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Special thanks to Jakub Šimánek, my colleague from the Department of Measure-
ment, with whom we carried out hundreds of experiments, implemented various local-
ization algorithms and wrote two papers.

Finally, my parents, my sister Katka and dear Janča were a great support, thank you
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Abstract

Deployment of mobile robots in search and rescue missions is a way to make job of
human rescuers safer and more efficient. Such missions, however, require robots to be
resilient to harsh conditions of natural disasters or human-inflicted accidents. They
have to operate on unstable rough terrain, in confined spaces or in sensory-deprived
environments filled with smoke or dust. Localization, a common task in mobile robotics
which involves determining position and orientation with respect to a given coordinate
frame, faces these conditions as well. In this thesis, we describe development of a
localization system for tracked mobile robot intended for search and rescue missions.
We present a proprioceptive 6-degrees-of-freedom localization system, which arose from
the experimental comparison of several possible sensor fusion architectures. The system
was modified to incorporate exteroceptive velocity measurements, which significantly
improve accuracy by reducing a localization drift. A special attention was given to
potential sensor outages and failures, to track slippage that inevitably occurs with this
type of robots, to computational demands of the system and to different sampling
rates sensory data arrive with. Additionally, we addressed the problem of kinematic
models for tracked odometry on rough terrains containing vertical obstacles. Thanks
to research projects the robot was designed for, we had access to training facilities
used by fire brigades of Italy, Germany and Netherlands. Accuracy and robustness of
proposed localization systems was tested in conditions closely resembling those seen in
earthquake aftermath and industrial accidents. Datasets used to test our algorithms
are publicly available and they are one of the contributions of this thesis. We form this
thesis as a compilation of three published papers and one paper in review process.

Keywords:
mobile robot, search and rescue, localization, data fusion, Kalman filter, odometry.
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Abstrakt

Nasazeńı mobilńıch robot̊u během zásah̊u záchranných složek je zp̊usob, jak učinit
práci záchranář̊u bezpečněǰśı a efektivněǰśı. Na roboty jsou ale při takovém použit́ı
kladeny vyšš́ı nároky kv̊uli podmı́nkám, které při těchto událostech panuj́ı. Roboty
se musej́ı pohybovat po nestabilńıch površ́ıch, ve st́ısněných prostorech nebo v kouři
a prachu, což ztěžuje použit́ı některých senzor̊u. Lokalizace, v robotice běžná úloha
spoč́ıvaj́ıćı v určeńı polohy robotu v̊uči danému souřadnému systému, muśı spolehlivě
fungovat i za těchto zt́ıžených podmı́nek. V této dizertačńı práci popisujeme vývoj
lokalizačńıho systému pásového mobilńıho robotu, který je určen pro nasazeńı v př́ıpadě
zemětřeseńı nebo pr̊umyslové havárie. Nejprve je předveden lokalizačńı systém, který
vycháźı pouze z měřeńı proprioceptivńıch senzor̊u a který vyvstal jako nejlepš́ı vari-
anta při porovnáńı několika možných uspořádáńı takového systému. Lokalizace je
poté zpřesněna přidáńım měřeńı exteroceptivńıch senzor̊u, které zpomaluj́ı kumulaci
nejistoty určeńı polohy robotu. Zvláštńı pozornost je věnována možným výpadk̊um
jednotlivých senzorických modalit, prokluz̊um pás̊u, které u tohoto typu robot̊u nevy-
hnutelně nastávaj́ı, výpočetńım nárok̊um lokalizačńıho systému a rozd́ılným vzorko-
vaćım frekvenćım jednotlivých senzor̊u. Dále se věnujeme problému kinematických
model̊u pro přej́ıžděńı vertikálńıch překážek, což je daľśı zdroj nepřesnosti při lokalizaci
pásového robotu. Dı́ky účasti na výzkumných projektech, jejichž členy byly hasičské
sbory Itálie, Německa a Nizozemska, jsme měli př́ıstup na cvičǐstě určená pro př́ıpravu
na zásahy během zemětřeseńı, pr̊umyslových a dopravńıch nehod. Přesnost našeho
lokalizačńıho systému jsme tedy testovali v podmı́nkách, které věrně napodobuj́ı ty
skutečné. Soubory senzorických měřeńı a referenčńıch poloh, které jsme vytvořili pro
testováńı přesnosti lokalizace, jsou veřejně dostupné a považujeme je za jeden z př́ınos̊u
naš́ı práce. Tato dizertačńı práce má podobu souboru tř́ı časopiseckých publikaćı a
jednoho článku, který je v době jej́ıho podáńı v recenzńım ř́ızeńı.

Kĺıčová slova:
mobilńı robot, záchranné práce, pátraćı práce, lokalizace, fúze dat, Kalman̊uv filtr,

odometrie.
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1. Introduction

This work focuses on a problem of mobile robot localization in harsh conditions of
search and rescue missions. The term localization denotes determining the position
of some object with respect to a defined coordinate frame [22]. The mobile robot is
a robot capable of autonomous locomotion. The search and rescue missions are the
core objective of rescue robotics which is devoted to enabling responders and other
stakeholders to sense and act at a distance from the site of a disaster or extreme
incident [19].

The search and rescue robot is expected to serve as a sensory and manipulation
platform providing a situation awareness in areas inaccessible or dangerous for human
rescuers (Fig. 1.1 shows an example of such environment). These robots have been
mostly teleoperated so far. End users have sometimes explicitly required removing any
autonomous functions [19, 20]. However, teleoperation demands a trained operator
dedicated for this job. An effort has been made to develop, test and deploy mobile
robots with some level of shared autonomy (e.g. projects NIFTi1 and TRADR2 we
have been working on). The shared autonomy means that human operator controls
actions of a robot (e.g. decides where to go). Still, the robot has basic autonomous
abilities. The autonomy is ideally implemented in a way the operator accepts it as a
natural part of the system. This reduces cognitive load related to robot control – for
example, an automatic collision avoidance allows the operator to do his job instead of
focusing on obstacles in the robot way.

The localization of mobile robots is a necessary prerequisite for many of these basic
automatic abilities. The autonomous navigation uses a known position of the robot
to steer it along a planned path, detectors of dangerous chemical substances insert
detections into a map based on position estimates. The localization can also help the
robot find its way back from the disaster site when a wireless or tether connection to
the operator is lost. Even without any autonomy, knowing position of the robot with
respect to a map leads to a better situation awareness.

1European Union FP7 project NIFTi (No. 247870; http://www.nifti.eu)
2European Union FP7 project TRADR (No. 609763; http://www.tradr-project.eu)
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Figure 1.1. NIFTi ground robot exploring collapsed church in Mirandola, Italy, 2012. Wooden
and stone debris, which filled its nave, are remains of its roof and ceiling.

Contrary to laboratory conditions, design of a rescue robot has to follow constraints
posed by harsh environment [19]:

1. Extreme terrains and operating conditions affect size, sensor performance, and pose
general robot survivability constraints.

2. Ability to function in GPS- and wireless-denied environments.

3. Provision of appropriate human-robot interaction for operators and for victims.

Design of the localization system is constrained mostly by points 1. and 2. On
flat surfaces, three degrees of freedom are often sufficient for robot localization. They
express a 2D position together with a heading. Contrary to that, a difficult terrain with
various obstacles implies estimating position in three dimensions together with robot
attitude (six degrees of freedom in total). See Fig. 1.2 which depicts NIFTi ground robot
navigating through earthquake aftermath training site used by Italian fire brigade. Such
environment contains many obstacles the robot has to pass. Moreover, presence of dust,
smoke or fog affects performance of various sensors, making them less reliable or even
unusable. External sources of position such as GPS are usually blocked by structures
present in rescue scenarios (e.g. collapsed buildings as earthquake aftermath or steel
structures in industrial accidents).

We approach the problem of designing localization systems for harsh environments
by investigating various proprioceptive and exteroceptive3 sensory modalities. Proprio-
ceptive modalities are more reliable especially in low-visibility conditions, exteroceptive
modalities usually provide measurements which are more information-rich. For exam-
ple, it is possible to estimate motion of a robot solely from a series of subsequent camera
images (including translation scale given size of some observed objects is known). Sen-
sors of an angular rotation rate, wheel motion encoders and several other sensors are
needed to obtain similar results relying only on proprioceptive modalities. Cameras,
however, struggle in areas filled with thick smoke.

Information provided by sensory modalities needs to be processed and fused to ob-
tain estimates of a position and an attitude of the robot. We explore and propose
fusion schemes that do this efficiently, preferably exploiting complementary character4

3Proprioception stands for modalities internal to the robot, e.g. inertial measurements, joint sen-
sors, motor or wheel encoders, etc. Contrary to those, exteroception involves measuring properties
external to the robot by cameras, laser range finders, sonars, etc.

4For example, estimating rotation rate from track velocities is not reliable but can be corrected by
using an angular rate sensor instead.
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1. Introduction

Figure 1.2. NIFTi ground robot at a training site of the Italian fire brigade. An old military
hospital has been partially torn down to prepare firemen for search and rescue operations.

of the modalities. To make localization more robust in real-world conditions, we con-
sider methods of machine learning which, based on measured data, improve models
of robot interaction with the environment and provide better interpretation of sensor
measurements.

Important aspect of our work is identifying weak points of designed localization sys-
tems by testing them in conditions, which are likely to impair their functionality. After
initial experiments in controlled laboratory environment, we proceed to terrains and
locations resembling those observed in real search and rescue missions. They allow us
to test accuracy, precision and robustness of localization in a way which is relevant to
purpose of a search and rescue robot. Among these locations, the most challenging are
training sites run by fire brigades. The ones we had access to are intended for training
rescuers for earthquake and industrial accident scenarios (as shown in Fig. 1.4).

This thesis is a compilation of three published journal papers and one submitted
journal paper in review. They are supported by work not included in this thesis but
closely related; the work is referenced in Section 2. The three published papers are
referenced as EKF Architectures [A.1], Data Fusion [A.2] and EKF Smoothing [A.4]
further in the text to help the reader distinguish between them. The work included
in this thesis proposes solutions to problems arising from development of a localization
system for a tracked search and rescue robot (Fig. 1.3). This robot was developed as a
part of EU funded projects NIFTi and TRADR. Their scope has been deployment of
ground and air robots in search and rescue missions.

The localization architecture presented in this thesis starts as a proprioceptive data
fusion scheme, which arose from need for a system estimating position and attitude
of the tracked robot. Computational demands had to be limited allowing it to run
on-board in a real time. We have decided to experimentally compare several state-
of-the-art Kalman-filter-based architectures. Implementation of the best-performing

4



Figure 1.3. Sensory modalities available on our mobile robot for localization purposes. From
the left to the right: Track odometry, inertial measurement unit, omni-directional camera
and laser range-finder.

Figure 1.4. Blast furnace Phoenix West, Dortmund, Germany. Iron production has ceased and
the site is used by local fire brigade to train for industrial accident scenarios. The TRADR
project used this compound for end-user evaluations of the system.

fusion scheme has been deployed on the robot and further thoroughly tested during
NIFTi and TRADR project end-user evaluations in real-world conditions.

Thanks to development of advanced exteroceptive sensory modalities provided by
the project partners, the localization architecture has been extended to incorporate
these additional measurements. Proposed EKF fusion scheme has to deal with varying
sampling rates of the new exteroceptive modalities. Emphasis is put on the slowest one,
which estimates relative motion of the robot by comparing consecutive 3D laser scans
arriving every three seconds. We show how to apply corrections arising from these slow
but accurate measurements while preserving trajectory details captured by higher-rate
modalities.

Finally, for environments with difficult terrain, we have proposed additional kinematic
models for tracked mobile robots, which improve localization accuracy during obstacle
traversal. Complying to expected conditions of search and rescue missions, this im-
proved odometry relies on proprioceptive data only making it usable in low-visibility
environments. We have achieved reduction of localization drift, which otherwise dete-
riorates higher-level functionalities such as simultaneous localization and mapping.

5



2. Contributions

In this section, we present main contributions of the four journal articles that constitute
the thesis core. We outline tasks we solved in the papers and provide a short summary
of the results.

2.1. Extended Kalman Filter architectures for tracked mobile
robots

The Extended Kalman Filter is a well-proven framework for data fusion and state
estimation. However, there are several possible EKF architectures to choose from when
designing a proprioceptive localization system for a tracked robot. When designing
this system for the tracked NIFTi robot, we were unable to find any publication which
would compare EKF architectures suitable for proprioceptive localization utilizing IMU
and track odometry.

In our publication EKF Architectures [A.1], we decided to implement and experi-
mentally compare four different state estimation architectures based on the EKF for
6-degrees-of-freedom proprioceptive localization. These architectures differ in definition
of a system state, which is estimated by the EKF, and in the way the robot attitude
is handled. The possible choices of the state reflected state-of-the-art approaches to
inertial navigation and track odometry. The attitude estimation was extension of our
previous results from [A.5]. Based on the achieved localization accuracy and computa-
tional demands of the tested architectures, we have found the best candidate for the task
(see Fig. 2.1). The accuracy is approximately 4% position error of the distance driven,
which is enough for local robot control and for higher-level exteroceptive localization
modules to provide continuous corrections.

Figure 2.1. Best-performing EKF architecture selected from four alternatives. Data from iner-
tial measurement unit (IMU) and track odometry (ODO) are fused to estimate the position,
velocity and attitude expressed by three Euler angles. Adopted from EKF Architectures
[A.1].

6



2.2. Multimodal data fusion for mobile tracked robots

2.2. Multimodal data fusion for mobile tracked robots

Advances in sensor and computer technology allows mobile robots to be equipped with
rich sensor suites and to process all measurements onboard. For purpose of localization,
it is desirable to fuse all sensor modalities that capture the robot motion in a way that
exploits their complementarity and redundancy. However, due to different capabilities
of each sensor, measurements arrive at different sampling rates. Moreover, noise which
they contain cannot be always simply modeled by a Gaussian distribution. The desired
fusion system should take these characteristics into account, add resiliency to modality
failures if redundancy allows that and provide robust localization estimate.

Fusion system proposed in Data Fusion [A.2] is based on the EKF and is our first
contribution. It can fuse measurements with sampling rates spanning range from 0.3
to 100 Hz (see Fig. 2.2). A special attention is paid to 3D laser scan matching, which is
accurate but difficult to integrate due to its extremely slow measurement rate. Three
possible methods to achieve that were tested, one of them being our new proposed one.
Experiments showed that our approach preserved details provided by faster sampling
modalities while benefiting from corrections from the slow laser scan matching by re-
ducing localization drift. The second contribution is the indoor and outdoor public
dataset1 available to the robotic community. It allows testing visual-based and laser-
based localization techniques thanks to accurate reference recorded together with all
sensor data. The dataset contains special experiments which invoke sensor failures in-
tentionally and push the sensor modalities to their limits. The third publication EKF
Smoothing [A.4] extends findings of Data Fusion [A.2] and compares proposed trajec-
tory approach to another alternative technique, to the Rauch-Tung-Striebel smoother.
Results show that our trajectory approach allows removal of drift caused by incorrect
attitude present in laser-based localization modality.

2.3. Proprioceptive localization for tracked robots on vertical
obstacles

Approaches to track odometry focus mainly on the slippage problem while turning.
The task of traversing vertical obstacles has not been addressed in the context of lo-
calization. This poses a problem for robots operating in difficult terrains, especially in
conditions that include smoke and dust, which complicates usage of additional extero-
ceptive sources of localization.

We proposed additional kinematic models for tracked vehicles traversing vertical ob-
stacles, one of them is shown in Fig. 2.3. To switch between them, we have adopted a
data-driven approach based on proprioceptive features thus making the odometry usable
in low-visibility conditions. We have tested the proposed odometry system on artificial
obstacles in a lab equipped with a tracking system. Recorded reference has allowed
us to train the classifier for model switching. After initial experiments, we have sub-
sequently proceeded to real-world obstacles, which the robot encounters in search and
rescue scenarios. Applying the additional models, drift in z axis has been reduced. This
is eventually beneficial for higher-level functionalities (e.g. laser mapping, path plan-
ning and execution), which otherwise suffer from gradual mis-localization (e.g. maps
contain non-existent artifacts). We have submitted our findings as a journal paper,
which is included as Section 6.

1The dataset is available at https://sites.google.com/site/kubelvla/public-datasets
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2. Contributions

Figure 2.2. Schematics of the proposed data fusion for robot localization. Exteroceptive sensor
data are preprocessed into measurements of position increments and fused together with the
odometry and IMU data by the Extended Kalman Filter. The anomaly detection block is
the result of our work [A.3].
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Figure 2.3. Kinematic model of a tracked robot climbing up a vertical obstacle. Top left:
actual motion when climbing up an obstacle. Top right: trajectory estimated by a standard
3D odometry. Bottom left: proposed model for obstacle climbing with an adjustable sub-
track. Bottom right: model of motion when tipping over the obstacle edge.
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2.4. Related work

2.4. Related work

2.4.1. Related publications

Each paper in Sections 3, 4, 5 and 6 discusses in detail its state-of-the-art publica-
tions and our previous work. Additional references are provided in Section 7 which
analyses topics related to search and rescue scenarios and advances in the field after
our publications. Here, we provide an overview of topics discussed in Sections 3, 4, 5
and 6.

The first publication EKF Architectures [A.1] in Section 3 discusses work related to
Extended Kalman filter (EKF) and architectures which utilize EKF to estimate position
and attitude of a robot or of an aircraft. Publications from area of inertial navigation
and attitude estimation are related closely. Their results provide mathematical model
describing the relation between sensory measurements and the state of the system in a
form of differential equations. Another modality of the dead reckoning2 setup considered
in the first publication is the track odometry, i.e. estimating the robot motion from
its track velocities. We cite works which focus on the track slippage problem and on
models for the slippage correction.

Our second publication Data Fusion [A.2] in Section 4 provides an overview of work
related to four sensory modalities, which are available on our mobile robot platform
and which provide localization-related measurements. Those are inertial measurements,
track odometry, visual odometry and laser scan matching system. Fundamental works
related to inertial navigation and dead reckoning partially overlap with those works
cited in EKF Architectures [A.1]. Additional publications give examples of processing
relative motion measurements. We further introduce publications from the field of
visual odometry and laser scan matching, localization and mapping.

The third publication EKF Smoothing [A.4] in Section 5 extends findings of Data
Fusion [A.2]. Therefore its related work section recaps fundamental works from Data
Fusion [A.2] and adds publications related to Kalman filter smoothers and to smoothing
techniques, which involve the graph optimization and inverse filters for visual-inertial
systems.

Section with related work in the last article, included in Section 6, which has been
submitted for review, provides an overview of the problem of estimating motion of a
tracked robot while traversing obstacles. The section shows the approaches first which
involve mechanical modifications of the robot in order to improve ability to climb and
traverse the obstacles. These modifications include adjustable morphology of the robot.
After discussing mechanical approaches, works providing means to analyze the ability
to traverse a given obstacle are introduced. Publications proposing ways to correctly
estimate motion of the robot based on track velocities are the most related to our work.
Additionally, we cite several publications which propose various sensors that improve
perception of the terrain beneath the tracks.

2.4.2. Related projects

Two search and rescue projects NIFTi and TRADR motivated us to investigate local-
ization for mobile robots. Their main objective was formation of mixed human-robot
rescue teams. Real-world rescue scenarios context and a strong emphasis on the user-
centric design have affected development of software and hardware within these projects.

2Term dead reckoning is used in navigation for determining one’s current position based on previ-
ously estimated position. The new position estimate is obtained by integrating speed and course
measurements.
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2. Contributions

Proposed algorithms have been tested in the same environments which human rescuer
teams use for training. They define limitations needed to be taken into account:

• The localization is required to run on-board the mobile robot because of limited
wireless connection to the operator side.

• Sensor measurements are noisy. Exteroceptive sensor measurements can be obfus-
cated by smoke and dust.

• Proprioceptive sensors such as inertial sensors suffer from vibrations and strong jolts
when robot moves on a rough terrain.

Software design has benefited from using Robot Operating System simplifying inte-
gration of different sensory modalities, fusion systems and higher-level functions. In the
case of the localization system, we have aimed for modular, loosely coupled systems.
This has allowed us to upgrade the system components without major code changes to
the rest of the modules in the eight years of the two projects time span. This choice
comes with a potential loss of optimality, of course.

Proposed algorithms have been also tested in two real deployments. Both took place
in Italy in the earthquake aftermath. The first mission was in Mirandola in year 2012,
where NIFTi robots helped to map state of a damaged church, which was marked
as a no-go zone for human rescuers. Video and depth data were captured helping
with damage and danger assessment. Due to early stage of the NIFTi project with
software and hardware not thoroughly tested, the robot was tele-operated by a human
operator maintaining visual contact through entrance to the church. The second real-
world deployment took place in Amatrice in 2016. The town was struck by another
earthquake, two ground robots and several UAVs were deployed to fulfill a mission
similar to Mirandola – damage assessment and creation of textured 3D models of two
churches including their interior (Fig. 2.4, 2.5).

The ground robots were running implementations of the localization discussed in
EKF Architectures [A.1] and Data Fusion [A.2] helping mainly in the second Amatrice
mission where visual contact with the robots was not possible. The operators had to
rely on 3D visualizations of robot surroundings in a form of a 3D point clouds3, which
were continuously assembled based on known position and attitude of the robot. Video
feed was available as well but found insufficient for assessing size of obstacles in robot
way.

3The point cloud is a representation of a set of laser range-finder or another depth-measuring sensor
measurements. It is simply a set of 3D points.

10



2.4. Related work

Figure 2.4. A view from the on-board camera (left). A 3D colored point cloud (right), both
captured in a collapsed church in Amatrice, Italy.

Figure 2.5. Italian firefighters assisting with the robot retrieval from a no-go zone after return-
ing from the collapsed church. Amatrice, Italy.
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3. Evaluation of the EKF-based estimation
architectures for data fusion in mobile robots

This section presents the first publication, the EKF Architectures [A.1]. It is a 6-page-
long paper published in IEEE/ASME Transactions on Mechatronics. Here, we give a
short overview of the paper and then provide the paper itself as the last part of this
chapter.

The introduction section briefly establishes context of search and rescue robotics
and then moves to description of Extended Kalman Filter architectures which are pos-
sible candidates for a dead-reckoning localization system. It introduces linear and non-
linear kinematic models with references to related papers and complementary filter for
attitude estimation [A.5]. Resulting four architectures are examined in the remainder
of the paper.

The theory section presents standard EKF equations for discrete-time systems and
then puts it in context of the two examined system models and two ways of estimating
robot attitude. The measurement model based on the track odometry is defined and
observability analysis is performed, giving the reader idea about uncertainty of the
state estimate and its expected development in time. Moreover, consistency tests are
performed for the discussed architectures, checking whether corrections applied to state
estimate conform to expected statistical distribution.

The next section describes experiments performed in order to compare the accuracy
and computational demands of the four competing EKF dead-reckoning localization
architectures.

After more implementation details are given regarding the best-performing archi-
tecture running on-board the robot under the Robot Operating System1 (ROS), our
findings are concluded in the last section.

c© [2015] IEEE. Reprinted, with permission, from EKF Architectures [A.1].

1Robot Operating System, http://www.ros.org
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Evaluation of the EKF-Based Estimation Architectures
for Data Fusion in Mobile Robots

Jakub Simanek, Michal Reinstein, and Vladimir Kubelka

Abstract—This paper presents evaluation of four different state estima-
tion architectures exploiting the extended Kalman filter (EKF) for 6-DOF
dead reckoning of a mobile robot. The EKF is a well proven and commonly
used technique for fusion of inertial data and robot’s odometry. However,
different approaches to designing the architecture of the state estimator
lead to different performance and computational demands. While seeking
the best possible solution for the mobile robot, the nonlinear model and
the error model are addressed, both with and without a complementary fil-
ter for attitude estimation. The performance is determined experimentally
by means of precision of both indoor and outdoor navigation, including
complex-structured environment such as stairs and rough terrain. Accord-
ing to the evaluation, the nonlinear model combined with the complemen-
tary filter is selected as a best candidate (reaching 0.8 m RMSE and average
of 4% return position error (RPE) of distance driven) and implemented for
real-time onboard processing during a rescue mission deployment.

Index Terms—Complementary filter (CF), extended Kalman filter
(EKF), urban search and rescue (USAR).

I. INTRODUCTION

The recent progress in sensor technologies and increase in on-
board computational power brings new demands and pushes the
limits of navigation of autonomous robots. Mobile robots are be-
coming increasingly more reliable and hence more popular even
for complex missions such as urban search and rescue (USAR).
In general, there exist a number of different solutions to data
fusion for localization and navigation, making it often unclear
when deciding for one that ensures optimal performance. More-
over, the performance is influenced not only by the choice of the
platform, its morphology, and the sensor suite, but also by envi-
ronment and mission specifications. Development of the system
for USAR missions aims primarily on human–robot teaming,
especially deploying an unmanned ground vehicle (UGV) (see
skid-steer robot UGV in Fig. 1) in a close cooperation with pro-
fessional rescue teams. The mission, in which the testing UGV
was deployed and used one of the EKF architectures proposed in
this paper, consisted of reconnaissance of earthquake-affected
areas1 (refer to [1] and [2] for details about the USAR challenge
and mission, respectively). In order to ensure reliable perfor-
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tober 23, 2013; accepted February 27, 2014. Date of publication April 1, 2014;
date of current version October 24, 2014. Recommended by Technical Editor
Y. Li. This work was supported by the EC project FP7-ICT-247870 NIFTi and
work on the last revision was supported by Project TRADR FP7-ICT-609763.

