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Abstract

First, the thesis reviews the recent work in adaptive approximation of nonlinear dynamic systems
with  sinusoidal  nonlinearities,  including  fundamental  approaches  of  high-order  neural  units
(HONU) and their supervised learning techniques. Two different learning techniques are studied:
sample-by-sample  and  batch  learning  adaptation.  Then,  the  thesis  proposes  and  compares  the
performance  of  general  neural  architectures  with  complex-valued  neural  architectures  for
approximation of the given nonlinear  systems (with sinusoidal  nonlinearities).  Furthermore,  the
work develops the learning rules of the newly proposed complex-valued high-order neural units.
Finally, a software toolbox is developed for all different neural architectures and dynamic systems,
analyzed in this thesis. The toolbox is used to generate all the simulation results during the thesis.

5/50



MOHAMED G. A. GHITA MASTER’S THESIS

Table of Contents
1 Introduction..............................................................................................................................9
2 Review of Higher Order Neural Units – HONU....................................................................12

2.1 Static HONU..................................................................................................................15
2.2 Dynamic HONU.............................................................................................................16

3 Mathematical Models.............................................................................................................17
3.1 1-DOF Torsional Pendulum Model................................................................................17
3.2 Planar 2-DOF Manipulator Model.................................................................................18

3.2.1 Mechanics...............................................................................................................18
3.2.2 Modeling Motors Inertia and Friction....................................................................20

3.3 Electric Impedance.........................................................................................................21
4 Supervised Learning of HONU..............................................................................................22

4.1 Sample by Sample Learning...........................................................................................22
4.1.1 Gradient Descent....................................................................................................22
4.1.2 Recursive Least Squares RLS.................................................................................23
4.1.3 Adam Optimizer......................................................................................................23

4.2 Sample-by-sample Results.............................................................................................24
4.3 Batch Learning...............................................................................................................27

4.3.1 Levenberg-Marquardt - L-M..................................................................................27
4.3.2 Conjugate Gradient – CG.......................................................................................27

4.4 Batch Learning Results..................................................................................................28
4.4.1 P-Controlled Pendulum Batch Learning.................................................................28
4.4.2 Pendulum Batch Learning......................................................................................31
4.4.3 Planar 2-DOF Manipulator Batch Learning...........................................................33

5 Complex-Valued Higher Order Neural Units – CV-HONU...................................................37
5.1 Introduction to Complex-Valued System Identification.................................................37
5.2 Complex Valued HONUs (CV-HONUs)........................................................................37
5.3 CV-HONU Learning.......................................................................................................38
5.4 Exponent Complex Valued HONUs (ECV-HONU).......................................................40
5.5 ECV-HONU Learning....................................................................................................41
5.6 Chapter Summary...........................................................................................................43

6 Object-Oriented Python Toolbox for HONU.........................................................................46
7 Conclusion..............................................................................................................................47
8 References..............................................................................................................................48

6/50



MOHAMED G. A. GHITA MASTER’S THESIS

List of Figures
 Figure 1: Dynamic system with sinusoidal nonlinearity and varying payload. The robots switch
between different tools. Also, the robot on the left carries x-ray tube with a high voltage cable which
changes  the  payload  significantly  during  the  motion.  X-Ray  Imaging  Robotic  System  (credit
Radalytica s.r.o.)1..................................................................................................................................9
 Figure 2: HONU SW toolbox............................................................................................................10
Figure 3: Biological Neuron (https://en.wikipedia.org/wiki/Neuron)2*..............................................12
 Figure 4: Artificial Neuron................................................................................................................13
 Figure 5: Static HONU for dynamic system prediction....................................................................15
 Figure 6: Recurrent HONU for dynamic system identification........................................................16
 Figure 7: Torsional Pendulum Sketch................................................................................................17
 Figure 8: Sketch of a planar 2-DOF manipulator..............................................................................18
 Figure  9:  Online  learning  sample-by-sample  of  oscillating  system.  The  comparison  between
normalized GD and Adam optimizer shows that Adam optimizer learns faster and its LNU responds
earlier to the oscillation......................................................................................................................25
 Figure 10: Online learning sample-by-sample using normalized gradient descent...........................25
 Figure 11: Online learning sample-by-sample using Adam optimizer..............................................26
Figure 12: Test data after turning off the sample-by-sample online learning.....................................26
Figure 13: Training data of a p-controlled pendulum.........................................................................29
 Figure 14: HONU weights learning P-Controlled Pendulum using L-M..........................................30
Figure  15:  Test  data  to  HONU  after  learning  a  p-controlled  pendulum.  The  pre-trained  CNU
approximates the real system for different inputs which indicates that CNU does not overfit the
training data........................................................................................................................................30
Figure 16: Pendulum training data.....................................................................................................31
 Figure 17: HONU Weights learning torsional pendulum training data.............................................32
 Figure 18: Test data of a torsional pendulum and dynamic HONU CNU fails to approximate the
system nonlinear dynamics for large inputs.......................................................................................32
Figure 19: Test data of a torsional pendulum and static HONU Dynamic CNU fails to approximate
the system nonlinear dynamics for large inputs. However, the static CNU works fine to predict one
sample ahead.......................................................................................................................................33
Figure 20: Training data to a planar 2-DOF manipulator...................................................................34
Figure 21: CNU Weights learning the manipulator first joint dynamics using L_M then CG...........35
 Figure 22: CNU Weights learning the manipulator second joint dynamics using L_M then CG.....35
 Figure 23: Test of 2-DOF manipulator with two dynamic real-valued HONUs. Dynamic CNU fails
to approximate the system nonlinearity specially for larger inputs. Thus there is a need of another
type of HONU for such nonlinear system..........................................................................................36
 Figure  24:  Test  data  of  2-DOF manupulator  and  two  static  HONUs.  Dynamic  CNU  fails  to
approximate the system nonlinearity specially for larger inputs. However static CNU is still able to
predict one sample ahead for all inputs in the test data......................................................................36
 Figure 25: Training Data of an Electric Impedance that responds to temperature change................39
 Figure 26: Dynamic CV-HONU learning..........................................................................................39
 Figure 27: Test of dynamic CV-HONU Both real and complex outputs of CV-HONU are pretrained
successfully which assert learn methods described in this chapter....................................................40
 Figure 28: Learning of ECV-HONU weights....................................................................................43
 Figure 29: Static ECV-HONU test data for a torsional pendulum....................................................44
Figure 30: Convergence of Static HONU(r=1) and Static ECV-HONU(r=1). Using L-M to train the
system in Figure 29.............................................................................................................................45
 Figure 31: HONU SW toolbox..........................................................................................................46

