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Abstract

The habilitation thesis consists of papers analyzing the impact of regulatory reforms
on market outcomes and bidding behavior of electricity producers. Each paper uses a
different methodology to answer various research questions. In the first paper I analyze
the impact of price-cap regulation and divestment series on the electricity price during
the peak-demand period over trading days. In order to reflect the impact of divestment
series, the market share of each incumbent producer is included in the analysis. The
next paper analyzes changes in the incentive and disincentive to exercise market power
by submitting price bids in excess of marginal production costs during the peak-demand
period. I again focus on the peak-demand period over trading days because producers
typically exercise market power namely during the periods when demand is at the peak.
The third paper investigates another means of raising electricity prices when electricity
producers may withhold cheaper production capacity during the peak-demand period
compared to a low-demand period on the same trading day. In such a situation the
market operator may need to use more expensive production facilities to satisfy demand
for electricity. In the last paper I analyze changes in the price level and volatility over
different regulatory regime periods. Such an analysis could be important for detecting
tacit collusion when, for example, we observe a higher price level associated at the same
time with lower volatility.

Keywords: liberalization; regulation; electricity markets; market power; uniform price

auction; price bids; capacity bids; electricity price; skew generalized error distribution;
conditional volatility

JEL Classification: C22; C51; D21; D22; D44; L50; L.90; .94



General introduction

The habilitation thesis consists of a compilation of the author’s works, which deal with
the liberalization of electricity supply industry in Great Britain. According to Joskow
(2008), privatization, restructuring, market design, and regulatory reforms pursued in
the liberalization process of the electricity industry in England and Wales can be char-
acterized as the international gold standard for energy market liberalization.

The liberalization of electricity supply industry in Great Britain included splitting the
previously vertically integrated monopoly structure into electricity production, transmis-
sion, and distribution parts. Electricity producers traded electricity through the wholesale

electricity market. This is summarized in Figure 0.1.
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Figure 0.1: Description of the electricity supply industry in Great Britain in 1998

As described in Figure 0.1, in England and Wales, electricity producers sold electricity
to retail suppliers (i.e., distribution companies) through the wholesale market known as
the Electricity Pool, which was created in April 1990. This market was managed by the
network operator, the National Grid Company (NGC), which was also responsible for

transmitting electricity to retail suppliers.



Electricity trading on the wholesale market was organized as a uniform price auction.
For each production unit electricity producers were asked to submit on a daily basis a
start-up cost, a no-load cost, (at most) three price-offer bids, two elbow points, and half-
hourly capacity bids, which were used in calculating half-hourly price bids (Electricity
Pool, 1990). For each half-hourly period, based on ordered price bids, the market operator
(i.e., NGC) constructed an aggregate supply schedule (also known as a merit order).
The market operator was also responsible for preparing half-hourly demand forecasts,
where the forecasting methodology was common knowledge (Wolak, 2000; Wolak and
Patrick, 2001) and independent of producers’ bidding on the auction (Green, 2006). The
intersection of the merit order and forecast demand determines the wholesale price called
the System Marginal Price (SMP). This represented the half-hourly uniform price paid the
same to all producers whose production units were scheduled for electricity production.

In Scotland, the South of Scotland Electricity Board and the North of Scotland Hydro-
Electric Board were replaced by Scottish Power and Scottish Hydro-Electric, which are
responsible for production, transmission, and retail supply. As illustrated in Figure 0.1,
the production and transmission were kept vertically integrated and not unbundled as
was done, for example, in England and Wales.

The liberalization process of the electricity supply industry during the 1990s included
several institutional changes and regulatory reforms. Those changes and reforms, both
in the production and distribution levels, shared heavy-handed features of regulation
because specific rules and institutions were established to regulate the electricity supply
industry in Great Britain.

The first change was related to the expiry on April 1, 1993 of coal and other ini-
tial contracts imposed by the government. Hence, April 1, 1993 is considered as the
first structural break. Later, the regulatory authority, the Office of Electricity Regulation
(Offer),! introduced price-cap regulation that would set an explicit ceiling on annual aver-

age prices charged for electricity production by the two incumbent electricity producers:

Later renamed the Office of Gas and Electricity Markets (Ofgem).



National Power (the larger producer) and PowerGen (the smaller producer). Faced with
the alternative of a referral to the Monopolies and Mergers Commission (MMC), these
producers agreed to a price cap for two financial years: 1994/1995 and 1995/1996 (Wol-
fram, 1999; Robinson and Baniak, 2002). Therefore, April 1, 1994 and April 1, 1996
are considered as the second and third structural breaks, respectively. In the literature,
price-cap regulation is referred to as a behavioral remedy.

In order to improve competition and decrease the influence of the incumbent electric-
ity producers, the regulatory authority introduced horizontal restructuring through two
series of divestments which took place in July 1996 and July 1999. These dates define
the next two structural breaks. In the literature, introducing divestment series is also
referred to as applying a structural remedy.

In March 2001, in order to introduce bilateral trading arrangements, the wholesale
electricity market was replaced by the New Electricity Trading Arrangements (NETA).
A transition to bilateral trading arrangements should not serve as an indication that all
problems stem from the use of wholesale trading. Firms with a dominant position on the
market could raise prices under any set of market rules (Green, 2003).

The habilitation thesis includes four paper reprints in the form they have been pub-
lished or submitted to the Elsevier publisher. The first paper analyzes the impact of
behavioral and structural remedies on the wholesale electricity price during the peak-
demand period using the case of the England and Wales electricity market. This case
study is unique because the two different kinds of remedies were introduced in the same
market at different points of time, which enables conducting a comparative analysis. Even
if I do not find a clear advantage of a structural remedy, I still suggest that a structural
remedy in the form of horizontal restructuring could be a preferred measure at promoting
competition in the electricity market. In particular, I find that after divestment series
the effect of market share of the larger incumbent producer is statistically insignificant
and that the volatility of electricity prices is lower. The paper also analyzes the weekly

seasonality pattern using the time and frequency domain approaches, which is important



in justifying the application of clustered robust standard errors by the day of the week
in the analysis of producers’ bidding on the electricity market. This paper is submitted
for publication consideration to the Energy Economics journal.

The next two papers analyze the bidding behavior of electricity producers at the
uniform price auction. In the second paper I examine market power manifested in sub-
mitting price bids in excess of marginal production costs. The theoretical model allows
identifying the incentive and disincentive to exercise market power. Then an empirical
analysis is performed at the level of producer and production unit of various input types
used in electricity production. I examine how the incentive and disincentive to exercise
market power change during different regulatory regime periods and draw conclusions
regarding the effectiveness of regulatory reforms to improve competition. This paper is
published in the Utilities Policy journal.

The third paper investigates if electricity producers apply a capacity cutting (i.e.,
withholding) strategy to increase prices. This strategy may be profitable when a sig-
nificantly large increase in demand is forecasted so that a market operator will have to
use high-cost and sometimes even less efficient production facilities to satisfy demand.
We analyze whether the regulatory reforms decreased the extent of strategic capacity
bidding. This paper is coauthored with Lubomir Lizal and is published in the Energy
Economics journal.

Strategic submission of price bids or capacity bids may make equilibrium prices in a
market more volatile. Hence, in the next paper, I analyze and discuss the dynamics of
daily price level and volatility in relation to the introduced regulatory reforms. On the
one hand, the analysis of a price level is important in determining the expected revenues
for producers and, in the end, costs for consumers. On the other hand, the analysis of
price volatility could be important for understanding uncertainty and new entry decisions.
Also, high price and low volatility levels could be interpreted as a signal of possible tacit
collusion. These issues and their policy evaluation are addressed in this fourth paper,

which is published in the Energy Policy journal.



The measures designed to mitigate an exercise of market power and promote compe-
tition during the liberalization process were more extensive in Great Britain compared
to Germany, France, Italy, or Sweden (Bergman et al., 1998). Moreover, the England
and Wales electricity market was one of the first examples of a competitive wholesale
electricity market in the world. This market was copied, almost in entirety in some cases,
by a number of other countries seeking to reform their electricity supply industry (Bower,
2002). In this respect, the new findings documented in this habilitation thesis could be
of interest to countries that have formed or are about to form their electricity markets

similar to the original model of the electricity market in England and Wales.
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1 The impact of behavioral and structural remedies
on electricity prices: The case of the England and
Wales electricity market

Currently under review in the Energy Economics journal.
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The Impact of Behavioral and Structural Remedies on Electricity Prices:

The Case of the England and Wales Electricity Market

Sherzod N. Tashpulatov*

Abstract

During the liberalization process the UK regulatory authority introduced behavioral and
structural remedies in order to mitigate an exercise of market power and lower electricity prices.
We study the impact of a behavioral remedy implemented through price-cap regulation and a
structural remedy implemented through divestment series on the dynamics of electricity price
during the peak-demand period over trading days. An AR-ARCH model with a novel skew
generalized error distribution is used. This distribution allows to capture the features of asym-
metry, excess kurtosis, and heavy tails. The model is extended to include individual incumbent
producers’ market shares and other explanatory variables reflecting seasonal patterns and reg-
ulatory regimes.

We find that before and during price-cap regulation the effect of market share on electricity
price is statistically significant for both incumbent producers. But after the divestment series
the effect is statistically insignificant (with the exception of the effect of market share for
the smaller incumbent producer after the second series of divestments). However, later price
volatility increased compared to the price-cap regulation period. Nevertheless, the second series
of divestments could be regarded as more successful than the first series in terms of reduced

price volatility.

Keywords: electricity price, uniform price auction, skew generalized error distribu-
tion, conditional volatility, requlation
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1 Introduction

Great Britain was the first among the OECD countries to liberalize its electricity sup-
ply industry. The production level of the electricity supply industry consisted of several
firms where National Power (NP) and PowerGen (PG) had dominant positions. Dur-
ing the liberalization process, the regulatory authority, Office of Electricity Regulation
(later renamed the Office of Gas and Electricity Markets), introduced a behavioral rem-
edy (through price-cap regulation) and a structural remedy (through divestment series)
at different points of time, which were targeted at the NP and PG producers and are

presented in Figure 1.1.

Creation of Restructure of

Wholesale Start of End of Wholesale

Electricity End of Coal  Price-Cap Price-Cap Electricity

Market Contracts Regulation Regulation Divestment 1 Divestment 2 Market
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April 1, 1990 April 1, 1993 April 1, 1994 April 1, 1996 July 1, 1996 July 20, 1999 March 26, 2001

Sources: Department of Trade and Industry (1997-2002), National Grid Company (1994-2001), Newbery
(1999), Newbery (2005), Robinson and Baniak (2002), Wolfram (1999); author’s illustration.

Figure 1.1: Institutional changes and regulatory reforms during 1990-2001

Price-cap regulation set an explicit ceiling on time-weighted and demand-weighted
annual average prices charged for electricity production by the two incumbent electricity
producers: NP (the larger producer) and PG (the smaller producer), which together
sometimes produced more than 70% of electricity in the early 1990s. Later, divestment
series were introduced in order to mitigate an exercise of market power and decrease the
influence of the incumbent electricity producers. Following divestment series, the market
shares of the incumbent electricity producers declined. Market share is an important
factor affecting a firm’s behavior and eventually market prices.

Generally, there is no consensus regarding the optimal remedy choice (behavioral or
structural) to address market failures. Behavioral remedies try to redress specific conduct

in a context where incentives remain essentially unchanged. Structural remedies, on the
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other hand, are aimed at changing the incentives of the firm(s) in the market, which is
achieved once the structural remedies are implemented (Hellstrém et al., 2009).

European Union antitrust policy prioritizes the imposition of behavioral remedies
above structural remedies because antitrust investigations typically concern infringements
which are behavioral in nature. In the United States, on the other hand, there is a pref-
erence for structural remedies because they are simple and relatively easy to administer
(Alexiadis and Sependa, 2013).

However, in 2008, following the investigation of E.ON (the world’s largest utility
company) on the German wholesale electricity market, for the first time the European
Commission decided to apply a structural remedy. Specifically, it was agreed that E.ON
would divest 5000 MW of generation capacity representing about 20% of the company’s
German generation portfolio (Chauve et al., 2009).

As discussed in Maier-Rigaud (2016), the advantage of a structural remedy is that
it allows reducing a firm’s market share and preventing the emergence or strengthening
of a dominant position. Moreover, there will be no need for subsequent monitoring and
enforcement. According to Council Regulation (2003), structural remedies should only
be imposed either where there is no equally effective behavioral remedy or where any
equally effective behavioral remedy would be more burdensome for the firm concerned
than the structural remedy.

The wholesale electricity market in England and Wales presents an interesting case
study where the regulatory authority introduced behavioral and structural remedies at
different points of time. This enables us to compare the impact of each of the remedy on
electricity price. In particular, we analyze changes in the price level and volatility during
different regulatory regime periods. On the one hand, a price level affects revenues of
producers and costs to consumers. On the other hand, price volatility reflects market

uncertainty. Generally, both price level and volatility are important for investment and
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new entry decisions, too.

For the analysis of the price level and volatility, we use an autoregressive and autore-
gressive conditional heteroscedasticity (AR-ARCH) model with skew generalized error
distribution (SGED). The model is extended to include regime dummy variables, in-
cumbents’ market shares calculated as a ratio of respective residual demand (in our case,
incumbents’ scheduled production capacity in the day-ahead auction) to forecast demand,
and the seasonal component. We do not find statistical evidence for a clear advantage
of a structural remedy over a behavioral remedy. Nevertheless, we find that after divest-
ment series the effect of market share on electricity price is statistically insignificant for
the larger incumbent producer. Moreover, after the second series of divestments price
volatility is lower than during the price-cap regulation period.

We limit our analysis to the period prior to 2001 because after March 26, 2001 the
wholesale electricity market in England and Wales was restructured in order to introduce
bilateral trading. Restructuring of the wholesale spot market (more precisely, a day-ahead
market) for the dispatch and pricing of electricity however should not provide evidence
to avoid the use of spot markets in the future. That is, a lesson that all problems stem
from the use of a central auction would be wrong. Dominant producers could raise prices
under any set of market rules (Green, 2003).

The measures designed to promote competition during the liberalization process were
more extensive in Great Britain as compared to Germany, France, Italy, or Sweden
(Bergman et al., 1998). Privatization, restructuring, market design, and regulatory re-
forms pursued in the liberalization process of the electricity industry in England and
Wales can be characterized as the international gold standard for energy market liberal-
ization (Joskow, 2008; Joskow, 2009). The England and Wales electricity market could,
therefore, serve as an important source of lessons, especially for countries which have

adopted a similar market design operated by several dominant firms.
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2 Description of the electricity auction

At the start of liberalization, a wholesale market for electricity trading was created in
order to introduce competition among electricity producers. Trading was organized as a
uniform price auction, where all electricity producers were asked to submit price offers
(up to three) and available capacity for each production unit. These multi-part bids
were used by the market operator (i.e., the National Grid Company, or NGC) in the
Generator Ordering and Loading (GOAL) algorithm in order to calculate half-hourly
price bids (Electricity Pool, 1990; Sweeting, 2007).

In Figure 2.1, we schematically illustrate how the electricity market would have op-

erated in a given half-hourly trading period.

Price Bid 4 Forecast
(£/MWh) Demand
Aggregate Step
Supply Schedule
bags =SMP [ ¢ | (Merit Order)
bacy oo :
2] Producer A
b
b::gg,j U Producer B
bAcl

kac, kAyl k<4g2 kac, kAgs kBey

Sorted Cumulative Production Capacity (MW)

Source: Author’s illustration.

Notes: On the vertical axis, ba., refers to the price bid of electricity producer A’s first production unit,
whose production capacity is ka.,. For the sake of simplicity, it is assumed that electricity producer A
has 2 coal and 3 gas types of production unit. Price bids of all production units are ordered as would have
been done by the market operator (i.e., the NGC) to create the least expensive production schedule. The
intersection of the constructed production schedule and forecast demand (the vertical line) determines
the System Marginal Price (SMP), the wholesale electricity price. In this hypothetical example, it is
electricity producer A’s third gas production unit that determines the SMP.

Figure 2.1: Determination of an SMP

For each half-hourly trading period the pairs of a price bid and respective production
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capacity of all production units were ordered based on price bids so that to construct a
production schedule (also called a merit order) that would indicate the least expensive
way to meet price-inelastic forecast demand. Methodology of forecasting demand for
electricity by the market operator was common knowledge (Wolak, 2000; Wolak and
Patrick, 2001) and independent of producers’ bidding behavior (Green, 2006).

The production unit whose price bid in this production schedule intersects forecast
demand is called the marginal production unit. Its price bid determines the System
Marginal Price (SMP), which represented the wholesale price paid the same to all pro-
ducers that were scheduled to produce electricity during a half-hourly trading period

(Electricity Pool, 1990).

3 Literature review

Various approaches have been applied for studying electricity prices and an exercise of
market power in restructured electricity markets. The seminal approach considered in
Green and Newbery (1992) for the case of the England and Wales electricity market
applies the supply function equilibrium model. The authors consider that a producer
submits a continuously differentiable supply function that maximizes its profits given the
residual demand it faces. This approach is applicable when producers’ production units
are small enough or when each producer has a sufficiently large number of production
units, as was the case with the National Power and PowerGen incumbent electricity
producers in the early 1990s.

By analyzing the later period, Wolfram (1999), however, finds that the supply function
equilibrium model does not describe the market very well because electricity prices were
much lower than the model predicted. She also finds that during price-cap regulation

(April 1994 — March 1996) the industry supply curve rotated counterclockwise, which is
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explained as producers’ attempt to increase prices when demand is high and decrease
prices when demand is low and at the same time to satisfy the cap on annual average
prices.

Another approach for studying an exercise of market power leading to higher elec-
tricity prices is a discrete bid auction model. Ciarreta and Espinosa (2010) find that
for the Spanish wholesale electricity market, which is operated as a multiunit uniform
price auction similarly to the original model of the England and Wales electricity market
and where two firms (Endesa and Iberdrola) own most of capacity, the supply function
equilibrium model better fits data than the discrete bid auction model. This result is,
however, based on the analysis of bids for only oil fired thermal plants. Von der Fehr
and Harbord (1993), Wolfram (1998), Crawford et al. (2007), and Tashpulatov (2015)
consider a discrete bid auction model for the analysis of an exercise of market power in
the England and Wales electricity market.

These two approaches measure market power based on differences between price bids
and marginal costs. Approximation of marginal costs was possible for the case of the
England and Wales electricity market thanks to the availability of data on the efficiency
rates of production units and quarterly fuel prices paid by major power producers (Figure
A3).

Methodologies considering competitive benchmark prices and capacity withholding
are relatively recent and have been applied in the analysis of restructured electricity
markets in the US and Europe. In particular, Borenstein et al. (2002) apply the method-
ology of competitive benchmark prices in the analysis of electricity crisis in the California
wholesale market. Sweeting (2007) similarly applies this methodology for the British
electricity market. The application of competitive benchmark prices allows to estimate
the scope and severity of departures from competitive bidding over time by measuring

deviations of wholesale prices from the expected marginal cost of the most expensive
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production unit needed to serve demand for electricity.

Wolak and Patrick (2001), Dechenaux and Kovenock (2007), Fridolfsson and Tangeras
(2009), Castro-Rodriguez et al. (2009), Green (2011), Lizal and Tashpulatov (2014) an-
alyze a capacity withholding strategy. In the theoretical model, reflecting the design of
the wholesale electricity market in England and Wales, Dechenaux and Kovenock (2007)
find that capacity withholding in a uniform price auction could be even necessary to
sustain tacit collusion. The literature identifies that producers may increase prices by
withholding part of production capacity in order to force the market operator to use more
expensive and probably less efficient production units to satisfy demand for electricity. In
this case producers may increase output prices without driving a wedge between output
prices and marginal production costs (Fridolfsson and Tangeras, 2009).

The next approach to study electricity prices and an exercise of market power is based
on residual demand. This approach allows a producer to incorporate competitors’ bidding
behavior in its profit maximization problem (Marques et al., 2008; Prete and Hobbs,
2015). Another application of residual demand in day-ahead auctions is to analyze the
effect of growing penetration of renewable energy sources (Vazqueza et al., 2014).

We use a firm’s residual demand (i.e., a firm’s scheduled production capacity in the
day-ahead auction) in order to calculate its market share. More precisely, a firm’s market
share is calculated as a ratio of its residual demand to forecast demand. Generally, market
share affects firms’ behavior and eventually market prices. Using residual and forecast
demand in calculating market shares is consistent with the market rules because these
data were used in determining the wholesale price in the day-ahead electricity market in
England and Wales.

Market shares can also be used to calculate the Herfindahl index. Evans and Green
(2005) consider the monthly Herfindahl index to examine the effect of competition on

electricity prices.
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In our research we analyze the effect of incumbent producers’ market shares on the
wholesale electricity price during the peak-demand period over trading days in relation
to the price-cap regulation and divestment series. We focus on the peak-demand period
during each trading day because, as documented in the literature, market power is most

often observed during namely the peak-demand period (Borenstein et al., 2002).

4 Data

The first data set covers the period January 1, 1992 — September 30, 2000. This data
set includes half-hourly observations on the wholesale electricity price (System Marginal

Price (SMP)) and demand for electricity (load).
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Figure 4.1: SMP, forecast demand, and actual demand (Jan 6, 2000)

In Figure 4.1 we provide an illustration of market data for January 6, 2000. The peak-
demand period on this trading day is during 17:30-18:00, when the forecast demand
is at the peak of 48215 MW and electricity price is £77.89 per MWh. Changes in

forecast demand can be considered as exogenous when analyzing changes in electricity
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price because the forecasting methodology was independent of producer’s bidding.
Figure 4.2 presents changes and distribution of the electricity price of the half-hourly
peak-demand period over trading days. The empirical distribution (depicted through
the histogram) differs a lot from the normal distribution (depicted through the smooth
curve). The differences are also confirmed by our calculations of positive skewness and

excess kurtosis.
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Source: Author’s calculations.
Figure 4.2: Electricity price during the peak-demand period over trading days (Jan 1,
1992 — Sept 30, 2000)

In Table 4.1 we present a detailed analysis of changes in the SMP of the peak-demand
period across different regulatory periods summarized in Figure 1.1. For comparison
purposes, we consider the price-cap regulation period (i.e., Regime 3) as the reference
period.

For testing the equality of means we first needed to test the equality of variances using
F-test. The results indicate that during the price-cap regulation prices on average are
statistically higher than in the earlier periods (i.e., Regime 1 and Regime 2). The prices

on average rose further after the first series of divestments were introduced (i.e., Regime
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Table 4.1: Summary statistics for electricity price (£/MWh) during the peak-demand
period over trading days

SMP Regime 1 Regime 2 Regime 3 Pre-Regime 4 Regime 4 Regime 5
(Jan 92-Mar 93) (Apr 93-Mar 94) (Apr 94-Mar 96) (Apr 96-Jul 96) (Jul 96-Jul 99) (Jul 99-Sept 00)
Price-cap Divestment 1 Divestment 2
Mean 27.5 32.9 37.2 35.3 42.0 36.3
Change of Mean -9.7 -4.3 -2.0 4.8 -0.9
t-test -14.4 -5.9 -1.4 5.5 -1.1
t-critical -2.0 -2.0 -2.0 2.0 -2.0
Min 17.3 14.9 7.9 17.2 14.5 15.5
Max 46.2 55.9 211.2 76.7 105.1 77.9
St Dev 3.7 6.5 17.6 11.4 19.3 12.1
F-test 23.0 7.3 2.4 1.2 2.1
F-critical 1.2 1.2 1.3 1.1 1.2
Coef of Var (%) 13.4 19.8 47.4 32.3 45.9 33.5
Obs 456 365 731 91 1114 439

Source: Author’s calculations.

4). During Pre-Regime 4 and Regime 5 periods the average prices were about the same

as during the price-cap regulation period.
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Figure 4.3: Log of electricity price during the peak-demand period over trading days
(Jan 1, 1992 — Sept 30, 2000)

Similar to Figure 4.2, in Figure 4.3 we present log transformed electricity price (i.e.,
the natural logarithm of electricity price), which is used in the empirical part. Using

log transformed time series may help to mitigate the effect of outliers’ and also allow to

'We observe a high price of about £211/MWh during the peak-demand period on April 4, 1995.
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interpret regression results in terms of elasticities.

The results in Figure 4.3b show that the distribution of log of electricity price is
positively skewed and has a peak higher than the peak of normal distribution. These
issues could be addressed by considering skew generalized error distribution (SGED).

The second data set covers the period January 1, 1993 — September 30, 2000 and
includes half-hourly data on capacity bids and price bids. Using publication materi-
als of the National Grid Company (1994-2001), we can identify production units that
were divested from NP and PG during horizontal restructuring, which is important in
determining residual demand for these incumbent producers.

We consider market share as the ratio of residual demand to forecast demand from
the day-ahead bidding data.? A firm’s residual demand is represented by its scheduled
capacity based on submitted available capacity of various production units as described
in Figure 2.1. Market share can be considered as an independent variable when analyzing
price changes because the electricity price was determined after the bidding of producers
(i.e., after their submission of price and capacity bids). Sometimes the inclusion of
market share may however lead to the endogeneity problem. For example, like in the
feed-in tariff principle, when first the electricity price is announced and then bidding of
electricity producers takes place.

In Tables 4.2-4.3 we present summary statistics for market shares of the NP and PG

producers, which in the early years sometimes served more than 70% of demand.

This price spike was brought about by a mistaken mix of technical parameters that the GOAL algorithm
had to accept. This explanation is based on a comment from Richard Green.

2The usual interpretation of a market share could be the share of electricity sold on the market,
which is not what we consider in the paper.
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Table 4.2: Summary statistics for NP’s market share during the peak-demand period
over trading days

Regime 1 Regime 2 Regime 3 Pre-Regime 4 Regime 4 Regime 5
(Jan 93-Mar 93) (Apr 93-Mar 94) (Apr 94-Mar 96) (Apr 96—Jul 96) (Jul 96-Jul 99) (Jul 99-Sept 00)
Price-cap Divestment 1 Divestment 2
Mean 0.449 0.426 0.367 0.297 0.229 0.124
Min 0.341 0.286 0.165 0.227 0.086 0.062
Max 0.506 0.503 0.501 0.350 0.317 0.181
St Dev 0.037 0.038 0.047 0.028 0.034 0.022
Coef of Var (%) 8.21 8.93 12.68 9.44 14.98 17.96
Obs 90 365 731 91 1114 439

Source: Author’s calculations.

Table 4.3: Summary statistics for PG’s market share during the peak-demand period
over trading days

Regime 1 Regime 2 Regime 3 Pre-Regime 4 Regime 4 Regime 5
(Jan 93-Mar 93) (Apr 93-Mar 94) (Apr 94-Mar 96) (Apr 96—Jul 96) (Jul 96-Jul 99) (Jul 99-Sept 00)
Price-cap Divestment 1 Divestment 2
Mean 0.278 0.247 0.245 0.230 0.202 0.141
Min 0.219 0.128 0.123 0.166 0.096 0.069
Max 0.346 0.318 0.331 0.277 0.284 0.193
St Dev 0.033 0.035 0.035 0.025 0.028 0.017
Coef of Var (%) 11.98 14.06 14.21 10.84 13.97 11.99
Obs 90 365 731 91 1114 439

Source: Author’s calculations.