J. Simanek is with the Department of Measurement, Faculty of Electrical
Engineering, Czech Technical University in Prague, 166 36 Prague, Czech
Republic (e-mail: simanjak@fel.cvut.cz).

M. Reinstein and V. Kubelka are with the Center for Machine Perception,
Department of Cybernetics, Faculty of Electrical Engineering, Czech Techni-
cal University in Prague, 166 36 Prague, Czech Republic (e-mail: reinstein.
michal@fel.cvut.cz; kubelvla@fel.cvut.cz).

Color versions of one or more of the figures in this paper are available online
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Digital Object Identifier 10.1109/TMECH.2014.2311416
1For more details see the European Commission Memo http://europa.eu/

rapid/press-release_MEMO-12-620-en.htm

Fig. 1. Skid-steer mobile robot (the UGV) for search and rescue operations
developed by BlueBotics (www.bluebotics.com) as part of NIFTi project.

mance, explore the disaster site, and perform high-quality 3-D
mapping of the environment (such as in [3]) reliable dead reck-
oning development was essential.

Since the extended Kalman filter (EKF) is a well proven and
commonly used state estimation technique [4], [5], the moti-
vation for this paper lied mainly in seeking the most suitable
EKF architecture. To our best knowledge, we are convinced
no such comparison of estimation architectures covering EKF-
based dead reckoning was carried out for mobile skid-steer
robots intended for real USAR missions. Thus, the results of
the analysis might prove beneficial to anyone asking the fun-
damental question: What is actually the best way to implement
the EKF? Therefore, objective of this paper lies in comparing
four different approaches: a nonlinear model (NLM) [6] and an
error model (ERM) [7], each with and without a complementary
filter (CF) for attitude estimation [8], [9]. The performance of
attitude estimation using the CF was thoroughly evaluated as
part of our previous work in [8], including testing of various
filters to cope with inertial signals strongly affected by vibra-
tion. In this paper, dead reckoning is represented by estimation
of the six-degree-of-freedom (6-DOF) pose of the UGV, using
the proprioceptive sensors only: odometry obtained from motor
encoders and an inertial measurement unit (IMU) that consists
of accelerometers and gyroscopes providing specific force and
angular rate measurements [10]. As it was shown repeatedly,
the combination of IMU and odometry is a popular technique to
localize a mobile robot even in case of dynamic- legged robots
[11]. It generally allows high sampling and processing rate, usu-
ally without excessive computational load. However, there are
drawbacks, such as inertial navigation drift and wheel slip [12],
which also reflect to the principle of dead reckoning. There-
fore, substantial effort has been made to investigate improve-
ments through slip estimation, velocity constraints [13], [14],
odometry-derived constraints [15], or innovative motion mod-
els [16]. We have also addressed the slip compensation problem
in [17]; however, our aim is not to develop a dead reckoning
with bounded position error, which is in principle not achiev-
able using proprioceptive sensors only [18]. Therefore, most of

1083-4435 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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TABLE I
NOMENCLATURE

the state-of-the-art 6-DOF IMU and odometry dead reckoning
solutions require other supporting sensor systems, especially
exteroceptive, to assure desired precision and reliability given
by the target application; for example, see [18]–[21].

The contributions of this paper are: first, providing the reader
with analysis regarding the performance of different architec-
tures for state estimation using the EKF; second, extending
our previous work about the CF for attitude estimation [8] to
full 6-DOF dead reckoning; third, testing in both indoor- and
outdoor-structured environment (including stairs and other ob-
stacles); and fourth, implementing the best approach for onboard
processing in the Robot Operating System (ROS) [22].

This paper is structured as follows. Section II covers details re-
garding the theory and methodology. Section III presents experi-
mental results and performance evaluation. Section IV provides
implementation details. Conclusions are given in Section V.
All the symbols used can be found in Table I.

II. THEORY AND METHODOLOGY

A. Extended Kalman Filter

The EKF is a linearized extension of the Kalman filter that
estimates the states of a process and their uncertainty from noisy
data. The EKF algorithm was implemented using the standard
equations (see [23] for more details and relevant notation in
Table I). Assuming a discrete-time system model disturbed by
normally distributed noise

xk = fk−1 (xk−1 ,uk−1) + wk−1 ,wk−1 ∼ N (0,Qk ) (1)

zk = hk (xk ) + vk ,vk ∼ N (0,Rk ) . (2)

EKF is initialized with the following expected values of the
estimated state and covariance:

x+
0 = E

[
x+

0

]
,P +

0 = E
[
(x0 − x+

0 )(x0 − x+
0 )T

]
. (3)

The EKF algorithm can be described in two steps using the
following discrete-time equations.

1) Time update: Predicted (a priori) state is computed; state
transition Jacobian is determined to evaluate the predicted

covariance

x−
k = fk−1

(
x+

k−1 ,uk−1

)
,F k−1 ≈ ∂fk

∂x

∣∣∣∣
x+

k −1 ,uk −1

(4)

P −
k = F k−1P

+
k−1F

T
k−1 + Qk−1 . (5)

2) Measurement update: Observation Jacobian and Kalman
filter gain are computed; a priori estimates with the measure-
ments are combined to provide the a posteriori state and covari-
ance estimates

Hk ≈ ∂hk

∂x

∣∣∣∣
x−

k

,Kk = P −
k HT

k

(
HkP −

k HT
k + Rk

)−1
(6)

x+
k = x−

k + Kk

(
zk − hk

(
x−

k

))
,P +

k = (I − KkHk ) P −
k .

(7)

The EKF relies on assumption of an approximate equality of
the estimated state between the two consecutive time steps. The
state prediction and update propagates through the nonlinear
system functions, and the state and observation errors propagate
through a separate linearized system, which is formulated as
Taylor series about the estimate.

B. Process Models

Four different schemes for data fusion using EKF are pre-
sented in this paper and shown in Fig. 2 (see relevant notation
in Table I). Two different system process modeling approaches
were investigated—the NLM and the ERM, see Fig. 2(a) and
(c) for implementation without the CF (standard solutions), and
Fig. 2(b) and (d) for the implementation with the CF for atti-
tude estimation (denoted as the grey block in Fig. 2). The CF
was introduced in [8] and proved to be an effective algorithm,
where the attitude determination is based on fusion of the gravity
vector determined from specific forces via a coarse alignment
algorithm (see [10]), and Euler angles (roll, pitch, and yaw)
computed as integration of angular rates.

First, the NLM (for details see [6]) is based on coordinate
frames transformation (where the nonlinearities are caused by
the direction cosine matrix) and numerical integration of the
IMU outputs. It handles navigation states (position in navigation
frame, velocity in body-frame, and Euler angles) directly. For
the purpose of UGV navigation, the centripetal acceleration
corrections can be neglected.

Second, the ERM, derived by linearizing the nonlinear dif-
ferential equations using perturbation analysis and thoroughly
described in [7], is based on a 15-state concept, expanding the
estimates of position and velocity in the navigation frame, and
attitude errors (i.e., the difference from the expected value) with
the biases of the inertial sensors (the actual sensor errors). The
data fusion must be completed with an error control loop, which
provides corrections to the navigation states computed using
the differential navigation equations named as mechanization
by Rogers in [24]. Unlike in the case of the NLM, it is necessary
to implement the mechanization, because the ERM provides
only corrections, not the actual navigation states. Every time the
corrections are fed back to the mechanization, the EKF state
vector must be set to zeroes.

3. Evaluation of the EKF-based estimation architectures for data fusion in mobile robots
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Fig. 2. IMU and odometry (ODO) data fusion schemes for the EKF: (a) with the NLM, (b) with the NLM and CF for attitude estimation (NLM+CF),
(c) with mechanization (MECH) and the ERM, and (d) with mechanization (MECH), ERM, and CF for attitude estimation (ERM+CF); x and z are the state and
measurement vectors. (a) NLM. (b) NLM + CF. (c) ERM. (d) ERM + CF.

Considering the solutions enhanced by the proposed CF [8],
which provides stable estimates in pitch and roll channels, there
is no need to estimate the attitude angles (or attitude correc-
tions) and biases of the gyroscopes within the EKF model, since
the feedback of the CF assures stability and drift suppression.
Therefore, in both the nonlinear and the ERM with the CF, the
state vector consists of position and velocity estimates or their
respective error estimates.

C. Measurement Model

The measurement model is based on the standard body frame
odometry model transformed to the navigation frame (see Table I
for details about frames). Since the UGV is bounded to the
surface, it is said to be governed by nonholonomic constraints,
which can be exploited to aid the estimation of IMU alignment
[15]. These constraints are incorporated into the measurement
model, such that no side slip and no vertical movement (such as
free fall) are assumed along the body frame lateral y-axis and
vertical z-axis, respectively. Therefore, 3-D odometry model is
implemented as follows: the tracks and UGV’s body are aligned;
therefore, the navigation frame velocity is computed as

vn
k = Cn

b vb
k = Cn

b [ 0.5 (vL + vR ) 0 0 ]T (8)

where vL and vR are the velocities of the left and right tracks,
respectively, and the nonholonomic constraints are incorporated
as zero values in the y- and z-component of the displacement
vector. The body to navigation frame transformation matrix is
defined as

Cn
b =

⎡
⎢⎣

cθ cψ sφsθ cψ − cφsψ cφsθ cψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ

−sθ sφcθ cφcθ

⎤
⎥⎦ (9)

where φ, θ, and ψ are the roll, pitch, and yaw angles (Euler
angles), respectively, and cθ = cos θ, sθ = sin θ, etc.

The EKF measurement vector for both the NLM and the
NLM+CF [see Fig. 2(a)] consists of velocity in the navigation

frame. In case of the ERM and the ERM+CF, the measurement
vector is produced as the difference between the velocity com-
puted by the mechanization, and odometry-determined velocity,
both expressed in navigation frame, as shown in Fig. 2(c). How-
ever, the wheel slip along the body frame x-axis is still apparent,
and the model cannot compensate for it.

D. Observability Analysis

Observability analysis determines, whether a state can be es-
timated from available measurements [25]. Observability rank
tests were implemented according to [7] and [26] along with the
inspection of the behavior of the estimation error covariance ma-
trix. The observability analysis of the nine navigation states in
both the NLM and the ERM revealed the following conclusions
about the attitude (also corresponds to results in [26]): roll and
pitch angles are observable with respect to the navigation frame
due to gravity measurement provided by IMU; the yaw angle be-
comes unobservable with respect to the navigation frame when
the system becomes stationary. Based on these conclusions, an
odometry-derived motion constraint was introduced to reduce
the drift in the unobservable yaw. As the odometry directly indi-
cates when the UGV is stationary, an artificial limit to constant
heading was utilized and proved to eliminate the drift in the un-
observable yaw angle. Since the velocity is provided to the EKF
as measurement, its covariance converges quickly; therefore,
the velocity estimation error is bounded. This does not reflect
the cases, when the UGV is exposed to maneuvers on harsh
terrain causing slippage; however, compensating it is not aim
of this study (we address it separately in [17]). Consequently,
the position-related covariance diverges in all four approaches,
as it should in any other dead reckoning approach that lacks
(in principle) the absolute position measurements [18]. This
is covered in detail in [23] and confirms that additional posi-
tion measurements are necessary to achieve observable position
estimates.
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Fig. 3. Position and standard deviation σ estimates used for filter tuning with
respect to the position reference; one of the 2-D tracked experiments as obtained
using the NLM+CF approach.

E. Filter Initialization, Tuning, and Consistency

Initialization sequence requires the UGV to be stationary for
some time. During this interval, the coarse alignment algorithm
(see [10]) is used to determine roll and pitch angles from aver-
aged specific forces. Along with the initial attitude, biases of the
gyroscopes are estimated as the average of the static angular rate
measurements. This requires at least 1 min averaging and op-
timally 3 min (providing appropriate bias estimates for 20 min
experiments). Initial position of the UGV always corresponds
with origin of the local navigation frame and initial velocity is
set to zero, as well as their initial covariance matrices.

Filter consistency is defined as convergence of the estimate to
the true value [27]. If the estimator is inconsistent, estimates are
not reliable, because their accuracy is unknown. As the process
of choosing noise covariance matrices (referred as filter tuning)
is often based on the tradeoff between obtaining consistent filter
and small estimation errors [27], the noise covariance matrix was
tuned such that both real-time consistency tests involving the
zero-mean innovation test and the innovation whiteness test [27]
were passed. Subsequently, the process noise covariance matrix
was adjusted to achieve small estimation error with respect to the
ground truth. Consistency of the position estimate was checked
via the inspection of the covariance and the progress of position
error (see an example for a 2-D experiment using the NLM+CF
approach in Fig. 3).

The summary of the EKF initialization parameters (state vec-
tor, error covariance matrix, process noise covariance matrix,
and measurement noise covariance matrix) is given in Table V.

III. EXPERIMENTAL EVALUATION

To evaluate the navigation performance of all four ap-
proaches, series of indoor and outdoor navigation experiments
in complex-structured environment were performed. The test-
ing UGV was a mobile skid-steer robot (see Fig. 1) designed
for USAR operations and developed as a part of the NIFTi
project concerning mainly human–robot cooperation. The UGV
is equipped with the following sensors used in this approach:
Xsens MTi-G unit (inertial data at 90 Hz) and motor encoders

TABLE II
EXPERIMENT DATASETS

(left and right track velocities at 15 Hz). The evaluation of exper-
iments was performed offline in MATLAB, and according to the
results, the best performing architecture was then implemented
in C++ for ROS.

The experiments involved four types of field-testing
environments—namely the 2-D tracked outdoor experiments
(planar; evaluated with respect to ground truth trajectories2

available only for the 2-D tracked dataset), indoor experiments
on hallway (UGV exploring a ground floor corridor inside a
building) and stairway (extended to climbing of wooden stair-
case and descending at slope of 20°), and outside environment
(long-term driving through a natural environment including hill-
side and stair climbing). All datasets are referred to using the
corresponding labels. In the case of 3-D experiments, ground
truth was not available, and hence, the UGV was driven back
to the exact starting position each time. Therefore, the return
position error (RPE) and the return attitude error (RAE) were
evaluated instead of RMSE with respect to a reference. The to-
tal distance travelled during the 2-D experiments was 2.2 km
(35 experiments), and 2 km during the 3-D experiments (five
experiments for each 3-D field-test). Average characteristics of
each experiment type are concluded in Table II.

A. Example of Results: The Stairway Experiment

One of the typical datasets collected during the stairway ex-
periment was chosen to demonstrate the performance by com-
paring the attitude and position estimates. In the stairway exper-
iment, the UGV was driven forward from the initial location to
the stairs, then the UGV climbed up to the second floor, turned
left, continued forward to the turning point, and returned along
a similar path to the initial position.

Attitude estimates that were obtained during the stair descent
using all the approaches are shown in Fig. 4 (please note, that the
NLM+CF and the ERM+CF exploit the same CF for attitude
estimation, thus the figure shows only the CF attitude instead).
There are minor differences in roll and pitch channels for the
NLM and the CF approaches. Although the ERM performs lo-
cally inconsistently, overall stability is ensured and depends
mainly on the filter tuning. The major contribution to the posi-
tion error in dead reckoning rises from the yaw estimates. All
approaches provide slightly different yaw angle during the stair
descent and overall experiment. The consequence can be seen
in the trajectory estimates shown in Fig. 5 (position projected to
2-D North-East and Down-East directions), where all the North-
East horizontal turns should be nearly perpendicular. In the used

2The ground truth was obtained using top-down camera tracking of the UGV.
The precision of the video tracking system was determined experimentally to
be 15 cm ± 12 cm within a 15 m × 10 m outdoor area.

3. Evaluation of the EKF-based estimation architectures for data fusion in mobile robots
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Fig. 4. Euler angles for the stairway experiment—stair descent (680 to 745 s
zoom) as obtained using all attitude approaches.

Fig. 5. North-East (x − y) and Down-East (z − y) projections of the 3-D
trajectory for the stairway experiment as obtained using all four approaches.

dead reckoning, the overall trajectory precision depends mostly
on attitude estimates. Another type of positioning error is appar-
ent at the ground and first floor in the Down-East view in Fig. 5,
where slipping of the tracks during climbing and descending
also contributes to the different vertical position estimates.

B. Performance Evaluation

To demonstrate the relative performance, all the collected
datasets were evaluated statistically, averaging, and concluding
all the experiments in Table III. The RMSE in 2-D position
(determined as the RMSE of the north and east position), the
average RPE of the distance driven, and the average RAE of roll
and pitch absolute differences, show that the approaches with
the CF outperform the standard ones for both the NLM and the
ERM implementation.

The computational load analysis of all the four approaches
was also performed. The results in Table IV (evaluated in
MATLAB 2012a running on PC with Intel Core i7 2.6 GHz,
8-GB RAM) indicate that the most demanding ERM with mech-

TABLE III
AVERAGE SUMMARY OF THE PERFORMANCE EVALUATION: 2-D RMSE, RPE OF

THE DISTANCE DRIVEN, RAE OF ROLL AND PITCH ANGLES

TABLE IV
COMPUTATIONAL LOAD ANALYSIS (MATLAB)

TABLE V
EKF INITIALIZATION PARAMETERS

anization consumed approximately two times more computa-
tional time than the NLM. In the NLM+CF and the ERM+CF,
the state vectors are reduced as discussed in Section II-B;
thus, the EKF computational load is lower, especially for the
ERM+CF. According to the results concluded in Tables III and
IV, the NLM+CF approach was selected as the best candidate
for the onboard processing in ROS Fuerte version [22].

IV. IMPLEMENTATION DETAILS

Since the reader should benefit not only from the knowledge
gained from presented experimental evaluation, this section pro-
vides more general remarks about the implementation.

The NLM can be considered as the most straightforward EKF
navigation algorithm, based on suboptimal equations estimat-
ing position in the navigation frame, velocity in the bodyframe,
and attitude in Euler angles. Thus, this process model en-
sures straightforward debugging and EKF tuning. The ERM
and mechanization represents computationally demanding but
precise navigation algorithm designed to cope with coning and
sculling effects in inertial sensors, Coriolis and gravity correc-
tions, Earth’s rate, and transport rate (please consult terms with
[7] and [10]). The reader should consider the mechanization with
the ERM when desiring such complex solution providing posi-
tion and velocity corrections in the navigation frame and attitude
corrections as a direction cosine matrix compensation. On the
other hand, the filter tuning has to be performed experimentally
and is directly connected with the precision of the ground truth
and number of experiments. Using inertial sensors only, the CF
proved to provide stable and reliable roll and pitch angles for
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the UGV platform, where no significant centripetal acceleration
occurs [8]. The combination with the aforementioned NLM and
ERM allows to exploit attitude estimation with the EKF main-
taining the reduced state vector consisting only of position and
velocity estimates or corrections, respectively.

ROS is a cross-platform middle-ware that uses the publish–
subscribe messaging system for data exchange and communica-
tion over TCP sockets between processes (ROS nodes), regard-
less the machine they are running on. Therefore, the real-time
implementation consisted of a single C++ node subscribing to
wheel encoders and IMU readings (published asynchronously
over a CAN bus), computing the NLM+CF algorithm, and pub-
lishing the navigation data for further utilization. The internal
ROS time-stamps were used for proper process synchronization
and an OpenCV Matx template class for appropriate matrix man-
agement and operations [28]. The average EKF cycle duration
of final real-time implementation of the NLM+CF approach on-
board the UGV (Intel Core2Quad CPU Q9100 2.26 GHz, 8-GB
RAM) was approximately 40 μs.

V. CONCLUSION

This paper has presented a comparison and experimental eval-
uation of four different EKF-based estimation architectures for
dead reckoning of a mobile robot providing data from IMU
and wheel encoders. The dead reckoning was realized using the
EKF with the NLM and the ERM, both with and without a CF
for attitude estimation. Field testing in indoor and outdoor en-
vironment was carried out to select the best candidate in terms
of the navigation performance and the computational load. Ac-
cording to the results, the NLM with a CF was selected as the
best approach, running two times faster than the ERM-based
approaches, and reaching 0.8 m RMSE and average of 4% RPE
of the distance driven. It was then implemented in C++ for on-
board processing in ROS. With this algorithm implemented, the
robot was then deployed in a real USAR mission in Mirandola,
Italy (for further details see [2]).
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4. Robust data fusion of multimodal sensory
information for mobile robots

This section presents our second publication Data Fusion [A.2]. It is a 27-page-long
paper published in Journal of Field Robotics. A brief overview of the paper follows:

The introduction section states our contributions of this publication and describes
specific conditions of search and rescue missions we aim for. The experimental evalu-
ation of proposed system is stressed, especially the analysis of possible fail cases.The
related work is presented in a separate section explaining difference between propri-
oceptive and exteroceptive sensors and providing references to works from respective
fields. Proprioceptive sensory modalities available on the robot are inertial naviga-
tion and track odometry, exteroceptive modalities are visual odometry and laser scan
matching localization.

The system description introduces the hardware of the robot in detail, mainly its
on-board computer and sensor suite (inertial measurement unit, track velocity encoders,
omni-directional camera and laser range-finder). Sensory modalities are described in
this section as well. They constitute are a layer between raw sensor data and our
proposed fusion system, which expects processed measurements in form of velocities,
angular rates and possibly acceleration.

The next section describes the multimodal data fusion system we propose, first
explaining the concept of error state followed by kinematic model used to propagate
system state in time. The measurement error model then links the system state and
error state with measurements. This relation is presented for each sensory modality.
A special attention is paid to laser scan matching modality, whose low sampling rate
requires slightly different approach.

Thorough experimental evaluation has been designed considering the search and
rescue mission conditions. The experimental dataset, which is publicly available, is
intended to test our approach to localization but also offers to test different approaches,
since all sensor data have been recorded as well as accurate reference. The section
presents metrics used to evaluate the localization system, shows typical experiments
and resulting performance. The overall accuracy is provided separately for indoor and
outdoor experiments due to different ways of capturing reference position and attitude.
The important part of the evaluation is the fail case analysis, which focuses on possible
modality failures and examines localization system behavior in these cases. Our finding
are then summed up in the conclusion section.
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Tomáš Svoboda and Michal Reinstein
Center for Machine Perception, Dept. of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague,
Technicka 2, 166 27, Prague 6, Czech Republic
e-mail: svobodat@fel.cvut.cz, reinstein.michal@fel.cvut.cz

Urban search and rescue (USAR) missions for mobile robots require reliable state estimation systems resilient to
conditions given by the dynamically changing environment. We design and evaluate a data fusion system for
localization of a mobile skid-steer robot intended for USAR missions. We exploit a rich sensor suite including
both proprioceptive (inertial measurement unit and tracks odometry) and exteroceptive sensors (omnidirec-
tional camera and rotating laser rangefinder). To cope with the specificities of each sensing modality (such as
significantly differing sampling frequencies), we introduce a novel fusion scheme based on an extended Kalman
filter for six degree of freedom orientation and position estimation. We demonstrate the performance on field
tests of more than 4.4 km driven under standard USAR conditions. Part of our datasets include ground truth
positioning, indoor with a Vicon motion capture system and outdoor with a Leica theodolite tracker. The overall
median accuracy of localization—achieved by combining all four modalities—was 1.2% and 1.4% of the total
distance traveled for indoor and outdoor environments, respectively. To identify the true limits of the proposed
data fusion, we propose and employ a novel experimental evaluation procedure based on failure case scenarios.
In this way, we address the common issues such as slippage, reduced camera field of view, and limited laser
rangefinder range, together with moving obstacles spoiling the metric map. We believe such a characterization
of the failure cases is a first step toward identifying the behavior of state estimation under such conditions. We
release all our datasets to the robotics community for possible benchmarking. C© 2014 Wiley Periodicals, Inc.

1. INTRODUCTION

Mobile robots are sought for many tasks, from tour-guide
robots to autonomous cars. With the rapid advance in sen-
sor technology, it has been possible to embed richer sensor
suites and extend the perception capabilities. Such sensor
suites provide multimodal information that naturally en-
sures perception robustness, allowing also better means of
self-calibration, fault detection, and recovery—given that
appropriate data fusion methods are exploited. Indepen-
dently from the application, a key issue of mobile robotics
is state estimation. It is crucial for both perception, such as
mapping, and action, such as avoiding obstacles or terrain
adaptation.

In this paper, we address the problem of data fusion
for localization of an unmanned ground vehicle (UGV) in-
tended for urban search and rescue (USAR) missions. There

has been a significant effort presented in the field of USAR
for robot localization that mostly aims for a minimal suit-
able sensing setup, usually exploiting the inertial measure-
ments aided by either vision or laser data. Having suffi-
cient onboard computational power, we therefore aim for
a richer sensor suite and hence better robustness and relia-
bility. Therefore, our UGV used in this work (see Figure 1)
embeds track encoders, an inertial measurement unit (IMU),
an omnidirectional camera, and a rotating laser rangefinder.

