Návrh rekonstrukce křižovatky D5 a III/11533

Reconstruction desing of intersection D5 and III/11533

Diplomová práce

Studijní obor: K- Konstrukce a dopravní stavby

Vedoucí práce: Ing. Jan Hradil, Ph.D.

Bc. Jaroslav Šmerhovský

Praha 2018
Poděkování

Tímto bych rád poděkoval vedoucímu své diplomové práce Ing. Janu Hradilovi, Ph.D. za pomoc a odborné vedení při zpracování daného tématu a rovněž za poskytnuté rady a materiály.
Čestné prohlášení

Čestně prohlašuji, že jsem diplomovou práci vypracoval samostatně za odborného vedení Ing. Jana Hradila, Ph.D., za použití uvedené literatury.

V Praze dne 21.5.2018

Bc. Jaroslav Šmerhovský
Anotace

Práce je zaměřena na řešení problému nedostatečné kapacity křižovatky v Berouně na křižení komunikací D5 a silnice III/11 533. První část je zaměřena na problematiku okružních křižovek. V další části se zabývám variantním řešením úprav křižovatky. V poslední části je uveden princip multikriteriálního hodnocení.

Klíčová slova

Okružní křižovatka, Turbo-okružní křižovatka, PVT Vissim, kapacita, světelně řízená křižovatka, multikriteriální hodnocení

Anotation

This thesis is focused on solving a problem of the lack of the capacity at the crossroads in Beroun on the intersections D5 and III/11 533. The main aim of the first part is the issue of roundabouts. In the next part of this thesis I deal with variant solution of intersection upgrade. There is a multi-criteria analysis in the last part.

Key words

Roundabouts, Turbo-Roundabouts, PVT Vissim, capacity, light-controlled intersection, multi-criteria analysis
Obsah:

1. Úvod .. 8
2. Okružní křižovatky ... 9
 2.1 Mini-okružní křižovatky ... 9
 2.2 Jednopruhové okružní křižovatky .. 11
 2.3 Turbo-okružní okružní křižovatky .. 13
3. Výpočet kapacity okružních křižovatek ... 18
 3.1 Výpočet kapacity okružních křižovatek dle TP 234 .. 18
 3.1.1. Volba typu křižovatky .. 18
 3.1.2. Typy okružních křižovatek .. 19
 3.1.3. Návrhové intenzity dopravních proudů ... 19
 3.1.4. Geometrické uspořádání .. 19
 3.1.5. Posouzení úrovně kvality dopravy ... 20
 3.1.6. Návrhové intenzity dopravních proudů ... 21
 3.1.7. Stanovení kapacity vjezdu .. 21
 3.1.8. Rezerva kapacity .. 24
 3.1.9. Stanovení střední doby zdržení .. 24
 3.1.10. Stanovení délky fronty ... 25
 3.1.11. Posouzení kapacity výjezdu .. 25
 3.1.12. Výstup kapacitního posouzení .. 27
3.2 Kapacitní výpočet okružní křižovatky v programu PVT Vissim 10 29
 3.2.1. Úvod do posuzování dle softwaru .. 29
 3.2.2. Popis programu ... 29
 3.2.3. Prostředí programu .. 29
 3.2.4. Tvorba pozadí .. 29
 3.2.5. Linky a spojnice ... 31
 3.2.6. Typ vozidel ... 32
 3.2.7. Skladba dopravního proudu ... 32
 3.2.8. Rozdělení rychlosti .. 32
 3.2.9. Vložení vozidel .. 32
 3.2.10. Nastavení tras vozidel .. 33
3.2.11. Omezení rychlostí .. 34
3.2.12. Konfliktní zóny ... 34
3.2.13. Vložení míst pro sběr dat ... 35
3.2.14. Cestovní čas a ztrátový čas, Délka kolony 35
3.2.15. Spuštění simulace .. 36
3.2.16. Shrnutí ... 36
4. Křižovatka v Berouně D5 x III/11 533 37
 4.1 Doprava města Beroun ... 37
 4.2 Popis řešené lokality .. 37
 4.3 Zdůvodnění diplomové práce ... 38
 4.4 Nehodovost dané křižovatky ... 38
 4.5 Analýza nedostatků stávajícího stavu křižovatky 41
 4.6 Dopravní průzkum v dané lokalitě 42
 4.8 Vymezení území pro hledání reálných variant 45
 4.9 Podklady pro návrh řešení ... 46
 4.10 Dopravní zatížení .. 47
5. Návrh typů okružních křižovatek ... 51
 5.1 Varianta č. 1 Okružní křižovatka s bypassy 51
 5.1.1. Paprsek 10 (Sjezd Plzeň) ... 51
 5.1.2. Paprsek 9 (Beroun - nádraží) 52
 5.1.3. Paprsek 7 (Beroun/Plzeň) .. 52
 5.1.4. Paprsek 8 (Nájezd Praha) .. 53
 5.1.5. Kapacitní posouzení .. 54
 5.1.6. Zhodnocení výsledků .. 56
 5.2 Varianta č. 2 Turbo-okružní křižovatka typ vejce 56
 5.2.1. Paprsek 10 (Sjezd Plzeň) ... 56
 5.2.2. Paprsek 9 (Beroun - nádraží) 56
 5.2.3. Paprsek 7 (Beroun/Plzeň) .. 57
 5.2.4. Paprsek 8 (Nájezd Praha) .. 57
 5.2.5. Kapacitní posouzení .. 58
 5.2.6. Zhodnocení výsledků .. 61
 5.3 Varianta č. 3 Turbo-okružní křižovatka typ základní 61
5.3.1. Paprsek 10 (Sjezd Plzeň) ... 61
5.3.2. Paprsek 9 (Beroun - nádraží) .. 62
5.3.3. Paprsek 7 (Beroun/Plzeň) ... 62
5.3.4. Paprsek 8 (Nájezd Praha) .. 63
5.3.5. Kapacitní posouzení ... 63
5.3.6. Zhodnocení výsledků .. 66
5.4 Varianta č.4 Turbo-okružní křižovatka atypická .. 66
5.4.1. Paprsek 10 (Sjezd Plzeň) ... 66
5.4.2. Paprsek 9 (Beroun - nádraží) .. 67
5.4.3. Paprsek 7 (Beroun/Plzeň) ... 67
5.4.4. Paprsek 8 (Nájezd Praha) .. 68
5.4.5. Kapacitní posouzení ... 68
5.4.6. Zhodnocení výsledků .. 71
5.5 Vyhodnocení variant okružních křižovatek ... 71
6. Křižovatka řešená světelnou signalizací ... 71
6.1 Výpočet kapacity světelně řízené křižovatky dle TP 235 ... 71
6.1.1. Posouzení úrovně kvality dopravy .. 71
6.1.2. Návrhové intenzity dopravních proudů 72
6.1.3. Metoda saturowaného toku .. 73
6.1.4.Saturovaný tok .. 73
6.1.5. Stupeň saturace ... 74
6.1.6. Efektivní délka zelené ... 74
6.1.7. Ztrátový čas ... 75
6.1.8. Minimální délka cyklu ... 75
6.1.9. Optimální délka cyklu ... 75
6.1.10. Délka zelených ... 76
6.1.11. Minimální délka zelených ... 76
6.1.12. Kapacita vjezdu ... 76
6.1.13. Kapacita levého odbočení ovlivněného protisměrem 77
6.1.14. Délky řadících pruhů ... 78
6.1.15. Stanovení střední doby zdržení ... 79
6.2 Varianta č.5 Světelně řízená křižovatka s minimem zásahů do stávajícího stavu 79
6.2.1. Paprsek 10 (Sjezd Plzeň) ... 80
6.2.2. Paprsek 9 (Beroun - nádraží) ... 80
6.2.3. Paprsek 7 (Beroun/Plzeň) ... 80
6.2.4. Paprsek 8 (Nájezd Praha) ... 81
6.2.5. Kapacitní posouzení .. 82
5.4.6. Zhodnocení výsledků ... 84
6.2 Varianta č.6 Světelně řízená křižovatka s přidanými řadícími pruhym 84
 6.2.1. Paprsek 10 (Sjezd Plzeň) ... 84
 6.2.2. Paprsek 9 (Beroun - nádraží) ... 85
 6.2.3. Paprsek 7 (Beroun/Plzeň) ... 85
 6.2.4. Paprsek 8 (Nájezd Praha) ... 86
 6.2.5. Kapacitní posouzení .. 86
 5.4.6. Zhodnocení výsledků ... 86
7. Ekonomické hodnocení variantního řešení ... 89
8. Ověření průjezdnosti křižovatky .. 92
9. Multikriteriální hodnocení MCA .. 93
 9.1 Kritéria multikriteriálního hodnocení .. 93
10 Závěr .. 96
Příloha G – Pentlogramy dopravy ... 97
Příloha H – Výsledky výpočtu kapacit křižovatek na začátku životnosti 105
11. Seznam použité literatury ... 111
 Použitý software .. 111
12. Seznam tabulek .. 112
1. Úvod

Obr. 1 Columbus Circle, New York, 1907

Tyto moderní okružní křižovatky se začaly navrhovat v 70. letech v Austrálii a některých částech Francie. V 80. letech se rozšířily do ostatních zemí jako je např. Německo, Španělsko, Švýcarsko.

Na území ČR se okružní křižovatky moderního typu začaly rozrůstat počátkem 90. let.

Hlavními důvody pro zřízení okružní křižovatky jsou zvýšení bezpečnosti a plynulosti dopravy a také ke zvýšení celkové dopravní kapacity křižovatky. Ve městech je jím rovněž dávána přednost kvůli jejich elegantnímu estetickému vzhledu. U malých typů okružních křižovatek dochází k malému záboru pozemků a prostoru při relativně vysoké kapacitě křižovatky. Obecně okružní křižovatky nepreferují pouze motorizované účastníky provozu zlepšují podmínky pro pěší zejména z hlediska bezpečnosti.

V současné době bohužel občas stále převládá názor, že okružní křižovatka je univerzálním řešením použitelným pro většinu rekonstrukcí stávajících typů křižovatek a že použitím tohoto typu dojde k nejlépe možnému zvýšení plynulosti dopravy a kapacity vjezdů křižovatky. Právě tato práce dokládá, že okružní křižovatka nemusí v některých případech vyhovět kapacitnímu posouzení z důvodu rozdělení intenzit na okruhu.

2. Okružní křižovatky

Okružní křižovatky se dle TP 135 dělí na mini-okružní (MOK, MINI) o vnějším průměru D ≤23m, jednopruhové okružní křižovatky (JOK, OK1) o vnějším průměru D >23m, turbo-okružní křižovatky (TOK, OK2) o vnějším průměru D<23m.

2.1 Mini-okružní křižovatky

(převzato z TP 135)

Mini-okružní křižovatka je úrovňová křižovatka, jejíž vnější průměr D ≤ 23m. Navrhována se se zpevněným ostrovem (výjimečně může být vyznačen pouze opticky). Základním principem je usměrňení a zpomalení vozidel. Po okružním pásu je umožněn pouze průjezd osobních vozidel, případně dodávky. Rozměrnější vozidla se pohybují přes středový ostrov, který je nejčastěji tvořen odlišným materiálem než vozovka (beton, kamenná dlažba).

Použité tohoto typu křižovatek je vhodné na komunikacích malého dopravního významu, typicky se jedná o vnitřní části měst. Na místních komunikacích funkční skupiny C a D1. Tento typ křižovatky nemá řešit kapacitní problémy křižovatkových úseků. Funguje spíše jako prvek dopravního zklidnění. Mini-okružní křižovatka
zpravidla nahrazuje křižovatky s předností zprava v obytných a pěších zónách či v zónách 30.

Obr. 2 Popis prvků mini-okružní křižovatky (převzato z TP 135)

Obr. 3 Zázornění počtu kolizních bodů

Z obrázku je patrné, že mini-okružní křižovatka má výrazně nižší počet kolizních bodů oproti průsečné. Z hlediska bezpečnosti jde o výrazný rozdíl oproti průsečné křižovatce.
2.2 Jednopruhové okružní křižovatky

(převzato z TP 135)

Jednopruhové okružní křižovatky je úrovňová křižovatka s jedním pruhem na vjezdech, okružním páse a výjezdech. Její vnější průměr D > 23m. **Vnější průměr křižovatky není funkci její kapacity.** Velikost křižovatky umožňuje průjezd osobním a nákladním vozidlům průjezd po okružním pásu. Rozměrnější vozidla např. návěsové soupravy a kloubové autobusy pojíždí navíc prstenec a srpovitou krajnicí na vjezdech křižovatky.

Jednopruhové okružní křižovatky se navrhují na silničích a místních komunikacích se záměrem snížení rychlosti projíždějících vozidel, zklidnění dopravy a zejména zvýšení bezpečnosti. Obecně lze říci, že je možné použítí tohoto typu křižovatky pro zvýšení kapacity oproti stávajícím úrovňovým neřízeným křižovatkám ale výsledek je vždy závislý na intenzitě dopravy na jednotlivých vjezdech.

Vnější průměr křižovatky se navrhuje v rozmezí 23-50m. Větší vnější průměr křižovatky se nedoporučuje. Minimální šířka vjezdu mezi zvýšenými obrubami je 3,5m. V případě použití středního dělíčího pásu je šířka vjezdu min. 5,5m mezi zvýšenými obrubami tak aby bylo možné objekt odstavené vozidlo. Šířku lze snížit na 3,5m v případě přerušovaného dělíčího pásu. Průjezd směrodatného vozidla je zajištění srpovitou krajnicí na vjezdu. Krajnice je zpravidla provedena z kamenné dlažby.
Šířka výjezdu se navrhuje v rozmezí 4,0-5,0m mezi zvýšenými obrubami. V případě použití středního dělicího pásu v mezi-křižovatkovém úseku je minimální šířka výjezdu 5,5m mezi zvýšenými obrubami, z důvodu objetí odstaveného vozidla.

Obr.5 Popis prvků jednopruhové okružní křižovatky (převzato z TP 135)

Obr.6 Jednopruhová okružní křižovatka Hořovice
2.3 Turbo-okružní okružní křižovatky

(převzato z TP 135)

Turbo-okružní křižovatka je zvláštní typ okružní křižovatky se dvěma a více jízdními pruhy na okružním pásu. Základní myšlenkou je zařazení vozidel do příslušných řadících pruhů na vjezdu. Vozidla poté křižovatkou projíždějí po spirálových jízdních pruzích okružního pásu na nichž je zamezeno průpletu vozidel mezi sousedními pruhy. Řidiči se tedy musí zařadit do správných pruhů již na vjezdu. Navrhují se na stávajících nebo nově řešených křižovatkách za účelem zvýšení kvality dopravy.

Dělení turbo-okružních křižovatek dle vnějšího průměru:

- Malá turbo-okružní \(D < 56 \text{m} \)
- Malá standartní turbo-okružní \(D = 56,0 - 60,0 \text{m} \)
- Standartní turbo-okružní \(D = 60,0 - 65,0 \text{m} \)
- Velká tok \(D > 65.0 \text{m} \)

Dělení turbo-okružních křižovatek počtu paprsků a jízdních pruhů:

- Turbo-okružní křižovatka typu vejce
- Turbo-okružní křižovatka základní
- Turbo-okružní křižovatka typu koleno
- Turbo-okružní spirálovitá křižovatka
- Turbo-okružní rotorová křižovatka

Tento typ křižovatky je vyvíjen od roku 1998 v Nizozemí, kde nahradil standartní dvoupruhové okružní křižovatky. Tento typ křižovatky nabídl řešení pro otázku vytvoření okružní křižovatky s vyšší kapacitou než jednopruhová se zajištěním bezpečnosti, která bude výrazně vyšší než u dvoupruhové okružní křižovatky.

V současné době se již na území ČR dvoupruhové okružní křižovatky nenavrhují, jelikož oproti jednopruhovým nenabízí výraznější zvýšení kapacity křižovatky. Je to způsobeno tím, že řidiči se neřadí do pruhů křižovatky dle očekávání, ale dochází k nerovnoměrnému vytížení jízdních pruhů. Levý pruh využívá v některých případech jen 10 % vozidel a zbytek vozidel je v prahu pravém z obavy, že jim nebude umožněno odbočit z levého pruhu na okruhu do vnějšího pravého a opustit křižovatku. Křižovatka má oproti jednopruhové také výrazně vyšší počet kolizních bodů. Namísto křižovatky dvoupruhové se dnes navrhují právě modernější typy křižovatek turbo-okružní.
Výhodou použití turbo-okružních křížovatek je možnost návrhu vhodného typu křížovatky tak, aby na míru odpovídal intenzitám na jednotlivých vjezdích. Stejně tak je možné preferovat dominantní pohyb křížovatkou.

Obr. 7 Popis prvků turbo-okružní křížovatky (převzato z TP 135)

Obr. 8 Turbo-okružní křížovatka Beroun
Na následujících obrazech jsou znázorněny jednotlivé typy turbo-okružních křížovek včetně předpokládaných maximálních kapacit křížovek. Šipky vpravo značí dominantní směr pohybu vozidel křížovatkou.

Obr. 9 Turbo-okružní křížovatka typ vejce (převzato z TP 135)

Obr. 10 Turbo-okružní křížovatka typ základní (převzato z TP 135)
Obr.11 Turbo-okružní křížovatka typ koleno (převzato z TP 135)

Obr.12 Turbo-okružní spirálovitá křížovatka
Největšími přínosy oproti dvoupruhovým okružním křížovatkám je:

- Zvýšení bezpečnosti
- Zvýšení kapacity křížovatky
- Předem určené vedení vozidel křížovatkou
- Minimalizace průpletových úseků

Nutnou podmínkou pro fungování turbo-okružní křížovatky je správné a přehledné vodorovné a svislé dopravní značení, neboť vozidla musí již před křížovatkou vědět kam se mají zařadit. V prostoru křížovatky již není možné zařadit se do jiného jízdního pruhu.
3. Výpočet kapacity okružních křížovek

3.1 Výpočet kapacity okružních křížovek dle TP 234

(převzato z TP 234)

Technické podmínky TP 234 Posuzování kapacity okružních křížovek platí pro výpočet a posuzování kapacity všech druhů křížovek s předností v jízdě na okružním pásu. Platí pro okružní křížoveky pozemních komunikací i připojení účelových komunikací na silnice a místní komunikace. Platí pro posuzování nových, stávajících i rekonstruovaných křížovek.

Základní teoretický model pro výpočet kapacity vjezdu vychází z metodiky německé směrnice Handbuch Für die Bemessung von Strassenverkehrsanlagen (HBS).

Metoda vychází z teorie časových mezer kdy kapacita vjezdu závisí na počtu pruhů na vjezdu a okruhu a na hodnotách t_g a t_n, které jsou nastaveny jako konstanty pro daný typ vjezdu.

t_g kritický časový odstup - 50% řidičů jej přijme 50% nepřijme

t_n následný časový odstup - minimální odstup mezi vozidly ve vedlejším pruhu

3.1.1. Volba typu křížovatky

Pro základní orientaci při volbě typu křížovatky lze vycházet z tabulky 1, která udává rozsah maximálních kapacit pro daný typ křížovatky. Jedná se o hodnoty pro maximální hodinovou a celodenní kapacitu. Tabulku je nutno brát s nadhledem v kapacitním posouzení je rozhodujícím faktorem zpravidla pohyb jednotlivých dopravních proudů. Např. při silném levém odbočení může dojít k výraznému ovlivnění kapacit na ostatních vjezdech.
19

<table>
<thead>
<tr>
<th>Typ křižovatky</th>
<th>Maximální hodinová kapacita [voz/h]</th>
<th>Maximální celodenní kapacita [voz/den]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neřízená křižovatka</td>
<td>1 500 – 2 000</td>
<td>18 000 – 24 000</td>
</tr>
<tr>
<td>Minikruhání křižovatka</td>
<td>1 500 – 2 000</td>
<td>18 000 – 24 000</td>
</tr>
<tr>
<td>Okružní křižovatka s jedním pruhem na okružním pásu a jedním pruhem na vjezdu</td>
<td>2 000 – 2 700</td>
<td>24 000 – 32 000</td>
</tr>
<tr>
<td>Okružní křižovatka s dvěma pruhy na okružním pásu a dvěma pruhy na vjezdu</td>
<td>2 500 – 3 500</td>
<td>30 000 – 40 000</td>
</tr>
<tr>
<td>Spirálovitá okružní křižovatka</td>
<td>2 500 – 3 500</td>
<td>30 000 – 40 000</td>
</tr>
<tr>
<td>Světleňená řízená křižovatka</td>
<td>2 000 – 6 400</td>
<td>24 000 – 77 000</td>
</tr>
</tbody>
</table>

Tab.1 Orientační maximální kapacity různých typů křižovatek (převzato z ČSN 73 61 02)

3.1.2. Typy okružních křižovatek

Metoda výpočtu dle TP 234 lze aplikovat na okružní křižovatky s předností v jízdě vozidel na okruhu:

- Okružní křižovatka s jedním pruhem na okruhu
- Okružní křižovatka se dvěma pruhy na okruhu
- Mini-okružní křižovatky
- Spirálovitá okružní křižovatky

3.1.3. Návrhové intenzity dopravních proudů

Pro kapacitní posouzení je nezbytné znát:

- Intenzity dopravy zjištěné dopravním průzkumem
- Koeeficienty výhledových intenzit dopravy
- Skladbu dopravního proudu (osobní vozidla, nákladní vozidla a autobusy, nákladní soupravy, motocykly, jízdní kola)

3.1.4. Geometrické uspořádání

Vstupní údaje pro použití metodiky:

- Počet jízdních pruhů na vjezdu (n_i) [-]
- Počet jízdních pruhů na výjezdu (n_e) [-]
- Počet jízdních pruhů na okruhu (n_k) [-]
- Vnější průměr okružní křižovatky (D) [m]
• Poloměr vjezdu \((R_i)\) [m]
• Poloměr výjezdu \((R_e)\) [m]
• Vzdálenost mezi kolizními body \((b)\) [m]
• Délka přechodu pro chodce na výjezdu z okružního pásu \((d_p)\) [m]
• Spojovací větev mezi sousedními paprsky
• Typy vjezdu spirálovité okružní křižovatky

Obr.14 Typy vjezdů spirálovité okružní křižovatky (převzato z TP 234)

3.1.5. Posouzení úrovně kvality dopravy

Pro posouzení úrovně kvality dopravy na křižovatce bez řízení dopravy světelnou signalizací je kritériem ztrátový čas vyjádřený střední dobou zdržení. Pro stanovení závěru kapacitního posouzení zda intenzitou daného proudu není překročena hodnota střední doby zdržení \(t_w\). Toto posouzení se provádí pro všechny vjezdy do okružní křižovatky. Výsledný stupeň UKD dané křižovatky je roven vjezdu s nevyšší střední dobou zdržení. Limitní hodnoty jsou uvedeny v tabulce 2.

\[t_{wn} \leq t_{w,lim} \]

kde \(t_{wn}\) je střední doba zdržení \((n\text{-tého})\) dopravního proudu [s]

\(t_{w,lim}\) je maximální přípustná střední doba zdržení dle požadovaného stupně kvality dopravy [s]

<table>
<thead>
<tr>
<th>Úroveň kvality dopravy</th>
<th>Charakteristika doby zdržení</th>
<th>Střední doba zdržení [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Doba zdržení velmi malá</td>
<td>(\leq 10)</td>
</tr>
<tr>
<td>B</td>
<td>Zdržení ještě bez front</td>
<td>(\leq 20)</td>
</tr>
<tr>
<td>C</td>
<td>Ojedinělé krátké fronty</td>
<td>(\leq 30)</td>
</tr>
<tr>
<td>D</td>
<td>Stabilní stav s vysokými ztrátami</td>
<td>(\leq 45)</td>
</tr>
<tr>
<td>E</td>
<td>Nestabilní stav</td>
<td>(> 45)</td>
</tr>
<tr>
<td>F</td>
<td>Překročená kapacita</td>
<td>-11</td>
</tr>
</tbody>
</table>

\(^1\) UKD na stupně F je dosaženo při hodnotě stupně vytížení \(a_i\) > 1

Tab.2 Orientační maximální kapacity různých typů křižovek (převzato z ČSN 73 61 02)
Podle ČSN 73 6102 se pro křižovatky požadují následující stupně kvality dopravy:

- Dálnice, rychlostní silnice a silnice I. třídy stupeň C
- Silnice II. třídy stupeň D
- Silnice III. Třídy stupeň E
- Rychlostní místní komunikace a přechodové úseky stupeň D
- Místní komunikace a veřejně přístupné účelové komunikace stupeň E

3.1.6. Návrhové intenzity dopravních proudů

Pro kapacitní výpočet je třeba intenzity jednotlivých dopravních proudů z průzkumu násobiť příslušnými koeficienty podle tabulky 3.