Based on the analysis of the coefficient of variation we find that during almost all
regime periods the market share of PG changes more than the market share of NP.
However, after the second series of divestments, when on average the market share of NP
is lower than the market share of PG, we find that changes in the market share of NP
are higher. This could be the result of an unequal horizontal restructuring where NP
divested more of generation capacity than did PG. Therefore, it is interesting to see how

changes in the market shares due to divestments affected the price dynamics.

24



5 Methodology

In order to analyze the dynamics of the electricity price during the peak-demand period

over trading days we consider the following model:

P

Iprice;, = ag+ Z a; lprice;_; +wy - b+ & (1)
=1
p

hy = @0+Z@¢€?_i+22'5- (2)

=1

The first equation is called the mean equation and is analyzed using an autoregressive
process with maximum lag order P, that is, AR(P). In this equation, the dependent
variable [price, is natural logarithm of the wholesale price of electricity (i.e., SMP) during
the peak-demand period of trading day ¢ in the day-ahead auction. The AR(P) process for
Iprice; with selected lags of up to order P allows to take into account partial adjustment
effects and seasonality (cyclical or periodic) features.

Next in the mean equation (1), w, is a vector of explanatory variables including
incumbent producers’ market shares, natural logarithm of forecast demand, sine and
cosine periodic functions. Incumbent producers’ market shares are calculated as a ratio
of their individual residual demand to forecast demand. Residual and forecast demand
data were used in determining the wholesale price in the day-ahead electricity auction
described in Figure 2.1. The inclusion of market shares is also partly consistent with the
methodology in Evans and Green (2005) considering the effect of market concentration
measured through the Herfindahl index on electricity prices. Interacting the market
shares with regime dummy variables should in particular allow us for a more detailed
analysis of the impact of divestment series on electricity prices.

Finally, ¢, is the disturbance term such that £ (g,|l;_1) = 0, where [;_; represents the

information set at time ¢ — 1. The disturbance term may be heteroscedastic, which then
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does not allow for statistical inference about the significance of estimated parameters in
the mean equation.

In case the disturbance term has serial correlation or heteroscedasticity problems, one
could apply a correction to the standard errors (e.g., Newey-West) or apply the general-
ized least squares method based on normal distribution (like in Evans and Green, 2005).
These approaches take into account serial correlation and heteroscedasticity problems in
the disturbance term, which then allows for statistical inference.

Another approach to address the heteroscedasticity problem in the disturbance term
could be to consider the autoregressive conditional heteroscedasticity process with max-
imum lag order p, that is, ARCH (p). This approach was first introduced and applied in
Engle (1982) to estimate the means and variances of inflation in the UK.

The heteroscedasticity can, therefore, be modeled by the second equation, which
is called the volatility equation. Conditional variance and volatility® terms are used
interchangeably in the literature, which is denoted by wvar (g/|I,_1) = hy, where I, 4
represents the information set at time ¢ — 1.4 In this volatility equation (2), z; is a vector
including regime dummy variables, sine, and cosine periodic functions.

The mean equation (1) and volatility equation (2) are jointly called the AR(P)-
ARC H (p) model, which we extend by including external regressors. In order to estimate
these two equations jointly, a distributional assumption needs to be made for the so-called
standardized residuals vy = £;/v/h;. Engle (1982) assumes that v; are independent and
identically distributed (i.i.d.) and follow standard normal distribution. In our extended
AR(P)-ARCH (p) model we assume that 14 are independent and identically distributed
(i.i.d.) and follow skew generalized error distribution. This distribution is characterized

by four parameters: mean pu, standard deviation o, shape parameter 8 (f < 2 corre-

3Here conditional is in the sense of conditional on information at time ¢ — 1.
4Volatility can also be rewritten in the following way h; = var (g;|I;_1) = E ((st — E(st))2|lt_1) =
E (5%|It,1), where we used E (g¢|I;—1) = 0.
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sponds to a leptokurtic distribution with heavy tails and with a peak more acute and
higher than in normal distribution),” and skewness parameter x (y > 1 corresponds
to a positively skewed distribution). Skew generalized error distribution is denoted by

SGED (u, o, B, x).°

0'8 [ T T T T T T T ]
— Laplace (3= 1) =
— Normal (8= 2) oc=1
Uniform (8 — +00) x=1
0.6} -
2
2 04 -
&)
@)
0.2} J
0l
-3 -2 -1 0 1 2 3

Source: Author’s calculations.
Notes: We describe special cases of the shape parameter § =1, 8 = 2, and § — 400 which correspond
to Laplace (black), Standard Normal (red), and Uniform (green) distributions, respectively. When the

skewness parameter exceeds 1, i.e., x > 1, then we obtain a positively skewed distribution.

Figure 5.1: SGED (u, o, 3, x)

Figure 5.1 describes three special cases of SGED (u, o, 8, x) depending on the value
of shape parameter § and fixed values of 4 = 0, 0 = 1, and x = 1: Laplace distribution
when § = 1, normal distribution when § = 2, and uniform distribution when g — oo.

The symmetric case of SGED when y = 1 is known as generalized error distribution

°In cases of heavy tails and a peak lower than in normal distribution, Student’s ¢ distribution could
be applicable.

6Skewness coefficient and skewness parameter are not the same concepts. Sample skewness coefficient
is a sample statistic, whereas skewness parameter is the fourth parameter describing SGED. For a
positively skewed distribution (i.e., with a longer right tail) the skewness coefficient is positive and
skewness parameter is greater than one.
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where 3 is a free parameter.
Below in Figure 5.2 we schematically illustrate related distributions, where SGED de-

pending on four parameters represents the most flexible and general type of distribution.

4 parameters Skew Generalized Error Distribution (SGED)
3 parameters Skew Laplace Generalized Error Distribution Skew Normal
2 parameters Laplace Uniform Normal

Source: Author’s illustration.

Figure 5.2: Special cases of SGED (u, o, 3, x)

As presented in Figure 4.3b, the peak in the distribution of electricity price is higher
than that in the normal distribution. Since Student’s ¢ distribution has a lower peak
than the normal distribution, we do not include Student’s ¢ distribution in Figure 5.2.
At the same time, though, as the number of degrees of freedom increases, Student’s t
distribution approaches normal distribution.

In Appendix C, we examine model adequacy by verifying the validity of distributional
assumptions of standardized residuals 2, based on the Brock-Dechert—Scheinkman (BDS)
test (Brock et al., 1996), Ljung-Box Q-test (Ljung and Box, 1978), skewness and kurto-
sis measures, kernel density and quantile-quantile plots, Jarque—Bera and Kolmogorov—
Smirnov normality tests (Hazewinkel, ed, 1990). Rejecting normality may not mean that
the empirical distribution is SGED. That is why, we additionally perform the goodness
of fit test. Finally, in order to test if the volatility model is correctly specified we perform
the sign bias test developed by Engle and Ng (1993). Verifying the validity of distri-
butional assumptions is important in analyzing economic time series with time-varying

volatility and for the subsequent interpretation of results.
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6 Results

Because stationarity in the time series analysis is a usual requirement in order to allow
for modeling and statistical inference, we first provide the results of the stationarity test.
Then we analyze seasonality properties using the correlogram and periodogram plots.

Next we provide our estimation results for the mean and volatility equations.

6.1 Stationarity test

We test the stationarity of log of electricity price during the half-hourly peak-demand
period over trading days using the Augmented Dickey—Fuller (ADF) test with a constant
term (Dickey and Fuller, 1981). This test allows us to control for the possible presence
of serial correlation in the residuals. The maximum lag order is reduced to 21 based on
the Schwarz information criterion (SIC). The results of the ADF test are summarized in
Table 6.1.

Table 6.1: ADF test for log of electricity price time series

Null hypothesis: log of electricity price time series has a unit root
Exogenous: constant
Lag length: 21 (Automatic based on SIC)

ADF test statistic for log price time series -5.349

Note: MacKinnon critical values for the rejection of the hypothesis of a unit root: 1% critical value =
-3.432, 5% critical value = -2.862, and 10% critical value = -2.567.

The unit-root null hypothesis is rejected and therefore we conclude that log of elec-
tricity price time series is stationary. This test result allows us to apply the correlogram
and periodogram plots for seasonality analysis which are presented in the next section.

In Table 6.2 we similarly present the stationarity test results for the log of forecast
demand time series, which is included as an exogenous variable in modeling the dynamics

of electricity price.
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Table 6.2: ADF test for log of forecast demand time series

Null hypothesis: log of forecast demand time series has a unit root
Exogenous: constant
Lag length: 28 (Automatic based on SIC)

ADF test statistic for log price time series -3.650

Note: MacKinnon critical values for the rejection of the hypothesis of a unit root: 1% critical value =
-3.432, 5% critical value = -2.862, and 10% critical value = -2.567.

The unit-root null hypothesis is rejected and therefore we conclude that the log of
forecast demand time series is stationary. This test result allows us to apply the Fourier
transform in order to construct the periodogram plot for the log of forecast demand time
series. We believe that there may be common frequencies with those of electricity price
related to seasonality pattern. Including log of forecast demand may, therefore, lead to
a parsimonious model without all frequencies of 27/7, 47/7, and 67/7 necessarily being

used in sine and cosine periodic functions in order to model seasonality pattern.

6.2 Seasonality analysis

In order to analyze seasonality properties and partial adjustment effects on the time
domain we use the autocorrelation function (ACF) and partial autocorrelation function
(PACF) plots, respectively. They are summarized in the correlogram presented in Fig-
ure 6.1.

We find that the ACF plot contains spikes at lags of multiples of 7 and 364, which
reflect the weekly and annual seasonality patterns in electricity prices, respectively. These
results are empirically important not only for our specification of the AR(P) process
but also for the analysis of firm level data in general. For example, Puller (2007) in the
analysis of firm level data of the California electricity market allows for heteroscedasticity
and serial correlation in the shocks by computing Newey-West standard errors with a 7-

day-lag moving-average structure.
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Figure 6.1: Correlogram for log of electricity price time series

Fourier transform (FT) allows for the analysis of seasonality patterns on the frequency
domain.” The frequencies w; where the absolute values of Fourier transform |F(iwy)]
achieve local maxima could be used in sine and cosine functions in order to explain
seasonal variation in the data.

In Figure 6.2 we summarize in periodogram plots the results of the absolute values
of Fourier transform |F(iwy)| for the log of electricity price and log of forecast demand

time series.

"Fourier transform of a real-valued function p(t) on the domain [0,7] is defined as F(iw) =

T
F{p(t)} = [p(t)e~™*"dt, where i is the imaginary unit such that > = —1. Based on this defini-
0

tion, the numerical procedure computes |F(iwg)| ~ ~ |(pt, coswit) — i (pt, sinwyt)| =

T-1 .
Z Di e—kat
t=0

\/(pt,coswkt)2 + (pt,sinwkt)2, where wy, = ﬁ -2m, k=0,1,2,...,N—1, and N determines the grid.
The expressions in parentheses represent scalar products, which in statistical terms measure covariation
between the price time series and cosine or sine functions for different values of frequency wy. The opti-
mization finds such values of wy that would explain a large portion of variation in electricity prices. A
graph where the absolute values of the Fourier transform are plotted on the frequency domain is known
as a periodogram.
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Figure 6.2: Periodogram plots for log of electricity price and log of forecast demand time
series

The periodogram plot suggests using 27”, 47”, and 67” as frequencies for the sine and

cosine periodic functions. However the disadvantage of the Fourier transform is that it
does not tell us directly which functions should be used with these identified frequencies:
only sine, only cosine, or both. For this purpose we look at correlations presented in
Table 6.3.

Table 6.3: Correlation of log of electricity price and log of forecast demand with
periodic functions

Variable cos (27”25) sin(%“t) cos(%“t) sin(%’rt) Cos (67“15) sin(%“t)
log(SMP) -0.18*** 0.14 *** -0.10*** 0.10*** -0.06 *** 0.02
log(Forecast demand) -0.44 %% 0.20 ##* -0.19 %4 0.19 *** -0.07 ¥ 0.07 #x

Note: *, ** and *** stand for the 10%, 5%, and 1% significance levels, respectively.

The correlation analysis presented in Table 6.3 suggests not including variable sin(%’rt)
because correlation between this variable and the dependent variable log(SMP) is not

statistically significant.
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6.3 Estimation of the mean and volatility equations

Based on the detailed analysis of the correlogram and periodogram plots, we specify
the lag structure and frequencies for the sine and cosine functions in the mean and
volatility equations. The results presented in Tables 6.4 and 6.5 include standard errors
of parameter estimates based on maximum likelihood estimation. These standard errors
are correct because all distributional assumptions for 1, are satisfied. In particular, in
Appendix C we test in detail the distributional assumptions for v; of being i.i.d. and

following SGED. The test results confirm the validity of our distributional assumptions.

P
Table 6.4: Mean equation Ilprice; = ag + Y a; lprice;_; +w; - b+ &

=1
Intercept term and Coef Std Err  Exogenous variables Coef Std Err
lagged terms Iprices—; a; Bj
ao -1.09005*** 0.00290  Regime 1; - SNF 0.03584*** (.00011
Iprices_, 0.30204*** 0.00073  Regime 2; - SN* 0.28354 %% (.05289
Iprice;—o 0.11736*** 0.00031  SNP -0.01995*** 0.00007
Iprices_s 0.06675*** 0.00017  Pre-Regime 4, - SNT  0.90364 0.60383
Iprice;_4 0.06126 *** 0.00016  Regime 4; - SNF 0.26883**  0.14972
Iprices_g 0.12551*%* 0.00035  Regime 5; - SNF -0.59855 0.38660
Iprice;—7 0.19530*** 0.00049  Regime 1, - SF'¢ -0.28930 *** 0.00078
Iprice;_g -0.09317*%* 0.00024  Regime 2; - SF¢ -0.52879*** (.08924
Ipricei_12 -0.05304*** (0.00014  SF¢ 0.30861 *** (.00083
Ipricei_14 0.11632*** 0.00031  Pre-Regime 4; - ST -1.08304 0.77633
Iprice,_o 0.09109*** 0.00023  Regime 4; - ST'¢ -0.17788 0.17213
Iprice,_oo -0.05007*** 0.00013  Regime 5; - S'¢ 0.54115 0.33167
Iprice;—o4 -0.04189*** (.00011  sin(27t/7) 0.02114*** 0.00007
Iprices_u4 -0.04919*** (0.00013  sin(4nt/7) 0.02690 *** 0.00008
Iprices_s9 0.05135*** 0.00013  cos(67t/7) -0.01248*** 0.00004
Iprice,_ss -0.02990*** (0.00008  Idemand, 0.16719*** (.00031
Iprice;—111 -0.04056 *** 0.00011
Iprices_16a -0.04248*** 0.00011 R? 0.606
Iprices_sea 0.06847*** 0.00018  Obs 2823

Notes: The inclusion of some of the lags of the dependent variable helps as a correction for serial corre-
lation in the error term. In the table, Iprice; and ldemand; stand for the natural logarithm of SMP and
forecast demand during the peak-demand period of trading day t (t = 1,2,...,3196), respectively. The
number of included observations is less because of lagged terms. w; is a vector of exogenous variables
including market shares interacted with regime dummy variables, periodic functions, and forecast de-
mand. Standard errors are based on maximum likelihood estimation. *, ** and *** stand for the 10%,
5%, and 1% significance levels, respectively.

In Table 6.4 we provide our estimation results for the mean equation, which includes

33



lags of the dependent variable and exogenous variables (market shares interacted with
regime dummy variables, periodic functions, and forecast demand).

The price-cap regulation period (i.e., Regime 3 described in Figure 1.1) is considered
as a reference period. The interaction terms between the regime dummy variables and
market shares of incumbent producers allow to analyze changes in the effect of incum-
bents’” market shares on electricity price.

Changes in the effect of market shares on electricity price are statistically significant
before the price-cap regulation period. However these changes are mostly statistically
insignificant after the divestment series.

The estimation results for the volatility equation including regime dummy variables

and periodic functions as exogenous variables are presented in Table 6.5.

P
Table 6.5: Volatility equation hy = ag+ > (ozi &2+ vl 5?_1) +2-0

=1
Intercept term and Coef Std Err  Exogenous variables Coef Std Err
ARCH terms €7_, Sj
&o 0.03824*** 0.00012  Regime 1, -0.03342**%* (0.00011
g2, 0.09687 *** 0.00035  Regime 2; -0.02853*** (.00107
g2 , 0.07501*** 0.00032  Pre-Regime 4, 0.02269 0.01484
£ , 0.04659 *** 0.00018  Regime 4, 0.00589**  0.00341
g2 ¢ 0.05782*** 0.00019  Regime 5; -0.00667 **  0.00364
€2 o 0.07095 *** 0.00024  sin(27t/7) 0.00203 *** 0.00001
g2, 0.00479*** 0.00003  cos(27t/T) 0.00468 *** 0.00001
Iy -€2 0.15345*** 0.00053
I 72 . 0.04791*** 0.00023 SGED parameters

Shape parameter, /3 1.46803 *** (.05237
Skewness parameter, ¥ 1.05424**%* 0.02471

Notation: h; stands for conditional volatility as described in footnote 4. I;_; is an indicator function
equal to 1 if g;_; < 0 and 0 otherwise. z; is a vector of exogenous variables including regime dummy
variables and periodic functions. Standard errors are based on maximum likelihood estimation. *, **
and *** stand for the 10%, 5%, and 1% significance levels, respectively.

Again the price-cap regulation period is considered as a reference period. Coefficient

estimates in front of regime dummy variables represent estimates of changes in the in-

tercept term during other regime periods. These estimates are all statistically significant
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except for the Pre-Regime 4 period. Interestingly, we find that the second series of divest-
ments was more successful in terms of reduced price volatility since the negative change
in the intercept term is also statistically significant.

In estimating the volatility equation we allow for volatility asymmetry. In other words,
we allow for the asymmetric effects of past positive and negative shocks €;_; on volatility
following Glosten et al. (1993). In this approach, a; measures the direct effect of past
shock &;_; and ~; captures the additional effect of negative shock &,_; (in case g,_; < 0)
on volatility.

The sum of coefficients in front of the lagged terms in the mean equation is 0.8 and
in front of the ARCH terms in the volatility equation is 0.5. This is consistent with the
stability requirement of being less than 1. Moreover the positivity of the coefficients of
ARCH terms and the intercept term in the volatility equation guarantees positivity of
conditional volatility.

The estimates of the shape and skewness parameters of SGED (u, o, 3, x) suggest
that the empirical distribution of standardized residuals 7, has higher kurtosis (because
shape parameter $ < 2) than in the case of normal distribution and is positively skewed

(because skewness parameter y > 1).8 These are summarized in Table C.3.

7 Discussion

In the specification of the mean and volatility equations we consider the price-cap regu-
lation period (i.e., Regime 3) as a reference period. In the mean equation, in particular,
coefficient estimates in front of regime dummy variables interacted with market share
reflect changes in the effect of market share in comparison to the reference period. This

approach allows us to understand if compared to the price-cap regulation period the

8Normal distribution has kurtosis coefficient equal to 3 (i.e., shape parameter 3 = 2) and skewness
coefficient equal to 0 (i.e., skewness parameter y = 1).
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observed changes during the other regime periods are economically and statistically sig-
nificant.

In the mean equation incumbent producers’ market shares calculated as a ratio of
residual demand to forecast demand is an important factor for the policy analysis of the
impact of divestment series. As summarized in Table 6.4, changes in the slope coefficient
of market shares for both incumbent producers are statistically significant before price-
cap regulation, but are mostly statistically insignificant after divestment series.

The finding that changes in the effect of market shares are statistically insignificant
may not mean that the effect of market shares on electricity price after divestment series
is also statistically insignificant. We need to test the significance of the effect of market
shares for each regime period separately. Since Regime 3 in Table 6.4 represents the
reference period, first we calculate for the other regime periods the slope coefficient in
front of incumbents’ market shares by adding the coefficient value during Regime 3 (i.e.,
coefficient 2)3) and the respective change coefficient (i.e., the coefficient in front of market
share interacted with the regime dummy variable). In particular, the slope coefficient of
NP’s market share for Regime 1 would be the sum of 51 = 0.03584 and 133 = —0.01995,

which is approximately 0.0159. These calculations are presented in Table 7.1.

Table 7.1: The effect of market share of NP and PG on electricity price across different
regimes

Regime 1 Regime 2 Regime 3 Pre-Regime 4 Regime 4 Regime 5
(Jan 93-Mar 93) (Apr 93-Mar 94) (Apr 94-Mar 96) (Apr 96-Jul 96) (Jul 96-Jul 99) (Jul 99-Sept 00)
Price-cap Divestment 1 Divestment 2
b1 + b3 b2 + b3 b3 by + b3 bs + b3 be + b3
Coef of SNP 0.0159 0.2636 -0.0200 0.8837 0.2489 -0.6185
Std Err 0.0001 0.0529 0.0001 0.6038 0.1497 0.3866
t-value 121.8835 4.9836 -307.3769 1.4635 1.6623 -1.5998
t-critical 2.0 2.0 -2.0 2.0 2.0 -2.0
Coef of SF¢ 0.0193 -0.2202 0.3086 -0.7744 0.1307 0.8498
Std Err 0.0011 0.0892 0.0008 0.7763 0.1721 0.3317
t-value 17.1774 -2.4672 372.2598 -0.9975 0.7594 2.5621
t-critical 2.0 -2.0 2.0 -2.0 2.0 2.0
Obs 90 365 731 91 1114 439

Source: Author’s calculations based on Table 6.4.
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The dependent variable is the natural logarithm of electricity price and market shares
are represented as a number. That is why, the estimated slope coefficients in front of
market shares in Tables 6.4 and 7.1 can be interpreted in percentages. For example, for
Regime 1, when the market share of NP increases by 1%, then we can expect that the
price would increase by 0.0159%. Larger market share associated with higher prices is
not consistent with competitive bidding and may be the result of capacity withholding.
That is, a producer may reduce output from low-cost plants and instead increase output
from more expensive plants. This strategy is not consistent with competitive bidding
because equilibrium price will be higher.

Capacity withholding was already raised in the literature for various energy markets.
However, sometimes it may be hard to analyze this issue as firms could reduce available
capacity because of, for example, maintenance reasons. Indeed, when demand is expected
to be high, even small decreases in the available capacity may lead to higher prices because
the equilibrium takes place at the steeper part of the aggregate supply schedule.

On the other hand, if a producer behaves competitively by submitting price bids
reflecting marginal costs, then this may lead to more of its capacity being scheduled
for electricity production, hence, larger market share. At the same time, thanks to
competitive bidding, equilibrium price is expected to be lower. So, increased output (i.e.,
larger market share) associated with lower electricity price is consistent with competition.
We observe this effect, for example, for PG during Regime 2.

In order to test if the effect of market shares is statistically significant, we need to
calculate the respective t-test values, which requires the knowledge of standard errors.
These standard errors are calculated based on the variance-covariance matrix of estimated
coefficients. In particular, in order to test if the effect of market share of NP is statistically

significant in Regime 1 we test the following null hypothesis: b; +b3 = 0. For this purpose
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we calculate the t-test value in the following way:

ttost — by —|—Abg —AO _ : by _‘: by —. (3)
8.6.(b1 + b3) \/’UCLT(b1) + U(l?“(bg) + 2601)([)1, b3)

The results are presented in Table 7.1. We find that the effect of market shares on
electricity price is significant during and before price-cap regulation. After divestment
series, however, the effect of the larger incumbent producer’s market share on electric-
ity price is statistically insignificant. This could be regarded as the structural remedy
being effective in mitigating the effect of market share on electricity price for the larger
incumbent producer. After the second series of divestments, the effect of market share on
electricity for the smaller incumbent producer is however statistically significant. Hence,
the two incumbent producers were affected differently by divestment series and the struc-
tural remedy was effective only for the larger producer. This could be related to unequal
horizontal restructuring where the larger producer divested more of its capacity than the
smaller producer (Tables 4.2 and 4.3).

These results of the effect of market shares on electricity price during the peak-demand
period across trading days are new. In the related literature, there were studies analyzing
high-demand periods. For example, market power analysis in Sweeting (2007) and supply
curves during high- and low-demand periods in Wolfram (1999).

We also find that an increase in forecast demand by 1% is associated with higher
electricity price by about 0.17%. This positive relationship is consistent with the market
design presented in Figure 2.1.

Similar to the calculations in Table 7.1, we use the results in Table 6.5 in order
to present in Table 7.2 intercept estimates for different regime periods in the volatility

equation. In order to test the significance of the intercept term during Regime 1 we test
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Hy: 6+ ap = 0. Here we again calculate the t-test value in the following way:

ttest — 01 —|-A050 —AO _ : 0+ o : ' ()
s-e.(01 + o) \/var(él) + var(dy) + 2cov(6y, do)

Table 7.2: Volatility across different regimes

Regime 1 Regime 2 Regime 3 Pre-Regime 4 Regime 4 Regime 5

(Jan 93-Mar 93) (Apr 93-Mar 94) (Apr 94-Mar 96) (Apr 96—Jul 96) (Jul 96-Jul 99) (Jul 99-Sept 00)
Price-cap Divestment 1 Divestment 2
01 + éo 02 + éo ao 03 + éo 04 + do 05 + o

Intercept 0.0048 0.0097 0.0382 0.0609 0.0441 0.0316
Std Err 0.0002 0.0011 0.0001 0.0148 0.0034 0.0036
t-value 23.8783 9.1378 321.3917 4.1052 12.9518 8.6768
t-critical 2.0 2.0 2.0 2.0 2.0 2.0
Obs 90 365 731 91 1114 439

Source: Author’s calculations based on Table 6.5.

The intercept term for each regime period is found statistically significant. The re-
sults also indicate that during the price-cap regulation period volatility was higher than
in the previous periods. Robinson and Baniak (2002) also find that price volatility in-
creased during the price-cap regulation period. The authors suggest that the incumbent
electricity producers could have been deliberately increasing price volatility in order to
enjoy higher risk premia in the contract market.

After the second series of divestments price volatility reduced, which we again at-
tribute to the effectiveness of the structural remedy.

Volatility of electricity prices in this market was analyzed before in Robinson and
Baniak (2002) and Tashpulatov (2013). Robinson and Baniak (2002) applies a non-
parametric approach for weekly average prices. Tashpulatov (2013) applies a parametric
approach for daily average prices using generalized error distribution in order to incorpo-
rate the features of heavy tails and excess kurtosis. Heavy tails could also be modeled by
using Student’s ¢ distribution as is done in Koopman et al. (2007) for daily average prices.
In our research however we use a more flexible skew generalized error distribution which

reflects the features of not only heavy tails and excess kurtosis but also the asymmetry
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of distribution. Moreover, in this research we do not use the average price but the price
during the peak-demand period over trading days. We do not consider fuel prices because
they are available as quarterly average prices, which are presented in Figure A.3.

Our findings do not indicate a clear advantage of the structural remedy over the
behavioral remedy. In particular, we find that after the first series of divestments price
volatility increased, and then reduced after the second series of divestments. On the other
hand, the effect of market share is qualitatively similar during the price-cap regulation
period and after the second series of divestments were introduced. Nevertheless, the
effect of market share on electricity price for the larger incumbent producer is found

statistically insignificant after the divestment series were introduced.

8 Conclusions

This paper analyzes the dynamics of prices in the England and Wales electricity market in
relation to the behavioral remedy (through price-cap regulation) and structural remedy
(through divestment series). For this purpose we consider an extended AR-ARC'H model
and include incumbents’ market shares. We consider skew generalized error distribution,
which is characterized by four parameters and therefore represents a more general and
flexible type of distribution. We also conduct several statistical tests in order to verify the
relevance of applying this distribution. This is necessary for checking the model adequacy
and subsequent interpretation of results.