7/50



MOHAMED G. A. GHITA MASTER’S THESIS

List of Tables
Table 1: Comparison between static CV-HONU and HONU for the simulation in Figure 30...........47

8/50



MOHAMED G. A. GHITA MASTER’S THESIS

1 Introduction

The number of robotics applications in industry and research laboratories is increasing as industrial
robots  are  becoming  more  reliable  [1,  2].  However,  more  effort  is  needed  to  integrate  other
technologies with robotics. Myself, I have been recently involved in development of industrial x-ray
imaging robotic system1 ,Figure 1, that uses several robots, and I would like to introduce my thesis
by  drawing  the  connotation  between  the  topic  of  my  thesis  and  the  current  needs  in  robotic
applications according to my recent experience.

Considering the x-ray robotic systems Figure 1; however not limiting to, one of the manipulators
switches between several tools which have different payloads. In some cases, the operator can set
the payload or center of mass of these tools inaccurately which slightly increases the manipulator
oscillation. Also,  the x-ray tube is connected to a high voltage cable which changes the payload
mass and center of mass significantly during the robot motion. Then for different payloads, the
robot control is not optimal due to unknown or varying payload, which raises the need for data-
driven (adaptive) approaches.

The  neural  network  approaches  appear  as  suitable  tools  for  the  task  of  data-driven  system
identification  and  potential  control.  Among  these  approaches,  polynomial  neural  networks  and
higher-order  neural  neural  networks,  [3–6] that  represent  nonlinear  systems  with  interesting
property of being linear in parameters [7]. Specific research on HONU has been carried out at CTU

1 Radalytica s.r.o., http://www.radalytica.com 

9/50

Figure 1: Dynamic system with sinusoidal nonlinearity and varying payload.
The robots switch between different tools. Also, the robot on the left carries x-

ray tube with a high voltage cable which changes the payload significantly
during the motion. X-Ray Imaging Robotic System (credit Radalytica s.r.o.)1

http://www.radalytica.com/
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in  Prague  [8–13] .  However,  there  are  limitations  of  these  polynomial  architectures  for  their
practical use for systems with stronger nonlinearity, such as inverted pendulum [13, 14] that is a
typical system with sinusoidal nonlinearity and it is also a typical nonlinearity in robotic dynamics.

Furthermore,  there  is  a  quite  new  trend  in  signal  processing  with  adaptive  filters  and  neural
networks that is  potentially suitable to approximate sinusoidal systems, i.e.  the complex valued
filters  and  complex  valued  neural  networks  [15,  16].  They  became  recently  studied  also  for
approximating dynamical systems [17]; however, this seems to be a rather new topic.

This  thesis  is  an  effort  to  review  the  neural  network  approaches  for  dynamic  systems  with
sinusoidal nonlinearity. Also, Chapter 5 investigates the design and potential use of complex valued
HONUs  for  model  approximation  from  measured  data.  The  purpose  is  a  later  robotic  system
performance  optimization,  e.g.  via  identifying  the  unknown  payload  or  adaptive  control
optimization (please note, that neither the payload identification nor control are the subject of this
thesis and they will be matter of future research)  

The study also includes the development of a software toolbox  Figure 2 for HONUs, complex-
valued  HONUs and  their  learning  approaches. The  developed  software  toolbox  has  two  main
purposes. First, the toolbox help better understanding HONUs by visualizing their learning process
and simulating the output. Secondly, a well-designed toolbox is the mean to integrate this study
results with a production level robotic software. Python is a powerful programming language for
scientific research and machine learning but, in robotics, usually C++ is preferred in production.
However, this study uses Python because it is still in early stages of research. Also, the development
of  such toolbox is  essential  to  make the results  of this  work easily  used by other  colleagues.  