Our first contribution lies in the development of a
model for such multimodal data fusion using an extended
Kalman filter (EKF), especially in the way we incorporate
sensors with slow and fast measurement update rates. To
cope with such a significant difference in the update rates
of various sensor modalities, we concentrated the model
design on integrating the slow laser and visual odometry
with the faster IMU and track odometry measurements. For

Journal of Field Robotics 32(4), 447–473 (2015) C© 2014 Wiley Periodicals, Inc.
View this article online at wileyonlinelibrary.com • DOI: 10.1002/rob.21535
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Figure 1. Picture of two USAR UGVs used for experimental evaluation (FP7-ICT-247870 NIFTi project) and a detail of the sensor
setup (a PointGrey Ladybug 3 omnicamera and a rotating SICK LMS-151 laser rangefinder). See Section 3.1 for more details.

this purpose, we propose and investigate three different
possible methods—one of them, the trajectory approach (see
Section 4.3.3 for further details), is our contribution that we
compare to the velocity approach, which is a common state-
of-the-art practice. We show that a standard EKF designed
with the velocity approach does not cope well with such sig-
nificant differences in the frequency, whether or not our
proposed trajectory approach does.

The context of USAR missions implicitly defines the
challenges and limitations of our application. The envi-
ronment is often unstructured (collapsed buildings) and
unstable (moving objects or other ongoing changes, de-
formable terrain causing high slippage). Robots need to
cope with indoor-outdoor transitions (change from con-
fined to open spaces), as well as bad lighting conditions with
rapid changes and sometimes decreased visibility (smoke
and fire). These are essentially the main challenges that
come with the sensor data we process. Therefore, our main
contribution lies in the actual experimental evaluation and
analysis of the limits of the proposed filter. We review the
different sensing modalities and their expected failure cases
to assess the impact of possible data degradation (or outage)
on the overall precision of localization. We believe that the
field deployment of state estimation for multimodal data
fusion needs to be characterized both under standard ex-
pected conditions and for partial or full failures of sens-
ing modalities. Indeed, robustness to sensor data outage or
degradation is a key element to the scaling up of a field
robotics system. Therefore, we evaluate our filter using sev-
eral hours and kilometers of experimental data validated
by indoor or outdoor ground truth measurements. To share
this contribution with the robotics community, we release
all the captured datasets (including the ground truth mea-
surements) to be used as benchmarks.1

1The datasets are available as bagfiles for ROS at https://sites
.google.com/site/kubelvla/public-datasets

The state of the art of sensor fusion for state estimation
is elaborated in Section 2. In Section 3, we present the hard-
ware and software used in this work before describing in
detail the design of our data fusion algorithm (Section 4).
In Section 5, we explain our experimental evaluation in-
cluding our fail-case methodology before a discussion and
conclusion (Section 6).

2. RELATED WORK

In general, the information obtained from various sensors
can be classified as either proprioceptive (inertial measure-
ments, joint sensors, motor or wheel encoders, etc.) or exte-
roceptive [global positioning system (GPS), cameras, laser
rangefinder, ultrasonic sensors, magnetic compass, etc.]. Ex-
teroceptive sensors that acquire information from the envi-
ronment can also be used to perceive external landmarks
that are necessary for long-term precision in navigation
tasks. In modern mobile robots, a popular solution lies usu-
ally in the combination of a proprioceptive component in
the form of an inertial navigation system (INS) (Titterton
and Weston, 1997) that captures the body dynamics at high
frequency, and an external source of aiding, using vision
(Chowdhary, Johnson, Magree, Wu, & Shein, 2013) or range
measurements (Bachrach, Prentice, He, & Roy, 2011). The
key issue lies in the appropriate integration of the different
characteristics of the different sensor modalities.

As was repeatedly shown, the combination of an IMU
with wheel odometry is a popular technique to localize a
mobile robot in a dead-reckoning manner. It generally al-
lows for a very high sampling frequency as well as pro-
cessing rate, usually without excessive computational load.
Dead reckoning can be used for short-term navigation with-
out any necessity of perceiving the surrounding environ-
ment via exteroceptive sensors. In real outdoor conditions,
the dynamically changing environment often causes sig-
nal degradation or even outage of exteroceptive sensors.
However, proprioceptive sensing, in principle, is too prone

Journal of Field Robotics DOI 10.1002/rob
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to accumulating errors to be used as a stand-alone solu-
tion. Computational and environmental errors as well as
errors caused by misalignment and instrumentation cause
the dead-reckoning system to drift quickly with time. More-
over, motor encoders do not reflect the true path, especially
the heading of the vehicle, in the case of frequent wheel slip.
In Yi, Zhang, Song, and Jayasuriya (2007) and Anousaki and
Kyriakopoulos (2004), an improvement through the skid-
steer model of a four-wheel robot is presented, based on
a Kalman filter estimating trajectory using velocity con-
straints and slip estimate. An alternative method appears
in Endo, Okada, Nagatani, and Yoshida (2007), where the
IMU and odometry are used to improve tracked vehicle
navigation via slippage estimates. We addressed this prob-
lem in Reinstein, Kubelka, and Zimmermann (2013). Sub-
stantial effort has also been made to investigate the odome-
try derived constraints (Dissanayake, Sukkarieh, Nebot, &
Durrant-Whyte, 2001) or innovation of the motion models
(Galben, 2011). Concerning all the references so far, local-
ization of the navigated object via dead reckoning was per-
formed only in two dimensions. There exist solutions pro-
viding real three-dimensional (3D) odometry derived from
the rover-type multiwheel vehicle design (Lamon & Sieg-
wart, 2004). Nevertheless, the error is still about one order
of magnitude higher than what we aim to achieve (below
2% of the total distance traveled).

However, if long-term precision and reliability are to be
guaranteed, dead-reckoning solutions require other extero-
ceptive aiding sensor systems. In the work of Shen, Tick, and
Gans (2011), it is shown that a very low-cost IMU and odom-
etry dead-reckoning system can be realized and success-
fully combined with visual odometry (VO) (Sakai, Tamura,
& Kuroda, 2009; Scaramuzza & Fraundorfer, 2011) to pro-
duce a reliable navigation system. With the increasing on-
board computational power, visual odometry is becoming
very popular even for large-scale outdoor environments.
Most solutions are based on the EKF (Chowdhary, Johnson,
Magree, Wu, & Shein, 2013; Civera, Grasa, Davison, &
Montiel, 2010; Konolige, Agrawal, & Sola, 2011; Oskiper,
Chiu, Zhu, Samarasekera, & Kumar, 2010) or a dimensional-
bounded EKF with a landmark classifier introduced in Jesus
and Ventura (2012). However, in Rodriguez F, Fremont, and
Bonnifait (2009) it is pointed out that a tradeoff between pre-
cision and execution time has to be examined. Moreover, VO
degrades due to high rotational speed movements and it is
susceptible to illumination changes and lack of sufficient
scene texture (Scaramuzza & Fraundorfer, 2011).

Another typically used six degree of freedom (6 DOF)
aiding source is a laser rangefinder, which is used for
estimating vehicle motion by matching consecutive laser
scans and creating a 3D metric map of the environment
(Suzuki, Kitamura, Amano, & Hashizume, 2010; Yoshida,
Irie, Koyanagi, & Tomono, 2010). Examples of successful
application can be found for both indoor use—without
IMU but combined with vision (Ellekilde, Huang, Miro, &

Dissanayake, 2007)—as well as outdoor use—relying on the
IMU (Bachrach et al., 2011). As in case of the visual odome-
try, solutions using EKF are often proposed (Bachrach, Pren-
tice, He, & Roy, 2011; Morales, Carballo, Takeuchi, Abu-
radani, & Tsubouchi, 2009). The most popular approach of
scan matching is based on the iterative closest point (ICP) al-
gorithm first proposed by Besl and McKay (1992) and in par-
allel by Chen and Medioni (1991). More recently, Nuchter,
Lingemann, Hertzberg, and Surmann (2007) proposed a 6D
simultaneous localization and mapping (SLAM) system re-
lying mainly on ICP. Closer to USAR applications, Nagatani
et al. (2011) demonstrated the use of ICP in exploration mis-
sions and used a pose graph minimization scheme to han-
dle multirobot mapping. Kohlbrecher, Stryk, Meyer, and
Klingauf (2011) proposed a localization system combining
a 2D laser SLAM with a 3D IMU/odometry-based nav-
igation subsystem. A combination of 3D-landmark-based
SLAM and multiple proprioceptive sensors is also pre-
sented in Chiu, Williams, Dellaert, Samarasekera, and Ku-
mar (2013), whose work focuses mainly on a low latency
solution while estimating the navigation state by means of a
sliding-window factor graph. The problem of utilizing sev-
eral sensors for localization that may provide contradictory
measurements is discussed in Sukumar, Bozdogan, Page,
Koschan, & Abidi (2007). The authors use Bayes filters to
estimate sensor measurement uncertainty and sensor valid-
ity to intelligently choose a subset of sensors that contribute
to localization accuracy. As opposed to the later publica-
tions realized in the context of SLAM, we only consider the
results of the ICP algorithm as a local pose measurement,
similarly to Almeida and Santos (2013), who use the ICP
algorithm to extract the steering angle and linear velocity
of a carlike vehicle to update its nonholonomic model of
motion. In our approach, the 3D reconstruction of the en-
vironment is considered locally coherent, and neither loop
detection nor error propagation is used.

As stated in Kelly, Sibley, Barfoot, & Newman (2012),
it is the right time to address issues concerning the state
of the art in long-term navigation and autonomy. In this
respect, the benefits and challenges of repeatable long-range
driving were addressed in Barfoot, Stenning, Furgale, and
McManus (2012). In this context, we believe that bringing
more insight into multimodality state estimation algorithms
is an important step for the long-term stability of a USAR
system evolving in a complex range of environments.

Regarding multimodal data fusion, we built on our pre-
vious work concerning complementary filtering (Kubelka &
Reinstein, 2012), odometry modeling (Reinstein et al., 2013),
and design of EKF error models (Reinstein & Hoffmann,
2013), even though the latter work applied to a legged robot.

3. SYSTEM DESCRIPTION

Our system is aimed at high state estimation accuracy
while ensuring robust performance against rough terrain
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navigation and obstacle traversals. We selected four modal-
ities to achieve this goal: the inertial measurements (IMU),
odometry data (OD), visual odometry (VO), and laser
rangefinder data (ICP) processed by the ICP algorithm. This
section explains the motion capabilities of the Search & Res-
cue platform and the preprocessing computation applied
to its sensors in order to extract meaningful inputs for the
state estimation. These explanations provide a motivation
for a list of states to be estimated by the EKF described in
Section 4.

3.1. Mobile Robotic Platform

Figure 1 presents the UGV designed for the USAR mis-
sion that we use in this paper. As described in Kruijff et al.
(2012), this platform was deployed multiple times in col-
laboration with various rescue services (Fire Department of
Dortmund/Germany, Vigili del Fuoco/Italy). It has two bo-
gies linked by a differential that allows a passive adaptation
to the terrain. On each of the tracks, there are two indepen-
dent flippers that can be position-controlled in order to in-
crease the mobility in difficult terrain. For example, they can
be unfolded to increase the support polygon, which helps
to overcome gaps and increase stability on slopes. They can
also be raised to help with climbing over higher obstacles.
Given that the robot was designed to operate in 3D unstruc-
tured environments, the state estimation system needs to
provide a 6 DOF localization.

Encoders are placed on the differential, giving the an-
gle between the two bogies and the body, on the tracks to
give their current velocity, and on each flipper to give its
position with respect to its bogies. Inside the body, vertical
to the center of the robot, lies the Xsens MTi-G IMU provid-
ing angular velocities and linear acceleration along each of
the three axes. The IMU data capture the body dynamics at
the high rate of 90 Hz. GPS is not taken into account due to
the low availability of the signal indoors or in close prox-
imity with buildings. The magnetic compass is also easily
disturbed by metallic masses, pipes, and wires, which make
it highly unreliable, and hence we do not use it.

The exteroceptive sensors of the robot consist of an om-
nidirectional camera and a laser rangefinder. The omnidi-
rectional camera is the PointGrey Ladybug 3 and produces
a 12 megapixels stitched omnidirectional images at 5–6 Hz.
The omnidirectionality of the sensor provides a stronger
stability of rotation estimation at the expense of scale esti-
mation, which would be better handled by a stereocamera.
The laser rangefinder used is the Sick LMS-151 mounted on
a rolling axis in front of the robot. The laser spins left and
right alternately, taking a full 360◦ scan at approximately
0.3 Hz to create a point cloud of around 55,000 points.

3.2. Inertial Data Processing

Although the precision and reliability of the IMU measure-
ments is sufficient in the short term, in the long term the in-

formation provided suffers from random drift that, together
with integrated noise, causes unbounded error growth. To
cope with these errors, all the six sensor biases have to be
estimated (see Section 4.1 for more details). Therefore, we
have included sensor biases in the state space of the pro-
posed EKF estimator. Furthermore, correct calibration of
the IMU output and its alignment with respect to the robot’s
body frame has to be assured.

3.3. Odometry for Skid-steer Robots

Our platform is equipped with caterpillar tracks, and there-
fore steering is realized by setting different velocities for
each of the tracks (skid-steering). The encoders embedded in
the tracks of the platform measure the left and right track
velocities at approximatively 15 Hz. However, in contradis-
tinction to differential robots, the odometry for skid-steering
vehicles has significant uncertainties. Indeed, as soon as
there is a rotation, the tracks must either deform or slip
significantly. The slippage is affected by many parameters
including the type and local properties of the terrain. To
keep the computation complexity low, we assume only a
simple odometry model and we do not model the slippage.
Instead, we take advantage of the exteroceptive modalities
in our data fusion to observe the true motion dynamics
using different sources of information. Hence, the fusion
compensates for cases in which the tracks are slipping be-
cause the surface is slippery or because of an obstacle block-
ing the robot. Another advantage of using caterpillar tracks
odometry lies in the opportunity to exploit nonholonomic
constraints. Further explanations on those constraints are
given in Section 4.3.

3.4. ICP-based Localization

Using as Input the current 3D point cloud, a registration pro-
cess is used to estimate the pose of the robot with respect to
a global representation called Map. We used a derivation of
the point-to-point ICP algorithm introduced by Chen and
Medioni (1991) combined with the trimmed outlier rejec-
tion presented by Chetverikov, Svirko, Stepanov, and Krsek
(2002).

The implementation uses libpointmatcher,2 an open-
source library fast enough to handle real-time processing
while offering modularity to cover multiple scenarios as
demonstrated in Pomerleau, Colas, Siegwart, & Magnenat
(2013). The complete list of modules used with their main
parameters can be found in Table I. More specifically, the
configuration of the rotating laser produced a high den-
sity of points in front of the robot, which was desirable to
predict collision but not beneficial to the registration mini-
mization. Thus, we forced the maximal density to 100 points
per m3 after having randomly subsampled the point cloud

2https://github.com/ethz-asl/libpointmatcher
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Table I. Configurations of ICP chains for the NIFTi mapping applications.

Step Module Description

Input Read. filtering SimpleSensorNoise SickLMS
SamplingSurfaceNormal keep 80%, surface normals based on 20 NN
ObservationDirection add vector pointing toward the laser
OrientNormals orient surface normals toward the obs. direction
MaxDensity subsample to keep point with density of 100 pts/m3

Registration Ref. filtering - processing from the rows Map
Read. filtering - processing from the rows Input
Data association KDTree kd-tree matching with 0.5 m max. distance, ε = 3.16
Outlier filtering TrimmedDist keep 80% closest points

SurfaceNormal remove paired normals angle > 50◦

Error min. PointToPlane point-to-plane
Trans. checking Differential min. error below 0.01 m and 0.001 rad

Counter iteration count reached 40
Bound transformation fails beyond 5.0 m and 0.8 rad

Map Ref. filtering SurfaceNormal Update normal and density, 20 NN, ε = 3.16
MaxDensity subsample to keep point with density of 100 pts/m3

MaxPointCount subsample 70% if more than 600,000 points

in order to finish the registration and the map maintenance
within 2 s. We expected the error on prealignment of the
3D scans to be less than 0.5 m based on the velocity of the
platform and the number of ICPs per second that were to
be executed. So we used this value to limit the matching
distance. We also removed paired points with an angle dif-
ference larger than 50◦ to avoid the reconstruction of both
sides of walls from collapsing when the robot was explor-
ing different rooms. The surface normal vector used for the
outlier filtering and for the error minimization are computed
using 20 nearest neighbors (NNs) of every point within a
single point cloud. As for the global map, we maintained a
density of 100 points per m3 every time a new input scan
was merged in it. A maximum of 600,000 points were kept
in memory to avoid degradation of the computation time
when exploring a larger environment than expected. How-
ever, the only output of the ICP algorithm we consider is the
robot’s localization, i.e., position and orientation relative to
its inner 3D point-cloud map. We do not attempt to create
a globally consistent map and we do not exploit the map in
any other way than for analysis of the ICP performance (no
map corrections or loop closures are performed).

There is one ICP-related issue observed with our plat-
form. Although the ICP creates a locally precise metric map,
the map as a whole tends to slightly twist or bend (we do not
perform any loop-closure). This is why the position and the
attitude estimated by the ICP odometry collide with other
position information sources. Another limitation is the re-
fresh rate of the pose measurements limited to 0.3 Hz. This
rate is far from our fastest measurement (i.e., the IMU at
90 Hz), which poses a linearization problem. For these rea-
sons, we investigated three different types of measurement
models; see Section 4.3.3 for details.

Furthermore, the true bottleneck of the ICP-based lo-
calization lies in the way it is realized on our platform and
hence is prone to mechanical issues. As the laser rangefinder
has to be turning to provide a full 3D point cloud, in an en-
vironment with high vegetation such a mechanism is easily
struck, causing this modality to fail. Large open spaces,
indoor/outdoor transitions, or significantly large moving
obstacles can also cause the ICP to fail updating the metric
map. Since this modality is very important, we analyzed
these failure cases in Section 5.4.

3.5. Visual Odometry

Our implementation of visual odometry generally follows
the usual scheme (Scaramuzza & Fraundorfer, 2011; Tardif,
Pavlidis, & Daniilidis, 2008). The VO computation runs
solely on the robot onboard computer and estimates the
pose at the frame rate 2–3 Hz, which, compared to the
robot speed, is sufficient. It does search for correspondences
(i.e., image matching) (Rublee, Rabaud, Konolige, & Brad-
ski, 2011), landmark reconstruction, and sliding bundle
adjustment (Fraundorfer & Scaramuzza, 2012; Kummerle,
Grisetti, Strasdat, Konolige, & Burgard, 2011), which refines
the landmark 3D positions and the robot poses. The perfor-
mance essentially depends on the visibility and variety of
landmarks. The more variant landmarks are visible at more
positions, the more stable and precise is the pose estima-
tion. The process uses panoramic images constructed from
spherical approximation of the Ladybug camera model. The
Ladybug camera is approximated as one central camera.
The error of the approximation is acceptable for landmarks
that are a few meters from the robot.
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The visual odometry starts with detecting and match-
ing features in two consecutive images. We use OpenCV
implementation of the Orb keypoint detector and descrip-
tor (Rublee et al., 2011). Only the matches that are distinc-
tive above a certain threshold survive. The initial matching
is supported by a guided matching that uses an initial esti-
mate of the robot movement. The robot movement is esti-
mated by the five-point solver (Li & Hartley, 2006) encap-
sulated in RANSAC iterations. As the error measure, we
use the angular deviation of points from epipolar planes.
This is less precise than the usual distance from epipo-
lar lines. However, as we work with spherical projection,
we have epipolar curves. Computing angular deviations
is faster than computing the distance to the epipolar curve.
The movement estimate projects already known landmarks,
and we can actively search around the projection. The fea-
ture tracks are updated and associated with landmarks if
they pass an observation consistency test. The landmark
3D position is triangulated from all possible observations,
and the complete estimate of landmark and robot posi-
tions is refined by a bundle adjustment (Kummerle et al.,
2011).

Using an almost omnidirectional camera for the robot
motion estimation is geometrically advantageous (Brodsky,
Fermueller, & Aloimonos, 1998; Svoboda, Pajdla, & Hlaváč,
1998). The scale estimation however, depends on the preci-
sion of 3D reconstruction where the omnidirectionality does
not really help. It is also important to note that the omni-
directional camera we use sits very low above the terrain
(below 0.5 m) and directly on the robot body. This makes a
huge difference compared to, e.g., Tardif et al. (2008), where
the camera is more than 2 m above the terrain and sees
the ground plane much better than our camera. Estima-
tion of the yaw angle is still well conditioned since it relies
mostly on the side correspondences. The pitch estimation,
however, would sometimes need more landmarks on the
ground plane. The pitch part of the motion induces the
largest disparity of the correspondences in the front and
back cameras. Unfortunately, the back view is significantly
occluded by the battery cover. This is especially problem-
atic in the street scenes where the robot moves along the
street; see, e.g., Figure 11. The front cameras see the street
level better; however, the uniform texture of the tar sur-
face often generates only a few reliable correspondences.
The search for correspondences is further complicated by
the tilting flippers, which occlude the field of view and in-
duce outliers. The second problem is the agility of the robot
combined with the relatively low frequency of the visual
odometry. The robot can turn on a spot very quickly, much
quicker than an ordinary wheeled car. Even worse, the quick
turn is the usual way in which the movement direction is
changed. This makes correspondence search difficult. In the
future versions of visual odometry, we want to improve
the landmark management in order to resolve the problem
of too few landmarks surviving the sudden turn. We also

think about replacing the approximate spherical model by
reformulating it in a multiview model.

4. MULTIMODAL DATA FUSION

The core of the data fusion system is realized by an error-
state EKF inspired by the work of Weiss (2012). The descrip-
tion of the multimodal data fusion solution we propose can
be divided into two parts. First is the process error model
for the EKF, which shows how we model the errors, which
we aim to estimate and use for corrections. The second part
is the measurement model, which couples the sensory data
coming at different rates.

The overall scheme of our proposed approach is shown
in Figure 2. Raw sensor data are preprocessed and used as
measurements in the error state EKF (the FUSION block).
There is no measurement rejection implemented; based on
the assumption that fusion of several sensor modalities
should deal with anomalous data inherently—for details see
Sections 5 and 6—this, however, will be subjected to a fu-
ture work. As is apparent from Figure 2, measurement rates
significantly differ among the sensor modalities—the main
difference is especially between the IMU at 90 Hz and the
ICP output at 0.3 Hz. Having the update rate of the EKF at
90 Hz, the experiments have proven that this issue is crucial
and has to be resolved as part of the filter design to ensure
reliable output from the fusion process (see Section 5.3.3).
In our case, this problem concerns mainly the ICP-based lo-
calization that provides measurements at a very low rate of
0.3 Hz—too low to capture the motion dynamics as the IMU
does (i.e., the motion dynamics spectrum gets subsampled).
During these 3 s, real-world disturbances (which are often
non-Gaussian and difficult to model and predict, e.g., tracks
slippage) accumulate. This was the motivation to investi-
gate various ways of fusing measurements at significantly
different rates. Three proposed approaches that incorporate
the ICP measurements are described in Section 4.3.3.

4.1. Process Error Model

For the purpose of localization, we model our robot as a
rigid body with constant angular rate and constant rate
of change of velocity (ω̇ = 0, v̇ = const). The presence of
constant gravitational acceleration is expected and incor-
porated into the system model; no dissipative forces are
considered.

We define four coordinate frames: the R(obot) frame
coincides with the center of the robot, the I(MU) frame rep-
resents the inertial measurement unit coordinate frame as
defined by the manufacturer, the O(dometry) frame repre-
sents the tracked gear-frame, and the N(avigation) frame
represents the world frame. In all these frames, the North-
West-Up axes convention is followed, with the x-axis point-
ing forward (or to the North in the N -frame), the y-
axis pointing to the left (or to the West), and the z-axis
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Figure 2. The scheme of the proposed multimodal data fusion system [ω is angular velocity, f is specific force (Savage, 1998), v is
velocity, and q is quaternion representing attitude].

pointing upward. Rotations about each axis follow the right-
hand rule. The fundamental part of the system design is the
differential equations describing the development of the
states in time. The state space with the corresponding er-
rors is defined as

x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pN

qR
N

vR

ωR

fR

bω,I

bf,I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, �x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�pN

δθ

�vR

�ωR

�fR

�bω,I

�bf,I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1)

where pN is position of the robot in the N -frame, qR
N is a

unit quaternion representing its attitude, vR is the velocity
expressed in the R-frame, ωR is the angular rate, fR is the
specific force (Savage, 1998), and bω,I and bf,I are accelerom-
eter and angular rate sensor IMU-specific biases expressed
in the I -frame.