The effect of market shares in relation to divestment series during the peak-demand
period across trading days has not been analyzed before. We find that the effect of
incumbent producers’ market shares is sometimes mutually opposite. On the one hand,
larger market share associated with higher electricity price may be related to the incentive
to reduce available capacity in order to increase prices. On the other hand, if a firm bids

competitively, then it may have larger market share and tend to decrease equilibrium
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price.

When comparing the two kinds of remedies, we find qualitatively similar results of the
effect of market share during the price-cap regulation period and after the second series of
divestments. Statistically, however, the effect of market share after the divestment series
is insignificant for the larger incumbent producer. Furthermore, price volatility reduced
after the second series of divestments.

We do not find an absolute advantage of the structural remedy over the behavioral
remedy because the effect of market share on electricity price for the smaller incumbent
producer is statistically significant. The regulatory office may however prefer the struc-
tural remedy which does not involve monitoring costs as in the case of the behavioral
remedy. Moreover, structural remedies in the form of divestment series may make the
market more competitive (Puller, 2007). Then we can expect the effect of a firm’s market
share on electricity price to be small or statistically insignificant.

The England and Wales electricity market has served as a model for much of the
electricity industry restructuring worldwide (Wolak, 2000). The findings of this paper
regarding the impact of behavioral and structural remedies on electricity prices could

therefore be of interest to countries that adopted similar trading arrangements.
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Figure A.1: Correlogram for electricity price time series
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Figure A.2: Periodogram plots for electricity price and forecast demand time series
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Figure A.3: Quarterly fuel prices for major power producers in Great Britain
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B Tables

Table B.1: ADF test for electricity price time series

Null hypothesis: price time series has a unit root
Exogenous: constant
Lag length: 13 (Automatic choice based on SIC)

ADF test statistic for price time series -5.217
1% critical value -3.432
5% critical value -2.862
10% critical value -2.567

Note: MacKinnon critical values for the rejection of the hypothesis of a unit root.

Table B.2: ADF test for forecast demand time series

Null hypothesis: forecast demand time series has a unit root
Exogenous: constant
Lag length: 28 (Automatic choice based on SIC)

ADF test statistic for forecast demand time series -3.756
1% critical value -3.432
5% critical value -2.862
10% critical value -2.567

Note: MacKinnon critical values for the rejection of the hypothesis of a unit root.

Table B.3: Correlation of electricity price and demand with periodic functions

Variables cos(%”t) sin(%”t) cos(%”t) sin(%”t) cos(%”t) Sin(%”t)
Electricity price (SMP) -0.17 %% 0.14 *** -0.09 *** 0.10 % -0.06 *** 0.02
Forecast demand -0.43 *** 0.20 *** -0.18*** 0.19*** -0.07 *** 0.06 ***

Note: *, ** and *** stand for the 10%, 5%, and 1% significance levels, respectively.
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C Testing model adequacy

The adequacy of the estimated model generally depends on the validity of assumptions
made prior to estimation. For the maximum likelihood estimation procedure applied in
our research we assume that standardized residuals v; = £,/v/h; are independent and
identically distributed (i.i.d.) and follow skew generalized error distribution (SGED).
These assumptions are tested and discussed in Sections C.1 and C.2. Finally, in Sec-
tion C.3, using the sign bias test, we examine if in the volatility process there are any

asymmetric effects of positive and negative shocks left.

C.1 Testing the i.i.d. assumption for the standardized residuals

We verify the i.i.d. assumption for the standardized residuals by using two approaches:
the Brock—Dechert—Scheinkman (BDS) test (Brock et al., 1996) and Ljung-Box Q-test
(Ljung and Box, 1978). These tests allow to see if there is any information left in
standardized residuals 7.

As summarized in Table C.1, for different values of the embedding dimension m and
a default option of the proximity parameter ¢ we do not reject the null hypothesis that

U, is 1.1.d. time series.

Table C.1: BDS test for i,

Dimension BDS Stat Std Err p-value

2 -0.0006  0.0014 0.6798
-0.0004 0.0022 0.8411
-0.0001  0.0026 0.9802
-0.0005  0.0027 0.8598
-0.0007  0.0026 0.7897

S O W

Because the above conclusion is based on the parameters of m and e, for robustness
check we additionally use the Ljung—Box Q-test. The @Q-test allows to verify if 7y and

p2 are serially correlated. Serial correlation in 7y is interpreted as an autocorrelation

problem in 2; and serial correlation in 7? is interpreted as a heteroscedasticity problem

in 2;. The results of the Ljung-Box Q-test for 24 and #? are presented in Table C.2.

4
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Table C.2: Ljung-Box Q-test for vy and U}

o D2

Lag ACF PACF (Q-Stat p-value ACF PACF @Q-Stat p-value

1 -0.01 -0.01 0.44 0.51 -0.02  -0.02 0.94 0.33
5 0.03 0.03 6.77 0.24 0.00  0.00 1.49 0.91
10 -0.01 -0.01 8.17 0.61 0.03 0.03 7.83 0.65
50 0.01 0.01 41.18 0.81 0.01 0.00 47.12 0.59
100 -0.02 -0.01 106.40 0.31 0.04 0.04 98.69 0.52
200 -0.01 -0.01 198.74 0.51 0.00 0.01 189.73 0.69
300 0.01 0.01 316.63 0.24 0.00 0.02 297.89 0.52

As all p-values from the Ljung-Box Q-test are above 10%, we do not reject the null

hypothesis and conclude that time series 7; and 27 are not serially correlated.
C.2 Testing the distributional assumption for the standardized residuals

The distributional assumption for the standardized residuals is examined in three steps.
In the first step we analyze descriptive statistics. Then we use Jarque-Bera normality
test, Kolmogorov—Smirnov test, and the quantile-quantile plot in order to compare the
empirical distribution with normal distribution. Finally, in the third step, we test if the
standardized residuals follow SGED (u, o, 8, x) using the goodness of fit test.

We find that the empirical distribution of standardized residuals 7, has excess kurtosis
and heavy tails (kurtosis coefficient greater than 3 and shape parameter less than 2). The
empirical distribution of 7 is also skewed to the right (skewness coefficient greater than 0
and skewness parameter greater than 1). Based on standard errors of B and Y presented
in Table 6.5, we also find that shape and skewness parameters are statistically different
from 2 and 1, respectively. These findings are not in line with normal or Student’s ¢

distributions. The results are summarized in Table C.3 and Figure C.1a.

Table C.3: Descriptive statistics for standardized residuals 7y

Mean (/1) -0.0233
Standard deviation (&) 1.0022
Kurtosis coefficient 4.7464
Shape parameter (B) 1.4680
Skewness coefficient 0.2316

Skewness parameter (x)  1.0542
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Figure C.1: Comparison of the empirical distribution of standardized residuals to
normal distribution

Jarque—Bera test allows to test if the observed excess kurtosis and positive skewness
of standardized residuals 7, are jointly statistically significant in order to conclude that
the empirical distribution of standardized residuals 7y is different from normal distribu-
tion. The results of Jarque-Bera test presented in Table C.4 suggest rejecting the null

hypothesis of normal distribution.

Table C.4: Normality tests for standardized residuals 7

Jarque—Bera test Kolmogorov—Smirnov test

Jarque-Bera statistic 384.946 Kolmogorov—Smirnov statistic 0.0270
p-value 0 p-value 0.0319

Another way how to test if data follow some theoretical distribution (not necessarily
normal distribution as was in Jarque—Bera test) is to apply Kolmogorov—Smirnov test.
The idea of this test is based on comparing the differences in cumulative distribution
functions (CDF) of empirical and theoretical distributions. We compare the CDFs of
empirical and normal distributions. Again we reject the null hypothesis stating that the

empirical distribution of standardized residuals 7; is normal at the 5% significance level.
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In other words, the differences observed between the empirical and normal distributions
in Figure C.1 are statistically significant. Following Figure C.la, we suggest that the
major reason for rejecting the null hypothesis could be related to excess kurtosis (i.e.,
kurtosis coefficient greater than 3), heavy tails, and positive skewness observed in the
empirical distribution of standardized residuals.

Indeed, when comparing the CDF of the empirical distribution of standardized resid-
uals 74 and normal CDF in Figure C.1b we note some differences in tails. The quantile-
quantile plot in Figure C.2 illustrates more clearly observations in the tails located outside

the 95% confidence interval when comparing the empirical and normal distributions.
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Figure C.2: Quantile—quantile plot for standardized residuals

The finding that the standardized residuals do not follow normal distribution may
not necessarily mean that the standardized residuals follow SGED, even if SGED nests
normal distribution as a special case. In order to test if the standardized residuals follow
SGED we apply the goodness of fit test.

In the goodness of fit test an important parameter is the number of bins (i.e., groups,
intervals). Since there are several empirical rules how to set the number of bins, we

consider 4 possibilities for the number of bins. The test results in Table C.5 suggest
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not rejecting the null hypothesis stating that the empirical distribution is the same as

theoretical (i.e., SGED in our case).

Table C.5: Pearson goodness of fit test

Group x2-stat p-value

20 25.28  0.15
30 33.42  0.26
40 48.50  0.14
50 54.24  0.28

These tests, therefore, support the application of SGED. This distribution coincides
with normal distribution when the shape parameter is two (i.e., kurtosis coefficient is

three) and skewness parameter is one (i.e., skewness coefficient is zero).
C.3 Testing model specification

Asymmetry of positive and negative shock effects on volatility was addressed in our
methodology following the approach in Glosten et al. (1993) by introducing parameter
v; in the volatility equation. The presence of remaining asymmetries in the effect of
positive and negative shocks on volatility would indicate that the model is misspecified.
Hence, we use the sign bias test developed in Engle and Ng (1993) in order to test the
null hypothesis stating that the conditional volatility model is correctly specified.

Table C.6: Sign bias test

t-value p-value

Sign bias 0.25 0.81
Negative sign bias 0.20 0.84
Positive sign bias  0.87 0.38
Joint effect 0.82 0.84

The test results indicate not rejecting the null hypothesis since all p-values are above
10%. This conclusion suggests that our conditional volatility model has been correctly

specified.
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D Abbreviations

ACF Autocorrelation Function

ADF Augmented Dickey—Fuller

AR Autoregressive

ARCH Autoregressive Conditional Heteroscedasticity
BDS Brock—Dechert—Scheinkman

CDF Cumulative Distribution Function
Coef of Var Coefficient of Variation

FT Fourier Transform

GOAL Generator Ordering and Loading

ii.d. independent and identically distributed
NGC National Grid Company

NP National Power

Obs Observations

PACF Partial Autocorrelation Function

PG PowerGen

SGED Skew Generalized Error Distribution
SIC Schwarz Information Criterion

SMP System Marginal Price

St Dev Standard Deviation
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1. Introduction

Great Britain was the first among the OECD countries to liber-
alize its electricity supply industry. Liberalization included splitting
up the previously vertically integrated utility into its production
and infrastructure parts and creating a wholesale market to ex-
change electricity between producers and retail suppliers in En-
gland and Wales. Trading was organized as a uniform price auction,
where electricity producers are asked to bid prices at which they
are willing to produce electricity.

Research has shown, however, that producers have exercised
market power by submitting price bids significantly exceeding
marginal costs (for example, Crawford et al., 2007; Sweeting, 2007).

* Czech Technical University, Faculty of Electrical Engineering, Department of
Economics, Management and Humanities, Technicka 2, Prague, 166 27, Czech
Republic.

E-mail addresses: sherzod.tashpulatov@fel.cvut.cz, stashpul@cerge-ei.cz.

http://dx.doi.org/10.1016/j.jup.2015.07.004
0957-1787/© 2015 Elsevier Ltd. All rights reserved.

An exercise of market power leads to higher uniform auction prices,
i.e., the System Marginal Price (SMP), and, therefore, higher reve-
nues for electricity producers. A higher SMP increases payments by
retail suppliers, which are in the end reflected in higher prices paid
by consumers. Another consequence of an exercise of market power
is the possible loss in the efficient allocation of production facilities.
In other words, due to possible differences in setting bid markups,
there need no longer be any guarantee that, based on ordered price
bids, the least-cost production facilities are indeed scheduled to
produce electricity.

These market power issues are also discussed in Bergman et al.
(1998) in the analysis of the first form of benefits that electricity
market reforms could bring to consumers: lower prices resulting from
lower price-cost margins and more cost-efficient electricity produc-
tion. Other benefits that electricity market reforms could bring to
consumers include a high degree of security of supply and an envi-
ronmentally friendly electricity supply system, which in the long run
would not critically depend on exhaustible natural resources.

As part of the liberalization process, in order to mitigate an
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Fig. 1. : Institutional changes and regulatory reforms during 1990—2001.

Sources: Department of Trade and Industry (1997—2002), National Grid Company (1994—2001), Newbery (1999), Robinson and Baniak (2002), Wolfram (1999); author's illustration.

exercise of market power by incumbent electricity producers, the
regulatory authority, the Office of Electricity Regulation (Offer, later
constituted as the Office of Gas and Electricity Markets, or Ofgem),
introduced several reforms. This paper analyzes how the regulatory
reforms affected the bidding behavior of electricity producers. In
particular, we quantify and document new empirical evidence
about how the incentive and disincentive to exercise market power
changed over the 1995—2000 period.

The measures designed to mitigate an exercise of market power
and promote competition during the liberalization process were
more extensive in Great Britain when compared to Germany,
France, Italy, or Sweden (Bergman et al., 1998). Joskow character-
izes the privatization, restructuring, market design, and regulatory
reforms pursued in England and Wales as the international gold
standard for energy market liberalization (Joskow, 2008, 2009). In
this respect, the new findings documented in this research could be
of interest to countries that have structured or are about to struc-
ture their electricity markets similar to the original model adopted
in England and Wales.

2. Regulation in the electricity supply industry

The institutional changes and regulatory reforms that took place
in the production level of the electricity supply industry (ESI) in
Great Britain during the 1990—2001 period are summarized in
Fig. 1 and described in detail in the following paragraphs.

The UK regulatory authority noted the growing discrepancy
between rising wholesale electricity prices and falling fuel costs,
and specifically the sharp increase in electricity prices in April
1993." In the literature, this is also associated with the expiry of
coal and other initial contracts imposed by the government.
Hence, April 1, 1993 is considered as the first structural break.

Earlier research (for example, Green and Newbery, 1992)
concluded that an exercise of market power enabled electricity
producers to raise prices above competitive levels. Later, the regu-
latory authority advocated the introduction of price-cap regulation
into the ESI, which would set an explicit ceiling on annual average
prices charged for electricity production by the two incumbent
electricity producers: National Power (the larger producer) and
PowerGen (the smaller producer). Faced with the alternative of a
referral to the Monopolies and Mergers Commission (MMC), these
producers agreed to a price cap for two financial years: 1994/1995
and 1995/1996 (Wolfram, 1999; Robinson and Baniak, 2002).
Therefore, April 1, 1994 and April 1, 1996 are considered as the
second and third structural breaks, respectively.

In order to improve competition and decrease the influence of
the incumbent electricity producers, the regulatory authority
introduced horizontal restructuring through two series of di-
vestments that took place in 1996 and 1999.

When defining regime periods for an ex-post regulation anal-
ysis, we consider the exact dates in which the reforms were

1 However, the regulatory authority rarely made comparisons between price bids
and marginal costs (Green, 2011), which is the purpose of this research.
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introduced. This approach better corresponds to the nature of the
divestment series introduced by the regulatory authority.

For example, the introduction of the first series of divestments
for PowerGen led to the transfer of all medium coal production
facilities to Eastern Group (National Grid Company, 1994—2001). In
this case, choosing a structural break slightly different from the
actual date of the transfer would have resulted in a short time series
(either PowerGen just before transferring medium coal production
facilities if the cut-off were early, or Eastern Group just after
acquiring medium coal production facilities if the cut-off were after
the transfer), which would be difficult to analyze.

Hence, it is assumed here that the structural breaks are
exogenously given by the dates when the reforms were intro-
duced. The structural changes introduced through the divest-
ment series differ because the first series of divestments included
the lease” and the second series of divestments included the sale
of production facilities (National Grid Company, 1994—2001).
Therefore, the effect of the two divestment series generally need
not be the same.

In March 2001, the wholesale electricity market was replaced by
the New Electricity Trading Arrangements (NETA) in order to
introduce bilateral trading arrangements.

3. Related literature

Seminal research in modeling electricity auctions is presented in
Von der Fehr and Harbord (1993). The authors assume that N
electricity producers serve the British electricity market operated
as a uniform price auction. They also assume that marginal costs are
common knowledge and differ only across electricity producers.
The last assumption implies that all production units of a certain
electricity producer have the same marginal costs, which can be
partly supported by the fact that during the early 1990s approxi-
mately 70% of production capacity was based on coal (Department
of Trade and Industry, 1997—2002). However, this assumption has a
limitation because thermal efficiency rates of different coal pro-
duction units belonging to a certain electricity producer generally
need not be the same.

The authors show that no pure-strategy bidding equilibrium ex-
ists when electricity demand falls within a certain range. Their result
is explained by an electricity producer's conflicting incentives to bid
high in order to set a high price and to bid low in order to ensure that
its production unit is scheduled to produce electricity.

Wolfram (1998) empirically examines the bidding behavior of
electricity producers in the same electricity market. As a bench-
mark model, she analyzes a duopoly case, where the first producer
has several production units and the second producer has one
production unit. The intuition and conclusions of the duopoly case
are then used in the construction of a regression model.

Her main finding is that electricity producers submit price

2 Eastern Group was charged an earn-out payment per MWh output, which af-
fects the calculation of marginal costs. Details of the earn-out payment are
described in Evans and Green (2005).
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bids reflecting higher markups for production units which are
likely to be scheduled to produce electricity if that producer has a
large infra-marginal production capacity. The author indicates
that the incentive to submit a price bid reflecting a higher
markup for a certain production unit is moderated by the pres-
ence of a threat that the production unit might not be scheduled
to produce electricity. Wolfram (1998) also finds that larger
producers submit higher price bids than smaller producers for
comparable production units (i.e., production units using the
same fuel to produce electricity and having almost the same
marginal costs).

The findings of Wolfram (1998) are in line with those of Green
and Newbery (1992), a seminal study using the framework of the
supply function equilibrium (SFE) for the England and Wales
electricity market. This framework assumes that each producer
submits a continuously differentiable supply function, which may
be applicable when producers' production units are small enough
or when each producer has a sufficiently large number of pro-
duction units, as was the case with the incumbent producers
during the early years of the wholesale electricity market. Green
and Newbery (1992), using the concept of SFE for a duopoly
case, show that a producer with a larger production capacity has
more incentive to exercise market power by bidding in excess of
marginal costs.

Crawford et al. (2007) extend the work of Von der Fehr and
Harbord (1993) by allowing production units belonging to a
particular electricity producer to have different marginal costs.
Both studies assume complete information about the marginal
costs of electricity producers because it was possible to approxi-
mate them using data on the thermal efficiency rates of produc-
tion units and fuel prices. They also assume no demand
uncertainty and that no electricity producer is able to serve the
whole demand.

Crawford et al. (2007) find the presence of asymmetries in the
bidding behavior of marginal and infra-marginal electricity pro-
ducers during 1993—1995. In particular, their results suggest that
during peak-demand trading periods marginal producers behave
strategically by submitting price bids higher than their marginal
costs, whereas infra-marginal producers behave competitively by
submitting price bids reflecting their marginal costs.

For the subsequent time period of 1995—2000, Sweeting (2007)
analyzes the development of market power in the same electricity
market. The author measures market power as the margin between
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observed wholesale market prices and estimates of competitive
benchmark prices, where the latter is defined as the expected
marginal cost of the highest-cost production unit required to meet
electricity demand. He finds that electricity producers were exer-
cising increased market power during 1995—2000 and notes the
contradiction with oligopoly models that, given falling market
concentration during this period, would have predicted a reduction
in market power. The author also finds that starting in 1997, the
National Power and PowerGen incumbent electricity producers
could have increased their profits by submitting lower price bids
and increasing output. From a short-term perspective, these find-
ings are explained as tacit collusion.

As explained in Borenstein et al. (2002), the application of
competitive benchmark prices to analyze whether an electricity
market, as a whole, is setting competitive prices has an advantage
of being less vulnerable to the arguments of coincidence and bad
luck. This approach also allows for estimating the scope and
severity of departures from competitive bidding over time.

However, the application of competitive benchmark prices does
not allow for a more detailed analysis of specific manifestations of
noncompetitive bidding behavior for different electricity producers.
For this reason, we consider an alternative approach similar to
Wolfram (1998) and Crawford et al. (2007). More precisely, in order
to analyze the development of an exercise of market power in rela-
tion to the regulatory reforms, we consider the bidding behavior of
individual electricity producers with respect to marginal and extra-
marginal production units during peak-demand trading periods.

Focusing on peak-demand trading periods is also in line with the
methodology adopted in Crawford et al. (2007). Moreover, the
choice of peak-demand trading periods is in agreement with the
analysis by Borenstein et al. (2002), where the authors, using the
case of the wholesale electricity market in California, show that
market power is most commonly exercised during peak-demand
trading periods.

4. Methodology

For the analysis of the bidding behavior of electricity producers,
we assume no uncertainty in the forecast demand for electricity
and that the marginal costs of electricity production can be
approximated. The first assumption is based on the fact that the
methodology the market operator (i.e., the National Grid Company)
applied to forecast electricity demand, for each trading period of
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(b) Producer B sets the uniform price

Fig. 2. : Determination of the SMP: a hypothetical example. Notes: Given price bid bg, of producer B we analyze at the intersection of the supply schedule and forecast demand two
possible scenarios, which depend on the price bid of producer A. In (a) we assume that bgc, > byg,, in which case producer A will set the price so that bsg, = SMP. In (b) we assume
that bge, < byg,, in which case producer B will set the price so that b, = SMP. In case when price bids are equal, according to market rules, both production units are scheduled.
Cases (a) and (b) are reflected in the first and second addenda of equation (1) describing the expected profit maximization problem of producer A.

Source: Author's illustration.
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the following trading day, was common knowledge (Wolak, 2000;
Wolak and Patrick, 2001) and independent of producers’' bidding
behavior (Green, 2006). The second assumption is based on the
availability of data on the thermal efficiency rate and capacity type
of production units.

In Section 4.1, we consider a duopoly case with an asymmetric
technology structure. Based on the conclusions obtained from the
duopoly case, a regression model is developed in Section 4.2 in
order to analyze the bidding behavior of electricity producers.

4.1. Analysis of a duopoly case with an asymmetric technology
structure

For the theoretical analysis, similarly to Wolfram (1998) and
Crawford et al. (2007), we consider a duopoly case with the main
distinction that we analyze at the level of the type of production
unit. This modeling approach allows an analysis of the behavior of
electricity producers with respect to marginal and extra-marginal
production units of different capacity types that are identified us-
ing the forecast demand. This is needed for the ex-post evaluation
of the impact of the reforms introduced by the regulatory authority
to mitigate the exercise of market power by electricity producers.
Specifically, marginal and extra-marginal production units of
different capacity types located close to forecast demand could
likely be used for strategic bidding because of being potential
candidates for setting the uniform auction price.

Assume that there are two risk-neutral electricity producers, A
and B, where producer A has several production unit types and
producer B has one production unit type. For the explanation of the
model, we refer to the hypothetical example in Fig. 2. More general
cases demand complex notations, which would complicate the
illustration of derivation results important for the construction of
the regression model described in Section 4.2.

Let ka; denote the production capacity of type 7 submitted by
producer A. In other words, ka is the overall capacity of production
units of type 7 from the supply schedule constructed by the market
operator (i.e., the auctioneer). For the example described in Fig. 2, it
follows that kac = kac, + Kac,,
kpe = Kpe, + Kpe, + Kpe, + K,

Let car denote the marginal cost of producer A's highest-cost
production unit of type 7. For the hypothetical example this
would mean that c4c = Cac,, Cag = Cag,, and cpc = Cpe,.

Let bg denote producer B's price bid submitted for the highest-
cost production unit. Because producer B is assumed to have one
type of production unit, the subscript for the type is omitted. As-
sume that the probability distribution of bg is defined according to a
cumulative distribution function F(bg) and the respective proba-
bility density function f{bg) with support on the compact interval
[b, b], where b, beR* and b<b. This is assumed to be common
knowledge.

Similarly, let ba; denote producer A's price bid submitted for the
highest-cost production unit of type 7. For the example described in
Fig. 2, this is the price bid of the third gas production unit that could
be used for strategic bidding by producer A. In other words,
bpg €[ b, b is producer A's strategic choice variable.

Submitted price and capacity bids®> for production units repre-
sent private knowledge for each producer that owns those pro-
duction units. This is a feature of a sealed-bid uniform price auction,
where the bids of one producer are unknown to the other
producers.

kAg = kAg1 -+ kAgz + kAg3v

3 More precisely, half-hourly price bids for every production unit are computed
based on daily bids and half-hourly declared (submitted) capacity bids. Daily bids
include incremental price-offer bids, elbow points, start-up and no-load costs.
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The payoff of a producer is represented by an expected profit,
which is dependent on the outcome of the uniform price auction
(i.e., who sets the uniform auction price), the amount of electricity a
producer sells at the market, and production costs. More precisely,
given price bid bg of producer B, we define the expected profit
maximization problem of producer A:

E{ﬂ‘A(bAg,bB)}IE A bB>bAg +E A ngbAg

Asets Bsets

— [|onscac) -3l (ns—cae) -y |-Fow) b
bag
" 1 1
+/ {(bB —Chc) 'ikAcJF (bg—cag) 'j“AgkAg:| -f(bp)dbg.
b
(1)
In the calculation of the expected profit,* producer A considers
two possible scenarios depending on whether producer A or pro-
ducer B sets the uniform auction price as described in Fig. 2(a) and
(b), respectively. If producer A sets the price, then the uniform
auction price is bag. However, if producer B sets the price, then the
uniform auction price is bg and only axe part of the submitted gas
production capacity of producer A will be scheduled to produce
electricity.
Taking the first-order condition® with respect to bag, rearrang-
ing, and applying logarithms to both sides leads to

log(bag — cag) = 10g(kac + kag) — log(1 — apg)kag
+log(1 — F(bag)) — log(f (bag))-

In Equation (2), bag—cag denotes the markup defined as the
price bid minus marginal cost of the production unit of type g of
producer A.

By kar we denote the capacity of production units of type 7
submitted by producer A. Then, kac + kag denotes the capacity of
production units with price bids below price bid bsg in the aggre-
gate supply schedule. The optimality condition represented by
Equation (2), suggests that a larger production capacity below
creates an incentive to submit a higher price bid because when that
price bid sets the uniform auction price it is applied to producer A's
entire scheduled production capacity.

However, the incentive to increase a price bid is moderated by
the presence of a threat that a production unit at stake may not
eventually be scheduled to produce electricity. The next term in
Equation (2), (1 — aag)kag, denotes part of production capacity of
type g of producer A that might not be scheduled to produce
electricity due to a higher price bid. A negative sign reflects the
presence of a trade-off when increasing the price bid, which is
associated with profit losses caused by the production unit at stake
not being scheduled to produce electricity.