10/50

Figure 2: HONU SW toolbox
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Chapter 2 reviews real-valued HONUs and their neuron architecture to achieve different orders. The
source of HONUs training and testing data is simulation of several mathematical models, derived in
chapter  3.  Chapter  4 studies  different  HONUs  learning  techniques.  The  chapter  includes  two
fundamental categories of learning techniques: sample-by-sample and batch learning. Chapter 5 is
dedicated  to  develop  a  new  complex-valued  HONU  architecture  and  test  its  performance  in
approximating  a  dynamic  system  with  sinusoidal  nonlinearity.  Finally,  chapter  6 explains  the
structure of the developed software toolbox for HONU. The conclusion is written in last chapter. 
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2 Review of Higher Order Neural Units – HONU

Neural Networks is used by connectionists in the field of machine learning to model numerous
systems. Connectionists try to model mental phenomena using neural networks. Also, the use of
neural  networks  span  vast  applications  in  different  fields  such  as  physics,  medicine,  robotics,
economics, control systems  [13] etc. The basic building block of neural networks is an artificial
neuron. Artificial neurons mimics approximate model of biological neurons, Figure 3 2. 

Artificial neurons model receives several inputs  and sum them after assigning weights  for each
input  (synaptic  operation).  The weighted sum passes  by an activation  or  transfer  function  
which usually has a sigmoid shape.  Equations (1),  (2) and (3) summarizes the artificial  neuron
model as follows

, (1)

, (2)

. (3)

2* By BruceBlaus [CC BY 3.0 (https://creativecommons.org/licenses/by/3.0)], from Wikimedia Commons
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Figure 3: Biological Neuron (https://en.wikipedia.org/wiki/Neuron)2*

https://en.wikipedia.org/wiki/Neuron
https://creativecommons.org/licenses/by/3.0
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Higher  order  neural  units  (HONUs)  is  a  class  of  neural  networks  where  neurons  involve
polynomials. HONU aggregates the inputs in higher order polynomial terms during the synaptic
operation. These polynomial terms help HONU to learn and respond to the relations between the
inputs as explained in  [6]. This thesis uses HONU representation in  [18] which is explained as
follows

, (4)

where  is flattening operation that aggregates the inputs in terms of order . For example, a 
linear neuron unit (LNU) where  is as follows

, (5) 

, and cubic neuron unit (CNU) where  is as follows

(6)

the general HONU representation [18] is as follows

(7)
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Figure 4: Artificial Neuron
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If  is the length of input vector  and  is HONU order, then the length  of the flattened vector
 is defined by equation (8) as combination with repetitions as follows

 . (8) 

Some of HONUs applications are identification and control of dynamic systems [4]  and [20].  
Equation (9) and (10) represent a general dynamic system or (11) and (12) for a discrete system as 
follows

, (9)

, (10)

where  are the system states, inputs and output. Using forward Euler method with sampling 
interval  to simulate it as a discrete system

, (11) 

. (12)

Recurrent or dynamic HONU is used to identify dynamic system where some of the HONU inputs
have feedback from HONU output. On the other hand, Static HONU is a feedforward unit without
feedback and is used to predict only one sample ahead of the dynamic system. The architectures of
both recurrent and static HONUs are explained in the following subsections. 
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2.1 Static HONU

Static HONU is used to predict the output   of a dynamic system as in equations (11) and (12).

For  prediction,  HONU input  vector   contains  previous  measurements  of  the  dynamic  system
output  and input  as in equation (13) or equation (14) if the system has one input  as
follows

, (13)

. (14)
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Figure 5: Static HONU for dynamic system prediction
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2.2 Dynamic HONU

Dynamic HONU is a standalone neuron that can be fed only with the same input of the dynamic
system. Therefore, it is supposed to produce the same output as the dynamic system during all the
simulation or testing time without watching the dynamic system output. For HONU to mimic the
dynamic system behavior, it needs internal feedback from its own output as shown in Figure 6 and
the following equation (15)

 

. (15)
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Figure 6: Recurrent HONU for dynamic system identification
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3 Mathematical Models

The derived mathematical models in this chapter produce training data as well as test data to train
and test  HONUs.  The mathematical  models  are  a  torsional  pendulum,  2-DOF manipulator  and
complex-valued  electric  impedance.  The  first  two  models  represent  systems  with  sinusoidal
nonlinearity. The last model is a simple complex-valued impedance that responds to temperature
differences.  

3.1 1-DOF Torsional Pendulum Model

Torsional pendulum, Figure 7, is a classical dynamic system with sinusoidal nonlinearity. The 
studied pendulum is a concentrated mass at the end of one link which connects the mass with a 
joint. In the joint, there is a motor which is assumed to provide variable torque without any delay. 
Also, there is a damping factor in the joint.  

