
CZECH TECHNICAL UNIVERSITY IN PRAGUE

Doctoral Thesis Statement

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Computer Graphics and Interaction

Daniel Meister

Bounding Volume Hierarchies for High-Performance Ray
Tracing

A doctoral thesis statement submitted to
the Faculty of Electrical Engineering, Czech Technical University in Prague,

in partial fulfilment of the requirements for the degree of
Doctor of Philosophy.

Ph.D. programme: Electrical Engineering and Information Technology
Branch of study: Information Science and Computer Engineering

Prague, May 2018

The doctoral thesis was produced in full-time manner Ph.D. study at the Department of
Computer Graphics and Interactionof the Faculty of Electrical Engineering of the CTU in Pra-
gue.

Candidate:
Daniel Meister
Department of Computer Graphics and Interaction
Faculty of Electrical Engineering
Czech Technical University in Prague
Karlovo nám. 13, 121 35, Prague 2, Czech Republic

Thesis Supervisor:
Jǐŕı Bittner
Department of Computer Graphics and Interaction
Faculty of Electrical Engineering
Czech Technical University in Prague
Karlovo nám. 13, 121 35, Prague 2, Czech Republic

Opponents:

. .

. .

. .

The doctoral thesis statement was distributed on:

The defence of the doctoral thesis will be held on at a.m./p.m. before
the Board for the Defence of the Doctoral Thesis in the branch of study (to be specified) in the
meeting room No. of the Faculty of Electrical Engineering of the CTU in Prague.

Those interested may get acquainted with the doctoral thesis concerned at the Dean Office of
the Faculty of Electrical Engineering of the CTU in Prague, at the Department for Science and
Research, Technická 2, Praha 6.

. .
Chairman of the Board for the Defence of the Doctoral Thesis

in the branch of study Information Science and Computer Engineering
Faculty of Electrical Engineering of the CTU in Prague

Technická 2, 166 27 Prague 6.

Abstract

Photorealistic image synthesis relies heavily on the concept of ray tracing. The problem of ray
tracing is to find the nearest intersection between a given ray and scene primitives. Although
this problem is geometrically quite simple; in practice, it is necessary to test millions of rays
against millions of scene primitives. To improve the efficiency of ray tracing, scene primitives are
usually arranged into various acceleration data structures. This thesis focuses on the bounding
volume hierarchy (BVH), which is one of the most popular acceleration data structures for ray
tracing.

The thesis is a compilation of research papers published in journals with impact factor with
the introductory text describing the contributions and putting the individual papers in a com-
mon context. The work consists of five novel methods addressing the BVH for high-performance
ray tracing. The first one is a technique for handling dynamic geometry based on constructing
a single BVH taking into account geometric changes through the animation. The second one
is a parallel BVH construction algorithm based on a combination of the k-means algorithm
and agglomerative clustering. The third one is a parallel BVH construction algorithm based on
the progressively refined cut of an existing BVH targeting multi-core CPUs. The fourth one is
a GPU-based algorithm based on locally-ordered clustering building the BVH in a bottom-up
manner by merging a batch of cluster pairs in each iteration. The last one is a parallel insertion-
based optimization for BVHs targeting contemporary GPU architectures. Each of these methods
to a certain extent advances the current state-of-the-art in ray tracing.

Abstrakt

Fotorealistická syntéza obrazu stav́ı na algoritmu sledováńı paprsku, který řeš́ı problém nale-
zeńı nejbližš́ıho pr̊useč́ıku mezi daným paprskem a geometrickými primitivy scény. Přestože
je tento problém geometricky velmi jednoduchý, v praxi muśıme nalézt miliony nejbližš́ıch
pr̊useč́ık̊u ve scénách obsahuj́ıćı až miliony geometrických primitiv. Abychom výpočet ury-
chlili, uspořádáváme geometrická primitiva do r̊uzných akceleračńıch datových struktur. Tato
práce se zabývá hierarchíı obálek, jednou z nejpouž́ıvaněǰśıch akceleračńıch datových struktur
pro urychleńı algoritmu sledováńı paprsku.

Tato práce je kolekce výzkumných článk̊u publikovaných v časopisech s impakt faktorem
zasazená do společného kontextu pomoćı integruj́ıćıho textu. Tato práce obsahuje pět nových
metod založených na urychleńı sledováńı paprsku pomoćı hierarchie obálek. Prvńı metoda se
zabývá efektivńı aktualizaćı hierarchíı obálek v kontextu dynamických scén, která je založená
na jedné hierarchii obálek, která je optimalizovaná pro celou animačńı sekvenci. Druhá metoda
se zabývá paralelńı stavbou hierarchie obálek pomoćı aglomerativńıho shlukováńı a shlukováńı
pomoćı k-střed̊u. Třet́ı metoda se zabývá stavbou hierarchie obálek, která je založená na progre-
sivně zjemňovaných řezech v již existuj́ıćı pomocné hierarchii obálek. Čtvrtá metoda se zabývá
rychlou stavbou hierarchie obálek na grafických procesorech pomoćı lokálně uspořádaného shlu-
kováńı. Posledńı metoda se zabývá paralelńı optimalizaćı hierarchie obálek, která je založená
na iterativńım vyj́ımáńı a vkládáńı uzl̊u. Každá z těchto metod určitým zp̊usobem vylepšuje
současný stav vědńı problematiky zabývaj́ıćı se algoritmem sledováńı paprsku.

v

Contents

1 Introduction 1
1.1 Goals . 2

2 State-of-the-Art 3
2.1 Preliminaries . 3

2.1.1 Visibility and Ray Tracing . 4
2.1.2 Algorithmic Complexity . 4
2.1.3 Acceleration Data Structures . 5

2.2 Bounding Volume Hierarchy . 5
2.2.1 Cost Model . 5
2.2.2 Top-Down Construction . 7
2.2.3 Bottom-Up Construction . 9
2.2.4 Incremental Construction . 9
2.2.5 Parallel Construction . 9
2.2.6 Optimization . 11
2.2.7 Collapsing Subtrees . 11
2.2.8 Spatial Splits . 12
2.2.9 Dynamic Scenes . 13
2.2.10 Ray Traversal . 13

3 Overview of Contributions 14
3.1 T-SAH: Animation Optimized BVH . 15
3.2 Parallel BVH Construction using k-means . 15
3.3 Progressive Hierarchical Refinement . 17
3.4 Parallel Locally-Ordered Clustering . 18
3.5 Parallel Reinsertion for BVH Optimization . 18

4 Conclusion and Future Work 20
4.1 Summary . 20
4.2 Future Work . 21

Bibliography 23

A Author’s Publications 29

B Authorship Contribution Statement 31

C Résumé 31

vi

CHAPTER 1. INTRODUCTION 1

1 Introduction

Computing high-quality images indistinguishable from the real-world photographs is a long-
standing goal of computer graphics (see Figure 1.1). Contemporary image synthesis algorithms
are based on solving the rendering equation [41] describing the light transport in a virtual scene
by means of radiometric quantities. This model is based on assumptions of geometric optics; i.e.
light travels instantaneously through the medium in straight lines, and light is not influenced by
external factors such as gravity or magnetic field [22]. The rendering equation is the Fredholm
integral equation of the second kind, for which the closed-form solution generally does not exist.

Figure 1.1: An example of photorealistic image synthesis (courtesy of Davidovič et al. [20].)

Veach [69] formulated the problem of global illumination as an integration over the space of
light paths, where each light path is a sequence of vertices on scene surfaces such that neighboring
light path vertices are mutually visible (see Figure 1.2). Interesting light paths are those with
end vertices on a camera and a light source since we want to estimate the contribution of light
coming from the light sources to the camera. The rendering equation is usually solved by
path space sampling and Monte Carlo integration, which uses the probabilistic estimate that
converges to correct values. However, it suffers from high-frequency noise, which disappears
with increasing number of samples (see Figure 1.3). To obtain a plausible result, it is necessary
to sample billions of light paths.

camera

light source

Figure 1.2: An illustration of various light paths.

Ray tracing [5, 86] is an underlying engine of the image synthesis algorithms, which is used

2 CHAPTER 1. INTRODUCTION

to find successive vertices of light paths. An elementary operation of ray tracing is to find the
nearest intersection with a scene for a given ray. We start by sampling the first vertex of a light
path on a camera or a light source, from which we cast a ray into the scene. We find the nearest
intersection with the ray. We sample reflected or refracted ray originating from the intersection
point, for which we find the nearest intersection and so on incrementally constructing the light
path.

The major obstacle of ray tracing is its time complexity which is linear in the number of
scene primitives for a näıve approach. The time complexity can be reduced by arranging scene
primitives into an acceleration data structure exploiting spatial coherence to prune the search
for the nearest intersection efficiently. The motivation for using acceleration data structures
is to speed up ray tracing itself. The problem is that the construction of the acceleration
data structure may take a significant amount of time. Therefore, the goal is to minimize the
total time including both time for the construction of the data structure and ray tracing itself.
Generally, we can say that the acceleration of the data structure increases with time spent on
the construction to a certain extent. Depending on the application, we must balance both these
criteria.

This thesis addresses various optimizations of the bounding volume hierarchy (BVH), which
is a well-known concept with applications in ray tracing [63, 85], visibility culling [17, 11],
or collision detection [23]. Nowadays, the BVH is one of the most popular data structures
for ray tracing thanks to the predictable memory footprint, fast construction, excellent ray
tracing performance, and easy updates for dynamic scenes. We can estimate the efficiency of a
particular BVH through a cost function based on surface areas of bounding volumes [31, 49]. The
problem of constructing an optimal BVH is believed to be NP-hard due to the combinatorial
explosion [43]. In practice, we use various heuristics providing better or worse local minima
without any guarantees [31, 76, 84]. In this thesis, we study this problem more deeply in order
to propose new more efficient algorithms.