The error state �x is defined—following the idea of
Weiss (2012) (Eq. 3.25)—as the difference between the sys-
tem state and its estimate �x = x − x̂ except for attitude,
where the rotation error vector δθ is the vector part of the
error quaternion δq = q ⊗ q̂−1 multiplied by 2; ⊗ represents
quaternion multiplication as defined in Breckenridge (1999).

The states and the error states of the robot, modeled as
a rigid body movement, propagate in time according to the
following equations:

ṗN = CT

(qR
N )vR, �ṗN ≈ CT

(q̂R
N )�vR − CT

(q̂R
N )δθ , (2)

q̇R
N = 1

2
�(ωR)qR

N, δθ̇ ≈ −�ω̂R�δθ + �ωR + nθ , (3)

v̇R = fR − C(qR
N )gN + �vR�ωR,

�v̇R ≈ �fR − �C(q̂R
N )gN�δθ + �v̂R��ωR − �ω̂R��vR + nv,

(4)

ω̇R = 0, ḟR = 0, ḃω,I = 0, ḃf,I = 0,

�ω̇R = nω, �ḟR = nf ,

�ḃω,I = nb,ω, �ḃf,I = nb,f , (5)

where the derivation of the left part of Eq. (3) can be found
in Trawny and Roumeliotis (2005) (Eq. 110) and the left
part of Eq. (4) is based on Nemra and Aouf (2010) (Eq. 5);
the difference from the original is caused by different ways
of expressing attitude. The right parts of Eqs. (2)–(4) can
be derived by neglecting higher-order error terms and by
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an approximation of the error in attitude by the rotation
error vector δθ following Weiss (2012) (Eq. 3.44). We define
gN = [0, 0, g]T , n(.) are the system noise terms, and �(ωR)
in Eq. (3) is a matrix representing quaternion and vector
product operation (Trawny & Roumeliotis, 2005, Eq. 108). It
is constructed as

�(ω) =

⎡
⎢⎢⎢⎣

0 ω3 −ω2 ω1

−ω3 0 ω1 ω2

ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0

⎤
⎥⎥⎥⎦ . (6)

In Eq. (5), time derivations of angular rates and specific
forces are equal to zero—usually, they are considered rather
as input than state. However, we included them into the
state vector to be updated by the EKF. The error model
equations can be expressed in compact matrix form:

�ẋ = Fc�x + Gcn, (7)

where Fc is a continuous-time state transition matrix, Gc is
a noise-coupling matrix, and n is a noise vector composed
of all the n(.) terms; the Fc matrix is

Fc =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∅3 −CT

(q̂R
N )

CT

(q̂R
N )

∅3 ∅3 ∅3 ∅3

∅3 −�ω̂R� ∅3 I3 ∅3 ∅3 ∅3

∅3 −�C(q̂R
N )gN� −�ω̂R� �v̂R� I3 ∅3 ∅3

∅3 ∅3 ∅3 ∅3 ∅3 ∅3 ∅3

∅3 ∅3 ∅3 ∅3 ∅3 ∅3 ∅3

∅3 ∅3 ∅3 ∅3 ∅3 ∅3 ∅3

∅3 ∅3 ∅3 ∅3 ∅3 ∅3 ∅3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

and the Gcn term is

Gcn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∅3 ∅3 ∅3 ∅3 ∅3 ∅3

I3 ∅3 ∅3 ∅3 ∅3 ∅3

∅3 I3 ∅3 ∅3 ∅3 ∅3

∅3 ∅3 I3 ∅3 ∅3 ∅3

∅3 ∅3 ∅3 I3 ∅3 ∅3

∅3 ∅3 ∅3 ∅3 I3 ∅3

∅3 ∅3 ∅3 ∅3 ∅3 I3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

nθ

nv

nω

nf

nb,ω

nb,f

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (9)

The noise-coupling matrix describes how particular noise
terms affect the system state. Each n(·) term is a random
variable with normal probability distribution. The proper-
ties of these random variables are described by their co-
variances in the system noise matrix Qc. Since they are
assumed independent, the matrix Qc is diagonal, Qc =
diag(σ 2

θx
, σ 2

θy
, σ 2

θz
, σ 2

vx
, σ 2

vy
, . . .), where σ is the standard de-

viation.
To implement the proposed model, we have to trans-

form the continuous-time equations to the discrete time
domain. We use the Van Loan discretization method (Van
Loan, 1978) instead of explicitly expressing the values of

the discretized matrices. We substitute into the matrix M

defined by Van Loan,

M =
[
−Fc GQcG

T

∅ F T
c

]
�t, (10)

and we evaluate the matrix exponential,

eM =
⎡
⎣. . . F −1

d Qd

∅ F T
d

⎤
⎦ . (11)

The result of the matrix exponential contains the discretized
system matrix Fd in the bottom-right part and the dis-
cretized system noise matrix Qd left multiplied by the in-
version of Fd in the top-right part. The discretized system
matrix Fd can be easily extracted; Qd can be obtained by left
multiplying the upper right part of eM by Fd .

4.2. State Prediction and Update Using the EKF

The extended Kalman filter (McElhoe, 1966; Smith, Schmidt,
& McGee, 1962) is a modification of the Kalman filter
(Kalman, 1960), i.e., an optimal observer minimizing the
variances of the observed states. Since the error-state EKF
is used in our approach, the state of the system is expressed
as a sum of the current best estimate (x̂) and some small
error (�x). The only difference compared to a standard EKF
is that the linearized system matrices F and Q describe
only the error state and the error-state covariance propaga-
tion in time, rather than the whole state and state covari-
ance propagation in time. This is mainly beneficial from the
computational point of view since it simplifies lineariza-
tion of the system equations. A flow chart describing the
error-state EKF computation is shown in Figure 3 and can
be decomposed into a series of steps that describe the ac-
tual implementation. As new measurements arrive, state
estimate (x̂) and its error covariance matrix (P ) are avail-
able from the previous time-step (or as initialized during
first iteration). This state estimate x̂ is propagated in time
using the nonlinear system equations. The continuous-time
Fc and Gc matrices are evaluated based on the current value
of x̂. The Van Loan discretization method is used to obtain
discrete forms of Fd and Qd . Then the error-state covariance
matrix P is propagated in time. Expected measurements
are compared to the incoming ones, and their difference is
expressed in the form of measurement residual �y. Inno-
vation matrix H , expressing the measurement residual as a
linear combination of the error-state components, is evalu-
ated. Using the a priori estimate of P , H and the variance
of the sensor signals expressed as R, the Kalman gain ma-
trix K is computed. The error state �x is updated using the
Kalman gain and the measurement residual; the a posteriori
estimate of the error-state covariance matrix P is evaluated
as well. Finally, the a priori state estimate x̂ is corrected using
the estimated error �x.
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Figure 3. Standard EKF (left) computation flowchart compared to the error state EKF computation flowchart (right): in the error
state EKF prediction step, the a priori state is estimated using the nonlinear system equation f (), and the covariances are estimated
using Fd (linearized matrix form of the error state propagation equations). In the update step, the measurement residual �y is
obtained by comparing the incoming measurement y with its predicted counterpart. The residual covariance S and the Kalman
gain K are evaluated and used to update the state and covariance matrix to obtain the a posteriori estimates. Note that in the case
of the error state EKF, Qd and Hk couple system noise and measurements with the error state �x rather than x̂.

Although this EKF cycle can be repeated each time mea-
surements arrive, for performance reasons we have chosen
to group the incoming measurements to the highest fre-
quency measurement, i.e., the IMU data. Hence, each time
any non-IMU measurement arrives, it is slightly delayed un-
til the next IMU measurement is available. The maximum
possible sampling error caused by this grouping approach
is 1/(2 × 90) s and thus it can be neglected compared to the
significantly longer sampling periods of the non-IMU data
sources. The update rate of the EKF is then equal to the IMU
sampling rate, i.e., 90 Hz.

4.3. Measurement Error Model

In general, the measurement vector y can be described as
a sum of measurement function h(x) of the state x and of
some random noise m due to properties of the individual
sensors:

y = h(x) + m. (12)

Using the function h, we can predict the measured
value based on current knowledge about the system state:

ŷ = h(x̂). (13)

There is a difference �y = ŷ − y caused by the mod-
eling imperfections in the state estimate as well as by the
sensor errors. This difference can be expressed in terms of

the error state �x:

�y = y − ŷ = h(x) − h(x̂) + m

= h(x̂ + �x) − h(x̂) + m. (14)

If function h is linear, Eq. (14) becomes

�y = h(�x) + m. (15)

Although the condition of linearity is not always met, we
still can approximate the behavior of h in some close prox-
imity to the current state x̂ by a similar function h′, which is
linear in elements of x̂ such that

h(x̂ + �x) − h(x̂) ≈ h′(�x)|x̂ = Hx̂�x, (16)

where Hx̂ is the innovation matrix projecting observed dif-
ferences in measurements onto the error states.

4.3.1. IMU Measurement Model

The inertial measurement unit is capable of measuring spe-
cific force (Savage, 1998) in all three dimensions as well
as angular rates. The specific force measurement is a sum
of acceleration and gravitational force, but it also con-
tains biases—constant or slowly changing value indepen-
dent of the actual acting forces—and sensor noise, which is
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expected to have zero mean normal probability. All the val-
ues are measured in the I -frame,

yf,I = fI + bf,I + mf,I , (17)

where yf,I is the measurement, fI is the true specific force,
bf,I is sensor bias, and mf,I is sensor noise.

Since the interesting value yf,I is expressed in the I -
frame, we define a constant rotation matrix CI

R of the R-
frame to the I -frame. Translation between the I - and R-
frames does not affect the measured values directly; thus,
it is not considered. Since the IMU is placed close to the R-
frame origin, we neglect centrifugal force induced by rota-
tion of the R-frame and conditioned by nonzero translation
between the R- and I -frames. Using this rotation matrix, we
express the measurement as

yf,I = CI
RfR + bf,I + mf,I , (18)

where both fR and bf,I are elements of the system state.
If we compare the measured value and the expected mea-
surement, we can express the h function, which is—in this
case—equal to the h′:

yf,I − ŷf,I = �yf,I = CI
RfR + bf,I − CI

R f̂R − b̂f,I + mf,I

= CI
R�fR + �bf,I + mf,I , (19)

and hence can be expressed in Hx̂�x form as

�yf,I = [ ∅3 ∅3 ∅3 ∅3 CI
R ∅3 I

]
�x + mf,I , (20)

where the error state �x was defined in Eq. (1).
The angular rate measurement is treated identically;

the output of the sensor is

yω,I = ωI + bω,I + mω,I , (21)

where ωI is the angular rate, bω,I is sensor bias, and mω,I is
sensor noise.

Similarly, the measurement residual is obtained:

yω,I − ŷω,I = �yω,I = CI
R�ωR + �bω,I + mω,I , (22)

which can be expressed in the matrix form

�yω,I = [ ∅3 ∅3 ∅3 CI
R ∅3 ∅3 I

]
�x + mω,I . (23)

4.3.2. Odometry Measurement Model

Our platform is equipped with caterpillar tracks and, there-
fore, steering is realized by setting different velocities to
each of the tracks (skid-steering). The velocities are measured
by incremental optical angle sensors at 15 Hz. Originally, we
implemented a complex model introduced in Endo et al.
(2007), which exploits angular rate measurements to model
the slippage to further improve the odometry precision.
However, with respect to our sensors, no improvement was
observed. Moreover, since the slippage is inherently cor-
rected via the proposed data fusion, we can neglect it in the

odometry model, assuming only a very simple but sufficient
model:

vO,x = vr + vl

2
, (24)

where vO,x is the forward velocity, and vl and vr are track
velocities measured by incremental optical sensors—the ve-
locities in the lateral and vertical axes are set to zero. Since
the robot position is obtained by integrating velocity ex-
pressed in the R-frame, we define a rotation matrix CO

R :

vO = CO
R vR, (25)

which expresses the vR in the O-frame.
During experimental evaluation, we observed a minor

misalignment between these two frames, which can be de-
scribed as rotation about the lateral axis by approximately
one degree. Although relatively small, this rotation caused
the position estimate in the vertical axis to grow at a constant
rate while the robot was moving forward. To compensate
for this effect, we handle the CO

R as constant—its value was
obtained by means of calibration. The measurement equa-
tion is then as follows:

yv,O = CO
R vR + mv,O, (26)

where yv,O is linear velocity measured by the track odom-
etry, expressed in the O-frame. Since this relation is linear,
the measurement innovation is

yv,O − ŷv,O = �yv,O

= CO
R vR − CO

R v̂R + mv,O

= CO
R �vR + mv,O (27)

and expressed in the matrix form

�yv,O = [ ∅3 ∅3 CO
R ∅3 ∅3 ∅3 ∅3

]
�x + mv,O . (28)

4.3.3. ICP-based Localization Measurement Model

The ICP algorithm is used to estimate translation and ro-
tation between each new incoming laser scan of the robot
surroundings and a metric map created from the previously
registered laser scans. In the course of our work, three ap-
proaches processing the output of the ICP were proposed
and tested. The first approach treats the ICP-based localiza-
tion as movement in the R-frame in between two consec-
utive laser scans in the form of a position increment (the
incremental position approach). The idea of measurements ex-
pressed in a form of some �p can be, for example, found in
Ma et al. (2012). In our case, the increment is obtained as

�pR,ICP,i = C(qR
N,ICP,i−1)(pN,ICP,i − pN,ICP,i−1), (29)

where both the position pN,ICP and attitude qR
N,ICP are out-

puts of the ICP algorithm. The increment �pR,ICP,i is added
to the position estimated by the whole fusion algorithm at
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time-step i − 1 to be used as a direct measurement of po-
sition. The same idea is applied in the case of attitude (an
increment in attitude is extracted by means of quaternion
algebra). The purpose is to overcome the ICP world frame
drift. However, it is impossible to correctly discretize the
system equations with respect to the laser scan sampling
frequency ( 1

3 Hz). Also, the assumption of measurements
being independent is violated by utilizing a previously esti-
mated state to create a new measurement. Thus, corrections
that propagate to the system state from this measurement
tend to be inaccurate.

The second approach treats the ICP output as velocity
in the R-frame (the velocity approach). We consider it a state-
of-the-art practice utilized, for example, by Almeida and
Santos (2013). The velocity is expressed in the N -frame first:

vN,ICP = pN,ICP,i − pN,ICP,i−1

t(i) − t(i − 1)
, (30)

where t() is time corresponding to a time-step i. To express
the velocity in the R-frame:

vR,ICP(t) = C(qR

R′,ICP (t)⊗qR′
N,ICP,i−1)vN,ICP, (31)

it is necessary to interpolate the attitude between qR
N,ICP,i−1

and qR
N,ICP,i in order to obtain the increment qR

R′,ICP(t). An-
gular velocity is assumed to be constant between the two
laser scans. The velocity vR,ICP and the constant angular ve-
locity obtained from the interpolation can be directly used as
measurements that are independent of the estimated state,
and because of the interpolation, they can be generated with
arbitrary frequency and thus there is no problem with dis-
cretization (compared to the previous approach). However,
this approach expects the robot to move in a line between
the two ICP scans. This is a too strong assumption and also a
major drawback of this approach, which results in incorrect
trajectory estimates.

Therefore, we propose the third approach, the trajectory
approach, which overcomes the assumption of the velocity ap-
proach by (suboptimal) use of the estimated states in order to
approximate possible behavior of the system between each
two consecutive ICP scans. This trajectory approach proved
to be the best for preprocessing the output of the ICP algo-
rithm; for details, see Section 5.4.5.

The trajectory approach assumes that the first estimate
of the trajectory (without the ICP measurement) is locally
very similar to the true trajectory (up to the effects of drift).
Thus, when a new ICP measurement arrives, the trajectory
estimated since the previous ICP measurement is stored to
be used as the best guess around the previous ICP pose.
The ICP poses at time-steps i and i − 1 are aligned with the
N -frame so the ICP pose at time-step i − 1 coincides with
the first pose of the stored trajectory. In this way, the ICP
world frame drift is suppressed. Then, the stored trajectory
is duplicated and aligned with the new ICP pose to serve as

Figure 4. The principle of trajectory approach: when the new
ICP measurement arrives (time-step i), the trajectory estimate
based on measurements other than ICP (black dotted line) is
duplicated and aligned with the incoming ICP measurement
(black dashed line), and the weighted average (red solid line)
of these two trajectories is computed.

the best guess around the new ICP pose; see Figure 4. The
resulting trajectory is obtained as the weighted average of
the original and the duplicated trajectories:

p̂N,weighted,k = p̂N,kwk + p̂′
N,kw

′
k, (32)

where p̂N,k are points of the original trajectory (black dotted
line in Figure 4), p̂′

N,k are points of the realigned duplicated
trajectory (black dashed line in Figure 4), and wk ,w′

k are
weights—linear functions of time equal to 1 at the time-step
of associated ICP measurement and equal to 0 at the time-
step of the other ICP measurement. The resulting trajectory
is used to generate the velocity measurements in the N -
frame as follows:

vN,weighted,k = pN,weighted,k − pN,weighted,k−1

t(k) − t(k − 1)
, (33)

where t(k) and t(k − 1) are the time-steps of poses of the
resulting weighted trajectory. The k denotes indexing of the
fusion algorithm high-frequency samples. Velocities can be
expressed in the R-frame using the attitude estimates q̂R

N,k :

vR,weighted,k = C(q̂R
N,k )vN,weighted,k, (34)

and they can be used directly as measurement, whose pro-
jection onto the error-state vector yields

�yv,weighted = [ ∅3 ∅3 I3 ∅3 ∅3 ∅3 ∅3
]
�x

+ mv,weighted. (35)

The velocity expressed in the R-frame can be used in this
way as a measurement, but its values for the time period
between two consecutive ICP outputs are known only after
the second ICP measurement arrives. Thus it is necessary to
recompute state estimates for this whole time period (typ-
ically in a length of 300 IMU samples), including the new
velocity measurements.
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To process the attitude information provided as the ICP
output, we use a simple incremental approach such that the
drift of the ICP world frame with respect to the N -frame is
suppressed. To achieve this, we extract only the increment
in attitude between two consecutive ICP poses:

qR
N,ICP,i = qR

R′,ICP ⊗ qR′
N,ICP,i−1, (36)

qR
R′,ICP = qR

N,ICP,i ⊗
(

qR′
N,ICP,i−1

)−1
, (37)

where qR
R′,ICP is rotation that occurred between two con-

secutive ICP measurements, qR′
N,ICP,i−1 and qR

N,ICP,i . We ap-
ply this rotation to the attitude state estimated at time-step
k′ ≡ i − 1:

yq,ICP = qR
R′,ICP ⊗ q̂R

N,k′ . (38)

To express the measurement residual, we define the follow-
ing error quaternion:

δqICP,i = q̂R
N,k ⊗ (

yq,ICP
)−1

, (39)

where q̂R
N,k is the attitude estimated at time-step k ≡ i. We

express this residual rotation by means of rotation vector
δθ ICP,i ,

δθ ICP,i = 2 �δqICP,i , (40)

which can be projected onto the error state as

�yδθ,ICP = [ ∅3 I3 ∅3 ∅3 ∅3 ∅3 ∅3
]
�x

+ mδθ,ICP. (41)

Although the ICP is very accurate in measuring transla-
tion between consecutive measurements, the attitude mea-
surement is not as precise. Noise introduced in the pitch
angle can cause wrong velocity estimates expressed in the
R-frame, resulting in a problem described as climbing robot—
the system tends to slowly drift in the vertical axis. Since
the output of the trajectory approach is velocity vR,weighted,i ,
applying a constraint assuming only planar motion in the
R-frame is fully justified, easy to implement, and resolves
this issue.

4.3.4. Visual Odometry Measurement Model

As explained in Section 3.5, the VO is an algorithm for es-
timating translation and rotation of a camera body based
on images recorded by the camera. The current implemen-
tation of the data fusion utilizes only the rotation part of
the motion estimated by the VO, since it is not affected by
the scale. The set of 3D landmarks maintained by the VO
is not in any way processed by the fusion algorithm—it is
used by the VO to improve its attitude estimates internally.
Similarly, the bundle adjustment ensures more consistent
measurements, yet still, it does not enter the data fusion

models.3 The way we incorporate the VO measurements is
equivalent to the ICP trajectory approach, however, reduced
only to the incremental processing of the attitude measure-
ments. In this way, the whole VO processing block can easily
be replaced by an alternative (for example, by stereovision-
based VO), provided the output—the estimated rotation—is
available in the same way. The motivation is to have the VO
measurement model independent of the VO internal imple-
mentation details. The implementation of the VO attitude
aiding is identical to the ICP attitude aiding; the attitude
increment is extracted and used to construct a new mea-
surement yq,VO:

qR
N,VO,i = qR

R′,VO ⊗ qR′
N,VO,i−1, (42)

qR
R′,VO = qR

N,VO,i ⊗
(

qR′
N,VO,i−1

)−1
, (43)

where qR
R′,VO is rotation that occurred between two con-

secutive VO measurements qR′
N,VO,i−1 and qR

N,VO,i . We ap-
ply this rotation to the attitude state estimated at time-step
k′ ≡ i − 1:

yq,VO = qR
R′,VO ⊗ q̂R

N,k′ . (44)

Then, the measurement residual is expressed as an error
quaternion:

δqVO,i = q̂R
N,k ⊗ (

yq,VO
)−1

, (45)

where q̂R
N,k is the attitude estimated at time-step k ≡ i. We

express this residual rotation by means of rotation vector
δθVO,i ,

δθVO,i = 2 �δqVO,i , (46)

which can be projected onto the error state as

�yδθ,VO = [∅3 I3 ∅3 ∅3 ∅3 ∅3 ∅3
]
�x + mδθ,VO,

(47)

where mδθ,VO is the VO attitude measurement noise.

5. EXPERIMENTAL EVALUATION

Our evaluation procedure involves several different tests.
First, we describe our evaluation methodology in Sec-
tion 5.1. It covers obtaining ground-truth positioning mea-
surements for both indoors and outdoors. Then we present
and discuss our field experiments with the global behav-
ior of our state estimation (Section 5.2). We also show two
examples of typical behavior of the filter in order to give
more insight on its general characteristics (Section 5.3). We

3The same idea applies for the ICP-based localization: although it
builds an internal map, this map is independent from our local-
ization estimates. This would not be the case in a SLAM approach
with integrated loop closures.
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Figure 5. The experimental setup with the Leica reference theodolite for obtaining ground truth trajectory (left). Part of the 3D
semistructured environment for an indoor test with motion capture ground truth (right).

take advantage of them to explain the importance of the tra-
jectory approach compared to more standard measurement
models. Finally, we analyze the behavior of the filter under
failure case scenarios involving partial or full outage of each
sensory modality (Section 5.4).

5.1. Evaluation Metrics

To validate the results of our fusion system, we need accu-
rate measurements of part of our system states to confront
with the proposed filter. For indoor measurements, we use
a Vicon motion capture system with nine cameras covering
more than 20 m2 and giving a few millimeter accuracy at
100 Hz.

For external tracking, we use a theodolite from Leica
Geosystems, namely the Total Station TS15; see Figure 5
(left). It can track a reflective prism to measure its position
continuously at an average frequency of 7.5 Hz. The posi-
tion precision of the theodolite is 3 mm in continuous mode.
However, this system cannot measure the orientation of the
robot. Moreover, the position measured is that of the prism
and not directly of the robot, therefore we calibrated the
position of the prism with respect to the robot body using
the theodolite and precise blueprints. However, the posi-
tion of the robot cannot be recovered from the position of
the prism without the information about orientation. That
explains why, in the validations below, we do not compare
the position of the robot but rather the position of the prism
from the theodolite and reconstructed from the states of our
filter. With these ground-truth measurements, we use dif-
ferent metrics for evaluation. First, we simply plot the error
as a function of time. More precisely, we consider position
error, velocity error, and attitude error and we compute them
by taking the norm of the difference between the prediction
made by our filter and the reference value.

Since this metric shows how the errors evolve over
time, a more condensed measure is needed to summarize
and compare the results of different versions of the filter.

Therefore, we use the final position error expressed as a per-
centage of the total trajectory length:

erel = ||pl − pref,l ||
distance traveled

, (48)

where l is the index of the last position sample pl with the
corresponding reference position pref,l .

While this metric is convenient and widely used in the
literature, it is, however, representative only of the end point
error regardless of the intermediary results. This can be
misleading for long trajectories in a confined environment
as the end point might be close to the ground truth by
chance. This is why we introduce, as a complement, the
average position error:

eavg(l) =
∑l

i=1 ||pi − pref,i ||
l

, (49)

where 1 ≤ l ≤ total number of samples. To improve the leg-
ibility of this metric in the plots, we express the eavg as a
function of time,

e′
avg(t) = eavg(l(t)), (50)

where l(t) simply maps time t to the corresponding
sample l.

5.2. Performance Overview of the Proposed Data
Fusion

With these metrics, we can actually evaluate the perfor-
mance of our system in a quantitative way. We divided the
tests into indoor and outdoor experiments.