The state vector  is the angular position  and speed  of the joint while the output  is the angular
position as in the following equations (17), (16) and (18)

, (16)

. (17)

The pendulum equation of motion is

, (18)

17/50

Figure 7: Torsional pendulum sketch 
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where the mass  ,   the length of  the pendulum bar   and the
gravity acceleration  . Then, the pendulum moment of inertia  .  The
frictional  factor  .  Another  extension  to  the  system is  a  P controller  over  the  angular
position, 

. (19)

3.2 Planar 2-DOF Manipulator Model

One of the objectives of this work is to examine the performance of both static and dynamic HONU
in prediction and identification of  dynamic systems with  sinusoidal  non-linearities.  The second
extension to a torsional pendulum (Section 3.1) is a 2-DOF manipulator, Figure 8. The manipulator
moves in one plane by rotation of two angular joints. 

3.2.1 Mechanics

The following bullet points summarize the steps to derive the mathematical model of such system
using Lagrangian mechanics, following [21]. 

• Dynamic System definitions 
states: 
Inputs:  
Outputs: 

• Definition of parameters and symbols
 is the mass of link 

18/50

Figure 8: Sketch of a planar 2-DOF manipulator 
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 is the length of link  
 is the moment of inertia of link 
 is the gravity acceleration

 Kinematics
1. First Link:

Angular Velocity
, (20)

 
linear Velocity of center of mass 

, (21)

position of center of mass
. (22)

2. Second Link: 
Angular Velocity

 , (23)
 
linear Velocity of center of mass

, (24)

position of center of mass

(25)

  
 Total Kinetic Energy

. (26)

 Total Potential Energy

 . (27)
 Lagrange Dynamics

, (28)
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, (29)

. (30)

 Finally the torques  yield

, (31)

where M, the Mass Matrix and V, centrifugal and Coriolis effects, and G, Gravity Effect are defined 
in equations (32), (33) and (34) as follows

(32)

(33)

(34)

3.2.2 Modeling Motors Inertia and Friction

The motor gearbox connects the torque   of motor  to the dynamics torque  as follows

 , (35)
as

 , (36)
then

 , (37)

finally 

(38)
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Either equation (31) (without gearboxes) or (38) (with gearbox)  can be used to simulate the planar 
2-DOF manipulator. 

3.3 Electric Impedance 

It  is  useful  to  represent  electric  impedance  as  a  complex number  in  studying AC circuit.  The
Impedance is defined as

, (39)

where .

The complex-valued impedance  responds to  temperature differences  as  shown in the following
equation 

, (40)

where  is heat coefficient,  is nominal impedance at temperature .
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4 Supervised Learning of HONU

This chapter trains real-valued HONUs, described in chapter 2, to learn different dynamic systems
whose mathematical models are derived in chapter 3. Further, the trained HONUs are simulated to
test their approximation performance of dynamic systems with sinusoidal nonlinearity. 

Supervised learning trains HONU using a set of training data of inputs and outputs. After training,
HONU is tested on another test data set which examines if the model scales to the new data and
does not overfit the training data. The next two subsections show two main approaches: sample-by-
sample  and batch  training.  Sample-by-sample  learning is  preferable  to  perform online  learning
during the dynamic system operation. On the other hand, batch learning works for offline training
when set of training data is already available. 

4.1 Sample by Sample Learning

4.1.1 Gradient Descent 

Gradient descent update HONU weights for every new sample such that certain cost function is
minimized. In other words, the new weights every sample time moves downhill the cost function
with certain learning rate. The learning process stability depends on the magnitude of inputs and
outputs as well as the learning rate. The following equations are derived for cost function   as
follows

, (41)

, (42)

. (43)

From equation (43) The incremental learning of weights  depends on the real system inputs and
outputs which makes setting the learning rate more difficult. To cope with this issue, a normalized
learning rate is defined as follows

. (44)
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4.1.2 Recursive Least Squares RLS

RLS is a recursive algorithm that minimize the sum of the squared error between HONU and the
real system. The fundamental difference between RLS and gradient-descent is the cost function as
RLS is sum of the error till the current sample while the gradient-descent is only the current error,
(42) vs (45)

, (45) 

where  is a forgetting factor. If , then all the previous samples are treated equally to
the new sample but if , then the older samples of data has exponentially less weight in the the
cost function . The summary of RLS equations is as follow

, (46)

where are a small positive number and an identity matrix.

, (47)

then,  is used to update  as follows

. (48)

4.1.3 Adam Optimizer

Adam optimizer  [22] is an iterative algorithm to update neural networks weights. The authors in
[22] introduced Adam optimizer for non-convex problems instead of stochastic gradient descent.
Also, Adam optimizer weights update is invariant to scaling the gradient. Next section compares
Adam with Normalized gradient-descent. The highlights of Adam optimizer are as follows:

• The cost function can change with time and Adam still converges.

• Scaling the cost function or the gradient does not affect the weights update.

• Varies the step size which is  very helpful to use the same parameters  to wide range of
problems.

Adam has the following parameters

•  exponential decay rates for the first and second gradient moments respectively.

