
prof. Ing. Róbert Lórencz, CSc.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague January 20, 2018

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Correlation Attacks on TOR

 Student: Jan Fajfer

 Supervisor: Ing. Josef Kokeš

 Study Programme: Informatics

 Study Branch: Computer Security and Information technology

 Department: Department of Computer Systems

 Validity: Until the end of summer semester 2018/19

Instructions

1) Study the TOR network - its purpose, principles, strong and weak points.
2) Research the current status of correlation attacks on TOR.
3) Demonstrate the execution of a correlation attack.
4) Discuss your results.
5) Propose countermeasures against correlation attacks.

References

Will be provided by the supervisor.

Bachelor’s thesis

Correlation Attacks on Tor

Jan Fajfer

Department of Computer Systems
Supervisor: Ing. Josef Kokeš

May 14, 2018

Acknowledgements

I take this opportunity to express my sincere gratitude to my supervisor, Ing.
Josef Kokeš, for his support and valuable guidance. I also wish to thank my
friends and family for their continuous support and encouragement.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on May 14, 2018 …………………

Czech Technical University in Prague
Faculty of Information Technology
© 2018 Jan Fajfer. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Fajfer, Jan. Correlation Attacks on Tor. Bachelor’s thesis. Czech Technical
University in Prague, Faculty of Information Technology, 2018.

Abstract

The primary goal of this bachelor’s thesis is to describe and execute a cor-
relation attack on the anonymity network Tor. It starts with an analysis of
Tor’s design, threat model, and attack vectors and continues with the analy-
sis of the current state of correlation attacks on Tor and notable work in this
field. The practical part contains execution of an attack using the Levine et
al. and a modified Sun et al. method on the live Tor network. The main tests
showed an overall good correlation with an average correlation coefficient r
greater than 0.87 for both methods. The error rate was 5% with no false
positives. The thesis continues with an analysis of factors influencing these
attacks and concludes with a description and an analysis of countermeasures
against end-to-end correlation attacks.

Keywords onion routing, Tor, correlation attacks, attack execution, coun-
termeasures

vii

Abstrakt

Primárním cílem této bakalářské práce je popsat a provést korelační útok
na anonymizační síť Tor. První kapitola analyzuje design Toru, model a
vektory útoku. Druhá kapitola popisuje aktuální stav korelačních útoků na
Tor a významné práce v této oblasti. Praktická část popisuje testy, které
byly uskutečněny pomocí dvou různých metod na korelační útoky. Hlavní
testy ukázaly poměrně dobrou korelaci s průměrným korelačním koeficientem
r větším než 0,87 pro obě metody. Chybovost byla 5 % s žádnými výsledky,
které by špatně identifikovaly vybraného klienta připojeného k Toru. Kapitola
pokračuje analýzou faktorů ovlivňujících tyto útoky. Práci zakončuje kapitola
popisující a analyzující opatření proti korelačním útokům na Tor.

Klíčová slova onion routing, Tor, korelační útoky, provedení útoku, pro-
tiopatření

viii

Contents

Introduction 1

1 Tor 3
1.1 Goals and purpose . 4
1.2 Design . 5
1.3 Browser . 7
1.4 Protocol . 7
1.5 Strengths . 11
1.6 Weaknesses . 12
1.7 Notable attacks . 13

2 Correlation attacks on Tor 15
2.1 Correlation . 15
2.2 Motivation . 16
2.3 Preconditions . 17
2.4 Methods . 17

3 Execution of a correlation attack 21
3.1 Definitions of the methods . 22
3.2 Set-up . 23
3.3 Traffic capture and analysis . 24
3.4 Tests . 24
3.5 Results . 31

4 Countermeasures 35
4.1 Users . 35
4.2 Tor Developers . 36
4.3 Dummy traffic tests . 37

Conclusion 43

ix

Bibliography 45

A Acronyms 49

B Contents of the enclosed CD 51

x

List of Figures

1.1 A circuit through Tor . 6

3.1 Tests 1_0 - 1_9 for C1 . 25
3.2 Tests 2_0 - 2_9 for C1 . 26
3.3 Tests 2_0 - 2_9 for C2 . 27
3.4 Tests 3_0 - 3_9 for C1 . 28
3.5 Tests 3_0 - 3_9 for C2 . 28
3.6 Tests 3_0 - 3_9 for C3 . 29

4.1 Tests 7_0 - 7_4 for C1 . 38
4.2 Tests 7_5 - 7_9 for C1 . 39
4.3 Tests 8_0 - 8_4 for C1 . 40

xi

Introduction

With the rise of the Internet, there is also a high demand for anonymity when
communicating online. An anonymity network called Tor introduced a simple
and accessible option for hiding one’s identity.

Tor is maintaining its popularity and provides anonymity for a wide vari-
ety of users. It allows anyone to share and access information on the Internet
anonymously. It enables users to access websites blocked by their internet
service providers. This anonymity network provides a relatively safe place
for whistleblowers, dissidents, journalists, users sharing sensitive information,
but also for non-ethical hackers, drug dealers or human traffickers. With this
range of Tor users, it is inevitable for them or this network to be attacked
with the intentions of revealing someone’s identity.

There are many possible attack vectors. Tor covers some of them, but
there are also several known attacks that can expose Tor users identity. A
group of these attacks is called correlation attacks. These attacks are based
on statistical correlation and traffic analysis. If an adversary can eavesdrop
on specific spots where her victim’s communication flows, she can analyze the
traffic and guess the identity of someone using Tor even though the traffic
is encrypted. However, these attacks could be difficult to execute and may
require a significant amount of resources. There are also ways of defending
against such attacks that could help protect Tor users.

Tor is evolving every day and so do the attacks on it, so it is necessary to
keep track of new ways that adversaries could exploit someone’s anonymity.
Studying further attacks and their feasibility helps Tor developers in keeping
this network anonymous and safe to use.

The goal of the analytical part is to describe the Tor network, its purpose,
principles, strong and weak points, analyze its design, its security features,
possible threats and attack vectors. The aim is also to research the current
state of correlation attacks on Tor and to describe known methods that can

1

Introduction

be used to execute a correlation attack.
The goal of the practical part is to demonstrate a correlation attack, dis-

cuss its result and factors that affect these types of attacks. And lastly,
propose countermeasures against correlation attacks.