<table>
<thead>
<tr>
<th>Typ křižovatky</th>
<th>Jízdní kola</th>
<th>Motocykly</th>
<th>Osobní vozidla</th>
<th>Nákladní vozidla, autobusy</th>
<th>Nákladní soupravy, kloubové autobusy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Okružní křižovatky</td>
<td>0,5 pvoz</td>
<td>0,8 pvoz</td>
<td>1,0 pvoz</td>
<td>2,0 pvoz</td>
<td>3,0 pvoz</td>
</tr>
</tbody>
</table>

* Včetně nákladních vozidel do 3,5 t celkové hmotnosti.
* b) Nákladní vozidla nad 3,5 t celkové hmotnosti mimo nákladních souprav a autobusy mimo kloubové autobusy.

Tab.3 Limitní hodnoty střední doby zdržení na vjezdu okružní křižovatky (převzato z TP 234)

3.1.7. Stanovení kapacity vjezdu

Výpočet kapacity vjezdu do okružní křižovatky se provádí jen tehdy, překročí-li návrhová intenzita dopravy na křižovatce zjištěná součtem všech vozidel vjíždějících do křižovatky hodnoty:

- Více než 10 000 voz/den u mini-okružních křižovatek
- Více než 15 000 voz/den u ostatních typů okružních křižovatek

\[C_i = 3600 \times \left(1 - \frac{\Delta I_k}{n_k \times 3600}\right)^{n_k} \times \frac{n_{k,\text{koef}}}{\tau_f} \times e^{-\frac{I_k}{3600} \left(t_g - \frac{\tau_f}{2} - \Delta\right)} \]

kde

- \(C_i \) je kapacita vjezdu [pvoz/h]
- \(I_k \) intenzita dopravy na okruhu [pvoz/h]
- \(n_k \) počet jízdních pruhů na okruhu [-]
- \(n_{k,\text{koef}} \) koeficient zohledňující počet pruhů na vjezdu [-]
\[n_{i,\text{koef}} = 1,00 \] pro jedopruhové vjezdy
\[n_{i,\text{koef}} = 1,50 \] pro dvoupruhové vjezdy

\[t_{g} \quad \text{kritický časový odstup [s]} \]
\[t_{f} \quad \text{následný časový odstup [s]} \]
\[\Delta \quad \text{minimální časový odstup mezi vozidly jedoucími za sebou na okruhu [s]} \]

Okružní křižovatky s jedním pruhem na okruhu

\[t_{g} \quad \text{v závislosti na vzdálenosti mezi kolizními body b:} \]
\[b < 11,00 \text{ m} \quad t_{g} = 4,5 \text{ s} \]
\[11,00 < b < 20,00 \text{ m} \quad t_{g} = 5,6 - 0,1 \times b \]
\[b > 20,00 \text{ m} \quad t_{g} = 3,6 \text{ s} \]

\[t_{f} \quad \text{v závislosti na poloměru vjezdu:} \]
\[R_{i} < 8,00 \text{ m} \quad t_{f} = 3,1 \text{ s} \]
\[8,00 < R_{i} < 16,00 \text{ m} \quad t_{f} = 3,6 - 0,0625 \times R_{i} \]
\[R_{i} > 16,00 \text{ m} \quad t_{f} = 2,6 \text{ s} \]

\[\Delta \quad \text{jako konstantní hodnota} \quad \Delta = 2,1 \text{ s} \]

Okružní křižovatky se dvěma pruhy na okruhu

\[t_{g} \quad \text{jako konstantní hodnota} \quad 3,7 \text{ s} \]
\[t_{f} \quad \text{jako konstantní hodnota} \quad 2,6 \text{ s} \]
\[\Delta \quad \text{jako konstantní hodnota} \quad 2,1 \text{ s} \]

Mini-okružní křižovatky

\[t_{g} \quad \text{jako konstantní hodnota} \quad 4,5 \text{ s} \]
\[t_{f} \quad \text{jako konstantní hodnota} \quad 2,1 \text{ s} \]

\[\Delta \quad \text{v závislosti na vnějším průměru okružní křižovatky} \]
\[D < 13,00 \text{ m} \quad \Delta = 2,8 \text{ s} \]
\[13,00 < D < 23,00 \text{ m} \quad \Delta = 3,45 - 0,05 \times D \]
\[D > 23,00 \text{ m} \quad \Delta = 2,3 \text{ s} \]
Spirálovité okružní křižovatky

Typ 1

t<g	jako konstantní hodnota	3,7 s
t<f	jako konstantní hodnota	2,6 s
Δ	jako konstantní hodnota	2,1 s

Typ 2

- **t<g** v závislosti na vzdálenosti mezi kolizními body b:
 - \(b < 11,00 \text{ m} \) \(t<g = 4,5 \text{ s} \)
 - \(11,00 < b < 20,00 \text{ m} \) \(t<g = 5,6 - 0,1 \times b \)
 - \(b > 20,00 \text{ m} \) \(t<g = 3,6 \text{ s} \)
- **t<f** v závislosti na poloměru vjezdu:
 - \(R_i < 8,00 \text{ m} \) \(t<f = 3,1 \text{ s} \)
 - \(8,00 < R_i < 16,00 \text{ m} \) \(t<g = 3,6 - 0,0625 \times R_i \)
 - \(R_i > 16,00 \text{ m} \) \(t<f = 2,6 \text{ s} \)
- Δ jako konstantní hodnota \(\Delta = 2,1 \text{ s} \)

Typ 3

t<g	jako konstantní hodnota	3,7 s
t<f	jako konstantní hodnota	2,6 s
Δ	jako konstantní hodnota	2,1 s

Typ 4

U tohoto typu se základní vzorec kapacity (1) upravuje následovně

\[C_i = \frac{3600}{t<f} \]

- **t<f** v závislosti na poloměru vjezdu:
 - \(R_i < 8,00 \text{ m} \) \(t<f = 3,1 \text{ s} \)
 - \(8,00 < R_i < 16,00 \text{ m} \) \(t<g = 3,6 - 0,0625 \times R_i \)
 - \(R_i > 16,00 \text{ m} \) \(t<f = 2,6 \text{ s} \)
3.1.8. Rezerva kapacity

Rezerva kapacity lze určit ještě před stanovením střední doby zdržení t_w ze znalosti intenzity dopravních proudů a vypočtené kapacity. Pro výpočet kapacity platí vztah:

$$\text{Rez} = C_i - I_i$$

C_i je kapacita vjezdu [pvoz/h]
I_i intenzita dopravy na okruhu [pvoz/h]

3.1.9. Stanovení střední doby zdržení

Střední doba zdržení je nejpracnější částí posouzení je odvozena z rovnic teorie front Kimber/Holis, závisí na kapacitě jízdního pruhu a její rezervě dle vztahu:

$$t_w = D_1 + E + \frac{1}{\mu}$$

$$D_1 = \frac{1}{2} \left(\sqrt{F^2 + G} - F \right)$$

$$F = \frac{1}{\mu_0 - q_0} \left[\frac{T}{2} \left(\mu - q \right) \cdot y + \left(y - \frac{\mu - \mu_0 + q_0}{\mu} \right) \right] + E$$

$$G = \frac{2 \cdot T \cdot y}{\mu_0 - q_0} \left[\frac{q}{\mu} - \left(\mu - q \right) \cdot E \right]$$

$$y = 1 - \frac{\mu - \mu_0 + q_0}{q}$$

t_w je střední doba zdržení dopravního proudu [s]
T doba trvání požadovaného intervalu [s]
$T = 3600$
μ kapacita pruhu podřazeného dopravního proudu v uvažovaném intervalu [pvoz/s]
$\mu = \frac{c_n}{3600}$
q intenzita podřazeného dopravního proudu [pvoz/s]
$q = \frac{I_n}{3600}$
μ_0 kapacita v čase po špičkovém intervalu [pvoz/s]
$\mu_0 = n_{i, koef} \frac{1600}{3600}$
q_0 intenzita podřazeného dopravního proudu po špičkovém intervalu [pvoz/s]
$q_0 = q$
3.1.10. Stanovení délky fronty

Délka fronty na vjezdech se uvažuje s 95% pravděpodobností délky fronty. Stanovuje se dle vzorce:

\[N_{95\%} = \frac{3}{2} \times C_n \times \left(a_v - 1 + \sqrt{(1 - a_v)^2 + 3 \times \left(\frac{8 \times a_v}{C_n} \right)} \right) \]

\[a_v = \frac{I_n}{C_n} \]

kde \(N_{95\%} \) je délka fronty [m],
\(a_v \) je stupeň vytížení [-],
\(I_n \) návrhová intenzita dopravního proudu [pvoz/h],
\(C_n \) Kapacita pruhu dopravního proudu [pvoz/h]

3.1.11. Posouzení kapacity výjezdu

Základní kapacita výjezdu:

\[C_v = \frac{3600 \times n_{e,koef}}{t_f} \]

\(C_v \) je kapacita výjezdu [voz/h],
\(n_{e,koef} \) koeficient zohledňující počet pruhů na výjezdu [-]

\[n_{e,koef} = 1,00 \] pro jednopruhové výjezdy

\[n_{e,koef} = 1,50 \] pro dvoupruhové výjezdy

\(t_f \) následný časový odstup vozidel na výjezdu z okružní křižovatky [s],

v závislosti na poloměru vjezdu:

\[R_e < 15,00 \text{ m} \quad t_f = 3,0 \text{ s} \]

\[15,00 < R_e < 30,00 \text{ m} \quad t_f = 3,6 - 0,04 \times R_e \]

\[R_i > 40,00 \text{ m} \quad t_f = 2,4 \text{ s} \]
Vliv přecházejících chodců

Chodci pochopitelně snižují kapacitu jednotlivých výjezdů křižovatky. Pokud je intenzita přecházejících chodců \(l_{ch} > 250 \text{ ch/h} \) nebo je součet přecházejících chodců a vyjíždějících vozidel \(l_{ch} + l_e \) vyšší než 800 (voz+ch)/h stanovuje se kapacita výjezdu dle vzorce:

\[
C_e = \frac{3600 \times n_{e,koef}}{t_f} \times e^{-\frac{l_{ch}}{3600} \times \left(t_g - \frac{t_f}{2} \right)}
\]

\(C_e \) je kapacita výjezdu [pvoz/h]
\(n_{e,koef} \) je koeficient zohledňující počet pruhů na výjezdu [-]

\(n_{e,koef} = 1,00 \) pro jednopruhové výjezdy
\(n_{e,koef} = 1,50 \) pro dvoupruhové výjezdy

\(l_{ch} \) intenzita chodců [ch/h]
*\(t_f \) následný časový odstup vozidel na výjezdu z okružní křižovatky [s] v závislosti na poloměru vjezdu:

\[
R_e < 15,00 \text{ m} \quad t_f = 3,0 \text{ s}
\]
\[15,00 < R_e < 30,00 \text{ m} \]
\[t_f = 3,6 - 0,04 \times R_e\]
\[R_e > 40,00 \text{ m} \quad t_f = 2,4 \text{ s}\]

\(t_g \) kritický časový odstup vozidel se učí dle vzorce: [s]

\[
t_g = \frac{d_p}{v_p} + \frac{d_v}{v_v} + t_{bezp}
\]
\(d_p \) délka přechodu [m]
\(v_p \) rychlost pohybu chodců [m/s] \(v_p = 1,6 \text{ m/s} \)
\(d_v \) délka vozidla [m] \(d_v = 6,0 \text{ m} \)
*\(v_v \) rychlost vozidla [m/s] \(v_v = 5,56 \text{ m/s} = 20 \text{ km/h} \) pro \(R_e < 15,00 \text{ m} \)
\(v_v = 8,83 \text{ m/s} = 30 \text{ km/h} \) pro \(R_i > 15,00 \text{ m} \)*

*\(t_{bezp} \) bezpečnostní odstup vozidla a chodce \(t_{bezp} = 1,7 \text{ s} \)
Posouzení kapacity výjezdu

Pro každý výjezd okružní křižovatky se vypočte stupeň vytížení a_v.

$$a_v = \frac{I_e}{C_e}$$

I_e intenzita vozidel na výjezdu [pvoz/h]

C_e kapacita výjezdu [pvoz/h]

Pro $a_v < 0,9$ výjezd kapacitně vyhovuje

Pro $a_v > 0,9$ výjezd kapacitně nevyhovuje

3.1.12. **Výstup kapacitního posouzení**

Kapacitní výpočet se provede pro všechny vjezdy i výjezdy. Rozhodujícím prvkem je vjezd nebo výjezd s nejvyšším stupněm UKD. Pokud nevyhoví jeden vjezd nebo výjezd nevyhovuje celá křižovatka.

Tento model nezahrnuje vliv vzdutí do okružního pásu. V těchto případech je doporučeno prověřit křižovatku pomocí mikroskopické simulace.

Tento model je univerzální po všechny typy okružních křižovatek v případě atypických řešení křižovatek je nutné postupovat individuálně aby model v maximální míře odpovídal realitě.

Výstupem kapacitního posouzení je jednotný protokol na obrázku 15.
Obr. 15 Jednotný protokol kapacitního posouzení (převzato z TP 234)
3.2 Kapacitní výpočet okružní křižovatky v programu PVT Vissim 10

3.2.1. Úvod do posuzování dle softwaru
Posouzení kapacity křižovatek pomocí výpočetní techniky ve specializovaném softwaru patří mezi nejmodernější metody výpočtu. Program dokáže zachytit mnohem širší dopravní souvislosti, než klasické postupy jsou však citlivé na vstupní data a parametry simulace proto je potřeba dát pozor při zadávání vstupních údajů. Rovněž je potřeba brát výstupy ze softwaru s nadhledem, neboť do modelu zadáváme přesné trasy vozidel a v reálném provozu se řidiči nemusí volit trasu s tak velkou preferencí vůči ostatním možným trasám. Pro co možná nejvěrohodnější výstupy odpovídající realitě je potřeba zadávat data s citem, aby bylo dosaženo maximální možné shody.

3.2.2. Popis programu
Program PVT Vissim pracuje na principu vytvoření dopravního modelu určité oblasti. Po dokončení zadání všech vstupů se spustí simulace v připraveném prostředí a po skončení časového intervalu probíhá shromažďování dat.

Pro účel kapacitního posouzení variantního řešení křižovatek byl využit jen zlomek potenciálu programu. Vissim lze použít pro simulace dopravy vozidel i přepravy osob. Do programu je možné kromě zadat mnoho parametrů komunikací např. (sklony komunikací, mimoúrovňová křížení, řízení světelnou signalizací, atypická řešení křižovatky…)

3.2.3. Prostředí programu
Program pracuje v běžném prostředí windows, ovládání je velmi intuitivní a není třeba jej ovládat pomocí textových příkazů a znalostí programovacího jazyka. Většina funkcí je dostupná prostřednictvím ikon na pracovním okně. Zbylé parametry jsou v liště na horním okraji obrazovky. Program pracuje v anglickém jazyce, českou verzi programu jsem zatím neobjevil.

3.2.4. Tvorba pozadí
Po spuštění programu naskočí okno uvedené na obr.16, Vissim pracuje s mapovými podklady a je možné se ihned přesunout na řešenou lokalitu je však samořejme nutné znát stávající stav oblasti pro případ neaktuálnosti podkladové mapy.
3.2.5. Linky a spojnice

Pro vytvoření jednotlivých paprsků komunikace slouží ikona „links“. Pro vytvoření paprsku klikneme na ikonu poté přejedeme do obrázku a za přidržení „control“ klikneme pravým tlačítkem myši do obrázku a vytvoříme linku. Vyskočí nám okno s velkým množstvím parametrů. Pro nás je nejdůležitější nastavení šířky pruhu a označení paprsku. Dále lze nastavit vrstvu nebo spíše úroveň ve které bude paprsek (slouží pro mimoúrovňové křižovatky), povrch paprsku (slouží pro vizualizace).

Obr. 18 Vložení paprsku

Spojnice mezi dvěma paprsky se vytvoří tak, že za přidržení „control“ klikneme pravým tlačítkem myši na výchozí paprsek a při držení tlačítka přetáhnou na paprsek, který potřebuji spojit. Vyskočí nám okno s nastavením pro nás ne nejdůležitější kolonka „spline“ čímž přiměřeným počtem bodů vytvoříme plynulou křivku spojnice.

Obr. 19 Vytvoření spojnice
3.2.6. Typ vozidel

Program obsahuje databázi širokého spektra vozidel. Vozidla se liší akcelerací, decelerací a rozměry. Vše je znázorněno na obr. 20.

Obr.20 Typy vozidel

3.2.7. Skladba dopravního proudu

Důležitým krokem je nastavení skladby dopravního proudu. V programu je možné nastavit procentuální zastoupení jednotlivých vozidel a pěších (osobní automobily, nákladní automobily, autobusy, tramvaje a chodci) lze zadat jako procentuální podíl nebo přímo jako počet vozidel.

3.2.8. Rozdělení rychlosti

Vozidla v simulaci se pohybují požadovanou rychlostí, pokud nejsou ovlivněny jinými. Pokud má rychlejší vozidlo možnost předjet pomalejší učiní tak na základě tohoto nastavení.

3.2.9. Vložení vozidel

Vložení vozidel se provede označením ikony „vehicle inputs“ a za podržení „ctrl“ a pravým kliknutím myší do paprsku dojde k provedení příkazu. Poté nastavíme počet vozidel a vybereme již vytvořenou skladbu dopravního proudu.
3.2.10. Nastavení tras vozidel

Zde nastavujeme volbu tras vozidel. V prvním kroku vytvoříme všechny trasy vozidel, k nimž v křižovatce dochází a poté přidělíme procentuální podíl vozidel v daném směru. Místo procentuálního podílu lze zadávat i pomocí absolutního počtu vozidel jedoucích danou trasou. Vložení trasy se provádí obdobným způsobem jako vložení paprsků. Na obrázku je nastaveno 10% vozidel pro odbočení vlevo a zbylých 90% pokračuje přímým směrem.

Obr. 21 Vložení intenzity vozidel na paprsku

Obr. 22 Zadání tras vozidel včetně procentuálního zastoupení volby dané trasy
3.2.11. Omezení rychlosti

Důležitou funkcí je omezení rychlosti. Je aplikována např. před vjezdem na neřízené křížovatky, kde vozidla zpomalují, aby v případě nutnosti dání přednosti v jízdě byla schopna zastavit a nedošlo ke kolizi vozidel. Na obrázku je znázorněno zpomalení vozidel na pruhu vedlejší komunikace.

3.2.12. Konfliktní zóny

3.2.13. Vložení míst pro sběr dat

Užitečným nástrojem programu jsou místa pro sběr dat. Slouží ke sběru dat ve zvolených místech. Může jít například o počet vozidel projíždějících určitým paprskem.