•  The learning rate

•  a small number to prevent division by zero.
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The Algorithm steps are as follows

• Initialize 

• While 

◦ gradient 

◦

◦

◦

◦

◦

◦

4.2 Sample-by-sample Results

The real dynamic system is an oscillating second order system with sampling interval  as
follows

. (49)

The first step is to adapt the HONU online with sample-by-sample algorithm. ,……. shows the
online sample-by-sample learning. The dynamic HONU architecture is as follows

, (50)

. (51)

Figure  9,  Figure  10 and  Figure  11 show  the  online  sample-by-sample  of  the  system  using
normalized gradient descent and Adam optimizer. But Figure 12 shows the test data after turning off
the learning and using different  inputs.  The results  shows that  the adapted HONU responds to
different input steps in the test data. 
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Figure 9: Online learning sample-by-sample of oscillating system.
The comparison between normalized GD and Adam optimizer shows that Adam optimizer learns

faster and its LNU responds earlier to the oscillation.

Figure 10: Online learning sample-by-sample using normalized gradient descent.
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Figure 11: Online learning sample-by-sample using Adam optimizer

Figure 12: Test data after turning off the sample-by-sample online learning
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4.3 Batch Learning

There are several batch learning algorithms for HONU.  Levenberg-Marqaurdt L-M and conjugate
gradient  CG  are  described  with  all  implementation  details  for  HONU  in  [13] and  [23].  It  is
noticeable that CG usually accelerates the learning of HONU but after starting using L-M for the
first training epochs. 

4.3.1 Levenberg-Marquardt - L-M

Levenberg-Marquardt  algorithm for  HONU  [13] batch  learning  depends  of  Jacobian  Matrix  
which is the gradient of HONU output to the weights at every time step in training data as follows

, (52)

where .

The  Jacobian  matrix  is  constant  for  static  HONUs  which  reduces  the  required  number  of
computations. Finally, the change in the HONUs wieghts is calculated as follows

(53)

(54)

 

4.3.2 Conjugate Gradient – CG

As HONU is linear in weights, then CG for HONUs [13] can directly be applied to solve HONU’s
weights as follows

, (55)

where 

. (56)

To put equation (55) in CG form  as   is a   positive semi-definite matrix, multiply
(55) with . Then,
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, (57)

. (58)

Summary of CG Algorithm [13]

• Initialize (training epoch ) 

◦

◦

• For further training epochs 

◦

▪ Update the weights

▪

◦ Update CG parameters for next training epoch

▪

▪

▪

4.4 Batch Learning Results

4.4.1 P-Controlled Pendulum Batch Learning

The mathematical model of P-Controlled pendulum is described in details in chapter 3.1. The model
is used to produce both the training and test data. A Dynamic HONU of order three or Cubic Neural
Unit (CNU) is used to learn the system dynamics as described in the following equations

, (59)

. (60)
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The  results  of  training  and  testing  HONU  is  summarized  in  Figure  13,  Figure  14 and  Error:
Reference source not found.  Figure 13 shows the training data generated from the model, while
Figure 14 shows the weights update at every training epoch using L-M. Finally the test data in
Figure 15 uses different step inputs and compares the response of the real system and HONU. 

29/50

Figure 13: Training data of a p-controlled pendulum
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Figure 14: HONU weights learning P-Controlled Pendulum using L-M

Figure 15: Test data to HONU after learning a p-controlled pendulum.
The pre-trained CNU approximates the real system for different inputs which indicates that CNU does not

overfit the training data. 
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4.4.2 Pendulum Batch Learning

The mathematical model of a torsional pendulum is described in details in chapter 3.1. The model is
used to produce both the training and test data. A Dynamic HONU of order three or Cubic Neural
Unit (CNU) is used to learn the system dynamics as described in the following equations

, (61)

. (62)

The results of training and testing HONU is summarized in  Figure 16,  Figure 17 and  Figure 18.
The test data in Figure 18 uses different step inputs and compares the response of the real system
and HONU. However it is obvious the dynamic HONU fails to approximate the system nonlinear
dynamics for large inputs. However, static HONU works fine to predict one sample ahead as show
in Figure 19.
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Figure 16: Pendulum training data
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Figure 18: Test data of a torsional pendulum and dynamic HONU CNU fails to approximate the
system nonlinear dynamics for large inputs. 

Figure 17: HONU Weights learning torsional pendulum training data
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4.4.3 Planar 2-DOF  Manipulator Batch Learning

The mathematical model of a planar 2-DOF manipulator is described in details in chapter 3.2. The
model is used to produce both the training and test data. A Dynamic HONU of order three or Cubic
Neural Unit (CNU) is used to learn the system dynamics. The system has two outputs (first and
second joint angles), thus two different HONUs are used for each output. Also, only the motor on
the first joint  provides torque in this simulation and the second motor torque is zero all the time. 

• The first joint angle CNU

, (63)

, (64)

where  are the first joint angle and the first motor torque respectively.