5.2.1. Indoor Performance

For the indoor tests, we replicated a semistructured envi-
ronment found in USAR environments, including ramps,
boxes, a catwalk, a small passage, etc. Figure 5 (right) shows
a picture of part of the environment. Due to the limitations
of our motion capture setup, this testing environment is
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Table II. Comparison of combinations of different modalities evaluated on indoor experiments performed under standard con-
ditions with the Vicon system providing ground truth in position and attitude. Final position error expressed in percent of the
total distances traveled was chosen as a metric for each experiment; the total distance of the 28 experiments was 765 m, including
traversing obstacles.

Final position error in % of the distance traveled

Exp. Distance traveled (m) Exp. duration (s) OD, IMU OD, IMU, VO OD, IMU, ICP OD, IMU, ICP, VO

1 47.42 254 2.17 2.30 1.71 0.79
2 36.52 186 1.99 2.21 0.36 0.14
3 48.74 244 3.15 2.63 0.50 0.18
4 29.40 237 2.22 2.06 0.42 0.45
5 82.10 585 2.51 2.24 0.90 0.71
6 74.64 452 2.05 3.64 0.98 1.24
7 74.65 387 1.70 1.72 2.28 0.58
8 30.57 194 1.98 3.42 1.59 2.29
9 26.58 287 2.67 2.23 1.90 1.19
10 26.57 236 1.53 3.94 0.77 2.11
11 26.96 208 1.25 1.20 0.95 0.66
12 29.13 211 1.27 1.29 0.88 0.87
13 26.35 180 1.37 1.25 0.94 0.77
14 40.23 240 6.58 6.70 0.88 0.99
15 21.01 167 5.26 5.27 0.61 0.57
16 19.04 209 5.94 5.95 0.55 0.60
17 10.95 405 3.44 2.89 2.15 2.05
18 8.65 238 2.87 2.77 1.36 1.38
19 9.36 284 4.14 3.91 1.83 1.85
20 9.02 282 2.90 3.36 2.73 2.65
21 10.82 308 3.79 3.23 1.43 1.41
22 9.45 237 5.36 5.45 2.66 2.68
23 12.75 204 2.65 2.84 2.66 1.79
24 7.81 179 1.58 1.83 2.82 3.06
25 10.85 165 3.85 4.14 3.25 2.17
26 10.83 163 2.36 1.84 0.62 0.68
27 12.79 237 15.42 14.95 2.48 2.53
28 12.07 239 28.42 27.07 2.89 2.98

Lower quartile|Median|Upper quartile 2.0|2.7|4.0 2.1|2.9|4.0 0.8|1.4|2.4 0.7|1.2|2.1

not as large as typical indoor USAR environments. Never-
theless, it features most of the complex characteristics that
make state estimation challenging in such an environment.

For this evaluation, we recorded approximately 2.4 km
of indoor data with ground truth; 28 runs represent stan-
dard conditions (765 m in total), and 36 runs represent fail-
ure cases of different sensory modalities induced artificially
(1,613 m in total). Table II presents the results of each com-
bination of sensory modalities for the 28 standard condi-
tions runs; the failure scenarios are analyzed in Section 5.4
separately.

The sensory modality combinations can be divided
into two groups by including or excluding the ICP modal-
ity; these two groups differ by the magnitude of the final
position error. From this fact, we conclude that the main
source of error is slippage of the caterpillar tracks—the VO
modality in our fusion system corrects only the attitude

of the robot. Also, the results confirmed sensitivity to
erroneous attitude measurements originating from the
sensory modalities. In this instance, VO slightly worsened
the median of the final position error—the indoor experi-
ments are not long enough to make the difference between
drift rates of the bare IMU+OD combination and possible
VO errors that originate from incorrect pairing of image
features. Nevertheless, the results are not significantly
different.4 A significant improvement is achieved with the
ICP modality, which compensates for the track slippage
and reduces the resulting median of the final position
errors by 50% (approximately). As expected during the

4All statistically significant results are assessed using the Wilcoxon
signed-rank test with p < 0.05 testing whether the median of cor-
related samples is different.
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Figure 6. Pictures of the outdoor environments in Zurich. Left: street canyon, right: urban park.

Table III. Comparison of combinations of different modalities evaluated on outdoor experiments performed under standard
conditions with the Leica system providing ground truth in position.

Final position error in % of the distance traveled

Experiment Distance traveled (m) Exp. duration (s) OD, IMU OD, IMU, VO OD, IMU, ICP OD, IMU, ICP, VO

1: basement 1 120.62 825 2.08 26.61 1.83 17.84
2: basement 2 175.67 853 1.37 12.53 2.42 5.91
3: hallway straight 159.42 738 1.10 20.48 0.43 12.22
4: street 1 135.18 584 2.78 0.72 0.24 0.62
5: street 2 259.86 992 9.74 0.80 0.26 0.80
6: park big loop 145.31 918 2.65 2.66 1.03 1.76
7: park small loop 88.20 601 1.94 1.60 1.25 0.97
8: park straight 99.29 560 1.20 20.18 0.62 11.50
9: 2 floors 238.28 1010 9.10 0.62 0.58 0.43
10: 2 floors opposite 203.23 1107 3.23 6.79 0.51 0.42
Lower quartile|Median|Upper quartile 1.4|2.4|3.2 0.8|4.7|20.2 0.4|0.6|1.2 0.6|1.4|11.5

filter design, fusing all sensory modalities yields the best
result (not significantly different from that without VO),
with a median of 1.2% final position error; the occasional
VO attitude measurement errors are diminished by the ICP
modality attitude measurement (and vice versa).

5.2.2. Outdoor Performance

We ran outdoor tests in various environments, namely a
street canyon and an urban park with trees and stairs in
Zurich. Figure 6 shows pictures of the environments.

In those environments, we recorded in total approxi-
mately 2 km, with ground truth available for 1.6 km; the
rest were returns from the experimental areas. These 1.6 km
are split into 10 runs. Table III, likewise Table II, presents the
results of each combination of sensory modalities for each
run.

Contrary to the indoor experiments, combining all four
modalities does not improve the precision of localization

compared to ICP, IMU, and odometry fusion (the fusion
of all is significantly worse than ICP, IMU, and odometry
only). Although some runs show improvement while com-
bining all the sensory modalities (runs 7, 9, and 10) or are at
least comparable with the best result 0.4|0.6|1.2 (runs 4, 5,
and 6), there were several experiments in which VO failed
due to the specificities of the environments. Such failures
result in erroneous attitude estimates significantly exceed-
ing expected VO measurement noise and compromising the
localization accuracy of the fusion algorithm. The reasons
for the failures are described in the Section 5.4 together with
other failure cases. Since we did not artificially induce these
VO failures, as we did in the case of the indoor experiments,
we do not exclude these runs from the performance evalua-
tion in Table III—we consider such environments standard
for USAR. Moreover, we treat them as additional proof of
the fusion algorithm sensitivity to erroneous attitude mea-
surement originating both from VO and ICP modalities, and
we will address them in the conclusions and future work.
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Figure 7. The 3D structure for testing obstacle traversability
shown as a metric map created by ICP.

5.3. In-depth Analysis of the Examples of
Performance

To provide more insight into the characteristics of the filter,
we selected some trajectories, and we present more infor-
mation than just the final position error metric.

5.3.1. Example of Data Fusion Performance in an Indoor
Environment

In this example, we address the caterpillar track slippage
when traversing an obstacle (Figure 7). Since we are looking
forward to USAR missions, such environment with condi-
tions inducing high slippage can be expected, e.g., collapsed
buildings full of debris and dust that impair traction on
smooth surfaces such as exposed concrete walls or floors,
mass traffic accidents with oil spills, etc. The Vicon system
was used to obtain precise position and orientation ground
truth for computing the average position error development
in time.

When traversing a slippery surface, any track odome-
try inevitably fails with the tracks moving with significantly
diminishing traction. For this reason, trajectory and state es-
timates resulting from the IMU+OD fusion showed unac-
ceptable error growth; see Figure 8. The robot was operated
to attempt to climb up the yellow slippery board (Figure 7),
which deteriorated the traction to the point that the robot
was sliding back down with each attempt to steer. Because
of the slippage, it failed to reach the top. Then, it was driven
around the structure and up, to further slowly slip down
the slope backward, with the tracks moving forward to
spoil traction. The effect of the slippage on the OD is ap-
parent from the purple line in Figure 8. The corresponding
average position error of the bare combination of IMU+OD
starts to build up as soon as the robot enters the slippery
slope. At 75 s, the IMU+OD has already an error of 0.5 m
and finishes at 200 s at an error of 4.4 m (outside Figure 8).
Without exteroceptive modalities this problem is unsolv-
able, and, as expected, including these modalities signifi-
cantly improves the localization accuracy; the final average
position error is only 0.14 m for the IMU+OD+VO+ICP
combination. The resulting state estimates for the combi-

nation of all modalities are shown in Figures 9 and 10.
Figure 9 depicts position estimates (the upper left quarter)
with the reference values. The difference between the esti-
mate and the reference is plotted in the bottom left quarter;
similarly, the right half of the figure displays the velocity
estimate. In the left part of Figure 10, the attitude estimate
expressed in Euler angles is shown with its error compared
to the Vicon reference. The right part of this figure demon-
strates estimation of the sensor biases, which are part of
the system state. Note that the biases in angular rates are
initialized to values obtained as the mean of angular rate
samples measured when the robot remains stationary be-
fore each experiment—short self-calibration. In conclusion,
adding the exteroceptive sensor modalities—as proposed
in our filter design—compensated for the effect caused by
high slippage shown in this example, as shown by the shape
of trajectories and the average position error.

5.3.2. Example of Data Fusion Performance in an Outdoor
Environment

This outdoor experiment took place on the Clausiusstrasse
street (near ETH in Zurich) (Figure 11), and the purpose
was to test the exteroceptive modalities (the ICP and the
VO) in an open urban space. In this standard setting, both
the ICP and the VO are expected to perform reasonably well,
although the ICP—compared to a closed room—is missing
a significant amount of spatial information (laser range is
limited to approximately 50 m, no ceiling, etc.). The Leica
theodolite was used to obtain the ground-truth position
during this experiment (Figure 5).

The results are shown in Figures 12 and 13, and they
demonstrate the improvement of performance when includ-
ing more modalities up to the full setup. The basic dead-
reckoning combination (IMU+OD) showed a clear drift in
the yaw angle caused by accumulating error due to angu-
lar rate sensor noise integration (see the purple trajectory
in the left part of Figure 12). By including the VO attitude
measurements (resulting in IMU+OD+VO), the drift was
compensated. Although the VO is not in fact completely
drift-free, the performance is clearly better than the angular
rate integration—rather it is the scale of the trajectory that
matters. The IMU+OD+VO modality combination suffered
from inaccurate track odometry velocity measurements (the
green line in Figure 12), but this problem was resolved
by incorporating the ICP modality into the fusion scheme.
The IMU+OD+ICP+VO combination proved to provide
the best results; see the average position error plot in Fig-
ure 12 (right). The attitude estimates and estimates of the
sensor biases are shown in Figure 14.

5.3.3. Evaluation of the Measurement Model

We claim that a standard measurement model—as is
usually used for measurements coming at comparable
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Figure 8. Trajectories obtained by fusing different combinations of modalities during the indoor experiment testing obstacle
(depicted in Figure 7) traversability under high slippage (left, middle); development of the average position error (right).

Figure 9. The corrected position (top left) and velocity estimates (top right) for the IMU+OD+ICP+VO combination corresponding
to the trajectory in Figure 8 (testing obstacle traversability). Errors in position and velocity are obtained as the norm of difference
between the Vicon reference and the corresponding state at each time-step (bottom left, bottom right). The Vicon reference for both
position and velocity is shown in black.
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Figure 10. The corrected attitude estimates (top left) for the full multimodal combination IMU+OD+ICP+VO corresponding to
the trajectory shown in Figure 8 (testing obstacle traversability). Errors in attitude are obtained as the difference between the Vicon
reference and the corresponding state at each time-step (bottom left). Estimated biases for the specific forces (top right) and angular
rates (bottom right).

Figure 11. An example of trajectory driven by the robot over
the Clausiusstrasse street.

frequency—is not well-suited for measurements with sig-
nificant differences in sampling frequencies as well as in
values that correspond to the same state observed. This
is crucial when the difference in states obtained from the
IMU or the OD at high frequency is very large compared to
the measurements provided by the ICP or the VO sensory
modalities at relatively low frequency—such as in the case
of high slippage.

Table IV shows the overall comparison of the three mea-
surement models we evaluated for fusing the ICP and the
VO sensory modalities in the filter. Figure 15 presents a typ-
ical example of trajectory reconstructed by all three mea-
surement approaches we introduced in Section 4.3.3. The
velocity approach—the state-of-the-art practice—that consid-

ers that information as relative measurements, is the least
precise, with the highest average position error; see Fig-
ure 15 (right). This is due to the corner cutting behavior
emphasized in Figure 15 (middle). The incremental position
approach performs reasonably well in indoor environments,
which are well-conditioned for the ICP and the VO sensory
modalities. In particular, the ICP algorithm is very precise
as there are enough features to unambiguously fix all de-
grees of freedom. On the other hand, in larger environments
with fewer constraints (expected for USAR), the trajectory
approach allows the IMU and the OD information to better
correct the drift of the ICP and the VO sensory modalities.

5.4. Failure Case Analysis

As seen in the previous sections, there are many occasions
in USAR environments for which the generic assumptions
of the EKF are not valid. The most frequent example is
track slippage, which violates the assumption of Gaussian
observation centered on the actual value.

Our failure case analysis reviews each sensory modal-
ity involved in the filter to see how the resulting estimate
degrades with partial outage of the modality. IMUs are not
subject to much partial failure other than bias and noise,
which are already accounted for in our filter.

5.4.1. Robot Slippage and Sliding

A typical failure case of the odometry modality is signifi-
cant slippage. Small slippage occurs routinely when turning
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Figure 12. Trajectories obtained by fusing different combinations of modalities during the outdoor experiment with Leica reference
system (left) and the corresponding average position error in time (right).

Figure 13. The position and velocity estimates (top left and bottom, respectively) for the IMU+OD+ICP+VO combination
corresponding to the outdoor trajectory in Figure 12; errors in position obtained as the norm of differences between the Leica
reference and the corresponding state at each time-step (top right).

skid-steer robots and is usually accounted for by the uncer-
tainty in the odometry model. However, on surfaces such
as ice, or inclined wet or smooth surfaces, stronger slippage
can occur. Stronger slippage or sliding are outliers of the
odometry observation model. IMU, ICP, and VO sensory

modalities are not affected in such a case. To simulate such
a situation, we placed the robot on a trolley and moved it
manually.

Figure 16 shows both the trajectory from the top (top-
left plot) and the comparison between the fusion of all four
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Figure 14. The attitude estimates (left) for the IMU+OD+ICP+VO combination corresponding to the outdoor trajectory in
Figure 12; biases estimated for the specific forces (top right) and angular rates (bottom right).

Table IV. Comparison of the different measurement models; for each model, we show the lower|median|higher quartile statistics
of the relative and average metrics. The average metric eavg is evaluated for the last sample of each experiment; see Eq. (49). We
distinguish the indoor and outdoor environments.

Indoor Outdoor

Model erel eavg erel eavg

incremental position 0.4|0.7|1.2 0.1|0.1|0.2 0.8|1.5|11.0 0.7|2.4|6.1
velocity 1.0|1.3|2.3 0.1|0.1|0.3 0.9|1.8|12.2 0.8|2.5|6.1
trajectory 0.7|1.2|2.1 0.0|0.1|0.2 0.6|1.4|11.5 0.6|2.2|6.1

sensory modalities and the fusion of only IMU+OD. We can
see that the latter wrongly estimates no motion, whereas the
fusion of all modalities correctly estimates the trajectory.
The failure of the partial filter can be explained by the low
acceleration of the platform during the test. As the IMU
acceleration signal is quite noisy, confidence in the IMU
cannot compensate for the odometry modality asserting an
absence of motion.

It should be noted that such a failure of the odometry
modality does not lead to a failure of our complete filter.

5.4.2. Partial Occlusion of the Visual Field of View

Partial occlusion, overexposure, or projections of dirt on the
camera could lead to faulty estimation of the motion by the
VO. To test this situation, we occluded one of the cameras
of the omnicamera (see Figure 17). Reduction of the field of
view of the omnicamera causes in the vast majority of cases

a reduction in the number of visual features being robustly
detected by the VO. The insufficient number of features can
then cause the VO to incorrectly estimate the attitude. This
information then propagates into the state estimate and can
cause the fusion algorithm to fail.

Figure 18 shows the result of the filter in such a case.
We can see that during a first loop of the trajectory, the
state estimation is correct. Then, lacking a sufficient number
of features, the VO computes an erroneous estimate and
the final state estimate degenerates. On the contrary, by
leaving out the visual odometry, the state estimation would
continue to perform satisfactorily.

It should be noted that the number, quality, and distri-
bution of features matter more than the portion of the field
of view that is occluded. One typical way to prevent this
issue is to monitor the number of features and eventually
their distribution in the field of view—our VO tries to have
corresponding features spread over the whole image.
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Figure 15. Comparison of effects of the three different ICP aiding approaches on the estimated trajectory (left, middle) and on the
average position error (right). Note the corner cutting effect of the velocity approach.

Figure 16. Test trajectory for robot slippage. Black line: ground truth; red solid line: state estimate with all four modalities; green
dashed line: IMU and odometry fusion. Top left: top view of the trajectory; bottom left: average error as a function of time; top,
middle, bottom right: evolution of x, y, and z coordinates.

5.4.3. Temporary Laser Scanner Outage

As demonstrated above, our trajectory approach to fusion
of ICP measurements is able to cope with the relatively
low frequency of laser scanning. As the laser is moving, it
can be blocked in the case of collision or high vibration of
the platform (a safety precaution at the level of the motor
controller). When this happens, it is necessary to initiate a
recalibration procedure that can take around 30 s.

We simulated this situation by throttling the laser point
clouds, which resulted in ICP measurement outages of up

to 40 s. Figure 19 shows the trajectory estimates for this test.
On the left, the cyan polygon shows the position estimates
of ICP linked by straight lines (no filtering). It should be
noted that in this case, the positions are accurate compared
to the ground truth but of very low sampling rate. We can
see in the middle and right graphs that the filter estimates
degrade gracefully. There is some drift, mostly along eleva-
tion due to slippage, but even with this low frequency, the
ICP measurements help to correct the state estimates over
just the IMU, odometry, and visual odometry.
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Figure 17. Picture from the partially occluded omnicamera. Notice the dark rectangle in the middle.

Figure 18. Trajectory reconstruction with several faulty VO motion estimates. Black line: ground truth; solid red line: state estimate
with all four modalities; dashed green line: state estimate excluding visual odometry; black arrow: visual odometry failure. Top
left: top view of the trajectory; top right: average position error around visual odometry failure; bottom: attitude estimated along
the trajectory.
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Figure 19. Trajectory estimates in the case of low ICP frequency. Black line: ground truth; cyan line: positions estimated by ICP
alone; red line: state estimate with all four modalities; green dashed line: state estimate excluding ICP measurements. Left: top
view; middle: 3D view; right: average position error.

Figure 20. Trajectory estimates in the case of a moving obstacle in a reduced field of view. Solid black line: ground truth; solid
red line: state estimate with all four modalities; dashed green line: state estimate excluding ICP measurements; cyan line: position
estimated by ICP alone; black arrow: start of moving obstacle. Top left: 3D view; bottom left: average error as a function of time;
right: x, y, and z coordinates as a function of time.

5.4.4. Moving Obstacle and Limited Laser Range

Unlike the cameras, laser range sensors are not sensitive
to illumination conditions. On the other hand, they have
a limited sensor range that can induce a lack of points in
large environments. Close-range obstacles might then be the
dominant cluster of points, and hence the ICP registration
might converge to a wrong local minimum, following the
motion of the obstacles.

To test this situation, we artificially limited the range of
the laser range sensor to 2 m. This is similar to heavy smoke

or dust scenarios that can arise in USAR conditions. This
prevents the laser from observing the walls and the ceiling,
which are usually the strongest cues for correct point cloud
registration indoors.

Additionally, we used a large board to simulate a mov-
ing obstacle of significant size. This caused the ICP to drift,
following the motion of the board.

Figure 20 shows the result of the filter compared to
the ground truth. We can see that when the large obstacle
starts to move, the estimate of the ICP drifts with it. As a
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Figure 21. Deformed point cloud map created by ICP. The points are colored alongside the corridor from red (initial position) to
blue. Left: front view; top right: side view; bottom right: top view.

Figure 22. Trajectory estimates in the case of map deformation. Solid black line: ground truth; solid red line: state estimate with
all four modalities; cyan line: position estimated by ICP alone. Top: side view; bottom: roll angle along the trajectory.

consequence, the whole filter drifts as well. This is analo-
gous to the slippage situation, in which the ICP modality
compensates for the combined estimate of the other three
modalities. Using the omnicamera information not only as
a visual compass but also as a complete visual odometry
modality would probably allow us to differentiate between
those two situations.

5.4.5. Map Deformation

As explained above, the ICP map is not globally optimized.
This means that the map might have some large-scale defor-
mations due to the accumulation of small errors. We were

able to observe this particularly in a long corridor that we
used to assess the impact of map deformation on the state
estimate.

Figure 21 shows an instance of the deformed map. We
drove along two superposed corridors over two floors. We
can see that both ends of the corridor are not aligned: the
ground plane of the blue end has a roll angle of several
degrees compared to the red end. We used the theodolite
system to acquire ground truth on the upper floor.

Figure 22 shows the impact of map deformation on
the state estimate. The top graph shows that even if the
ICP estimate is erroneous, the full filter maintains a correct,
drift-free estimate. The bottom graph compares the estimate
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of the roll angle between ICP only and the fusion. It clearly
shows the drift in roll of the ICP estimate and the lack of im-
pact it has on the fusion. The difference with previous failure
case lies in the kind of drift. The drift of the roll angle can be
compensated for by the IMU, especially the accelerometer.
On the other hand, the drift in position of previous failure
cases is not observable by the other modalities.

6. CONCLUSION

We designed and evaluated a multimodal data fusion sys-
tem for state estimation of a mobile skid-steer robot in-
tended for urban search and rescue missions. USAR mis-
sions often involve indoor and outdoor environments with
challenging conditions such as slippage, moving obstacles,
bad or changing light conditions, etc. To cope with such
environments, our robot is equipped with both proprio-
ceptive (IMU, tracks odometry) and exteroceptive (laser
rangefinder, omnidirectional camera) sensors. We designed
such a data fusion scheme in order to adequately include
measurements from all four of these modalities with an
order-of-magnitude difference in update frequency from
90 Hz to 1

3 Hz.
We tested our algorithm on approximately 4.4 km of

field tests (over more than 9 h of data) both indoors and out-
doors. To ensure precise quantitative analysis, we recorded
ground truth using either a Vicon motion capture sys-
tem (indoors) or a Leica theodolite tracker (outdoors). In
so doing, we proved that our scheme is a significant im-
provement upon standard approaches. Combining all four
modalities—IMU, tracks odometry, visual odometry, and
ICP-based localization—we achieved precision in the total
distance driven of 1.2% error in the indoor environment and
1.4% error in the outdoor environment. Moreover, we char-
acterized the reliability of our data fusion scheme against
sensor failures. We designed failure case scenarios accord-
ing to potential failures of each sensory modality that are
likely to occur during real USAR missions. In the course of
this testing, we evaluated robustness with respect to heavy
slippage (odometry failure case), reduction of field of view
of the omnicamera (visual odometry failure case), and re-
duction of the laser rangefinder together with large moving
obstacles spoiling the created metric map (ICP-based local-
ization failure case).

While our filter demonstrates good accuracy during
our field tests and is robust against some of the failures ex-
pected in USAR, there is still room for improvement, namely
the need for an automatic failure detection and resolution.
Exploring different methods of detecting anomalous mea-
surements and rejecting them in order to improve the over-
all performance is one of the ways, but it is currently left
for future work. Furthermore, developing a visual odom-
etry solution capable of also providing estimates of scaled
translation is another topic for the future.

It is not surprising that combining more modalities
yields greater precision. However, we were able to show
that if such a rich multimodal system is well-designed, it
will perform reasonably well even in cases in which other
systems exploiting fewer modalities fail completely. We de-
scribe how to design such a system using the commonly
used EKF. In this way, we contribute by proposing and
comparing three different approaches to treat the ICP mea-
surements, out of which the trajectory approach proved to
perform best.

To contribute to the robotics community, we release
our datasets used in this paper, including the ground truth
measurements from the Vicon and Leica systems.
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5. Improving multimodal data fusion for mobile
robots by trajectory smoothing

This section presents the third publication EKF Smoothing [A.4] of this compiled Ph.D.
thesis. It is a 9-page-long paper published in Robotics and Autonomous Systems jour-
nal. It extends findings of the previous publication Data Fusion [A.2] and compares
them to an alternative state-of-the-art approach.