3.2.14. Cestovní čas a ztrátový čas, Délka kolony

Pomocí těchto funkcí měříme časové zdržení a délku front mezi zvolenými úseky. Pro posouzení kapacity jde o nejpodstatnější výstupy mikrosimulačního modelu. Ztrátový čas je určen na základě rozdílu mezi projíždějícími vozidly v simulačním modelu a ideálním případem bez zdržení v daném úseku.
3.2.15. Spuštění simulace

Pokud máme všechny potřebné informace zadané do programu můžeme simulaci spustit. Její průběh lze sledovat v režimu 2D i 3D. V průběhu simulace lze vizuálně ověřit předpokládané chování vozidel. Před spuštěním se program vždy automaticky zeptá, zda si přejeme model uložit což je velmi užitečné v případě, že simulace způsobí zaseknutí systému. Po skončení simulace je uživatel rovněž varován, pokud změní prvek, který ovlivní výsledky původní simulace.

Obr.26 Simulace spuštěná v režimu 2D

3.2.16. Shrnutí

Jak jsem již zmínil výsledky je nutno brát s nadhledem, neboť výsledky simulací budou přesně odpovídat tomu jaká data byla do programu vložena. Ne vždy je možné s naprostou jistotou predikovat chování vozidel.
4. Křižovatka v Berouně D5 x III/11 533

4.1 Doprava města Beroun

Město Beroun se nachází ve Středočeském kraji na 18km dálnice D5. Představuje důležitý komunikační uzel.

Z pozemních komunikací je nejvýznamnější komunikací dálnice D5 lemující město po jižní straně. Městem prochází také silnice II/605, která spojuje Prahu s Německem přes hraniční přechod Rozvadov.

Z hlediska železniční dopravy je po jižní straně města veden III. tranzitní železniční koridor.

4.2 Popis řešené lokality

Řešená křižovatka se nachází na jižní části města Beroun v místě napojení mimoúrovňové křižovatky na 18km dálnice D5 ve směru Praha a silnice III/11 533.
4.3 Zdůvodnění diplomové práce

Důvodem zpracování této práce je kapacitně nevyhovující průseční křižovatka. Největších kolon a zdržení je dosahováno na paprsku sjezdové rampy dálnice D5. V době dopravního průzkumu dosahovala délka kolony až do míst čerpací stanice OMW. Sjezdová rampa je vedena jako přímá se směrovými oblouky na sjezdu a před napojením na silnici III/11 533 v důsledku tohoto řešení jsou vytvořené kolony velmi nebezpečné, neboť vozidla sjíždějící z dálnice mají vysokou rychlost oproti sjezdu řešeným jako např. vratná rampa kde je nutné snížit rychlost vozidla. Hrozí tedy riziko srážky vozidel v případě, že vozidla nezačnou zpomalovat včas.

Město Beroun si je tohoto problému vědomo a tato práce má sloužit jako podklad pro konkrétní řešení nové křižovatky.

4.4 Nehodovost dané křižovatky

Obr. 28 Uvažovaná oblast dopravních nehod
Z dat tab.4 vyplíva, že za toto období došlo k celkem 31 nehodám při nichž nedošlo k usmrcení osob do 24 hodin. U třech nehod byla u viníků nehody zjištěna přítomnost alkoholu v krvi.

Z dat tab.4 vyplívá, že za toto období došlo k celkem 31 nehodám při nichž nedošlo k usmrcení osob do 24 hodin. U třech nehod byla u viníků nehody zjištěna přítomnost alkoholu v krvi.

Z tabulky 5 vyplývá že nejčastějším důvodem dopravní nehody je porušení příkazu dej přednost v jízdě a to v 7 případech. Druhou nejčastější příčinou je odbočování vlevo. K těžkému zranění osob došlo v důsledku vjetí do protisměru nebo nepřizpůsobení jízdě danému povrchu vozovky. I přes velmi dlouhý a nevhodně řešený přechod pro chodce došlo pouze k jednomu lehkému zranění na vyznačeném přechodu.
Tab.6 Vyhodnocení nehod dle druhu a zavinění nehody (převzato JVDM)

<table>
<thead>
<tr>
<th>Druh nehody</th>
<th>Počet nehod</th>
<th>Usmrčené osoby</th>
<th>Těžce zraněné osoby</th>
<th>Lehce zraněné osoby</th>
</tr>
</thead>
<tbody>
<tr>
<td>srážka s jedoucím nekolejovým vozidlem</td>
<td>22</td>
<td>0</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>srážka s pevnou překážkou</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>srážka s vozidlem zaparkovaným, odstaveným</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>srážka s chodcem</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>jiný druh nehody</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>srážka s lesní zvěří</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>jizdaře</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Z tabulky 6 vidíme dominantní počet 22 nehod jako srážku s jedoucím nekolejovým vozidlem. Zavinění nehody je 29 případech způsobeno řidiči motorových vozidel.

Tab.7 Vyhodnocení nehod dle viditelnosti (převzato JVDM)

<table>
<thead>
<tr>
<th>Druh nehody v zadané lokalitě podle viditelnosti</th>
<th>Počet nehod</th>
<th>Usmrčené osoby</th>
<th>Těžce zraněné osoby</th>
<th>Lehce zraněné osoby</th>
</tr>
</thead>
<tbody>
<tr>
<td>ve dne, viditelnost nezhoršená vlivem povětrnostních podmínek</td>
<td>25</td>
<td>0</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>v noči - ve spokojeném světlení, viditelnost nezhoršená vlivem povětrnostních podmínek</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>v noči - ve zhoršeném světlení, zhoršená viditelnost vlivem povětrnostních podmínek (mlha, dešť, sníh, apod.)</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ve dne, zhoršená viditelnost vlivem povětrnostních podmínek (mlha, sněhové, dešť, apod.)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Na základě statistiky dle tabulky 7 nebyly nehody způsobeny za zhoršených podmínek. Více jak 80 % nehod se stalo ve dne během normálních povětrnostních podmínek.
4.5 Analýza nedostatků stávajícího stavu křižovatky

Největší nedostatek této křižovatky je její nedostatečná kapacita. I když to není ze součtu všech vozidel ve špičkové hodině, který je uveden v následující kapitole patrné vliv rozdělení intenzit do jednotlivých směrů způsobuje tvorbu velkých dopravních kolon paprsku sjezdu dálnice D5.

Z hlediska bezpečnosti se jedná o průsečnou křižovatku, která sama o sobě nepatří k nejbezpečnějším typům a její úprava na okružní křižovatku povede zcela jistě ke zvýšení bezpečnosti.

Z pohledu chodců se křižovatka neřadí mezi bezpečnou. Přechod pro chodec je řešen jako rozdělený dopravním ostrůvkem a dopravním stínem což je v pořádku ale délka rozděleného přechodu je i tak 5,6m mezi chodníkem a dopravním ostrůvkem, 8,0m mezi ostrůvkem a dopravním stínem a 7,7m mezi dopravním stínem a chodníkem. Dle statistiky zde došlo pouze k jednomu střetu chodců s osobním vozidlem a navíc intenzita chodců ve špičkové hodině nepřesahuje číslo 25chodců/h ale pro neřízenou křižovatku je dle současných platných norem velmi dlouhý.

Z hlediska rozhledových poměrů se křižovatka nachází v příznivé oblasti pro rozhledy jak ostatně ukazuje i statistika. Dle vizuálního průzkumu je křižovatka umístěna v údolnicovém oblouku z pohledu ramp dálnice D5 a v mírném klesajícím podélném sklonu silnice III/11 533 ze směru Beroun centrum.
4.6 Dopravní průzkum v dané lokalitě

Pro stanovení intenzit dopravy na pozemních komunikacích se postupuje dle TP 189. Pro posouzení kapacity jednotlivých řešení úpravy křižovatky je bezpodmínečně nutné mít k dispozici dopravní průzkum intenzit a směrovosti veškerého provozu na komunikaci. Pro účely posouzení dle metodiky TP 134 by postačilo provést dopravní průzkum pouze v místě stávající průjezdové křižovatky. Pro potřeby dopravního modelování v programu PVT Vissim byl proveden dopravní průzkum na stávající spirálovité křižovatce nacházející se na opačné straně od dálnice D5.

Průzkum byl proveden v úterý dne 17.10.2017 ráno. Počasí bylo pro účely průzkumu příznivé na počátku průzkumu byla mírná mlha, která se později vytratila. Během průzkumu nedošlo k žádným dešťovým srážkám ani mrazu teplota se pohybovala okolo 10°C. V lokalitě nebylo možné provést průzkum dřive z důvodu opravy komunikace III/11 533 za autobusovým nádražím města Beroun výsledky dopravního průzkumu provedeného v době uzavírky by nebyly příliš shodné s obvyklým provozem křižovatky.

Průzkum byl proveden na základě informací města Beroun od 7:00. Doba průzkumu byla 1,5h. Dopravní průzkum po skončení 8 hodiny ranní byl proveden pouze pro ověření, že nedochází k tvorbě kolon i po skončení 8. hodiny což se neprokázalo. Pro účely posouzení je tedy uvažována špičková hodina mezi 7:00 – 8:00.

Vzhledem k tomu že bylo nutné znát intenzity a směrovost obou křižovatek zároveň byla průsečná křižovatka zaznamenána ručně pomocí sčítaců a spirálovitá křižovatka pomocí záznamu na kameru a následně vyhodnocena.

Sčítána byla osobní a nákladní vozidla, autobusy, těžká nákladní vozidla a chodci.

Zjištěná data byla přepsána do formulářů a z nich byly vytvořeny pentlogramy dopravy, které jsou znázorněny na obrázcích 29 a 30 a v příloze.
Z obrázku je patrné, proč dochází k tvorbě kolon na paprsku 10 „Sjezd Plzeň“. Je to způsobeno dominantním proudem z paprsku 7 „Beroun/Plzeň“ znázorněným červeně. Extrémně silné levé odbočení v kombinaci s relativně silnou intenzitou v přímém směru na hlavní znázorněným modře způsobí, že vozidla na paprsku 10, kde tvoří dominantní směr levé odbočení nemají možnost odbočit. Celkový součet vozidel ve špičkové hodině není příliš velký, ale přesto způsobí, že křižovatka nevyhovuje.

Intenzita chodců přecházejících přes paprsek 10 je velmi nízká činí pouze 25chodců během špičkové hodiny.
OKRUŽNÍ KŘIŽOVATKA U EXITU 18 DÁLNICE D5

PENTLOGRAM V DOPolední ŠPIČKOVÉ HODINĚ 7:00-8:00

17.10.2017 (motocykly+osobní vozidla / nákladní vozidla + autobusy)
podíl nákladních vozidel = 7,56%

Obr.30 Pentlogram spirálovité okružní křižovatky ve špičkové hodině

Σ (M+O)/(N+A+K)/hod = 1762/144

Tato křižovatka není v rámci práce řešena za zmínku však stojí, že vlivem silné intenzity na paprsku 5 znázorněného červeně dochází k tomu, že paprsek 4 znázorněný zeleně s dominantní intenzitou ve směru Beroun – nádraží/Praha je negativně ovlivněn a má problémy s kapacitou. Během dopravního průzkumu byla pozorována tvorba front na paprsku 4. Tento problém odhalil v rámci mikrosimulačního modelu i program PVT Vissim.

Jako v předchozím případě je intenzita chodců v křižovatce nízká.
4.8 Vymezení území pro hledání reálných variant

Pro návrh řešení problému kapacity bylo nezbytné zjistit záměry města s danou lokalitou i jejich představu řešení daného problému.

Představa města byla navrhnout okružní typ křižovatky namísto stávající průsečně.

Město má rovněž v plánu vybudovat obchvat kolem města, ten má být veden podél dálnice D5 ze směru Plzeň a následně zaústěn přes mostní konstrukci do této křižovatky. Vzhledem k tomu, že není žádná informace kdy se začne obchvat města řešit ani kdy bude hotov není tato budoucí komunikace do křižovatky v rámci variantního řešení zaústěna. Dalším argumentem proti řešení křižovatky s obchvatem, je fakt, že nemáme jakoukoliv představu, jak by se změnila intenzita dopravy a její směrovost. Během modelování v programu Vissim nebyla nalezena rozumná kapacita budoucího dopravního proudu, která by zajistila vyhovující řešení z hlediska kapacity. Jako alternativní řešení se nabízí vést budoucí možný obchvat dále podél dálnice na opačném břehu vodního toku a následné napojení provést přes mostní konstrukci do silnice III/11 533.

Obr. 31 Katastrální mapa
4.9 Podklady pro návrh řešení

Projektovou dokumentaci mi ochotně poskytl Ředitelství silnic a dálnic. Bohužel poskytnuté podklady zahrnovaly pouze původní řešení mimoúrovňové křižovatky, kde byla realizována pouze silnice III/11 533 v té době velmi odlišná od současného stavu a najíždějící rampa dálnice D5 ve směru na Prahu.

Pro účely dopravního modelování jsou však dostatečnými podklady ortofota. Proto jsem pracoval z ortofotem z geoportálu čúzk, který byl pro návrh variant vhodný. Vypracované variantní řešení bylo rovněž importováno do dopravního modelu. Pro ověření hodnot z ortofot jsem na dané lokalitě provedl kontrolní měření některých prvků silniční sítě.

4.10 Dopravní zatížení

Součástí diplomové práce je i ekonomické posouzení navržených variant. Proto je třeba znát minimálně orientační skladbu vozovky pro stanovení objemu výkopových prací a dále nacenění dané skladby vozovky. Návrh vozovky byl proveden dle TP 170 Navrhování vozovek pozemních komunikací - 2010.

Prvním krokem je stanovení návrhové úrovně porušení. Vzhledem k tomu, že se jedná o relativně významný komunikační uzel, neboť křižovatka je napojena na dálniční sítě a lze předpokládat pohyb těžkých nákladních vozidel byla návrhová úroveň porušení stanovena jako D0.

V dalším kroku stanovíme třídu dopravního zatížení. Pro jeho vypočtení jsem využil výsledky z celostátního sčítání dopravy z roku 2016. Data jsou pro silnici III/11 533 jedná se o součet projíždějících vozidel za den v obou směrech komunikace.

Tab.10 Sčítání dopravy z roku 2016 (zdroj www.scitani2016.rsd.cz)

<table>
<thead>
<tr>
<th>Čislo průměr denních intenzit dopravy</th>
<th>LN</th>
<th>SN</th>
<th>SNP</th>
<th>TN</th>
<th>TNMP</th>
<th>IVA</th>
<th>AK</th>
<th>TR</th>
<th>TRNP</th>
<th>TV</th>
<th>O</th>
<th>M</th>
<th>SV</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPCI - všechny dny</td>
<td>vozidlo</td>
<td>443</td>
<td>101</td>
<td>4</td>
<td>82</td>
<td>11</td>
<td>80</td>
<td>316</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>1.048</td>
<td>8.625</td>
</tr>
<tr>
<td>RPCI - průsjevný den (Ps-P6)</td>
<td>vozidlo</td>
<td>949</td>
<td>136</td>
<td>5</td>
<td>182</td>
<td>14</td>
<td>162</td>
<td>366</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>1.276</td>
<td>7.194</td>
</tr>
<tr>
<td>RPCI - volné dny (mimo sevky)</td>
<td>vozidlo</td>
<td>178</td>
<td>45</td>
<td>1</td>
<td>33</td>
<td>3</td>
<td>25</td>
<td>182</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>476</td>
<td>5.215</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hodnotová inženýrská doprava</th>
<th>TV</th>
<th>SV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Padesátňákrálová inžinírská dopravy</td>
<td>vozidlo</td>
<td>120</td>
</tr>
<tr>
<td>Šedesátňákrálová inžinírská dopravy</td>
<td>vozidlo</td>
<td>116</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Těžká nákladní vozidla - TNV</th>
<th>vůz</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nácvstná TNV</td>
<td>vůz</td>
<td>765</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intenzita dopravy pro hlukové a emisní výpočty</th>
<th>OA</th>
<th>NA</th>
<th>NS</th>
<th>Celník</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rodný přměr intenzit den (90-18)</td>
<td>vozidlo</td>
<td>0.516</td>
<td>814</td>
<td>78</td>
</tr>
<tr>
<td>Rodný přměr intenzit večer (16-22)</td>
<td>vozidlo</td>
<td>0.009</td>
<td>812</td>
<td>99</td>
</tr>
<tr>
<td>Rodný přměr intenzit noc (22-00)</td>
<td>vozidlo</td>
<td>0.458</td>
<td>902</td>
<td>99</td>
</tr>
<tr>
<td>Emise</td>
<td>OA</td>
<td>LN</td>
<td>TN</td>
<td>NS</td>
</tr>
<tr>
<td>--</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Rodně řádné hodnotová inžinírská dopravy</td>
<td>vůz</td>
<td>926</td>
<td>02</td>
<td>26</td>
</tr>
<tr>
<td>Koefficie nerozvazmenitosti dopravy</td>
<td>alta</td>
<td>baja</td>
<td>game</td>
<td>P5</td>
</tr>
<tr>
<td>Koefficie nerozvazmenitosti dopravy</td>
<td>-</td>
<td>0.06</td>
<td>0.06</td>
<td>0.00</td>
</tr>
<tr>
<td>Intenzita cyklistické dopravy</td>
<td>C</td>
<td>cykliden</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pro výpočet zatížení komunikace je dle TP 170 Navrhování vozovek pozemních komunikací je nutné provést přečíslo. Metoda je založena na principu přečíslu všech vozidel projíždějících komunikaci na počet těžkých vozidel značených TNV. Metoda je založena na faktu, že těžká vozidla poškozují komunikaci výrazně více než vozidla lehká neplatí zde přímá úměra, že vozidlo o poloviční hmotnosti poškodí vozovku o 50 % méně. Pro přečíslo se používá následující vzorec.

\[TNV_0 = 0.1*N1 + 0.9*N2 + PN2 + N3 + PN3 + 1.3NS + PA \]
<table>
<thead>
<tr>
<th>TNV₀</th>
<th>průměrná denní intenzita všech těžkých nákladních vozidel v roce sčítání dopravy</th>
<th>[voz/den]</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>intenzita lehkých nákladních vozidel (do 3,5t)</td>
<td>[voz/den]</td>
</tr>
<tr>
<td>N2</td>
<td>intenzita středních nákladních vozidel (3,5-10t)</td>
<td>[voz/den]</td>
</tr>
<tr>
<td>PN2</td>
<td>intenzita přívěsů středních nákladních vozidel</td>
<td>[voz/den]</td>
</tr>
<tr>
<td>N3</td>
<td>intenzita těžkých nákladních vozidel (nad 10t)</td>
<td>[voz/den]</td>
</tr>
<tr>
<td>PN3</td>
<td>intenzita přívěsů těžkých nákladních vozidel</td>
<td>[voz/den]</td>
</tr>
<tr>
<td>A</td>
<td>intenzita autobusů</td>
<td>[voz/den]</td>
</tr>
<tr>
<td>PA</td>
<td>intenzita přívěsů autobusů</td>
<td>[voz/den]</td>
</tr>
</tbody>
</table>

Z výsledků sčítání dopravy vidíme, že vozidla jsou značena jinak než v uvedeném vzorci. Tento vzorec je potřeba aktualizovat, aby odpovídal současným podkladům ze sčítání dopravy. Pro výpočet je tedy použit vzorec aktuální vzorec dle řsd.

\[TNV₀ = 0,1*LN + 0,9*SN + 1,9*SNP + TN + 2,0*TNP + 2,3NSN + A + AK \]

\[TNV₀ = 0,1*440+ 0,9*110 + 1,9*4 + 82 + 2,0*11 + 2,3*80 + 316 + 0 \]

\[TNV₀ = 755 \text{ [TNV/den]} \]

Na tabulce 10 je tato hodnota uvedena uprostřed na pravém okraji.

Uvažujeme lineární nárůst intenzity.

Pro stanovení hodnoty použijeme následující vztah:

\[TNVₖ = 0,5 * (δₖ + δₚ) * TNV₀ \]
TNV_k průměrná denní hodnota intenzity TNV v návrhovém období

δ_z, δ_k součinitele nárůstu intenzity dopravy od začátku do konce návrhového období (z TP 225 Prognóza intenzit automobilové dopravy)

TNV_k = 0,5 * (1,08 + 1,44) * 755

TNV_k = 952 [TNV/den]

Návrhová hodnota intenzity provozu se stanoví pro nejvíce zatížený jízdní pruh dle vztahu:

TNV_d = C₁ * TNV_k

TNV_d návrhová denní intenzity provozu

C₁ součinitel vyjadřující podíl intenzity TNV na nejvíce zatíženém jízdním pruhu.

- pro jednopruhové komunikace C₁ = 1,0
- pro obousměrné komunikace s
 - jedním pruhem v jednom směru C₁ = 0,50
 - dvěma pruhy v jednom směru C₁ = 0,45
 - třemi a více pruhy v jednom směru C₁ = 0,40

TNV_d = 0,45 * 952

TNV_d = 429 [TNV/den]

V dalším kroku stanovíme návrhovou hodnotu celkového počtu přejezdů TNV za dané období ta je vypočtena ze vztahu:

TNV_{cd} = TNV_d * 365 * t_d

TNV_{cd} = 429 * 365 * 25

TNV_{cd} = 3 914 625 [TNV/návrhové období]

Nyní již máme výpočty kompletní a lze se přesunout do katalogu vozovek.
V katalogu vybereme vhodnou vozovku odpovídající námi vypočtené hodnotě TNV_{cd}, která je v našem případě 3,9mil. TNV. Musíme si uvědomit, že se pohybujeme v prostoru křižovatky, kde je rychlost 50km/h a méně a proto dle katalogu musíme hodnotu TNV_{cd} zdvojnásobit.

Podloží bylo odhadnuto na PII.

Vozovka vhodná pro náš případ je tedy D0-N-1-II-PII o celkové tloušťce 650 mm se skladbou:

- SMA 11S tl. 40 mm asfaltový koberec mastixový
- ACL 16S tl. 70 mm asfaltový beton pro ložné vrstvy
- APC 22S tl. 90 mm asfaltový beton pro podkladní vrstvy
- MZK tl. 200 mm mechanicky zpevněné kamenivo
- ŠD_{A} tl. 250 mm štěrkodří
Vozovka byla použita v rámci celé řešené úpravy stávajícího stavu pro orientační ekonomické posouzení jednotlivých variant v rámci studie. Pro další stupně projektové dokumentace je nutné posuzovat intenzity vozidel v určených místech okruhu, kde očekáváme největší intenzity dopravy. Stejně tak bude zcela určitě rozdílná tloušťka vozovky na okružní křižovatce a na paprscích komunikací zaústěných do křižovatky.