• The second joint angle CNU

, (65)

, (66)

where  are the second joint angle, the first joint angle and the the first motor torque. HONU
composes  its  own  output  selection  mechanism  so  that  feed  the  first  angle  as  an  input  is  not
necessary. However, it helps to reduce HONU size. 
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Figure 19: Test data of a torsional pendulum and static HONU
Dynamic CNU fails to approximate the system nonlinear dynamics for large inputs. However, the

static CNU works fine to predict one sample ahead
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Figure 20,  Figure 21 and  Figure 22 shows the training process of both joints HONUs. First L-M
starts the learning for several epochs then CG accelerates the learning. In Figure 23, the dynamic
HONUs are tested against new test data. For small inputs, both dynamic HONUs work fine but for
relatively  large  inputs  they  fail  to  identify  the  manipulator  dynamics.  However,  static  HONU
succeed to predict one sample ahead for all levels of inputs as shown Figure 24. 
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Figure 20: Training data to a planar 2-DOF manipulator
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Figure 21: CNU Weights learning the manipulator first joint dynamics using L_M then CG

Figure 22:  CNU weights learning the manipulator second joint dynamics using L_M then CG
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Figure 23: Test of  2-DOF manipulator with two dynamic real-valued HONUs. 
Dynamic CNU fails to approximate the system nonlinearity specially for larger inputs. Thus there is a

need of another type of HONU for such nonlinear system. 

Figure 24: Test data of 2-DOF manupulator and two static HONUs.
 Dynamic CNU fails to approximate the system nonlinearity specially for larger inputs. However static

CNU is still able to predict one sample ahead for all inputs in the test data.
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5 Complex-Valued Higher Order Neural Units – CV-HONU

Chapter 4 investigates the real-valued HONUs for system identification of models with sinusoidal
nonlinearities,  introduced  in  Chapter  3.  The  real-valued  static  HONUs are  able  to  predict  one
sample ahead for P-controlled pendulum, pendulum and a planar 2-DOF manipulator. The dynamic
HONU  is  able  to  approximate  the  p-controlled  pendulum  for  different  input  steps.  However,
dynamic  HONU  fails  to  approximate  the  pendulum  and  2-DOF  manipulator  for  large  inputs.
Therefore, this chapter investigates how complex-valued HONU can cope with this problem.

This chapter introduces the main theoretical contribution of this thesis. The proposal is to develop
complex-valued modifications for HONUs and their fundamental learning algorithms. The proposed
complex-valued HONUs are tested and compared to the approximation of the dynamical systems
(from Chapter 3) and compared to results achieved with real valued HONUs in Chapter  4.

This chapter is divided into two main sections to introduce two different proposals for  complex-
valued HONU architecture:

• complex valued HONU, denoted as CV-HONU and

• exponent complex valued HONU, denoted as ECV-HONU.

5.1 Introduction to Complex-Valued System Identification

The cost function for complex-valued system is defined as follows

(67)

Theorem 1. By treating z and z as independent variables, the quantity pointing in the direction of
the maximum rate of change of  is .

Theorem 1 in  [24, 25] defines the direction to minimize the cost function. Following theorem 1,
one can define the derivatives in the conjugate direction of complex-valued HONU weights. The
sample-by-sample methods defined in chapter  4 such as gradient descent, Adam optimizer or any
methods that uses a similar cost function as in (67),  follows theorem 1  in defining the gradients.
The gradients are explained in detail for CV-HONU and ECV-HONU in the following subsections.
However other learning methods, that does not use cost function as in (67), does not follow theorem
1.  For  example  there  is  no  alternation  to  L-M  methods.  Also,  CG  can  apply  if  CV-HONU
architecture stays linear in weights.
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5.2 Complex Valued HONUs (CV-HONUs)

The first proposal  is similar to real-valued HONU but with complex weights. This proposal is not 
expected to work better than real-valued HONU for sinusoidal nonlinearity. However,  it is for 
better understanding the fundamentals of complex valued weights learning as follows

, (68)

, (69)

where , Also, both  are complex-valued. Finally, CV-HONU architecture is as follows

. (70)

5.3 CV-HONU  Learning

Similar concepts of a real-valued HONU applies [17, 26]. The use of gradient descent to minimize
certain  cost  function  applies  however  both  the  cost  function  and  the  gradient  are  different  as
described in the following equations

. (71)

where . The way downhill the cost function  follows the gradient of 
according to theorem 1 in subsection 5.1 

, (72)

. (73)

Then, sample-by-sample methods , described in subsection 4.1, applies easily. However, L-M and
CG batch  learning  method,  described  in  subsection  4.3,  has  no  changes,  only  the  Jacobian  is
calculated according to the complex weights as follow 

, (74)

where .