In the first chapter, I describe the Tor network, its purpose, and princi-
ples. I continue with explaining how communication through Tor works, how
a circuit is constructed, the use of directory servers and the principle of ren-
dezvous points and onion services. I end this chapter by discussing possible
attack vectors on Tor.

In the next chapter, I analyze the current state of correlation attacks on
Tor, methods of correlation and other notable work in this field.

In the practical part, I demonstrate the execution of a correlation attack
using two of the methods described in the previous chapter. I continue this
chapter with a description of the results and the factors affecting these attacks.
In the end, I discuss resources needed to perform a successful correlation attack
and the possible development of these attacks.

I continue with a chapter called countermeasures. I discuss measures to
counter correlation attacks from the point of Tor developers and also from
the position of a Tor user. I propose options and analyze the effectiveness of
some of these countermeasures. Finally, I suggest and test an effective dummy
traffic pattern that protects Tor users.

2

Chapter 1
Tor

Tor is a low-latency anonymous communication service that protects against
basic traffic analysis attacks. Tor is now an open-source application main-
tained by a nonprofit organization called The Tor Project. The name Tor is
an acronym for “The Onion Router” and is based on the principle of onion
routing.1

Tor is suitable for a wide variety of users. It provides a solution for users
of the Internet who want to keep their online activity hidden or users who do
not want to share their Internet history with their ISP.2 Tor also enables users
to access sites which are restricted in the country the user is connecting from.
Other examples are dissidents or whistleblowers sharing sensitive information
with journalists. A branch of United States Navy and Law enforcement in the
United States also uses this anonymous network. [1]

Not only clients but also servers can stay anonymous and not leak their
IP addresses while still being accessible from the Internet through Tor. Onion
services formerly known as hidden services offer a solution so Tor users can
access a given server through so-called “rendezvous points.” [2]

In 1995 a group of military scientist funded by the Naval Research Lab-
oratory started working on the idea of onion routing, a plan which was to
help protect the United States’ intelligence from traffic analysis attacks. A
year later, a proof of concept was launched. It was a single machine simu-
lating five onion routers which mixed the incoming traffic before sending it
to its destination to confuse the origins of the connection. In 1997 DARPA
(The Defense Advanced Research Projects Agency) started funding the de-
velopment of onion routing. In 1999 the team at Naval Research Laboratory
published a paper describing specifications of the so-called generation 1 onion
routing. After that, the work on onion routing was suspended for a little while,

1 defined in section 1.2
2 Internet service provider

3

1. Tor

and the generation 0 proof of concept was shut down. During its existence,
it processed over 20 million requests from over 60 countries. In 2002, work
on generation 2 onion routing began. The research continued while being
funded mostly by the Office of Naval Research and DARPA. In 2003 the Tor
network was deployed, and the Tor code was released under the MIT license.
The next year, a paper called Tor: The Second-Generation Onion Router was
published, describing the Tor design and the concept that is used until today.
After that, the funding from the Office of Naval Research and DARPA ended.
Nevertheless, the Naval Research Laboratory continued with the funding of
only the work on location hidden services. The Electronic Frontier Foundation
became the primary sponsor. By the end of 2004, the Tor network consisted
of over 100 nodes located on three continents. [3, 4]

As of the time of writing, slight changes have been made but the design
principles have stayed the same. The network’s popularity rose and today con-
tains over 6000 Tor relays [5] with a total bandwidth of almost 250 Gbit/s [6]
and around 100 Gbits/s of it consumed every day for the past year [7].

Tor is now sponsored by many individual supporters but also organiza-
tions such as Google, Mozilla, National Science Foundation, United States
Department of State Bureau of Democracy, Human Rights, and Labor, and
others [8].

1.1 Goals and purpose
The initial goal of developing Tor was to create a low latency network which
could provide anonymous online communication. It was designed to protect
mainly TCP communication. When communicating using the TCP/IP proto-
cols, the packet contains data, IP addresses, and ports of the source and the
destination. And even if the data is encrypted, an attacker can still detect
who both partners of the communication are, and based on the traffic anal-
ysis, can reveal more information such as the nature of their communication.
Tor’s primary goal is to prevent this from happening. In addition to that, Tor
developers proposed some design goals in their 2004 paper [9].

• Deployability: Because the design of Tor relies on volunteers running
individual relays, it should not be expensive and should be easy to install
and to operate. Tor should not require the relay operators to state their
identity. Furthermore, running a relay should not present a big burden
to the operator.

• Usability: The Tor network gets safer with more users and more relay
operators. Therefore it is essential for Tor to be user-friendly, as a hard-
to-use system would possibly discourage potential users. As a client,
it should also be easy to connect to Tor from any standard operating
system.

4

1.2. Design

• Flexibility: A protocol that is used in the network to communicate should
be well specified and flexible so it could potentially be applied in other
research regarding low latency anonymity networks.

• Simple Design: The design of the protocol should be easy to compre-
hend. It should distance itself from using unproven and complex features
to maintain readability.

On the other hand, Tor distances itself from:

• Being steganographic. Tor does not aim to hide the fact that someone
is connected to Tor.

• Being able to provide protocol normalization. Tor does not provide
anonymity for someone communicating through this network using com-
plex and variable protocols. Mainly because there are other tools, such
as Privoxy, that can be used with Tor to provide this service.

• Being able to protect against end-to-end attacks. When an adversary is
in a position of observing the connection between the client and the Tor
network as well as the communication coming to the server, Tor does
not guarantee the client’s safety.

• Tor is not a peer-to-peer network, and as stated in the design papers [9],
the solution that some other decentralized environments bring is “ap-
pealing, but still has many open problems.”
[1, 9, 10]

1.2 Design
The design of Tor is based on the idea of onion routing. Onion routing is a
method where a client does not send data directly to a server but chooses a
path through an onion network. First, the client connects to an entry node
which is a part of the network. The communication between the client and
the entry node is encrypted. Then the client connects all of the nodes in the
path, creating a so-called circuit. The data that the client wants to send is
encrypted several times wrapping the message into “layers.” Along the way,
onion routers unwrap the message layer by layer. That is why this type of
routing is called an onion routing. The information that a server receives does
not contain information about the client as it is sent from the last onion router
in the circuit previously constructed.