The term f{bag) denotes the likelihood that a production unit of
type g of producer A becomes marginal. As the optimality condition
suggests, a higher price bid decreases the likelihood of setting the
uniform auction price, which therefore negatively affects the pro-
ducer's incentive to submit an excessively high price bid. Finally,

(2)

4 We use a factor of 1/2 to convert MW to MWh because the duration of a trading
period is 30 min.

5 For differentiation, we use the Leibniz's formula provided in Sydsater et al.
(2008).
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1 — F(bpg) represents the probability that bag sets the price. This
probability is predicted to positively affect producer A's bid
markup.

For an ex-ante analysis, it is necessary to accurately estimate
these probability values. The accurate estimation of time-variant
probabilities is a difficult task in the case of several producers.
Probabilities are generally different across producers and are also
expected to vary across capacity types of production units. In order
to assess the regulatory reforms, an ex-post analysis of the bidding
behavior of electricity producers with respect to marginal and
extra-marginal production units could be more relevant. Given the
market outcomes, we evaluate the success of regulatory reforms
directed at mitigating the exercise of market power by electricity
producers.

The presented theoretical model suggests considering a log-
linear functional relationship in the specification of a regression
model, which is presented in the next section.

4.2. Specification of the regression model

Based on derivation results from the duopoly case, we can
formulate the following regression model to empirically analyze
the bidding behavior of electricity producers:

log (Markup,-jt>
= Bo + B1;-log(Production Capacity below Bid b ;) (3)
+ Boij-log (Production Capacity at Bid by) + ejj¢.

In this regression model, subscript i stands for an electricity
producer and subscript j stands for the capacity type of marginal
and extra-marginal production units. In other words, producers'
production units located at and above the forecast demand are
considered. If a producer has several extra-marginal production
units of the same capacity type located above the forecast demand,
then a production unit closest to the forecast demand is considered.
We analyze producers’ bidding behavior during the peak-demand
period of trading day t.

The variables Markupjj;, Production Capacity below Bid by, and
Production Capacity at Bid by enter under logarithm following the
derivation results from the duopoly case. The variable Markup;je
under logarithm denotes the price bid minus marginal cost of a
production unit of type j of producer i. There are two advantages of
incorporating marginal costs into the definition of the dependent
variable. Firstly, this allows for analyzing an exercise of market
power explained by other variables. Secondly, the approximation of
marginal costs may involve a measurement error. Therefore,
incorporating marginal costs into the definition of the dependent
variable may at most lead to an overestimation of standard errors of
coefficient estimates.

The two explanatory variables in the regression model are
log(Production Capacity below Bid bjjr) and log(Production Capacity
at Bid bjj). The variable Production Capacity below Bid b;;; denotes
the total amount of declared (submitted) capacity of production
units that belong to producer i and have price bids lower than bj.
The variable Production Capacity at Bid bj; denotes the amount of
declared (submitted) capacity of a production unit of type j for
which producer i submits price bid b .

Fig. 3, using an example of producer A with two types of pro-
duction unit, we summarize the definitions of variables used in the
regression model.

The effect of the first explanatory variable is generally
assumed to be different across producers. This assumption is
consistent with the earlier theoretical and empirical research (for
example, Wolfram, 1998 and Crawford et al., 2007). Moreover,
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the producer specific slope parameter (; is expected to be pos-
itive because, as the theoretical predictions suggest, a larger total
production capacity would create an incentive to submit a price
bid reflecting a higher markup: when this price bid sets the
uniform auction price, it is applied to a producer's entire
scheduled production capacity. This intuition is consistent with
Mount (2001), where the author states that the increasing dif-
ference between the price bid and marginal cost observed when
the amount for sale increases is an example of how market po-
wer can be used to raise the final price.

The effect of the second explanatory variable is assumed
to vary across not only producers but also capacity types.
Moreover, the producer and type specific slope parameter §y;; is
expected to be negative because, as the theoretical predictions
suggest, a larger production unit at stake moderates a producer's
willingness to submit a price bid reflecting a higher markup.
Thus, a producer faces the trade-off between bidding high to set
a high price and bidding low to ensure that the production unit
at stake is scheduled to produce electricity. In this respect, the
first explanatory variable reflects an incentive, whereas the sec-
ond explanatory variable reflects a disincentive to exercise
market power by submitting price bids in excess of marginal
costs.

In order to evaluate the impact of regulatory reforms on the
bidding behavior of electricity producers, we assume that the pa-
rameters in front of the explanatory variables can change during
the different regime periods described in Fig. 1. The validity of this
assumption is verified by testing whether the explanatory variables
interacted with the regime dummy variables have statistically
significant coefficients (denoted by ¢’s; see Equation (4), footnote 8,
and Block 2 of Table 8).

Finally, it is assumed that a disturbance term, e, is orthogonal
to the explanatory variables. For statistical inference, we use pro-
ducer—capacity type—day robust clustered standard errors. This
approach allows for taking into account producer related hetero-
scedasticity and weekly seasonality features.®

6 Weekly seasonality is a feature inherent to electricity markets. For the case of
electricity prices, the weekly seasonality properties are studied in Tashpulatov
(2013).

61



5. Data

S.N. Tashpulatov / Utilities Policy 36 (2015) 24—34

The two data sets used cover the period from January 1, 1995 to
September 30, 2000. The first data set contains half-hourly market
data on the forecast demand for electricity and System Marginal

29

Price (SMP). Summary statistics for the market data are presented

in Table 1.

The maximal value of the SMP corresponds to the highest spike
in 1995, which was brought about by a mistaken mix of technical

Table 1
Descriptive statistics for market data during all trading periods.
Mean Min Max Std Dev Frequency Obs
Forecast demand (MW) 32991.6 19,026 51,065 5965.6 30 min 100,798
SMP (£/MWh) 21.1 0 836.2 30 min 100,798
Source: Author's calculations.
Table 2
Summary statistics for capacity bidding during peak-demand trading periods.
Pr Type Production capacity below bid by (MW) Production capacity at bid bjjc (MW)
Mean Min Max St Dev Mean Min Max St Dev Obs
NP Large coal 8851.9 1990.0 17346.0 2779.7 488.7 105.0 645.0 453 1516
Medium coal 9364.0 1780.0 16608.0 2393.9 288.6 2.5 340.0 65.0 1328
Small coal 11634.8 6707.0 20049.0 2627.6 1139 96.0 115.0 0.8 993
oil 10820.2 2560.0 18459.0 3595.7 655.5 210.0 685.0 724 2017
OCGT 13131.6 3729.0 20468.0 4038.9 64.1 17.0 70.0 13.2 2482
PG Large coal 7319.7 1959.0 13092.0 1895.8 485.8 160.0 517.0 26.4 1627
Medium coal 9826.1 5523.0 13035.0 1376.4 239.6 189.0 333.0 63.9 291
oil 9400.7 3785.0 13820.0 2187.3 662.0 95.1 675.0 61.4 1612
OCGT 10475.7 3941.0 15602.0 2549.8 67.5 28.0 68.0 2.6 2042
EDF Export 2008.0 0.2 2778.0 583.4 61.2 1.0 989.0 2239 1160
SI Export 2351.7 311.0 4397.0 11139 255.8 1.0 600.0 152.0 131
CCGT 1476.6 237.0 2330.0 569.9 185.1 168.0 590.0 74.0 33
TXU Large coal 2864.3 0.2 6084.0 1329.6 484.2 91.2 503.0 215 896
Medium coal 4192.8 913.0 6360.0 1161.5 235.1 1253 333.0 67.0 682
OCGT 4773.5 350.0 6644.0 1340.9 243 20.0 25.0 1.7 1480
Ed Large coal 1884.1 0.2 3900.0 693.4 473.5 235.0 506.0 55.0 224
OCGT 4384.7 2475.0 6055.0 755.5 17.0 17.0 17.0 0.0 1731
PSB 865.4 0.2 4673.0 1038.3 2529 48.0 288.0 75.7 2036
BE Large coal 6430.3 4638.0 7572.0 650.8 477.0 300.0 495.0 41.7 98
AES Large coal 2608.5 895.0 3692.0 739.9 645.0 645.0 645.0 0.0 63
OCGT 2894.5 0.2 4467.0 1487.3 60.1 25.0 140.0 51.0 567
Source: Author's calculations.
Table 3
Descriptive statistics for nominal and real markups (£/MWh) of marginal and extra-marginal production units during peak-demand trading periods.
Pr Type Nominal markup (£/MWh) Real markup (£/MWh)
Mean Min Max St Dev Mean Min Max St Dev Obs
NP Large coal 143 0.2 49.5 83 13.1 0.2 44.1 7.5 1516
Medium coal 21.3 0.0 79.0 214 19.3 0.0 70.0 18.9 1328
Small coal 233 0.6 86.7 19.4 219 0.5 86.7 19.1 993
oil 36.4 0.0 254.9 14.6 33.6 0.0 252.6 13.5 2017
OCGT 59.1 43 689.1 83.6 56.1 4.0 682.9 83.3 2482
PG Large coal 14.2 0.1 60.2 10.0 131 0.1 56.4 9.1 1627
Medium coal 13.2 0.1 36.4 8.9 12.8 0.1 34.8 8.5 291
oil 38.6 04 91.8 11.9 35.5 03 83.2 10.8 1612
OCGT 50.2 9.1 694.8 54.7 47.0 8.0 690.1 54.5 2042
EDF Export 9.4 1.0 93.0 19.4 8.8 0.9 913 18.5 1160
SI Export 14.3 1.0 75.0 12.0 138 0.9 713 114 131
CCGT 49 24 7.3 1.5 49 24 7.3 1.5 33
TXU Large coal 9.3 0.0 55.7 7.9 8.4 0.0 529 7.3 896
Medium coal 11.6 0.1 74.0 7.9 10.6 0.0 67.0 7.3 682
OCGT 17.3 0.1 60.5 16.2 16.0 0.1 57.5 15.4 1480
Ed Large coal 12,5 3.1 329 5.9 11.0 2.8 29.3 52 224
OCGT 449 215 64.4 12.3 39.7 18.9 57.3 11.0 1731
PSB 18.5 0.8 719 9.5 17.0 0.7 63.7 8.5 2036
BE Large coal 113 3.8 18.5 3.0 10.0 34 16.4 2.6 98
AES Large coal 9.1 45 18.7 3.0 8.1 4.0 16.6 2.6 63
OCGT 39.9 0.0 203.8 25.8 35.4 0.0 186.3 229 567

Source: Author's calculations.
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Fig. 4. Quarterly fuel prices for major power producers in Great Britain.

Sources: Department of Trade and Industry (1993—2000), Department of Trade and Industry (1997—2002); author's calculations.

Table 4
Descriptive statistics for SMP (£/MWh) during peak-demand trading periods.

Regime 3 Pre-regime 4 Regime 4 Regime 5
(Jan 95—Mar 96) (Apr 96—]Jul 96) (Jul 96—Jul 99) (Jul 99—Sept 00)

Price-cap Divestment 1 Divestment 2
Mean 36.6 353 42.0 36.3
Change -13 54 -0.3
of Mean
t-test -0.9 5.0 -03
t-critical -2.0 2.0 -2.0
Min 7.9 17.2 14.5 15.5
Max 211.2 76.7 105.1 779
St Dev 19.2 114 193 12.1
F-test 2.9 1.0 2.5
F-critical 13 1.1 1.2
Coef of Var  52.5 323 45.9 335
(%)
Obs 456 91 1114 439

Source: Author's calculations.

The second data set contains half-hourly bid data on production
capacity and price bids. This data set is used for preparing variables
in regression model (3) and are summarized in Tables 2 and 3.

Using data on half-hourly price bids, quarterly fuel prices, and
the efficiency rates of production units, we calculate nominal
markups. In order to calculate real markups we divide nominal
markups by quarterly producer price index for the electricity in-
dustry. Summary statistics for markups are presented in Table 3.

Fig. 4 describes quarterly fuel prices, which are used to
approximate the marginal costs of production units.

Results reported in Table 4 indicate that the average of elec-
tricity prices during peak-demand trading periods was higher
after the first series of divestments. As the two-sample t-test in-
dicates (with equal variances based on the F-test), the difference is
also statistically significant. During the other periods the average
price level was similar to the one during the price-cap regulation
period.

Calculations shown in Tables 5—7 reveal an interesting finding.
After the divestments, average markups (nominal and real) for several

Table 5
Descriptive statistics for inframarginal capacity (MW) during peak-demand trading periods for NP and PG.
Regime 3 Pre-regime 4 Regime 4 Regime 5
(Jan 95—Mar 96) (Apr 96—]Jul 96) (Jul 96—]Jul 99) (Jul 99—Sept 00)
Price-cap Divestment 1 Divestment 2
NP PG NP PG NP PG NP PG
Mean 138429 9966.6 10368.0 8050.9 8877.1 7822.1 4914.7 5548.0
% Scale for Mean 100 100 75 81 64 78 36 56
Min 6307.4 4574.0 6753.0 4709.0 2695.0 2933.7 1780.0 1959.0
Max 19149.0 14651.0 14098.0 10646.0 14072.0 12427.0 9045.0 8840.0
St Dev 2874.4 22104 1835.1 1512.7 1887.1 1607.7 1450.5 1162.5
Coef of Var (%) 20.8 222 17.7 18.8 213 20.6 29.5 21.0
Obs 401 401 91 91 1111 1111 439 439

Source: Author's calculations.

parameters that the Generator Ordering and Loading (GOAL) al-
gorithm had to accept.” Other price spikes in the mid-1990s are
probably associated with some plants not being available due to
maintenance and interruption of gas supplies in England and Wales
and disputes in France (Robinson and Baniak, 2002).

7 This explanation is based on a comment from Richard Green.

capacity types belonging to the incumbent electricity producers were
higher by more than the decrease in their respective inframarginal
capacities. This suggests the possibility that greater market power
was actually exercised even with the lesser market concentration
following the divestment series. A more detailed analysis of changes
in the exercise of market power, based on the estimate of the producer
specific (1;, is summarized in the next section.
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Table 6
Capacity-weighted average of nominal and real markups (£/MWh) of marginal and extra-marginal production units of NP during peak-demand trading periods.
Capacity type Regime 3 Pre-regime 4 Regime 4 Regime 5
(Jan 95—Mar (Apr 96—]ul 96) (Jul 96—Jul 99) (Jul 99—Sept 00)
96)
Price-cap Divestment 1 Divestment 2
Nominal Real Nominal Change (%) Real Change (%) Nominal Change (%) Real Change (%) Nominal Change (%) Real Change (%)
Large coal 9.1 9.0 106 16 10.1 12 15.5 70 14.2 58 15.5 70 13.8 53
Medium coal 6.2 6.1 113 83 10.8 78 17.7 188 16.2 167 46.8 660 416 587
Small coal 339 33.8 10.2 -70 9.7 -71 21.6 -36 19.8 -41
0il 25.0 247 461 85 441 79 37.8 51 34.7 41 40.3 61 35.6 45
OCGT 83.5 829 395 -53 37.7 -55 47.9 —43 439 -47 449 —46 398 -52
All types 27.5 272 271 -1 259 -5 27.8 1 255 -6 354 29 314 15

Source: Author's calculations.

Table 7
Capacity-weighted average of nominal and real markups (£/MWh) of marginal and extra-marginal production units of PG during peak-demand trading periods.
Capacity Type Regime 3 Pre-regime 4 Regime 4 Regime 5
(Jan 95—Mar (Apr 96—]ul 96) (Jul 96—]Jul 99) (Jul 99—Sept 00)
96)
Price-cap Divestment 1 Divestment 2
Nominal Real Nominal Change (%) Real Change (%) Nominal Change (%) Real Change (%) Nominal Change (%) Real Change (%)
Large coal 10.6 105 49 -54 4.7 -55 15.1 43 139 33 14.6 38 12.9 23
medium coal  10.7 10.6 222 107 21.3 100
0il 29.1 28.7 52.0 79 49.7 73 395 36 36.3 26 41.2 41 36.5 27
OCGT 80.6 79.8 349 -57 333 -58 48.5 —40 445 -44 294 —64 26.1 -67
All types 25.0 247 336 34 321 30 29.5 18 271 9 30.8 23 27.3 10

Source: Author's calculations.

6. Results and discussion

Section 4.2 introduced the specification of the regression model
to evaluate the impact of the regulatory reforms on producers'
bidding behavior. The choice of a log-linear functional form of the
regression model is based on the first-order condition from the
expected profit maximization problem in the duopoly case dis-
cussed in Section 4.1. Log-linear regression models are often used in
empirical research, in part because the estimated slope coefficients
in this specification can be directly interpreted as elasticities.

This analysis includes all major power producers except for BNFL
Magnox because production units belonging to this producer were
always infra-marginal (i.e., not pivotal) during peak-demand trading
periods. Focusing on peak-demand periods is consistent with the
finding in Borenstein et al. (2002) that noncompetitive bidding
behavior is most commonly observed during peak-demand periods.

Estimation results of ;; and Ezﬁ slope parameters in front of the
explanatory variables during the reference period are presented in
Block 1 of Table 8. These slope parameters in Equation (3) reflect the
incentive and disincentive to exercise market power, respectively.
Results of 8; and Ez,j in Table 8 vary across producers (subscript i)
and capacity types (subscript j), which suggests that considering
producer and capacity type specific parameters has been correct.

It is also assumed that these slope parameters can vary during
later regime periods. For this purpose, the interactions of the
explanatory variables with the regime dummy variables are

8 More
—~Pre—Regime 4 ~Regime 3 ~Pre—Regime 4
B = bai 01i '

precisely, we use the following notation:
~Regime 4 —~Regime 3 ~Regime 4
1i = B1i 01

’

~Regime 5 ~Regime 3 ~ ~Regime 5 ~Pre—Regime 4 ~Regime 4 ~Regime 5
B1i = By; + 04 , Where é; , 04 , 01 are the es-
timates of a change presented in the first part of Block 2 of Table 8. Similarly,
~Pre—Regime 4 ~Regime 3  ~Pre—Regime 4 ~Regime 4 ~Regime 3  ~Regime 4
i = B2 i . i = B2 i
Baij B2 2 B2 B2 2
~Regime 5 ~Regime 3 ~Regime 5 ~Pre—Regime 4 —~Regime 4 ~Regime 5
2ij = Bajj + 035 , Where 6, 025 025 are the es-

timates of a change presented in the second part of Block 2 of Table 8.
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considered. The slope parameters of the interaction terms are
denoted by ¢’s and their estimations are presented in Block 2 of
Table 8.8

The validity of our assumption is verifiable by formal testing. For
example, a test for the equality of the first slope parameter for NP
during January 1995 to March 1996 and pre-regime 4 can be rep-
resented as testing the following null hypothesis:

. pPre—Regime 4 Jan 95—Mar 96 _ (Pre—Regime 4
Ho : B1np — P1NP =01Np =0. (4)
The value of
~Pre—Regime 4
-0 _
t — stat = — NP _1306-0_5 459 (5)

~Pre—Regime 4 0.255
s.e. <61‘NP >

suggests rejecting Hg at the 1% significance level.

Similarly, other estimation results in Block 2 of Table 8 allow for
evaluating in detail the impact of the regulatory reforms on the
bidding behavior of electricity producers during the subsequent
regime periods. In particular, 3; reflects a change in the incentive
and 3, reflects a change in the disincentive to exercise market
power by submitting price bids in excess of marginal costs.

Estimation results presented in Table 8 suggest findings related
to the theoretical predictions and the impact of regulatory reforms.
The results generally support the assumption that the slope pa-
rameters need not be the same across producers and capacity types.
Moreover, changes in the slope parameters during later regime
periods, presented in Block 2 of Table 8, are in most cases statisti-
cally and economically significant. This makes it possible to analyze
in detail changes in the bidding behavior of electricity producers in
relation to the adopted regulatory reforms.

The first theoretical prediction suggests that larger total capacity
creates an incentive to submit a price bid in excess of marginal cost.
Estimates of 8y; generally confirm this prediction consistent with
earlier research by Green and Newbery (1992) and Wolfram (1998).

The results also provide statistical evidence that following the
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Table 8
Estimation results of Equation (3) log(Markupjj:) = Bo + 81i-log(Production Cap. below Bid b ) + (2;;-log(Production Cap. at Bid b ) + ejjr.
Dependent Variable: Regime 3 Pre-Regime 4 Regime 4 Regime 5
log(Markup;) (Jan 95—Mar 96) (Apr 96—]ul 96) (Jul 96—Jul 99) (Jul 99—Sept 00)
Price-cap Divestment 1 Divestment 2
Pr Type Coef Std Err Coef Std Err Coef Std Err Coef Std Err
Block 1: Estimation B1i NP 0.037 0.289
during a reference period PG 0.258** 0.107
EDF 0.262*** 0.057
SI 0.294*** 0.080
TXU 0.128 0.133
Ed 0.058*** 0.006
BE 0.571*** 0.173
AES 0.033 0.036
By NP Large coal 0.168 0.431
Medium coal 0.077 0.469
Small coal 0.389 0.568
oil 0.273 0417
OCGT 0.738 0.643
PG Large coal —0.151 0.151
Medium coal —0.152 0.167
oil 0.032 0.141
OCGT 0.282 0.219
EDF Export 0.365*** 0.062
SI Export —0.063 0.101
CCGT —-0.204* 0.104
TXU Large coal 0.038 0.180
Medium coal 0.105 0.206
OCGT 0.344 0.355
Ed Large coal 0.052 0.035
OCGT 0.508*** 0.083
PSB 0.295*** 0.074
BE Large coal —0.503** 0.246
AES Large coal —1.255"** 0.026
OCGT 0.165* 0.085
Block 2: Estimation of a b1 NP 1.365*** 0.264 0.586** 0.238 0.489* 0.273
change in comparison to a PG 0.309** 0.148 0.347** 0.168 0.555*** 0.116
reference period EDF —0.263*** 0.015 —-0.211*** 0.012
SI 0.195 0.234 0.021 0.102
TXU —0.269** 0.117
Ed —0.102*** 0.011 —0.019*** 0.003 0.162*** 0.039
AES 1.220%** 0.070
Sz,j NP Large coal —2.006*** 0.403 —0.749** 0.365 -0.538 0.420
Medium coal —2.118*** 0.448 -0.732* 0.402 -0.351 0.459
Small coal —2.814*** 0.532 -1.108** 0.481
oil —1.815"** 0.391 —0.690* 0.356 -0.476 0.408
OCGT —3.159*** 0.605 -1.331** 0.549 —-1.108* 0.628
PG Large coal -0.506™* 0.220 -0.401* 0.242 —0.635"** 0.171
Medium coal —0.304 0.248
0il —0.305 0.211 -0.402* 0.236 —0.639"** 0.165
OCGT —0.802** 0328 -0.811** 0.369 —1.352%** 0.253
EDF Export —0.068 0.061 —0.231*** 0.084
SI Export -0.423 0.361 0.009 0.157
TXU Large coal 0.363** 0.148
Medium coal 0.416™ 0.184
OCGT -0.203 0.302
Ed PSB 0.066*** 0.006 0.109*** 0.005 —0.149** 0.058
AES OCGT —2.271%* 0.088
Intercept 0.481 0415

Notes: The first block contains coefficient estimates of explanatory variables for a reference period. The second block contains coefficient estimates of the interaction terms
between regime dummy variables and explanatory variables. The notation for coefficient estimates is described in &.

Producer—capacity type—day clustered robust standard errors are used for statistical inferences. *, **, and *** stand for the 10%, 5%, and 1% significance levels, respectively.
Annual seasonal dummy variables are omitted because they are found statistically insignificant. Obs = 23,009 and R>=0.602.

divestment series, the incentive to exercise market power
increased for the National Power and PowerGen incumbent pro-
ducers. For the other electricity producers, with the exception of
AES, the incentive to exercise market power during later regime
periods has either decreased or been relatively low. For AES, 81;
during the last regime period is not only statistically, but also
economically significant. The estimation results for NP, PG, and AES
are partly in line with the findings in Sweeting (2007), where the
author using the methodology of competitive benchmark prices

shows that the extent of exercising market power generally
increased during the late 1990s.

Besides submitting price bids in excess of marginal costs, pro-
ducers may apply a capacity cutting strategy in order to raise
wholesale prices above competitive benchmark prices. The capac-
ity cutting strategy and related literature is discussed in Lizal and
Tashpulatov (2014). This possibility was analyzed by Joskow and
Kahn (2002) who, similar to Sweeting (2007), used competitive
benchmark prices to study market behavior during the California
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electricity crisis of 2000—2001. The authors suggest that capacity
cutting, which is observed through substantial gaps between
maximal and submitted capacity bids during peak-demand periods,
could explain the remaining deviations in wholesale prices from
competitive benchmark prices (after accounting for low levels of
imports, high demand for electricity, and high prices of NO, emis-
sions permits). The relatively higher incentive to exercise market
power by NP, PG, and AES during the late 1990s along with possible
capacity cutting may explain differences between wholesale prices
and competitive benchmark prices found by Sweeting (2007).

The incentive to submit a price bid reflecting a high markup is
moderated by the presence of a threat that the production unit at
stake may not be scheduled to produce electricity. This effect does
not need to be the same across producers. Moreover, as mentioned
earlier, if a single producer has several types of production units,
then this disincentive may also vary across types of production unit.
Hence, the disincentive to exercise market power is reflected by the
estimated producer and capacity type specific slope parameter EZU
of the second explanatory variable log(Production Capacity at Bid
biir). In particular, Ez,j measures the percentage change in the
markup, when the capacity of a production unit at stake is larger by
1%.

The second theoretical prediction suggests that Ezzj should be
negative. However, in some instances, especially during the price-
cap regulation period, the estimates of 32,-1 are positive, but statis-
tically insignificant. Exceptions are related to the new entrant
producers, TXU and Edison, which acquired the divested produc-
tion facilities.

Following the divestment series, we find statistical evidence for
the presence of the disincentive to exercise market power for the
incumbent electricity producers, which was not observed during
the price-cap regulation period. This follows from the negative
estimates of d;; for NP and PG in Block 2 of Table 8, which based on
notation in footnote 8 suggests that 32,-1- is negative for NP and PG
after the divestment series. However, it took place at the expense of
an increased incentive to exercise market power by the incumbent
producers, as discussed earlier. These results suggest that the
structural remedies were generally more successful than behav-
ioral remedies at creating the disincentive, but not necessarily at
decreasing the extent of exercising market power. Nevertheless,
since in a less concentrated market structure it is easier to promote
competitive bidding, structural remedies could be superior.

For the robustness check we also consider peak-demand trading
periods with real price markups. Qualitatively, conclusions
regarding the analysis of the theoretical predictions and the eval-
uation of the impact of regulatory reforms are similar to those for
nominal price markups. The results are therefore generally robust.

7. Conclusions

This paper examines the impact of regulatory reforms intro-
duced during the liberalization process of the electricity supply
industry in Great Britain on the bidding behavior of electricity
producers. For this purpose, a duopoly model is considered in order
to identify the incentive and disincentive to exercise market power.
As the model suggests, a producer has an incentive to submit a
higher price bid in excess of marginal cost for a production unit
when that producer has a larger capacity below it. However, this
incentive is moderated by the potential threat that this production
unit may be out of schedule if a very high price bid is submitted. The
functional form of the regression model is also based on the con-
clusions of the duopoly case.

During the period of price-cap regulation, we do not find sta-
tistical evidence for the presence of the disincentive to exercise
market power for the incumbent producers. However, after the
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divestment series were introduced, we find the presence of the
disincentive to exercise market power reflected by the negative
coefficient of the second explanatory variable. At the same time,
however, we find statistical evidence for the increased incentive to
exercise market power described by the coefficient of the first
explanatory variable in the regression model.

