. Whether the POMDP is finite-horizon or infinite-horizon often dictates what
set of algorithms can be used to solve it. Since in each of the presented problem we used
different POMDP to model the attacker’s behavior, we had to take a different approach
to solve the games. In the threshold selection problem, we modeled the attacker as a dis-
counted infinite-horizon POMDP and developed a novel A-HSVI algorithm to compute the
ε-Stackelberg equilibrium strategy profile. In the honeypot selection problem, the attacker’s
POMDP state-space is limited by the number of the actions in the attack graph; therefore,
finite-horizon POMDP is used. We extended the forward dynamic programming with var-
ious pruning techniques, including the sibling-class theorem that exploits the attack graph
structures. These techniques dramatically reduce the explored POMDP state-space to find
the provably optimal attack policy. We showed that our solver significantly outperforms
the unconstrained influence diagram approaches or other domain-independent solvers.
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Computing the optimal defense strategies in our games had limited scalability. We
explored how the alternation of the game assumptions impact the algorithmic aspect of
the game by developing several heuristic approaches. In both problems, we showed that
allowing the attacker to have slightly more information can result in the games solvable in
polynomial time to the size of the game tree. E.g., in the honeypot selection problem, the
attacker in the perfect-information game knew the number of deployed honeypots of each
type. Although we called this heuristic perfect-information, the attacker had uncertainty
whether a particular host of a given host type is a honeypot or a real host. Similarly, in
the threshold selection problem the insider (with additivity) knew the upload probability
distribution of the attacked host type but not the amount of data that host will upload in
the next time step. Removing attacker’s specific uncertainties allowed us computing the
Stackelberg equilibrium of the altered game in polynomial time to the size of the game tree.
Experimental evaluations of this heuristic showed that computed defense strategies have
a low relative regret to the defender. Such findings would have been difficult to conclude
without developing the optimal algorithms, presented in this work.

6.1 Thesis Contributions

This section summarizes the achievements and contributions of this thesis:

6.1.1 Game Models for Two Security Configuration Problem

One of our main contributions are novel game models for two current security configuration
problems. Both security problems that we modeled in this thesis are still relevant for the
network security community and have not been solved.

The first game model focuses on honeypot selection problem, where the defender selects
configurations of the honeypots to deploy into the protected networks, and the attacker
selects a contingency attack policy to perform in each of the observed configured networks.
In [Durkota and Lisý, 2014] we published the model of the attacker that chooses an attack
policy according to the attack graphs. The perfect-information game between the defender
and the attacker was published in [Durkota et al., 2015b] and [Durkota et al., 2015c]. As
far as we know, we are the first to use automatically generated complex attack graphs
to model the attacker’s choice of policies in combination with the game theory. Previous
works used much simpler attack trees modeled by the administrators or experts. In [Durkota
et al., 2015a] we extended the game to capture the attacker’s prior belief about the possible
systems.

The second model, published in [Durkota et al., 2017] focuses on the data exfiltration
problem, where the defender chooses a data-upload threshold for each host type, and the
attacker selects the amount of data to exfiltrate from each host type in different time steps.
We analyzed two models of the attackers: an insider, who can replace data in the normal
traffic, and an outsider, whose exfiltered data are added to the normal traffic of a user of
the attacked host.

Finally, we presented a more general game model for security configuration problem
that captures the essentials of this problem. Namely, the attacker’s uncertainty about
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the attacked system configurations and the defender’s ability to influence the attacker’s
observations.

6.1.2 Set of Novel Algorithms

Our second contribution is developing a set of novel algorithms to solve the presented mod-
els. To solve honeypot selection problem, we had to develop variants of algorithms for com-
puting the attacker’s optimal attack policies over the attack graphs presented in [Durkota
et al., 2015b] and [Durkota et al., 2015a]. Each algorithm assumes a different degree of the
attacker’s certainty about the attacked network. We proposed and experimentally evaluated
several pruning techniques that allow the algorithms to scale to larger problems. Algorithms
that find exact SSE do not scale well, we further developed error-bounded MILP and set of
heuristic algorithms. The heuristic algorithms introduce additional assumptions that allow
solving the problem in polynomial time in the size of the game tree.

For threshold selection problem, we proposed a linear program to compute optimal de-
fense strategy against the insider’s attack model. To compute the defense strategy against
the outsider’s attack model we proposed Adversarial HSVI algorithm to include the de-
fender’s decisions.