As  an  example  of  this  first  simple  proposal  to  CV-HONU.  A complex  electric  impedance  is
identified using a dynamic CV-HONU. The impedance changes with temperature as described in
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detail  in chapter  3.3.  Figure 19,  Figure 20 and  Figure 21 show the learning and testing of the
recurrent CV-HONU after adaptation. 
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Figure 25: Training Data of an Electric Impedance that responds to temperature change

Figure 26: Dynamic CV-HONU learning
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5.4 Exponent Complex Valued HONUs (ECV-HONU)

The batch learning results  of  real-valued HONU in subsection  4.4  shows that  HONU fails  to
approximate systems with sinusoidal nonlinearity as in Figure 23 and Figure 18. To cope with this
real-valued HONU limitation, several new architectures for HONU were proposed along this work.
HONU  approximation  capability  is  that  it  aggregates  higher-order  polynomial  terms.  This
aggregation forms new  nonlinear relations between the inputs. The idea that we, my supervisor and
me,  tried  to  develop  in  this  subsection  is  to  introduce  new  sinusoidal  terms  in  the   HONU
architecture. This subsection starts with the new architecture, the learning rules, followed by the
simulation results  and finally  states  the finding.  The summary of the  new HONU proposal  is
explained in the following equations

, (75)

, (76)

, (77)
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Figure 27: Test of dynamic CV-HONU
Both real and complex outputs of CV-HONU are pretrained successfully which assert learn methods

described in this chapter.
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. (78)

where  and both  can also be complex values. 

As seen in equation (75), a simple summation of natural exponent is added to HONU which can
enhance the  CV-HONU approximation to  sinusoidal  functions  without  using a  very  high order
HONU . The subtraction of , from the natural exponent in the summation in equation
(75),  is  to  remove  the  bias  from  ECV-HONU  so  that  when   then  output  .  An
alternatively considered version of equation (75) that caused bias was as follows

. (79)

5.5 ECV-HONU Learning

Following similar steps to CV-HONU learning,  the cost function is the same as in first proposal 5.3

 

, (80)

where .

The way downhill the cost function  follows the gradient of  and  according to theorem 1 in
subsection 5.1 that is

for non-exponential part of ECV-HONUs, i.e. , as follows

, (81)

, (82)

and for exponential part of ECV-HONUs, i.e. , it is as follows

, (83)
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. (84)

Then, sample-by-sample methods , described in subsection  4.1, applies easily.  According to the
batch learning methods , described in subsection 4.3, CG  does not apply to ECV-HONU as it is not
linear in weights. However, L-M is be used, but the Jacobian is calculated as follows 

, (85)

where  

, (86)

, (87)

then

. (88)

The first test uses a linear ECV-HONU(r=1) using the same training data of a torsional pendulum in
chapter  4.4.2. At this work level, only static ECV-HONU is tested and in future work dynamic
ECV-HONU  should  be  tested  against  real-valued  HONU.  The  results  of  the  static  ECV-
HONU(r=1),  Figure 28 and  Figure 29 show that the new proposed ECV-HONU can be trained
easily. 
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5.6 Chapter Summary

Two different complex-valued HONU architectures are proposed. The first, CV-HONU, serves for
understanding the fundamentals of learning complex weights in HONU and it is tested as a dynamic
CV-HONU. The second, ECV-HONU, is work in progress. Several iterations was needed to finally
choose ECV-HONU architecture such as removing the bias from the exponent summation. Then,
the  learning  gradients  are  derived.  Finally,  the  ECV-HONU  is  tested  as  a  static  neuron  for
simulation  data  of  a  torsional  pendulum.  In  future  work,  dynamic  ECV-HONU will  be  tested
against dynamic HONU on different nonlinear system.

Static HONU (r=1) Static ECV-HONU (r=1)

Mean of 

STD of 

Learning Time 0.01 seconds 19.65 seconds

Table 1: Comparison between static CV-HONU and HONU for the simulation in Figure 29

However, ECV-HONU lacks one of the distinctive characteristics of  HONU which is the linearity
in parameters (weights). HONU’s linearity in parameters reduces the computation for L-M as the
Jacobian  is constant for all the training epochs.  Table 1 compares static HONU to static ECV-
HONU. From the comparison, static HONU predicts the torsional pendulum in  Figure 29 more
accurately.  Also,  static  HONU consumes significantly less  computation power because it  has a
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Figure 28: Learning of ECV-HONU weights
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constant  Jacobian  per  training  data.  Also,  Figure  30 compares  the  convergence  between  static
HONU and ECV-HONU. 
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Figure 29: Static ECV-HONU test data for a torsional pendulum

Figure 30: Convergence of Static HONU(r=1) and Static ECV-HONU(r=1). Using L-M  to train the
system in Figure 29
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6 Object-Oriented Python Toolbox for HONU

The study also includes the development of a software toolbox  Figure 31 for HONUs, complex-
valued  HONUs and  their  learning  approaches. The  developed  software  toolbox  has  two  main
purposes. First, the toolbox helps for better understanding of HONUs by visualizing their learning
process and simulating the output. Secondly, a well-designed toolbox is the mean to integrate this
study results with a production level software in different platforms. Also, the development of  such
toolbox is essential to make the results of this work easily used by other colleagues. As Python is a
powerful programming language for scientific research and machine learning, an Object-Oriented
python toolbox has been developed during this work Figure 31. Previous students works at CTU on
software for real-valued HONU with fundamental learning rules are as follows:

• work [27] in Java 

• and [28] in Python 2.7, WX Python including control algorithms.