Tor works very similarly. Let us say that a client C wants to access a
server S without the server, her ISP or anyone listening to the communication
knowing who is she connecting to. C sets up a connection to an entry onion

5

1. Tor

router (OR) in the Tor network. For C to identify which particular ORs are
entry ORs, the client previously fetches a list of all nodes in the Tor network
from a more trusted OR called a directory server which has a list of ORs
with information about them. C then continues establishing a connection and
negotiating keys for encryption with the middle OR in the circuit and lastly
does the same with the exit OR. The default circuit that a client chooses
through the Tor network consists of three ORs, but that can be modified. C
then prepares a message or a request she wants to send the server, encrypts it
using all the symmetric keys that she negotiated with the ORs in the circuit,
and sends it to the first OR in the circuit, the entry node.

The entry node then decrypts the message using the negotiated key. The
message still needs to be decrypted two more times to be readable by the
server. Then the entry OR sends the message to the middle OR. The middle
OR decrypts the message and sends it to the exit OR, which later decrypts
the data which is now readable and sends it over to the server.

In the beginning, the message was encrypted three times over, so anyone
eavesdropping between the client and the entry node can only see that client
C is communicating with some onion router, but can not directly guess IP
address or any other information about the other ORs or the server. The
same applies to the communications between the remaining ORs involved in
the circuit. Each OR only knows the identity of the directly adjacent ORs in
the circuit, while the server S only knows the address of the exit node. And
even though an attacker eavesdropping between the exit OR and the server S
can read the message sent to the server, she cannot track the origins of that
message as the TCP headers of packets she could capture only contain the IP
address and ports from the exit OR. The final hop in the communication is
therefore not encrypted by Tor. The connection can still be encrypted using
HTTPS protocol. [9, 1] See figure 1.1.

C entry middle exit S

the Tor network

Figure 1.1: A client C connected through Tor to communicate with a server
S anonymously. The dashed arrow from exit OR to S indicates traffic which
is not necessarily encrypted.

6

1.3. Browser

1.3 Browser

The Tor browser is a software developed by The Tor Project. It is a mod-
ified Firefox ESR3 web browser that helps users run a Tor client on their
computer. With the help of the TorLauncher, the browser takes care of con-
necting to the Tor network, choosing a circuit and negotiating keys. It also
contains several features that help users stay secure, such as NoScript or
HTTPS Everywhere. [11]

The Tor Project provides other software and services helping users stay
secure and anonymous, such as Tor messenger, Onionoo or a live operating
system distribution called Tails. [12]

1.4 Protocol

Tor is an overlay network, which means, that ORs together create a virtual
network that is built on top of another physical network, in this case, the
Internet [13]. Individual ORs communicate with one another using the TLS
protocol [14].

Each client runs a so-called onion proxy (OP) that handles the connections
to ORs and communicates with the user applications using the SOCKS4 pro-
tocol. Directory servers are relays that keep information about the network
and provide it to OPs and other ORs, so they can connect and create a valid
path through the network. [9]

1.4.1 Cells

The Tor protocol defines cells as a unit of communication. The primary goal
of sending data through cells is to prevent basic traffic analysis attacks.

The developers at The Tor Project made some changes since the Tor pro-
tocol version 1, but the core of the design stayed the same. Moreover, new
Tor protocols are compatible with the old ones.

All cells used to have a fixed size, but now the lengths may vary. All
cells have a common format. The header starts with CircID, an identification
to a communication stream between two ORs or an OP and an OR. A com-
mand that states the role of a given cell follows the identifier. Some of these
commands and their values are CREATE (create a circuit), RELAY (send
end-to-end data), DESTROY (stop using a circuit).

In a version 2 or higher, the command field is followed by a field that
specifies the length of a cell’s payload. [14]

3 Extended Support Release
4 Socket Secure

7

1. Tor

1.4.2 Circuits
Every Onion router uses several keys for its identification and communication.
The “Identity key” is a 1024-bit RSA key used exclusively to sign certificates
and other documents. It is used together with the Ed25519 “master identity
key” as a unique identification of an OR.

There are two other keys used to manage operations such as the circuit
creation and expansion called the “Onion keys.” Every OR also keeps several
other medium and short-term keys to manage TLS connections.

In the first design of Onion routing the OP created a new circuit for every
TCP stream, but in the Tor design [9], several TCP streams share one cir-
cuit. This approach is better because it speeds up the connection, and helps
to protect from traffic analysis and correlation attacks which are described in
chapter 2.

In order to construct a circuit, the OP chooses ORs distinct from one
another. These ORs will form the circuit. If the OP is not already connected
to the first OR in the circuit (entry OR), the OP chooses an appropriate
CircID and sends a CREATE cell to the entry OR.

The CREATE cell or the newer version CREATE2 cell is used to negotiate
a symmetric key. The initial work on Tor [9] proposed a DH type handshake for
negotiating the key. In this original, “TAP” handshake, a create cell carries the
first part of the DH handshake (gx). The entry OR responds with the second
part of the DH handshake (gy) and a hash of the final key (gxy) encapsulated
in a created cell.

Another type of handshake, called the “ntor” handshake, was introduced
later on. This method uses several handshakes to create a set of shared keys.

After receiving the CREATED cell, the OP finishes the handshake and
continues with the circuit creation.

Every circuit is constructed “one hop at a time,” so when the initial hand-
shake between OP and the entry OR (OR1) is completed, the OP sends an
EXTEND cell to a subsequent OR in the circuit. The OP sends an EXTEND
or EXTEND2 cell to OR1. Both of the extend-type cells carry the address
of the node that the circuit should be extended to and data necessary for a
handshake. OR1 extracts an “onion skin” from the received EXTENDED cell,
which is a payload for a create cell. OR1 sends a create-type cell to the next
OR (OR2). OR2 responds with a created-type cell. OR1 then wraps the data
received by OR2 in an extended-type cell and sends it to OP.

Using this method, an OR only needs to know about the ORs next to it,
it doesn’t need to see an address of any other OR in the circuit or the OP,
therefore, any OR can track the data received back only to its adjacent ORs.

As stated before, the whole circuit is always constructed one hop at a time,

8

1.4. Protocol

and another OR can be added using the same method as described above.

Once the OP receives a CREATED cell from the exit OR indicating that
the circuit has been constructed, actual communication between the client
and the server can start.

The OP and the exit OR use RELAY cells to send data through the circuit.
RELAY cells contain the specification of a relay command, a “Recognized”
field that implies if the cell is at the OR it is destined for, a StreamID chosen
by the OP and a digest which is used to check the validity of a cell. The cell
also contains data to be delivered and its length without padding.