6.1.3 Experimental Evaluations and Analyses

Computing the optimal defense strategies is crucial for measuring and evaluating the quality
of the error-bounded and heuristic approach approaches. We carried out the extensive
experimental evaluations of the algorithms in terms of their running times and the quality
and robustness of computed strategies. For the experiments we used real-world data in
threshold selection problem and network topologies inspired by the real-world network
topologies in the honeypot selection problem. We demonstrated how game-theory could
be used to answer various questions, such as, what happens if certain model assumptions
are not met, or what is the defender’s regret for incorrectly assuming the attacker’s model
(motivation, costs, etc.). In [Durkota et al., 2016] we compared game-theoretic strategies
to human strategies and analyze their shortcomings. Answering these question gave us a
better insight into the proposed strategies.

6.1.4 Implementation

The described algorithms and problem representations were implemented in game-theoretic
library GTLibrary and can be reused in future to solve other problems, or to as a basis for
other novel algorithms.

6.2 Future Work

Our work has potential for a further research in several directions.

Scalable Algorithms Our current algorithms for the honeypot selection problem are still
not scalable enough to be used for large-scale networks. Developing additional clever
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grouping of the hosts or more efficient algorithms and heuristics to solve these prob-
lems is important for the model to be applicable in the networks that are increasingly
more complex.

Extending Defender’s Actions The model for honeypot selection problem currently al-
lows only one type of countermeasures for the defender, deploying honeypots. The
model could be extended to allow other actions, such as firewall configurations, con-
figuration of the available services, etc. However, it is useful to model only those
countermeasures that have an impact on the attack graphs of the networks.

Generalizing Threshold Selection Model The threshold selection model can be sig-
nificantly generalized to capture more complex features for the detector and various
goals for the attacker. E.g., game could be played on a multi-featured space of the
user’s traffic behavior. The defender selects a decision boundaries on the feature
space (like thresholds) for the host to be inspected. The attacker on the other hand
chooses what action to perform based on their rewards and how the action influences
the features observed by the detector. Such generalized game can be used to model
different problems of detecting malicious behavior.

Real-world Tests The presented models are tested in a simulated environment on real-
world inspired scenarios. We hope to apply the computed strategies in real-world
cases, where the real attackers would attempt to compromise the networks or exfiltrate
the data. This would give us a valuable feedback how well the strategies perform and
what are their potential drawbacks.

Exploiting Payoff Structure Our game has a specific payoff structure consisting of the
general components as follows: (i) reward/loss, which is a zero-sum component after
a constant multiplication, (ii) attacker’s action costs, (iii) defender’s action costs.
We believe, that deeper theoretical analysis of this payoff structure could lead to
developing more efficient algorithms, that exploited the payoff structure.

Multiple Defenders Lastly, defining an extended version of strong Stackelberg equilib-
rium for more than one leader/defender, that would always exist and be stable be-
longs to open problems and is of great interest to many game-theory researchers.
This solution concept could have a great real-world impact on problems, where mul-
tiple defenders cooperate against a single opponent to profit as much as possible. In
domains, such as physical security, network security, or cyber-security, this solution
concept could be well applied.

6.3 Publications

In this section, we list all publications of the author, structured into related and unrelated
topics to this thesis.
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6.3.1 Publications Related to the Thesis

Journal Publications (with IF) (2)

• Durkota, K., Lisý, V., Kiekintveld, C., Bošanský B. and Pěchouček, M. (2016).
Case studies of network defense with attack graph games. IEEE Intelligent Systems,
31(5):24–30 (2 citations, IF=3.532 as of 2016, 45% contribution)

Conference Publications (5)

• Durkota, K., Lisý, V., Kiekintveld, C., Horá, K., Bošanský, B., and Pevný, T. (2017).
Optimal strategies for detecting data exfiltration by internal and external attackers.
In International Conference on Decision and Game Theory for Security, pages 171–
192. Springer (1 citations, 16.67%)

• Durkota, K., Lisý, V., Bošanský, B., and Kiekintveld, C. (2015). Approximate solu-
tions for attack graph games with imperfect information. In International Conference
on Decision and Game Theory for Security, pages 228–249. Springer (6 citations,
38% contribution)

• Durkota, K., Lisý, V., Bošanský B., and Kiekintveld, C. (2015). Optimal network
security hardening using attack graph games. In Proceedings of IJCAI, pages 7–14
(14 citations, 38% contribution, Rank: A∗)

• Durkota, K., Lisý, V., Kiekintveld, C., and Bošanský, B. (2015). Game-theoretic
algorithms for optimal network security hardening using attack graphs. In Proceedings
of the 2015 International Conference on Autonomous Agents and Multiagent Systems,
pages 1773–1774. International Foundation for Autonomous Agents and Multiagent
Systems (6 citations, 38% contribution, Rank: A∗)

• Durkota, K. and Lisý V. (2014). Computing optimal policies for attack graphs with
action failures and costs. In STAIRS, pages 101–110 (5 citations, 70% contribution)

6.3.2 Publications Not Related with the Thesis

Conference Publications (6)