1.1 Goals

Traditionally, researchers studied ray tracing in the context of the offline rendering (e.g. movie
industry), where rendering a single image takes hours or even days. In last years, ray tracing is
becoming more favorable also in the context of the online rendering (e.g. video games), where
each frame must be rendered in a fraction of a second. With the development of parallel architec-
tures such as multi-core CPUs and many-core GPUs, we are able to achieve interactive framerates
even on commodity hardware such as personal computers or mobile devices. Currently, there
are two major industrial ray tracing engines: nVidia OptiX [60] and Intel Embree [83]. Recently,
nVidia announced the RTX technology driven by the next-generation GPU Volta architecture.
The RTX technology enables to call ray tracing routines through Vulkan and Microsoft DirectX.
Simultaneously, AMD released Radeon-Rays, which is a cross-platform GPU-based ray tracing
engine. In future, we can expect that the vendors of graphics cards will hardwire the ray tracing
routines directly in the hardware.

The ultimate goal is to synthesize photorealistic images in real-time framerates. Even with
the recent advances both in software and hardware, we are still far away from this ultimate goal.
The problem is that the physically-based image synthesis is still very time demanding. Monte
Carlo integration progressively refines the final image; however, if there is not enough time, the
image contains disturbing high-frequency noise (see Figure 1.3). The goal is to advance the
image synthesis closer to real-time framerates by accelerating ray tracing while using BVHs. In

CHAPTER 2. STATE-OF-THE-ART 3

Figure 1.3: An example of Monte Carlo estimate (courtesy of Kelemen et al. [44]): unconverged result
with high-frequency noise (left) and converged result (right).

particular, this thesis aims at the following three goals that we can commonly encounter in the
both offline and online rendering.

G.1 Efficient intersection query We endeavor to optimize a BVH in order to provide the
ray intersection query as fast as possible even at the cost of higher construction times. In
the offline rendering, a large number of rays must be traced to produce a plausible result,
and thus the construction time is rather marginal since the BVH is reused many times. In
the online rendering, a typical scenario is that there is a large static background with a
few smaller dynamic objects. If the static geometry is known a priori, we can precompute
high-quality BVH and reuse it in many frames even with fewer rays.

G.2 Efficient construction We need fast BVH construction algorithms either for static geo-
metry that is not known a priori; or for dynamic geometry which changes in every frame
invalidating the bounding volumes. We can refit bounding volumes preserving the topo-
logy of the BVH. However, if the changes are significant, the BVH will become completely
inefficient. In such case, it pays off to reconstruct it from scratch.

G.3 Temporal coherence Besides the spatial coherence, we can also exploit temporal cohe-
rence, i.e. using similarities between consecutive frames of animation. However, it might
be difficult to distinguish which results are still valid. We need efficient updating methods
for the BVH exploiting the temporal coherence as the reconstruction from scratch might
be too wasteful since it does not use any information from previous frames.

2 State-of-the-Art

This chapter summarizes the state-of-the-art in ray tracing with focus on the bounding volume
hierarchy. In Section 2.1, we review theoretical background of ray tracing. In Section 2.2, we
survey work related to the bounding volume hierarchy.

2.1 Preliminaries

In this section, we formulate the problem of visibility and ray tracing, discuss its time complexity,
and present the concept of acceleration data structures.

4 CHAPTER 2. STATE-OF-THE-ART

2.1.1 Visibility and Ray Tracing

Visibility is a fundamental problem of computer graphics. Visibility can be defined in terms of
mathematical relations. Visibility for two points is binary relation V on Ed, where Ed denotes
the d-dimensional Euclidean space. Two points x and y in d-dimensional Euclidean space are
mutually visible if and only if line segment xy with endpoints x and y does not intersect any
scene primitive [36]. The relation is reflexive and symmetric. Using this definition, we simply
define visibility function v:

v(x,y) =

{
1 if (x,y) ∈ V,
0 otherwise.

(2.1)

The ray tracing problem is similar to the visibility problem. For a given ray, we want to find
the nearest scene primitive intersecting the ray. Ray r = [o,d] is a semi-infinite line specified by
origin o ∈ Ed and direction d ∈ Ed. Generally, it is not assumed that the direction is normalized
(‖d‖ = 1); however, it is a usual convention. The parametric form expresses ray r as a function
of scalar value t [61]:

r(t) = o + td, 0 ≤ t <∞, t ∈ R. (2.2)

The parametric form is useful for deriving various ray-primitive intersection algorithms, e.g. the
ray-triangle intersection algorithm proposed by Möller and Trumbore [54]. The scene primitive
is a compact subspace in Ed with (d − 1)-dimensional continuous boundary (e.g. polygons or
implicit surfaces in E3). Using the previous definitions, we define the ray tracing problem.
Formally, for ray r = [o,d] and set of scene primitives P, we want to find primitive p ∈ P such
that p∩ r(t) 6= ∅ and t is a positive minimum. A primitive intersected by the ray may not exist.
A ray tracing algorithm is an algorithm providing a solution to the ray tracing problem. The
visibility problem is trivially reducible to the ray tracing problem (see Figure 2.1).

x

y

z

r

Figure 2.1: A scheme illustrating the visibility problem and the ray tracing problem. Points x and y
are not mutually visible. Points x and z are mutually visible. The solution of the ray tracing problem for
ray r is point z on the blue rectangle.

2.1.2 Algorithmic Complexity

A näıve ray tracing algorithm sequentially tests all scene primitives against a given ray. Thus,
the time complexity of the näıve algorithm is O(n), where n is the number of scene primitives.
In practice, it is necessary to test millions of rays against millions of scene primitives, and thus
the näıve approach becomes practically inapplicable. Whitted noted in his seminal work that
up to 95% of the execution time is spent on ray-primitive intersection computations [86], which
motivated researchers to reduce the amount of these intersection computations.

CHAPTER 2. STATE-OF-THE-ART 5

Several theoretical facts were proven by Szirmay-Kalos and Márton [65]. The worst-case
time complexity of the ray tracing problem itself is Ω(log n). However, authors also proved that
solving the ray tracing problem in O(log n) requires O(n4) space complexity, which is prohibitive
for any practical use in computer graphics.

2.1.3 Acceleration Data Structures

In practice, we use various heuristics based on acceleration data structures exploiting spatial
coherency of scene primitives. During the intersection computation, only spatially coherent
parts are tested with the ray, others are pruned. This approach does not guarantee O(log n)
worst-case time complexity but it requires only O(n) space complexity, and it is faster by orders
of magnitude than the näıve algorithm. The scene can be split in the spatial domain or object
domain. Thus, acceleration data structures consist of two major classes: object partitioning
structures (bounding volumes [17, 63], bounding volume hierarchy [63, 85]) and spatial subdivi-
sion structures (uniform grid [27], kD-tree [8, 36], octree [30]). Nowadays, the bounding volume
hierarchy is one of the most popular acceleration data structures for ray tracing. The bounding
volume hierarchy is a core component of the industrial ray tracing engines such as nVidia Op-
tiX [60] and Intel Embree [83], and it is also the most addressed acceleration data structure in
research projects.

2.2 Bounding Volume Hierarchy

The bounding volume hierarchy (BVH) was introduced already in the 80s by Rubin and Whit-
ted [63]. The concept of the BVH itself is very simple. In the terminology of the graph theory,
the BVH is a rooted tree with arbitrary branching factor with references to scene primitives
in leaves and bounding volumes in interior nodes. The bounding volumes tightly enclose scene
primitives in the corresponding subtrees.

In the context of ray tracing, we used traditionally binary BVHs. Recently, with development
of modern multi-core CPUs and many-core GPUs, also wide-BVHs, i.e. BVHs with branching
factors 4 or 8, became popular [18, 78, 25, 66, 34, 88]. The choice of bounding volume type is
a compromise between tightness of the bounding volume and the complexity of the intersection
test (see Figure 2.2). In the context of ray tracing, we use almost exclusively axis-aligned
bounding boxes which are further referenced simply as bounding boxes.

2.2.1 Cost Model

We can estimate the quality of a particular BVH in terms of the expected number of operations
needed for finding the nearest intersection with a random ray. The cost of a BVH with root N
is given by the recurrence equation:

c(N) =

cT +
∑
Nc

P (Nc|N)c(Nc) if N is interior node,

cI |N | otherwise,
(2.3)

where c(N) is the cost of a subtree with root N , Nc is a child of node N , P (Nc|N) is the
conditional probability of traversing node Nc when node N is hit, and |N | is the number of scene
primitives in a subtree with root N . Constants cT and cI express average cost of the traversal
step and ray-primitive intersection respectively. Using the surface area heuristic (SAH) [31, 49],

6 CHAPTER 2. STATE-OF-THE-ART

Intersection test efficiency

Tightness

sphere AABB OBB 8-DOP convex hull

Figure 2.2: An example of various types of bounding volumes (courtesy of Ericson [23]): sphere, axis-
aligned bounding box (AABB), oriented bounding box (OBB), discrete oriented polytop (DOP), and convex
hull.

we can express the conditional probabilities as geometric probabilities, i.e. the ratio of the
surface area of a child node and the parent node:

P (Nc|N)SAH =
SA(Nc)

SA(N)
, (2.4)

where SA(N) is the surface area of the bounding box of node N . By substituting Equation 2.4
into Equation 2.3, we get the following expression:

c(N)SAH =

cT +
∑
Nc

SA(Nc)
SA(N) c(Nc) if N is interior node,

cI |N | otherwise.
(2.5)

By unrolling, we get rid of the recurrence:

c(N)SAH =
1

SA(N)

cT ∑
Ni

SA(Ni) + cI
∑
Nl

SA(Nl)|Nl|

 , (2.6)

where Ni and Nl denote interior and leaf nodes of a subtree with root N respectively. The
problem of finding an optimal BVH is believed to be NP-hard [43].

The SAH makes following assumptions [26]:

• Ray origins are uniformly distributed outside the scene bounding box.

• Ray directions are uniformly distributed.

• Rays are not occluded.