When constructing a RELAY cell, the OP encrypts both the relay header
and the payload iteratively using the keys negotiated with the ORs in a given
circuit. Therefore a digest set by the OP will have a meaningful value only
when it reaches the targeted OR. When an OR sends a relay cell back to the
OP, it encrypts its relay header and payload using the key shared with the
OP. Thus when an exit OR sends a relay cell back to the OP, along the way,
each OR encrypts the data, creating layers of encryption.

To initiate a TCP connection, an OP sends a RELAY_BEGIN cell, which
contains the address and a port of the server. When an OR receives a relay
cell, it decrypts it or encrypts it, depending on whether it is a communication
flowing from client to server or in the opposite direction.

When the client decides to destroy the circuit, the OP sends a DESTROY
cell to the entry OR. This OR closes the streams of that circuit and passes a
destroy cell further down the circuit if it is not the exit OR. If the client wants
to tear down just a part of the circuit, the OP sends a RELAY_TRUNCATE
cell, which sends a DESTROY cell to the next OR in the circuit and replies
with a RELAY_TRUNCATED cell. If a single OR in a circuit goes down,
the OR closer to OP sends a RELAY_TRUNCATED cell and the OR further
from OP sends a DESTROY cell to the next OR in the circuit. [9, 14]

1.4.3 Directory servers

Directory servers are a small group of trusted ORs in the Tor network. Each
of these directory authorities serves as an HTTP server so that OPs can fetch
information about the network and ORs can share their status with other
authorities. The list of these authorities is hardcoded in the Tor software.
There are ten currently running directory authorities [15].

Each of these has a long-term “Authority Identity key” which is distinct
from the Identity key that each OR has. This key is used to sign “key cer-
tificate” documents, which contain an “authority signing key”. The authority
uses this signing key to sign other information.

9

1. Tor

These directory authorities get the information about each OR in the
network from “router descriptors” which are signed by ORs and uploaded
to the directory authorities. These router descriptors contain public keys,
capabilities such as bandwidth and other information such as the exit policy
of a given OR. ORs also serve as caches for directory servers.

Each directory authority periodically sends a “status vote” which contains
the status of ORs in the network, and their descriptors to the other authorities.
The authorities then compute a “consensus status” from the votes previously
received. ORs serving as directory caches then download these consensus
documents and store them. All OPs and ORs use the consensus documents
to check whether their document is out-of-date. If it is, they download the
needed “router descriptors.” [16, 17, 9]

1.4.4 Onion services and rendezvouz points
Not only can Tor users connect to servers through Tor, keeping their identity
secret, but they can also provide services which clients can access without
them or the DNS server they are using knowing the IP address of a given
server. Clients can use “rendezvous points” to communicate with a server or
so-called “onion service.” Six steps take place to set up an onion service and
initiate a communication with a client as defined in [2].

1. The onion service generates a public and a private key. The public key
will be used for its identification. The onion service randomly chooses
some ORs as “introduction points” and creates a circuit to each one of
them. It can add more introduction points later on. After that, the
onion service tells its introduction points to forward connection requests
from users to it.

2. After that, the onion service assembles a set of “onion service descrip-
tors,” signs them and uploads them to “hidden service directories,”
which are ORs that host signed onion service descriptors. These onion
service descriptors include a public key of the onion service, a summary
of each introduction point and a description of how to contact the onion
service, which is now ready to communicate with Tor users.

3. When a client wants to contact the onion service, it first needs to set up
a rendezvous point. A rendezvous point is a randomly chosen OR that
the onion service builds a circuit to and sends it a one-time secret which
is used to confirm the identity of a given onion service. The client then
requests an onion service descriptor from a hidden service directory if it
does not have it already or the one it has is not up-to-date.

4. The client then creates a circuit to one of the introduction points of
the onion service and follows up with sending the OR an introduction

10

1.5. Strengths

request to be passed to the onion service. The introduction request
consists of the address of the target rendezvous point, the first part of
a handshake and the one-time secret previously sent to the rendezvous
point.

5. When the onion service receives the introduction request, it builds a
circuit to the rendezvous point, sends it the one-time secret received
with the introduction request and the second part of the handshake.

6. The rendezvous point then checks whether the one-time secret it received
is the one from the client. If it is, the rendezvous point then connects the
two circuits and verifies to the client that the onion service it is talking
to is the correct one.

The client and onion service can now share a key and a circuit. To open
a stream, the client sends a RELAY_BEGIN cell and continues with the
communication as described above in 1.4.2. [18, 9, 2]

1.5 Strengths
There is a wide variety of users on Tor, and each has a reason why she wants
to hide her identity. And whether the activity is lawful or not, with each
user there is also a potential adversary who might wish to decrypt the user’s
communication or discover the final destination of the given connection. This
chapter describes strengths of Tor and some attacks that the design should
protect from.

The fact that Tor’s design changed so little from the original is only adding
to the point that the ideas outlined by Dingledine, Mathewson and Syverson
in [9] are solid and the principles introduced serve its purpose.

Section 1.1 describes some of the initial goals of the Tor design which are
now some of the strengths of the model. With its deployability Tor makes it
easy for the volunteers to set up an OR and keep it running with minimal
cost. Usability allows users to use the network without complications. A big
help in this regard is the Tor browser. Flexibility and a simple design of the
protocol allowed easier upgrades and backward compatibility. [9]

An attacker observing traffic in between a Tor user and a server should not
be able to get any information from it as it is encrypted. Therefore the ISPs
cannot discover what are their clients doing on the internet when using Tor.
Also, any server that a user of Tor connects to should not be able to know her
identity because of the circuit that is between the user and the server. [9]

Tor should also protect from a variety of active attacks such as the DoS5

non-observed nodes attack. With the amount of ORs running every day, it
5Denial of Service

11

1. Tor

would be difficult to perform a DDoS6 attack where an adversary would take
down several relays to make someone connect through the part of the network
that the adversary can observe. The integrity checks of cells also prevent
replacing contents of an unauthenticated protocol such as HTTP or the tagging
attacks where an adversary controlling an entry OR would mark a cell and
match it to a corrupted content on the server’s side. [9]

Tor’s strength is also its popularity. Because Tor is relying on volunteers
running relays and the more relays, the more users and ORs communicate
through Tor, the harder it is for possible adversaries to detect user’s commu-
nication in the network. And as Tor’s popularity rose, the security increased
as well. The popularity of the system also brings in new investors and fun-
ders who support The Tor Project financially. They provide the resources
needed for maintenance and bug patching but also for further research and
development of this network and other software that The Tor Project creates.