Generally, structural remedies implemented through divest-
ment series might be preferred to behavioral remedies imple-
mented through price-cap regulation. After divestments, market
concentration decreases, which facilitates promoting competitive
bidding among electricity producers.

The findings and conclusions of this research could be of interest
to other countries using a day-ahead market for electricity trading
since the experience in England and Wales has served as a model
for much of the electricity industry restructuring worldwide
(Wolak, 2000).
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Appendices

A Bidding on the England and Wales electricity market

The wholesale electricity market in England and Wales consisted of three participants:
producers, the market operator, and retail suppliers. Electricity producers sold electricity
to retail suppliers through the wholesale market, also known as the Electricity Pool. This
wholesale electricity market was managed by the network operator, the National Grid
Company (NGC).

Trading in the England and Wales wholesale electricity market was conducted every
day through a uniform price auction. The trading day consisted of 48 half-hourly trading
periods, which the NGC divided into high- and low-demand trading periods. The NGC
invited electricity producers to submit daily and half-hourly bids for each production unit
for the following trading day.

The daily bids for each individual production unit included a start-up cost, a no-load
cost, (at most) three incremental price-offer bids, and two elbow points. The start-up
cost (measured in £) represented the cost to start up a production unit. The no-load cost
(measured in £/h) represented the cost to keep a production unit from shutting down.
The two elbow points (measured in MW) defined ranges over which the incremental
price-offer bids (measured in £/MWh) applied. Figure A.1 illustrates what PowerGen
submitted for its coal production unit KINO_02Z, which belonged to the Kingsnorth
plant. The submitted bids for the start-up and no-load costs for this production unit
were £4,200 and £5,103/h, respectively.

Incrementald
Price-Offer
Bid

(£/MWh) Individual
Daily Bid
I 40 o Schedule
ne; = -+

Inc, =36 + o—9

Inc, = 13.75 O——mm8mm@

}
0 E, =420 E,=484 9,999
Individual Production Capacity (MW)

v

Source: Author’s illustration.

Figure A.1: Submission of daily bids by PowerGen (January 14, 2000)
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Electricity producers were also asked to submit for each individual production unit
half-hourly bids on production capacity (measured in MW). The market operator used all
these submitted daily and half-hourly bid data for individual production units to compute
the respective half-hourly price bids (PBs) for the next trading day. The computation
of PBs measured in £/MWh was common knowledge and was also different for high-
and low-demand trading periods. This computation is described in Wolfram (1998) and
Sweeting (2007).

Let Incy, Incy, Incs denote three incremental price-offer bids, F; and E5 denote two
elbow points, and k£ denote production capacity. For high-demand trading periods the
Average Bids (ABs) are first constructed:

AB, = £0/MWh
a)if k=0, then ¢ AB, = £999/MWh ;
ABj = £999/MWh

AB, = W + Incy
b) if k € (0; £1], then ABy =999 ;
AB3 =999

AB, = Nepord 4 [ne,

C) ifk e (El; E'Q]7 then A32 — NoLoad + Inci-E1+Inca-(k—E)

k k !
ABy = 999
ABy = Nepord 4 [,
d) if k € (E;9999 MW], then § AB, = NeLoad | Inevlitlnes (F-Ih)

2
AB3 — Noioad + ITLC1~E1+ITL62~(EQ;E1)+I1’LC3'(1€—E2)

This choice of presentation allows for interpreting

~ NoLoad n Incy - Ey + Incy - (Ey — Ey) + Incsg - (k — Es)

AB
k k

as consisting of two components. The first component uniformly distributes the no-load
cost over the production capacity and the second term represents a capacity-weighted
average of submitted incremental price-offer bids. Similarly, it can be shown that the
start-up cost is uniformly distributed over high-demand trading periods during which a
production unit produces electricity and then added to the half-hourly ABs. Depending

on the value of production capacity k for each production unit, the minimum among the

2
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final AB;, ABs, and ABj define the half-hourly PBs.
In low-demand trading periods, the PB is set equal to one of the incremental price-

offer bids depending on the value of the submitted half-hourly production capacity k:

a) if k =0, then PB =0; c) if k € (E1; Es], then PB = Incy;

2
b) if k € (0; £y, then PB = Incy; d) if k € (E»;9999 MW], then PB = Inc;. 2

For each half-hourly trading period, the pairs of the PB and respective production
capacity are ordered based on the PB to construct an aggregate supply schedule known

also as a merit order.
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B Approximation of marginal costs

Marginal costs of production units are approximated based on the definition of the ther-
mal efficiency rate and data on quarterly fuel prices provided in Department of Trade
and Industry (1997-2002, 1993-2000).

Definition: The thermal efficiency rate is the efficiency rate with which heat energy
contained in fuel is converted into electrical energy (Department of Trade and Industry,
1997-2002).

This definition allows for expressing the thermal efficiency rate s of production unit

X using fuel Y to produce 1 MWh of electricity in the following way:

(1 MWh of electricity) - factor £
fuel Y - factor Y ’

R(X,Y) = (3)
where the additional terms denoted by factor £ and factor Y are multipliers used to
convert 1 MWh of electricity and fuel Y necessary to produce 1 MWh of electricity into
the commonly used energy measurement unit, for example, gigajoule (GJ). In particular,
factor £ = 3.6 GJ/MWh.

Equation (3) for k(X,Y’) suggests that the marginal cost of production unit X using
fuel Y to produce 1 MWh of electricity can be approximated by

MC(X,Y) = (price of fuel Y) - fuel Y =

(1 MWh of electricity) - factor K

= (price of fuel Y) : k(X,Y) - factor Y

(4)

If fuel prices are given in £/MWh, then equation (4) simplifies to

1

MC(X,Y) = (price of fuel V) - AT (5)

As summarized in Table B.1, there are ten types of production unit. Nuclear and
hydro types of production unit are far from being pivotal because they mainly operate
as base-load and are located in the beginning of the aggregate supply schedule. This
excludes the necessity to approximate their marginal costs.

Open cycle gas turbine (OCGT) and combined cycle gas turbine (CCGT) produc-
tion units use gas oil and natural gas, respectively (Department of Trade and Industry,
1997-2002). Marginal costs of OCGT production units are approximated according to

equation (4) because originally the price data on gas oil are available in £/liter. Based

4
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on Department of Trade and Industry (1997-2002), first we convert liters to tons (using
1163 liters per ton) and then to gigajoules (using calorific values of 45.5 gigajoules per
ton) for the gas oil fuel.

Marginal costs of production units using coal, oil, and gas fuels are approximated
according to equation (5) because quarterly fuel prices are available in £/MWHh.

The efficiency rate of a production unit varies within a capacity type. The differences
could be related to the age or size of a production unit. That is why, for approximating
marginal costs we use production unit specific thermal efficiency rates. For some produc-
tion units, updated estimates of thermal efficiency rates are available. Using, however,
older thermal efficiency rates could, at times, overestimate or underestimate the true
marginal costs, leading, thereby, to a measurement error.

The production units of pumped storage business (PSB) have turbines that pump wa-
ter up to a hill-top reservoir during off-peak periods, which then allows the production of
electricity during peak-demand periods or during unexpected shortfalls in system supply.
The marginal costs of these pumped facilities are approximated by quarterly minimal
price bids.

EDF and Scottish Interconnector are producers that exported electricity into the
England and Wales wholesale electricity market. No data describing their technological
characteristics are available, which does not allow for approximating their marginal costs
using equation (4) or (5). Therefore, their marginal costs are also approximated using

quarterly minimal price bids.
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Table B.1: Distribution of types of production unit during January 1, 2000-January 31, 2000

Producer Types of Production Unit
Large Coal Medium Coal Small Coal Oil Nuclear CCGT OCGT PSB Hydro Export Subtotal

National Power 11 6 4 7 - 6 22 - - 58
PowerGen 12 - - 4 - 8 11 - - 39
BNFL Magnox - - - - 26 - - - - 27
EDF - - - - 1 — - 11 12
SI - - - - - 7 - - 19 26
TXU 8 8 - - - 2 8 - - 26
Edison 8 - - - - - 4 10 - 22
British Energy - - — - 12 — — — - 12
AES 6 - 1 — - 1 4 - - 12
Subtotal 45 14 5 11 38 25 49 10 30 234

Source: National Grid Company (1994—2001) publications for various years; author’s calculations.
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C Robustness check

Table C.1: Estimation results of equation (??) based on the real markup

Dependent Variable: Regime 3 Pre-Regime 4 Regime 4 Regime 5
log(Real Markup ij;¢) (Jan 95-Mar 96) (Apr 96-Jul 96) (Jul 96—Jul 99) (Jul 99-Sept 00)
Price-cap Divestment 1 Divestment 2
Pr Type Coef Std Err Coef Std Err Coef Std Err Coef Std Err
NP 0.040 0.289
PG 0.263 ** 0.107
EDF 0.270 *** 0.057
S SI 0.296 *** 0.079
‘@ TXU 0.129 0.133
o] Ed 0.058 *** 0.006
2 BE 0.569 *** 0.173
g AES 0.027 0.036
o Large Coal 0.176 0.431
= Medium Coal  0.085 0.469
% NP Small Coal 0.399 0.568
o) Oil 0.280 0.417
5 OCGT 0.750 0.64
0 Large Coal -0.147 0.151
é PG Medium Coal  -0.147 0.166
= Oil 0.036 0.141
e OCGT 0.288 0.219
8 EDF Export 0.372%%  0.062
= ST Export -0.052 0.099
E CCGT -0.192 % 0.102
b7 bl Large Coal 0.037 0.179
H & TXU Medium Coal 0.103 0.204
— OCGT 0.340 0.353
4 Large Coal 0.049 0.035
2 Ed OCGT 0.503 *¥** 0.082
@ PSB 0.308***  0.074
BE Large Coal -0.507 ¥ 0.247
AES Large Coal -1.254 F% 0.026
OCGT 0.165* 0.085
NP 1.365 *** 0.264 0.587 ** 0.238 0.483* 0.274
- PG 0.307 ** 0.147 0.361 ** 0.168 0.555 *** 0.116
) - EDF -0.271 *** 0.015 -0.224 *** 0.012
g S ST 0.197 0.233 0.024 0.101
g TXU -0.271 %% 0.118
g Ed -0.102 *¥** 0.011 -0.019 *** 0.003 0.159 *** 0.038
8 AES 1.220%%*  0.070
g Large Coal -2.011 %% 0.403 -0.762*F 0.365 -0.547 0.421
& Medium Coal -2.123 ¥** 0.448 -0.745* 0.402 -0.360 0.459
g ) NP Small Coal -2.821 *¥** 0.532 -1.126 ** 0.482
5 .g Oil -1.820 *¥** 0.391 -0.703* 0.356 -0.485 0.409
3 g OCGT -3.167 *** 0.605 -1.351 ** 0.549 -1.124%* 0.628
S Large Coal -0.508 ¥F 0.220 -0.433% 0.242 -0.652 FF¥ 0.172
o8 PG Medium Coal -0.307 0.247
L2 Oil -0.307 0.211 -0.434 % 0.236 -0.655 *** 0.166
ks % OCGT -0.804 ** 0.327 -0.859 ** 0.368 -1.377 **k* 0.254
.é : 5 EDF Export -0.077 0.062 -0.238 FF* 0.084
é’j O\‘ “ ST Export -0.433 0.360 -0.004 0.155
R Large Coal 0.358 F* 0.150
N TXU  Medium Coal 0.412** 0.185
3 OCGT -0.209 0.305
a? Ed PSB 0.060 ¥F* 0.006 0.097 ¥F* 0.005 -0.165 ¥F* 0.058
AES OCGT -2.269 ¥F¥¥ 0.087
Intercept 0.399 0.414

Notes: The first block contains coeflicient estimates of explanatory variables for a reference period. The
second block contains coeflicient estimates of the interaction terms between regime dummy variables and
explanatory variables. The notation for coefficient estimates is described in footnote ?7.
Producer—capacity type-day clustered robust standard errors are used for statistical inferences. *, **, and
*** stand for the 10%, 5%, and 1% significance levels, respectively. Annual seasonal dummy variables are
omitted because they are found statistically insignificant. Obs = 23,009 and R? = 0.602.
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D Abbreviations

BE British Energy

BNFL British Nuclear Fuels Limited

CCGT Combined Cycle Gas Turbine

Ed Edison

EDF Electricité de France (Electricity of France)
ESI Electricity Supply Industry

GOAL Generator Ordering and Loading

MMC Monopolies and Mergers Commission
NETA New Electricity Trading Arrangements
NGC National Grid Company

NP National Power

OCGT Open Cycle Gas Turbine

Offer Office of Electricity Regulation

Ofgem Office of Gas and Electricity Markets
PG PowerGen

SFE Supply Function Equilibrium

SI Scottish Interconnector

SMP System Marginal Price

TXU Texas Utilities (formerly, Eastern Group)
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Promoting competition among electricity producers is primarily targeted at ensuring fair electricity prices for
consumers. Producers could, however, withhold part of production facilities (i.e., apply a capacity cutting strate-
gy) and thereby push more expensive production facilities to satisfy demand for electricity. This behavior could
lead to a higher price determined through a uniform price auction. Using the case of the England and Wales
wholesale electricity market we empirically analyze whether producers indeed did apply a capacity cutting strat-
egy. For this purpose we examine the bidding behavior of producers during high- and low-demand trading pe-
riods within a trading day. We find statistical evidence for the presence of capacity cutting by several
producers, which is consistent with the regulatory authority's reports.
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1. Introduction

Prices of goods and services of general interest play a key role in de-
termining the welfare of a society. Electricity, which usually accounts for
a large share of energy consumption, is among those kinds of goods.
Nowadays it also has a character of an essential good and understanding
the sources and reasons of high electricity price changes therefore be-
comes an important task. Hence, the key question, given that electricity
industry contains a natural monopoly element and is monitored, is
whether consumers face fair prices.

In general, there are several means by which producers could exer-
cise market power. The most common is through an exercise of monop-
oly power, whereby producers charge prices significantly exceeding
their marginal production costs. For the case of the England and Wales
electricity market, this type of noncompetitive behavior of electricity
producers has been thoroughly studied in, for example, Green and

* A joint workplace of the Center for Economic Research and Graduate Education,
Charles University, and the Economics Institute of the Academy of Sciences of the Czech
Republic.

* Corresponding author.

E-mail addresses: lubomir.lizal@cnb.cz (L.M. Lizal), stashpul@cerge-ei.cz
(S.N. Tashpulatov).

http://dx.doi.org/10.1016/j.eneco.2014.02.007
0140-9883/© 2014 Elsevier B.V. All rights reserved.

Newbery (1992), Von der Fehr and Harbord (1993), Wolfram (1998),
Crawford et al. (2007), and Sweeting (2007).

Another means by which producers on a semi-competitive market
could set high prices is through the creation of an artificial deficit.
Given a sufficiently high level of demand, this strategy could be success-
ful at increasing prices." Late in 2008, the E.ON AG electricity producer
was investigated by the European Commission for abusing its dominant
position to withhold available production facilities in the German elec-
tricity market with a view to raising electricity prices to the detriment
of consumers (European Commission, 2009).

Fridolfsson and Tangeras (2009), using the case of the Nordic whole-
sale electricity market,? suggest that producers may have an incentive
to withhold base-load nuclear plants to increase output prices without
driving a wedge between output prices and marginal production
costs. The authors therefore conclude that strategic withholding when
demand is relatively high could be another means of increasing prices.

! In general, cases of creating an artificial deficit in order to increase prices have been
observed in various contexts. One historical example is burning coffee beans in Brazil,
which was successful at increasing Brazilian coffee prices in New York by more than
40% (Time, 1932). Another recent example is the artificial creation of a deficit of diesel fuel
by oil companies in Russia, which resulted in excessively high prices. The artificial deficit in
this case was created by shutting down plants for maintenance reasons (Avtonovosti —
Automobile news, 2011).

2 Most electricity is produced by means of hydro power plants.
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Exploitation of a capacity cutting strategy undermines the allocative
efficiency of production resources. In other words, capacity cutting can
introduce distortions to the least-cost production schedules intended
to serve demand at lower prices. As a consequence, it may become nec-
essary to operate more expensive production facilities to satisfy demand
for electricity at higher prices, whose burden is then eventually trans-
ferred to consumers.

Comparing the two means, price bids and capacity bids, Castro-
Rodriguez et al. (2009) conclude that because a regulatory authority
can relatively easily monitor the submission of price bids in excess of
marginal costs, capacity bids could be regarded as an alternative
instrument through which producers may affect prices.

In our research on the England and Wales electricity market, we de-
fine capacity cutting as a reduction of the amount of declared available
capacity of a production unit when demand is forecasted to increase in
the half-hourly day-ahead auction (see Fig. 2.2 for a detailed descrip-
tion).> We examine producers' bidding behavior between high- and
low-demand trading periods (usually evening and afternoon periods).
The intra-day analysis of the bidding behavior during different trading
days is advantageous for the day-ahead auction, because producers
are asked to submit capacity bids in advance for each half-hourly trad-
ing period of the next trading day. In contrast, an inter-day analysis
may not be conclusive, because capacity could have been reduced
during the following day due to maintenance, fuel reload, etc.

In the following sections we first describe the market rules and insti-
tutional background. We then review the related literature. In the empir-
ical methodology we describe the regression model, econometric
assumptions, and estimation strategy. Finally we quantitatively assess
whether the regulatory reforms during the liberalization process were
successful at decreasing the extent of applying a capacity cutting strategy.

2. Electricity auction and the market regulation

In this section we first describe the operation of the wholesale elec-
tricity market in England and Wales. In particular, using a hypothetical
example, we explain the role of producers and the market operator
(i.e., the auctioneer). We then proceed to the description of a capacity
cutting strategy aimed at increasing the wholesale price. Finally, we de-
scribe the reforms introduced by the regulatory authority, the Office of
Electricity Regulation (OFFER), which were targeted at improving com-
petition and ensuring lower electricity prices.

At the start of liberalization the power grids were separated from the
energy production and a wholesale market for electricity trading was
created (Bergman et al.,, 1998). Trading was organized through a half-
hourly uniform price auction, where electricity producers are asked to
submit half-hourly capacity bids and daily bids for all production
units. Daily bids include incremental price-offer bids, elbow points,
start-up and no-load costs. Then half-hourly price bids for every produc-
tion unit are calculated based on daily bids and half-hourly declared ca-
pacity bids. These rules are common knowledge and described in detail
in the Electricity Pool (1990), which is a technical summary used by the
market operator (the National Grid Company (NGC)). A more intuitive
description of trading rules, including the Generator Ordering and
Loading (GOAL) algorithm, is also presented in Sweeting (2007).

The market operator orders all production units based on price bids
to construct a half-hourly aggregate supply schedule. The market opera-
tor also prepares demand forecasts, where the forecasting methodology
is common knowledge (Wolak, 2000; Wolak and Patrick, 2001). The
forecasting methodology is also independent of producers' bidding be-
havior (Green, 2006). The production unit whose price bid in the aggre-
gate supply schedule intersects price-inelastic forecasted demand is
called the marginal production unit. Its price bid is called the System

3 An extreme case of applying a capacity cutting strategy is declaring a production unit
as unavailable for electricity production, which may not be inexpensive in terms of the as-
sociated start-up costs.
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Fig. 2.1. Determination of the SMP during a half-hourly trading period.
Source: Authors' illustration.

Marginal Price (SMP) and represents the wholesale price for electricity
production during a given half-hourly trading period. This is the uniform
auction price paid the same for producers' production units needed to
satisfy demand for electricity.

In Fig. 2.1, we schematically illustrate how the electricity market
would have operated in a given half-hourly trading period. All produc-
tion units are ordered according to half-hourly price bids.

Let by, denote the price bid of electricity producer A's first coal pro-
duction unit for which the submitted (declared) production capacity is
kac, . For the sake of simplicity, it is assumed that electricity producer A
has two coal and three gas types of production units. Price bids of all
production units are ordered as would have been done by the market
operator to create a half-hourly aggregate supply schedule. The vertical
line in the graph is the forecasted demand. The intersection of the con-
structed aggregate supply schedule and price-inelastic forecasted de-
mand determines the SMP, the wholesale electricity price. In this
hypothetical example, it is electricity producer A's third gas production
unit whose price bid determines the SMP.

Submitted price and capacity bids for individual production units
represent private knowledge for each producer that owns those produc-
tion units. This is a feature of a sealed-bid uniform price auction, where
the bids of one producer are unknown to the other producers.

In the hypothetical example presented in Fig. 2.2 we illustrate how a
producer could have applied a capacity cutting strategy in order to in-
crease the wholesale price, which is paid the same to all production
units needed to satisfy demand for electricity, and thereby, to enjoy
higher profits on their scheduled units.

For illustration purposes, in this example, we assume that producers
submit price bids reflecting marginal costs. We also assume that during
trading period H producer A had decided to restrict the capacity of its
second coal production unit (ie., kj. <k ), which led to a higher
SMP.* If there were no capacity cutting, then we would observe a
lower SMP equal to byg,. Producer A's loss and gain associated with ap-
plying a capacity cutting strategy are depicted by a shaded area in
Fig. 2.2a and Fig. 2.2b, respectively.

From the presented example we see that applying capacity cutting
may indeed be profitable and could also serve as a positive externality
to competitors. As Dechenaux and Kovenock (2007) find, capacity cut-
ting may even be necessary to sustain tacit collusion. All of this tends
to eventually decrease consumers' welfare. Moreover, the difference be-
tween gain and loss may be greater, resulting in an even larger SMP, if
producers strategically submit price bids in excess of marginal costs,
where the latter has been studied in, for example, Green and Newbery

4 Withholding a whole production unit can be interpreted as a special case of a capacity
cutting strategy.



116

(a) Low-demand trading period (no cutting)
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(b) High-demand trading period (cutting)
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Fig. 2.2. Capacity strategy. Notes: In (a) we depict part of production capacity kac,, which could have been withheld for the high-demand period. The shaded area depicts the associated loss
if capacity cutting were applied. In (b) we illustrate a change in SMP when part of capacity for k., is withheld (i.e., kﬂq <k,Lqu ). If there were no capacity cutting, then we would observe a
lower SMP equal to byg, . The shaded area depicts, therefore, the gain associated with applying capacity cutting during the high-demand trading period.

Source: Authors' illustration.

(1992), Von der Fehr and Harbord (1993), Wolfram (1998), Crawford
et al. (2007), and Sweeting (2007).

As described in Fig. 2.2, in our analysis we focus on strategic capacity
bidding which may drive up spot wholesale prices (i.e., the SMP). We do
not consider contracts for differences (CfD) that are linked to SMP, be-
cause data on financial positions are commercially confidential.> Our
approach is partly consistent with the methodology in (Cramton et al.,
2013) modeling the operation of capacity markets. The authors assume
that electricity producers are paid spot prices, even if most output is
sold forward. This assumption is motivated by the fact that the prices
for forward contracts are linked to expected spot market prices for elec-
tricity through intertemporal arbitrage. Moreover, because in the En-
gland and Wales electricity market the coverage of sales by CfDs
generally decreased (Green, 1999; Herguera, 2000), we can consider
that there may have been short-term incentives for producers' strategic
capacity bidding.

The regulatory authority, the OFFER, noticed cases of excessively
high electricity prices, which were attributed to the possible noncom-
petitive bidding behavior of the incumbent electricity producers (Na-
tional Power and PowerGen). In order to decrease the influence of the
incumbent producers on the wholesale electricity market, the regulato-
ry authority introduced several reforms in the Electricity Supply Indus-
try (ESI) in Great Britain. The time of the introduced institutional
changes and regulatory reforms define different regime periods,
which are summarized in Fig. 2.3.

At the time of the creation of the wholesale electricity market, coal
and other contracts were introduced by the government, which then
expired in 1993. Later, the regulatory authority introduced price-cap
regulation and divestment series. The price-cap regulation during
1994-1996 was a temporary measure designed to control the annual
average prices set by the incumbent electricity producers. In order to
decrease market concentration and improve competition, the incum-
bent electricity producers were asked to divest part of their production
facilities, which took place in 1996 and 1999. In March 2001, the whole-
sale electricity market was restructured to introduce bilateral trading
arrangements.

When defining regime periods we consider the exact dates when the
reforms were introduced. This approach better reflects the nature of the
divestment series introduced by the regulatory authority. For example,

5 This s also a limitation of research by (Robinson and Baniak, 2002), where the authors
state that producers could have been deliberately increasing price volatility in order to en-
joy higher risk premia in the contract market. This statement, however, has not been em-
pirically verified.

the introduction of the first series of divestments for PowerGen led to
the transfer of all medium coal production facilities to Eastern Group,
which was later renamed TXU (National Grid Company, 1994-2001).°
Hence, we assume that the structural breaks are exogenously given by
the dates when the reforms were introduced. It is also worth mention-
ing that the structural changes introduced through the two divestment
series differ, because the first series of divestments included the lease
and the second series of divestments included the sale of production
facilities (National Grid Company, 1994-2001). Hence, the impact of
the two divestment series on the bidding behavior of electricity pro-
ducers is likely to be different.

Table 2.1 describes the distribution of shares of production capacity
and price setting among electricity producers between the financial
years 1995/1996 and 1999/2000. To the original table reproduced
from Bishop and McSorley (2001) we add a measure of the
Herfindahl-Hirschmann Index (HHI) computed as a sum of squared
shares. The calculations show that thanks to the divestment series and
new entry the concentration measure decreased by almost twofold.

Similar to Borenstein et al. (2002), we restrict our analysis to
electricity producers located in Great Britain. In particular, we exclude
the EDF exporter, which was not suspected of abusing market power.
We also observe that the incidence of capacity cutting by this producer
was very low and its capacity bidding was generally consistent with
competitive bidding behavior.

The measures designed to promote competition during the liberali-
zation were more extensive in Great Britain compared to Germany,
France, Italy, or Sweden (Bergman et al., 1998). In particular, Joskow
(2009) characterizes the privatization, restructuring, market design,
and regulatory reforms pursued in the liberalization process of the elec-
tricity industry in England and Wales as the international gold standard
for energy market liberalization. In this respect, Great Britain, with the
longest experience of a liberalization process, can also serve as an
important source of lessons.

6 A separate analysis of the bidding behavior of PowerGen with respect to medium coal
production facilities several days or weeks before the actual divestment took place may
not be statistically reliable due to a small number of observations. For Eastern Group, it
would not be possible because Eastern Group did not have coal production facilities before
and therefore could not participate in the auction by submitting bids for coal production
units.
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Fig. 2.3. Institutional changes and regulatory reforms in the ESI in Great Britain during 1990-2001.
Sources: Department of Trade and Industry (1997-2002), National Grid Company (1994-2001), Newbery (1999), Robinson and Baniak (2002), Wolfram (1999); authors'

illustration.

3. Evidence on uniform price auction and incentives for capacity
cutting in the literature

Le Coq (2002) and Crampes and Creti (2005) theoretically analyze a
two-stage duopoly game, where producers first decide on capacity bids
and then compete in a uniform price auction. The authors find that a
uniform price auction creates an incentive for strategic capacity cutting
when demand is known. This result is generalized for the case of
stochastic demand in Sanin (2006).