The  classes  in  the  toolbox  are  divides  into  four  main  base  classes:  HONU, sample-by-sample
learning,  batch learning and experimental  architecture of  HONUs.  The following bullets  points
describe these base classes and some of their sub-classes:

• HONU   Simulate HONU, update the state vector, calculate Jacobian and gradient for any
order of HONU. Subsections 2.1, 2.2

◦ LNU cubic HONU(r=1) a wrapper class that helps customizing the base class HONU
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Figure 31: HONU SW toolbox simplified class diagram.
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◦ QNU cubic HONU(r=2) a wrapper class that helps customizing the base class HONU

◦ CNU cubic HONU(r=3) a wrapper class that helps customizing the base class HONU

• sample-by-sample   an abstract class for sample-by-sample learning approaches

◦ Adam Optimizer implementation of the base class sample-by-sample  to Adam 
Optimizer. Subsection  4.1.3

◦ Gradient Descent implementation of the base class sample-by-sample  to gradient-
descent. Subsection 4.1.1

◦ RLS recursive least square implementation of  the base class sample-by-sample. 
Subsection 4.1.2

• Batch Learning   an abstract class to for batch learning methods from subsection 4.3

◦ CG conjugate gradient implementation from subsection 4.3.2

◦ L-M  Levenburg-Marquardt implementation from subsection 4.3.1

• experimental architecture of HONUs  

◦ CV-HONU has the same implementation as described in subsection 5.2

◦ ECV-HONU  has the same implementation as described in subsection 5.4

• Dynamic Systems   abstract class to dynamic systems used to produce HONUs training and 
testing data.

◦ Torsional pendulum 

◦ P-Controlled Pendulum

◦ 2-DOF manipulator

◦ Temperature-dependent Impedance

◦  Second order system

◦ First order system

The toolbox produced all the plots and most of the figures in this thesis. All the scripts, used to 
produce the figures, are saved and attached with the toolbox which is attached as a CD with the 
printed version of this thesis.  
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7 Conclusion

The  thesis  introduces  a  review  of  dynamic  and  static  high-order  neural  units  (HONU)  in
approximating  dynamic systems. Chapter 3 derives the mathematical models of two main dynamic
systems,  torsional  pendulum and  2-DOF manipulator,  using  Lagrangian  mechanics.  These  two
dynamic systems include sinusoidal  nonlinearities.  Then,   chapter  4 discusses  two fundamental
approaches to HONU supervised learning: sample-by-sample and batch learning. The sample-by-
sample learning is tested using an oscillating second-order system. Both gradient-descent and Adam
optimizer  are  able  to  adapt  HONU online.  However, Adam optimizer  convergence time is  half
gradient-descent convergence time, Figure 10 and Figure 11.

Furthermore, chapter  4 discusses HONU capability to approximate the nonlinear dynamics of p-
controlled pendulum, torsional pendulum and 2-DOF manipulator. Both static and dynamic HONU
are able to predict the response of a p-controlled pendulum. While static HONU is able to predict
one sample ahead in the test simulation of a torsional pendulum, the dynamic HONU is able to
approximate the dynamics only for small inputs. Increasing the sinusoidal nonlinearity in 2-DOF
manipulator,  static  HONU is  still  able  to  predict  one  sample-ahead during  the  test  simulation.
However, dynamic HONU is not able to approximate the manipulator dynamics for large inputs.
These findings confirm the outcomes of most recent research at CTU in Prague.

Being  inspired  from  complex-valued  neural  networks  and  their  supervised  learning,
according to my current knowledge, this thesis is the first to propose complex-valued high-
order neural units (CV-HONU) (subsection 5.2). Moreover, Chapter 5 derives in detail different
architectures to CV-HONU and their learning rules: sample-by-sample and batch learning. The first
architecture expands real-valued HONU to cover the complex values using the same approximation
capability. A model of complex-valued impedance, that changes with temperature, is approximated
using dynamic CV-HONU. In addition, the thesis investigates ho CV-HONU can approximate the
sinusoidal  nonlinearity.  Therefore,  a  new  architecture  of  HONU  is  proposed,  Exponent
complex-valued high order neural  units (ECV-HONU), subsection  5.4. The added exponent
terms aggregate sinusoidal relations between the inputs. In subsection  5.5, the thesis continues to
derive the learning rules of ECV-HONU: sample-by-sample and batch learning. However, since
ECV-HONU is not linear in parameters (weights), the Jacobian matrix in L-M batch learning has to
be computed at every training epoch. The lack of parameters linearity significantly increases the
learning time of ECV-HONU, Table 1.

During the thesis work, there was a main focus on developing a mature and clean toolbox for all the
investigated HONUs and dynamic system. The result  is  a  HONU toolbox and several  learning
algorithms. Chapter  6 presents the toolbox main features and design. The toolbox enables other
colleagues to use all the results in this thesis in their work as well as help the authors to continue
research on the same topic. The toolbox is attached on a CD with the printed version of this thesis.
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