1.6 Weaknesses
Dingledine, Mathewson, and Syverson [9] proposed several attack vectors that
Tor is vulnerable to. For the design to meet all of its initial goals, there need to
be several compromises to its security that can pose a threat to Tor’s users. In
this chapter, I describe some of these vectors, mostly proposed in the original
Tor design paper [9].

An ISP can guess whether its client is using Tor because the list of Tor
relays is public. The solution to that could be using a Tor bridge, an extra
entry node which is not listed in the public directory of ORs. These bridges are
used mainly when an ISP blocks all Tor relays with the intention of blocking
access to the anonymity network.

Website fingerprinting is an attack, where an adversary observes the pat-
tern of traffic between the OP and the entry OR and based on that guesses
with what website is the user communicating.

Correlation attacks exploit the low latency of the network. More about
these attacks can be found in chapter 2.

An adversary can easily eavesdrop between an exit OR and a server and
observe the communication. Therefore it is up to every user to make sure the
content it is sending to the server is encrypted or cannot serve as a clue to
revealing the user’s identity.

An adversary who controls an exit node can modify HTTP content and
misuse the traffic in any way. Moreover, Tor reuses a circuit for several TCP
connections, so an adversary with possession of the given exit node can link
anonymous and non-anonymous traffic together.

Learning OR’s identity key could be a problem because an adversary could
impersonate the OR by sending forged descriptors to the directory servers.

6Distributed Denial of Service

12

1.7. Notable attacks

The possibility of this attack increases since Tor uses only 1024-bit key which
has been declared not suitable by NIST7 [19].

By subverting majority of directory servers an adversary could easily
include her malicious ORs into the final “consensus status.” However, this
attack would be very difficult as the operators of directory servers expect an
attack and are likely to be prepared. [9, 20]

1.7 Notable attacks
Over the years, Tor has been a target for many attacks. Some of the successful
and notable ones are:

• The Bad Apple attack described by Le Blond et al. [21] exploits P2P
applications to trace and profile Tor users. They took advantage of the
linkability of multiple Tor streams sharing one circuit. The insecure
application they used was BitTorrent.

• Murdoch and Danezis proposed an attack exploiting the low latency and
linkability of two streams in their paper called Low-Cost Traffic Analysis
of Tor. [22]

• Kwon et al. show how to detect users’ involvement with an onion service
using circuit fingerprinting. [23]

• FOXACID was an attack reportedly executed by NSA on users of Tor by
modifying the browser bundle and distributing its malicious version. [24]

• Tor was also affected by the OpenSSL Heartbleed Bug since some of the
ORs were running the vulnerable version of OpenSSL. [25]

These attacks did not directly exploit mistakes in the Tor design. They ex-
ploited low latency and other features that are a part of the design. Therefore
the developers do not intend to change them. [20]

7 National Institute of Standards and Technology

13

Chapter 2
Correlation attacks on Tor

Correlation attacks on Tor aim at uncovering someone’s identity. The goal
is to discover the originator of a communication stream. An adversary who
observes the traffic on both ends of a connection can perform an end-to-end
correlation attack. These attacks use statistical methods of correlation in
order to confirm whether a stream originating with a client is the same stream
reaching the destination that the adversary observes. That is why such attacks
are also called the traffic confirmation attacks. [26]

2.1 Correlation
Before I describe some of the methods used when performing end-to-end cor-
relation attacks, it is necessary to define several terms.

• Covariance determines the relation between two variables.

• Correlation is used when determining a relation between two variables.
It is defined as “Tendency of two variables to increase or decrease to-
gether.” [27]

• The Pearson’s correlation coefficient gives a “measure of the strength of
a linear association between two variables” [28] X and Y and is defined
as

rX,Y =
∑n

i=1(Xi − X)(Yi − Y)√∑n
i=1(Xi − X)2

√∑n
i=1(Yi − Y)2

(2.1)

In this case measure the correaltion of two vectors of integers both with
n elements, Xi is the i-th integer in vector X and Yi is the i-th integer
in the vector Y . X is the mean of vector X and Y is the mean of vector
Y .
Pearson’s correlation coefficient can also be defined as covariance divided
by the product of the standard deviations [29].

15

2. Correlation attacks on Tor

To determine whether the resulting correlation coefficient is statistically
significant, the null hypothesis (H0) that the two vectors have no correlation
(rX,Y = 0), is tested against an alternative hypothesis (HA) that rX,Y ̸= 0.

When observing independent normally distributed pairs, in the case of H0,
the statistic

T = rX,Y√
1 − r2

X,Y

√
n − 2 (2.2)

has the Student’s t-distribution with n − 2 degrees of freedom.
Null hypothesis H0 is then tested and rejected in a favor of alternate

hypothesis HA on significance level α if |T | > t α
2 ,n−2. [30]

2.2 Motivation

In this section, I describe reasons why an attacker would want to execute an
end-to-end correlation attack and the advantages of such attack.

When attacking Tor, the adversary faces several obstacles which make the
attacks harder.

Tor prevents attacks using basic traffic analysis. When an adversary tries
to find a relation between two given streams and at least one of them is within
the Tor network, then the streams are going to differ. The reason for that is
the fact that traffic within Tor is encrypted and encapsulated into cells. The
data is therefore unreadable and the size of the packets also differ. There
are also several hops before a packet sent by a client reaches a server. Due to
several layers of encryption, an attacker can not guess the relationship between
these two streams merely by inspecting the data themselves. Moreover, when
observing the traffic flow, the attacker can see only the two adjacent ORs of
the given stream and not the whole path of the traffic.

That is why end-to-end correlation attacks are preffered for attacking Tor.
The data on each side that the attacker eavesdrops does not need to be the
same. There just needs to be a positive correlation between the two streams.

There are several methods on how to correlate traffic. The adversary
can essentially use any data from the data streams to try and compute a
correlation between them. The most used methods use the timing of packets,
the quantity of sent and received packets or the sizes of each one of them to
perform a confirmation attack.

Another advantage is the fact that Tor does not intend to change its design
goals and try to integrate some protection against these attacks.