These assumptions are quite unrealistic, and thus several corrections were proposed. Fa-
bianowski et al. [26] proposed a modification for handling rays with origins inside the scene
bounding box. The modification is reasonable as many rays originate on scene primitives:

P (Nc|N)Inside =
V (Nc)

V (N)
+

1

V (N)

∫
N\Nc

αx

4π
dx, (2.7)

CHAPTER 2. STATE-OF-THE-ART 7

where V (N) is the volume of the bounding box of node N , and αx is a solid angle obtained
by projecting the bounding box onto the unit sphere around x (see Figure 2.3). However, this
expression is much harder to evaluate than the simple ratio of surface areas. Since there is no
closed-form solution of the integral, authors proposed a numerical approximation.

N

Nc

x

αx

Figure 2.3: An illustration of the cost correction taking into account rays originating inside the bounding
box (courtesy of Fabianowski et al. [26]).

Bittner and Havran [14] proposed the ray distribution heuristics (RDH), which is a method
taking into account a given ray distribution. The authors proposed to sample rays of the ray
distribution, and then use directly the ratio of the number of ray hits instead of surface areas:

P (Nc|N)RDH =
R(Nc)

R(N)
, (2.8)

where R(N) is the number of rays hitting the bounding box of node N (see Figure 2.4). Similarly,
Vinkler et al. [75] proposed the occlusion heuristic (OH) using the ratio of the number of visible
scene primitives:

P (Nc|N)OH =
O(Nc)

O(N)
, (2.9)

where O(N) is the number of visible scene primitives in a subtree with root N .
It is difficult to evaluate both of these heuristics as they require a ray set representing the

ray distribution. Using these probabilities directly may lead to unstable results due to either
undersampling or oversampling the ray distribution. Hence, the authors proposed to blend these
probabilities with the geometric probabilities given by the SAH to make the results more robust:

P
RDH

(Nc|N) = wP (Nc|N)RDH + (1− w)P (Nc|N)SAH , (2.10)

P
OH

(Nc|N) = wP (Nc|N)OH + (1− w)P (Nc|N)SAH , (2.11)

where w is a blending parameter in range [0, 1].

2.2.2 Top-Down Construction

The most common way how to construct a BVH is a recursive division of scene primitives. At
the beginning, we have a root node containing the scene bounding box with all scene primitives.
In each step of the construction, one node is processed. A node is split into two new nodes,
which are further processed. Scene primitives of the split node are divided into its children and

8 CHAPTER 2. STATE-OF-THE-ART

Figure 2.4: An illustration of the RDH method (courtesy of Bittner and Havran [14]).

bounding boxes of the children are computed. The division continues until at least one of the
termination criteria is satisfied. The common termination criteria are maximum primitives in a
node, maximum tree depth, or maximum memory used.

For each node, there are O(2n) ways how to divide scene primitives into its children, where
n is the number of scene primitives in the node. Popov et al. [62] showed that the number of
partitioning of scene primitives in the node for axis-aligned bounding boxes is O(n6), which
is still prohibitive for any practical use. Hence, we use heuristics dividing scene primitives by
axis-aligned planes. There are three basic approaches how to split the node: object median split,
spatial median split, and split based on the cost model. Since each scene primitive must be only
on one side of the plane even if it overlaps, scene primitives are approximated by points (e.g.
centroids of the bounding boxes) [76]. All three splitting axes are used, or one axis is chosen
according to some heuristic. The greatest extent of the bounding box or round-robin are the
most common ones.

During splitting, we cannot use the cost model directly because we do not know the cost of
children. Thus, we approximate the cost by treating children as leaves:

c(N) ≈ cT + cI
∑
Nc

SA(Nc)

SA(N)
|Nc|. (2.12)

This is an upper bound of the cost [2]. There are two approaches how to evaluate the cost
approximation:

Sweeping: There are |N |−1 possible splitting planes induced by |N | scene primitives for each
axis. This approach evaluates all of them and chooses the one with the lowest cost approximation.
To guarantee time complexity O(n log n), we keep three arrays with primitive indices sorted
according to all axes. To prevent the sorting in each step, we must reorder not only indices of
the splitting axis but also indices of the other two axes [81].

Binning: Evaluating all possible splitting planes might be costly. Thus, several researchers
proposed an evaluation known as binning [37, 76]. The splitting extent is uniformly divided
into k equally-spaced bins. Scene primitives are then projected into these bins. Then, only
k − 1 splitting planes between bins are evaluated using two prefix scan passes on the bins. All
scene primitives may fall into the same bin, then the object median split must be performed.

CHAPTER 2. STATE-OF-THE-ART 9

Unlike the sweeping algorithm, this approach can be easily parallelized on CPUs using SIMD
instructions and multithreading [76].

2.2.3 Bottom-Up Construction

On the other hand, we can proceed bottom-up using agglomerative clustering. This approach was
introduced by Walter et al. [84]. At the beginning, all scene primitives are treated as clusters.
In each step, the nearest cluster pair based on a distance function is merged. The distance
function is defined as a surface area of the bounding box tightly enclosing both clusters. We
repeat merging until only one cluster remains. This approach generally produces BVHs of higher
quality than the traditional top-down approach. The disadvantage is the time complexity, which
is O(n3) for näıve approach. To accelerate the nearest neighbors search, the authors proposed
to use an auxiliary kD-tree and heap.

2.2.4 Incremental Construction

The incremental construction by insertion was originally proposed by Goldsmith and Sal-
mon [31]. Scene primitives are piece-by-piece inserted into the BVH based on the cost model.
The advantage of the incremental construction is that we do not need to know the whole input
at the beginning of the construction. Traditionally, it was believed that the BVHs constructed
by insertion suffer from lack of quality [36]. Recently, Bittner et al. [13] proposed an incremental
construction algorithm producing high-quality BVHs using the insertion-based optimization [12].
The authors perform a batch of insertion operations, and then perform global updates as in the
original algorithm. They demonstrated the usage in a proof-of-concept application streaming
the data over the network.

2.2.5 Parallel Construction

Researchers were looking for the inspiration in traditional sequential methods to design parallel
algorithms. The problem is the parent-child dependency. In top-down construction, we cannot
build children until we know the parent. In bottom-up construction, we cannot build the parent
until we know its children. In other words, we do not have enough independent work to utilize
parallel processors, especially at the beginning. Therefore, many parallel algorithms are based
on sorting scene primitives along the Morton curve to partition scene primitives into coherent
clusters which can be processed independently by parallel algorithms.

Morton Curve The Morton curve is a well-known space-filling curve [55]. The order along
the curve is given by 3k-bit Morton codes. The space filled by the curve is subdivided into a grid
of 2k×2k×2k space elements. Each 3k-bit Morton code corresponds to one space element in the
grid. The advantage is that the mapping between the Morton codes and coordinates of space
elements is very simple. A 3k-bit Morton code can be computed by interleaving successive bits
of the corresponding space element coordinates. The following two equations define the relation
between coordinates of a space element and its Morton code respectively:

x = [x, y, z] = [xk . . . x1, yk . . . y1, zk . . . z1], (2.13)

m = zkykxk . . . z1y1x1. (2.14)

10 CHAPTER 2. STATE-OF-THE-ART

Space element x corresponds to 3k-bit Morton code m, where zi, yi, xi are i-th bits of coordinates
z, y, x respectively. The Morton curve can be generalized into an arbitrary dimension. An
example of the Morton Curve in 2D is depicted in Figure 2.5.

The Morton curve not only coherently fills the space but also implicitly encodes the BVH
constructed by spatial median splits [42], which can be used directly or as an auxiliary data
structure. Segments of the Morton curve are coherent clusters corresponding to nodes in the
BVH, which can be processed independently. That is exactly what parallel algorithms need.
Sorting along the Morton curve is convenient as general libraries provide efficient implementati-
ons of parallel sorting algorithms. Scene primitives are usually approximated by the centroid of
the bounding box, from which the corresponding Morton code is generated. Vinkler et al. [70]
extended the Morton codes by encoding the size of scene primitives, applying adaptive ordering
of the code bits, and using a variable number of bits for different dimensions.

00 01 10 11

00

01

10

11

0000 0001 0100 0101

0010 0011 0110 0111

1000 1001 1100 1101

1010 1011 1110 1111

Figure 2.5: An example of the Morton curve and 4-bit Morton codes in 2D.

Multi-core CPUs Wald [76] proposed horizontal and vertical parallelization of the top-down
construction method using the binning algorithm. The horizontal parallelization is used for the
upper levels where only a few interior nodes contain lots of scene primitives. Scene primitives are
equally divided between threads. Each thread projects its scene primitives into its private set
of bins. After binning, the bin sets are merged, and the best splitting plane is selected. Once,
the number of subtrees is equal to the number of threads, the algorithm switches to vertical
parallelization, where each subtree is processed by a single thread. The algorithm is designed
to utilize both SIMD instructions and multithreading, and it was also extended for the MIC
architecture [77].

Gu et al. [33] proposed a parallel algorithm using approximate agglomerative clustering
(AAC). The idea is to restrict the search space for the nearest neighbor by proximity given by
the spatial median splits. At the beginning, each scene primitive is considered to be a cluster.
The algorithm recursively splits scene primitives using the spatial median splits based on Morton
codes until subtrees contain less than δ clusters, where δ is a parameter of the method. To reduce
the number of clusters in such subtrees, it merges the clusters using agglomerative clustering
until only f(δ) clusters remains, where cluster reduction function f is another parameter of the
method. Then, it continues to the parent, where remaining clusters and clusters of its sibling
are put together. Again, it merges them using the same procedure. This continues until the

CHAPTER 2. STATE-OF-THE-ART 11

root cluster is merged. The algorithm is very fast, and the constructed BVHs are roughly of
the same quality as BVHs produced by full agglomerative clustering. The Bonsai algorithm
proposed by Ganestam et al. [28] is based on a similar principle using the sweeping algorithm
instead of agglomerative clustering. In Section 3.3, we propose a novel parallel construction
algorithm based on the progressively refined cut of an existing BVH.