5. Návrh typů okružních křižovatek

Dle zadání navržení okružní křižovatky byly vytvořeny celkem 4 varianty okružních křižovatek. Konkrétně jde o jednopruhovou křižovatku s bypassy, turbo-okružní křižovatku typ vejce, turbo-okružní křižovatku typu základní a poslední variantou je atypická turbo-okružní křižovatka se snažena přizpůsobit tvar požadavkům směrovosti intenzit v křižovatce.

5.1 Varianta č.1 Okružní křižovatka s bypassy

Nejjednodušším typem okružní křižovatky je jednopruhová proto je zde uvažována jako první možné řešení. Zde je navíc doplněna bypassy pro pravé odbočení na všech vjezdech pro odlehčení jednotlivým vjezdům do okružní křižovatky. Vnější průměr křižovatky je 37,0m. S okružním prstenecem šířky 2,0 m. Šířka okružního pásu je 5,2 m.

5.1.1. Paprsek 10 (Sjezd Plzeň)

U této komunikace nedošlo ke změně směrového řešení. Střed okružní křižovatky je navržen tak aby procházel osou této komunikace. Byly zachovány 2 pruhy o šířce 3,25 m z nichž jeden směřuje do okružní křižovatky a druhý se napojuje přímo na sousední paprsek č. 9 formou bypassu. Komunikace je směrově rozdělena pomocí středního dělícího pásu šířky 2,0 m.

Šířka na vjezdu do okružní křižovatky je 5,5m mezi zvýšenými obrubami. Poloměr vjezdu je 35,0m. Na vnitřní straně je vjezd doplněn o srpovitou krajní navrženou dle přiložených vlečných křivek.

Šířka bypassu je 5,0m mezi zvýšenými obrubami. Z přímého směru je vychýlen směrovým obloukem o poloměru 45,0m na vnitřní straně obruby. Před napojením na paprsek č.9 je úprava přednosti v jízdě provedená stopčárou s vodorovným „značením
dej přednost v jízdě” V6a. Z bypassu je navíc pomocí snížené chodníkové plochy umožněno odbočení k sedimentační nádrži.

Šířka výjezdu je 5,5m mezi zvýšenými obrubami. Poloměr na výjezdu je 30,0m. Jízdní pruh se za přechodem pro chodce zužuje na 3,5m.

Šíře chodníků včetně bezpečnostního odstupu je na obou stranách komunikace navržena 2,75m. Došlo ke zkrácení přechodu pro chodce a rozdělní přechodu pomocí dopravního ostrůvku.

5.1.2. Paprsek 9 (Beroun - nádraží)

U této komunikace došlo ke změně směrového řešení. Osu komunikace je nutné napojit na střed okružní křižovatky tak aby nedocházelo k tangenciálním průjezdu.

Komunikace je na střed okružní křižovatky napojena pomocí oblouku o poloměru 70,0m měřeným v ose komunikace. Byly zachovány 2 pruhy o šířce 3,5m z nichž jeden směřuje do okružní křižovatky druhý se napojuje přímo na sousední paprsek č. 8 formou bypassu. Komunikace není směrově rozdělena.

Šířka na vjezdu do okružní křižovatky je 5,5m mezi zvýšenými obrubami. Poloměr vjezdu je 15,0m.

Největší šířka bypassu je 7,0m mezi zvýšenými obrubami z důvodu rozšíření v oblouku. Z přímého směru je vychýlen směrovým obloukem o poloměru 60,0m a následně 15,0m. Před napojením na paprsek č.10 není potřeba úprava přednosti v jízdě.

Šířka výjezdu je 5,5m mezi zvýšenými obrubami. Poloměr na výjezdu je 30,0m. Jízdní pruh je šířky 4,0m.

Šířka chodníku vedeného po levé straně komunikace je 2,75m. Chodník je od komunikace oddělen pruhem zeleně o šířce 3,50m.

5.1.3. Paprsek 7 (Beroun/Plzeň)

U této komunikace došlo ke změně směrového řešení. Osu komunikace je nutné napojit na střed okružní křižovatky tak aby nedocházelo k tangenciálním průjezdu.

Komunikace je na střed okružní křižovatky napojena pomocí protisměrných oblouků o poloměru 40,0 a 30,0m měřeným v ose komunikace. Byly zachovány 2 pruhy o šířce 3,5m z nichž jeden směřuje do okružní křižovatky druhý se napojuje přímo na sousední paprsek č. 10 formou bypassu. Komunikace je směrově rozdělená pomocí středního dělícího pásu šířky 3,5m.

Šířka na vjezdu do okružní křižovatky je 6,0m mezi zvýšenými obrubami. Poloměr vjezdu je 15,0m.
Šířka bypassu je 5,0m mezi zvýšenými obrubami. Z přímého směru je vychýlen směrovým obloukem o poloměru 40,0m na vnitřní straně obruby. Před napojením na paprsek č.10 je úprava přednosti v jízdě provedená stopčárou s vodorovným „značením dej přednost v jízdě“ V6a.

Šířka výjezdu je 5,5m mezi zvýšenými obrubami. Poloměr na výjezdu je 19,0m. Jízdní pruh je šířky 4,5m. Na konci úpravy se rozšiřuje na dvoupruhovou komunikaci.

Šířka chodníku vedeného po pravé straně komunikace je 4,0m. Chodník je od komunikace oddělen pruhem zeleně.

5.1.4. Paprsek 8 (Nájezd Praha)

Výjezd je řešen jako jednopruhový ve vzdálenosti 20,0m od vnější hranice okružního pásu se rozšiřuje do dvou. Šířka výjezdu je v nejužším místě 5,75m mezi zvýšenými obrubami. Poloměr výjezdu je 20,0m na vnitřní straně obruby. Na vnitřní výjezdu je doplněna srpovitá krajnici navržená dle přiložených vlečných křivek.

Obr.33 Situace varianta č.1
5.1.5. Kapacitní posouzení

Kapacitní posouzení bylo provedeno pro současné i výhledové intenzity na základě již popsané metodiky dle TP 234 a programu PVT Vissim, v něm byla zohledněna interakce se spirálovitou okružní křížovatkou. Na tabulce č.11 je porovnání výsledků obou metod. Přísné hodnoty UKD jsou požadovány, aby nedocházelo na paprsku č.7 ke tvorbě dlouhých kolon, které by mohly ovlivnit sousední spirálovitou křížovatku. Paprsek č.10 je rampou dálnice proto je zde stejný požadavek navíc zde kvůli zminěnému problému přímé krátké rampy může tvorbou kolon docházet ke srážkám vozidel ze zadu.

<table>
<thead>
<tr>
<th>Vjezd</th>
<th>Dle TP 234</th>
<th>PVT Vissim</th>
<th>Požadovaná doba zdržení</th>
<th>Požadovaný stupeň</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t_w</td>
<td>UKD</td>
<td>a_v</td>
<td>t_w</td>
</tr>
<tr>
<td>Č.7 Beroun / Plzeň</td>
<td>31,5</td>
<td>D</td>
<td>0,907</td>
<td>39,1</td>
</tr>
<tr>
<td>Č.10 Sjezd Plzeň</td>
<td>242,9</td>
<td>F</td>
<td>0,971</td>
<td>224,1</td>
</tr>
<tr>
<td>Č.9 Beroun - nádraží</td>
<td>-</td>
<td>F</td>
<td>1,606</td>
<td>170,2</td>
</tr>
</tbody>
</table>

Tab.11 Porovnání výsledků kapacitního posouzení

Obr.34 Schéma modelu pro mikrosimulaci
Obr. 35 Protokol s výpočtem kapacity jednopruhovou okružní křižovatku s bypassy
5.1.6. Zhodnocení výsledků

Varianta č.1 kapacitně výrazně nevyhověla v obou výpočtových metodách. Dopravní model s metodikou dle TP 234 dosahuje relativně dobré schody. Největší rozdíl na vjezdu č.9 Beroun – nádraží. Z dopravního modelu je patrné, že vozidla na paprsku č.7 vytvoří v křížovatce dominantní pohyb a neumožní vozidlům jedoucím z ostatních vjezdů projet křížovatkou. V rámci mikrosimulace byla zvážena i varianta typu křížovatky „kost“. Simulace prokázala, že by došlo pouze k prohloubení problému a vozidla na paprsku č.7 nemusela dávat přednost vozidlům na okružním pásu. Vlivem toho byly střední doby zdržení ostatních paprsků výrazně horší.

5.2 Varianta č.2 Turbo-okružní křížovatka typ vejce

Dalším možným typem okružní křížovatky je křížovatka turbo-okružní proto je zde uvažována jako další možné řešení. Vnější průměr křížovatky je 57,6m. Na okruhu jsou dva jízdní pruhy o stejné šířce 6,25m rozdělené pomocí fyzického oddělení o šířce 0,3 m. Vnitřní spirály jsou o poloměru 12,0 a 19,28m.

5.2.1. Paprsek 10 (Sjezd Plzeň)

U této komunikace nedošlo ke změně směrového řešení střed okružní křížovatky je navržen tak aby procházel osou této komunikace. Jízdní pruhy byly sníženy na jeden pruh o šířce 3,50m. Komunikace není směrově rozdělena na výjezd je dopravní ostrůvek z důvodu přechodu pro chodce.

Šířka na vjezdu do okružní křížovatky je 4,75m mezi zvýšenými obrubami. Poloměr vjezdu je 20,0m. Na vnitřní straně je vjezd doplněn o srpovitou krajici navrženou dle přiložených vlečných křivek.

Šířka výjezdu je 5,0m mezi zvýšenými obrubami. Poloměr na výjezd je 20,0m. Jízdní pruh se za přechodem pro chodce zužuje na 3,5m.

Šíře chodníků včetně bezpečnostního odstupu je na obou stranách komunikace navržena 2,75m. Došlo ke zkrácení přechodu pro chodce a rozdělní přechodu pomocí dopravního ostrůvku.

5.2.2. Paprsek 9 (Beroun - nádraží)

U této komunikace došlo ke změně směrového řešení. Osu komunikace je nutné napojit na střed okružní křížovatky tak aby nedocházelo k tangenciálním průjezdům. Komunikace je na střed okružní křížovatky napojena pomocí oblouku o poloměru 35,0 m měřeným v ose komunikace. Byly zachovány 2 pruhy o šířce 3,5m které jsou na
vjezdu rozděleny pomocí liniového dělicího prvk. Komunikace je směrově rozdělená pomocí středního dělicího pásu o šířce 2,0m.

Šířka na vjezdu do okružní křižovatky je 3,85 a 4,1m mezi zvýšenými obrubami a liniovým dělicím prvkem. Poloměr vjezdu je 20,0m na vnitřní straně obruby. Na vnitřní straně je vjezd doplněn o srpovitou krajnici navrženou dle přiložených vlečných křivek.

Šířka výjezdů je proměnná. Za liniovým dělicím prvkem jsou dva jízdní pruhy o šířce 3,5 m pravý výjezd se napojuje do levého 20m od hrany vnitřního okružního pásu. Poloměr na výjezdu je na vnější straně 40,0m. Po napojení vnějšího výjezdu do vnitřního je šířka jízdního pruhu 4,0m. Z vnějšího výjezdu je navíc pomocí snížené chodníkové plochy umožněno odbočení k sedimentační nádrži.

Šířka chodníku vedeného po levé straně komunikace je 2,75m.

5.2.3. Paprsek 7 (Beroun/Plzeň)

U této komunikace došlo ke změně směrového řešení. Osu komunikace je nutné napojit na střed okružní křižovatky tak aby nedocházelo k tangenciálním průjezdu. Komunikace je na střed okružní křižovatky napojena pomocí protisměrných oblouků o poloměru 50,0 a 30,0m měřeným v ose komunikace. Byly zachovány 2 pruhy o šířce 3,5m. Komunikace je směrově rozdělená pomocí středního dělicího pásu šířky 3,5m.

Šířka na vjezdu do okružní křižovatky je 3,85m mezi zvýšenými obrubami a liniovým dělicím prvkem. Poloměr vjezdu je 20,0m na vnitřní straně obruby. Na vnitřní straně je vjezd doplněn o srpovitou krajnici navrženou dle přiložených vlečných křivek.

Šířka výjezdů je proměnná v nejúžším místě mezi obrubami a liniovým dělicím prvkem je 3,85m. Poloměr na výjezdu je 40,0m na vnitřní straně obruby. Dále komunikace pokračuje jako dvoupruhová až na konec úpravy v šířce pruhu 3,5 a 2,75m.

Šířka chodníku vedeného po pravé straně komunikace je 4,0m. Chodník je od komunikace oddělen pruhem zeleně.

5.2.4. Paprsek 8 (Nájezd Praha)

Výjezd je řešen jako jednopruhový ve vzdálenosti 15m od vnější hranice okružního pásu se rozšiřuje do dvou. Šířka výjezdu je v nejúžším místě 6,8m mezi zvýšenými obrubami. Poloměr výjezdu je 20,0m.
5.2.5. Kapacitní posouzení

Kapacitní posouzení bylo provedeno pro současné i výhledové intenzity na základě již popsané metodiky dle TP 234 a programu PVT Vissim, v něm byla zohledněna interakce se spirálovitou okružní křižovatkou. Na tabulce č.11 je porovnání výsledků obou metod. Důvod požadovaných přísných stupňů UKD byl již zmíněn dříve.

<table>
<thead>
<tr>
<th>Vjezd</th>
<th>Dle TP 234</th>
<th>PVT Vissim</th>
<th>Požadovaná doba zdržení t<sub>w</sub></th>
<th>Požadovaný stupeň UKD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t<sub>u</sub></td>
<td>a<sub>v</sub></td>
<td>t<sub>u</sub></td>
<td>UKD</td>
</tr>
<tr>
<td>Č.7 Beroun / Plzeň</td>
<td>3,9</td>
<td>A 0,551</td>
<td>3,6</td>
<td>A</td>
</tr>
<tr>
<td>Č.10 Sjezd Plzeň</td>
<td>46,2</td>
<td>F 0,869</td>
<td>164</td>
<td>F</td>
</tr>
<tr>
<td>Č.9 Beroun - nádraží</td>
<td>-</td>
<td>F 1,108</td>
<td>91,4</td>
<td>F</td>
</tr>
</tbody>
</table>

Tab.12 Porovnání výsledků kapacitního posouzení
Obr. 37 Schéma modelu pro mikrosimulaci
Kapacitní posouzení okružní křižovatky dle TP 234

Název křižovatky: Beroun, DS x 11533

Posuzovaný stav: stav 2037, špičková hodina 7:00 - 8:00

Typ okružní křižovatky: spirálovitá typ vejce

Vnitřní průměr: 57,6

Vstupní parametry

<table>
<thead>
<tr>
<th>Paprsek</th>
<th>Název komunikace</th>
<th>pol. zt. UID</th>
<th>t_{s,n} (s)</th>
<th>poznámka</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Beroun / Píšeň</td>
<td>C</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Sjezd Píšeň</td>
<td>C</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Beroun - nádraží</td>
<td>D</td>
<td>45</td>
<td></td>
</tr>
</tbody>
</table>

Geometrické podmínky

<table>
<thead>
<tr>
<th>Paprsek</th>
<th>Název komunikace</th>
<th>n_k</th>
<th>n_e</th>
<th>n_o</th>
<th>typ vjezdu</th>
<th>R_{i} (m)</th>
<th>R_{o} (m)</th>
<th>b (m)</th>
<th>d_p (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Beroun / Píšeň</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>typ 1</td>
<td>40,5</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Sjezd Píšeň</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>typ 3</td>
<td>20,5</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Beroun - nádraží</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>typ 1</td>
<td>40,5</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intensity dopravy (prov./h)

<table>
<thead>
<tr>
<th>do paprsku z paprsku</th>
<th>Název komunikace</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Součet</th>
<th>pozn.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Beroun / Píšeň</td>
<td>0</td>
<td>35</td>
<td>130</td>
<td>75</td>
<td>30</td>
<td>1142</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Sjezd Píšeň</td>
<td>354</td>
<td>0</td>
<td>96</td>
<td>53</td>
<td>503</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Beroun - nádraží</td>
<td>536</td>
<td>3</td>
<td>0</td>
<td>113</td>
<td>652</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Součet</td>
<td>590</td>
<td>38</td>
<td>445</td>
<td>924</td>
<td>2257</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Kapacita vjezdu

<table>
<thead>
<tr>
<th>Paprsek</th>
<th>Název komunikace</th>
<th>l_{i} (prov./h)</th>
<th>l_{0} (prov./h)</th>
<th>c_{0} (prov./h)</th>
<th>ZR (prov./h)</th>
<th>T_{m} (s)</th>
<th>a_{i} (prov./h)</th>
<th>N_{max} (m)</th>
<th>UKD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Beroun / Píšeň</td>
<td>3</td>
<td>1142</td>
<td>2073</td>
<td>931</td>
<td>3,9</td>
<td>0,351</td>
<td>21,913</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>Sjezd Píšeň</td>
<td>1107</td>
<td>503</td>
<td>579</td>
<td>76</td>
<td>46,2</td>
<td>0,869</td>
<td>86,4596</td>
<td>E</td>
</tr>
<tr>
<td>3</td>
<td>Beroun - nádraží</td>
<td>1155</td>
<td>652</td>
<td>604</td>
<td>-48</td>
<td>-80,7</td>
<td>1,080</td>
<td>275,16</td>
<td>F</td>
</tr>
</tbody>
</table>

Standevené úroveň na vjezdech okružní křižovatky

<table>
<thead>
<tr>
<th>Paprsek</th>
<th>Název komunikace</th>
<th>l_{0} (prov./h)</th>
<th>l_{i} (prov./h)</th>
<th>c_{0} (prov./h)</th>
<th>ZR (prov./h)</th>
<th>a_{i} (prov./h)</th>
<th>Kapacita vyhovuje</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Beroun / Píšeň</td>
<td>880</td>
<td>2250</td>
<td>0,396</td>
<td>ANO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Sjezd Píšeň</td>
<td>38</td>
<td>1295</td>
<td>0,029</td>
<td>ANO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Beroun - nádraží</td>
<td>445</td>
<td>2250</td>
<td>0,138</td>
<td>ANO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Nájezd Praha</td>
<td>924</td>
<td>1000</td>
<td>0,924</td>
<td>ANO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Kapacita vjezdu

Kapacita vjezdu:

<table>
<thead>
<tr>
<th>Paprsek</th>
<th>Název komunikace</th>
<th>l_{0} (prov./h)</th>
<th>l_{i} (prov./h)</th>
<th>c_{0} (prov./h)</th>
<th>ZR (prov./h)</th>
<th>a_{i} (prov./h)</th>
<th>Kapacita vyhovuje</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Beroun / Píšeň</td>
<td>880</td>
<td>2250</td>
<td>0,396</td>
<td>ANO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Sjezd Píšeň</td>
<td>38</td>
<td>1295</td>
<td>0,029</td>
<td>ANO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Beroun - nádraží</td>
<td>445</td>
<td>2250</td>
<td>0,138</td>
<td>ANO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Nájezd Praha</td>
<td>924</td>
<td>1000</td>
<td>0,924</td>
<td>ANO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stavební úroveň dopravy na vjezdech vyhovuje: ANO

Závěr: Křižovatka kapacitně nevyhovuje. Požadovaného UKD nebylo dosaženo na vjezdu 2 a 3.
5.2.6. Zhodnocení výsledků

Varianta č.2 rovněž kapacitně nevhověla v obou výpočtovéch metodách. Dopravní model s metodikou dle TP 234 dosahuje relativně dobré schody pouze na vjezdu č.7. Velký rozdíl na vjezdu č.10 Sjezd Plzeň je dle mě způsoben tím, že dle metodiky TP 234 je na dvoupruhovém vjezdu č.7 uvažováno že vozidla budou rovnoměrně rozložena do obou jízdních pruhů na okružní křižovatce. V dopravním modelu však drtivá většina vozidel volí trasu po vnitřní straně okruhu, protože odbočují vlevo na paprsek č.8.

Z dopravního modelu je i zde patrné, že vozidla na paprsku č.7 vytvoří v křižovatce dominantní pohyb a neumožní vozidlům jedoucím z ostatních vjezdů projet křižovatkou. V rámci mikrosimulace byla jako u předchozího modelu zvážena i varianta typu křižovatky „kost“. Simulace prokázala, že by došlo pouze k prohloubení problému a vozidla na paprsku č.7 nemusela dávat přednost vozidlům na okružním pásu. Vlivem toho byly střední doby zdržení ostatních paprsků výrazně horší. V dalších variantách jsem se o podobné řešení nepokoušel, protože by došlo ke stejnému výsledku.

5.3 Varianta č.3 Turbo-okružní křižovatka typ základní

Drobnou úpravou turbo-okružní typ vejce je turbo-okružní křižovatka základního typu. Uvažována jako další možné řešení. Vnější průměr křižovatky je stejný 57,6m. Na okruhu jsou dva jízdní pruhy o stejné šířce 6,25m rozdělené pomocí fyzického oddělení o šířce 0,3m. Vnitřní spirály jsou o poloměru 12,0 a 19,28m.

5.3.1. Paprsek 10 (Sjezd Plzeň)

U této komunikace nedošlo ke změně směrového řešení střed okružní křižovatky je navržen tak aby procházel osou této komunikace. Jízdní pruh byl oproti předchozí variantě zvýšen na dva pruhy o šířce 3,50m. Komunikace není směrově rozdělená jen na výjezdu je dopravní ostrůvek z důvodu přechodu pro chodce.