Lastly, for a successful attack the adversary only needs to observe traffic
in Tor. There is no need for active attacks on ORs, the client or the server if
the attacker is in the right position.

16

2.3. Preconditions

2.3 Preconditions
Several conditions have to be met for an end-to-end correlation to be feasible.

Whether the attacker uses timing or size of the packets to perform an anal-
ysis, she always needs to be in the right position. At first, the attacker needs
to be able to observe both ends of a communication. For example, an adver-
sary observes traffic between a client C and a server S who are communicating
using a circuit through the Tor network. The circuit consists of three ORs,
OR1, the entry OR that C is directly connected to, OR2, the middle OR, and
OR3, the exit OR which connects directly to S. The adversary needs to see the
communication from C to OR1 and the traffic from OR3 to S. However, the
attacker does not always need to observe both incoming and outgoing streams
on both sides; this is described in section 2.4.3.

Timing correlation attacks are feasible when the latency of the network is
low so that the time it takes for the packet to get from OR1 to OR3 is not sig-
nificant enough to tamper with the statistical analysis. Therefore these types
of attacks are ideal when eavesdropping on someone who is web browsing,
which requires low latency. [31]

Correlation attacks that determine their success rate using the size of pack-
ets to correlate also rely on the fact that the size of a packet leaving C is not
too different from the amount of data that S receives.

2.4 Methods
Since the launch of the Tor router, there have been several researchers issuing
papers with new methods, ideas, and algorithms for end-to-end correlation
attacks. In this section, I will describe some of them using the setup with
client C, server S, and a circuit OR1-3 (onion routers 1-3) defined in section
2.3.

2.4.1 Packet counting
Back, Möller and Stiglic proposed a packet counting attack [32]. This attack
suggests discovering the parts of a circuit one by one. In this method, an
adversary counts the number of packets transmitted from C to OR1. After
that, the adversary begins eavesdropping on connections from OR1, till she
finds the second node in the circuit by counting the packets and comparing
them to the connection from C to OR1. This method continues until reaching
the server.[32]

This attack might have been feasible in the early version of Tor, because
of the small amount of ORs in the network and their location not being dis-
tributed all around the world as it is today. However, it would be difficult to
perform such an attack today as the attacker would have to be able to observe
a significant amount of ORs all over the world. Moreover, with the number

17

2. Correlation attacks on Tor

of Tor users, the attacker would have to possess a greater computing power
when attacking today as opposed to the time when Tor has launched. Finally,
this attack suggested a great attack vector, but the method is not as efficient
as other attacks I will describe further. [32]

2.4.2 Active attack

The difference between an active and a passive correlation attack is that when
performing a passive attack, the adversary only observes the network and
analyses the data collected, while an active correlation attack includes active
interventions and manipulations with the traffic or the network.

In [22] Murdoch and Danezis proposed and described a correlation attack
where an adversary controls a server and an OR. This attack aims to discover
the relays which are a part of the circuit between the corrupt server and its
victim. The corrupt server injects patterns into the communication with the
victim. With the corrupt OR, the attacker makes a connection to a Tor relay
in the network and using timing correlation techniques tries to decide whether
the corrupt node is making a connection to a Tor relay which is a part of the
circuit established between the corrupt server and its victim.

The correlation is defined using a function S(t) = 1 if the corrupt server
was sending at a sample number t, S(t) = 0 otherwise.

Data from the probe is the measured latency at a sample t of the Tor relay
which the corrupt OR is connected to. The correlation is then computed as a
sum of the product of S(t) and a normalized version of the probe data (L′(t))
divided by the sum of S(t).

c =
∑

S(t)L′(t)∑
(S(t))

(2.3)

The results of this attack showed “good correlation between probe data in
victim traffic.” [22] However, the attack was tested on then not so popular Tor
network which consisted of only thirteen nodes. Nowadays, with over 6000
Tor relays [5], the attack would be much harder to execute. [22]

2.4.3 Asymmetric traffic analysis

Sun et al. [33] presented a suite of new end-to-end correlation attacks, call-
ing the rest of the attacks just a “tip of the iceberg.” These attacks, called
Raptor, are designed to be performed by a someone with the power over an
Autonomous System8 (AS). They also display the advantages that an AS level
adversary has when possibly eavesdropping on Tor users.

8 colection of networks administered by a single entity [34]

18

2.4. Methods

AS level adversaries can exploit the asymmetric nature of routing on the
Internet, meaning that a path of a connection from an OP9 to an entry node
does not have to be always the same as the path from the entry node back
to the OP and the same on the other side of the communication. This fact
is not a liability for an attacker; it is the exact opposite. When using the
proper traffic analysis technique, AS level adversaries have a better chance of
executing an end-to-end correlation attack because of this nature.

Moreover, the natural routing updates in the Internet protocol (BGP
churns) enable ASes to observe more users over time. When an AS can only
observe a path from OP to an entry OR, such a churn can put an AS in the
position to observe also the path from the exit OR to a server.

The asymmetric correlation analysis took into account the TCP Sequence
number and the TCP Acknowledgment number fields from the captured pack-
ets. From these numbers, it is possible to compute a vector of transmitted
data over time for the given data trace. And using the Spearman’s rank cor-
relation coefficient, it is possible to get the highest correlation between the
given computed vectors. The last step is just selecting the two vectors with
the highest correlation as a result.

Using live experiments, Sun et al. [33] showed that the asymmetric traffic
analysis attacks have a 95% accuracy without any false positives. And with
the analysis of historical BGP and Traceroute data, they were able to show
that the threat of AS-level attacks increases by 50% for asymmetry and 100%
for a routing churn.

In [33] Sun et al. showed that these attacks are feasible and pose a threat
to Tor users. On the other hand, these attacks are not feasible for someone
with just a partial view of an AS and limited resources.

2.4.4 Timing attacks

Timing attacks are end-to-end correlation attacks based on the timing of pack-
ets. These attacks use the timestamp of each packet captured on both sides
of a communication. There are several approaches on how to correlate such
data.

Levine et al. [35] described a simple attack where the correlation is com-
puted using the difference between the timestamp of a packet and its successor.
And if there is a correlation between the data computed on one side and the
one on the other side, the two given streams are likely to be related. This ap-
proach, however, does not deal well with dropping packets. A dropped packet
causes the correlation to be counted between non-matching packets. There-
fore the times computed after the packet drop will be off and an otherwise
perfect correlation could be marked as a mismatch.