Many-core GPUs Lauterbach et al. [48] proposed an algorithm known as LBVH1 using the
concept of the Morton codes. The BVH is constructed level-by-level using one kernel launch
for each level. Karras [42] improved the LBVH method by using the concept of radix trees
building the topology of a BVH in a single kernel launch. However, the method requires an
additional bottom-up pass to refit the bounding boxes. This issue was recently addressed by
Apetrei [4] who proposed to build the topology in a bottom-up manner simultaneously refitting
the bounding boxes in a single kernel launch. The LBVH method is the fastest construction
algorithm up to date but the resulting BVHs suffer from lack of quality as the method employs
only spatial median splits. Pantaleoni and Luebke [59], and Garanzha et al. [29] extended
the LBVH method into a method known as HLBVH2 using the binning algorithm for top
levels of the hierarchy. Karras and Aila [43] proposed an optimization algorithm based on
treelet restructuring (TRBVH). The algorithm rebuilds treelets of fixed size in parallel using
the algorithm based on dynamic programming. Domingues and Pedrini [21] showed that BVHs
of similar quality can be produced in shorter times using agglomerative clustering instead of
dynamic programming (ATRBVH). Vinkler et al. [74] introduced a concept of on-demand BVH
construction running entirely on the GPU using a versatile GPU framework based on a task pool
with persistent warps [71] and an efficient GPU allocator [72]. In Chapter 3, we propose two
GPU-based algorithm. In Section 3.2, we propose an algorithm based on k-means clustering.
In Section 3.4, we propose an algorithm based on locally-ordered clustering inspired by work of
Walter et al. [84].

2.2.6 Optimization

The problem of both top-down and bottom-up approaches is that we are not able to compute the
cost because the BVH is not complete. Thus, researchers proposed to build an initial BVH and
then optimize it in order to reduce the global cost. Kensler [45] proposed to use tree rotations
inspired by a technique from the binary search trees (see Figure 2.6). A different approach was
proposed by Bittner et. al [12]. The authors proposed to remove a subtree which causing the
cost overhead and then reinsert it to a new position decreasing the global cost (see Figure 2.7).
This algorithm is inherently sequential. In Section 3.5, we propose a parallel version of this
algorithm which is up to two orders of magnitude faster than the sequential version.

2.2.7 Collapsing Subtrees

The problem of the bottom-up construction is that the resulting BVH contains exactly one scene
primitive per leaf, which may cause the memory overhead. Furthermore, it might also pay off
to collapse some subtrees into leaves in order to reduce the cost. We proceed from leaves to the
root. If the cost of a subtree as a leaf is lower than the cost of the subtree as it is, we collapse
it. Generally, we can apply this postprocess to any BVH constructed by an arbitrary method
to further improve its quality [12, 43].

1Linear Bounding Volume Hierarchy
2Hierarchical Linear Bounding Volume Hierarchy

12 CHAPTER 2. STATE-OF-THE-ART

Figure 2.6: An illustration of four possible tree rotations (courtesy of Kensler [45]).

!

Figure 2.7: An illustration of the insertion-based optimization (courtesy of Bittner et al. [12]).

2.2.8 Spatial Splits

The BVH often adapts poorly to scenes containing scene primitives with non-uniform sizes
and overlapping bounding boxes, which are impossible to separate by definition. The spatial
subdivision structures, which split the space into disjoint cells, excel in such scenes. For example,
the kD-tree [8, 36] adapts very well to the geometry with non-uniform sizes; however, both
the construction and the traversal are more complicated [73]. Thus, researchers endeavor to
fuse advantages of both the kD-tree and BVH. The idea is to relax the restriction that each
scene primitive is referenced only once. Using this relaxation, the BVH adapts much better to
scenes containing scene primitives with non-uniform sizes. The traversal and the structure itself
remain the same. The only problematic part might be the refitting procedure as the leaf nodes
are induced by spatial splits and not by scene primitives. Thus, if the geometry changes as it
happens in dynamic scenes, we are not able to update bounding boxes while preserving spatial
splits.

Two strategies were introduced. The first strategy proposed by Ernst and Greiner [24],
Dammertz and Keller [19], and Karras and Aila [43] is to cover large scene primitives by mul-
tiple tighter bounding boxes before the construction, which are directly fed into construction
algorithms. Note that scene primitives themselves are not split (see Figure 2.8). This approach
is simpler and can be easily parallelized [43].

The second strategy proposed by Stich et al. [64] is to allow spatial splits during the top-
down construction, which is very similar to the kD-tree construction [37, 81]. However, unlike
the piecewise linear function in the case of kD-trees [64], the cost function is piecewise quadratic
since the bounding box adapts in all three dimensions. Thus, the authors proposed to use a

CHAPTER 2. STATE-OF-THE-ART 13

Figure 2.8: An illustration of the BVH with spatial splits (courtesy of Ernst and Greiner [24]).

modified version of the binning algorithm. This strategy leads to higher ray tracing performance
as it takes into account also the proximity of scene primitives.

2.2.9 Dynamic Scenes

In last two decades, ray tracing has become attractive also for interactive or real-time applicati-
ons (e.g. computer games), which used to be traditionally based on rasterization. The problem
arises when the scene contains dynamic geometry. In each frame, the geometry changes and
also the corresponding BVH becomes invalid as the bounding boxes do not enclose the actual
geometry (see Figure 2.9). There are two main approaches how to update the BVH. We can refit
the bounding boxes, or rebuild the BVH from scratch. Refitting is simpler and faster; however,
the BVH may degenerate in time if the changes are significant. Ize et al. [40] and Wald et
al. [82] proposed to use refitting while asynchronously rebuilding the BVH from scratch. Yoon
et al. [89] and Kopta et al. [46] proposed to optimize the BVH using tree rotations to prevent
the bounding boxes degeneration.

Figure 2.9: An example of a scene with dynamic geometry.

A typical scenario is that the scene consists of a static background and several dynamic
objects. Wald et al. [79] proposed the concept of two-level BVHs. A top BVH is built over
the individual objects and each object has its BVH. More precisely, the top BVH contains
references to individual objects with local transformations which support rigid body animations
and instancing. A caveat of the two-level BVH is that it might cause a traversal overhead if the
individual objects overlap. This issue was recently addressed by Benthin et al. [7].

2.2.10 Ray Traversal

We also review the state-of-the-art in ray traversal, which is a no less important problem, even
though that methods proposed in Chapter 3 are oblivious to a particular traversal algorithm.
The basic algorithm is based on a stack. We put the root onto the stack, and then we enter
the traversal loop. We pop up a node from the top of the stack and test the ray against the
bounding box of the node. If the ray hits the bounding box, we either put both children onto

14 CHAPTER 3. OVERVIEW OF CONTRIBUTIONS

the stack if the node is interior, or we test the ray against scene primitives in that node if it is a
leaf, and eventually update the nearest intersection. We continue until the stack is empty. The
traversal scheme is quite simple, and it is the core of parallel traversal algorithms. However,
both multi-core CPUs and many-core GPUs have their specific issues. The parallel traversal is
simpler than the parallel construction as rays are simply distributed between threads and each
thread processes its rays sequentially.

Multi-core CPUs Modern CPUs have the wide vector units. There are two approaches how
to use them for the traversal: (1) Using wide-BVHs, a single ray is tested against multiple
bounding boxes or scene primitives [78], which might be useful for incoherent rays. However,
the construction of wide-BVHs is more complicated. (2) A ray packet, i.e. multiple rays are
tested against a single bounding box or scene primitive with the packet size equal to the width
of vector units (4, 8, or 16) [16]. Ray packets can be further aggregated into larger ray streams
containing up to thousands of rays [80, 58]. Using ray packets or ray streams is very efficient
for coherent rays, i.e. rays with similar origins and directions (e.g. primary rays), since they
visit the same nodes in the BVH. However, using ray packets or ray streams for incoherent
rays might lead to sequential processing in the extreme case. Some rays in a packet or stream
may become inactive which leads to SIMD underutilization. Therefore, several reordering and
filtering methods were proposed to increase coherency [50, 32, 9, 6].

Many-core GPUs Threads on the GPU are scheduled and executed in warps, i.e. groups of
32 threads executing the same code [56]. The problem is warp divergence, i.e. different threads
in a warp execute different code, where different branches are executed sequentially. The GPU
traversal is mostly limited by the memory bandwidth and warp divergence. Aila and Laine [3]
proposed an efficient stack-based traversal algorithm identifying two factors causing the warp
underutilization. The first factor is that the traversal loop consists of two phases: testing a ray
against bounding box and testing the ray against scene primitives in leaves. Switching between
these two phases causes the warp divergence. The authors proposed to postpone this switching
by storing already found leaves into a buffer showing that even a buffer with a single entry is
sufficient. The second factor is that already terminated threads in a warp are inactive. Therefore,
authors proposed to use dynamic fetch; i.e. if only a few threads are active, the inactive threads
fetch new rays. The stack on the GPU is stored in the local memory, so researchers designed
various stack-less traversal algorithms [47, 35, 1, 10]. Guthe [34] proposed to use 4-ary BVHs
to reduce memory latency. Recently, Ylitie et al. [88] proposed to use compressed 8-ary BVHs
achieving the highest performance up to date.

3 Overview of Contributions

This chapter summarizes the main contributions of this thesis. The thesis is submitted as a
compilation of five research papers corresponding to the following five sections presented in the
chronological order of their publications. The relations among the papers and the goals of the
thesis are discussed in Chapter 4. In Section 3.1, we present a method for handling geometric
changes in dynamic scenes. In Sections 3.2, 3.3, and 3.4, we present three high-performance BVH
construction algorithms: two for many-core GPUs and one for multi-core CPUs. In Section 3.5,
we present a parallel insertion-based BVH optimization targeting many-core GPUs.

CHAPTER 3. OVERVIEW OF CONTRIBUTIONS 15

3.1 T-SAH: Animation Optimized BVH

In dynamic scenes, the geometry changes in every frame invalidating the BVH, which must be
updated. We can construct the BVH for one of the keyframes, and during the rendering refit the
bounding boxes, which is very fast but bounding boxes might degenerate in time. We can also
reconstruct the BVH from scratch in each frame, which in turn might be unnecessarily costly
because it does not take into account any temporal coherence.