• Tožička, J., Jakubuv, J., Durkota, K., and Komenda, A. (2015). Extensibility based
multiagent planner with plan diversity metrics. In Transactions on Computational
Collective Intelligence XX, pages 117–139. Springer (0 citations, 25% contribution)

• Čermák J., Bošanský, B., Durkota, K., Lisý V., and Kiekintveld, C. (2016). Using
correlated strategies for computing Stackelberg equilibria in extensive-form games. In
Thirtieth AAAI Conference on Artificial Intelligence (0 citations, 15% contribution)
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• Tožička, J., Jakubuv, J., Durkota, K., Komenda, A., and Pěchouček, M. (2014).
Multiagent planning supported by plan diversity metrics and landmark actions.In
ICAART, pages 178–189 (1 citations, 30% contribution)

• Tožička, J., Jakubuv, J., Durkota, K., and Komenda, A. (2014). Multiagent planning
by iterative negotiation over distributed planning graphs. In Proceedings of the Work-
shop on Distributed and Mutiltiagent Planning (ICAPS), pages 7–15 (1 citations,
30% contribution)

• Durkota, K. and Komenda, A. (2013). Deterministic multiagent planning techniques:
experimental comparison (short paper). In Proceedings of DMAP workshop of ICAPS,
volume 13, pages 43–47 (4 citations, 85% contribution)

• Marr, J., Pere, A., Durkota, K., Rogers, A., Fish, V., and Arndt, M. (2011a). Labora-
tory exercises using the haystack VSRT interferometer to teach the basics of aperture
synthesis. arXiv preprint arXiv:1109.3816 (0 citations)
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network security hardening using attack graph games. In Proceedings of IJCAI, pages 7–14.

[Durkota et al., 2015c] Durkota, K., Lisy, V., Kiekintveld, C., and Boˇ sanský, B. (2015c). Game-
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C., Paruchuri, P., and Kraus, S. (2008). Deployed armor protection: the application of a game
theoretic model for security at the los angeles international airport. In Proceedings of the 7th
international joint conference on Autonomous agents and multiagent systems: industrial track,
pages 125–132. International Foundation for Autonomous Agents and Multiagent Systems.

[Polatidis et al., 2017] Polatidis, N., Pavlidis, M., and Mouratidis, H. (2017). Cyber-attack path
discovery in a dynamic supply chain maritime risk management system. Computer Standards &
Interfaces.

[Provos, 2004] Provos, N. (2004). A virtual honeypot framework. In Proceedings of the 13th Con-
ference on USENIX Security Symposium - Volume 13, SSYM’04, pages 1–1, Berkeley, CA, USA.
USENIX Association.

[Qassrawi and Hongli, 2010] Qassrawi, M. T. and Hongli, Z. (2010). Deception methodology in
virtual honeypots. In Networks Security Wireless Communications and Trusted Computing
(NSWCTC), 2010 Second International Conference on, volume 2, pages 462–467. IEEE.

[Ritchey and Ammann, 2000] Ritchey, R. W. and Ammann, P. (2000). Using model checking to
analyze network vulnerabilities. In Security and Privacy, 2000. S&P 2000. Proceedings. 2000
IEEE Symposium on, pages 156–165. IEEE.

118



BIBLIOGRAPHY

[Rubner et al., 2000] Rubner, Y., Tomasi, C., and Guibas, L. J. (2000). The earth mover’s distance
as a metric for image retrieval. International journal of computer vision, 40(2):99–121.

[Sarraute et al., 2012] Sarraute, C., Buffet, O., Hoffmann, J., et al. (2012). Pomdps make better
hackers: Accounting for uncertainty in penetration testing. In AAAI.

[Sawilla and Ou, 2008] Sawilla, R. E. and Ou, X. (2008). Identifying critical attack assets in depen-
dency attack graphs. In Jajodia, S. and Lopez, J., editors, Computer Security - ESORICS 2008,
volume 5283 of Lecture Notes in Computer Science, pages 18–34. Springer Berlin Heidelberg.

[Schiffman et al., 2004] Schiffman, M., Wright, A., Ahmad, D., and Eschelbeck, G. (2004). The
common vulnerability scoring system. National Infrastructure Advisory Council, Vulnerability
Disclosure Working Group, Vulnerability Scoring Subgroup.

[Schwartz, 1970] Schwartz, T. (1970). On the possibility of rational policy evaluation. Theory and
Decision, 1(1):89–106.

[Sheyner et al., 2002] Sheyner, O., Haines, J., Jha, S., Lippmann, R., and Wing, J. (2002). Auto-
mated generation and analysis of attack graphs. In IEEE S&P, pages 273–284.