After introducing the reader to the problem of EKF-based localization data fusion
system from the previous publication, contributions of this paper are stated. It is
comparison of the trajectory approach with another possible technique which is applying
a Kalman filter smoother. The other contribution is improving measurement model for
visual odometry, which allows incorporating velocity information beside angular velocity
information.

The related work section gives references to publications relevant to each sensory
modality and to mobile robot localization in general. Kalman filter smoothers are
another topic, we focus on their utilization in context of localization. Alternative tech-
niques are cited as well, inverse filters and graph optimization methods.

Section Smoother for multimodal data fusion introduces our robotic platform
and data fusion system briefly and focuses on the proposed trajectory approach to
incorporating low-sampling-rate measurements, which we later compare to the Kalman
filter smoother. The improved visual odometry measurement model is proposed as well
as the way we apply the Rauch-Tung-Striebel smoother to the Extended Kalman filter.

The last part is the Experimental evaluation, which runs the localization sys-
tem with smoother and with the trajectory approach and compares resulting accuracy.
Experimental dataset overlaps with the one from Data Fusion [A.2], but includes addi-
tional experiments which include deformable terrain or running over swinging ramps.
Observed results are discussed and summed up in the Conclusions section.
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a b s t r a c t

Localization of mobile robots is still an important topic, especially in case of dynamically changing,
complex environments such as in Urban Search & Rescue (USAR). In this paper we aim for improving the
reliability and precision of localization of our multimodal data fusion algorithm. Multimodal data fusion
requires resolving several issues such as significantly different sampling frequencies of the individual
modalities. We compare our proposed solution with the well-proven and popular Rauch–Tung–Striebel
smoother for the Extended Kalman filter. Furthermore, we improve the precision of our data fusion by
incorporating scale estimation for the visual modality.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

For successful deployment of mobile robots to complex
dynamically changing environments, such as those typical for
Urban Search & Rescue (USAR), reliable localization is crucial. In
modern mobile robots, a popular solution lies in the combination
of proprioceptive sensors, usually in form of an integrated Inertial
Navigation System (INS), that captures the body dynamics at high
rate, and an external source of aiding, using either vision [1] or
range measurements [2]. Since most of the solutions are based
on the well-proven Extended Kalman filter (EKF) [1,2], the state
estimation architecture we designed for our platform (see Fig. 1) is
based on the error state EKF framework as well.1

∗ Corresponding author at: Czech Institute of Informatics, Robotics, and
Cybernetics, Czech Technical University in Prague, Czech Republic.

E-mail addresses: kubelvla@fel.cvut.cz, kubelvla@fel.cvut.cz (V. Kubelka),
reinstein.michal@fel.cvut.cz (M. Reinstein), svobodat@fel.cvut.cz (T. Svoboda).
1 TRADR: Long-Term Human–Robot Teaming for Robot-Assisted Disaster Re-

sponse www.tradr-project.eu.

Aswe have shown in [3] (results of thiswork are summarized in
Sections 3.1 and 3.2), performing data fusion of various modalities
– such as in our case the inertial data, track odometry, visual
odometry, and laser-basedmapping – provides satisfactory results
even when exposed to harsh environmental conditions, which can
cause some of the modalities to fail. There is a number of well
known problems connected with each named modality. First, the
track odometry is strongly susceptible to high slippage, especially
in skid-steer robots such as ours [4]. Second, it is the drift of
the inertial sensors caused primarily by integrating the sensor
noise, misalignment and instrumental errors. Third, the sensitivity
to illumination and lack of scene texture influence the visual
odometry performance [5]. And fourth, the laser-based mapping
is sensitive to dynamic changes and to the overall geometric
structure of the environment [6,7]. We addressed all these issues
in [3] and introduced a failure-case methodology for evaluation
of our multimodal data fusion. In this methodology we invoke
challenging conditions that cause different modalities to fail on
purpose and hence allow us to properly evaluate the robustness
of localization.

However, our currently published results [3] raised a question
that motivated us into a more in-depth research of the critical

http://dx.doi.org/10.1016/j.robot.2016.07.006
0921-8890/© 2016 Elsevier B.V. All rights reserved.
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Fig. 1. TRADR1 robotic platform at the USAR training site of the fire brigade of Dortmund, Germany. Robot sensor suite is highly configurable, includes Point Grey Ladybug3
omni-directional camera and SICK LMS-151 laser range-finder, can be extended further by various cameras (left) or a robotic arm (right).

issue of significantly different sampling frequencies of individual
modalities. This is in general relevant to all multimodal data
fusion algorithms, regardless a platform type. In this paper we
therefore present ourmost recent results and compare them to the
popular and commonly used standard smoother for Kalman filters.
We have chosen the Rauch–Tung–Striebel smoother (RTS) [8]
for the EKF as a representative of the Kalman smoothers family.
By its definition, RTS best fits our data fusion scenario since it
allows to recompute past position estimates based on information
introduced by low-rate position increment measurements. We
therefore exploited the RTS as benchmark for our multimodal data
fusion architecture. For this purpose, we exploit our multimodal
dataset2 [3], which includes precise ground truth for both position
and orientation obtained using a Vicon tracking system.

Our contribution is twofold. Due to experimental comparison
and analysis, we were able to ground our novel approach to
fusing multiple modalities at significantly different sampling
rates with respect to the RTS smoother for EKF (described in
Section 3.4). We hence offer our solution as an alternative to this
popular RTS smoother, whether intended for robotics application
or multimodal data fusion in general. Secondarily, with respect
to our previous results, we improved the multimodal data fusion
by incorporating velocity information from the visual odometry
and resolved the scale problem for processing panoramic images
(Section 3.3).

The paper is structured as follows: Section 2 introduces the
related work, Section 3 sums up our previous work, describes
our new proposed solutions and presents them in the context of
smoothers for the EKF. Section 4 summarizes the experimental
evaluation and Section 5 concludes the implications of our work.

2. Related work

Regarding the multi-modal data fusion, we built on our
previous results described in [3], especially the design of the EKF
error models [9–11]—even though the later work concerned a
legged robot.

If long-term reliability and good accuracy are required,
dead-reckoning solutions – such as those based on IMU and
odometry – need other exteroceptive aiding modalities. In [12]
it is shown that an IMU based dead reckoning system can be
realized and successfully combined with the visual odometry to
produce a reliable navigation system. We include visual odometry
measurements into the EKF fusion scheme as well, yet directly
in a form of angular and translational velocities computed by a
more general implementation of visual odometry [5] designed for

2 This dataset has been already released to the robotics community at
https://sites.google.com/site/kubelvla/public-datasets/nifti-zurich-2013.

an omni-directional camera (note that in [12], the problem of
tracking visual features is simplified by using a marker for planar
homography).

Besides the visual odometry, another typical sensor for aiding
is the laser range-finder. The laser range-finders are usually used
for estimating vehicle motion by matching consecutive laser scans
and thus creating ametric map of the environment [6,7]. Examples
of successful deployment can be found for indoor – without IMU
but combined with vision [13] – as well as for outdoor—relying
only on the IMU [2]. The most popular approach of scan matching
is based on the Iterative Closest Point (ICP) algorithm, which was
first proposed by [14,15]. Later, [16] proposed a 6D Simultaneous
Localization and Mapping (SLAM) system relying primarily on the
ICP. Work of [17] proposed a localization system combining a 2D
laser SLAMwith a 3D IMU/odometry-based navigation subsystem.
Contrary to the later publications realized in the context of SLAM,
we only consider the output of the ICP algorithm3 as a local pose
measurements—similarly aswith the visual odometry,we treat the
laser localization module as a velocity sensor.

Solutions exploiting the EKF for fusing the dead reckoning with
exteroceptive sensors are very popular [1,2,19–21]; our fusion
scheme is based on the EKF as well. Still, a number of problems
arise in multimodal data fusion. The problem of utilizing several
sensors for localization, which may provide contradictory mea-
surements, is discussed in [22]. The authors use Bayes filters to
estimate sensor measurement uncertainty and hence evaluate the
sensor validity. We separately addressed this problem in [10],
where we utilized machine-learning techniques to detect anoma-
lous measurements.

Since we aim for grounding our approach with respect to the
smoothers for Kalman filters (in order to smooth the trajectory
estimates), we have chosen the well established RTS [8] for the
EKF as our base reference for benchmarking. Smoothers like RTS
are well proven in the context of localization. In [23] a network
of time-of-flight Cricket sensors provide measurements with a
slight delay; the authors utilize an interactingmultiplemodel fixed
lag smoother to incorporate these delayed measurements. In [24]
indoor localization problem is used to demonstrate properties of a
smoother for the Unscented Kalman Filter. And finally in [25], the
RTS smoother is actually utilized for the SLAMproblem. Smoothing
in Kalman filtering can be applied to wide range of problems,
e.g. work of [26] applies the RTS to improve state estimation of a
dynamic power system.

Several modifications of the RTS smoother have been pro-
posed [27–29] since its original publication [8]. They mainly aim
on better numerical stability and performance of the filter when
deployed on computers with limited precision of number repre-
sentation. We compare our algorithm to the RTS smoother using

3 We use the libpointmatcher implementation of the ICP algorithm [18].
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Fig. 2. Schematics of the multi-modal fusion algorithm.

64-bit double precision number representation and thus we take
the liberty to use the original RTS formulation from [8].

Apart from the Kalman filtering frameworks, factor-graph-
based approaches have recently gained popularity. They elegantly
describe estimation problem by a bipartite graph composed
of variable and factor nodes representing system states and
measurements (application for localization is presented e.g.
in [30,31]). Since batch optimization of the whole factor graph
(which is smoothing over all past estimates) can be costly, work
of [32] presents the iSAM2 algorithm that allows incremental
optimization of the factor graph. This approach is especially
beneficial in the case of SLAM. Estimating the position of
observed landmarks together with the position of camera or
other sensor makes the problem highly non-linear. However,
in the case of fusing velocity or angular rates for on-line state
estimationwithout performing SLAM, the EKF framework provides
comparable performance to the factor graph approach [33].

Another approach that implicitly involves smoothing are
inverse filters for visual–inertial systems [34,35]. These filters
offer straightforward mechanism for re-linearizing measurements
and re-processing visual observations that are within a defined
optimization window. Work of [36] further provides a smoother
that combines benefits of numerical stability of the EKF and re-
linearization capability of inverse filters. Nevertheless, complete
redesign to a tightly coupled systems is out of scope of our work.

3. Smoother for multimodal data fusion

3.1. Platform and sensors

For the estimation of position and orientation, our localization
algorithm fuses four sensor modalities: the inertial data from an
IMU and track odometry, laser range-finder and visual odometries.
As Fig. 2 demonstrates, each of these modalities generates
measurements with different sampling rates. Proprioceptive
sensors (Xsens MTi-G IMU and track velocity encoders) provide
high-sapling-ratemeasurements, yet they are prone to drift caused
by measurement noise integration and effects of track slippage.
The Xsens MTi-G IMU unit offers internal EKF-based attitude
estimation but we choose to utilize its raw measurements instead
(since the fusion with other measurements allows better attitude
estimation). The IMU is connected to the system via standard
serial link (COM port), we neglect delay between the actual

measurement and read-out from the serial port buffer; we time-
stamp it by the current system time. The IMU sampling rate is
approximately 90 Hz.

Visual and laser range-finder odometries rely on omni-
directional images captured by the Point Grey Ladybug3 camera and
on range data acquired by the SICK LMS-151 sensor respectively
(the native functionality of the laser range finder is 2D scans;
it is rotated by a servo drive to obtain 3D scans). The Ladybug3
camera is connected via Firewire 400 port; which is saturated by
high amount of the image data thus leading to reading delays.
Nevertheless, the camera time-stamps the images by the true time
of the capture. The laser scanner is connected to the system by
ethernet link; the raw data are not time-stamped. We introduce
a time correction for the delay between measuring and the data
read-out (a small fraction of a second) that was determined
empirically.

The 3D scan can be generated even as the robot moves. For
this purpose, position is estimated from track odometry and IMU
measurements—resulting 3D scans are accurate enough for the ICP
algorithm to converge [18]. Since our target applications to USAR
do not allow reasonable use of GPS or evenmagnetometer, we omit
these modalities in our multimodal data fusion.

3.2. Multimodal data fusion framework

Output of the four modalities is preprocessed or directly enters
the EKF-based4 fusion algorithm that estimates – among others
– the 3D position and orientation of the robot. Fig. 2 presents
the outline of the fusion system where vk and ωk stand for
linear and angular velocities, fk is specific force measured by
the accelerometers. Attitude provided by the laser range-finder
and visual odometries is represented by quaternion qk; note that
visual odometry indicates velocitymultiplied by an unknown scale
λ, which has to be estimated by the EKF fusion algorithm. As
explained in [3], in order to design a modular solution, we treat
all the modalities as velocity sensors.

The exteroceptive sensors generate measurements that require
preprocessing in order to obtain information about translation
and rotation of the robot. The laser range-finder creates 3D scans

4 We considered using the Unscented Kalman filter as well but according to our
experience from work [9], the UKF does not improve the fusion performance since
the model of the robot dynamics is only an approximation of the true state.
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Fig. 3. The trajectory approach [3]. Trajectory estimated from all modalities except
the low-sampling-rate sensor (solid red line) is combinedwith position information
(pk , pk−1) from the low-sampling-rate sensor (laser odometry). The new trajectory
(thick blue) is a weighted average of the original trajectory and its aligned duplicate
(red dot-dashed line). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

of the environment. We use libpointmatcher implementation [18]
of the ICP algorithm to determine a rigid transformation that
would match two successive point clouds together. Resulting
transformation reflects movement of the robot between the two
3D scans. According to our experience, this estimate is reliable in
most environments the robot operates in. Its main limitation – the
low sampling rate of one scan per 3 s – is given by the speed of
rotation of the laser range-finder.

In general, there are 3 different approaches to incorporate these
low-sampling-rate measurements into the fusion algorithm [3].
We consider two of them to be state-of-the-art common practice.
The first expresses the measured translation as an increment
in position [37], the second as a constant velocity observed
between two consecutive measurements [38]. Both solutions did
not provide satisfying results when applied to measurements with
such a low sampling rate. Therefore, we proposed a heuristic
approach that overcomes some of the problems cased by the
sampling rate. We call it the trajectory approach since it utilizes
the shape of the trajectory estimated by the remaining modalities
to generate velocity measurements [3].

The basic idea behind the trajectory approach is that while
the position and orientation estimates deteriorate with time and
distance traveled, locally, the shape of the trajectory resembles
the true one. We choose two time instances – two consecutive
laser odometry measurements – and claim that if we align a priori
trajectory estimate (the one originating from other modalities)
with these measurements, we obtain locally accurate trajectories
around the two measurements. See Fig. 3 that depicts the aligned
a priori and the resulting trajectories. We obtain the resulting
trajectory byweighted average of the original one and its realigned
duplicate.

This heuristic approach allows us to generate velocitymeasure-
ments that better fit into the EKF fusion scheme. Also, it is pos-
sible to further apply non-holonomic constraints on the velocity
measurements, which help to reduce the drift in the vertical axis
mainly caused by slight inaccuracies in the pitch angle indicated
by the laser odometry.

3.3. Scale-dependent velocity information from visual odometry

Relative motion of the robot is also measured by the visual
odometry (VO). It benefits from the omni-directional camera
observing the whole scene (up to occlusions caused by the
robot body) and thus it is not losing observed image features

while turning. The omni-directional camera consists of several
perspective cameras built in away that purposively puts individual
camera centers very close to each other and it is modeled as
a central omni-directional camera. Therefore, scale of the scene
cannot be computed directly and it is up to the fusion algorithm to
estimate it. The estimated scale then affects the velocity indicated
by the VO. Since the VO scale has not been the part of the original
fusion algorithm we proposed in [3] (and thus only VO attitude
corrections could be utilized), we augment it to the state vector
as follows:

x =

pN qR

N vR ωR fR bω,I bf ,I λ
T (1)

where pN is position of the robot in the N-frame (Navigation/world
frame), qR

N is unit quaternion representing attitude, vR is velocity
expressed in the R-frame (Robot/body frame), ωR is angular rate,
fR is specific force [39], bω,I and bf ,I are accelerometer and angular
rate sensor IMU-specific biases expressed in the I-frame (Inertial
frame). λ is the VO scale. Since we implemented the EKF in the
error-state fashion (compare standard EKF equations with the
error-state EKF in Fig. 4), the system state is accompanied by the
corresponding error state 1x:

1x = [1pN δθ 1vR 1ωR 1fR 1bω,I 1bf ,I 1λ]
T . (2)

Measurement model for velocity indicated by VO is then

yv,VO = λvR + mv,VO (3)

where mv,VO is measurement noise associated with this sensor
modality. For the error-state EKF, we express associated measure-
ment residual, i.e. how the error state contributes to the observed
discrepancy between expected measurement and the actual one:

yv,VO − ŷv,VO = 1yv,VO

= (λ̂ + 1λ)(v̂R + 1vR) − λ̂v̂R + mv,VO

≈ v̂R1λ + λ̂1vR + mv,VO (4)

where all the hat symbols stand for expected values obtained by
the system state propagation in time. From the result of (4), ap-
propriate rows of the measurement matrix H can be constructed;
vector of all measurement residuals is then expressed as

1y = H1x + R (5)

where R is the measurement noise matrix. Since the scale λ is not
known, it is initialized to one and left to be estimated.

Before the value of scale of theVO converges, invalid corrections
of the velocity vR are propagated into the system state. Similarly,
erroneous track odometry measurements (e.g. in case of slippage)
will eventually propagate into the estimate of λ. Therefore, to be
able to utilize the visual odometry in a reasonable manner, we
propose a modification that separates the λ estimation phase from
the VO aiding phase by omitting either the λ̂1vR term or the
v̂R1λ term from (4). In the first case, only λ is estimated without
any vR corrections being introduced. Based on the current EKF
filter setting, we empirically determined it takes approximately
1.5 m traveled by the robot for the λ to converge to a stable value
(travel speed of the robot is in average 0.4 m/s). After this nominal
distance, we switch the terms, so from that point, λ is constant
and every measurement residual is propagated into vR correction.
Of course, this approach expects the visual odometry to maintain
constant scale, which may not always be the case.5

5 If the scale does not stay constant and anomalous VO measurements are
detected by the standard χ2 test or one of approaches proposed in [10], λ can be
re-initialized again.
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Fig. 4. Comparison of the standard (left) and error-state (right) Extended Kalman filter computational scheme. Note that the systemmatrix Fk differs between the two filter
implementations, it describes either dynamics of the system state or of the error of the system state [3]. Both Fk and Hk (measurement matrix) are linear approximations of
the general nonlinear functions describing the system. (Figure reprinted from [3].)

3.4. RTS smoother for the EKF

Since the main goal of this paper is to compare our trajectory
approach with the combination of the standard state-of-the art
incremental position approachwith a smoother for KF,we introduce
here the way we utilize the Rauch–Tung–Striebel smoother [8]
with our error state EKF implementation.

By smoothing is understood estimating the state based on both
past and future measurements. In general, smoothing can be used
when a small delay in estimation can be tolerated or in case of post-
processing. Standard RTS smoother is a two-pass filterwhich in the
forward pass does not differ from the Kalman filter. The smoothing
is then performed in the backward pass, given by the following
equations. By subscript [s], we denote the smoothed state; the last
sample N is considered smoothed as it is:

x[s],N = xN|N (6)

and the rest is smoothed using these recursive equations, where P
is the state covariance matrix and subscripts k + 1|k and k|k stand
for a priori (at time k + 1) and a posteriori (at time k) estimates of
the state and its covariance:

x[s],k = xk|k + Ak

x[s],k+1 − xk+1|k


(7)

P[s],k = Pk|k + Ak

P[s],k+1 − Pk+1|k


AT
k (8)

where the gain Ak is obtained from covariance matrices P and the
system matrix F 6 as follows

Ak = Pk|kF T
k P

−1
k+1|k. (9)

In case of the error-state EKF, the procedure is very similar,
only (7) has to be interpreted in terms of the error state. The
term


x[s],k+1 − xk+1|k


has to follow the error state definition,

which involves subtraction in all terms but the quaternion q—
rotation vector δθ is used (2) instead of the equivalent quaternion
expression

δqk = q[s],k+1 ⊗ q−1
k+1|k (10)

where⊗ stands for quaternionmultiplication (see [40]). δθ is then
two times the vector part of δq. Similarly, the following summation
operation

x[s],k = xk|k + Ak1xk (11)

6 For the full definition of the proposed state space model, the error model and
its linearization see [3].

is not defined; the correction has to be applied following the error
state EKF definition; i.e. summation in all terms but the quaternion,
where the rotation vector δθ is expressed as quaternion (δq =

[0.5δθT 1]T ) and multiplied by its counterpart in xk|k:

q[s],k = qk|k ⊗ δqk|k. (12)

Since the trajectory approach operates on states between two
consecutive laser odometry measurements, we smooth the same
states by the RTS in the case of the incremental position approach
for our comparison.

4. Experimental evaluation

4.1. Dataset description

For the purpose of experimental evaluation, we used our
dataset that we already released to the community.7 It consists
of experiments performed both outdoors and indoors, under rea-
sonably challenging conditions—track slippages that occur natu-
rally with the robot movement, traversing stairs, slopes, gravel
etc. We also performed series of experiments, where we deliber-
ately diminished sensors performance (covered part of the omni-
directional camera, scene over-exposure, artificially limited laser
range-finder range) or simulated rough conditions (slippery slopes,
deformable and unstable surfaces, hitting obstacles; see Fig. 5). The
complete dataset contains approximately 3.2 kmexperimentswith
ground truth. To be able to evaluate performance, indoor experi-
ments (total length 1.6 km)were trackedby theVicon system.With
the ground truth, we can evaluate localization error in any given
time yet such a metric is difficult to interpret, mainly because the
error grows with distance traveled. To overcome this problem, we
normalize the accumulated error by the distance and call it average
position error:

eavg(l) =

l
i=1

∥pi − pref ,i∥

l
(13)

where l is the position sample index. To improve legibility of this
metric in plots, we express the eavg as a function of time

e′

avg(t) = eavg(l(t)) (14)

where l(t) simply maps time t to the corresponding sample l.

7 [3,41], the dataset is recorded in a ROS bagfile format. Precise ground-truth
position reference as captured by Vicon system is included.

5. Improving multimodal data fusion for mobile robots by trajectory smoothing
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Fig. 5. Examples of obstacles traversed during indoor localization experiments (Vicon tracking system as a ground truth). Top images: Ramp with a slippery surface
(lacquered wood) and a non-slippery one (soft rubber). Bottom images: Pile of soft plastic foam, polystyrene and a nylon net (the wooden box served as a side support
for the pile).

Fig. 6. Comparison of the discussed approaches in an experiment with nominal conditions—robot was navigated in a square-shaped pattern on a leveled floor.

Fig. 7. Effect of drift in the Z-axis for the RTS smoothed incremental position approach (IPA) compared to the trajectory approach (same experiment as in Fig. 6).

4.2. Evaluation

We distinguish between experiments with nominal conditions
and special fail-cases, where we deteriorated performance of
selected sensor modalities or even caused their failure. Yet
to properly test and compare the RTS smoothed incremental
position approach with its trajectory approach counterpart (we are
interested in the impact of these approaches to artifacts caused by
erratic measurements), we include these fail-case experiments to
the overall statistics.

In this subsection, we provide several examples of nominal and
fail-case experiments (Figs. 6–10) that demonstrate behavior of
both evaluated approaches. When navigating over flat surfaces
(Fig. 6, 7 or 8) and inclined ramps without major slippage
(Fig. 9) the trajectory approach allows to generate hi-rate velocity
measurements from low-rate position increment measurements.
These can be corrected by non-holonomic constraints that
compensate effect of improper attitude estimation on the side of
the low-rate odometry. Inaccurate attitude introduces errorswhen
expressing measured velocity in the body coordinate frame. These
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Fig. 8. Effect of the discussed approaches in a long narrow corridor experiment spanning two floors. Non-holonomic constraints in measured velocity (allowed by the
trajectory approach) reduced the Z-axis drift. Note that the reference system was available only on the second floor and the offset between the reference and the trajectory
was caused by tracking a prism on a 50 cm pole attached to the robot.

Fig. 9. A ramp-climbing fail-case experiment example. The robot repeatedly climbed an inclined ramp (see Fig. 5, top right). With each pass, error in the Z coordinate
estimate increases because of inaccurate readings of the tracked odometry when rolling onto the inclined ramp and pivoting over its top.

Fig. 10. An extreme case with slippage and swinging pallets. The pivoting motion of the pallet lying on the wooden block violates the non-holonomic constraints used in
the trajectory approach. That results in worse position estimate than the smoothed incr. position approach.

errors – in our case – lead to drift in the Z-axis (vertical). The
constraint we apply assures that the generated hi-rate velocity
vector is parallel with the X–Y plane of the body coordinate frame
of the robot. As the plots of results evaluated at nominal conditions
demonstrate, our constraint of velocity measurement suppresses
the drift in the vertical axis.