Figure 3.1: A visualization of a BVH using the SAH (left) and the T-SAH (right). Note how the T-SAH
automatically identifies groups of fragments which are coherent through the animation sequence.

We propose an algorithm based on using a single BVH which is optimized for the whole
animation sequence. During the rendering, we use simple refitting of bounding boxes. We
extended the cost based on the SAH into the temporal domain (T-SAH) which is defined as a
weighted arithmetic mean of costs of given animation frames:

ct(N) =
1

SAt(N)

cT ∑
Ni

SAt(Ni) + cI
∑
Nl

SAt(Nl)|Nl|

 , (3.1)

c̃(N) =

∑
iwici(N)∑

iwi
, (3.2)

where SAt(N) is the surface area of node N in time t and wi is the weight of animation
frame i. We plug the T-SAH cost model into the insertion-based optimization algorithm [12] to
optimize the BVH for the animation sequence. Note that we use for the optimization only a few
representative frames. Using all animation frames would be costly providing a BVH roughly with
the same quality. A visualization of a BVH constructed by our method is shown in Figure 3.1.
Using a single BVH reduces the per-frame overhead to refitting of bounding boxes. We show
that this approach outperforms both the per-frame reconstruction from scratch using HLBVH
[29] and the best-over-time BVH with refitting [80] (see Figure 3.2). The method is extremely
easy to integrate to any application using BVHs. More details about the method and results
can be found in the original paper [15].

3.2 Parallel BVH Construction using k-means

To design new algorithms for parallel architectures, we should not only look for the inspiration
in the traditional construction approaches but also try to find completely new directions. We
were inspired by the work of Walter et al. [84], who came up with an idea to use agglomerative

16 CHAPTER 3. OVERVIEW OF CONTRIBUTIONS

1.1× vs SAH+refit
1.5× vs HLBVH

5.4× vs SAH+refit
1.1× vs HLBVH

1.3× vs SAH+refit
2.6× vs HLBVH

1.4× vs SAH+refit
1.6× vs HLBVH

Figure 3.2: Average speedups of ray tracing for several tested animations using our single T-SAH
optimized BVH with refitting compared to the SAH with refitting and per-frame reconstruction using
HLBVH.

clustering for the BVH construction. In this work, we investigate the opposite approach em-
ploying divisible clustering in the context of the BVH construction, which is an alternative to
the traditional top-down approach based on splitting by axis-aligned planes.

pass n

pass n+1

pass 2

pass 1

....

...

...

...

...

-m
ea

ns
ag

gl
om

er
at

iv
e

cl
us

te
ri

ng
k

Figure 3.3: An illustration of the BVH construction using k-means clustering. First, we construct a k-
ary BVH by recursively applying k-means clustering. Then, we build intermediate levels by agglomerative
clustering.

We propose a parallel BVH construction algorithm combining both divisible and agglome-
rative clustering. First, we construct a k-ary BVH by iteratively applying k-means clustering.
Second, we construct intermediate levels using agglomerative clustering (see Figure 3.3). A vi-
sualization of k-means clustering is shown in Figure 3.4. According to our knowledge, we are
the first who applied k-means clustering in the context of the BVH construction. The results
show that our algorithm achieves the time-to-image speedup up to 11% with respect to HLBVH
[29]. However, it is slightly worse than ATRBVH [21], but still leads to better results in a few
cases. Recently, wide-BVHs have become popular not only on CPUs [83] but also on GPUs [88],
and thus we believe that our method will be further investigated in this context. More details
about the method and results can be found in the original paper [51].

CHAPTER 3. OVERVIEW OF CONTRIBUTIONS 17

Figure 3.4: A visualization of the results of k-means clustering (k = 8) for the first three passes of the
algorithm using five k-means iterations. Triangles belonging to different clusters are shown in different
colors.

3.3 Progressive Hierarchical Refinement

Due to the limited memory and costly CPU-GPU data transfers, using many-core GPUs is not
always the best choice, especially if we deal with a large amount of data. In that case, multi-core
CPUs are preferable, for which we need efficient BVH construction algorithms.

We propose a parallel BVH construction algorithm using progressive hierarchical refinement
(PHR). The algorithm was inspired by the idea of Hunt et al. [39], who used a scene graph
structure to accelerate the kD-tree construction. The algorithm starts by constructing an auxi-
liary BVH using a fast construction algorithm such as LBVH [42]. Then, we find a cut in the
auxiliary BVH, which is a set of nodes completely separating the root and leaves. The cut is
formed by nodes whose surface area is below an adaptive threshold. To find the initial cut, we
use a priority queue with a simple test on the surface area. We split the cut into two parts by
the sweeping algorithm. We want to keep the sizes of both parts the same as the size of the
initial cut. Thus, we refine the threshold taking into account the current depth and replace some
nodes of the cut by their children based on the refined threshold (see Figure 3.5). We apply this
procedure recursively to build the whole BVH.

FIND SPLIT REORDER REFINE

cut0 cut0 left cut0 right cut1 cut2

Figure 3.5: An illustration of the hierarchical cut refinement. First, we form the initial cut based on
the threshold (left). Then, we split the cut into two parts by the sweeping algorithm (middle). Finally,
we refine the threshold and replace some of the nodes of the cut by their children (right).

The results show that our algorithm achieves the time-to-image speedup up to 29% with
respect to AAC [33] and up to 4% with respect to builders implemented in Intel Embree [83]
(see Figure 3.6). In comparison with the strategy proposed by Hunt et al. [39] adapted to the
BVH construction, our method achieves the speedup up to 20%. More details about the method
and results can be found in the original paper [38].

18 CHAPTER 3. OVERVIEW OF CONTRIBUTIONS

Embree SAH Our PHR-Fast Our PHR-HQ Embree Fast-Spatial
769 ms 472 ms 977 ms 1950 ms

Figure 3.6: The San Miguel scene rendered in Embree path tracer [83]. Visualizations of the number
of traversal steps for primary rays using BVHs from different builders (the red color corresponds to 100
traversals per ray). Our PHR-Fast method provides 1.6× lower build time than Embree SAH, while the
PHR-HQ method has 2× lower build time than Embree Fast-Spatial.

3.4 Parallel Locally-Ordered Clustering

Using a GPU is an excellent choice if the data fits into its memory with only a few CPU-
GPU transfers. The GPU is a source of tremendous computational power; however, designing
algorithms for GPUs might be quite challenging.

We propose a simple yet efficient BVH construction algorithm targeting contemporary GPUs
based on parallel locally-ordered clustering (PLOC) inspired by work of Walter et al. [84]. We
construct the BVH iteratively in bottom-up fashion merging a batch of cluster pairs in each
iteration. The idea is to keep the clusters ordered along the Morton curve. This ordering allows
us to identify approximate nearest neighbors very efficiently (see Figure 3.7). We use the distance
function defined as a surface area of the bounding box tightly enclosing both clusters. This
distance function obeys a non-decreasing property, which tells us that if the nearest neighbors
of two clusters mutually correspond, then we know that no better neighbor will emerge in
the future. Hence, we can merge all mutually corresponding cluster pairs independently in
parallel. The method is GPU-friendly since it does not use any additional data structures
such as distance matrix, and the number of atomic operations is minimized. The algorithm
is extremely simple and outperforms the state-of-the-art GPU-based builders (see Figure 3.8).
The algorithm achieves the time-to-image speedup up to 39% with respect to ATRBVH [21].
We also conducted a comparison with AAC [33] showing that our algorithm produces BVHs of
a similar quality about four times faster. Source codes of the method are publicly available at
the project site1. More details about the method and results can be found in the original paper
[52].

3.5 Parallel Reinsertion for BVH Optimization

If we trace a large number of rays, it pays off to optimize a BVH as much as possible since the
spent time will be amortized by reusing the BVH many times. The insertion-based optimization
proposed by Bittner et al. [12] achieves the best results in terms of BVH quality up to date.
However, it is inherently sequential. In the original algorithm, we iteratively select nodes and
remove them. Then, we use branch-and-bound search to find the best position for the insertion
using the priority queue.

1http://dcgi.felk.cvut.cz/projects/ploc

http://dcgi.felk.cvut.cz/projects/ploc

CHAPTER 3. OVERVIEW OF CONTRIBUTIONS 19

Figure 3.7: An illustration of the nearest neighbor search for r = 2. Two clusters (red triangles) search
for their nearest neighbors (blue triangles) in the neighborhood (red curve). Notice how the algorithm
adapts to the density of clusters in the neighborhood.

Figure 3.8: Path tracing of the Powerplant scene (12.8M triangles) using a BVH constructed by our
method (left). A visualization of the number of ray intersection operations for our method (middle) and
the state-of-the-art ATRBVH [21] (right). The red color corresponds to 325 intersections (both bounding
volume and triangle intersections are counted). In this case, our method achieves 32% reduction of build
time (210 ms vs. 309 ms) and 17% speedup in the ray tracing performance (88 MRays/s vs. 75 MRays/s)
with respect to ATRBVH.

We propose a parallel insertion-based optimization of BVHs for contemporary many-core
GPUs. The key observation is that we do not need to remove the node from the hierarchy
to find the best position for the insertion. We start to search for the best position from the
original position of the node, which serves as a lower bound for pruning. We successively visit
sibling subtrees on the way up to the root using the pre-order traversal with parent links (see
Figure 3.10). Using such traversal, all nodes can search for their best positions in parallel. The
search procedure is GPU-friendly as we do not use any priority queue or another auxiliary data
structure. Conflicts between nodes occur, so we propose a locking scheme based on atomic ope-
rations to resolve these conflicts by prioritizing nodes with higher cost reduction. An illustration
of the algorithm is depicted in Figure 3.9. The method produces BVHs of higher quality than
the state-of-the-art algorithms. In particular, our method achieves the ray tracing speedup up
to 12% in comparison with ATRBVH [21] and up to 31% in comparison with PLOC [52]. The
proposed algorithm is roughly about two orders of magnitude faster than the original sequential

20 CHAPTER 4. CONCLUSION AND FUTURE WORK

algorithm. We released the source codes, which are available at the project site2. More details
about the method and results can be found in the original paper [53].