[Shoham and Leyton-Brown, 2008] Shoham, Y. and Leyton-Brown, K. (2008). Multiagent systems:
Algorithmic, game-theoretic, and logical foundations. Cambridge University Press.

[Silver et al., 2017] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez,
A., Hubert, T., Baker, L., Lai, M., Bolton, A., et al. (2017). Mastering the game of go without
human knowledge. Nature, 550(7676):354.

[Smith et al., 2014] Smith, A., Vorobeychik, Y., and Letchford, J. (2014). Multidefender security
games on networks. ACM SIGMETRICS Performance Evaluation Review, 41(4):4–7.

[Smith and Simmons, 2004] Smith, T. and Simmons, R. (2004). Heuristic search value iteration
for pomdps. In Proceedings of the 20th conference on Uncertainty in artificial intelligence, pages
520–527. AUAI Press.

[Sommestad and Sandström, 2015] Sommestad, T. and Sandström, F. (2015). An empirical test of
the accuracy of an attack graph analysis tool. Information & Computer Security, 23(5):516–531.

[Speicher et al., 2018] Speicher, P., Steinmetz, M., and Backes, M. (2018). Stackelberg planning:
Towards effective leader-follower state space search.

[Spitzner, 2003a] Spitzner, L. (2003a). The honeynet project: Trapping the hackers. IEEE Security
& Privacy, 99(2):15–23.

[Spitzner, 2003b] Spitzner, L. (2003b). Honeypots: Catching the insider threat. In Computer
Security Applications Conference, 2003. Proceedings. 19th Annual, pages 170–179. IEEE.

[Straffin, 1993] Straffin, P. D. (1993). Game theory and strategy, volume 36. MAA.

[Tambe, 2011] Tambe, M. (2011). Security and Game Theory: Algorithms, Deployed Systems,
Lessons Learned. Cambridge University Press.

[Tsai et al., 2009] Tsai, J., Kiekintveld, C., Ordonez, F., Tambe, M., and Rathi, S. (2009). Iris-a
tool for strategic security allocation in transportation networks.
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Appendix A

Notation

A.0.1 List of Notations

In Table A.1 we provide a list of notations we use in the thesis.

Table A.1: List of used notation and functions.

(PO)MDP

S set of states
A set of actions

P [s′|a, s] probability of reaching state s′ from s if a is performed
R(s, a, s′) reward for performing action a in s leading to s′

π : S → A MDP policy
V π(s) value of policy π starting in state s

O set of observations in POMDP
O[o|s′, a] probability of observing o if action a is played and state s′ is

reached
γ discount factor

B = ∆(S) probability distribution (belief space) over states S
κ(I) ⊆ Ξ(I) is set of strategies in SUS for I

π : B → A POMDP policy
Game Model

N finite set of players
Ai finite set of player i’s actions in a game
ui player i’s utility function
Πi set of all pure strategies of player i
∆i set of all mixed strategies of player i
H finite set of nodes in the EFG

Z ⊆ H finite set of terminal nodes in EFG
P : H → N ∪ {c} a function that assigns player to takes action in a given node,

where c denote a Chance player
C : H → [0, 1] denotes the probability of reaching node h due to Chance
I (resp. Ii) set of all (resp. player i) information sets in a game
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Σi denotes all sequences of player i
BRi(σ−i) function, that returns set of best-response strategies of player i

against strategy σ−i
gi : Σi × Σ−i → R an extended payoff function for all H

seqi(Ii) denotes a sequence σi for player i that leads to Ii
Ai(Ii) set of player i’s actions in Ii ∈ Ii

Attack Graph

AG(n) the attack graph of network s
T the set of host types in attack graph
F the set of facts in attack graph
A the set of atomic actions in attack graph
pa success probability of action a in an attack graph
ca the attacker’s action cost in an attack graph
τa the set of host types that action a interacts with
rf attacker’s reward for achieving fact f

eff(a) the set of effects of action a
pre(a) the set of preconditions of action a

Attack Policy

ξ is an attack policy
V vertices in an attack policy

E,E+, E− all, positive and negative edges in an attack policy, respectively
path(ξ, vl) path in attack policy ξ from root to vertex vl (excluding)

A.0.2 List of Abbreviations

In Table A.2 we provide a list abbreviations used in this thesis.

Table A.2: List of used abbreviations

AG attack graph
SUS smallest undominated set
EFG extensive-Form Game
FDP forward dynamic programming

FP false-positive
GS general-sum

HSP Honeypot Selection Problem
(A-)HSVI (Adversarial) Heuristic Search Value Iteration

LB lower bound
(PO)MDP (Partially Observable) Markov Decision Process

NE Nash equilibrium
NFG normal-Form Game

(S)SE (strong) Stackelberg equilibrium
UB upper bound
ZS zero-sum
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