Šířka vjezdů do okružní křižovatky je 3,85m mezi zvýšenými obrubami a linií dělícím prvkem. Poloměr vjezdu je 20,0m. Na vnitřní straně je vjezd doplněn o srpovitou krajnici navrženou dle přiložených vlečných křivek.

Šířka výjezdu je 5,0m mezi zvýšenými obrubami. Poloměr na výjezdu je 20,0m. Jízdní pruh se za přechodem pro chodce zužuje na 3,5m.

Šíře chodníků včetně bezpečnostního odstupu je na obou stranách komunikace navržena 2,75m. Došlo ke zkrácení přechodu pro chodce a rozdělní přechodu pomocí dopravního ostrůvku.
5.3.2. Paprsek 9 (Beroun - nádraží)

U této komunikace došlo ke změně směrového řešení. Osu komunikace je nutné napojit na střed okružní křižovatky tak aby nedocházelo k tangenciálním průjezdem. Komunikace je na střed okružní křižovatky napojena pomocí oblouku o poloměru 35,0 m měřeným v ose komunikace. Byly zachovány 2 pruhy o šířce 3,5m které jsou na vjezdu rozděleny pomocí liniového dělícího prvků. Komunikace je směrově rozdělená pomocí středního dělícího pásu o šířce 2,0m.

Šířka na vjezdu do okružní křižovatky je 3,85 a 4,1m mezi zvýšenými obrubami a liniovým dělícím prvkem. Poloměr vjezdu je 20,0m na vnitřní straně obruby. Na vnitřní straně je vjezd doplněn o srpovitou krajnici navrženou dle přiložených vlečných křivek.

Šířka výjezdu je proměnná. Za liniovým dělícím prvkem jsou dva jízdní pruhy o šířce 3,5 m pravý výjezd se napoužívá do levého 20m od hrany vnitřního okružního pásu. Poloměr na výjezdu je na vnější straně 40,0m. Po napojení vnějšího výjezdu do vnitřního je šířka jízdního pruhu 4,0m. Z vnějšího výjezdu je navíc pomocí snížené chodníkové plochy umožněno odbočení k sedimentační nádrži.

Šířka chodníku vedeného po levé straně komunikace je 2,75m.

5.3.3. Paprsek 7 (Beroun/Plzeň)

U této komunikace došlo ke změně směrového řešení. Osu komunikace je nutné napojit na střed okružní křižovatky tak aby nedocházelo k tangenciálním průjezdem. Komunikace je na střed okružní křižovatky napojena pomocí protisměrných oblouků o poloměru 50,0 a 30,0m měřeným v ose komunikace. Byly zachovány 2 pruhy o šířce 3,5 m. Komunikace je směrově rozdělená pomocí středního dělícího pásu šířky 3,5m

Šířka na vjezdu do okružní křižovatky je 3,85m mezi zvýšenými obrubami a liniovým dělícím prvkem. Poloměr vjezdu je 20,0m na vnitřní straně obruby. Na vnitřní straně je vjezd doplněn o srpovitou krajnici navrženou dle přiložených vlečných křivek.

Šířka výjezdu je proměnná v nejužším místě mezi obrubami a liniovým dělícím prvkem je 3,85m. Poloměr na výjezdu je 40,0m na vnitřní straně obruby. Dále komunikace pokračuje jako dvoupruhová až na konec úpravy v šířce pruhu 3,5 a 2,75m.

Šířka chodníku vedeného po pravé straně komunikace je 4,0m. Chodník je od komunikace oddělen pruhem zeleně.
5.3.4. Paprsek 8 (Nájezd Praha)

Výjezd je řešen jako jednopruhový ve vzdálenosti 15m od vnější hranice okružního pasu se rozšiřuje do dvou. Šířka výjezdu je v nejužším místě 6,8m mezi zvýšenými obrubami. Poloměr výjezdu je 20,0m.

5.3.5. Kapacitní posouzení

Kapacitní posouzení bylo provedeno pro současné i výhledové intenzity na základě již popsané metodiky dle TP 234 a programu PVT Vissim, v něm byla zohledněna interakce se spirálovitou okružní křižovatkou. Na tabulce č.11 je porovnání výsledků obou metod. Důvod požadovaných přísných stupňů UKD byl již zmíněn dříve.
<table>
<thead>
<tr>
<th>Vjezd</th>
<th>Dle TP 234</th>
<th>PVT Vissim</th>
<th>Požadovaná doba zdržení t<sub>w</sub></th>
<th>Požadovaný stupeň UKD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t<sub>w</sub></td>
<td>UKD</td>
<td>a<sub>v</sub></td>
<td>t<sub>w</sub></td>
</tr>
<tr>
<td>Č.7 Beroun / Plzeň</td>
<td>3,9</td>
<td>A</td>
<td>0,551</td>
<td>2,3</td>
</tr>
<tr>
<td>Č.10 Sjezd Plzeň</td>
<td>9,8</td>
<td>A</td>
<td>0,579</td>
<td>144</td>
</tr>
<tr>
<td>Č.9 Beroun - nádraží</td>
<td>-</td>
<td>F</td>
<td>1,108</td>
<td>219</td>
</tr>
</tbody>
</table>

Tab.13 Porovnání výsledků kapacitního posouzení

Obr.40 Schéma modelu pro mikrosimulaci
KAPACITNÍ POSOUZENÍ OKRUŽNÍ KŘIŽOVATKY DLE TP 234

<table>
<thead>
<tr>
<th>Název křižovatky</th>
<th>Beroun, D5 x 11533</th>
</tr>
</thead>
<tbody>
<tr>
<td>Posouzený stav</td>
<td>stav 2037, Žeřínská hodina 7:00 - 8:00</td>
</tr>
<tr>
<td>Typ okružní křižovatky</td>
<td>správná typ základní</td>
</tr>
<tr>
<td>Všední průměr</td>
<td>57,6</td>
</tr>
</tbody>
</table>

Vstupní parametry

<table>
<thead>
<tr>
<th>Paprsek</th>
<th>Název komunikace</th>
<th>počt. z. UKD</th>
<th>(t_{\text{výpočet}}) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Beroun / Plzeň</td>
<td>C</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>Sjezd Plzeň</td>
<td>C</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>Beroun - nádraží</td>
<td>D</td>
<td>45</td>
</tr>
</tbody>
</table>

Geometrické podmínky

<table>
<thead>
<tr>
<th>Paprsek</th>
<th>Název komunikace</th>
<th>(h_i)</th>
<th>(h_f)</th>
<th>(h_k)</th>
<th>type vjezdu</th>
<th>(R_i) (m)</th>
<th>(R_f) (m)</th>
<th>(d) (m)</th>
<th>(d_p) (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Beroun / Plzeň</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>typ 1</td>
<td>40,5</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Sjezd Plzeň</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>typ 5</td>
<td>20,5</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Beroun - nádraží</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>typ 1</td>
<td>40,5</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intenzity dopravy (pvoz/h)

<table>
<thead>
<tr>
<th>dopravu</th>
<th>Název komunikace</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Součet</th>
<th>pozn.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Beroun / Plzeň</td>
<td>0</td>
<td>15</td>
<td>340</td>
<td>753</td>
<td>1142</td>
<td>1142</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sjezd Plzeň</td>
<td>594</td>
<td>0</td>
<td>95</td>
<td>53</td>
<td>505</td>
<td>505</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Beroun - nádraží</td>
<td>536</td>
<td>3</td>
<td>0</td>
<td>113</td>
<td>652</td>
<td>652</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Součet</td>
<td>890</td>
<td>38</td>
<td>440</td>
<td>924</td>
<td>2297</td>
<td>2297</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Kapacita vjezdu

<table>
<thead>
<tr>
<th>Paprsek</th>
<th>Název komunikace</th>
<th>(l_i) (pvoz/h)</th>
<th>(l_f) (pvoz/h)</th>
<th>(c_i) (pvoz/h)</th>
<th>(c_f) (pvoz/h)</th>
<th>(R_{zj}) (pvoz/h)</th>
<th>(t_{w}) (s)</th>
<th>(a_i)</th>
<th>(N_{\text{výk}}) (m)</th>
<th>UKD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Beroun / Plzeň</td>
<td>3</td>
<td>1142</td>
<td>2073</td>
<td>931</td>
<td>3,9</td>
<td>0,551</td>
<td>21,513</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Sjezd Plzeň</td>
<td>1107</td>
<td>503</td>
<td>568</td>
<td>365</td>
<td>9,8</td>
<td>0,579</td>
<td>24,254</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Beroun - nádraží</td>
<td>1165</td>
<td>652</td>
<td>604</td>
<td>-46</td>
<td>00,4</td>
<td>1,000</td>
<td>273,16</td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>

Stanovená úrovňa na vjezdech okružní křižovatky

<table>
<thead>
<tr>
<th>Paprsek</th>
<th>Název komunikace</th>
<th>(l_{v}) (pvoz/h)</th>
<th>(l_{\text{h}}) (ch/h)</th>
<th>(c_{v}) (pvoz/h)</th>
<th>(a_{i})</th>
<th>Kapacita vyhovuje</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Beroun / Plzeň</td>
<td>636</td>
<td>2250</td>
<td>0,283</td>
<td>ANO</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Sjezd Plzeň</td>
<td>1295</td>
<td>1295</td>
<td>0,022</td>
<td>ANO</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Beroun - nádraží</td>
<td>324</td>
<td>2250</td>
<td>0,144</td>
<td>ANO</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Nájezd Praha</td>
<td>681</td>
<td>1000</td>
<td>0,654</td>
<td>ANO</td>
<td></td>
</tr>
</tbody>
</table>

Stanovená úrovňa dopravy na vjezdech vyhovuje?

ANO

Závěr: Křižovatka kapacitně nevyhovuje. Požadovaného stupně UKD nebylo dosaženo na vjezdu 3.

Obr.41 Protokol s výpočtem kapacity turbo-okružní křižovatky typ základní

65
5.3.6. Zhodnocení výsledků

Varianta č.3 stejně jako předchozí varianty kapacitně nevyhověla v obou výpočtových metodách. Dopravní model s metodikou dle TP 234 v tomto případě nevykazuje dobrou shodu. Velký rozdíl na vjezdu č.10 Sjezd Plzeň je dle mě způsoben tím, že dle metodiky TP 234 je na dvoupruhovém vjezdu č.10 uvažováno, že vozidla budou rovnoměrně rozložena do obou jízdních pruhů na okružní křižovatce. V dopravním modelu je ale vidět, že se na paprsku č. 10 tvoří kolony a nedostatečná délka odbočujícího pruhu vpravo způsobí, že vozidla odbočující vpravo stojí ve stejném pruhu jako ty, co jedou přímým směrem nebo vlevo.

A stejně jako v předchozím případě je vjezd č. 7 nadhodnocen, neboť si drtivá většina vozidel volí trasu po vnitřní straně okružního pásu.

5.4 Varianta č.4 Turbo-okružní křižovatka atypická

Posledním řešením je turbo-okružní křižovatka atypická, která bude svou dispozicí co možná nejlépe odpovídat požadavkům intenzit dopravy a jejich směrovosti. Vnější průměr křižovatky je stejný 57,6m jako v předchozích variantách. Na okruhu jsou dva jízdní pruhy o stejně šířce 6,25m rozdělené pomocí fyzického oddělení o šířce 0,3m. Vnitřní spirály jsou u poloměru 12,0 a 19,28m. Rozdíl spočívá v prodloužení vnějšího pruhu od paprsku č.7 k paprsku č.8. Dojde tedy k vytvoření turbo-okružní křižovatky podobné typu koleno. Avšak s dvoupruhovými výjezdy na protilehlých paprscích.

5.4.1. Paprsek 10 (Sjezd Plzeň)

U této komunikace nedošlo ke změně směrového řešení střed okružní křižovatky je navržen tak aby procházal osou této komunikace. Vjezd do křižovatky byl ponechán dvoupruhový šířce pruhů 3,50m. Komunikace není směrově rozdělená jen na výjezdu je stejně jako v předchozí variantě dopravní ostrůvek z důvodu přechodu pro chodce.

Šířka vjezdů do okružní křižovatky je 3,85m mezi zvýšenými obrubami a liniovým dělícím prvkem. Poloměr vjezdu je 20,0m. Na vnitřní straně je vjezd doplněn o srpovitou krajní navrženou dle přiložených vlečných křivek.

Šířka výjezdu je 5,0m mezi zvýšenými obrubami. Poloměr na výjezdu je 20,0m. Jízdní pruh se za přechodem pro chodce zužuje na 3,5m.

Šíře chodníků včetně bezpečnostního odstupu je na obou stranách komunikace navržena 2,75m. Došlo ke zkrácení přechodu pro chodce a rozdělní přechodu pomocí dopravního ostrůvku.
5.4.2. Paprsek 9 (Beroun - nádraží)

U této komunikace došlo ke změně směrového řešení. Osu komunikace je nutné napojit na střed okružní křížovatky tak aby nedocházelo k tangenciálním průjezdům. Komunikace je na střed okružní křížovatky napojena pomocí oblouku o poloměru 35,0 m měřeným v ose komunikace. Byly zachovány 2 pruhy o šířce 3,5m které jsou na vjezdu rozděleny pomocí liniového dělíčího prvku. Komunikace je směrově rozdělená pomocí středního dělíčího pásu o šířce 2,0m.

Šířka na vjezdu a do okružní křížovatky je 3,85 a 4,1m mezi zvýšenými obrubami a liniovým dělíčím prvkem. Poloměr vjezdu je 16,0m na vnitřní straně obrub. Na vnitřní straně je vjezd doplněn o srpovitu krajnici navrženou dle přiložených vlečných křivek.

Minimální šířka výjezdů je 5,0m mezi zvýšenými obrubami. Poloměr na výjezdu je 20,0 m. Jízdní pruh se v místě konce úpravy zužuje na 4,0m Z výjezdu je navíc pomocí snížené chodníkové plochy umožněno odbočení k sedimentační nádrži.

Šířka chodníku vedeného po levé straně komunikace je 2,75m včetně bezpečnostního odstupu. Na výjezdu je oddělen zeleným pásem proměnné šířky dále je chodník veden podél komunikace bez oddělení.

5.4.3. Paprsek 7 (Beroun/Plzeň)

U této komunikace došlo ke změně směrového řešení. Osu komunikace je nutné napojit na střed okružní křížovatky tak aby nedocházelo k tangenciálním průjezdům. Komunikace je na střed okružní křížovatky napojena pomocí protisměrných oblouků o poloměru 50,0 a 30,0m měřeným v ose komunikace. Byly zachovány 2 pruhy o šířce 3,5m. Komunikace je směrově rozdělená pomocí středního dělíčího pásu šířky 3,5m

Šířka na vjezdu do okružní křížovatky je 3,85m mezi zvýšenými obrubami a liniovým dělíčím prvkem. Poloměr vjezdu je 20,0m na vnitřní straně obrub. Na vnitřní straně je vjezd doplněn o srpovitu krajnici navrženou dle přiložených vlečných křivek.

Šířka výjezdů je proměnná v nejúžším místě mezi obrubami a liniovým dělíčím prvkem je 3,85m. Poloměr na výjezdu je 40,0m na vnitřní straně obrub. Dále komunikace pokračuje jako dvoupruhová až na konec úpravy v šířce pruhu 3,5 a 2,75m.

Šířka chodníku vedeného po pravé straně komunikace je 4,0m. Chodník je od komunikace oddělen pruhem zeleně.
5.4.4. Paprsek 8 (Nájezd Praha)

Výjezd je řešen jako dvoupruhový. Šířka výjezdu je v nejužším místě 4,0m mezi zvýšenými obrubami. Poloměr výjezdu je 15,0m. Na vnitřní straně je výjezd doplněn o srpovitou krajnici navrženou dle přiložených vlečných křivek.

Obr.42 Situace varianty č.4

5.4.5. Kapacitní posouzení

<table>
<thead>
<tr>
<th>Vjezd</th>
<th>Dle TP 234</th>
<th>PVT Víssim</th>
<th>Požadovaná doba zdržení</th>
<th>Požadovaný stupeň</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t_w</td>
<td>a_v</td>
<td>t_w</td>
<td>UKD</td>
</tr>
<tr>
<td>Č.7 Beroun / Plzeň (L)</td>
<td>4,2</td>
<td>A</td>
<td>0,384</td>
<td>2,8</td>
</tr>
<tr>
<td>Č.7 Beroun / Plzeň (P)</td>
<td>4,7</td>
<td>A</td>
<td>0,442</td>
<td>1,05</td>
</tr>
<tr>
<td>Č.10 Sjezd Plzeň (L)</td>
<td>15,9</td>
<td>B</td>
<td>0,612</td>
<td>70,46</td>
</tr>
<tr>
<td>Č.10 Sjezd Plzeň (P)</td>
<td>4,2</td>
<td>A</td>
<td>0,148</td>
<td>27</td>
</tr>
<tr>
<td>Č.9 Beroun – nádraží (L)</td>
<td>338,6</td>
<td>F</td>
<td>0,984</td>
<td>53,62</td>
</tr>
<tr>
<td>Č.9 Beroun – nádraží (P)</td>
<td>3,9</td>
<td>A</td>
<td>0,109</td>
<td>11,92</td>
</tr>
</tbody>
</table>

Tab. 14 Porovnání výsledků kapacitního posouzení

Obr. 43 Schéma modelu pro mikrosimulaci
Obr.44 Protokol s výpočtem kapacity turbo-okružní křížovatky atypické
5.4.6. Zhodnocení výsledků

Varianta č.4 stejně jako předchozí varianty kapacitně nevyhověla v obou výpočtových metodách. Dopravní model s metodikou dle TP 234 v tomto případě nevykazuje dobrou shodu v případě paprsků 9 L a 10 L. Velký rozdíl je na vjezdu č.9. Ten je sám o sobě problematický z pohledu nadřazenosti dvou pruhů na okružní křižovatce, přes které musí vjíždějící vozidla přejet. V dopravním modelu jsem zkoušel přerozdělovat intenzity ze sousední spirálovité křižovatky, ale výsledky to nijak významně neovlivnily. Přesto však křižovatka vykazovala ze všech čtyř řešení nejvyváženější délky front na paprscích č.9 a č.10 z hlediska kapacity však nevyhověla.

5.5 Vyhodnocení variant okružních křižovek

Ani jedna z navrhovaných variant neposkytla uspokojivé kapacitní řešení dané křižovatky. Důkazem je kapacitní posouzení dle TP 234 i dopravní model zpracovaný v programu PVT Vissim. Důvodem je zřejmě kombinace velmi silné intenzity levého odbočení z paprsku č.7 v kombinaci s dominantním levým odbočením z paprsku č.10 a relativně silnou dopravní intenzitou v přímém směru paprsku č.9 v kombinaci s okružní křižovatkou dojde k situaci, že vozidla jedoucí z paprsku č. 7 nejsou prakticky nijak ovlivněna na vjezdu do křižovatky a vytvoří tak dominantní pohyb křižovatkou. Na základě výsledků tedy není okružní křižovatka vhodným typem řešení dané lokality. Z hlediska realizovatelných možností zbývá pouze navržení křižovatky řízené pomocí světelně signalizačního zařízení (SSZ). V další části práce se budu řešit alternativním řešením křižovatky.

6. Křižovatka řešená světelnou signalizací

6.1 Výpočet kapacity světelně řízené křižovatky dle TP 235

(přezvato z TP 235)

6.1.1. Posouzení úrovně kvality dopravy

Stejně jako u okružních křižovek jsou křižovatky řízené pomocí SSZ posuzovány na základě úrovně kvality dopravy, kterou charakterizuje ztrátový čas vyjádřený střední dobou zdržení. Pro stanovení závěru kapacitního posouzení zda intenzitou daného proudu není překročena hodnota střední doby zdržení \(t_w \). Toto posouzení se provádí pro všechny vjezdy křižovatky. Výsledný stupeň UKD dané křižovatky je roven vjezdu s nevyšší střední dobou zdržení. Limitní hodnoty jsou uvedeny v tabulce 15.
$t_{wn} \leq t_{w,lim}$

kde t_{wn} je střední doba zdržení (n-tého) dopravního proudu [s]

$t_{w,lim}$ je maximální přípustná střední doba zdržení dle požadovaného stupně kvality dopravy [s]

<table>
<thead>
<tr>
<th>Úroveň kvality dopravy</th>
<th>Charakteristiky kvality dopravy</th>
<th>Střední doba zdržení t_w [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Velmi dobrá</td>
<td>≤ 20</td>
</tr>
<tr>
<td>B</td>
<td>Dobrá</td>
<td>≤ 35</td>
</tr>
<tr>
<td>C</td>
<td>Uspokojivá</td>
<td>≤ 50</td>
</tr>
<tr>
<td>D</td>
<td>Dostatečná</td>
<td>≤ 70</td>
</tr>
<tr>
<td>E</td>
<td>Nestabilní stav</td>
<td>> 70</td>
</tr>
<tr>
<td>F</td>
<td>Překročená kapacita</td>
<td>- (Rez ≤ 0)</td>
</tr>
</tbody>
</table>

Tab.15 Limitní hodnoty střední doby zdržení na vjezdu do světelně řízené křižovatky

Podle ČSN 73 6102 se pro křižovatky požadují následující stupně kvality dopravy:

- Dálnice, rychlostní silnice a silnice I. třídy stupeň C
- Silnice II. třídy stupeň D
- Silnice III. Třídy stupeň E
- Rychlostní místní komunikace a přechodové úseky stupeň D
- Místní komunikace a veřejně přístupné účelové komunikace stupeň E

6.1.2. Návrhové intenzity dopravních proudů

Pro kapacitní výpočet je třeba intenzity jednotlivých dopravních proudů z průzkumu násobit příslušnými koeficienty podle tabulky 16
6.1.3. Metoda saturovaného toku

Neboli Websterova metoda jejíž principem je stanovení délky cyklu a zelených v závislosti na stupních saturace jednotlivých vjezdů.