Figure 3.9: An illustration of our parallel insertion-based BVH optimization. For each node (the input
node), we search for the best position leading to the highest reduction of the cost for reinsertion (the
output node) in parallel. The input and output nodes together with the corresponding path are highlighted
with the same color. We move the nodes to the new positions in parallel while taking care of potential
conflicts of these operations.

Figure 3.10: An overview of the search for a new position. We proceed from a given input node up to
the root visiting all sibling subtrees using the pre-order traversal with parent links.

4 Conclusion and Future Work

This thesis presents five novel methods for high-performance ray tracing using BVHs. This
chapter summarizes the proposed methods and discusses their possible future extensions.

4.1 Summary

The presented methods cover a wide spectrum of scenarios in the rendering. Here, we put them
into a common context defined by the goals stated in Section 1.1.

G.1 Efficient intersection query In a wider perspective, all of the presented methods address
this goal. In Section 3.1, we proposed a method for high-performance ray tracing in
dynamic scenes. In Section 3.3 and 3.4, we proposed two BVH construction algorithms
producing high-quality BVHs very quickly targeting multi-core CPUs and many-core GPUs
respectively. However, we see the highest impact on this goal in the method presented in

2http://dcgi.felk.cvut.cz/projects/prbvh

http://dcgi.felk.cvut.cz/projects/prbvh

CHAPTER 4. CONCLUSION AND FUTURE WORK 21

Section 3.5. We proposed a parallel optimization algorithm achieving the highest possible
BVH quality among the state-of-the-art builders at the cost of slightly higher construction
times. Using our method is the best choice for the offline rendering or static content in
the online rendering provided the static geometry is known a priori.

G.2 Efficient construction We presented three high-performance BVH construction algo-
rithms. In Section 3.2, we proposed a construction algorithm based on k-means clustering
targeting many-core GPUs. In Section 3.3, we proposed a construction algorithm based
on a progressively refined cut of an existing BVH targeting multi-core CPUs. Finally, in
Section 3.4, we proposed another construction algorithm based on locally-ordered clus-
tering targeting many-core GPUs. All three algorithms are highly parallel and provide
a good trade-off between construction times and the ray tracing performance. The al-
gorithms are applicable in the context of the real-time rendering, and outperform other
high-performance construction algorithms such as ATRBVH or AAC.

G.3 Temporal coherence In Section 3.1, we proposed a method for handling geometry chan-
ges in animated scenes. Since we use a single BVH optimized for the whole animation
sequence, updating of the BVH reduces to simple refitting of bounding boxes. The method
outperforms the state-of-the-art approaches based either on the per-frame reconstruction
from scratch or on the best-over-time BVH with refitting.

4.2 Future Work

We see several possible ways how to extend each of the presented methods and summarize the
most promising ones.

A drawback of the T-SAH method presented in Section 3.1 is that if the geometric changes
are significant, then even highly optimized single BVH will not be good enough to cope with
these changes. We experimented with using two optimized BVHs corresponding to the first and
second halves of animation frames. We plan to further investigate employing multiple optimized
BVHs. We want to look at the adaptive subdivision of the input animation sequence in order
to provide a minimal set of BVHs within a given memory budget and maximize the ray tracing
performance.

The bottom-up construction algorithm based on parallel locally-ordered clustering presented
in Section 3.4 uses the Morton curve to accelerate the nearest neighbors search. We want to
investigate how the algorithm behaves with the extended Morton codes [70], which take into
account not only the position but also the size of scene primitives. Thanks to simplicity, we
believe that the algorithm is a promising candidate for future extensions and optimizations.

We see a significant potential in the last method for the parallel BVH optimization presented
in Section 3.5 since there is a number of avenues how to extend it. The algorithm produces BVHs
of the highest possible quality and we believe that we can do even better. The algorithm takes
each node and tries to insert it into another node in order to reduce the cost. We can generalize
this operation from pairs of nodes to k-tuples of nodes. We take k-tuples and try to reinsert
them into each other which might lead to lower costs. Furthermore, we would like to investigate
the possibility of incorporating spatial splits, which might accelerate ray tracing even more,
especially for scenes containing primitives with non-uniform sizes. The problem is that spatial
splits are directly associated with the top-down construction and the incorporation into the
algorithm might be challenging. Last, we would like to extend the method for wide-BVHs as

22 CHAPTER 4. CONCLUSION AND FUTURE WORK

it was shown recently that they achieve excellent results not only on CPUs [83] but also on
GPUs [88].

BIBLIOGRAPHY 23

Bibliography

[1] Attila Áfra and László Szirmay-Kalos. Stackless Multi-BVH Traversal for CPU, MIC and
GPU Ray Tracing. Computer Graphics Forum, 33(1):129–140, 2014.

[2] Timo Aila, Tero Karras, and Samuli Laine. On Quality Metrics of Bounding Volume
Hierarchies. In Proceedings of High-Performance Graphics, pages 101–108. ACM, 2013.

[3] Timo Aila and Samuli Laine. Understanding the Efficiency of Ray Traversal on GPUs. In
Proceedings of High-Performance Graphics, pages 145–149, 2009.

[4] Ciprian Apetrei. Fast and Simple Agglomerative LBVH Construction. In Proceedings of
Computer Graphics and Visual Computing, 2014.

[5] Arthur Appel. Some Techniques for Shading Machine Renderings of Solids. In Proceedings
of Spring Joint Computer Conference, pages 37–45. ACM, 1968.

[6] Rasmus Barringer and Tomas Akenine-Möller. Dynamic Ray Stream Traversal. ACM
Trans. Graph., 33(4):151:1–151:9, 2014.

[7] Carsten Benthin, Sven Woop, Ingo Wald, and Attila Áfra. Improved Two-Level BVHs
using Partial Re-Braiding. In Proceedings of High-Performance Graphics, 2017.

[8] Jon Louis Bentley. Multidimensional Binary Search Trees Used for Associative Searching.
Communications of the ACM, 18(9):509–517, 1975.

[9] Jacco Bikker. Improving Data Locality for Efficient In-Core Path Tracing. Computer
Graphics Forum, 31(6):1936–1947, 2012.

[10] Nikolaus Binder and Alexander Keller. Efficient Stackless Hierarchy Traversal on GPUs
with Backtracking in Constant Time. In Proceedings of High-Performance Graphics, pages
41–50, 2016.

[11] Jǐŕı Bittner. Hierarchical Techniques for Visibility Computations. Ph.D. thesis, Department
of Computer Science and Engineering, Faculty of Electrical Engineering, Czech Technical
University in Prague, 2002.

[12] Jǐŕı Bittner, Michal Hapala, and Vlastimil Havran. Fast Insertion-Based Optimization of
Bounding Volume Hierarchies. Computer Graphics Forum, 32(1):85–100, 2013.

[13] Jǐŕı Bittner, Michal Hapala, and Vlastimil Havran. Incremental BVH Construction for Ray
Tracing. Computers and Graphics, 47(1):135–144, 2015.

[14] Jǐŕı Bittner and Vlastimil Havran. RDH: Ray Distribution Heuristics for Construction of
Spatial Data Structures. In Proceedings of Spring Conference on Computer Graphics, pages
61–67. ACM, 2009.

[15] Jǐŕı Bittner and Daniel Meister. T-SAH: Animation Optimized Bounding Volume Hierar-
chies. Computer Graphics Forum (Proceedings of Eurographics), 34(2):527–536, 2015.

[16] Solomon Boulos, Dave Edwards, Dylan Lacewell, Joe Kniss, Jan Kautz, Peter Shirley, and
ngo Wald. Packet-based Whitted and Distribution Ray Tracing. In Proceedings of Graphics
Interface, pages 177–184. ACM, 2007.

24 BIBLIOGRAPHY

[17] James Clark. Hierarchical Geometric Models for Visible Surface Algorithms. CACM,
19(10):547–554, 1976.

[18] Holger Dammertz, Johannes Hanika, and Alexander Keller. Shallow Bounding Volume
Hierarchies for Fast SIMD Ray Tracing of Incoherent Rays. Computer Graphics Forum,
27:1225–1233(9), 2008.

[19] Holger Dammertz and Alexander Keller. Edge Volume Heuristic - Robust Triangle Subdi-
vision for Improved BVH Performance. In Proceedings of Symposium on Interactive Ray
Tracing, pages 155–158, 2008.

[20] Tomáš Davidovič, Jaroslav Křivánek, Miloš Hašan, and Philipp Slusallek. Progressive
Light Transport Simulation on the GPU: Survey and Improvements. ACM Transactions
on Graphics, 33(3):29:1–29:19, 2014.

[21] Leonardo Domingues and Hélio Pedrini. Bounding Volume Hierarchy Optimization through
Agglomerative Treelet Restructuring. In Proceedings of High-Performance Graphics, pages
13–20, 2015.

[22] Philip Dutre, Kavita Bala, Philippe Bekaert, and Peter Shirley. Advanced Global Illumina-
tion. AK Peters Ltd, 2006.

[23] Christer Ericson. Real-Time Collision Detection (The Morgan Kaufmann Series in In-
teractive 3-D Technology) (The Morgan Kaufmann Series in Interactive 3D Technology).
Morgan Kaufmann Publishers Inc., 2004.

[24] Manfred Ernst and Gunther Greiner. Early Split Clipping for Bounding Volume Hierarchies.
In Proceedings of Symposium on Interactive Ray Tracing, pages 73–78, 2007.

[25] Manfred Ernst and Gunther Greiner. Multi bounding Volume Hierarchies. In Proceedings
of Symposium on Interactive Ray Tracing, pages 35–40, 2008.

[26] Bartosz Fabianowski, Colin Fowler, and John Dingliana. A Cost Metric for Scene-Interior
Ray Origins. pages 49–52, 2009.

[27] Akira Fujimoto, Takayuki Tanaka, and Kansei Iwata. Tutorial: Computer Graphics; Image
Synthesis. chapter ARTS: Accelerated Ray-tracing System, pages 148–159. Computer
Science Press, Inc., 1988.