9defined in section 1.4

19

2. Correlation attacks on Tor

Therefore Levine et al. proposed another attack which combined both
counting and timing of packets. This attack includes sorting packets into time
windows of the same width. These windows do not overlap and are adjacent
to each other. All packets can, therefore, be sorted into these windows. The
packets are placed into one time window according to the time stamp that
states the time the adversary captured them. The quantity of packets in each
window is then put together to form a vector. The result of this analysis is
Pearson’s correlation coefficient between the two vectors computed on each
side.

Levine et al. [35] also made a suggestion that an adversary controlling ei-
ther the entry node or the exit node can drop packets intentionally. If dropped
at the right time, the packets could create a pattern which would increase the
overall correlation and help differentiate the given stream from other ones.

The advantage of this attack is that it deals pretty easily with dropped
packets and padding of Tor cells as it depends only on the count and timing
of packets.

The disadvantage of this attack, as it is with most end-to-end correlation
attacks, is that the adversary needs to be in an ideal position to eavesdrop
on both ends of a given communication. And that is hard to achieve mainly
because of the thousands of Tor relays that are now spread all over the world.
It is true that they are not distributed evenly, but still the adversary would
sometimes have to eavesdrop a communication on two continents at the same
time to perform an end-to-end correlation attack.

Lastly, these attacks are easier to execute for AS level adversaries and
attackers with the ability to control a lot of ORs or the ability to observe a
significant portion of the Tor network.

20

Chapter 3
Execution of a correlation

attack

In this chapter, I describe an execution of a correlation attack on Tor and its
results. The method I chose to perform is the one proposed in Levine et al.
[35] and described above. This attack is passive and feasible for anyone with
limited resources. It deals well with dropped packets and padding of Tor cells.
Moreover, when situated ideally, there is no need for an adversary to control
any ORs.

Using a fixed traffic pattern I compare this method to a simple version of
the traffic analysis method proposed by Sun et al. in [33].

My goal is to execute a correlation attack and show its applicability and
relevance to other situations. Another goal is to compare the two methods
for correlating traffic. And the last goal is to discover factors that influence
end-to-end correlation attacks.

First, I define the methods I used. Next, I describe the tests’ set-up and
the situation it simulates. Next, I illustrate, how I performed the tests. In
the following section, I analyze the results and discuss the conditions that
affected the attacks. Finally, I discuss the feasibility of these attacks and
propose several improvements.

There are two main categories of the tests I performed. The first one is
just a simple client-server setup. The other one uses multiple clients to see
if the correlation changes and is distinguishable between clients connecting
to the server. After that, I performed few additional attacks to analyze the
factors affecting the correlation.

Finally, I comment on the conditions that affected the testing and the
results, their relevance and applicability.

21

3. Execution of a correlation attack

3.1 Definitions of the methods
In this section, I describe the methods used for the correlation attacks. First I
define the information, that is different for each method, and then I continue
with definitions which apply to both methods.

3.1.1 L method
The first method I use to execute tests in this chapter is the Levine et al.
method (L) which uses packet counting and the timing of each packet to create
vectors.10 I then compute the correlation of the vectors using the Pearson’s
correlation coefficient as proposed in [35]. Based on the result, I state whether
there is a statistically significant positive correlation between the two given
communication streams or not.

3.1.2 S method
The original method for traffic analysis by Sun et al. [33] (S) used Acknowledge
and Sequence numbers in the TCP header to determine how much data was
transferred over a specific stream. The tests I performed measured only the
size of the data of each packet, which is the method from [33] assuming we
see both directions of the communication. I extract the size of the TCP layer
of each packet and add it to the i-th widow of a given vector according to the
timestamp of the given packet.

3.1.3 Both methods
The following applies to both method L and S.

I chose the size of each time window (W) to be 10 s as proposed in Levine
et al. The total time of eavesdropping (E) in seconds is divided by 10, creating
a vector of E/10 + 1 elements.

The first element of the vector represents a W0 from the start time of
eavesdropping (B) to B + 10. The i-th time window Wi represents the time
from B + i ∗ 10 to B + (i + 1) ∗ 10.

For correlating the stream in both methods, I used the method suggested
in [35] which uses the Pearson’s correlation coefficient. And even though
Sun et al. in [33] compute the correlation using the Spearman’s correlation
rank, as they state in their paper, “other correlation metrics could also be
applicable.” [33]

The null hypothesis H0 for two communication streams is: “The correla-
tion between the two given streams is either zero or negative.” The alternate
hypothesis H1 for two communication streams is: “There is a positive corre-
lation between the two given streams.” The significance level α I chose for

10 see section 2.4.4

22

3.2. Set-up

both methods is 10−4. It is so low, because of the pattern of communication
I choose to test. I need to distinguish traffic streams that match from those
that are just similar.

I also only consider a positive correlation coefficient to indicate two match-
ing streams. With the increase of packet count or size of the transmitted
data, there should be an increase of the same quantity on the other side of
the communication if the two streams are matching, and certainly not the ex-
act opposite which represents a negative correlation. Therefore, the statistics
T > t α

2 ,n−2 needs to be true in order to reject H0. Negative r will be displayed
as 0.

3.2 Set-up

The tests should simulate a correlation attack on Tor. The setup is simple, an
adversary eavesdrops a communication between a client and a server on each
side of the Tor network. The attacker does not control any OR, the client or
the server, and can only see encrypted traffic flowing from the client to OR1
and from OR3 to the server.

To simulate this, I used two separate notebooks (Toshiba Portégé) to sim-
ulate a client and a server. The server runs the Apache HTTP Server serving
a 20MB file. The client communicates with the server using the Tor browser
which is commonly used among Tor users. The communication between the
client and the server was encrypted using a self-signed SSL certificate to sim-
ulate a connection to a secure server.

I performed three main sets of tests. The first one is one client com-
municating with a server. The second and the third sets are two and three
clients communicating with the server. The goal of these tests is to match
the client’s communication stream to a stream between OR3 and the server,
therefore confirming the identity of the client.

For most of the tests, I have not changed the entry node mainly because of
the convenience. An OP keeps the same entry node usually for nine months for
security reasons11. The test results should not be affected by this as I created
a new circuit for every single test, which means OR2 and OR3 changed after
every test.

The fact that I capture the traffic on the same devices that communicate
with one another should not tamper with the correlation results too much as
I expect the main effect on latency to be the connection through Tor. The
same applies to the fact that both the client and the server are in the same
local network.