Joskow and Kahn (2002) study the California spot electricity market
during the California electricity crisis that cost $40 billion in added en-
ergy costs (Weare, 2003) and find that even after accounting for low
levels of imports, high demand for electricity, and high prices of NO,
emissions permits, there are still large deviations of wholesale market
prices from the competitive benchmark prices, i.e., the marginal cost
of supplying additional electricity at the associated market clearing
quantities. The authors find that capacity cutting, which is observed
from substantial gaps between maximal and submitted capacity bids
at peak hours, could explain the remaining deviations from the compet-
itive benchmark prices. Their observation of gaps between maximal and
submitted capacity bids during peak hours has been important for the
development of our regression analysis, where we compare capacity
bids during low- and peak-demand trading periods within a trading
day over time for the case of the electricity market in England and
Wales.

The application of competitive benchmark prices to analyze whether
an electricity market, as a whole, is setting competitive prices has an ad-
vantage of being less vulnerable to the arguments of coincidence and
bad luck. This approach also allows estimating the scope and severity
of departures from competitive bidding over time (Borenstein et al.,
2002).

Sweeting (2007) similarly applies the methodology of competitive
benchmark prices to analyze the development of market power in the
England and Wales electricity market. The author finds that electricity
producers were exercising increased market power in the late 1990s.
This finding, as the author indicates, is however in contradiction with

Table 2.1
Structural impact of National Power and PowerGen divestments.
Source: Reproduced from Bishop and McSorley (2001).

Producer Share of capacity Share of price setting
1995/1996  1999/2000 1995/1996  1999/2000

National Power 33.7 13.0 44.8 14.6
PowerGen 28.1 16.5 31.8 16.8
BNFL Magnox 58 54 0.0 0.0
EDF 33 33 0.7 10.7
Scottish Interconnector 23 22 1.7 04
TXU 1.6 92 73 11.8
Edison 38 8.9 13.2 21.1
British Energy 12.0 14.8 0.0 49
AES 0.5 7.6 0.0 193
Combined cycle gas turbines 7.8 17.2 0.5 0.4
Others 13 2.0 0.0 0.0
HHI 0.22 0.12 033 0.16

Note: HHI stands for Herfindahl-Hirschmann Index (sum of squared shares: monopoly = 1).
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oligopoly models, which, given that during this period market concen-
tration was falling, would have predicted a reduction in market power.

Sweeting (2007) also finds that from the beginning of 1997 the Na-
tional Power and PowerGen incumbent electricity producers could have
increased their profits by submitting lower price bids and increasing
output. From the short-term perspective, these findings are explained
as tacit collusion. The latter finding on output could also be related to ca-
pacity cutting, which we empirically analyze in this research. This con-
jecture is consistent with findings in Dechenaux and Kovenock (2007),
where the authors consider a symmetric oligopoly market structure
with firms having equal sharing of profits. The authors show that in
this market structure, operated as a uniform price auction, capacity
withholding may even be necessary to sustain collusion.

Earlier, capacity bidding in the same electricity market was empiri-
cally studied in Wolak and Patrick (2001) and Green (2011). Wolak
and Patrick (2001) show that capacity bids are a more “high-powered”
instrument than price bids for strategic bidding. In particular, by analyz-
ing the pattern of submitted half-hourly capacity bids, the authors con-
clude that the incumbent producers were strategically withholding
capacity to increase wholesale prices. However these conclusions
are mainly drawn from time series observations and probability
distributions.

In contrast, in our research we use a regression model and consider
the period during the late 1990s. This period also includes several new
entrants like the TXU and AES producers. Our approach to consider de-
mand increases within different trading days as producers' possible in-
centive for strategic capacity bidding is, in general, consistent with
observations in Wolak and Patrick (2001) and Joskow and Kahn (2002).

On the other hand, withholding capacity may lead to an increase in
the probability that demand will exceed supply, which will ultimately
increase capacity payments.” Historically, PowerGen successfully
applied this strategy during the summer and early fall of 1991. The pro-
ducer had to stop this practice in response to criticism by the regulatory
authority.

Almost a decade later, in June 2000, Edison similarly withdrew a
large coal production unit of 480 MW capacity from the Fiddlers Ferry
plant, which was again investigated by the regulatory authority. The
withdrawn production capacity presents approximately 1% of total pro-
duction capacity operated during peak-demand periods in England and
Wales (National Grid Company, 1994-2001). In July, the producer
agreed to return the plant to the system and the regulatory authority
did not take any action (Ofgem, 2000a). The strategic withholding was
calculated to cause a 10% increase in wholesale prices, which during
June-July approximately amounted to a total increase in revenues by
£100 million (Ofgem, 2000D).

In the analysis of the England and Wales electricity market, Green
(2011) distinguishes two incentives for withholding capacity: 1) in-
creasing capacity payments; 2) increasing wholesale prices.® Firstly,

7 Capacity payments are computed as CP = LOLP - (VLL — SMP), where LOLP stands for
Loss of Load Probability (an estimated probability that demand will exceed supply), VLL
for Value of Lost Load (the Pool's estimate of customers' maximum willingness to pay
for electricity supply), and SMP for System Marginal Price (a wholesale price).

8 Generally, high capacity payments or wholesale prices during peak-demand periods
besides decreasing the economic welfare of consumers may also lead to wrong investment
or new entry decisions and increased price volatility.
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using Monte Carlo simulations, the author finds that during November-
February in 1997-2001 low availability rates are not responsible for
raising capacity payments above competitive levels computed based
on US availability rates. Secondly, the author finds that the industry's
annual truly excess outputs are lower after privatization, which sug-
gests that after privatization producers' output was closer to the optimal
pattern and, hence, matching of demand and supply improved.

Because from the long-term perspective neither of the two incen-
tives for withholding capacity is found significant, Green (2011) con-
cludes that the evidence for large-scale capacity withholding is weak.
However, this conclusion is not completely in line with findings in
Wolak and Patrick (2001) and the regulatory authority's investigation
reports.

In our research, by analyzing producers’ bidding behavior during
peak- and low-demand trading periods within a trading day over
time, we intend to add new evidence on whether producers apply
capacity cutting to increase prices as described in the hypothetical
example in Fig. 2.2.

4. Binding theory and empirics
4.1. Data and its use

We use two data sets covering the period January 1, 1995-September
30, 2000. The first data set contains half-hourly market data for each
trading period and includes observations on forecasted demand and
wholesale prices (the System Marginal Price (SMP)).

In Figs. A.1 and A.2 we present the distribution of peak-demand half-
hours across regime periods and across seasons, respectively.

A sample summary of the market data with the associated measure-
ment units is provided in Table 4.1.

Using data on the forecasted demand, we compute demand
increases as a relative change in the forecasted demand during the
peak-demand trading period compared to the same day preceding
low-demand trading period. More precisely, we consider the following:

growthindemand,
forecasted demandt‘(peak,demand period)

forecasted demandt.(peak—demand period —five hours)

-1 (1)

where t denotes trading day.
Similarly, we compute relative changes in the wholesale price (i.e.,
SMP):

SMPt,(peakfdemand period)

growthin SMP; = -1, (2)

SMP, t,(peak—demand period —five hours)

where t denotes trading day.

In our research we consider five-hour differences between the peak-
and low-demand periods within a trading day. Qualitatively the results
are similar to alternative choices of a low-demand period. But consider-
ing namely peak-demand periods is crucial because generally it has
been documented in the literature that noncompetitive bidding behav-
ior occurs most frequently during peak-demand periods (Joskow and
Kahn, 2002).

Table 4.1
Sample of descriptive statistics for market data (January 1, 2000-January 31, 2000).
Source: Authors' calculations.

Forecasted demand (MW) SMP (£/MWh)
Mean 38,464.60 24.39
Min 25,001.00 8.00
Max 49,945.00 77.89
Std. Dev. 5247.83 12.54
Frequency 30 min 30 min
Obs. 1488 1488

Table 4.2
Relative changes in market demand (MW) and SMP (£/MWh) during January 6, 2000.
Source: Authors' calculations.

Demand (- — snsy Demands,  Growthin = SMP.(- —shs)  SMP;  Growth
demand, in SMP,
42,825 48,215 0.126 55.56 7789 0402

Notes: Subscript t is trading day (January 6, 2000) and 7 is peak-demand trading period
(17:30).

Table 4.3

Sample of descriptive statistics for capacity bidding data (January 1,
2000-January 31, 2000).

Source: Authors' calculations.

Capacity bids (MW)
Mean 17541
Min 0.00
Max 989.00
Std. Dev. 248.12
Frequency 30 min
Obs. 450,336

The application of Eqs. (1)-(2) for market data of a trading day on
January 6, 2000 is presented in Table 4.2.

The second data set contains data on half-hourly capacity bids (i.e.,
declared availability) for each trading period, which also includes the
identity of an electricity producer, plant, production unit, and capacity
(input) type. A sample summary of capacity bidding data is presented
in Table 4.3.

In order to exclude the ambiguity that some production capacity is
not made available to the market due to, for example, maintenance
and other technical reasons, we consider declared capacity bids on a
daily basis. More precisely, for each trading day we compute a relative
change in submitted capacity during the peak-demand trading period
in comparison to the same day preceding low-demand trading period.
This relative change in submitted capacity at producer and capacity
type level is considered as the dependent (explained) variable in the re-
gression analysis.”

Algebraically, the definition of a relative change of capacity between
periods can be summarized in the following way:

Z kilt‘(peak—demand period)
lej

Aki' =

ijt
Zkﬂt.(peakfdemand period—five hours)_lv
I=j

€)

where subscripts i, j, [, t denote producer, capacity type, production unit,
trading day, respectively and 3 iy peak—demand period) d€nOtes producer
l€j

i's capacity of type j during the peak-demand period of trading day t.

The application of Eq. (3) for submitted (declared) capacity bids on
January 6, 2000 is presented in Table 4.4.

In Table 4.5, based on the comparison between the peak- and low-
demand trading periods within a day, we present the incidence of non-
competitive and competitive capacity bidding behaviors.

The first block in Table 4.5 contains a summary of the incidence of
noncompetitive bidding behavior manifested through an application
of capacity cutting when demand is forecasted to increase. The distribu-
tion of the incidence of noncompetitive bidding across regime periods is
presented in Table B.1.

Cases when producers either do not change or increase declared
available capacity when an increase in demand is forecasted are defined

9 The unexpected technical failures in real-time supply of energy do not affect our iden-
tification strategy as they can occur only after the day-ahead bidding is made.
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Table 4.4
Application of Eq. (3) for capacity bids during January 6, 2000.
Source: Authors' calculations.

Producer Type IZ Kite (r—5 hesy (MW) IZ i - (MW) Akiie Case consistent with strategy

=) =)

NP Large coal 4845 4350 —0.102 Noncompetitive
Medium coal 1306 1306 0 Competitive
oil 1180 1180 0 Competitive
CCGT 3265 3295 0.009 Competitive
OCGT 412 412 0 Competitive

PG Large coal 4346 4346 0 Competitive
oil 1350 1350 0 Competitive
CCGT 2991 3032 0.014 Competitive
OCGT 191 191 0 Competitive

BNFL Nuclear 2449 2449 0 Competitive

SI Export 1514 1514 0 Competitive
CCGT 2843 2843 0 Competitive

TXU Large coal 3792 3792 0 Competitive
Medium coal 1774 1774 0 Competitive
CCGT 595 595 0 Competitive
OCGT 90 90 0 Competitive

Ed Large coal 2946 2946 0 Competitive
OCGT 68 68 0 Competitive
PSB 2088 1998 —0.043 Noncompetitive

BE Nuclear 5461 5483.4 0.004 Competitive

AES Large coal 3225 3225 0 Competitive
CCGT 250 250 0 Competitive
OCGT 215 215 0 Competitive

Notes: k denotes capacity and Ak;; denotes a relative change in capacity, which is computed using Eq. (3). Subscript i is producer, j is capacity type, [ is production unit, t is trading day
(January 6, 2000), 7 is peak-demand trading period (17:30). Capacity cutting (i.e., noncompetitive capacity bidding) is defined as a reduction of capacity during the peak-demand period

compared to the same day preceding low-demand period.

to be consistent with competitive bidding behavior. Their incidence re-
sults are presented in the last two blocks in Table 4.5. The incidence re-
sults can be explained as producers applying a mixed strategy approach
between bidding noncompetitively and competitively.

Explanation of capacity cutting during peak-demand periods
based on scheduled maintenance reasons is not economically justi-
fiable. If a producer needs to run brief maintenance, then it is most
probably done during the low-demand period of a day when prices
are usually low. In this case a producer incurs minimal losses associ-
ated with not making the capacity available for electricity
production.

Table 4.5

Table 4.5 suggests that among major power producers Edison has
relatively least withheld the PSB type of capacity. However, a more de-
tailed analysis is required with respect to Edison's large coal production
capacity, which the producer received during the second series of divest-
ments. As mentioned in Ofgem (2000b), it was the reduction of the large
coal capacity type, which lead to an increase of wholesale prices.

4.2. Empirical methodology

When demand is forecasted to increase producers may bid capacity
either noncompetitively (by applying a capacity cutting strategy) or

Incidence of noncompetitive and competitive capacity bidding during January 1, 1995-September 30, 2000.

Source: Authors' calculations.

Case Producer Large coal Medium coal Small coal 0il Nuclear CCGT OCGT PSB Export
Competitive bidding No (cutting) NP 186 112 17 29 - 885 143 - -
consistent PG 346 16 - 18 - 1015 67 - -
BNFL - - - - 198 - - - -
SI - - - - 113 - - 80
TXU 214 89 - - - 173 22 - -
Ed 28 - - - - - - 41 -
BE 5 - - - 122 - - - -
AES 11 - - - - 25 15 - -
Yes (no change) NP 1437 1705 1380 1935 - 509 1597 - -
PG 1174 302 - 1528 - 371 1897 - -
BNFL - - - - 1588 - - - -
SI - - - - 1662 - - 1570
TXU 601 670 - - - 1510 1478 - -
Ed 332 - - - - - - 905 -
BE 139 - - - 1138 - - - -
AES 428 - - - - 694 1312 - -
Yes (expanding) NP 406 180 79 64 - 633 289 - -
PG 509 51 - 195 - 643 65 - -
BNFL - - - - 243 - - - -
SI - - - - 252 - - 374
TXU 705 501 - - - 290 48 - -
Ed 77 - - - - - - 1072 -
BE 85 - - - 377 - - - -
AES 11 - - - - 19 13 - -

Note: Capacity cutting (i.e., noncompetitive capacity bidding) is defined as a reduction of capacity during the peak-demand period compared to the same day preceding low-demand

period.
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competitively (by increasing or at least not changing declared available
capacity). The incidence of noncompetitive and competitive capacity
bidding is summarized in Table 4.5. We use a regression analysis to ex-
amine the noncompetitive capacity bidding. Specifically, we consider
the following regression model:

Akje = o+ By - growthindemand, + &, (4)

where subscripts i, j, t denote producer, capacity type, trading day, re-
spectively. The dependent variable is defined as a relative change in
submitted (declared) capacity during the peak-demand trading period
compared to the same day preceding low-demand trading period. This
is defined in Eq. (3). We consider negative values of the dependent var-
iable, which reflect the extent of capacity cutting by producers across
various capacity types. The explanatory variable, growth in demand, is
defined as a relative increase in forecasted demand during the peak-
demand trading period compared to the same day preceding low-
demand trading period.

We consider five-hour differences between the peak- and low-
demand trading periods. The results are generally similar to those
which are based on alternative choices of a low-demand trading period
as a comparison benchmark. More importantly, because noncompeti-
tive bidding behavior could be observed mainly during high-demand
trading periods, similar to Joskow and Kahn (2002) and Crawford
et al. (2007), we analyze the bidding behavior of electricity producers
in relation to the peak-demand trading periods.'°

The disturbance term in the regression model is assumed orthogonal
to the explanatory variable. The exogeneity assumption of the explana-
tory variable is in line with the fact that the forecasting methodology the
market operator applies is, firstly, common knowledge (Wolak, 2000;
Wolak and Patrick, 2001) and, secondly, independent of producers' bid-
ding behavior (Green, 2006).

The slope parameter is assumed to be producer and capacity type
specific.!! It measures the extent of cutting capacity when demand in-
creases by 1%. The intuition that an increase in demand explains the ex-
tent of capacity cutting is testable. In particular, if the capacity cutting
hypothesis holds, then we should obtain statistical evidence that an in-
crease in demand explains a decrease in capacity made available for
electricity production.

However, estimating regression Eq. (4) is expected to be subject to
sample selection bias. The sample selection problem arises in our re-
search because we have selected the noncompetitive sample based on
the negative values of the dependent variable. In order to correct for
the sample selection problem, we use Heckman's two-step procedure
developed in Heckman (1979).

In the first step we estimate the selection equation using the probit
model on the full sample. We assume that demand and wholesale
price (i.e., the SMP) increases explain a producer's decision to submit
capacity bids noncompetitively or competitively during the peak-
demand trading period. Even if growth in SMP is not sufficient, we
still can rely on growth in demand thanks to the nonlinearity of the
probit model in correcting for the selection bias.'?

10 This is the period when the SMP is usually determined at a steeper part of the aggre-
gate supply schedule. In this case, even a small decrease in declared available capacity may
have a large effect on the SMP.

""" Aproducer can, in general, use different inputs (e.g., coal, gas, etc.) to produce electric-
ity. Therefore we distinguish production capacities that use different inputs. Moreover,
coal input can be used in large-, medium-, and small-sized plants. Because the efficiency
rate of production capacity in these plants is different, we also distinguish large coal, me-
dium coal, and small coal types of production capacity. These types of production capacity
are usually located in different parts of the aggregate supply schedule. For this reason, we
consider not only producer but also capacity type specific parameters.

12 Our method is robust even when a producer just uses a randomization strategy. The
probit model estimates the probability of a particular bidding decision (noncompetitive
or competitive capacity bidding). Moreover, our identification strategy is not dependent
on random failures, because we analyze bidding on a day-ahead auction.

The fitted values from the probit model are used to calculate A, the
inverse Mill's ratio, which is a decreasing function of the probability that
an observation is selected into the sample. The calculated Ay is then
used in the second step as an additional explanatory variable to esti-
mate the amount equation for the selected sample.

Below we formally summarize the estimation procedure:

P(Decision = 1|X) = ¢ (a + bj; - growthindemand, + ¢;; - growthin SMPt>
©)

Aky = o+ By - growthindemand, + 7y - Ay, + &, (6)

where in Eq. (5) we use Decision = 1 to code the cutting case. The term
)A‘ijt is calculated as a ratio of ¢(-) and &(-). Then Eq. (6), the amount equa-
tion (also called the second stage equation), is estimated only for the
noncompetitive sample with Mill's inverse ratio included as a correction
term.

This Heckman's two-step procedure is also described in Kmenta
(2004). This procedure allows estimating the regression equation free
of sample selection bias.

Our methodology is generally consistent with the game-theoretic
point of view. In particular, we consider that a firm first decides which
bidding strategy to adopt: noncompetitive or competitive. If, for exam-
ple, in the first stage a firm has decided to bid noncompetitively, then in
the second stage it decides on the amount (extent) of capacity cutting.

Therefore, regression Eq. (4) describing capacity cutting behavior is
modified according to Eq. (6). If ¥ is found statistically significant,
then we can conclude that there would have been a sample selection
bias had we not included Xijt in the amount equation (i.e., control for
the probability of selecting a particularly observed strategy) and hence
distorting the coefficient of interest [3;;.

For the regulation analysis, we assume that producer and capacity
type specific slope parameter [3; may vary during different regime pe-
riods described in Fig. 2.3. This approach allows us to draw conclusions
regarding the effectiveness of regulatory reforms in mitigating the non-
competitive capacity bidding. In particular, using our estimation results,
we would be able to draw conclusions if the changes during later regime
periods are economically and statistically significant.

5. Results and discussion

The discussion of estimation results is divided into two parts. First,
we discuss the results of the probit selection equation. Decision = 1 cor-
responds to noncompetitive capacity bidding and Decision = 0 corre-
sponds to competitive capacity bidding. The incidence of these
strategic decisions is summarized in Table 4.5. The estimation of this se-
lection equation is necessary to calculate X,jt for the amount equation.
We then proceed to the discussion of results for the amount equation
describing noncompetitive capacity bidding of producers.

5.1. Selection equation

The analysis includes cases of noncompetitive and competitive ca-
pacity bidding. They represent 3970 and 35,043 observations, respec-
tively. Decision = 1 corresponds to noncompetitive capacity bidding
when a producer applies a capacity cutting strategy. In Table 5.1 we
present our estimation results for the probit selection equation.

The estimation results suggest that the increase of demand and
wholesale price (i.e., the SMP) has an asymmetric effect across pro-
ducers and capacity types. This finding sheds light on producers' differ-
ing attitudes in the decision to apply capacity cutting across various
types of production capacity and, therefore, supports our assumption
that the model parameters may be producer and capacity type specific.
In particular, we find that the effect of an increase in demand is the
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Table 5.1
Probit selection equation. P(Decision = 1|x) = ®(a + bj; - growth in demand; + ¢; - growth in SMP;).
Dependent variable: Decision Growth in demand (51]-) Growth in SMP (¢;)
Producer Type Coef. Std. Err. Coef. Std. Err.
NP Large coal 0.788™* 0237 0.031 0.025
Medium coal 0.506™ 0.305 —0.074* 0.042
Small coal —1.062 0.801 —0.341"* 0.110
oil —2.808™"* 0453 —0.010 0.031
CCGT 6,884 0.283 —0.020 0.015
0CGT 1.050™** 0338 —0.002 0.029
PG Large coal 3.191™* 0275 —0.045™ 0.020
Medium coal —1.978 1.688 0.103 0.103
oil —4.100"* 1.012 —0.066 0.115
CCGT 7.520™* 0367 0.017 0.053
0CGT —0.184 0.534 —0.092 0.078
BNFL Nuclear 1.929 *** 0276 —0.067 0.046
SI Export —0.241 0.537 —0.052 0.059
CCGT —0.331 0235 0.030 0.027
TXU Large coal 0.233 0.328 0.079" 0.047
Medium coal —0.800 0.725 0.071 0.059
CCGT 0.948™* 0272 —0.001 0.020
0CGT —0.754 0.633 —0.385""* 0.127
Ed Large coal —0.107 0.493 0.003 0.103
PSB —3.893™ 0453 0.012 0.038
BE Large coal —1.533 1.788 —0.071 0.195
Nuclear 0.974™* 0352 —0.074" 0.040
AES Large coal 0.755 0.850 —0.445"* 0.165
CCGT 1.631°" 0.785 —0.383" 0.231
0CGT —0515 0.605 —0.395™* 0.062
Intercept —1.541™ 0.059
Notes: Producer—capacity type-day clustered robust standard errors are used for statistical inferences.*, **, and *** stand for the 10%, 5%, and 1% significance levels, respectively. Obs =

39,013.

largest for the CCGT type (less profitable and more flexible) belonging
to the incumbent producers.

We also find that sometimes the effect of an increase in demand and
wholesale price is opposite, indicating the presence of a trade-off in de-
ciding towards capacity cutting.

For statistical inference we apply producer—capacity type-day clus-
tered robust standard errors. This approach allows one to take into ac-
count heteroscedasticity and weekly seasonality features. Volatility
and seasonality of electricity prices in the given market are studied in
Robinson and Baniak (2002) and Tashpulatov (2013).

The fitted values of the probit selection equation are used in calculat-
ing the inverse Mill's ratio, which is included as an additional explanato-
ry variable in amount Eq. (6) describing the noncompetitive bidding
behavior at the level of individual producers' capacity types.

5.2. Effect of a regulatory regime change

In estimating amount Eq. (6) we assume that the producer and ca-
pacity type specific slope parameter 3; may additionally vary during dif-
ferent regime periods described in Fig. 2.3. We present our estimation
results in Table 5.2. This amount equation is estimated using observa-
tions corresponding to capacity cutting with sample selection correc-
tion for producers' capacity bidding as discussed in the previous section.

Our results indicate that the null hypothesis stating no sample selec-
tion problem is rejected. This finding justifies the validity of our as-
sumption that firms first decide on their bidding strategy.

The extent of how much to cut when demand is forecasted to in-
crease is reflected by the producer and capacity type specific slope pa-
rameter 3; in amount Eq. (6). In Table 5.2 we present our estimation
results for the slope parameter in front of the growth of demand in
two blocks. In the first block we present coefficient estimates for the
growth in demand during a reference period. In the second block we
present coefficient estimates for the interaction terms between regime
dummy variables and growth in demand. The second block in the esti-
mation table allows one to observe changes for 3; during later regime
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periods in the extent of capacity cutting associated with demand in-
creases. The estimation results indicate that there are differences in
the bidding behavior across not only producers but also capacity
types. This generally supports our assumption of the producer and
type specific parameter £3;.

In the following sections we first discuss estimation results for the
incumbent electricity producers. Next we review the results for the
state-owned British Nuclear Fuels Limited (BNFL) and exporting Scot-
tish Interconnector (SI) producers. We then discuss in detail the find-
ings for TXU and Edison, which received plants during the divestment
series. We conclude our discussion with the British Energy and AES
producers.

5.2.1. Incumbent producers: National Power and PowerGen

Our estimation results presented in the first block of Table 5.2 indi-
cate statistical evidence for the presence of capacity cutting by the in-
cumbent electricity producers (NP and PG) in peak-demand trading
periods during price-cap regulation. Wolfram (1999) identifies that
price-cap regulation led the industry supply curve to rotate counter-
clockwise. The author explains the change in the industry supply
curve as the consequence of reducing prices when demand is low and
increasing them when demand is high in order to satisfy the price cap.
Our result on capacity cutting during peak-demand periods may there-
fore provide a possible alternative explanation of how the bidding be-
havior of producers during price-cap regulation led the industry
supply curve to rotate counterclockwise.

Based on the estimation results presented in the second block of
Table 5.2, we find that for NP (the larger incumbent producer) the ex-
tent of applying capacity cutting during peak-demand periods has gen-
erally decreased in the pre-regime 4 period (i.e., after price-cap
regulation and before divestment series). The only exception is the oil
type for which the extent of capacity cutting has increased. For the
small coal type during pre-regime 4 we do not observe capacity cutting
atall.
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Table 5.2
Amount equation: Akj = a + 3; - growthindemand; + 7y - Ay + €.