[28] Per Ganestam, Rasmus. Barringer, Michael Doggett, and Thomas Akenine-Möller. Bonsai:
Rapid Bounding Volume Hierarchy Generation using Mini Trees. Journal of Computer
Graphics Techniques, 4(3):23–42, 2015.

[29] Kirill Garanzha, Jacopo Pantaleoni, and David McAllister. Simpler and Faster HLBVH
with Work Queues. In Proceedings of High-Performance Graphics, pages 59–64, 2011.

[30] Andrew Glassner. Tutorial: Computer Graphics; Image Synthesis. chapter Space Subdivi-
sion for Fast Ray Tracing, pages 160–167. Computer Science Press, Inc., 1988.

[31] Jeffrey Goldsmith and John Salmon. Automatic Creation of Object Hierarchies for Ray
Tracing. Comput Graphics and Applications, 7(5):14–20, 1987.

BIBLIOGRAPHY 25

[32] Christiaan Gribble and Karthik Ramani. Coherent Ray Tracing via Stream Filtering. In
Proceeding of Symposium on Interactive Ray Tracing, pages 59–66, 2008.

[33] Yan Gu, Yong He, Kayvon Fatahalian, and Guy Blelloch. Efficient BVH Construction
via Approximate Agglomerative Clustering. In Proceedings of High-Performance Graphics,
pages 81–88, 2013.

[34] Michael Guthe. Latency Considerations of Depth-first GPU Ray Tracing. In Proceedings
of Eurographics (Short Papers). The Eurographics Association, 2014.

[35] Michal Hapala, Tomáš Davidovič, Ingo Wald, Vlastimil Havran, and Philipp Slusallek.
Efficient Stack-less BVH Traversal for Ray Tracing. In Proceedings of Spring Conference
on Computer Graphics, pages 7–12. ACM, 2013.

[36] Vlastimil Havran. Heuristic Ray Shooting Algorithms. Ph.D. thesis, Department of Compu-
ter Science and Engineering, Faculty of Electrical Engineering, Czech Technical University
in Prague, 2000.

[37] Vlastimil Havran, Robert Herzog, and Hans-Peter Seidel. On the Fast Construction of
Spatial Data Structures for Ray Tracing. In Proceedings of Symposium on Interactive Ray
Tracing 2006, pages 71–80, 2006.

[38] Jakub Hendrich, Daniel Meister, and Jǐŕı Bittner. Parallel BVH Construction Using Pro-
gressive Hierarchical Refinement. Computer Graphics Forum (Proceedings of Eurographics),
36(2):487–494, 2017.

[39] Warren Hunt, William Mark, and Don Fussell. Fast and Lazy Build of Acceleration Struc-
tures from Scene Hierarchies. In Proceedings of Symposium on Interactive Ray Tracing,
pages 47–54, 2007.

[40] Thiago Ize, Ingo Wald, and Steven Parker. Asynchronous BVH Construction for Ray
Tracing Dynamic Scenes on Parallel Multi-Core Architectures. In Proceedings of Symposium
on Parallel Graphics and Visualization, pages 101–108, 2007.

[41] James Kajiya. The Rendering Equation. SIGGRAPH Computer Graphics, 20(4):143–150,
1986.

[42] Tero Karras. Maximizing Parallelism in the Construction of BVHs, Octrees, and k-d Trees.
In Proceedings of High-Performance Graphics, pages 33–37, 2012.

[43] Tero Karras and Timo Aila. Fast Parallel Construction of High-Quality Bounding Volume
Hierarchies. In Proceedings of High-Performance Graphics, pages 89–100. ACM, 2013.

[44] Csaba Kelemen, László Szirmay-Kalos, György Antal, and Ferenc Csonka. A Simple and Ro-
bust Mutation Strategy for the Metropolis Light Transport Algorithm. Computer Graphics
Forum, 21(3):531–540, 2002.

[45] Andrew Kensler. Tree Rotations for Improving Bounding Volume Hierarchies. In Procee-
dings of Symposium on Interactive Ray Tracing, pages 73–76, 2008.

[46] Daniel Kopta, Thiago Ize, Josef Spjut, Erik Brunvand, Al Davis, and Andrew Kensler. Fast,
Effective BVH Updates for Animated Scenes. In Proceedings of Symposium on Interactive
3D Graphics and Games, pages 197–204, 2012.

26 BIBLIOGRAPHY

[47] Samuli Laine. Restart Trail for Stackless BVH Traversal. In Proceedings of High-
Performance Graphics, pages 107–111. Eurographics Association, 2010.

[48] Christian Lauterbach, Michael Garland, Shubhabrata Sengupta, David Luebke, and Dinesh
Manocha. Fast BVH Construction on GPUs. Computer Graphics Forum, 28(2):375–384,
2009.

[49] David MacDonald and Kellogg Booth. Heuristics for Ray Tracing Using Space Subdivision.
Visual Computer, 6(3):153–65, 1990.

[50] Erik Mansson, Jacob Munkberg, and Tomas Akenine-Moller. Deep Coherent Ray Tracing.
In Proceedings of Symposium on Interactive Ray Tracing, pages 79–85. IEEE Computer
Society, 2007.

[51] Daniel Meister and Jǐŕı Bittner. Parallel BVH Construction Using k-means Clustering.
Visual Computer (Proceedings of Computer Graphics International), 32(6-8):977–987, 2016.

[52] Daniel Meister and Jǐŕı Bittner. Parallel Locally-Ordered Clustering for Bounding Vo-
lume Hierarchy Construction. IEEE Transactions on Visualization and Computer Graphics,
24(3):1345–1353, 2018.

[53] Daniel Meister and Jǐŕı Bittner. Parallel Reinsertion for Bounding Volume Hierarchy Opti-
mization. Computer Graphics Forum (Proceedings of Eurographics), 37(2):463–473, 2018.

[54] Tomas Möller and Ben Trumbore. Fast, Minimum Storage Ray-triangle Intersection. Jour-
nal of Graphics Tools, 2(1):21–28, 1997.

[55] Guy Morton. A Computer Oriented Geodetic Database and a New Technique in File
Sequencing. Technical report, 1966.

[56] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable Parallel Program-
ming with CUDA. Queue, 6(2):40–53, 2008.

[57] Ola Olsson. Constructing High-Quality Bounding Volume Hierarchies for N-Body Compu-
tation Using the Acceptance Volume Heuristic. Astronomy and Computing, 22:1–8, 2018.

[58] Ryan Overbeck, Ravi Ramamoorthi, and William Mark. Large Ray Packets for Real-Time
Whitted Ray Tracing. In Proceedings of Symposium on Interactive Ray Tracing, pages
41–48, 2008.

[59] Jacopo Pantaleoni and David Luebke. HLBVH: Hierarchical LBVH Construction for Real-
Time Ray Tracing of Dynamic Geometry. In Proceedings of High-Performance Graphics,
pages 87–95, 2010.

[60] Steven Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared Hoberock, David
Luebke, David McAllister, Morgan McGuire, Keith Morley, Austin Robison, and Martin
Stich. OptiX: A General Purpose Ray Tracing Engine. ACM Transactions on Graphics,
29(4):66:1–66:13, 2010.

[61] Matt Pharr and Greg Humphreys. Physically Based Rendering: From Theory to Imple-
mentation. Morgan Kaufmann Publishers Inc., 2004.

BIBLIOGRAPHY 27

[62] Stefan Popov, Iliyan Georgiev, Rossen Dimov, and Philipp Slusallek. Object Partitioning
Considered Harmful: Space Subdivision for BVHs. In Proceedings of High-Performance
Graphics, pages 15–22, 2009.

[63] Steven Rubin and Turner Whitted. A 3-dimensional Representation for Fast Rendering of
Complex Scenes. SIGGRAPH Computer Graphics, 14(3):110–116, 1980.

[64] Martin Stich, Heiko Friedrich, and Andreas Dietrich. Spatial Splits in Bounding Volume
Hierarchies. In Proceedings of the High-Performance Graphics, pages 7–13. ACM, 2009.

[65] László Szirmay-Kalos and Gabor Márton. Worst-case Versus Average Case Complexity of
Ray-shooting. Computing, 61(2):103–131, 1998.

[66] John Tsakok. Faster Incoherent Rays: Multi-BVH Ray Stream Tracing. In Proceedings of
High-Performance Graphics, pages 151–158, 2009.

[67] Kostas Vardis, Andreas Vasilakis, and Georgios Papaioannou. A Multiview and Multilayer
Approach for Interactive Ray Tracing. In Proceedings of Symposium on Interactive 3D
Graphics and Games, pages 171–178. ACM, 2016.

[68] Kostas Vardis, Andreas Vasilakis, and Georgios Papaioannou. DIRT: Deferred Image-based
Ray Tracing. In Proceedings of High-Performance Graphics, pages 63–73. Eurographics
Association, 2016.

[69] Eric Veach. Robust Monte Carlo Methods for Light Transport Simulation. PhD thesis, 1998.
AAI9837162.

[70] Marek Vinkler, Jǐŕı Bittner, and Vlastimil Havran. Extended Morton Codes for High Per-
formance Bounding Volume Hierarchy Construction. In Proceedings of High-Performance
Graphics, 2017.

[71] Marek Vinkler, Jǐŕı Bittner, Vlastimil Havran, and Michal Hapala. Massively Parallel
Hierarchical Scene Processing with Applications in Rendering. Computer Graphics Forum,
32(8):13–25, 2013.

[72] Marek Vinkler and Vlastimil Havran. Register Efficient Dynamic Memory Allocator for
GPUs. Computer Graphics Forum, 34(8):143–154, 2015.

[73] Marek Vinkler, Vlastimil Havran, and Jǐŕı Bittner. Performance Comparison of Bounding
Volume Hierarchies and Kd-Trees for GPU Ray Tracing. Computer Graphics Forum, 2016.