6.1.4. Saturovaný tok

Saturovaný tok je nejvyšší počet vozidel, která mohou projít profilem stopcary za jednotku času při ideálních dopravních podmínkách. Základní saturovaný tok má hodnotu 2000 [pvoz/h]. Základní saturovaný tok je ovlivněn podélným sklonem vozovky, poloměrem oblouku a podílem odbočujících vozidel. Vypočte se ze vztahu:

\[S_i = S_{zákl} \times K_{sk} \times k_{obl} \]

[pvoz/h]

\[S_i \]
základní saturovaný tok
[pvoz/h]

\[S_{zákl} \]
základní saturovaný tok
[pvoz/h]

\[K_{sk} \]
koeficient sklonu
[-]

\[k_{obl} \]
koeficient oblouku
[-]
\[k_{\text{skl}} = 1 - 0,02 \times a \]
je podélný sklon vjezdu
(platí pro sklony do 10%)

\[k_{\text{obl}} = \frac{R}{R + 1,5 + f} \]
je poloměr oblouku
[m]

\[f \]
podíl odbočujících vozidel
[-]

6.1.5. Stupeň saturace

Pro všechny vjezdy s automobilovou dopravou určíme stupeň saturace ze vztahu:

\[y = \frac{l}{S_v} \]
[-]

\[l \]
je intenzita na příslušném vjezdu
[pvoz/h]

\[S_v \]
je saturovaný tok vjezdu
[pvoz/h]

V každé fázi vybereme kritický vjezd. Tedy vjezd, který má nejvyšší stupeň saturace:

\[y_{\text{crit}} \]
je stupeň saturace pro kritický vjezd
[-]

Celkový stupeň saturace je dán součtem stupňů saturace kritických vjezdů pro jednotlivé fáze signálního plánu.

\[Y = \sum_{i=1}^{n} y_{\text{crit}} \]
[-]

6.1.6. Efektivní délka zelené

Efektivní délka zelené závisí na délce zeleného signálu

<table>
<thead>
<tr>
<th>Délka zelené z (s)</th>
<th>Efektivní délka zelené z´ (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-7</td>
<td>(z + 1)</td>
</tr>
<tr>
<td>8-10</td>
<td>(z + 0,5)</td>
</tr>
<tr>
<td>>11</td>
<td>(z)</td>
</tr>
</tbody>
</table>

Tab.17 Efektivní délka zelené
6.1.7. Ztrátový čas

Ztrátový čas je neproduktivní doba mezi koncem efektivní zelené jedné fáze a začátkem efektivní zelené další fáze tedy rozhodující mezičas zmenšený o rozdíl mezi efektivní a skutečnou zelenou. Ztrátový čas se vypočte ze vztahu:

\[l = t_m - (z' - z) \quad [s] \]

Celkový ztrátový čas je tedy součet všech ztrátových časů v jednotlivých fázích.

\[L = \sum_{i=1}^{n} l_i \quad [s] \]

\[t_m \quad \text{mezičas je časový úsek od konce doby zelené na návěstidle pro jeden směr po začátek doby zelené pro kolizní směr} \]

6.1.8. Minimální délka cyklu

Nejkratší možná délka cyklu pro dané intenzity na vjezdech musí být menší než 120s. Výpočet provedeme dle vztahu:

\[t_{c,\text{min}} = \frac{L}{1-Y} \quad [s] \]

\[L \quad \text{je celkový ztrátový čas} \quad [s] \]

\[Y \quad \text{celkový stupeň saturace} \quad [-] \]

6.1.9. Optimální délka cyklu

Optimální délka cyklu pro izolovanou křižovatku nemá být delší než 100s a nesmí být delší než 120s. Výpočet provedeme dle vztahu:

\[t_{c,\text{opt}} = \frac{1,5 \times L + 5}{1-Y} \quad [s] \]

\[L \quad \text{je celkový ztrátový čas} \quad [s] \]

\[Y \quad \text{celkový stupeň saturace} \quad [-] \]

Optimální rozsah délky cyklu:
6.1.10. Délka zelených
Nejprve stanovíme délky zelených pro jednotlivé kritické vjezdy.

\[z = \frac{y^*(t_c-L)}{Y} - 1 \text{ [s]} \]

- \(t_c \) - délka cyklu [s]
- \(L \) - je celkový ztrátový čas [s]
- \(Y \) - celkový stupeň saturace [-]
- \(y \) - nejvyšší stupeň saturace na vjezdu [-]

6.1.11. Minimální délka zelených

\[z_{min} = \frac{100}{100-\text{Rez}} - 1 \text{ [s]} \]

- \(z_{min} \) - minimální délka cyklu [s]
- \(I \) - intenzita na příslušném vjezdu (pvoz/h)
- \(S_v \) - je suatuovaný tok vjezdu (pvoz/h)
- \(\text{Rez} \) - rezerva kapacity (doporučená 10%) [-]

6.1.12. Kapacita vjezdu
Kapacitu vjezdu získáme ze vztahu:

\[C_v = S_v \frac{z'}{t_c} \text{ (pvoz/h)} \]
6.1.13. Kapacita levého odbočení ovlivněného protisměrem

Pro samostatný jízdní pruh pro levé odbočení. Rovná se menší z hodnot kapacity na stopčáře a kapacita levého odbočení.

\[C_v = \min(C_s, C_l) \quad \text{(pvoz/h)} \]

\[C_s = \text{kapacita na stopčáře} \]

\[C_s = S_v \times \frac{z'}{t_c} \quad \text{(pvoz/h)} \]

\[z' \quad \text{efektivní délka zelené [s]} \]

\[S_v \quad \text{je saturovaný tok vjezdu (pvoz/h)} \]

\[t_c \quad \text{délka cyklu [s]} \]

\[C_l = C_{l1} + C_{l2} + C_{l3} \quad \text{(pvoz/h)} \]

\[C_{l1} \quad \text{dílčí kapacita levého odbočení v době zelené protisměru (pvoz/h)} \]

\[C_{l2} \quad \text{dílčí kapacita levého odbočení po skončení vlastní zelené při změně fází (pvoz/h)} \]

\[C_{l3} \quad \text{dílčí kapacita levého odbočení neovlivněná protisměrem (pvoz/h)} \]

\[C_{l1} = \left(\frac{1400 - 1.2 \times I_p}{t_c} \right) \left(\frac{z_p \times S_p - I_p}{t_c} \right) \quad \text{(pvoz/h)} \]

\[C_{l1} \quad \text{dílčí kapacita levého odbočení v době zelené protisměru (pvoz/h)} \]

\[I_p \quad \text{návrhová intenzita dopravy v protisměru (pvoz/h)} \]

\[S_p \quad \text{saturovaný tok protisměru (pvoz/h)} \]

\[t_c \quad \text{délka cyklu [s]} \]

\[z_p \quad \text{délka zeleného signálu protisměru [s]} \]
\[C_{l2} = \frac{(N_a \times 3600)}{t_c} \text{ (pvoz/h)} \]

- **\(C_{l2} \)**: dílčí kapacita levého odbočení po skončení vlastní zelené při změně fází (pvoz/h)
- **\(N_a \)**: počet míst k najítí do křižovatky a zastavení při dávání přednosti protijedoucím vozidlům automobily odbočujícími vlevo (pvoz/h)
- **\(t_c \)**: délka cyklu [s]

\[C_{l3} = S_l \frac{z_o}{t_c} \text{ (pvoz/h)} \]

- **\(C_{l3} \)**: dílčí kapacita levého odbočení neovlivněná protisměrem (pvoz/h)
- **\(S_l \)**: saturovaný tok pro levé odbočení (pvoz/h)
- **\(z_o \)**: zbývající délka zeleného signálu po skončení zeleného signálu v protisměru [s]
- **\(t_c \)**: délka cyklu [s]

6.1.14. Délky řadících pruhů

\[L_{F1} = 6,0 \times \frac{(t_c-z') \times I_v}{n_p \times 3600} \text{ [m]} \]

\[L_{F2} = \frac{6,0}{n_p} \times \left(I_v - C_v + \frac{(t_c-z') \times I_v}{3600} \right) \text{ [m]} \]

- **\(L_{F1} \)**: průměrná délka fronty na začátku zelené [m]
- **\(L_{F1} \)**: délka fronty na konci návrhové hodiny s překročenou kapacitou vjezdu [m]
- **\(t_c \)**: délka cyklu [s]
- **\(C_v \)**: kapacita vjezdu (pvoz/h)
- **\(C_v \)**: kapacita vjezdu (pvoz/h)
- **\(n_p \)**: počet řadících pruhů které tvoří společně jeden vjezd (pvoz/h)
6.1.15. Stanovení střední doby zdržení

Na základě hodnoty střední doby zdržení stanovíme odpovídající stupeň UKD. Pokud nevyhoví jeden vjezd křižovatky nevyhovuje celá křižovatka. Střední dobu zdržení na vjezdu světelně řízené křižovatky vypočteme dle vztahu:

\[t_w = 0.45 \times \left(\frac{(t_c-z')^2 \times C_v}{C_v \times t_c - I_v \times z'} + \frac{I_v \times 3600}{C_v^2 - I_v \times C_v} \right) \] [s]

\(t_w \) střední doba zdržení [s]
\(t_c \) délka cyklu [s]
\(z' \) efektivní délka zelené [s]
\(C_v \) kapacita vjezdu (pvoz/h)
\(I_v \) návrhová intenzita dopravy na vjezdu (pvoz/h)

6.2 Varianta č. 5 Světelně řízená křižovatka s minimem zásahů do stávajícího stavu

V rámci této varianty se pokusím nalézt řešení s minimem zásahů do stávající křižovatky. Budou osazena návěstidla na vjezdech a zmenšen stávající poloměr na vjezdu č.7 Sjezd Plzeň z důvodu velmi dlouhého přechodu pro chodce. Poloměr je zmenšen na 20,5m a podél vodící čáry jsou umístěny směrové sloupky typu „baliset“. Další úpravou jsou minimální nutné změny dopravního značení jako jsou stopčáry. Vodorovné značení v prostoru zminěného zmenšeného poloměru křižovatky. A změna vodorovného značení V13 a podél dopravního ostrůvku u napojení paprsku č.8 tak aby naváděla vozidla jedoucí přímým směrem z paprsku 10. na zmíněnou rampu.

Je navržen signální plán složený ze tří fází. V první fázi jsou vozidla na paprsku č.7 pro směr vpravo a rovně současně s paprskem č. 9 pro směr vlevo a rovně. V druhé fázi je paprsek č. 10 pro směry vlevo, rovně a vpravo. Ve třetí fázi jsou jen vozidla odbočující vlevo na paprsku č.7 s chodci na paprsku č.10 jde tedy z hlediska chodců o bezkolizní řešení. Fázové schéma je uvedeno na výkresu dopravního značení.
6.2.1. Paprsek 10 (Sjezd Plzeň)

U této komunikace nedošlo ke změně směrového řešení. Vjezd je zde dvoupruhový levý jízdní pruh je šířky 3,25m pravý jízdní pruh je šířky 3,0m.

Šířka výjezdu je 5,6m mezi zvýšenými obrubami v místě dopravního ostrůvku. Poloměr na výjezdu je 15,0m. Jízdní pruh se za přechodem v místě oblouku zužuje na 3,0m.

Šíře chodníků na levé straně je 2,5m včetně bezpečnostního odstupu na pravé straně 3,0m včetně bezpečnostního odstupu.

Na dopravním ostrůvku budou osazena světelná návěstidla jedno základní a druhé opakovací. Všechna vozidla z tohoto paprsku jsou ve stejné fázi označené jako fáze 2.

Zmenšením poloměru křížovatky pro pravé odbočení došlo ke zkrácení délky přechodu na 12,5m.

Pro chodce budou osazena celkem čtyři světelná návěstidla. Dvě na dopravním ostrůvku a zbylá na přilehlých chodnících.

6.2.2. Paprsek 9 (Beroun - nádraží)

U této komunikace nedošlo ke změně směrového řešení. Vjezd je zde dvoupruhový levý jízdní pruh je šířky 2,75m pravý jízdní pruh je šířky 3,5m.

Šířka mezi dopravním ostrůvkem a obrubou v místě směrového oblouku odbočovacího pruhu je 5,7m.

Šířka jízdního pruhu na výjezdu je 3,5m. Na výjezdu je umožněn přístup k sedimentační nádrži.

Šířka chodníku vedeného po levé straně komunikace je 3,00m. Chodník je oddělen zeleným pásem šířky 3,0m.

Na dopravním ostrůvku budou osazena světelná návěstidla jedno základní a druhé opakovací. Vozidla z tohoto paprsku jsou ve stejné fázi označené jako fáze 1. Odbočení vpravo není světelnou signalizací regulováno.

6.2.3. Paprsek 7 (Beroun/Plzeň)

U této komunikace nedošlo ke změně směrového řešení. Komunikace je směrově rozdělena pomocí středního dělíčího pásu šířky 3,5m.

Vjezd je zde dvoupruhový šířka jízdních pruhů je 3,5m.

80
Šířka na výjezdu je 6,0m mezi zvýšenými obrubami v místě začátku středního dělícího pásu. Poloměr na výjezdu je 20,0m. Jízdní pruh se postupně rozšiřuje na dva jízdní pruhy o šířce 3,0m.

Šířka chodníku vedeného po pravé straně komunikace je 3,5m včetně bezpečnostního odstupu. Chodník je od komunikace oddělen pruhem zeleně. V místě odbočovacího pruhu tvoří vnější linii jízdního pruhu.

Na dopravním ostrůvku budou osazena světelná návěstidla jedno základní a druhé opakovací pro přímý směr. Pro odbočení vpravo je osazena vyklizovací šipka na stožáru návěstidla pro chodce. Tato fáze bude označována jako fáze 1. Pro odbočení vlevo bude osazeno návěstidlo na stožár pro přímý směr. Pro levé odbočení bude vyhrazena samostatná fáze označená jako fáze 3.

6.2.4. Paprsek 8 (Nájezd Praha)

Výjezd je řešen jako jednopruhový. Za dopravním ostrůvkom je již komunikace řešena jako dvouprouhová. Šířka výjezdu je 7,0m mezi zvýšenými obrubami.
6.2.5. Kapacitní posouzení

<table>
<thead>
<tr>
<th>Vjezd</th>
<th>Dle TP 234</th>
<th>Požadovaná doba zdržení t_w</th>
<th>Požadovaný stupeň UKD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Č.7 Beroun / Plzeň (R,P)</td>
<td>31,6 B 0,16</td>
<td>≤50</td>
<td>C</td>
</tr>
<tr>
<td>Č.7 Beroun / Plzeň (L)</td>
<td>36,4 C 0,35</td>
<td>≤50</td>
<td>C</td>
</tr>
<tr>
<td>Č.10 Sjezd Plzeň (L,R,P)</td>
<td>42,9 C 0,612</td>
<td>≤50</td>
<td>C</td>
</tr>
<tr>
<td>Č.9 Beroun – nádraží (L,R)</td>
<td>51,2 D 0,984</td>
<td>≤70</td>
<td>D</td>
</tr>
</tbody>
</table>

Tab.18 Výsledky kapacitního posouzení na 5 let varianty č.5.
Obr. 4.7 Výpočet kapacity varianty č. 5 část 2/2

Tab. 19 Výpočet mezičasů varianty č. 5

Obr. 48 Navržený signální plán
5.4.6. Z hodnocení výsledků

Varianty č. 5 vyhovuje daným intenzitám na období maximálně 5-ti let, proto nebyla posouzena v rámci softwaru PVT Vissim. Byla uvažována pouze jako snaha o vytvoření minimalistického řešení úpravy dané křižovatky. Ve výhledovém období 20 let tedy nevyhovuje stejně jako předchozí typy okružních křižovatek.

6.2 Varianta č. 6 Světelně řízená křižovatka s přidanými řadícími pruhy

Tato varianta se neobejde bez přidání řadících pruhů na vjezdech je to jediná možnost pro výrazné zvýšení kapacity křižovatky. V rámci této varianty budou osazena návěstidla na vjezdech oproti předchozí variantě se přidají dvě návěstidla.

I zde je navržen signální plán složený ze tří fází. V první fázi jsou vozidla na paprsku č.7 pro směr vpravo a rovně současně s paprskem č. 9 pro směr vlevo a rovně a vpravo. V druhé fázi je paprsek č. 10 pro směr vlevo, rovně a vpravo. Ve třetí fázi jsou jen vozidla odbočující vlevo na paprsku č.7 s chodců na paprsku č.10 jde tedy z hlediska chodců o bezkolizní řešení. Z důvodu dlouhého vyklizovacího úseku po změně fází z 3 na 1 je na paprsku č.10 zpožděno práve odbočení o 4 s.

6.2.1. Paprsek 10 (Sjezd Plzeň)

U této komunikace nedošlo ke změně směrového řešení. Vjezd je zde dvoupruhový levý jízdní pruh je šířky 3,25m pravý jízdní pruh je šířky 3,0m. Na vjezdu došlo ke změně poloměru na výjezdu ze 40,0 m na 30,0m.

Šířka výjezdu je 5,5m mezi zvýšenými obrubami v místě dopravního ostrůvku z paprsku č.7 z paprsku č.9 je šířka výjezdu mezi zvýšenými obrubami 5,0m. Pro zkrácení přechodu prochodce byl navržen dopravní ostrůvek v místě směrce přechodu vyklizovacího úseku. Poloměr na výjezdu je 18,0m z paprsku č.7 a 13,0m z paprsku č.9. Jízdní pruh se za přechodem v místě oblouku zužuje na 3,25m. Výjezd byl rozšířen s korekcí dle přiložených vlečných křivek.

Šíře chodníků na levé straně je 2,75m včetně bezpečnostního odstupu na pravé straně 3,0m včetně bezpečnostního odstupu.

Na dopravním ostrůvku budou osazena světelná návěstidla jedno základní a druhé opakovací. Všechna vozidla z tohoto paprsku jsou ve stejné fázi označené jako fáze 2.
Pro chodce budou osazena celkem čtyři světelná návěstidla. Dvě na dopravním ostrůvku a zbylá na přilehlých chodnících.

6.2.2. Paprsek 9 (Beroun - nádraží)

U této komunikace nedošlo ke změně směrového řešení. Vjezd je zde dvoupruhový levý jízdní pruh byl vodorovným dopravním značením rozšířen na 3,5m. Pravý jízdní pruh byl zmenšen na 3,25m ve prospěch sousedního pruhu. Šířka mezi dopravním ostrůvkem a obrubou v místě směrového oblouku odbočovacího pruhu je zvětšena na 7,15m s korekcí dle přiložených vlečných křivek. Úpravou vodorovného značení V 13 a 13a byl vytvořen delší jízdní pruh, který byl ze samostatného levého odbočení změněn na společný pro přímý směr a levé odbočení.

Šířka jízdního pruhu na výjezdu je snížena na 3,0m. Na výjezdu je umožněn přístup k sedimentační nádrži.

Šířka chodníku vedeného po levé straně komunikace je 3,00 m. Chodník je oddělen zeleným pásem šířky 3,0m.

Na dopravním ostrůvku budou osazena světelná návěstidla jedno základní a druhé opakovací. Vozidla z tohoto paprsku jsou ve stejně fázi označené jako fáze 1. Odbočení vpravo je oproti předchozí variantě řízeno světelnou signalizací. Směrový signál pro odbočení vpravo je však o 4 s zpožděn z důvodu dlouhých vyklizovacích úseků při změně fáze z 3 na 1.

6.2.3. Paprsek 7 (Beroun/Plzeň)

U této komunikace nedošlo ke změně směrového řešení. Komunikace je směrově rozdělena pomocí středního dělícího pásu šířky 3,5m.

Na vnější straně původní komunikace je přidán pruh pro přímý směr a odbočení vpravo o šířce jízdního pruhu 3, m. Zbylé dva jízdní pruhy slouží pro levé odbočení a jsou v šířce 3,5m.

Šířka na výjezdu je 7,0m mezi zvýšenými obrubami v místě začátku středního dělícího pasu. Poloměr na výjezdu je zvětšen na 155,0m. Výjezd je řešen jako dvoupruhový o šířce pruhů 3,0m.

Šířka chodníku vedeného po pravé straně komunikace je 2,75m včetně bezpečnostního odstupu. Chodník je od komunikace oddělen pruhem zeleně. V místě odbočovacího pruhu tvoří vnější linii jízdního pruhu.
Na dopravním ostrůvku budou osazena světelná návěstidla jedno základní a druhé opakovací pro přímý směr. Pro odbočení vpravo je osazena vyklizovací šipka na stožáru návěstidla pro chodce. Tato fáze bude označována jako fáze 1. Pro odbočení vlevo bude osazeno návěstidlo na stožár pro přímý směr. Pro levé odbočení bude vyhrazena samostatná fáze označená jako fáze 3.

6.2.4. Paprsek 8 (Nájezd Praha)
Výjezd je zde řešen jako dvoupruhový o šířce jízdních pruhů 3,5m. Z důvodu rozšíření na 2 jízdní pruhy byl zmenšen stávající dopravní ostrůvek. Obruba byla posunuta o 1,0 m ve prospěch jízdního pruhu.
Poloměr vjezdu musel být zvětšen z původních 3,0m na 15,0m z důvodu zvětšení počtu jízdních pruhů na výjezdu na 2.