Dependent variable: Ak;;e

Regime 3 (Jan 95—
Mar 96) Price-cap

Pre-regime 4
(Apr 96-Jul 96)

Regime 4 (Jul 96—
Jul 99) divestment 1

Regime 5 (Jul 99-
Sept 00) divestment 2

Pr Type Coef. Std. Err.  Coef. Std. Err.  Coef. Std. Err.  Coef. Std. Err.
Block 1: growth in demand (Bi]-) NP Large coal 0068 0025
Estimation during a reference period Medium coal ~ —0.484™" 0089
Small coal —0.121 0.163
oil —0.164 0.135
CCGT —0410"* 0077
OCGT —0.037 0.024
PG Large coal —0.058 0.037
Medium coal —0.379 0.250
oil —0.020 0.184
CCGT —0383"* 0080
OCGT 0.090 0.064
BNFL  Nuclear 0.024 0.020
SI Export —0.509" 0287
CCGT —1304"* 0274
TXU  Large coal 0.180" 0.108
Medium coal —0665"*  0.105
CCGT —0213 0278
OCGT —0466"  0.140
Ed Large coal —0355"*  0.056
PSB 0.096 0.123
BE Large coal —0.770"* 0256
Nuclear 0.166™"* 0.027
AES  large coal —0.299"* 0052
CCGT 0.140"* 0033
OCGT —0.186 0.135
Block 2: regime x growth in demand (5;) NP Large coal 0.056™* 0019 —0.095"*  0.019 —0.658"* 0120
Change in comparison to a reference period Medium coal 0.070 0.072 0.092 0.074 —0.463" 0.267
Small coal NA —0205"* 0055
oil —0553"*  0.191 —0784"* 0192 —0.195 0.711
CCGT 0.132%"* 0.023 0079 0031 0,075 0027
OCGT 0.034 0.024 —0.006 0018 —0.101 0.065
PG Large coal 0013 0018 —0.030" 0013 —0.167"*  0.069
oil 0372** 0.160 —1257" 0624
CCGT —0062™ 0022 —0.008 0.015 0.000 0.007
0CGT —0.050 0.092 —0.084 0078 —0483"* 0042
BNFL  Nuclear 0.086™"* 0.027 0.003 0.030 0021 0.009
SI Export 0423 0.308 0270 0.289 0.136 0.342
CCGT 1.123"* 0.362 0918 0259 1471 0263
TXU  Large coal —0663"* 0117
Medium coal 0.185 0.138
CCGT 0.249 0322 0.037 0293 —0.654"" 0183
OCGT 0.185 0.152
Ed PSB NA 0.042 0.180 0.498"*  0.100
BE Nuclear —0.136"" 0016 —0260"" 0028
% —0.112"* 0019
Intercept 0.141"* 0032

Notes: The first block contains coefficient estimates for a reference period and the second block for the interaction terms with regime dummy variables. Producer-capacity type-day

* ko

clustered robust standard errors are used for statistical inferences. ",

, and

But after the divestment series, the extent of capacity cutting com-

pared to the price-cap regulation period (i.e., regime 3) has increased
~ Regime 4

for almost all types. That is, we find that in absolute terms f3;
and B;}-egimﬁ > are greater than B:}-egime ® fori = NP and j € {Large Coal,
Small Coal, Oil, OCGT}."® An exception is related to the medium coal
(during regime 4) and CCGT (during all later regimes) types for which
the extent of capacity cutting has decreased. Generally, after the second

13 We use the following notation:

~Pre—Regime 4 ~»Regime 3 ~Pre—Regime 4
i ij ’

=By +96,

~Regime 4 ~Regime 3 ~Regime 4
Bij =By o
~Regime 5 ~Regime 3 ~Regime 5
By =By + e,

~Pre—Regime4 :Regime4 aRegime5
where g < BTt GET 5%

block of Table 5.2.

are the estimates of a change presented in the second

stand for the 10%, 5%, and 1% significance levels, respectively. Obs =

3970 and R? = 0.376.

series of divestments the extent of capacity cutting by NP has increased
with the only exception for the CCGT type.

Qualitatively, the estimation results related to the noncompetitive
bidding behavior of PG (the smaller incumbent producer) are similar
to NP. However, there are differences in the magnitudes of the estima-
tion results. Therefore, the regulatory actions, generally, did not have
the same effect on the incumbents' bidding behavior. We explain the
observed quantitative differences as the consequence of an unequal
horizontal restructuring introduced through divestment series, which
affected differently individual incumbent producers’ mix of capacity
types.

Our estimation results indicating an increase in the extent of capac-
ity cutting by the incumbent producers after the divestment series is
partly consistent with Sweeting (2007), where the author finds that
the incumbent producers could have increased their profits by lowering
price bids and increasing output. This behavior is interpreted as an indi-
cation of possible tacit collusion. Dechenaux and Kovenock (2007) also
finds that capacity cutting in a uniform price auction could be even nec-
essary to sustain tacit collusion.
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5.2.2. State-owned and exporter producers: BNFL and SI

British Nuclear Fuels Limited (BNFL) was a state-owned company
using Magnox nuclear reactors for electricity production. We do not
find any statistical evidence for this producer's capacity cutting when
demand is forecasted to increase.

Scottish Interconnector (SI) was an exporter of electricity to the
wholesale market. There is statistical evidence for this producer's non-
competitive bidding behavior in exporting electricity although to a
smaller extent during later regime periods. A reduction in export
could have however been related to the increased demand for electric-
ity in Scotland. This producer also had CCGT production facilities located
in England and Wales. We find that the extent of cutting for the CCGT
type of capacity compared to the reference period has largely decreased
during later regime periods.

5.2.3. Divestment recipients: TXU and Edison

TXU is the producer which received plants during the first series of
divestments. We find statistical evidence that this producer's bidding
behavior is consistent with applying capacity cutting when demand is
forecasted to increase (except for the large coal type during regime 4).

During the second series of divestments, the plants were transferred
to Edison. There is statistical evidence for this producer's withholding of
the large coal capacity type. This is indicated in the first block of
Table 5.2 by a statistically significant negative slope coefficient during
regime 5. Our finding is consistent with the Ofgem's investigation report
into the withdrawal of a large coal production unit by this producer
discussed in Section 3 (Ofgem, 2000a). However, we do not find statis-
tical evidence for applying capacity cutting for the PSB type when de-
mand is forecasted to increase.

5.2.4. Code of conduct: British Energy and AES

In the following paragraphs we analyze the estimation results for
producers that did not wish to join the market abuse license condition
(MALC).'*

Similar to the BNFL producer, there is weak evidence that BE applied
capacity cutting for the nuclear capacity type during pre-regime 4

. . ~ Regime 5 ~ Pre—Regime 4
and regime 4 periods. However, because f3; =By
~Regime 5 . . . . .
;i is negative for i = BE and j = Nuclear, we can state that during

the last regime period there is statistical evidence for cutting nuclear ca-
pacity during peak-demand periods. Our finding from the short-term
perspective is partly consistent with the suggestion in Fridolfsson and
Tangeras (2009) that producers may restrict base-load nuclear capacity
to increase electricity prices.

The estimation results presented in the first block of Table 5.2
indicate noncompetitive bidding behavior of BE with respect to the
large coal capacity (a negative estimate for the slope parameter). How-
ever, as the incidence of cutting is relatively very low (see Table 4.5), we
can conclude that the evidence of capacity cutting for the large coal
capacity is generally weak.

The second producer which did not sign the MALC was AES. Our es-
timation results presented in the first block of Table 5.2, indicate weak
evidence for capacity cutting with respect to CCGT and OCGT production
facilities. However, we find statistical evidence consistent with capacity
cutting for the large coal capacity type when demand is forecasted to
increase. We also observe that the incidence of cutting and expanding
patterns summarized in Table 4.5 is the same for this producer's large
coal capacity.

4 The regulatory authority proposed a license condition targeted at tackling market
abuse in 2000. Because two major electricity producers, British Energy and AES, refused
to accept the MALGC, the regulatory authority referred the matter to the Competition Com-
mission (CC). The CC subsequently did not approve the introduction of the MALC, al-
though it acknowledged the possibility that British Energy could profit from capacity
cutting (Ofgem, 2000b).
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6. Conclusions

Using the case of the England and Wales electricity market, we ana-
lyze whether producers apply a capacity cutting strategy to increase
prices at a uniform price auction. The capacity cutting strategy may
allow producers to artificially create deficit and drive up wholesale elec-
tricity prices and hence revenues and profits of all producers on the
market.

Our results suggest that the extent of applying capacity cutting by
the incumbent electricity producers has increased after the divestment
series (with two exceptions for the NP producer). This result is partly
consistent with the simulation study of Sweeting (2007), who finds
that during the late 1990s the incumbent producers could have in-
creased profits by lowering price bids and increasing output. Based on
the findings in Dechenaux and Kovenock (2007), we suggest that
restricting capacity could have been necessary to sustain tacit collusion,
which is also consistent with the findings of possible tacit collusion
discussed in Sweeting (2007).

Quantitatively, however, the estimation results differ for the incum-
bent producers. We explain this as the consequence of an unequal hor-
izontal restructuring, which affected differently the capacity mix of the
individual incumbent producers. Our results also suggest that divest-
ment series were successful at reducing the extent of applying capacity
cutting for the CCGT type of production capacity belonging to the NP
producer.

Generally, statistical evidence for capacity cutting by BNFL during
peak-demand periods is weak. This finding is partly consistent with
the simulation study of Green (2011), who also finds weak evidence
for large-scale capacity withholding.

We find statistical evidence indicating capacity cutting by Edison
with respect to the large coal type of capacity. This finding is in line
with Ofgem's official investigation of capacity withdrawal by this pro-
ducer (Ofgem, 2000a,b). Making less base-load or infra-marginal capac-
ity available may force the market operator to use more expensive and
sometimes less efficient production facilities, which in the end could
lead to higher electricity prices to the detriment of consumers' welfare.

There is also statistical evidence that the BE and AES producers,
which did not sign the market abuse license condition (MALC), restrict-
ed their nuclear and large coal capacity during peak-demand periods.
This can be an interesting evidence in reasoning why the BE and AES
producers did not wish to join the MALC code of conduct.
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Figure A.1: Incidence of peak-demand periods across regimes during January 1, 1995

September 30, 2000
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B Tables

Table B.1: Incidence of Noncompetitive Capacity Bidding across Periods

Period Producer Large Coal Medium Coal Small Coal Oil Nuclear CCGT OCGT PSB Export Subtotal
2 NP 48 26 5 14 - 47 39 - - 179
-2 e PG 78 16 - 8 - 137 20 - - 259
: g g BNFL - - - - 60 - B - - 60
= o} - — _ — _ _ _
5t é b Tf(IU - - - - - 368 - - 1—2 560
=LA
2 Ed 4 4
~ Subtotal 126 42 5 22 60 228 59 4 12 558
—~ NP 16 8 - 4 - 56 16 - - 100
T3 PG 24 - - 3 - 60 10 - - 97
EZ BNFL - - - - 15 - - - - 15
o
gL SI - - - - - 14 - - 11 25
%o TXU - - - - - 11 - - - 11
& & BE - - - - 18 - - - - 18
= Subtotal 40 8 - 7 33 141 26 - 11 266
NP 88 67 12 4 - 554 75 - - 800
2~ PG 221 - - 7 - 600 31 - - 859
T2 % BNFL - - - - 51 - - - - 51
ETE SI - - - - 34 - - 29 63
07 TXU 193 70 - - - 151 17 - - 431
e & Ed - - - - - - - 10 - 10
= BE - - - - 78 - - - - 78
Subtotal 502 137 12 11 129 1339 123 10 29 2292
NP 34 11 - 7 - 228 13 - - 293
s PG 23 - - - - 218 6 - - 247
o o2 BNFL - - - - 72 - - - - 72
g & g ST - - - - - 27 - - 28 55
52 2 TXU 21 19 - - - 5 5 - - 50
- Ed 28 - - - - - - 27 - 55
Z8a BE 5 - - - 26 - - - - 31
~ AES 11 - - - - 25 15 - - 51
Subtotal 122 30 - 7 98 503 39 27 28 854
Subtotal for
All Periods 790 217 17 47 320 2211 247 41 80 3970

Source: Authors’ calculations.
Note: Noncompetitive capacity bidding is defined as a reduction of capacity during the peak-demand

period compared to the same day preceding low-demand period.
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C Abbreviations

BE British Energy

BNFL British Nuclear Fuels Limited

CcC Competition Commission (formerly, the MMC)
CCGT Combined Cycle Gas Turbine

CfD Contract for Differences

Ed Edison

EDF Electricité de France (Electricity of France)
ESI Electricity Supply Industry

GOAL Generator Ordering and Loading

HHI Herfindahl-Hirschmann Index

MALC Market Abuse License Condition

MMC Monopolies and Mergers Commission

NGC National Grid Company

NP National Power

OCGT Open Cycle Gas Turbine

OFFER Office of Electricity Regulation

Ofgem Office of Gas and Electricity Markets (formerly, the OFFER)
PG PowerGen

PSB Pumped Storage Business

SI Scottish Interconnector

SMP System Marginal Price
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e The impact of regulation on the dynamics of electricity prices is examined.
e Price-cap regulation has decreased the level at the cost of higher volatility.
e The first series of divestments has reversed the trade-off.

e The reversed trade-off is explained as an indication of tacit collusion.

e The second series of divestments is found generally successful.
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and regulatory reforms affected the dynamics of daily electricity prices in the England and Wales
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This research finds that the introduction of price-cap regulation did achieve the goal of lowering the
price level at the cost of higher price volatility. Later, the first series of divestments is found to be
successful at lowering price volatility, which however happens at the cost of a higher price level. Finally,
this study also documents that the second series of divestments was more successful at lowering both
the price level and volatility.
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meet market demand. Prior to liberalization, price fluctuations
were generally minimal and controlled. However, after liberal-
ization, during the history of the England and Wales wholesale
electricity market, price fluctuations, caused by frequent spikes,
were sometimes excessively large. Large fluctuations in electricity
prices generally introduce uncertainties about revenues for pro-
ducers and costs for retail suppliers, which could result in higher
prices paid by consumers.

The regulatory authority, the Office of Electricity Regulation
(OFFER), believed that excessively high prices and fluctuations
were possibly the result of the exercise of market power by
incumbent electricity producers (National Power and PowerGen).
Hence, in order to decrease the influence of the incumbent
producers, the regulatory authority introduced price-cap regula-
tion and divestments.

This empirical study quantitatively evaluates the impact of
institutional changes and regulatory reforms on price and volati-
lity dynamics. For this purpose I consider an AR-ARCH model,
which is extended to include periodic sine and cosine functions to
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Creation of

Restructure of

Wholesale Start of End of Wholesale

Electricity End of Coal  Price-Cap Price-Cap Electricity

Market Contracts Regulation Regulation Divestment 1 Divestment 2 Market
Regime 1 Regime 2 Regime 3 Pre-Regime 4 Regime 4 Regime 5

April 1, 1990 April 1, 1993 April 1, 1994 April 1, 1996 July 1996 July 1999 March 26, 2001

Fig. 1. Institutional changes and regulatory reforms in the ESI in Great Britain during 1990-2001. Sources: Department of Trade and Industry (1997-2002), National Grid
Company (1994-2001), Newbery (1999), Robinson and Baniak (2002), Wolfram (1999); author's illustration.

accommodate weekly seasonality. The application of periodic sine
and cosine functions, rather than daily dummy variables, is found
to lead to a more parsimonious model. Finally, in order to analyze
the impact of institutional changes and regulatory reforms on
price and volatility dynamics, I also include regime dummy
variables, which are created based on the timeline described in
Fig. 1.

The adopted methodology allows evaluating the impact of
regulation on price and volatility dynamics during the liberal-
ization process. This research documents new evidence of the
impact of price-cap regulation and divestment series on price level
and volatility. In particular, I find that the price-cap regulation was
successful at lowering the price level, which however happened at
the cost of higher price volatility. Later, after the first series of
divestments was introduced, the trade-off reversed. I explain this
as the evidence of possible tacit collusion, which is also discussed
in Sweeting (2007).

The research finally documents that the second series of
divestments was more successful at ensuring lower price level
and volatility. The first result that a lower price level is related to
decreased market concentration is consistent with findings in
Evans and Green (2003), where the authors using monthly data
on capacity ownership and electricity prices show that increases in
market competition are chiefly responsible for a decrease in the
price level during the late 1990s.

Joskow (2009) characterized the privatization, restructuring,
market design, and regulatory reforms pursued in the liberal-
ization process of the electricity industry in England and Wales as
the international gold standard for energy market liberalization. In
this respect, the findings and conclusions of this research could be
of interest to countries that formed or are about to form the
operation of their modern electricity markets based on the original
model of the England and Wales wholesale electricity market.

2. Related literature

After the liberalization of energy industries started in different
countries, it became important to model and forecast price
development. This is of special interest to producers and retail
suppliers because price fluctuations now introduce uncertainties
about revenues and costs. A government is also usually interested
in understanding price developments resulting, for example, from
auctions, because they eventually define the costs that consumers
will have to face. High costs for energy, besides decreasing the
economic welfare of consumers, may also at times undermine the
political stability of a country.

Green and Newbery (1992) and von der Fehr and Harbord
(1993) are the seminal studies in modeling electricity auctions.
Both of these studies apply their models for the case of the
England and Wales wholesale electricity market. Green and
Newbery (1992) use the framework of supply function equilibrium
(SFE), where it is assumed that each electricity producer submits a
continuously differentiable supply function. This is usually applic-
able when producers’ production units are small enough or when

each producer has a sufficiently large number of production units
as was the case, for example, with National Power and PowerGen
in the early years of the wholesale electricity market. The authors
show that a producer with a larger production capacity has more
incentive to exercise market power by bidding in excess of
marginal costs.

In contrast, von der Fehr and Harbord (1993) consider the
framework where each electricity producer submits a step supply
function on the uniform price auction. In particular, the authors
model the electricity market as a sealed-bid multiple-unit auction.
The authors demonstrate that no pure-strategy bidding equilibrium
exists when electricity demand falls within a certain range. Their
result is explained by an electricity producer's conflicting incentives
to bid high in order to set a high price and to bid low in order to
ensure that its production unit is scheduled to produce electricity.

Similar to von der Fehr and Harbord (1993), Wolfram (1998)
and Crawford et al. (2007) model the market as a sealed-bid
multiple-unit auction and empirically examine the bidding beha-
vior of electricity producers. Wolfram (1998) finds that electricity
producers submit price bids reflecting higher markups for produc-
tion units that are likely to be scheduled to produce electricity if
that producer has a large infra-marginal production capacity. The
author indicates that the incentive to submit a price bid reflecting
a higher markup for a certain production unit is moderated by the
presence of threat that the production unit might not be sched-
uled to produce electricity. Wolfram (1998) also finds that larger
producers tend to submit higher price bids than smaller producers
for comparable production units (i.e., production units using the
same input to produce electricity and having almost the same
marginal costs).

Crawford et al. (2007) empirically establish the presence of
asymmetries in the bidding behavior of marginal and infra-
marginal electricity producers: during the highest-demand trad-
ing periods marginal electricity producers behave strategically by
submitting price bids higher than their marginal costs, whereas
infra-marginal electricity producers behave competitively by sub-
mitting price bids reflecting their marginal costs.

Sweeting (2007) analyzes the development of market power in
the same electricity market. The author measures market power as
the margin between observed wholesale market prices and
estimates of competitive benchmark prices, where the latter is
defined as the expected marginal cost of the highest-cost produc-
tion unit required to meet electricity demand. Sweeting (2007)
finds that electricity producers were exercising increased market
power. This result, as the author indicates, is however in contra-
diction with oligopoly models, which, when market concentration
was falling, would have predicted a reduction in market power.
Sweeting (2007) also finds that from the beginning of 1997 the
incumbent electricity producers could have increased their profits
by submitting lower price bids and increasing output. These
findings are explained as tacit collusion.

In the following paragraphs I describe the development of
modeling techniques applied for price time series from deregu-
lated electricity supply industries in different countries. This
research has been important for my development of the modeling
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approach to analyze the impact of institutional changes and
regulatory reforms on price and volatility dynamics for the case
of the England and Wales wholesale electricity market during
1990-2001.

Crespo et al. (2004) consider the AR and ARMA models to
analyze hourly electricity prices from the Leipzig Power Exchange
during June 16, 2000-October 15, 2001. The authors' main finding
is that models where each hour of the day is studied separately
yield uniformly better forecasts than models for the whole time
series. Guthrie and Videbeck (2007) analyze half-hourly prices
during November 1, 1996-April 30, 2005 from the New Zealand
Electricity Market (NEM). The authors similarly find that half-
hourly trading periods naturally fall into five groups of trading
periods, which can be studied separately. For modeling purposes,
the price time series is decomposed into deterministic and
stochastic parts. The deterministic part is modeled using a dummy
variable approach to take into account the day-of-the-week and
month effects. The residuals, which are also called “filtered prices,”
represent the stochastic part and are modeled using a periodic
autoregressive process. For each group Guthrie and Videbeck
(2007) consider a periodic model, where a half-hourly price is
regressed on the price during the previous trading period and the
previous day's price during the same trading period. A detailed
overview of periodic time series models is provided, for example,
in Franses and Paap (2004).

Huisman et al. (2007) treat hourly electricity prices from the
Amsterdam Power Exchange (APX), the European Energy
Exchange (EEX; Germany), and the Paris Power Exchange (PPX)
for the year 2004 as a panel in which hours represent cross-
sectional units and days represent the time dimension. The
authors apply the seemingly unrelated regressions (SUR) method.

The findings in Crespo et al. (2004), Guthrie and Videbeck
(2007), and Huisman et al. (2007) that each trading period or a
group of trading periods should be studied separately across
trading days, rather than as a whole hourly (or half-hourly) time
series, may be the consequence of the application of hourly, daily,
and monthly dummy variables for a time-varying intercept term
(or the deterministic component), which could not accommodate
multiple types of seasonality as well as, for example, smooth
periodic sine and cosine functions considered in this research.

Conejo et al. (2005) find evidence that dynamic modeling is
preferable to seasonal differencing when dealing with time series
containing multiple types of seasonality. In particular, using the
Pennsylvania—-New Jersey-Maryland (PJM) interconnection data
for the year 2002, the authors find that the ARMA dynamic
regression models for different seasons, which include hourly,
daily, and weekly lags, are more effective in forecasting electricity
prices than the ARIMA regression models for different seasons,
which include hourly, daily, and weekly differencing. This finding
justifies my inclusion of lags to accommodate seasonality patterns,
which is crucial because otherwise the regulation analysis for a
transformed time series (like the removal of a deterministic
seasonal component or seasonal differencing) may be incorrect.

However, none of the above studies model the volatility
process, which is important for the risk and uncertainty measures.
In contrast, Garcia et al. (2005) consider a GARCH methodology to
model and forecast hourly prices in the Spanish and California
electricity markets during 1999-2000. The authors find that in
terms of forecasting, their GARCH model outperforms a general
ARIMA model when volatility and price spikes are present. Bosco
et al. (2007) also consider a GARCH methodology to model the
dynamics of daily average prices of the Italian wholesale electricity
market created in 2004. The deterministic part of the price time
series is modeled using low-frequency components and the
stochastic part using a periodic AR-GARCH process. The authors
find that the periodic modeling approach seems most appropriate
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to account for the different amount of memory of past prices that
each weekday carries, as well as the presence of spikes and
volatility clustering in electricity prices.

Koopman et al. (2007) similarly study daily average prices from
the electricity markets in France, Germany, the Netherlands, and
Norway. The authors find that a seasonal periodic autoregressive
fractionally integrated moving average process with ARCH distur-
bances is the appropriate process to consider for the analysis of
daily log-transformed electricity spot prices. This approach is
however complex and dependent on the order of seasonal frac-
tional integration, which should not violate the stationarity and
invertibility conditions. Another challenging feature is that it is
difficult to provide an intuitive interpretation to non-integer
differencing.

In general, a major challenge of applying a periodic AR process
considered, for example, in Guthrie and Videbeck (2007), Bosco
et al. (2007), and Koopman et al. (2007) is the requirement to
estimate a large number of parameters. In their study, Koopman
et al. (2007) suggest, as possible extensions, applying smoothly
time-varying parameters for modeling the dynamics of electricity
prices, which may lead to a more parsimonious model. This
suggestion is considered in Section 5.

3. The England and Wales electricity market

At the start of liberalization, a wholesale market for electricity
trading was organized in England and Wales. This market operated
through a half-hourly uniform price auction managed by the
National Grid Company (NGC). The resulting half-hourly uniform
auction price, which is also known as the System Marginal Price
(SMP), determined a payment to producers for electricity
production.

The regulatory authority, the Office of Electricity Regulation
(OFFER), noticed cases of excessively high electricity prices, which
were attributed to the possible noncompetitive bidding behavior
of the incumbent electricity producers (National Power and
PowerGen). In order to decrease the influence of the incumbent
electricity producers and thereby reduce the incidence of price
spikes leading to price fluctuations being significantly higher than
expected, the regulatory authority introduced several reforms in
the Electricity Supply Industry (ESI) in Great Britain. The time of
the introduced institutional changes and regulatory reforms define
different regime periods, which are summarized in Fig. 1.

At the time of the creation of the wholesale electricity market,
coal and other contracts were introduced by the government,
which then expired in 1993. The end of coal contracts is expected
to lead to higher price volatility because of increased uncertainty
about market prices of coal, which is one of the major inputs in
electricity production.

Later, because the regulatory authority believed that the
excessively high prices were resulting from the noncompetitive
bidding behavior of the incumbent electricity producers, it intro-
duced price-cap regulation and divestments. The price-cap reg-
ulation during 1994-1996 was a temporary measure designed to
control annual average prices set by the incumbent electricity
producers. Later, in order to decrease market concentration and
improve competition, the incumbent electricity producers were
asked to divest part of their production facilities, which took place
in 1996 and 1999.

When defining regime periods for an ex post regulation
analysis, I consider the exact dates when the reforms were
introduced. This approach, which in particular better corresponds
to the nature of the divestment series introduced by the regulatory
authority, is also applied in Tashpulatov (2010). For example, the
introduction of the first series of divestments for PowerGen led to
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Fig. 2. Daily electricity prices (April 1, 1990-March 26, 2001). Source: Author's calculations.

the transfer of all medium coal production facilities to Eastern
Group (National Grid Company, 1994-2001). In that study a
separate analysis of the bidding behavior of PowerGen with
respect to medium coal production facilities several days or weeks
before the actual divestment took place may not be statistically
reliable due to a small number of observations. For Eastern Group,
it would not be possible because Eastern Group did not have coal
production facilities before and therefore could not participate in
the auction by submitting bids for coal production units. Hence, in
order to be consistent, in this study I assume that the structural
breaks are exogenously given by the dates when the reforms were
introduced.

It is worth mentioning that the structural changes introduced
through the divestment series differ, because the first series of
divestments included the lease and the second series included the
sale of production facilities (National Grid Company, 1994-2001).
Therefore, the effect of the two divestment series, generally, need
not be the same.

In March 2001, the wholesale electricity market was restruc-
tured to introduce bilateral trading arrangements.

4. Data

The uniform auction price, also known as the System Marginal
Price (SMP), is the half-hourly wholesale price paid to producers
for electricity production. Daily electricity prices are defined as
daily averages of the half-hourly SMP.

Understanding the dynamics of daily prices from liberalized
electricity markets is important because these prices are usually
used as a reference price for market valuations and financial
contracts (Huisman et al., 2007).

Fig. 2 above describes the development and distribution of
daily electricity prices for the whole history of the England and
Wales wholesale electricity market.

The observed excessively high price spikes in the mid 1990s are
probably associated with some plants not being available due to
maintenance and interruption of gas supplies in England and
Wales and disputes in France (see Robinson and Baniak, 2002).

In Table 1 I summarize the descriptive statistics of daily
electricity prices during the different regime periods described
in Section 3.

The preliminary results based on descriptive statistics indicate
that the mean and standard deviation of prices are higher after the
expiration of the coal contracts. It is also interesting to note a large
decrease in the mean of prices accompanied by a large increase in
the standard deviation of prices during the price-cap regulation

Table 1
Summary statistics for daily electricity prices (E/MWh) across regimes.