[74] Marek Vinkler, Vlastimil Havran, Jǐŕı Bittner, and Jǐŕı Sochor. Parallel On-Demand Hier-
archy Construction on Contemporary GPUs. IEEE Transactions on Visualization and
Computer Graphics, 22(99):1886–1898, 2016.

[75] Marek Vinkler, Vlastimil Havran, and Jǐŕı Sochor. Visibility Driven BVH Build Up Algo-
rithm for Ray Tracing. Computers and Graphics, 36(4):283–296, 2012.

[76] Ingo Wald. On Fast Construction of SAH-based Bounding Volume Hierarchies. In Procee-
dings of Symposium on Interactive Ray Tracing, pages 33–40, 2007.

[77] Ingo Wald. Fast Construction of SAH BVHs on the Intel Many Integrated Core (MIC)
Architecture. IEEE Transactions on Visualization and Computer Graphics, 18(1):47–57,
2012.

28 BIBLIOGRAPHY

[78] Ingo Wald, Carsten Benthin, and Solomon Boulos. Getting Rid of Packets - Efficient
SIMD Single-Ray Traversal using Multi-Branching BVHs. In Symposium on Interactive
Ray Tracing, pages 49–57, 2008.

[79] Ingo Wald, Carsten Benthin, and Philipp Slusallek. Distributed Interactive Ray Tracing of
Dynamic Scenes. In Proceedings of Symposium on Parallel and Large-Data Visualization
and Graphics, pages 77–86, 2003.

[80] Ingo Wald, Solomon Boulos, and Peter Shirley. Ray Tracing Deformable Scenes Using
Dynamic Bounding Volume Hierarchies. ACM Transactions on Graphics, 26(1), 2007.

[81] Ingo Wald and Vlastimil Havran. On building fast KD-trees for ray tracing, and on doing
that in O(N log N). In Proceedings of Symposium on Interactive Ray Tracing, pages 61–69,
2006.

[82] Ingo Wald, Thiago Ize, and Steven Parker. Fast, Parallel, and Asynchronous Construction
of BVHs for Ray Tracing Animated Scenes. Computers and Graphics, 32(1):3–13, 2008.

[83] Ingo Wald, Sven Woop, Carsten Benthin, Gregory Johnson, and Manfred Ernst. Embree:
A Kernel Framework for Efficient CPU Ray Tracing. ACM Transactions on Graphics, 33,
2014.

[84] Bruce Walter, Kavita Bala, Milind Kulkarni, and Keshav Pingali. Fast Agglomerative
Clustering for Rendering. In Proceedings of Symposium on Interactive Ray Tracing, pages
81–86, 2008.

[85] Hank Weghorst, Gary Hooper, and Donald Greenberg. Improved Computational Methods
for Ray Tracing. ACM Transactions on Graphics, 3(1):52–69, 1984.

[86] Turner Whitted. An Improved Illumination Model for Shaded Display. Communications
of the ACM, 23(6):343–349, 1980.

[87] Sven Woop, Attila Áfra, and Carsten Benthin. STBVH: A Spatial-temporal BVH for
Efficient Multi-segment Motion Blur. In Proceedings of High-Performance Graphics, pages
8:1–8:8. ACM, 2017.

[88] Henri Ylitie, Tero Karras, and Samuli Laine. Efficient Incoherent Ray Traversal on GPUs
Through Compressed Wide BVHs. In Proceedings of High-Performance Graphics, pages
4:1–4:13, 2017.

[89] Sung-Eui Yoon, Sean Curtis, and Dinesh Manocha. Ray Tracing Dynamic Scenes using
Selective Restructuring. In Proceedings of Eurographics Symposium on Rendering, pages
73–84, 2007.

APPENDIX A. AUTHOR’S PUBLICATIONS 29

A Author’s Publications

The following research papers were co-authored by the author of the thesis and published in
journals with impact factor, and all are related to the thesis.

Jǐŕı Bittner and Daniel Meister. T-SAH: Animation Optimized Bounding Volume Hierar-
chies. Computer Graphics Forum (Proceedings of Eurographics), 34(2):527–536, 2015 (IF =
1.542)

Cited in:

Kostas Vardis, Andreas Vasilakis, and Georgios Papaioannou. DIRT: Deferred
Image-based Ray Tracing. In Proceedings of High-Performance Graphics, pages 63–
73. Eurographics Association, 2016

Kostas Vardis, Andreas Vasilakis, and Georgios Papaioannou. A Multiview and
Multilayer Approach for Interactive Ray Tracing. In Proceedings of Symposium on
Interactive 3D Graphics and Games, pages 171–178. ACM, 2016

Sven Woop, Attila Áfra, and Carsten Benthin. STBVH: A Spatial-temporal BVH
for Efficient Multi-segment Motion Blur. In Proceedings of High-Performance Graphics,
pages 8:1–8:8. ACM, 2017

Daniel Meister and Jǐŕı Bittner. Parallel BVH Construction Using k-means Clustering.
Visual Computer (Proceedings of Computer Graphics International), 32(6-8):977–987, 2016 (IF
= 1.468)

Cited in:

Ola Olsson. Constructing High-Quality Bounding Volume Hierarchies for N-Body
Computation Using the Acceptance Volume Heuristic. Astronomy and Computing,
22:1–8, 2018

Jakub Hendrich, Daniel Meister, and Jǐŕı Bittner. Parallel BVH Construction Using Pro-
gressive Hierarchical Refinement. Computer Graphics Forum (Proceedings of Eurographics),
36(2):487–494, 2017 (IF ∼ 1.6)

Cited in:

Carsten Benthin, Sven Woop, Ingo Wald, and Attila Áfra. Improved Two-Level
BVHs using Partial Re-Braiding. In Proceedings of High-Performance Graphics, 2017

Daniel Meister and Jǐŕı Bittner. Parallel Locally-Ordered Clustering for Bounding Vo-
lume Hierarchy Construction. IEEE Transactions on Visualization and Computer Graphics,
24(3):1345–1353, 2018 (IF ∼ 2.8)

30 APPENDIX A. AUTHOR’S PUBLICATIONS

Daniel Meister and Jǐŕı Bittner. Parallel Reinsertion for Bounding Volume Hierarchy Opti-
mization. Computer Graphics Forum (Proceedings of Eurographics), 37(2):463–473, 2018 (IF ∼
1.6)

APPENDIX C. RÉSUMÉ 31

B Authorship Contribution Statement

This statement describes the specific contributions of the author of this thesis to the presented
publications.

T-SAH: Animation Optimized Bounding Volume Hierarchies (Bittner 60%, Meister
40%) I extended the Aila’s GPU framework [3] to support animated scenes, implemented
reference methods, performed the final evaluation, created the accompanying video, created the
main table and plots, and rendered all images in the paper.

Parallel BVH Construction using k-means Clustering (Meister 70%, Bittner 30%)
I came with the initial idea, implemented the prototype, did all experiments, performed the final
evaluation, wrote most of the paper, created almost all figures, and created the accompanying
video.

Parallel BVH Construction using Progressive Hierarchical Refinement (Hendrich
70 %, Meister 15%, Bittner 15%) I integrated the algorithm into Embree [60], where I
performed the final evaluation. In particular, I created the main table and rendered all images
in the paper.

Parallel Locally-Ordered Clustering for Bounding Volume Hierarchy Construction
(Meister 70%, Bittner 30%) I came with the initial idea, implemented the prototype, did
all experiments, performed the final evaluation, wrote most of the paper, created almost all
figures, and created the accompanying video.

Parallel Reinsertion for Bounding Volume Hierarchy Optimization (Meister 70%,
Bittner 30%) I came with the initial idea, implemented the prototype, did all experiments,
performed the final evaluation, wrote most of the paper, and created all figures.

Daniel Meister
* 4th June, 1989

Education
Czech Technical University in Prague:
2014 – present Ph.D. in Information Science and Computer Engineering
2012 – 2014 M.Sc. in Computer Graphics and Interaction
2009 – 2012 B.Sc. in Software Engineering

Work Experience
2014/10 – 2017/3 External Developer (Interactive Rendering System), Škoda Auto
2017/11 – present Researcher, Toyota Research Lab, CTU in Prague

Computer Skills
C/C++, CUDA, OpenGL, SIMD, Matlab, Python, LATEX

Research Interests
Data Structures for Ray Tracing, Real-Time Ray Tracing, GPGPU, Parallel Computing,
Global Illumination

Professional Visits Abroad
2017 National Institute of Informatics, Japan (5 months)
2014 Vienna University of Technology, Austria (1 month)

Projects
• 2014 – 2017 Development Adaptive Interactive System for Increasing Safety of Vehicle

Crew and its Use for Evaluation of Pavement Surface Characteristics (TA04031769),
Technology Agency of the Czech Republic, Project External Team Member

• 2014 – 2015 Optimal Algorithms for Image Synthesis (GAP202/12/2413), The Czech
Science Foundation, Project Team Member

• 2013 – 2014 Global Illumination for Augmented Reality in General Environments (GAP202/11/1883),
The Czech Science Foundation, Project Team Member

Languages
Czech Native Language

English Fluent
Japanese Intermediate (JLPT N3)
French Basic Knowledge
Spanish Basic Knowledge

Professional Society Membership
Upsilon Pi Epsilon Honor Society

32 APPENDIX C. RÉSUMÉ

	Introduction
	Goals

	State-of-the-Art
	Preliminaries
	Visibility and Ray Tracing
	Algorithmic Complexity
	Acceleration Data Structures

	Bounding Volume Hierarchy
	Cost Model
	Top-Down Construction
	Bottom-Up Construction
	Incremental Construction
	Parallel Construction
	Optimization
	Collapsing Subtrees
	Spatial Splits
	Dynamic Scenes
	Ray Traversal

	Overview of Contributions
	T-SAH: Animation Optimized BVH
	Parallel BVH Construction using k-means
	Progressive Hierarchical Refinement
	Parallel Locally-Ordered Clustering
	Parallel Reinsertion for BVH Optimization

	Conclusion and Future Work
	Summary
	Future Work

	Bibliography
	Author's Publications
	Authorship Contribution Statement
	Résumé