Obr.49 Situace varianty č.6

6.2.5. Kapacitní posouzení
<table>
<thead>
<tr>
<th>Vjezd</th>
<th>Dle TP 234</th>
<th>PVT Vissim</th>
<th>Požadovaná doba zdržení t_w</th>
<th>Požadovaný stupeň UKD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t_w</td>
<td>UKD</td>
<td>γ</td>
<td>t_w</td>
</tr>
<tr>
<td>Č.7 Beroun / Plzeň (R,P)</td>
<td>28,2</td>
<td>B</td>
<td>0,19</td>
<td>26,29</td>
</tr>
<tr>
<td>Č.7 Beroun / Plzeň (L)</td>
<td>32,3</td>
<td>B</td>
<td>0,20</td>
<td>36,95</td>
</tr>
<tr>
<td>Č.10 Sjezd Plzeň (L,R,P)</td>
<td>32,4</td>
<td>B</td>
<td>0,22</td>
<td>23,69</td>
</tr>
<tr>
<td>Č.9 Beroun – nádraží (L,R,P)</td>
<td>32,1</td>
<td>B</td>
<td>0,20</td>
<td>33</td>
</tr>
</tbody>
</table>

Tab.20 Výsledky kapacity posouzení na výhledovou životnost varianty č.6

Obr.50 Výpočet kapacity varianty č.6 část 1/2
Obr. 51 Navržený signální plán

Obr. 52 Výpočet kapacity varianty č. 6 2/2
5.4.6. Zhodnocení výsledků

Varianta č.6 jako jediná z navržených řešení splňuje podmínky kapacitního posouzení. Bylo dosaženo velice dobré shody mezi řešením dle TP 235 a softwarom PVT Vissim. V dopravním modelu byl stejně jako v předchozích případech uvažován vliv sousední spirálovité křižovatky. Během simulace docházelo k rovnoměrnému úbytku vozidel na všech vjezdech. Signální plán byl totožný s plánem získaným dle TP 235. Simulace se lišila tím, že nezohledňovala vliv chodců ale vzhledem k délce doby zelené na přechodech a nízké intenzitě provozu vozidel odbočujících přes přechod by nemělo docházet ke komplikacím.

7. Ekonomické hodnocení variantního řešení

Součástí diplomové práce je i ekonomické posouzení daných variant. Pro účely studie této studie byly použity podklady z Ústavu územního rozvoje UUR z roku 2015. Posouzení složí pouze jako relativní ukazatel ceny daných variant, kde byly brány v potaz jen stavební náklady. V rozpočtu byla odhadnuta jednotná cena pro zřízení návěstidel jako 2,0 mil. / křižovatku. Dále v rámci nacení nebylo řešeno odvodnění komunikace což by náklady na výstavbu jistě prodražilo.
<table>
<thead>
<tr>
<th>Položka</th>
<th>Varianta 1</th>
<th>Varianta 2</th>
<th>Varianta 3</th>
<th>Varianta 4</th>
<th>Varianta 5</th>
<th>Varianta 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odstranění silniční obruby (m)</td>
<td>733</td>
<td>854</td>
<td>851</td>
<td>851</td>
<td>-</td>
<td>737</td>
</tr>
<tr>
<td>Odstranění chodníkové obruby (m)</td>
<td>405</td>
<td>530</td>
<td>547</td>
<td>547</td>
<td>-</td>
<td>539</td>
</tr>
<tr>
<td>Odstranění stávající skladby vozovky (m²)</td>
<td>3 570</td>
<td>4 326</td>
<td>4 326</td>
<td>4 326</td>
<td>3 925</td>
<td>3 925</td>
</tr>
<tr>
<td>Odstranění chodníků s asfaltovým krytem (m³)</td>
<td>1 070</td>
<td>1 304</td>
<td>1 304</td>
<td>1 304</td>
<td>-</td>
<td>821</td>
</tr>
<tr>
<td>Sejmutí ornice (m³)</td>
<td>284</td>
<td>510</td>
<td>510</td>
<td>548</td>
<td>-</td>
<td>24</td>
</tr>
<tr>
<td>Odkopávky tř. III (m³)</td>
<td>830</td>
<td>1 507</td>
<td>1 652</td>
<td>1 684</td>
<td>-</td>
<td>64</td>
</tr>
<tr>
<td>Nová skladba vozovky (m³)</td>
<td>3 865</td>
<td>5 164</td>
<td>5 384</td>
<td>5 448</td>
<td>3 558</td>
<td></td>
</tr>
<tr>
<td>Výměna obroušné vrstvy (m²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 925</td>
<td>309</td>
</tr>
<tr>
<td>Nová silniční obruba (m)</td>
<td>1 064</td>
<td>1 150</td>
<td>1 147</td>
<td>1 127</td>
<td>-</td>
<td>294</td>
</tr>
<tr>
<td>Nová chodníková obruba (m)</td>
<td>389</td>
<td>434</td>
<td>431</td>
<td>431</td>
<td>-</td>
<td>237</td>
</tr>
<tr>
<td>Chodník s betonovou dlažbou (m³)</td>
<td>874</td>
<td>1 190</td>
<td>1 190</td>
<td>1 104</td>
<td>-</td>
<td>821</td>
</tr>
<tr>
<td>Světelná signalizace</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ANO</td>
</tr>
<tr>
<td>Prstnec + Srpovitá krajnice (m²)</td>
<td>165</td>
<td>21</td>
<td>21</td>
<td>52</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pokládka ornice (m³)</td>
<td>1 775</td>
<td>2 179</td>
<td>2 179</td>
<td>2 261</td>
<td>-</td>
<td>352</td>
</tr>
<tr>
<td>Výsev trávníku (m²)</td>
<td>1 775</td>
<td>2 179</td>
<td>2 179</td>
<td>2 261</td>
<td>-</td>
<td>352</td>
</tr>
</tbody>
</table>

Tab.22 Seznam položek provedeného rozpočtu

<table>
<thead>
<tr>
<th>Položka</th>
<th>Varianta 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odstranění silniční obruby (m)</td>
<td>388 Kč/m</td>
</tr>
<tr>
<td>Odstranění chodníkové obruby (m)</td>
<td>349 Kč/m</td>
</tr>
<tr>
<td>Odstranění stávající skladby vozovky (m²)</td>
<td>739 Kč/m²</td>
</tr>
<tr>
<td>Odstranění chodníků s asfaltovým krytem (m³)</td>
<td>700 Kč/m³</td>
</tr>
<tr>
<td>Odkopávky tř. III do 1 000 m³</td>
<td>75 Kč/m³</td>
</tr>
<tr>
<td>Odkopávky tř. III do 5 000 m³</td>
<td>60,7 Kč/m³</td>
</tr>
<tr>
<td>Sejmutí ornice</td>
<td>37 Kč/m²</td>
</tr>
<tr>
<td>Nová skladba vozovky (m³)</td>
<td>2 050 Kč/m²</td>
</tr>
<tr>
<td>Výměna obroušné vrstvy (m²)</td>
<td>585 Kč/m²</td>
</tr>
<tr>
<td>Nová silniční obruba (m)</td>
<td>777 Kč/m</td>
</tr>
<tr>
<td>Nová chodníková obruba (m)</td>
<td>178 Kč/m</td>
</tr>
<tr>
<td>Chodník s betonovou dlažbou (m³)</td>
<td>950 Kč/m²</td>
</tr>
<tr>
<td>Světelná signalizace</td>
<td>2,0 mil. / křižovatku</td>
</tr>
<tr>
<td>Prstnec + Srpovitá krajnice (m²)</td>
<td>1 373 Kč/m²</td>
</tr>
<tr>
<td>Pokládka ornice (m³)</td>
<td>33 Kč/m²</td>
</tr>
<tr>
<td>Výsev trávníku (m²)</td>
<td>23 Kč/m²</td>
</tr>
</tbody>
</table>

Tab.23 Cena jednotlivých položek rozpočtu
<table>
<thead>
<tr>
<th>Položka</th>
<th>Varianta 1</th>
<th>Varianta 2</th>
<th>Varianta 3</th>
<th>Varianta 4</th>
<th>Varianta 5</th>
<th>Varianta 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odstranění silniční obruby (m)</td>
<td>240 404</td>
<td>331 352</td>
<td>330 188</td>
<td>330 188</td>
<td>-</td>
<td>285 956</td>
</tr>
<tr>
<td>Odstranění chodníkové obruby (m)</td>
<td>141 345</td>
<td>184 970</td>
<td>190 903</td>
<td>190 903</td>
<td>-</td>
<td>188 111</td>
</tr>
<tr>
<td>Odstranění stávající skladby vozovky (m²)</td>
<td>2 638 230</td>
<td>3 196 914</td>
<td>3 196 914</td>
<td>3 196 914</td>
<td>-</td>
<td>633 450</td>
</tr>
<tr>
<td>Odstranění chodníků s asfaltovým krytem (m³)</td>
<td>749 000</td>
<td>912 800</td>
<td>912 800</td>
<td>912 800</td>
<td>-</td>
<td>574 700</td>
</tr>
<tr>
<td>Sejmutí ornice (m³)</td>
<td>10 508</td>
<td>18 870</td>
<td>18 870</td>
<td>20 276</td>
<td>-</td>
<td>888</td>
</tr>
<tr>
<td>Odkopávky tř. III (m³)</td>
<td>62 250</td>
<td>91 475</td>
<td>100 277</td>
<td>102 219</td>
<td>-</td>
<td>3 885</td>
</tr>
<tr>
<td>Nová skladba vozovky (m³)</td>
<td>3 865</td>
<td>5 164</td>
<td>5 384</td>
<td>5 448</td>
<td>-</td>
<td>3 558</td>
</tr>
<tr>
<td>Výměna obrousne vrstvy (m²)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2 296 125</td>
</tr>
<tr>
<td>Nová silniční obruba (m)</td>
<td>826 728</td>
<td>893 550</td>
<td>891 219</td>
<td>875 679</td>
<td>-</td>
<td>228 438</td>
</tr>
<tr>
<td>Nová chodníková obruba (m)</td>
<td>69 242</td>
<td>77 252</td>
<td>76 718</td>
<td>76 718</td>
<td>-</td>
<td>42 186</td>
</tr>
<tr>
<td>Chodník s betonovou dlažbou (m³)</td>
<td>830 300</td>
<td>1 130 500</td>
<td>1 130 500</td>
<td>1 048 800</td>
<td>-</td>
<td>779 950</td>
</tr>
<tr>
<td>Světelná signalizace</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2 000 000</td>
</tr>
<tr>
<td>Prstenec + Srpovitá krajnice (m²)</td>
<td>226 545</td>
<td>28 833</td>
<td>28 833</td>
<td>71 396</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pokládka ornice (m²)</td>
<td>58 575</td>
<td>71 907</td>
<td>71 907</td>
<td>74 613</td>
<td>-</td>
<td>11 616</td>
</tr>
<tr>
<td>Výsev trávniku (m²)</td>
<td>40 825</td>
<td>50 117</td>
<td>50 117</td>
<td>52 003</td>
<td>-</td>
<td>8 096</td>
</tr>
</tbody>
</table>

Tab.24 Ceny položek jednotlivých variant (Kč bez DPH)

<table>
<thead>
<tr>
<th>Stanovená cena bez DPH</th>
<th>Varianta 1</th>
<th>Varianta 2</th>
<th>Varianta 3</th>
<th>Varianta 4</th>
<th>Varianta 5</th>
<th>Varianta 6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 897 817</td>
<td>6 993 704</td>
<td>7 004 630</td>
<td>6 957 957</td>
<td>4 296 125</td>
<td>6 842 264</td>
</tr>
</tbody>
</table>

Tab.25 Výsledné ceny jednotlivých variant (Kč bez DPH)

Z tabulky 25 vyplyvá, že nejdražší variantou je varianta č.3. Varianta č.6 která jako jediná vyhověla kapacitním požadavkům v návrhové životnosti je v pořadí ceny na čtvrtém místě. Vyšší cena je pochopitelně dána pořizovacími náklady na světelně signalizační zařízení. V rámci provozních nákladů, které zde nebyly posuzovány by jistě světelně řízená křižovatka vyšla dražší než všechny typy okružních křižovatok.

Z pohledu záboru pozemků, které v ekonomickém posouzení nebyly zohledněny by světelně řízená křižovatka vyšla zaručeně lépe než křižovatky okružní.
8. Ověření průjezdnosti křižovatky

Obr.53 Návrhové vozidlo pro posouzení průjezdu křižovatkou
9. Multikriteriální hodnocení MCA

Původně plánovanou součástí této diplomové práce bylo multikriteriální hodnocení vytvořených variant. Vzhledem k tomu, že bylo nalezeno pouze jedno řešení, které by bylo dostatečně kapacitně vyhovující je multikriteriální analýza zbytečná. Jejím výsledkem by bylo, že jediná akceptovatelná varianta je právě varianta č.6. Důvody, proč by k tomu došlo vysvětlím níže.

Multikriteriální hodnocení je jediný postup, který dokáže objektivně vyhodnotit soubor variantních řešení z hlediska více kritérií a jejich porovnání. Přestože je do metody vnášen subjektivní prvek z hlediska určování dopadů jednotlivých kritérií do celkového hodnocení bylo snahou tento tento negativní prvek co nejlépe objektivizovat za pomocí velkého statistického souboru hodnotitelů a na jejichž odborném názoru byly stanoveny váhy jednotlivých kritérií. Obecně lze říci, multikriteriální hodnocení simuluje rozhodovací proces člověka při výběru nejvhodnějšího výsledku. Základní postup je velice jednoduše definovatelný v průběhu let bylo matematicky definováno velké množství metod hodnocení, které lze použít. Každá metoda má definovány podmínky, za nichž funguje. Jejich nerespektování může vést k nevěrohodnosti výsledků. Ve státní správě je často používána metoda CEA (cost effectiveness analysis) v oblasti dopravy je však vhodnější použití metodu CBA (cost benefits analysis).

9.1 Kritéria multikriteriálního hodnocení

Řešení problému pomocí multikriteriálního hodnocení můžeme v našem případě rozdělit do dvou fází:

- **Fáze eliminační**

 V eliminační fázi máme stanovené rozhodující hledisko pro každou variantu. Pro náš případ je to hodnota kapacity křižovatky. V případě, že dojde k tomu, že křižovatka kapacitně nevyhovuje je z další fáze hodnocení vyřazena.

- **Fáze hodnotící**

 V hodnotící fázi již hodnotíme na základě stanovených kritérií jednotlivé varianty, které prošly eliminační fází.

 U dopravních staveb je použita celá řada hledisek pro posouzení:
• **Hlediska ekologická** (hluk, emise, vibrace, zábor pozemků, zatížení ekosystému, vliv na faunu a flóru, vliv na evropsky významné lokality)

• **Hlediska zřizovatele** (investiční náklady, vyvolané investice)

• **Hlediska uživatelů** (bezpečnost provozu, spotřeba pohoných hmot a času, kapacita a kvalita dopravy)

• **Hlediska celospolečenská** (estetické působení, vztah k funkci území)

V současné době má u křižovatek nejvyšší váhu bezpečnost následovaná střední dobou zdržení, provozními nebo stavebními náklady, zplodinami, hlukem. Kritéria za bezpečností nemusí být vždy v tomto pořadí, ale bezpečnost je na prvním místě.

Výstupem z procesu multikriteriálního hodnocení je bodové ohodnocení variant.

To lze provést jednoduše např. pomocí Metfesselovy alokace. Ta předpokládá rozdělení 100% mezi jednotlivá kritéria dle jejich důležitosti. Pro bodové ohodnocení lze použít stupnici 0-10. Kdy vyšší číslo značí lepší hodnocení.

Hodnocení se provede tak, že váhu kritéria násobíme bodovým ohodnocením varianty a součet provedených součinů se rovná celkovému hodnocení.

Na následujícím jednoduchém příkladu vysvětlím postup hodnocení:

Máme celkem dvě varianty a 6 kritérií z nichž budeme hledat vhodnější řešení

w; je váha jednotlivého kritéria

- Bezpečnost \(w_1 = 0,35 \)
- Střední dobu zdržení \(w_2 = 0,20 \)
- Provozní náklady \(w_3 = 0,15 \)
- Stavební náklady \(w_4 = 0,14 \)
- Zplodiny \(w_5 = 0,12 \)
- Hluk \(w_6 = 0,04 \)

Součet \(w; \) je roven:

\[
W = w_1 + w_2 + w_3 + w_4 + w_5 + w_6
\]

\[
w = 0,35 + 0,20 + 0,15 + 0,14 + 0,12 + 0,04
\]

\[
w = 1 = 100\%
\]
Tab.26 Bodové hodnocení variant

Bodové hodnocení získáme ze vztahu:

\[C_i = \sum_{i=1}^{n} B_i \cdot w_i \]

\(C_i \) bodové ohodnocení varianty

\(B_i \) je bodové ohodnocení kritéria

\(C_1 = B_1 \cdot w_1 + B_2 \cdot w_2 + B_3 \cdot w_3 + B_4 \cdot w_4 + B_5 \cdot w_5 + B_6 \cdot w_6 \)

\(C_1 = 8 \cdot 0,35 + 4 \cdot 0,2 + 7 \cdot 0,15 + 5 \cdot 0,14 + 4 \cdot 0,12 + 6 \cdot 0,04 \)

\(C_1 = 6,07 \)

Pro \(C_2 \) je výpočet obdobný a po dosazení vyjde:

\(C_1 = 6,09 \)

Na základě multikriteriálního hodnocení vychází vhodnější varianta č.2
10 Závěr

Příloha G – Pentlogramy dopravy

PRŮSEČNÁ KŘIŽOVATKA U EXITU 18 DÁLNICE D5

PENTLOGRAM V DOPOLEDNÍ ŠPIČKOVÉ HODINĚ 7:00-8:00
roku 2017 (pro OK)

17.10.2017 (přepočtená vozidla)

přepočtové koeficienty :
- motocykly - 0,8
- osobní aut. - 1,0
- nákl. + aut. - 2,0
- nákl. soupravy - 3,0

Σ přepočtených vozidel/h = 1672

Obr.54 Pentlogram dopravy pro rok 2017 pro okružní křižovatky
PRŮSEČNÁ KŘIŽOVATKA U EXITU 18 DÁLNICE D5

PENTLOGRAM V DOPOLEDNÍ ŠPIČKOVÉ HODINĚ 7:00-8:00
prognóza pro rok 2037 (pro OK)

kategorie komunikací:
- paprsky 7,9
- silnice III, třídy
- dálnice

koeficienty vývoje intenzit dopravy pro všechna vozidla:

<table>
<thead>
<tr>
<th></th>
<th>II+III.</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>1,12</td>
<td>1,19</td>
</tr>
<tr>
<td>2037</td>
<td>1,50</td>
<td>1,73</td>
</tr>
</tbody>
</table>

koeficienty prognózy intenzit dopravy:

<table>
<thead>
<tr>
<th></th>
<th>II+III.</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k_p)</td>
<td>1,34</td>
<td>1,50</td>
</tr>
</tbody>
</table>

\[\Sigma \text{ přečtených vozidel/h} = 2297\]

Obr.55 Pentlogram dopravy pro rok 2037 pro okružní křižovatky
PRŮSEČNÁ KŘIŽOVATKA U EXITU 18 DÁLNICE D5

PENTLOGRAM V DOPOLEDNÍ ŠPIČKOVÉ HODINĚ 7:00-8:00

rok 2017 (pro SSZ)

17.10.2017 (přečtená vozidla)

přečtené koeficienty:
- motocykl. - 0,6
- osobní aut. - 1,0
- náklad. aut. - 1,7
- nákl. brouk. - 2,5

Σ přečtených vozidel/h = 1644

Obr. 56 Pentlogram dopravy pro rok 2017 pro SSZ
PRŮSEČNÁ KŘIŽOVATKA U EXITU 18 DÁLNICE D5

PENTLOGRAM V DOPOLEDNÍ ŠPIČKOVÉ HODINĚ 7:00-8:00

prognóza pro rok 2037 (pro SSZ)

<table>
<thead>
<tr>
<th>kategorie komunikací</th>
<th>II. + III.</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>pacisky 7,9</td>
<td>1,12</td>
<td>1,19</td>
</tr>
<tr>
<td>pacisky 8,10</td>
<td>1,18</td>
<td>1,70</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>koeficienty progresy intenzity dopravy</th>
<th>II. + III.</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>k₀</td>
<td>1,34</td>
<td>1,50</td>
</tr>
</tbody>
</table>

Σ přepočtěných vozidel/h = 2260

Obr.57 Pentlogram dopravy pro rok 2037 pro SSZ
Obr.58 Pentlogram dopravy pro rok 2017 pro software PVT Vissim
PRŮSEČNÁ KŘIŽOVATKA U EXITU 18 DÁLNICE D5

PENTLOGRAM V DOPOLEDNÍ ŠPIČKOVĚ HODINĚ 7:00-8:00

prognóza pro rok 2037 (pro dopravní model)

kategorie komunikací:
- popisky 7,9 - silnice III, třídy
- popisky 8,10 - dálnice

koeficienty vývoje intenzity dopravy pro všechna vozidla:

<table>
<thead>
<tr>
<th></th>
<th>II+III</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>1,12</td>
<td>1,19</td>
</tr>
<tr>
<td>2037</td>
<td>1,50</td>
<td>1,73</td>
</tr>
</tbody>
</table>

koeficienty prognózy intenzity dopravy:

<table>
<thead>
<tr>
<th></th>
<th>II+III</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>1,54</td>
<td>1,50</td>
</tr>
</tbody>
</table>

Σ (M+O+N+A+K)/hod = 2154

Obr.59 Pentlogram dopravy pro rok 2037 pro software PVT Vissim
OKRUŽNÍ KŘIŽOVATKA U EXITU 18 DÁLNICE D5

PENTLOGRAM V DOPOLEDNÍ ŠPIČKOVÉ HODINĚ 7:00-8:00

17.10.2017 (motocykly+osobní vozidla / nákladní vozidla + autobusy)
opdil nákladních vozidel = 7,56 %

Σ (M+O)/(N+A+K)/hod = 1762/144

Obr.60 Pentlogram dopravy pro rok 2017 pro software PVT Vissim
PENTLOGRAM V DOPOLEDNÍ ŠPIČKOVÉ HODINĚ 7:00-8:00
prognóza pro rok 2037 (pro dopravní model)

kategorie komunikací:
- paprsky 2, 4, 5 - silnice III, třetí
- paprsky 1, 3 - dálnice

koeficienty vývoje intenzity dopravy pro všechna vozidla:
<table>
<thead>
<tr>
<th>rok</th>
<th>II. + III.</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>1.12</td>
<td>1.19</td>
</tr>
<tr>
<td>2037</td>
<td>1.50</td>
<td>1.79</td>
</tr>
</tbody>
</table>

koeficienty prognózy intenzity dopravy:

<table>
<thead>
<tr>
<th>rok</th>
<th>II. + III.</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.34</td>
<td>1.50</td>
</tr>
</tbody>
</table>

Σ (M+O+N+A+K)/hod = 2604

Obr. 61 Pentlogram dopravy pro rok 2037 pro software PVT Vissim
Příloha H – Výsledky výpočtu kapacit křižovatek na začátku životnosti

Kapacitní posouzení okružní křižovatky dle TP 231

<table>
<thead>
<tr>
<th>Paprsek</th>
<th>Název komunikace</th>
<th>pož. st. UKD</th>
<th>(t_{wk}) (s)</th>
<th>(t_{vdl}) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Beroun / Píšť</td>
<td>C</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Špíž / Píšť</td>
<td>C</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Beroun - nádraží</td>
<td>D</td>
<td>45</td>
<td></td>
</tr>
</tbody>
</table>

Vstupní parametry

<table>
<thead>
<tr>
<th>Paprsek</th>
<th>Název komunikace</th>
<th>(n_h)</th>
<th>(n_l)</th>
<th>(n_p)</th>
<th>typ vjezdu</th>
<th>(R_1) (m)</th>
<th>(R_2) (m)</th>
<th>(b) (m)</th>
<th>(d_a) (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Beroun / Píšť</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>10,5</td>
<td>19,5</td>
<td>17,2</td>
<td>0,0</td>
</tr>
<tr>
<td>2</td>
<td>Špíž / Píšť</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>15,5</td>
<td>10,5</td>
<td>16,9</td>
<td>0,0</td>
</tr>
<tr>
<td>3</td>
<td>Beroun - nádraží</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>15,5</td>
<td>20,5</td>
<td>13,8</td>
<td>0,0</td>
</tr>
</tbody>
</table>

Geometrické podmínky

<table>
<thead>
<tr>
<th>Paprsek</th>
<th>Název komunikace</th>
<th>(a_{th})</th>
<th>(a_{vdl})</th>
<th>(a_{ps})</th>
<th>(a_{vuj})</th>
<th>(a_{s})</th>
<th>(a_{h})</th>
<th>(a_{v})</th>
<th>(a_{n})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Beroun / Píšť</td>
<td>2</td>
<td>851</td>
<td>1221</td>
<td>370</td>
<td>9,7</td>
<td>0,697</td>
<td>35,9117</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>Špíž / Píšť</td>
<td>825</td>
<td>335</td>
<td>497</td>
<td>162</td>
<td>22,1</td>
<td>0,675</td>
<td>34,0404</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>Beroun - nádraží</td>
<td>836</td>
<td>486</td>
<td>447</td>
<td>-39</td>
<td>-100,5</td>
<td>1,088</td>
<td>231,21</td>
<td>F</td>
</tr>
</tbody>
</table>

Intenzity dopravy (p/o/h)

<table>
<thead>
<tr>
<th>do paprsku</th>
<th>z paprsku</th>
<th>Název komunikace</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>Součet</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Beroun / Píšť</td>
<td>0</td>
<td>26</td>
<td>260</td>
<td>565</td>
<td></td>
<td></td>
<td></td>
<td>851</td>
</tr>
<tr>
<td>2</td>
<td>Špíž / Píšť</td>
<td>236</td>
<td>0</td>
<td>64</td>
<td>335</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Beroun - nádraží</td>
<td>400</td>
<td>2</td>
<td>0</td>
<td>84</td>
<td></td>
<td></td>
<td></td>
<td>486</td>
</tr>
<tr>
<td>Součet</td>
<td></td>
<td>636</td>
<td>28</td>
<td>314</td>
<td>684</td>
<td></td>
<td></td>
<td></td>
<td>1672</td>
</tr>
</tbody>
</table>

Kapacita vjezdu

<table>
<thead>
<tr>
<th>Paprsek</th>
<th>Název komunikace</th>
<th>(I_{p}) (p/o/h)</th>
<th>(I_{v}) (p/o/h)</th>
<th>(I_{s}) (p/o/h)</th>
<th>Rez (p/o/h)</th>
<th>(t_{v}) (s)</th>
<th>(a_{v})</th>
<th>(a_{h})</th>
<th>(M_{v}) (m)</th>
<th>UKD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Beroun / Píšť</td>
<td>2</td>
<td>851</td>
<td>1221</td>
<td>370</td>
<td>9,7</td>
<td>0,697</td>
<td>35,9117</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Špíž / Píšť</td>
<td>825</td>
<td>335</td>
<td>497</td>
<td>162</td>
<td>22,1</td>
<td>0,675</td>
<td>34,0404</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Beroun - nádraží</td>
<td>836</td>
<td>486</td>
<td>447</td>
<td>-39</td>
<td>-100,5</td>
<td>1,088</td>
<td>231,21</td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>

Stanovené úrovně na vjezdech okružní křižovatky

<table>
<thead>
<tr>
<th>Paprsek</th>
<th>Název komunikace</th>
<th>(I_{p}) (p/o/h)</th>
<th>(I_{v}) (p/o/h)</th>
<th>(I_{s}) (p/o/h)</th>
<th>Rez (p/o/h)</th>
<th>(t_{v}) (s)</th>
<th>(a_{v})</th>
<th>(a_{h})</th>
<th>(M_{v}) (m)</th>
<th>UKD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Beroun / Píšť</td>
<td>636</td>
<td>1277</td>
<td>0,408</td>
<td>AND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Špíž / Píšť</td>
<td>28</td>
<td>1200</td>
<td>0,023</td>
<td>AND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Beroun - nádraží</td>
<td>324</td>
<td>1513</td>
<td>0,214</td>
<td>AND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Městská Praha</td>
<td>684</td>
<td>1200</td>
<td>0,570</td>
<td>AND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Závěr

Obr.62 Protokol s výpočtem kapacity okružní křižovatky s bypassy na začátku životnosti
Kapacitní posouzení okružní křížovatky DLE TP 234

Název křižovatky
Beroun, 55 x 11533

Posuzovaný stav
stav 2017, špičková hodina 7:00 - 8:00

Typ okružní křížovatky
spirálovitá, typ vejce

Vnitřní průměr
57,6

Vstupní parametry

<table>
<thead>
<tr>
<th>Paprsek</th>
<th>Název komunikace</th>
<th>pos. v UKD</th>
<th>t_{inj} (s)</th>
<th>poznámka</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Beroun / Přeň</td>
<td>C</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Sjezd Přeň</td>
<td>C</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Beroun - nádraží</td>
<td>D</td>
<td>45</td>
<td></td>
</tr>
</tbody>
</table>

Geometrické podmínky

<table>
<thead>
<tr>
<th>Paprsek</th>
<th>Název komunikace</th>
<th>n_a</th>
<th>n_1</th>
<th>n_2</th>
<th>typ vjezu</th>
<th>R_1 (m)</th>
<th>R_2 (m)</th>
<th>b (m)</th>
<th>d_0 (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Beroun / Přeň</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>typ 1</td>
<td>40,5</td>
<td></td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Sjezd Přeň</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>typ 1</td>
<td>20,5</td>
<td></td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Beroun - nádraží</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>typ 1</td>
<td>40,5</td>
<td></td>
<td>0,0</td>
<td></td>
</tr>
</tbody>
</table>

Intensity dopravy (poz/h)

<table>
<thead>
<tr>
<th>do paprsku</th>
<th>Název komunikace</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Součet poz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Beroun / Přeň</td>
<td>0</td>
<td>26</td>
<td>260</td>
<td>565</td>
<td></td>
<td></td>
<td>851</td>
</tr>
<tr>
<td>2</td>
<td>Sjezd Přeň</td>
<td>236</td>
<td>0</td>
<td>64</td>
<td>35</td>
<td></td>
<td></td>
<td>335</td>
</tr>
<tr>
<td>3</td>
<td>Beroun - nádraží</td>
<td>400</td>
<td>2</td>
<td>0</td>
<td>84</td>
<td></td>
<td></td>
<td>486</td>
</tr>
</tbody>
</table>

| Součet | 636 | 28 | 324 | 684 | 1672 |

Kapacita vjezu

<table>
<thead>
<tr>
<th>Paprsek</th>
<th>Název komunikace</th>
<th>l_1 (pov/h)</th>
<th>l_2 (pov/h)</th>
<th>c (pov/h)</th>
<th>R_{rez} (pov/h)</th>
<th>t_1 (s)</th>
<th>t_2 (s)</th>
<th>a_1</th>
<th>$N_{60%}$ (m)</th>
<th>UKD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Beroun / Přeň</td>
<td>2</td>
<td>851</td>
<td>273</td>
<td>1223</td>
<td>2,9</td>
<td>0,140</td>
<td></td>
<td>12,4809</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>Sjezd Přeň</td>
<td>825</td>
<td>135</td>
<td>745</td>
<td>410</td>
<td>8,8</td>
<td>0,449</td>
<td></td>
<td>14,522</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>Beroun - nádraží</td>
<td>836</td>
<td>486</td>
<td>952</td>
<td>506</td>
<td>7,1</td>
<td>0,490</td>
<td></td>
<td>17,0805</td>
<td>A</td>
</tr>
</tbody>
</table>

Stanovené úroveň na vjezdech okružní křížovatky

<table>
<thead>
<tr>
<th>Kapacita vjezu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ano</td>
</tr>
</tbody>
</table>

Kapacita vjezu

<table>
<thead>
<tr>
<th>Paprsek</th>
<th>Název komunikace</th>
<th>l_1 (pov/h)</th>
<th>l_2 (ch/h)</th>
<th>c_1 (pov/h)</th>
<th>a_1</th>
<th>Kapacita vyhovuje</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Beroun / Přeň</td>
<td>636</td>
<td>2250</td>
<td>0,283</td>
<td>ANO</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Sjezd Přeň</td>
<td>728</td>
<td>1295</td>
<td>0,022</td>
<td>ANO</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Beroun - nádraží</td>
<td>324</td>
<td>2250</td>
<td>0,144</td>
<td>ANO</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Nájezd Praha</td>
<td>664</td>
<td>1000</td>
<td>0,684</td>
<td>ANO</td>
<td></td>
</tr>
</tbody>
</table>

Stanovené úroveň dopravy na vjezdech vyhovuje?

| ANO |

Závěr: Křížovatka kapacitně vyhovuje. Na všech vjezdech bylo dosaženo stupně UKD A.
Obr. 64 Protokol s výpočtem kapacity turbo - okružní křižovatky typu základní na začátku životnosti
Kapacitní posouzení okružní křížovatky DLE TP 134

<table>
<thead>
<tr>
<th>Název křížovatky</th>
<th>Beroun, DS x 11513</th>
</tr>
</thead>
<tbody>
<tr>
<td>Posuzován stav</td>
<td>stav 2037, špičková hodina 7:00 - 8:00</td>
</tr>
<tr>
<td>Typ okružní křížovatky</td>
<td>správovitý typ atypická</td>
</tr>
<tr>
<td>Vnitřní průměr</td>
<td>57,6</td>
</tr>
</tbody>
</table>

Vstupní parametry

<table>
<thead>
<tr>
<th>Popsrek</th>
<th>Název komunikace</th>
<th>poč. st. UKD</th>
<th>t_{vzn}(s)</th>
<th>poznamka</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Beroun / Plzeň</td>
<td>C</td>
<td>10</td>
<td>Využitelné napětí vlastních otočných s popisky, z nízké intenzity křížen atypické na začátku životnosti</td>
</tr>
<tr>
<td>2</td>
<td>Sjed Plzeň</td>
<td>C</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Beroun - nádraží</td>
<td>D</td>
<td>45</td>
<td></td>
</tr>
</tbody>
</table>

Geometrické podmínky

<table>
<thead>
<tr>
<th>Popsrek</th>
<th>Název komunikace</th>
<th>n_{x}</th>
<th>n_{y}</th>
<th>n_{z}</th>
<th>typ vjezdu</th>
<th>R_{x} (m)</th>
<th>R_{y} (m)</th>
<th>b (m)</th>
<th>d_{v} (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Beroun / Plzeň</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>typ 1</td>
<td>40,5</td>
<td>0,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Sjed Plzeň</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>typ 3</td>
<td>20,5</td>
<td>0,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Beroun - nádraží</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>typ 1</td>
<td>40,5</td>
<td>0,6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intenzity dopravy (pvoz/h)

<table>
<thead>
<tr>
<th>Popsrek</th>
<th>Název komunikace</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>součet</th>
<th>pozn.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Beroun / Plzeň</td>
<td>0</td>
<td>16</td>
<td>100</td>
<td>505</td>
<td>851</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Sjed Plzeň</td>
<td>236</td>
<td>0</td>
<td>64</td>
<td>35</td>
<td>335</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Beroun - nádraží</td>
<td>400</td>
<td>2</td>
<td>0</td>
<td>84</td>
<td>486</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Součet | 856 | 324 | 1084 | 1672 | | |

Kapacita vjezdu

<table>
<thead>
<tr>
<th>Popsrek</th>
<th>Název komunikace</th>
<th>i_{x} (pvoz/h)</th>
<th>i_{y} (pvoz/h)</th>
<th>c_{x} (pvoz/h)</th>
<th>R_{x} (pvoz/h)</th>
<th>t_{v} (s)</th>
<th>a_{v}</th>
<th>N_{v} (h)</th>
<th>UKD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Beroun / Plzeň</td>
<td>1</td>
<td>851</td>
<td>2074</td>
<td>1225</td>
<td>2,9</td>
<td>0,410</td>
<td>12,4409</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>Sjed Plzeň</td>
<td>815</td>
<td>335</td>
<td>974</td>
<td>539</td>
<td>5,5</td>
<td>0,344</td>
<td>938407</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>Beroun - nádraží</td>
<td>856</td>
<td>406</td>
<td>984</td>
<td>478</td>
<td>7,7</td>
<td>0,204</td>
<td>18,089</td>
<td>A</td>
</tr>
</tbody>
</table>

Stanovená úroveň na vjezdech okružní křížovatky

<table>
<thead>
<tr>
<th>Název komunikace</th>
<th>l_{y} (pvoz/h)</th>
<th>l_{x} (pvoz/h)</th>
<th>c_{x} (pvoz/h)</th>
<th>a_{v}</th>
<th>Kapacita vyhovuje</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>890</td>
<td>2250</td>
<td>6,396</td>
<td>ANO</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>38</td>
<td>1295</td>
<td>0,029</td>
<td>ANO</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>445</td>
<td>1500</td>
<td>6,287</td>
<td>ANO</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>914</td>
<td>1500</td>
<td>6,616</td>
<td>ANO</td>
<td></td>
</tr>
</tbody>
</table>

Stanovená úroveň dopravy na vjezdech vyhovuje?

ANO

Obr.65 Protokol s výpočtem kapacity turbo - okružní křížovatky atypické na začátku životnosti
Obr. 66 Výpočet kapacity varianty č. 5 na začátku životnosti část 1/2

Obr. 67 Výpočet kapacity varianty č. 5 na začátku životnosti část 2/2

Obr. 68 Navržený signální plán pro variantu č. 5 na začátku životnosti
Obr. 69 Výpočet kapacity varianty č. 6 na začátku životnosti část 1/2

Obr. 70 Výpočet kapacity varianty č. 6 na začátku životnosti část 2/2

Obr. 71 Navržený signální plán pro variantu č. 6 na začátku životnosti

110
11. Seznam použité literatury

ČSN 73 6101	Projektování silnic a dálnic
ČSN 73 6102	Projektování křižovatek na pozemních komunikacích +Z1
CŠN 73 6110	Projektování místních komunikací + Z1
ČSN 01 3466	Výkresy inženýrských staveb - Výkresy pozemních komunikací
TP 81	Navrhování světelných signalizačních zařízení pro řízení provozu na pozemních komunikacích
TP 133	Zásady pro vodorovné dopravní značení na pozemních komunikacích
TP 135	Projektování okružních křižovatek na silnicích a místních komunikacích
TP 170	Navrhování vozovek pozemních komunikací + Dodatek TP170
TP 171	Vlečné křivky pro ověřování průjezdnosti směrovních prvků pozemních komunikací
TP 189	Stanovení intenzit dopravy na pozemních komunikacích
TP 225	Prognóza intenzit automobilové dopravy II.vydání
TP 234	Posuzování kapacity okružních křižovatek
TP 235	Posuzování kapacity světelně řízených křižovatek

Použitý software
- Archicad 12
- Autocad 13
- AutoTURN 8
- PVT Vissim 10
12. Seznam tabulek

Tab.1 Orientační maximální kapacity různých typů křižovatek (převzato z ČSN 73 61 02) .. 19
Tab.2 Orientační maximální kapacity různých typů křižovatek (převzato z ČSN 73 61 02) .. 20
Tab.3 Limitní hodnoty střední doby zdržení na vjezdu okružní křižovatky (převzato z TP 234) .. 21
Tab.4 Statistické vyhodnocení nehodovosti v silničním provozu na vybrané lokalitě (převzato JVDM) .. 39
Tab.5 Vyhodnocení nehod dle příčiny (převzato JVDM) .. 39
Tab.6 Vyhodnocení nehod dle druhu a zavinění nehody (převzato JVDM) .. 40
Tab.7 Vyhodnocení nehod dle viditelnosti (převzato JVDM) .. 40
Tab.8 Vyhodnocení nehod dle rozhledových poměrů a stavu vozovky (převzato JVDM) .. 41
Tab.9 Seznam dotčených parcel .. 46
Tab.10 Sčítání dopravy z roku 2016 (zdroj www.scitani2016.rsd.cz) .. 47
Tab.11 Porovnání výsledků kapacitního posouzení .. 54
Tab.12 Porovnání výsledků kapacitního posouzení .. 58
Tab.13 Porovnání výsledků kapacitního posouzení .. 64
Tab.14 Porovnání výsledků kapacitního posouzení .. 69
Tab.15 Limitní hodnoty střední doby zdržení na vjezdu do světelně řízené křižovatky 72
Tab.16 Přepočtové koeficienty skladby dopravního proudu pro světelně řízené křižovatky .. 73
Tab.17 Efektivní délka zelené .. 74
Tab.18 Výsledky kapacitního posouzení na 5 let varianty č.5 ... 82
Tab.19 Výpočet mezičasů varianty č.5 .. 83
Tab.20 Výsledky kapacitního posouzení na výhledovou životnost varianty č.6 87
Tab.21 Výpočet mezičasů varianty č.6 .. 89
Tab.22 Seznam položek provedeného rozpočtu .. 90
Tab.23 Cena jednotlivých položek rozpočtu .. 90
Tab.24 Ceny položek jednotlivých variant (Kč bez DPH) ... 91
Tab.25 Výsledné ceny jednotlivých variant (Kč bez DPH) ... 91
Tab.26 Bodové hodnocení variant ... 95

112
13. Seznam obrázků

Obr.1 Columbus Circle, New York, 1907.. 8
Obr.2 Popis prvků mini-okružní křižovatky (převzato z TP 135)...................... 10
Obr.3 Znázornění počtu kolizních bodů.. 10
Obr.4 Mini-okružní křižovatka Prostějov... 11
Obr.5 Popis prvků jednopruhové okružní křižovatky (převzato z TP 135)........... 12
Obr.6 Jednopruhová okružní křižovatka Hořovice .. 12
Obr.7 Popis prvků turbo-okružní křižovatky (převzato z TP 135)...................... 14
Obr.8 Turbo-okružní křižovatka Beroun .. 14
Obr.9 Turbo-okružní křižovatka typ vejce (převzato z TP 135)......................... 15
Obr.10 Turbo-okružní křižovatka typ základní (převzato z TP 135)............... 15
Obr.11 Turbo-okružní křižovatka typ koleno (převzato z TP 135)................... 16
Obr.12 Turbo-okružní spirálovitá křižovatka ... 16
Obr.13 Turbo-okružní křižovatka typ rotorová ... 17
Obr.14 Typy vjezdů spirálovité okružní křižovatky (převzato z TP 234) 20
Obr.15 Jednotný protokol kapacitního posouzení (převzato z TP 234) 28
Obr.16 Úvodní okno ... 30
Obr.17 Nastavení měřítka ... 30
Obr.18 Vložení paprsku .. 31
Obr.19 Vytvoření spojnice .. 31
Obr.20 Typy vozidel ... 32
Obr.21 Vložení intenzity vozidel na paprsku ... 33
Obr.22 Zadání tras vozidel včetně procentuálního zastoupení volby dané trasy 33
Obr.23 Vložení zpomalenovacího úseku .. 34
Obr.24 Nastavení konfliktních zón .. 34
Obr.25 Místo pro sběr dat ... 35
Obr.26 Simulace spuštěná v režimu 2D ... 36
Obr.27 Řešená lokalita ... 37
Obr. 60 Pentlogram dopravy pro rok 2017 pro software PVT Vissim 103
Obr. 61 Pentlogram dopravy pro rok 2037 pro software PVT Vissim 104
Obr. 62 Protokol s výpočtem kapacity okružní křižovatky s bypassy na začátku životnosti .. 105
Obr. 63 Protokol s výpočtem kapacity turbo - okružní křižovatky typu vejce na začátku životnosti .. 106
Obr. 64 Protokol s výpočtem kapacity turbo - okružní křižovatky typu základní na začátku životnosti .. 107
Obr. 65 Protokol s výpočtem kapacity turbo - okružní křižovatky atypické na začátku životnosti .. 108
Obr. 66 Výpočet kapacity varianty č. 5 na začátku životnosti část 1/2 109
Obr. 67 Výpočet kapacity varianty č. 5 na začátku životnosti část 2/2 109
Obr. 68 Navržený signální plán pro variantu č. 5 na začátku životnosti 109
Obr. 69 Výpočet kapacity varianty č. 6 na začátku životnosti část 1/2 110
Obr. 70 Výpočet kapacity varianty č. 6 na začátku životnosti část 2/2 110
Obr. 71 Navržený signální plán pro variantu č. 6 na začátku životnosti 110