First example of experiments in Fig. 6, 7 compares the discussed
approaches on a basic square trajectory. Both the incremental
position approach and its RTS smoothed version show drift in the
Z-axis,which is suppressed by the non-holonomic constraint in the
case of the trajectory approach. The same effect of the trajectory
approach is shown in a long corridor experiment in Fig. 8. The
reference system was a Leica Total Station.8

As the motion of the robot becomes more complex, localization
drift increases. This is shown in Fig. 9. In this experiment, robot

8 Theodolite with a laser range finder which tracked a prism attached to the
robot—the reference is thus available on the second floor of the two-floor trajectory.
There is also cca. 0.5 m offset from the robot origin because of the way of attaching
prism to the robot.

repeatedly approached, climbed and descended an inclined ramp
(see Fig. 5, top right). Each time the robot rolled onto the ramp
and each time it pivoted over its top edge small localization
error accumulated. In this case, the non-holonomic constraints
diminished drift on flat parts of the trajectory but did not help
when the robot passed over the edges and thus the localization
accuracy of the two approaches was comparable.

An extreme fail-case of violating assumptions laid by the
trajectory approach is demonstrated in the next example in Fig. 10.
The robot traversed two seesawsmade ofwooden pallets and large
wooden blocks serving as a pivot. At some point of the traversal,
the pallet together with the robot pivoted over while performing
rotational and translational motion. Both of motion components
were sensed by the inertial measurement unit. Rotational part
was estimated without any problems, however, the translation
was based on data from visual odometry, IMU acceleration and
track odometry which provided contradictorymeasurements. This
resulted into incorrect localization for both approaches; non-
holonomic constraints were violated.

The last presented fail-case related to the low-rate ICP odom-
etry is depicted in Fig. 11. In this experiment, we intentionally

5. Improving multimodal data fusion for mobile robots by trajectory smoothing
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Fig. 11. An ICP laser odometry outage fail-case. The raw ICP measurements are shown in the middle plot (blue stars are the points of the ICP measurements); the nominal
rate is 0.3 Hz however in this experiment, we switched laser for longer periods to simulate laser failures. The robot path also included the slippery ramp that caused invalid
velocity measurements from track odometry. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Comparison of the trajectory and smoothed incremental position approach in terms of average position error.

Approach Normal conditions (777 m,7218 s) + Hard conditions
(2174 m,15931 s)

Incremental position 0.08|0.12|0.22 0.10|0.18|0.39
Incr. pos. with smoothing 0.08|0.12|0.21 0.10|0.19|0.38
Trajectory approach 0.11|0.14|0.24 0.12|0.19|0.36

lower|median|higher quartile (m)

paused laser range finder for up to 45 s simulating ICP odome-
try outages. During these outages, the robot passed over slippery
and non-slippery ramp inducing track odometry errors discussed
in previous experiment examples. It is necessary to comment on
the middle plot in Fig. 11: Compared to our fused localization out-
put, the bare ICP odometry yields minimal error. That is expected
in a laboratory where it has perfect conditions for localization—six
large planes ofwalls, ceiling and floor. This advantage does not hold
in general, ICP odometry tends to perform poorly in uniform tube-
shaped environments (e.g. long corridors). Nevertheless, com-
parison of the smoothed incremental position approach and the
trajectory approach favors the first one. While slippage does not
usually significantly deteriorate the trajectory approach perfor-
mance, the long outages lead to poor trajectory reconstruction
(Fig. 3), especially in the Z-axis leading to stronger drift.9

4.3. Comparative analysis

In Table 1, we evaluate performance of the approaches on the
indoor set of experiments—the Vicon reference system provides
higher sampling rate and thus allows us to evaluate overall
accuracy as well as details of the estimated robot trajectory.
The first column contains the set of experiments with nominal
conditions; in the second column, the fail-case experiments are
also included. The results show that the overall accuracy is
comparable—the median values of average position error of each
approach is well within lower and higher quartiles of the other
approaches. We choose to express the results by lower and
higher quartile and median since our metric value is not normally
distributed. Including the fail-cases increases the median of the
average position error, as expected.

4.4. Discussion

With respect to the presented results, obvious question arises:
which approach should be chosen? On flat or reasonably inclined
surfaces without rough transitions, trajectory approach corrects
localization drift (predominantly in the Z-axis). It is the non-
holonomic constraint on ICP odometry velocitymeasurements that
mostly contributes to this correction. On rough and deformable

9 In this case, however, the fusion system could be easily modified to detect ICP
odometry outages and accommodate appropriately.

terrain andwhen pivoting over obstacle edges, the non-holonomic
constraint does not hold anymore and therefore, the standard
incremental position approach performs similarly to our trajectory
approach. In the Vicon-referenced part of our dataset, the
dominant part is experiments where the robot crosses ramps
and other obstacles. Therefore, the comparison of the approaches
in Table 1 indicates similar performance. The choice of the
approach therefore depends on the expected conditions of the
robot deployment. If a significant part of trajectories driven
by the robot contains large flat areas (structured environment
in general), the localization can benefit from non-holonomic
constraints implemented in the proposed trajectory approach.

Smoothing the position estimates (either by adding the RTS
smoother into the incremental position approach or using the
trajectory approach) can only improve estimates backwards into
history. Closed-loop controllers will be negatively influenced by
the delay, but there may be systems where the delay does not
matter (typically registration of various sensormeasurementswith
world coordinate frame).

5. Conclusions

Wehave improved ourmultimodal data fusion by incorporating
velocitymeasurements obtained frommonocular visual odometry,
whose scale is in principle unknown. We have compared our
trajectory approach with the combination of a state-of-the-
art approach and the Rauch–Tung–Striebel smoother that was
modified for the error-state EKF. We evaluated its performance on
a set of experiments (over 2 km of distance traveled) designed to
imitate USAR mission conditions—even those that cause some of
the sensor modalities to fail.

The results have shown that both approaches are comparable
in terms of average position error due to challenging composition
of the dataset, yet the trajectory approach clearly outperforms the
standard incremental position approach with RTS under nominal
conditions. We further investigate conditions that are not nominal
in [10], where we propose extension of the EKF fusion framework
by an anomaly detection algorithm that allows us to cope with
these conditions.
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6. Tracked robot odometry for obstacle traversal in
sensory deprived environment

This section presents our last paper, which is currently submitted for review in IEEE/ASME
Transactions on Mechatronics. It is a 10-page-long paper which improves dead-reckoning
localization of tracked robots in difficult terrains containing vertical obstacles.

The introduction explains our motivation to improve dead-reckoning localization
in situations when robot passes over vertical obstacles (steps, stones, etc.). It states
potential benefits brought by reducing localization drift, even for robots equipped with
exteroceptive sensors. The section also lists contributions of the paper. The related
work is presented in the following section, citing articles which deal with mechanical
aspects of obstacle traversal for tracked robots, kinematic models, motion estimation
and control.

Section robot motion models provides brief overview of dead-reckoning localization
for tracked robots and shows how it fails when passing over an obstacle. New kinematic
models are proposed that reduce localization drift in this scenario. A way to selecting
a proper kinematic model for given situation is proposed as well.

The experimental evaluation shows the overall accuracy on our experimental
dataset and examines selected components of the proposed track odometry. Observed
results and aspects regarding the model selection are discussed in a separate section
and finally, the conclusion sums up the article.
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Tracked Robot Odometry for Obstacle Traversal in
Sensory Deprived Environment

Vladimı́r Kubelka, Michal Reinstein, and Tomáš Svoboda

Abstract—Mobile tracked robots are suitable for traversing
rough terrain. However, standard exteroceptive localization meth-
ods (visual or laser SLAM) may be unreliable due to smoke, dust,
fog or insufficient lighting in harsh conditions of urban search
and rescue missions. During extensive end-user evaluations in
real-world conditions of such scenarios, we have observed that
accuracy of dead-reckoning localization suffers while traversing
vertical obstacles. We propose to combine an explicit modeling
of robot kinematics and data driven approach based on machine
learning. The proposed method is experimentally verified indoors
and outdoors traversing various obstacles. Indoors, reference
position has been recorded as well to assess accuracy of our
solution. Experimental dataset is released to public to help the
robotics community.

Index Terms—Localization, odometry, rough terrain, tracked
mobile robot.

I. INTRODUCTION

TRACKED mobile robots are often seen in applications
involving traversing uneven terrain and obstacles. Search

and rescue missions after earthquakes, in underground mines
or after industrial accidents are examples. Continuous self-
localization while driving is necessary for robot control, sensor
fusion and other functionalities.

In harsh conditions of search and rescue missions, usage of
exteroceptive sensors (e.g. laser range finders, cameras) may
show impossible. When testing our mobile robotic platform
together with firefighters, dust, smoke and fog are often
present. The robot may also enter areas with insufficient
lighting conditions. During consequent exteroceptive sensors
outages, standard localization approaches (e.g. visual or laser
SLAM algorithms) have to be backed-up by a dead-reckoning
localization which relies on proprioceptive sensors only. In
tracked mobile robots, this task is performed by odometry
supported by inertial measurements. It provides continuous
localization but is however prone to drift (i.e. deterioration
of accuracy with distance traveled) because of integration of
noise in inertial sensors and track slippage.

The state-of-the art approaches to track odometry focus
on correctly modeling track slippage while turning (e.g. [1],
[2]). In our work, we identify another source of error –
vertical obstacles – which mainly affect elevation component
of position. To our best knowledge, this work is the first

This work was supported by Grant Agency of the European Union under
grant agreement FP7-ICT-609763 TRADR and by the Czech Technical
University in Prague under grant SGS18/138/OHK3/2T/13.

V. Kubelka is with Czech Technical University in Prague, Faculty of
Electrical Engineering and Czech Institute of Informatics, Robotics and
Cybernetics.

M. Reinstein and T. Svoboda are with Czech Technical University in
Prague, Faculty of Electrical Engineering.

one that addresses problem of obstacle traversal in context
of localization for tracked robots.

In order to simplify the complex problem of track-terrain
interaction, we define several additional models for different
stages of obstacle traversal where the robot climbs up, tips
over an edge or descends down. We propose to follow a data-
driven approach of training a classifier for recognizing these
stages from proprioceptive sensor data only. Based on the
classifier decision, appropriate model is chosen to govern the
odometry. This allows better localization in sensory deprived
environments and also provides a better starting point for
exteroceptive-based localization approaches, which can later
re-initialize when the robot leaves the low-visibility area.

We formulate our contributions as follows: 1) we design a
dead-reckoning localization system for tracked robots which
takes obstacle traversal in account, 2) we experimentally test
performance of the system indoors and outdoors by experi-
ments spanning more than 1200 m and 3) we make our dataset
publicly available for robotic community in standard ROS1

format (link given in section IV). This dataset can be useful
for testing other dead-reckoning approaches for tracked robots
since it contains 3D position reference for indoor experiments.
The reference was acquired by using tracking capabilities of
the virtual reality headset HTC Vive.

The paper is structured as follows: section II introduces
work related to design of tracked robots for obstacle traversal
and localization using track odometry. Section III describes
our proposed solution, section IV summarizes experimental
evaluation and section V discusses results of the experiments.
Finally, section VI concludes the work.

II. RELATED WORK

Tracked mobile robots are well suited for difficult terrains
where large track-soil contact surface helps to maintain rea-
sonable traction. However, climbing up or traversing higher
obstacles is still a challenge. Many mechanical modification
to the basic tracked platform concept have been proposed;
work of [3] proposes a modified bogie which can operate
as a normal track or rotate as a whole providing climbing
ability. Alternative reconfigurable tracked robot is proposed in
[4] together with stairs climbing algorithm.

Adjustable tracks – usually called flippers – are a common
way to improve traversability, see [5], [6], [7]. Our robotic
platform (Fig. 3) uses flippers as well allowing it to climb stairs
and overcome vertical obstacles. There are many more possible
designs that allow obstacle traversal or step climbing; authors
of [8] combine walking for hard soils and tracked motion for

1Robot Operating System, http://www.ros.org
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weak soils, in [9], wheel-track robot prototype is proposed and
the work of [10] describes a novel robot body configuration
allowing transformation between a ”claw” mode intended for
climbing stairs and a ”wheel” mode for flat terrain.

Approaches to adapting robot morphology to terrain are pro-
posed in [11], [12], [13]; a computationally fast and plausible
simulation of a tracked vehicle is presented in [12]. It can be
utilized to train active policies which choose the best way to
overcome obstacles via reinforcement learning.

In [14], authors analyze capability of a tracked robot to
climb stairs. They compare different configurations of tracks
and analyze climbing motion dynamics. Effect of changing
payload mass held by tracked robot with flippers is investi-
gated in [15]. The payload is a drum with an optical fiber
which is being unwound as the robot proceeds forward. Our
goal is to correctly estimate motion of a tracked robot during
scenarios which are described in these two works.

Estimating motion of a robot based on its track velocities
and other sensors is a component necessary for trajectory fol-
lowing. It is also useful for sensor data fusion (e.g. composing
3D lidar scans). In tracked robots, interaction between ground
and tracks introduces a source of uncertainty which is difficult
to model. The core of the problem is to determine amount of
slippage while turning. Many approaches to solve this problem
and to provide reliable odometry have been published.

Authors of [16] demonstrate that slippage of tracks can
be estimated by an Extended Kalman filter by observing
trajectory data of a tracked vehicle. Alternative approach to
track odometry via identification of instantaneous centers of
rotation is proposed by [1]. Simplified slippage model which
also benefits from angular rate sensor is presented in [2], [17];
the latter also extends the odometry to 6-DOF. An approach
of utilizing external position reference to identify kinematic
model parameters is presented in [18]. Localization in 6-DOF
by fusing track odometry and complementary-filtering-based
attitude estimation is proposed in work of [19], [20], [21]. All
these published approaches deal with the problem of track
slippage while turning and with the associated uncertainty
in velocity measurements. The extension we propose can be
combined with their results by identifying moments of vertical
motion and temporarily switching to our model during those
instances.

Understanding kinematics of tracked vehicles is beneficial
for motion control as well as demonstrated by authors of [22].
They experimentally identify kinematics of a tracked vehicle
in order to design better trajectory control system. Also related
to trajectory control, required torques and power consumption
of tracked vehicles are investigated in [23].

To further improve motion estimation, tracks can be
equipped with additional sensors which reveal points of
contact with terrain. This information can be beneficial for
traversing obstacles; both for robot safety (tipping over the
contact point) and for localization (detecting shift of the
contact point along the track). This can be done by attaching
special reflectors on inner side of track segments for optical
inclination measurements [24], inserting RFID technology-
based sensors into track segments [25] or putting force sensors
between tracks and their supports [26].

III. ROBOT MOTION MODELS

A. Standard track odometry models

In tracked mobile robots, the main problem which com-
plicates design of odometry systems is track slippage while
turning. When a tracked robot moves forward, relative velocity
between ground and tracks is zero. Yet in order to perform a
turn, difference in track speeds has to be introduced and that
leads to slippage. Many models for tracked robot odometry
and for track-soil interaction have been proposed [16], [1],
[2], [22], [23], [18].

The odometry models – in general – take track velocities
as input values (vl, vr) and output robot velocity in the robot
body frame (vb = [vx, vy, vz]

T
b ) and angular rate component

around the z axis ωz:

(vb, ωz) = fodom(vl, vr) (1)

Optionally, the odometry model can benefit from the angular
rate ωz being measured by an additional sensor (e.g. inertial
measurement unit, IMU) [2], [17]:

(vb, ωz) = fodom,imu(vl, vr, ωz,imu) (2)

For studying the problem of climbing obstacles by a tracked
mobile robot, we choose the simplest model which neglects
slippage - while performing the climbing motion, assumptions
about track-soil interaction are violated anyway. Nevertheless,
our approach does not depend on choice of track odometry
model, any of the slippage-compensating ones can be used
instead. The simple model we utilize is defined as follows:

vb =

[
vl + vr

2
, 0, 0

]T

b

(3)

ωz = ωz,imu (4)

Knowing the robot velocity expressed in the body frame as
well as the angular rate ωz , it is possible to estimate robot
position by integration of the velocity and the angular rate in
time to obtain position and heading of the robot. Differential
equations governing the integration process are

ṗw = CT(qb
w)vb (5)

q̇bw =
1

2
Ω(ωb)q

b
w (6)

where ṗw is time derivative of robot position expressed in the
world coordinate frame, CT(qb

w) is a rotation matrix transform-
ing coordinates from robot body frame to the world frame.
It is computed from a quaternion qbw which expresses robot
attitude. (6) describes attitude update, driven by the angular
rate ωb = [0, 0, ωz]

T . Ω(ω) stands for

Ω(ω) =




0 ω3 −ω2 ω1

−ω3 0 ω1 ω2

ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0


 (7)

according to [27, eq. 108]. Note that this is the most basic data
integration scheme, which can be replaced be an advanced data
fusion filter incorporating other external measurements [18],
[20], [21] or the velocity measurements can be used in a factor
graph fusion approach.
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Fig. 1. Block diagram of the proposed track odometry system. Standard 6-DOF odometry with input from proprioceptive sensors computes intermediate
velocity, position and robot attitude. These values are corrected in the OTC block based on classifier decision to either keep the standard output or to switch
to one of the proposed obstacle traversing modes.

The odometry models mentioned so far consider only planar
motion, extension to 3D is described in [17], [20]. In 3D,
attitude is obtained from inertial measurements and corrected
by magnetometer data if available. Eq. 5 still holds, the only
difference is that the quaternion qbw expresses non-zero roll and
pitch angles as well. Our approach requires this extension to
3D since we focus on describing motion of traversing vertical
obstacles.

B. Obstacle traversal problem

Standard approaches to track odometry described in sec-
tion III-A provide good results as long as all contact points
with terrain lie on the flat part of the track. Fig. 2 and 3
demonstrate a case when this condition does not hold, a track
bogie of the robot faces a step.

As soon as the track begins to move forward, physical
interaction of the front round section of the track with the
obstacle forces the bogie to climb upwards [14, Fig.3], see
the top part of Fig. 3. However, standard approaches to
track odometry indicate forward motion based on measured
track velocities (3D odometry will eventually estimate position
increment in the z axis due to rising pitch angle). Estimated
trajectory is shown in the bottom part of the Fig. 3.

Similar problem arises from tipping over an edge (as shown
in Fig. 5) or descending down from an obstacle. As the
robot traverses the obstacle, position of contact points between
tracks and terrain changes and so does the odometry model.
Our solution to this problem lies in designing separate models
for different stages of the traversal and finally training a
classifier that automatically selects one of these models based
on available sensor data.

Fig. 1 provides an overview of our proposed solution. Raw
sensor data are processed by a standard odometry system. It
estimates velocity expressed in the body frame of the robot,
position of the robot – which is however discarded – and
attitude of the robot (following (3), (5) and (6) respectively).

In the Obstacle Traversal Correction section (OTC), veloc-
ity estimated by the standard odometry is corrected by one of
Obstacle Traversal Models (OTM) or left untouched for flat
terrains. The decision which model is appropriate is made by
the classifier block. Following (5), new corrected position is
computed and output together with attitude estimates, which is

Fig. 2. Example of a vertical obstacle that poses a problem for track odometry.
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Fig. 3. Climbing a step with a single-track robot. Real motion (top) and
trajectory estimated by a standard 3D odometry algorithm (bottom).

not modified in our approach. Following subsections describe
the proposed components in detail.

C. Obstacle climbing and descending models

Climbing obstacles poses a problem for standard track
odometry. We model it by the OTM that takes pitch angle of
the robot as input and computes position of the robot relative to
the obstacle. It is intended for tracked robots with or without
active sub-tracks (often called flippers). The model assumes
climbing symmetrical obstacles (however, we evaluate its
performance on non-symmetrical obstacles as well).

Fig. 4 demonstrates the core idea of the model. It consists
of two line segments representing bottom sides of the track
assembly (main track and a flipper, painted in violet) and the
obstacle (black rectangle).

6. Tracked robot odometry for obstacle traversal in sensory deprived environment

60



SUBMITTED TO IEEE/ASME TRANSACTIONS ON MECHATRONICS 4

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

x[m]

0

0.2

0.4

z
[m
]

d

l

h

(a)

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

x[m]

0

0.2

0.4

z
[m
]

(b)

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

x[m]

0

0.2

0.4

z
[m
]

(c)

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

x[m]

0

0.2

0.4

z
[m
]

(d)

Fig. 4. Kinematic model for obstacle climbing. From top: (a) model
parameters, (b,c) climbing with flippers retracted, (d) climbing using flippers.
The violet x symbol denotes motion of the origin of the robot frame.

Input values are pitch angle of the main track θ, flipper
angle relative to the main track α, obstacle height2 h and track
length l. The model outputs distance d between the obstacle
and the point the track touches the ground, measured on the
x axis. It is computed as follows:

d =
h cos(θ + α) + l cos(θ) sin(θ + α)− l sin(θ) cos(θ + α)

sin(θ + α)
(8)

See the plot (a) in Fig. 4 which shows all the values in the
geometry of the model.

Transition between the obstacle contact point lying on the
flipper (Fig. 4, d) or on the main track (Fig. 4, c) is triggered
by this condition:

|l sin(θ)| ≥ h (9)

If this inequality holds, the contact point lies on the main track
bogie. By substituting α = 0 in (8), we adjust the model to
search for the contact point on the main track.

2Without additional sensors, obstacle height cannot be measured directly.
If such measurements are not available, we propose a sufficiently robust
approach in section III-F.
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Fig. 5. Tipping over the obstacle edge after climbing it up.

The input angles α and θ cannot be arbitrary. If the flipper
angle relative to horizontal plane θ + α exceeds 90 degrees,
it cannot be interacting with an obstacle anymore – at least
according to our model. In that case, we decrease value of α
until this condition holds:

(θ + α) =
π

2
(10)

It leads to a motion estimate which is equivalent to climbing
up an obstacle using only the main track bogie (as shown in
the plot (b) of Fig. 4). This is also the way to model obstacle
climbing for robots without front flippers.

The model checks for impossible configurations as well for
which

((θ + α) ≤ 0) ∨ (d > (l + flipper length)) (11)

becomes true. This condition indicates either a situation when
the robot ”dives” into ground below the obstacle or the d
distance is greater than the actual reach of flippers.

Descending obstacles can be viewed as climbing backwards;
geometry of the problem differs only in the sign of the pitch
angle θ and in the sign of the d distance. Moreover, the α
angle refers to the angle of rear flippers. After substituting
into (8), we obtain an OTM for obstacle descending.

To compute velocity measurement from the models, two
distances di and di+1 are computed from two subsequent pitch
values (on our platform, pitch angle is sampled at 100 Hz).
Since there is a rigid transformation between the robot frame
origin and the main track, di and di+1 together with respective
robot pitch angles are sufficient to compute robot frame origin
motion (denoted by the violet x symbols in Fig. 4) relative to
the obstacle. This motion is expressed in the body frame of the
robot as an approximation of velocity with non-zero vx and
vz components (in standard odometry, only vx is non-zero).

D. Tip-over motion model

Another source of localization error is tip-over motion on
edges of the obstacle (see Fig. 5). In this situation, the robot
tips over by its own weight and motion of its tracks is usually
minimal – only to push the robot over the tipping point.
However, translation of the robot origin relative to the world
causes position estimation error if not treated correctly.

We design the OTM to correct this error by estimating
translation of the origin of the robot frame expressed in the
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robot frame. This is obtained by rotating the robot frame
origin around the tipping point from zero pitch angle to two
subsequent measured pitch angles:

xi,w′ = −CT(θi)xt.p. (12)

xi+1,w′ = −CT(θi+1)
xt.p. (13)

where xt.p. are coordinates of the tipping point in the x, z plane
(y = 0) and CT(θi) rotation matrix around y axis computed from
pitch angle θi. The results xi,w′ and xi+1,w′ are expressed in
a temporary world frame denoted by w′ which is aligned with
the robot body frame in position and yaw angle. In this frame,
we compute position increment and express it back in the robot
body frame:

∆xb = C(θi) (xi+1,w′ − xi,w′) (14)

This increment is an approximation of a velocity measurement
with non-zero vx and vz components as well.

E. Switching obstacle traversal models

Each OTM works best only in situation it is designed for. It
is therefore important to correctly switch between them as the
robot traverses an obstacle. For example, OTM for obstacle
climbing utilized while traversing flat terrain will probably
trigger the fail-safe condition (11).

To make the OTM switching automatic, we propose to train
a classifier (e.g. SVM, [28], [29]) based on measured dynamics
of the robot. The 4-class classifier decides which odometry
model is appropriate for the given moment. Feature vector
consists of three components

f = [
vl + vr

2
, θ̇, θ] (15)

where vl+vr
2 is forward speed measured by tracks and θ̇ is

pitch angular rate. The classifier is trained in a supervised
manner by providing labels for a representative set of training
experiments, which contain obstacles, flat terrain and inclined
ramps. To mark the stage labels manually, we use our reference
tracking system described in the section IV. The procedure
involves selecting intervals, where one of the tree OTMs
should be used for predicting motion. The rest is labeled as
standard odometry. Distribution of labels in the feature space
is shown in the Fig. 6. The classes are well separated, thus
we choose a fast linear classier – SVM. The SVM is learned
utilizing the LIBSVM [29] implementation, with a multi-class
classifier and radial-basis kernel. Required performance of the
classifier is discussed in the section IV-C.