Regime Regime Regime Pre-regime Regime Regime
1 2 3 4 4 5
Mean 19.84 24.16 20.08 19.90 22.61 19.31
Min 11.49 10.98 7.23 12.38 10.71 11.55
Max 30.08 3153 65.61 33.84 50.92 32.90
Std. Dev. 2.87 3.56 7.01 448 7.62 3.57
Obs. 1096 365 731 91 1114 616

Source: Author's calculations.

period. This could indicate a trade-off of attempting to control
annual average prices at the expense of larger price fluctuations.
The price fluctuations were finally stabilized after the two series of
divestments, which were introduced by the regulatory authority as
an attempt to decrease the overall influence of the incumbent
electricity producers and thereby improve competition in the
wholesale electricity market.

In order to draw statistical inferences in the analysis of the
impact of institutional changes and regulatory reforms on price
and volatility dynamics, I apply time series econometrics techni-
ques. These are described in detail in Section 5.

5. Methodology

Before modeling the dynamics of daily electricity prices, I first
conduct a stationarity test. Then I examine electricity prices using
time and frequency domain analyses. The time domain analysis
helps specify the AR process and the frequency domain analysis
helps specify the correct frequencies in periodic sine and cosine
functions included as additional explanatory variables to model
weekly seasonality. The volatility dynamics of electricity prices is
modeled using an ARCH process. Finally, in order to account for the
presence of institutional changes and regulatory reforms, I enrich
the set of explanatory variables to include regime dummy vari-
ables. The regime periods are determined based on the known
time of the institutional changes and regulatory reforms that took
place in the ESI in Great Britain during 1990-2001.

5.1. Stationarity test
A time series is called covariance stationary if its mean and
variance are constant over time and if its covariance depends only
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on the lag order. This is the weak form of stationarity usually
employed in time series econometrics.

A stationarity test is usually conducted before any modeling
step is undertaken. The main reason is that many modeling
procedures and techniques are applicable to only stationary time
series. In particular, correlogram and periodogram techniques,
discussed in Sections 5.2 and 5.3, respectively, also require the
stationarity of a time series (see, for example, Gengay et al., 2002).

I test the stationarity of daily electricity prices using the
Augmented Dickey-Fuller (ADF) test with a constant term, which
allows controlling for the possible presence of a serial correlation
in the residuals. As the maximum number of lags I initially chose
10, which was then changed to 8 based on the statistical sig-
nificance of the coefficient on the highest lag and Akaike informa-
tion criterion (AIC). The unit-root null hypothesis was rejected and
therefore I conclude that daily electricity prices are stationary. The
results of the ADF test are summarized in Table 2.

The stationarity conclusion is robust for higher order choices of
the maximal lag. However, the conclusion is usually less reliable
when a very high order of the maximal lag is considered. This is
due to a decrease in the power of the ADF test (Kocenda and
Cerny, 2007).

Table 2
Augmented Dickey-Fuller test for daily electricity prices.

Null hypothesis: daily price time series has a unit root
Exogenous: constant
Lag length: 8 (based on AIC, maximal lag=10)

ADF test statistic -8.304 1% Critical value -3.432
5% Critical value -2.862
10% Critical value -2.567

MacKinnon critical values for the rejection of the hypothesis of a unit root.

5.2. Time domain analysis

A time series can be analyzed on a time domain using the
autocorrelation function (ACF) and partial autocorrelation function
(PACF). I summarize the sample ACF and PACF for daily electricity
prices in a correlogram presented in Fig. 3 (a lag of order 1000
corresponds to approximately 25% of the sample size).

A detailed analysis of the sample autocorrelation function (ACF)
reveals the presence of two types of seasonality in electricity
prices: weekly seasonality observed through the spikes in the
sample ACF at lag orders of 7, 14, ... (integer multiples of 7), and
annual seasonality observed through the spikes in the sample ACF
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at lag orders of 364, 728, ... (integer multiples of 364).

The sample partial autocorrelation function (PACF) suggests to
additionally consider such lag orders as 9, 16, 28, 29, 61, 100 to
accommodate weekend, monthly, and quarterly patterns. This
knowledge is also used in specifying the AR process.

5.3. Frequency domain analysis

A frequency domain analysis allows us to identify frequencies
explaining a large portion of seasonal variations in electricity
prices. The identified frequencies can then be used in specifying
the arguments of periodic sine and cosine functions that are
included as additional explanatory variables. A frequency domain
is examined using the techniques of the spectral (Fourier) analysis.
The techniques of the Fourier analysis allow modeling a time
series with seasonal components as a sum of periodic A - sin (wt +
@) sinusoidal functions, where A denotes the amplitude of a
sinusoidal wave, » denotes the frequency, and ¢ denotes
the phase shift (see, for example, Molinero, 1991; Wang, 2003;
Prado and West, 2010). For practical considerations, the
periodic sinusoidal function can be rewritten in the following
way: A- sin(wt +¢)=A- sin ¢ - cos(wt) +A - cos ¢ - sin(wt). The
rewritten expression suggests using cos (wt) and sin (wt) trigono-
metric functions as explanatory variables for modeling the seaso-
nal pattern of electricity prices. Assuming that « is known (as
described later, it will be determined based on the Fourier trans-
form), estimates of the slope parameters can then allow calculat-
ing the respective amplitude and phase shift.

The Fourier transform of a real-valued function p(t) on the
domain [0, T] is defined as F(iw) = F{p(t)} = .[g p(H)e ™t dt, where i
is the imaginary unit such that i = —1. Based on this definition, the
FFT numerical procedure computes F(ioy)=X! ! p,e

It is important to note that the values of the Fourier transform
are complex numbers and are therefore not directly comparable.
For this reason I use the absolute values of the Fourier transform. A
detailed description is presented in Appendix A.

A graph where the frequency domain is plotted against the
absolute values of the Fourier transform is known as a period-
ogram. In Fig. 4 [ present a periodogram plot for daily electricity
prices.

A detailed analysis of the frequency domain, where the
absolute values of the Fourier transform achieve local maxima,
as described in the periodogram in Fig. 4, allows revealing
frequencies that explain the seasonal pattern in the price time
series. Hence, the frequencies at which the absolute values of the
Fourier transform achieve local maxima can be used in specifying
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Fig. 3. Correlogram for daily electricity prices. Source: Author's calculations.
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Fig. 4. Periodogram for daily electricity prices. Source: Author's calculations.

the argument of sine and cosine functions included as additional
explanatory variables.

The application of sine and cosine functions in modeling
weekly seasonality is preferred to the application of daily dummy
variables because the former approach has resulted in a more
parsimonious model. An application of smooth periodic functions
rather than, for example, daily dummy variables is also in line with
the suggestion for future extensions mentioned in Koopman et al.
(2007).

5.4. AR-ARCH model specification

For the analysis of price and volatility dynamics I employ the
AR(P)-ARCH(p) model, which was developed and applied in Engle
(1982) to estimate the means and variances of inflation in the UK.

The AR(P)-ARCH(p) model applied for the estimation of volati-
lity of electricity prices can be represented in the following way:

P
price, =agp + Y, a;price,_; + et
i=1

p
er=vey|ao+ X aisf_i,
V i=1

where similar to Engle (1982) and Koopman et al. (2007) I
consider autoregressive conditional heteroscedastic residuals &;.
vt is a sequence of an independent and identically distributed (i.i.
d.) random variable with zero mean and unit variance, which are
also known as the standardized residuals. The distributional
assumption for v is crucial for the joint estimation of the two
equations using the maximum likelihood approach. As described,
for example, in Hamilton (1994), usually a normal distribution,
generalized normal distribution or t-distribution is considered. A
normal distribution is a special case of a generalized normal
distribution when a shape parameter is equal to two.

As the standardized residuals, vt, is the i.i.d. sequence with zero
mean and unit variance, we can also specify the AR(P)-ARCH(p)

model in the following way:

P
price, =ap + Y, a;price,_; + &
i=1

1=

p
he = ag + ‘Z] el

1=
where h; = E,_{[¢?] is the conditional variance or volatility.

The two equations describing the AR(P) and ARCH(p) processes
are called the mean and conditional volatility equations, respec-
tively. This specification captures in particular such inherent
properties of electricity prices as mean reversion, spikes, and
volatility clustering.

The error term ¢ in the AR(P) process is assumed not to contain
any serial correlation. The appropriateness of a chosen specifica-
tion for the AR(P) process is examined using the ACF, PACF, and p-
values of the Ljung-Box Q-test statistics.

To ensure that the conditional volatility h, is positive, it is
usually assumed that a¢ > 0 and «;20. The implication of the ARCH
term in the conditional volatility equation is reviewed, for exam-
ple, in Ko¢enda and Cerny (2007). In particular, the ARCH term 2
is designed to reflect the impact of a shock or news from the
previous period that would affect the current conditional volatility.
More precisely, a significant and positive «; less than one would
measure the extent of a past shock's effect on the volatility, which
is not destabilizing. Additionally, it is also possible to distinguish
the impact of positive and negative shocks from a previous period,
which can asymmetrically affect the volatility. This is investigated
by a threshold ARCH process developed in Glosten et al. (1993).

Similar to Koopman et al. (2007), I extend the mean and volatility
equations to include explanatory variables represented in this
research by periodic sine and cosine functions with frequencies
suggested by the Fourier transform. In order to evaluate the impact
of institutional changes and regulatory reforms on the dynamics of
electricity prices, I also additionally include regime dummy vari-
ables, because I assume that the institutional changes and regulatory
reforms could have affected the price development. The validity of
the proposed assumption is verifiable by formal hypothesis testing.
The regime periods are determined based on the known time of the
institutional changes and regulatory reforms that took place in the
ESI in Great Britain during 1990-2001.

The joint estimation of the mean and conditional volatility
equations is dependent on the distributional assumption of v;.
Usually a t-distribution or generalized normal distribution is
considered. The adequacy of the overall AR(P)-ARCH(p) model is

verified by testing if the standardized residuals, o = ét/\/ﬁv, is an
i.i.d. sequence. For this purpose, I apply the BDS test developed by
Brock et al. (1996). Because the conclusion of the BDS test can in
general depend on the values of the embedding dimension and
proximity parameters, I also additionally analyze the p-values of

the Ljung-Box Q-test statistics to examine whether 7; and 1;%
contain any serial correlation. This is done as a robustness check
for the judgement on model adequacy.

6. Results and discussion

Based on the presented methodology, the following dynamic
model is estimated:
P

price, =ag + Y, a;price,_;j +z'¢ -y + &
i=1

p
hi=ao+ X aief,i+z’t-5,
i=1
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where z; is a vector of additional explanatory variables including
periodic sine and cosine functions and regime dummy variables. In
Figs. B1 and B2 changes in the distribution of input types in
electricity production and changes in input prices are presented.
Because data on input prices are available at a quarterly frequency,
we cannot explicitly consider input prices in modeling the
dynamics of electricity prices. I assume that electricity prices
incorporate past changes in input prices, which are generally
common for all producers.

Table 3
Estimation results of the extended AR-ARCH model.

P
price, =ag + Y, a;price,_; +2Z'¢ -y + &
i=1

P
he=ao+ Y aiel;+2¢-6,
i=1

Mean equation Conditional volatility equation

Variable Coef. Std. Err. ~ Variable Coef. Std. Err.
Dependent variable: price,

do 0.836™ 0.262 ag 0.604™ 0.069
price,_, 0.600™  0.015 £ 0.174™ 0.027
price, 0068™ 0016 2, 0019 0012
price;_3 0.033" 0.014 5574 0.092™ 0.021
price;_4 0.048™ 0.014 g?_s 0.110™ 0.020
price,_g 0.084™ 0.013 ef_7 0.293™ 0.039
price,_ 0241 0019 2.1, -0124"  0.054
price,g -0101™ 0017 2, 0.051™  0.019
price,_q -0.107""  0.015 cos (4xt/7) -0.383™  0.091
price;_14 0.096™  0.012 cos (6xt/7) 0.554™  0.089
price,1 -0.065™ 0.011 sin (2xt/7) 0.646™ 0102
price, 5 0071™  0.011 sin (4at/7) -0.308™  0.057
price,_ys -0.038™ 0009  sin(6at/7) -0.548™  0.087
price, s 0070 0013  Regime 2 0118 0.083
price;_q -0.069" 0.012 Regime 3 1.223™ 0240
price,_s, 0.044™  0.012 Pre-regime 4 3.455™ 1343
price,_y3 -0.032™ 0011 Regime 4 2130" 0356
price,_sg 0015 0009  Regime 5 1152 0220
price;_g; -0.009 0.007

price;_10 -0.024™  0.006 Shape parameter  1.273 0.036
price;_»7 -0.021""  0.007

price;_09 0.025™  0.007

price,_»60 -0.018™  0.006

price;_y70 0.013" 0.006

price;_34 0.026™  0.008

price,_sqs -0.026™  0.007

price,_sss -0.041™  0.009

price;_3s7 0.037  0.010

price,_sga 0.043™  0.009

cos (2xt/7) -0.1317"  0.042

cos(rt/7)  -0252" 0042

cos(6rt/7) 0118 0033

sin@st/7)  -0124™ 0036

sin(6zt/7)  -0290"  0.036

Regime 2 0.062 0.076

Regime 3 -0.403™ 0.081

Pre-regime 4 -0.261 0.280

Regime 4 -0.123 0.075

Regime 5 -0.328™ 0.079

Obs. 3631

Adj. R? 0.804

AIC 4,031

Notes: I;—; is an indicator function equal to 1 if &—7 <0 and 0 otherwise. The
inclusion of a GARCH term has not improved the results. The functions sin (2zt/7) and
cos (2xt/7) are excluded from the mean and volatility equations respectively, because
the corresponding estimated slope coefficients are statistically insignificant.

" stands for the 10% significance level.

™ stands for the 5% significance level.

™ stands for the 1% significance level.
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The estimation results obtained using the Marquardt algorithm
are summarized in Table 3. Attempts to model weekly seasonality
through the application of daily dummy variables were not as
successful as the application of smooth periodic sine and cosine
functions, where the frequencies are chosen based on the Fourier
transform. In particular, the application of sine and cosine func-
tions has resulted in a more parsimonious model. Weekly season-
ality is additionally modeled through a lag structure in both the
mean and conditional volatility equations. The mean equation also
includes a yearly lag, which is statistically significant.

It is interesting to note that weekly seasonality modeled in the
conditional volatility equation is found to be complex to also
contain asymmetries with respect to positive and negative shocks
(or innovations). As the estimation results indicate, there is
evidence at the 5% significance level that positive shocks from
the previous week have a larger effect on the volatility. The sum of
the coefficients of the lagged variables is less than unity (0.965 in
the mean equation and 0.738 in the conditional volatility equa-
tion), which suggests that the effects of past prices and shocks are
not destabilizing. Moreover, the nonnegativity requirement of the
coefficients of the ARCH terms is also satisfied. The latter is
necessary to ensure that the conditional volatility is positive.

The assumption that the standardized residuals v have a t-
distribution is rejected at the 1% significance level. Therefore, a
generalized normal distribution (also known as a generalized error
distribution) is considered. The estimation results presented in
Table 3 include an estimate of the shape parameter, which
suggests that tails are leptokurtic, i.e., heavier than those of a
standard normal distribution. This is an often-cited result in the
literature dealing with modeling and forecasting electricity price
dynamics (see, for example, Koopman et al., 2007). The distribu-
tion of o, presented in Fig. 5, in comparison with the normal
distribution, suggests that the assumption of the generalized
normal distribution for v, works reasonably well.

In order to check the adequacy of the estimated extended AR-
ARCH model, I also apply the BDS test developed by Brock et al.
(1996) to test if the standardized residuals ; are i.i.d. For the
embedding dimension m equal to 2 and 3 and a default option of
the proximity parameter ¢, the null hypothesis that the standar-
dized residuals are i.i.d. is not rejected. This test, therefore,
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Fig. 5. Density of £; and the normal distribution.
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confirms the adequacy of the estimated AR-ARCH model. The test
results are summarized in Table 4.

Because the conclusion of the BDS test can in general be
sensitive to the choice of m and e parameters, as a robustness
check for model adequacy, I additionally examine if the standar-
dized residuals 7 and standardized residuals squared »? contain
any serial correlation. For this purpose I examine the p-values of
the Ljung-Box Q-test statistics. The test results are summarized in
Fig. 6.

The test results presented in Fig. 6 provide evidence at the 5%
significance level that the standardized residuals (¢;) and standar-
dized residuals squared (v?) do not have any serial correlation.
These findings suggest that the residuals do not contain any
further information and therefore justify the appropriateness of
the joint estimation of the mean and conditional volatility equa-
tions. Overall, the estimated extended AR-ARCH model explains
about 80% of variations in electricity prices.

Using the estimation results presented in Table 3, I summarize
in relative terms the effects of the institutional changes and

Table 4
BDS test for standardized residuals 7.

Dimension BDS Stat. Std. Err. p-value

2
3

-0.001
0.002

0.001
0.002
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regulatory reforms on price and volatility dynamics for the case
of the England and Wales electricity market during 1990-2001.
This is presented in Fig. 7.

When the initial coal contracts expired, the electricity prices on
average became slightly higher and more volatile. These changes,
however, are neither statistically nor economically significant
compared to the reference period, i.e., regime 1.

During the price-cap regulation period (i.e., regime 3) we
observe a decrease in the price level, which however happens at
the cost of higher volatility. These changes are both statistically
and economically significant. This result is also partly consistent
with the finding in Wolfram (1999) that the price-cap regulation
led the industry supply curve to rotate counterclockwise, because
in order to satisfy the price cap producers reduced prices when
demand was low and increased them when demand was high.

Using nonparametric techniques for weekly electricity prices
during December 10, 1990-March 11, 1996, Robinson and Baniak,
2002 also find that after the expiry of the coal contracts in 1993
and during price-cap regulation, price volatility increased, for
which the authors provide an alternative explanation. In particu-
lar, they state that the incumbent electricity producers could have
been deliberately increasing price volatility in order to enjoy
higher risk premia in the contract market. However, because data
on contracts are confidential, it is hard to empirically verify this
statement.

During the period after price-cap regulation and before the first
series of divestments took place, the price volatility increased
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Fig. 6. Ljung-Box Q-test for standardized residuals o, and u?. Source: Author's calculations.
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dramatically, whereas an increase in the price level is only
economically significant. This can possibly be characterized as a
transitional feature of the pre-regime 4 period. During regime 4,
when the first series of divestments took place, the volatility
decreased, whereas the price level increased further compared to
the pre-regime 4 period. This finding indicates that during regime
4 the trade-off has reversed: lower volatility is achieved at the cost
of a higher price level. The increased price level and decreased
price volatility during this period could be related to tacit collusion
discussed, for example, in Sweeting (2007).

The estimation results indicate that the second series of
divestments was more successful. In particular, the price level
and volatility are both reduced. This finding supports the imple-
mentation of the second series of divestments.

From the perspective of the presented time series modeling
approach, it follows that the price-cap regulation and divestment
series led in the end to similar price levels and volatility. In other
words, the structural remedy implemented through divestment
series had a similar impact on the price level and volatility as the
behavioral remedy implemented through the price-cap regulation.
However, usually divestments could be superior to price regula-
tion because the former allow for the creation of a less concen-
trated market structure, where it is easier to promote competitive
bidding among electricity producers. This conclusion is consistent
with the restructuring recommendation stated in Green and
Newbery (1992). In particular, using empirical simulation the
authors show that restructuring leads to a significantly lower
equilibrium price and deadweight loss. The result that restructur-
ing leads to lower electricity prices was later confirmed in Evans
and Green (2003), where the authors show that increases in
market competition, which is measured through a Herfindahl
concentration index, are chiefly responsible for a decrease in the
price level.

7. Conclusions

This study aims to analyze the impact of introduced institu-
tional changes and regulatory reforms on price and volatility
dynamics. For this purpose, time and frequency domain analyses
are used to appropriately model seasonality in electricity prices.
The methodology based on the application of sine and cosine
functions whose frequencies are determined from the Fourier
transform rather than based on the application of the daily
dummy variables is found to be more appropriate for modeling
weekly seasonality in electricity prices. As a result, a more
parsimonious AR-ARCH model has been considered. Moreover,
the estimation results of the extended AR-ARCH model indicate
that innovations from the previous week have asymmetric effects
on volatility. In particular, I find that positive innovations from the
previous week have a larger effect on volatility.

This research also documents new results in quantifying the
impact of institutional changes and regulatory reforms on price
and volatility dynamics for the case of the England and Wales
wholesale electricity market during 1990-2001. Firstly, I find the
presence of a trade-off in introducing price-cap regulation, which
is both statistically and economically significant. In particular,
estimation results indicate that a lower price level was achieved
at the expense of higher volatility. Secondly, the implementation
of the first series of divestments was successful at lowering price
volatility, which however happened at the cost of a higher price
level. This is explained as the possible presence of tacit collusion.
Thirdly, only during the last regime period, when the second series
of divestments was implemented, was it possible to simulta-
neously reduce prices and volatility.
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I also find that the structural remedy implemented through
divestment series had a similar impact on price level and volatility
as the behavioral remedy implemented through the price regula-
tion. Because in a less concentrated market consisting of, for
example, five-six major power producers it is easier to promote
competition, divestment series could be superior.

The findings and conclusions of this study of the impact of the
institutional changes and regulatory reforms on the dynamics of
electricity prices could be of interest to, for example, Argentina,
Australia, Chile, Italy, Spain, and some US states, which have
organized the operation of their modern electricity markets
similar to the original model of the England and Wales wholesale
electricity market.
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Appendix A. A Fourier transform

The Fourier transform of a real-valued function p(t) on the
domain [0, T] is defined as

T .
Rl = Fp(O) = [ plt)- e dt,
0
where i is the imaginary unit such that i = -1.
Using the above definition, we can write the following approx-

imation for the Fourier transform:

T-1 . T-1
Fliw)~ Y p-e7t= Y p,-(cos wpt—i sin wyt)
£=0 t=0

T-1 (T-1 .

Y D;- COS wpt—i Y, py- Sin wyt
t=0 t=0

= (p;, COS wyb)—i(p;, SN wit),

where oy =k/(N-1)-2z, k=0,1,2,...,N-1, and N determines
the grid.

Because the values of the Fourier transform are complex
numbers, they are not directly comparable. For this reason we
use the absolute values of the Fourier transform.
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Fig. B1. Distribution of input types for electricity production. Source: Department
of Trade and Industry (1997-2002); author's calculations.
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Department of Trade and Industry (1993-2000); author's calculations.

The optimization problem can therefore be described in the
following way:

|F(iwg)|~|(p;, €OS wib)—i(p;, Sin wyt)|—max
[

where wp=k/(N-1)-2z, k=0,1,2,...,N-1, and N determines
the grid.

The expressions in parentheses represent scalar products. In
statistical terms, they measure covariation between the price time
series and cosine/sine functions for different values of wy. In this
optimization problem, our task is to find such values of w; that
would explain a large portion of variation in the electricity prices.
The results have been computed using the FFT procedure imple-
mented in MatLab.

Appendix B

Distribution of input types for electricity production and
quarterly average input costs of electricity producers in the UK
are shown in Figs. B.1 and B.2.
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Directions for further research

In the first paper I analyze the dynamics of the wholesale electricity price during the peak-
demand period. I propose to use skew generalized error distribution (SGED), which
captures the features of heavy tails, excess kurtosis (i.e., kurtosis above three), and
asymmetry. This distribution is relatively novel and has not been used much in the
literature. Instead, other simpler distributions have been used. For example, Koopman
et al. (2007) for the autoregressive integrated moving average model with generalized
autoregressive conditional heteroscedasticity (ARFIM A-GARC H model) use Student’s
t distribution, which captures the feature of heavy tails and assumes kurtosis below three.
It would be interesting to use the ARFIMA-GARCH model with SGED in case time
series have additionally the features of excess kurtosis and asymmetry.

There are two frequently used models to analyze the bidding behavior of producers on
electricity markets: supply function equilibrium and discrete bid auction. The first model
of a supply function equilibrium is used, for example, in Green and Newbery (1992). This
approach assumes that production units are small enough or that each producer has a
sufficiently large number of production units, as was the case with the National Power
and PowerGen incumbent electricity producers in the early 1990s. Ciarreta and Espinosa
(2010) similarly applies the supply function equilibrium model for the Spanish wholesale
electricity market.

The second model of a discrete bid auction is used in Von der Fehr and Harbord (1993),
Wolfram (1998), Brunekreeft (2001), and Crawford et al. (2007). In the second paper
I also use the discrete bid auction model to analyze the bidding behavior of producers
on the wholesale electricity market during the liberalization process in Great Britain
(Tashpulatov, 2015).

Until now there is no clear consensus regarding which modeling approach is better.
On the one hand, Ciarreta and Espinosa (2010) finds that the supply function equilib-

rium model better fits data than the discrete bid auction model. On other hand, when
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analyzing the later period, Wolfram (1999), however, finds that for the British wholesale
electricity market the supply function equilibrium model does not describe the market
very well because electricity prices were much lower than the model predicted. Both
of these wholesale electricity markets share a lot in common: a similar market design
operated by two incumbent electricity producers. Because the result of Ciarreta and
Espinosa (2010) is based on the analysis of bids for only oil fired thermal plants, it could
be interesting to extend the analysis for all plants.

Withholding output could be another possible way how to increase prices without the
need to price output above marginal production cost. This is also an important issue
in energy markets. In the third paper we compare capacity bidding of producers dur-
ing low- and high-demand periods in order to analyze if producers behave competitively
or noncompetitively. Capacity withholding was also an issue in the German electric-
ity market where the E.ON AG electricity producer was investigated by the European
Commission (European Commission, 2009). The situation of a firm producing less for a
higher price is a frequent consequence of the firm’s dominant or monopoly position on
the market. Hence, understanding the bidding behavior of producers is important for
ensuring reasonable energy prices for end consumers.

In the literature, under daily prices we usually see time-weighted average prices. How-
ever, for some market participants and regulators it could be also of interest to see the
analysis of demand-weighted average prices. For the British electricity market it was
possible to analyze only time-weighted average daily prices as presented in the last pa-
per because demand data are not available for the whole sample period. The presented
methodology based on time and frequency domains with the generalized error distribu-
tion could however be easily applied to the new price time series. In case the distribution
is asymmetric, then one could apply skew generalized error distribution similar to the

methodology in the first paper.
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Conclusions

In the presented four papers we discussed the liberalization process of the electricity
supply industry in Great Britain. The purpose of liberalizing the electricity supply in-
dustry was to promote competition and to lower prices for end consumers. We focus on
the analysis of the peak-demand period during which, as documented in the literature,
producers may exercise market power.

In the first and fourth papers we analyze the effect of regulatory reforms on market
outcomes. In particular, we analyze the effect of reforms on the electricity price during
the peak-demand period and on the daily electricity price, respectively. Both of these
papers find weekly seasonality pattern in electricity prices, which was later important for
analyzing firm behavior.

The second and third papers address producers’ bidding behavior. In particular, in
the second paper, we analyze the exercise of market power manifested in submitting price
bids in excess of marginal production costs. In the third paper, we analyze the capacity
withholding strategy aimed at creating artificial deficit during the peak-demand period
with a view to increase the wholesale electricity price when the market operator may
need to schedule more expensive production facilities.

We find that the second series of divestments was generally more successful at pro-
moting competition and at lowering price level and volatility. However, the incumbent
producers were affected differently possibly because of an unequal horizontal restructur-
ing introduced through divestment series.

The documented results from the analysis of the England and Wales electricity market
could be interesting for countries which adopted a similar market design operated by
several dominant firms. This market could be used as a model for liberalizing energy

markets in other countries (Wolak, 2000; Joskow, 2008; Joskow, 2009).
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