F. Velocity components selection

One of the model inputs is obstacle height h. Its value –
paradoxically – does not affect estimated position increments
in the vertical z axis. While climbing up an obstacle or
descending one, accumulated height depends on track lengths
and pitch differences. However, obstacle height affects x
component of position increments.

Without external or additional proprioceptive sensors, es-
timating obstacle height h has shown to be difficult. Exper-
iments suggest – however – that the obstacle height can be
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Fig. 6. Learning data samples for the SVM classifier. Labels created manually
using the HTC Vive reference system.

approximated by a constant value equal to half of maximum
possible height the robot can climb. We verify that this
approximation is acceptable in section IV. Directly measuring
h may by possible by adding additional tactile sensors [24],
[25], [26]. Nevertheless, we aim for a solution which works
for general tracked robots with minimum number od sensors
and which is sufficiently robust even in harsh conditions of
sensory deprived environment.

Due to the fact our OTMs are still an approximation of
the real world physical interaction, value of the vx velocity
component computed by the model is slightly underestimated
(distribution of the error fits a Gaussian with negative mean on
our dataset). We propose a hyperparameter-free solution and
a tunable solution to this problem and compare them in the
section IV.

The hyperparameter-free solution utilizes only the vy and
vz velocity components estimated by OTM and keeps the vx
component reported by the standard odometry.

The tunable approach originates from the observation on ex-
periments with positional reference: standard odometry usually
over-estimates the vx component (error can be approximated
by a Gaussian with positive mean). True value of vx is
therefore expected to lie between values estimated by standard
odometry and OTMs. To fine-tune the model to reflect the
reality, we propose to combine them:

vb = [wvx,o + (1− w)vx,k, vy,k, vz,k]Tb (16)

where vb is velocity expressed in the body frame, w ∈< 0, 1 >
is a weighting factor, subscript o denotes the original odometry
component and the k subscript denotes our OTM-based com-
ponents. The first solution is equivalent to w = 1; the optimal
value of the weight can be found by minimizing localization
error over testing set of experiments. On flat terrains however,
only the standard track odometry vb,o is used.

IV. EXPERIMENTAL EVALUATION

For position reference, we use a virtual reality headset HTC
Vive3. Using driver for Robotic Operating System (ROS) [30],

3https://www.vive.com

6. Tracked robot odometry for obstacle traversal in sensory deprived environment
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Fig. 7. Indoor experiment with HTC Vive reference system. Detail shows a
HTC Vive controller attached to the robot via vibration dampener, which is
necessary due to an IMU inside the tracked controller.

we obtain coordinates of a wireless controller which comes
with the headset system. When properly attached to the robotic
platform (see Fig. 7), calibration procedure allows us to find
transformation from a reference frame of the controller to
body frame of the robot. Accuracy of the reference system
is ±10 mm.

The robotic platform used for experiments (see Fig. 2)
is a mobile robot developed within the TRADR4 project.
Locomotion system consists of two main tracks, each of them
is equipped with two flippers. For attitude estimation, an Xsens
MTi-G IMU is mounted near the robot frame origin.

We have performed both indoor and outdoor experiments.
Indoors, we have selected a representative set of experiments
to train the SVM classifier (16 experiment runs, 299m total
distance). The rest of the indoor experiments serve as a testing
set (22 runs, 457m). Some of these experiments miss the
HTC Vive reference (because of technical limitations of the
reference system, e.g. experiments through staircases); we
provide manual measurements (e.g. staircase height) instead.

Outdoor experiments (8 runs, 455 m) were performed on
a long stairway (see Fig. 13) and inside an industrial safety
training plant5. Because of GPS signal attenuation through
trees in the case of the stairway or reflections from nearby
metal construction at the training plant, standard deviation
of indicated GPS position is in the order of meters. Since
the localization errors we aim to correct are in magnitude of
decimeters, such reference system cannot be used. Instead, we
plan trajectories of the experiments to have identical start and
end points. This way, final localization error can be measured.

All experiments were released to public in the form of ROS
compatible datasets (including the ground truth)6. They are
stored as ROS Indigo bag files and thus can be re-played and
viewed by the Rviz tool.

4TRADR: Long-Term Human-Robot Teaming for Robot-Assisted Disaster
Response http://www.tradr-project.eu

5RDM Training Plant http://www.rdmtrainingplant.nl
6Dataset at https://sites.google.com/site/kubelvla/public-datasets/obstacle-

traversal-dataset-2017 See http://ros.org for the file format information

A. Performance metrics

To evaluate the experiments, we prefer Average Position
Error (APE) metric:

APE(t) =

∑k
i=1

√
(x̂i − xi)2 + (ŷi − yi)2 + (ẑi − zi)2

k(t)
(17)

where x, y and z are estimated position coordinates, k(t)
mapping from time t to discrete time k and x̂i, ŷi and ẑi is
ground truth position. To focus on effects on a selected axis,
we modify the APE into Average Component Error (ACE) as
follows:

ACEz(t) =

∑k
i=1 |ẑi − zi|
k(t)

(18)

where the subscript z denotes the axis of interest. APE and
ACE are well suited to show the effects of our proposed
odometry (especially drift in the z axis) for trajectories with
varying length.

For experiments without full reference, we evaluate differ-
ence between the starting point and the final point of the robot
trajectory – they are supposed to be identical by design of the
experiments.

B. Training classifier for Obstacle Traversal Correction model
switching

The first subset of experiments serves as a training set for
the SVM. In 16 runs spanning 299m traveled, robot passes
obstacles of various heights made of pallets, inclined ramps
and flat surfaces.

Example of typical performance of our proposed OTC
for these experiments is demonstrated in Fig. 8. True and
estimated trajectories7 of the robot passing over pallets are
shown in Fig. 8. Two pallet heights h and three different front
flipper angle α settings are shown. In the third run (bottom
plot), front flippers (α = 100◦) do not contribute to the motion
of the robot during the experiment.

C. Effect of the classifier performance to the odometry accu-
racy

Fig. 9 demonstrates effect of false classifications on the
estimated trajectory. For a selected testing experiment (similar
to the one depicted in Fig. 10), appropriate OTMs are chosen
manually i.e. the same way we create the ground truth for
training. Yet a given number of these manual classifications
are perturbed to a different class.

The perturbation is done as follows: for given accuracy
(percentage of correctly predicted labels over all predictions),
random subset of labels is selected (e.g. for accuracy 60%,
the randomly chosen subset contains 40% of all labels). Each
label in this subset is changed to a new random label, different
from the original.

We run the odometry corrected by OTC and store its
localization accuracy. To obtain different subsets of these false
classifications, the process is repeated twenty times for each

7We show only side view since the robot moves straight forward and the
y coordinate changes only a little
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Fig. 8. Example of three passes over wooden pallets 14 cm and 20 cm high.
The indicated α angle is the flipper angle while climbing up the pallet, h
stands for height of the pallet.

TABLE I
CLASSIFIER CONFUSION MATRIX – TRAINING

Predicted labels
Standard Climbing Descending Tipping

True labels odometry up down over

Standard odometry 24616 2044 1001 1019
Climbing up 1688 16595 0 1

Descending down 1007 6 9548 2
Tipping over 2595 62 49 5732

classification accuracy. Resulting ACE is shown as error bars
in Fig. 9.

Compared to standard odometry, classification accuracy bet-
ter then 60% improves overall localization accuracy. Results
show drop of localization accuracy in the interval between
100% and 80% classifier accuracy. Cause of this drop is
manually created ground truth which cannot be perfect –
random perturbation can actually improve the final result.
Also note that the x and y ACE is roughly the same for the
OTC approach (provided high classifier accuracy) and for the
standard odometry. This is caused by the drift of the yaw
angle being the main contributor to the x and y position error.
Attitude is not corrected in our approach and thus, these errors
remain approximately the same.

Tables I and II contain confusion matrices of our trained
SVM classifier. Classification of testing data (selected rep-
resentative long experiments not included into training data)
shows high rate of mis-classifications into the first class.
Overall classification accuracy of the trained SVM is 97%
and 82% on the training and testing data respectively. Effect
of mis-classification to localization accuracy is discussed in
section V.

D. Evaluation on testing dataset with 3D reference

This section presents the overall evaluation of the whole
chain of standard odometry, OTC and trained classifier. Subset
of indoor experiments with 3D reference, disjoint with the
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Fig. 9. Effect of label perturbation on localization accuracy when applying
OTC. Results of standard odometry (black solid line) and OTC governed by
trained classifier shown for comparison. Error bars denote lower and upper
quartiles.

TABLE II
CLASSIFIER CONFUSION MATRIX – TESTING

Predicted labels
Standard Climbing Descending Tipping

True labels odometry up down over

Standard odometry 51231 499 273 296
Climbing up 3763 696 0 13

Descending down 2739 79 1277 8
Tipping over 4122 3 8 290

training subset, is used to study localization error and to build
overall accuracy statistics. This testing subset consists of 16
runs spanning 288 m. Passing over obstacle in non-zero roll
angles as well as various inclined ramps is included to test the
odometry behavior in unforeseen conditions8.

Table III sums up overall statistics of the testing set of
experiments. From each experiment, final value of ACE and
APE is taken, i.e. t = experiment length. The standard
odometry results are the baseline. When applying OTC with
the hyperparameter-free setting (weight w = 1 in (16)), trajec-
tories almost overlap when projected into the x, y subspace.
The z axis drift is however reduced to half of the original. The
result can be improved further by optimizing over the weight
w when the tunable approach is chosen. We present w = 0.5
setting which we experimentally verified works the best for
minimizing the z axis drift. With this weight, x, y subspace
gains some improvement in the x coordinate and looses in the
y coordinate. Yet comparing the lower and upper quartiles,
the error distributions overlap and we consider this difference
negligible. Following experiments in this section use w = 0.5
weight.

Example of the testing experiments is shown in Fig. 10
and Fig. 11: it involves traversing three pallets in circles.
Localization error in x and y coordinates grows as the yaw
angle drifts. OTC module does not modify estimated attitude

8On our public dataset website, see Test indoor experiments, Three steps
structure and Long trajectories over pallets, indoors for additional photos and
details.

6. Tracked robot odometry for obstacle traversal in sensory deprived environment
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Fig. 11. Average component error for trajectory shown in Fig. 10

of the robot and thus, this result follows result of standard
odometry. OTC – however – decreases drift in the z axis which
is to be expected as we try to improve modeling of the obstacle
climbing and descending.

E. Outdoor and staircase testing experiments

Series of outdoor experiments, which are part of the public
dataset, was recorded at the industrial safety training plant (6
runs, 145 m). During training session with firefighters (end-
users in the TRADR project), harsh conditions of search and
rescue missions were simulated. The robot was teleoperated
through scenario involving climbing and descending obstacles
present in the area. Due to lack of reference system, start
and end point of the trajectories were identical – total drift
of the robot position could be measured this way. One of
the runs is shown in Fig. 12. Two times, the robot climbs
onto a concrete platform (first time over two pallets, then
directly over the concrete step). The z coordinate plot shows
reduction of drift in this axis. Following trend from indoor
testing experiments, x and y position components are affected
only slightly. However, the z component drift is reduced, its
median final error over six experiments relative to standard
odometry is 43% (i.e. 57% improvement). Final error depends

TABLE III
FINAL ACE AND APE OF TESTING EXPERIMENTS

Standard odometry OTC with trained SVM
w = 1 w = 0.5

ACEx 0.14|0.20|0.25 0.13|0.20|0.25 0.13|0.19|0.23
ACEy 0.11|0.17|0.22 0.12|0.17|0.23 0.13|0.20|0.25
ACEz 0.053|0.093|0.16 0.024|0.048|0.091 0.019|0.034|0.056
APE 0.25|0.31|0.39 0.24|0.31|0.36 0.23|0.30|0.35

lower|middle|upper quartile [m]
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Fig. 12. Experiment performed in the industrial training plant. The robot
climbs up and descends down from an elevated concrete platform. For testing
purpose, this is repeated twice – once it climbs up using the pile of pallets,
the second time, it climbs the concrete step itself. Plot of the z component
of the estimated trajectory shows drift of the standard odometry.

Fig. 13. Climbing an 70-meters-long exterior staircase with our robotic
platform. It was additionally equipped with a robotic arm (right image) to
test different weight distribution effect on the trajectory estimate and model
robustness.

on number of obstacles traversed by the robot; difficult terrain
yields more improvement.

In order to test our approach on another typical vertical
obstacle, we climbed and descended several staircases, indoor
(6 runs, 157 m) and outdoor (2 runs, 310 m). Fig. 13 shows
the robot climbing up the outdoor stairway (with steps far
away from each other and cca. 16 m elevation gain). Median
value of final error relative to standard odometry is 73% for
all staircase experiments (27% improvement).

To push the algorithm to the limits and to test the robustness
of our proposed models, we mounted a robotic arm on the
robot to alter its weight distribution during one of the outdoor
stairway experiments. The extra weight causes change of
center of mass of the robot and thus different forces acting
on flippers while climbing the stairs. However, we observed
no major change in localization accuracy compared to runs
without the extra weight.

V. DISCUSSION

Main advantage of the proposed odometry system, observed
in all experiments, is reduction of drift in the z (elevation)
axis resulting in smaller final localization error ACEz . This
drift occurs mostly when traversing vertical obstacles (as
demonstrated in Fig. 8) and thus, improvement over standard
odometry can be observed in experiments that contain such
obstacles. The other two components (x, y) are mainly affected
by yaw angle drift which has to be addressed by other means
(better IMU calibration, fusion with magnetometer data if
possible etc.). Nevertheless, OTC also corrects x increments
when overcoming obstacles, as shown in Fig. 8.

Even with high rate of mis-classifications observed in Ta-
ble II, our solution improves accuracy of localization. Most
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of the mis-classifications are into standard odometry class and
the error increments only as much as it would without OTC. In
the case of mis-classification into one of the remaining classes,
OTC still checks for impossible configurations and can refuse
incorrect classifier decisions.

VI. CONCLUSION

We propose a novel approach to 3D odometry for tracked
robots which focuses on the problem of traversing vertical
obstacles. This approach relies on standard proprioceptive
sensors only and can be deployed in low-visibility conditions
of sensory-deprived environments, often seen in search and
rescue missions. We extend standard odometry by additional
kinematic models (climbing, tipping-over and descending)
which all together cover traversing vertical obstacles and flat
terrains. The problem of selecting appropriate models for flat
terrain or different stages of obstacle traversal is solved by an
SVM classifier trained on proprioceptive measurements. This
way we effectively combine explicit kinematics modeling with
data driven approach using machine learning.

Proposed approach is experimentally verified by indoor
and outdoor experiments, which we release to the public
to help and challenge the robotics community. For indoor
experiments, we provide accurate position reference which
allows comparison between estimated and true trajectories.
Outdoor experiments include trajectories from an industrial
training plant recorded during a search and rescue exercise
session with a firefighter brigade.

While traversing obstacles, more than 50% improvement
is observed in the z-axis position error (ACEz). Our solution
can be applied to robots with or without front flippers; we also
demonstrate that changes in weight distribution of the robot
do not affect localization accuracy. In our opinion, decreased
position error drift of a dead-reckoning localization system is
beneficial in environments with obstacles and low-visibility
conditions which can impede visual or laser localization.

REFERENCES

[1] J. L. Martnez, A. Mandow, J. Morales, S. Pedraza, and A. Garca-
Cerezo, “Approximating kinematics for tracked mobile robots,” The
International Journal of Robotics Research, vol. 24, no. 10, pp. 867–878,
2005. [Online]. Available: http://dx.doi.org/10.1177/0278364905058239

[2] D. Endo, Y. Okada, K. Nagatani, and K. Yoshida, “Path following control
for tracked vehicles based on slip-compensating odometry,” in 2007
IEEE/RSJ International Conference on Intelligent Robots and Systems,
Oct 2007, pp. 2871–2876.

[3] G. Lan and S. Ma, “Step-climbing analysis of a novel tracked robot,”
in 2005 IEEE International Conference on Robotics and Biomimetics -
ROBIO, 2005, pp. 544–549.

[4] P. Ben-Tzvi, S. Ito, and A. A. Goldenberg, “Autonomous stair climbing
with reconfigurable tracked mobile robot,” in 2007 International Work-
shop on Robotic and Sensors Environments, Oct 2007, pp. 1–6.

[5] W. Wang, Z. Du, and L. Sun, “Dynamic load effect on tracked robot
obstacle performance,” in 2007 IEEE International Conference on
Mechatronics, May 2007, pp. 1–6.

[6] T. Fujita and T. Shoji, “Development of a rough terrain mobile robot with
multistage tracks,” in 2013 16th International Conference on Advanced
Robotics (ICAR), Nov 2013, pp. 1–6.

[7] S. Singh, B. D. Jadhav, and K. M. Krishna, “Posture control of a
three-segmented tracked robot with torque minimization during step
climbing,” in 2014 IEEE International Conference on Robotics and
Automation (ICRA), May 2014, pp. 4200–4207.

[8] K. Nagatani, H. Kinoshita, K. Yoshida, K. Tadakuma, and E. Koyanagi,
“Development of leg-track hybrid locomotion to traverse loose slopes
and irregular terrain,” Journal of Field Robotics, vol. 28, no. 6, pp.
950–960, 2011. [Online]. Available: http://dx.doi.org/10.1002/rob.20415

[9] W. Guo, Y. Mu, and X. Gao, “Step-climbing ability research of a
small scout wheel-track robot platform,” in 2015 IEEE International
Conference on Robotics and Biomimetics (ROBIO), Dec 2015, pp. 2097–
2102.

[10] L. H. Pan, C. N. Kuo, C. Y. Huang, and J. J. Chou, “The claw-
wheel transformable hybrid robot with reliable stair climbing and high
maneuverability,” in 2016 IEEE International Conference on Automation
Science and Engineering (CASE), Aug 2016, pp. 233–238.
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7. Discussion

In this section, we address topics related to robot localization and advances in the field,
which appeared after our publications. We mainly focus on publications from years
2015-2018. We also provide a brief overview of techniques related to the localization for
search and rescue, which we have not addressed in our publications, and discuss their
relation to our work.

7.1. Magnetic field measurements

In low-visibility environments, exploiting Earth magnetic field offers additional means
to estimate heading or velocity of the robot. Sufficiently far from structures affecting
Earth magnetic field, utilizing magnetometer as a compass is a popular way to estimate
the absolute robot heading. However, the attention must be paid to shielding the sensor
from additive sources of magnetic field and from ferromagnetic materials generally. It
is possible to comply with these requirements in the aerospace industry and in drones,
which are made of non-ferromagnetic materials.

Ground robots, however, often operate in environments where magnetic disturbances
cause heading estimate errors. On the other hand, the magnetic field perturbed by
structures present in buildings can be utilized to estimate robot velocity by measuring
changes in gradient of the field; experiments performed by [4, 5, 6] show that dead-
reckoning localization based on magnetometer and IMU is possible. Yet, problems
caused by magnetic field disturbances introduced by the robot itself and by AC current
in the electrical power grid are difficult to avoid. The effect of AC electromagnetic field
can be estimated and canceled [5] but intermittent disturbances caused by robot motors
and electric currents degrade the velocity estimation accuracy. This way of localization
is thus more suitable for human rescuers as a hand-held or wearable technology at this
point.

7.2. Localization in smoke and fire

Promising technology is being developed in the project SmokeBot1 whose goal is de-
ployment of search and rescue robots in areas where fire and smoke are present. The
sensors they use for localization are – apart from the common camera and laser alter-
native – a thermal imager and a compact ultra-wide-bandwidth radar. While angular
resolution of the radar is still inferior to laser range-finders, it is perfectly appropriate
for situations where smoke or dust prevents the laser-based sensor from functioning
properly (it either detects obstacle at the point of transition between clean air and
smoke/dust or measures nothing due to laser beam dissipation in the aerosol). Radar,
on the other hand, penetrates aerosols and detects solid obstacles because of its much
higher wavelength. This work is presented in [11, 12].

The thermal imager can be used to localize hot-spots, which are potential source of
fire, but also to see through smoke. It can also be used to see through smoke, unlike

1European Union H2020 project SmokeBot (No. 645101; http://www.smokebot.eu)
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7.3. Multi-sensor fusion for localization

visible light cameras. This feature could be used for localization as well, as works of
[17, 3] suggest.

7.3. Multi-sensor fusion for localization

Data fusion for laser range-finder, wheel odometry, IMU and wireless signal strength
has been shown in [2]. In their approach, 2D metric map of the environment is known
beforehand. Thus the absolute position is observable for the localization system. The
system is similarly to ours based on the EKF and implemented on a wheeled skid-
steering robot. The signal-strength modality is used to limit computational complexity
of the system by providing a rough initial guess of the robot position. In our work,
we have focused on full 6-DOF localization which is required for search and rescue
environments. We therefore had to consider roll and pitch angles and one extra position
coordinate (elevation).

Another field with vast number of possible approaches and algorithms is visual-
inertial localization and mapping. This modality often involves data fusion in form
of tight coupling of IMU and camera. Examples and references to others can be found
in [13, 18, 9]. Generally, visual-inertial localization is a mature technology being de-
ployed in commercial application (e.g. augmented reality applications for cell phones
heavily rely on it). Together with closely related field of localization and mapping based
on RGB-D cameras2, these techniques offer accurate localization requiring only cheap
sensors. For search and rescue applications however, localization system has to offer
back-up solution for situations when robot enters low-visibility areas, as we stress in
our publications.

7.4. Metric point cloud maps

Point clouds and 3D occupancy grids are low-level representations of robot surrounding,
useful for localization and mapping [21]. Technique used to match and align two similar
point clouds is called Iterative Closest Point and has been the method of choice in our
work in NIFTi and TRADR. Point clouds can be created directly by scanning robot
surroundings by laser-range finders or reconstructed from series of digital images of the
scanned object of environment. Work [14] shows how to merge point cloud map created
by ground robot with a map reconstructed from aerial drone video.

Point cloud maps are suitable for traversability analysis and path planning. Results
from the TRADR project [8] are one example. The higher-level information can be
extracted from captured point clouds as well. Point cloud segments are classified and
used to recognize previously visited places and to close loops in traversed maps in [7].
These results apply to search and rescue robotics as well as to the field of autonomous
cars, which are often equipped with laser range-finders – results of [7] have been demon-
strated on the KITTI dataset, which is intended for testing localization algorithms for
autonomous cars.

7.5. Detecting changes in environment

In robotic research, environment is often considered static to simplify the problems
being studied. However, dynamic changes in environment are inevitable in real world

2RGB-D camera is a classical digital camera combined with a depth sensor
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7. Discussion

and need to be addressed eventually [1, 10, 15, 23]. In search and rescue missions,
changes of environment often indicate some sort of problem: collapsing structures, new
obstacles the robot has to consider when planning and executing its motion. In different
contexts however, changes in environment are natural process – people walk around,
furniture is being moved, cars park at different spots. Modeling these processes can
help when planning tasks the robot has to execute, e.g. where to go to find a given
person at a given time [16].

7.6. Semantic mapping

Work [7] from the TRADR project consortium partially relates to this field by labeling
point cloud segments and extracting set of features that allow later recognition. Ad-
vances in convolutional neural networks allow the fast segmentation and classification
of images or point clouds. Giving low-level data human label makes human-robot in-
teraction easier and allows high-level inference and planning. However in search and
rescue field, the main problem with semantics we have faced was the very nature of the
environment. Many classes of objects commonly present in contemporary datasets used
for classifier training do not appear in conditions of earthquake aftermath or industrial
accidents. If they do, they are often damaged and malformed. In our opinion, search
and rescue robotics require their own ontologies and associated training datasets.
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8. Conclusion

We have addressed the problem of robot localization for search and rescue missions in
harsh sensory-deprived environments. Starting from basic proprioceptive sensor fusion
for dead-reckoning localization, we have improved the system by integrating extero-
ceptive sensory modalities. The main contribution in the data fusion system has been
comparing two state-of-the-art measurement models with our proposed one, which al-
lows integration of low-sampling-rate sensory modalities. For tracked robots, we have
proposed improved odometry which is suitable to harsh terrains where traversing verti-
cal obstacles can be expected. These new models reduce localization drift and provide
better motion estimates for higher-level mapping and planning systems.

We have explicitly addressed sensor failures and fail cases which can be expected
in search and rescue conditions. Our findings have been experimentally verified with
emphasis on real-world conditions and terrains. We have published our proposed al-
gorithms and datasets in three publications and submitted one more; it is currently in
review process.

In future work, our goal is to exploit tactile sensors for navigation in low-visibility
conditions. Preliminary results suggest that it is possible to equip a tracked robot
with force sensing through its rubber tracks. Identifying contact points between tracks
and terrain can further improve motion estimation. Other promising modality are
measurements of radio signal strength. Creating signal coverage model can be beneficial
for path planning and autonomous return to safe areas when radio link is lost.
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