11 see section 4.2.2

23

3. Execution of a correlation attack

3.3 Traffic capture and analysis

I captured the traffic on each machine separately using Wireshark on each
of the devices and saved each communication in a .pcap file. This method
allowed me to get back to specific recorded traffic and inspect it with different
techniques and try computing a correlation with a different method on the
same communication. On the other hand, when correlating, it would be more
efficient to filter out the traffic and not store the unnecessary data. Filter-
ing out the data while eavesdropping could be achieved using, for example,
tcpdump or when sniffing the traffic using a router, features such as Cisco’s
NetFlow protocol should allow the same.

After that, I analyzed the traffic using the Scapy module in Python. At
first I filtered out the packets that were not a part of the communication
that I was correlating. Then I split the connection on each side into streams.
Finally, I transferred each stream into a vector of numbers. For the method
L, I counted packets in each time window from the first packet recorded to the
last one. And for the S method, I computed the amount of data transferred
in a window of time.

I then computed the correlation between these vectors using Pearson’s
correlation coefficient as defined in section 2.1 using no delay as suggested
in Levine [35]. The Python script (analyze.py) which contains a detailed
description of this procedure is provided on the enclosed CD.

3.4 Tests

In this section I describe the test’s results and explain anomalies that occurred.
Finally, I perform several additional tests to illustrate some of the factors
affecting correlation. All of the tests’ results are on the enclosed CD.

To simulate communication between a client and a server I chose a stan-
dard pattern that I use in all of the following tests if not stated otherwise.

The attacker starts eavesdropping. The adversary only listens to the com-
munication of the targeted client (C1) on the side of the client. I suppose
that the adversary tries to match the stream from C1 to a stream entering the
server rather than identifying anyone communicating with the server. After
approximately 10 s, the clients open up the Tor browser and the OPs con-
struct circuits through Tor to the server. After all the circuits are created,
the clients start to download a 20MB file. The clients start the download si-
multaneously. When the download finishes, the clients close the browser and
the OPs close the circuits. Each client shuts the connection down after the
download is finished and does not wait for the other clients. Approximately 10
seconds after the last client closes the connection to the server, the adversary
stops listening to the traffic and analyzes the captured traffic.

24

3.4. Tests

3.4.1 Initial Tests
The first three tests did not involve a connection over Tor. The goal of them
was to test how both methods deal with regular connections and see the level
of correlation I get. The clients connected directly to the server. The only
differences in the set-up were the location of the client and the browser that
the client used. The client and server were in different local networks but
still in the same country. The client used a regular internet browser and the
communication pattern was the same as described above.

The results showed an almost perfect correlation in each test. The r was
over 0.999 and H0 was rejected in favor of H1 on level of confidence 0.01% for
both methods and tests 0_0, 0_1 and 0_2.

Because the latency was very low and the data packets did not change in
size or count, the correlation was very high.

3.4.2 One client
The goal of this group of tests was to analyze the impact of latency in the
Tor network on the correlation. Secondly, the goal was to compare the rate of
correlation that I get using the two different methods.

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

test number

co
rr

el
at

io
n

co
effi

ci
en

t
r

L S

Figure 3.1: Tests 1_0 - 1_9 for C1

The connection through Tor made the correlation definitely worse than in
the initial tests; however, the correlation is still good with the average values
r = 0.92 for method L and r = 0.93 for the method S. H0 was rejected in
favor of H1 on level of confidence 0.01% for both methods and all of the tests.
Figure 3.1 shows results of the executed tests and a comparison between the
two methods used.

25

3. Execution of a correlation attack

The latency varied for all of the tests as I chose a different circuit for each
of them. The circuits were always consisting of ORs from different countries
and sometimes from different continents as well.

There was a significant difference in the bandwidth and latency depending
on the chosen circuit. The download speeds ranged from 50 to 300 kB/s which
significantly affected the total download time of the file.

There appears to be a relationship between the bandwidth and latency
of a circuit and the correlation measured while communicating through the
circuit. However, it is not significant as there also appears to be a relationship
between the total time of eavesdropping and the correlation.

Overall, both methods yielded similar results, showing good correlation
with no anomalies in all of the ten tests.

3.4.3 Two clients
The goal of this group of tests was to see if the models for correlating traffic
can distinguish between two clients.

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

test number

co
rr

el
at

io
n

co
effi

ci
en

t
r

L S

Figure 3.2: Tests 2_0 - 2_9 for C1

The communication pattern of both clients was similar and executed at
the same time which should make the distinction harder. Despite that, the
results showed a good correlation on the majority of the tests. The latency
of the network created a pattern in the communication which made the two
vectors distinct from one another, which led to a high correlation with C1 and
significantly lower with the other client (C2). The distinctions in the resulted
values for C1 and C2 were significant for a majority of the tests, with no false
positives, which would be showing better correlation for the wrong client. The
average r for C1 was 0.86 for both of the correlating methods and the average

26

3.4. Tests

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

test number

co
rr

el
at

io
n

co
effi

ci
en

t
r

L S

Figure 3.3: Tests 2_0 - 2_9 for C2

r for the dummy client was 0.21 for both of the methods as well. H0 for C1
was rejected in favor of H1 on a level of confidence 0.01% for both methods
and all of the tests except for test 2_5. H0 for C2 was not rejected in favor
of H1 on a level of confidence 0.01% for both methods and all of the tests
including the test 2_5. Figures 3.2 and 3.3 show results for the two-client
setup. In the figure 3.3 negative r is displayed as r = 0, this applies for all
the following figures.

There were two tests, 2_0 and 2_5, where r for C1 was significantly lower
than in other tests. This anomaly was probably due to the higher latency of
the circuits created for these tests.

High latency modifies the pattern of the traffic, which could result in the
following. The start of the download happens in the time window Wi on
client’s side, but on the server’s side, the beginning of the download matches
a time window Wi+1. The same could happen with the end of the download.
Such a significant increase or decrease in traffic that matches a different time
window can cause the resulted r to be lower.

Another factor was probably the slow creation of the circuit which resulted
in traffic flow on the client’s side and no traffic on the side of the server. And
because of the small time frame that I measured the traffic in, the circuit
creation took a significant time, which could tamper with the resulted corre-
lation.

In test 2_5, the correlation coefficient r for C2 was higher than 0.5 for
both of the methods. This was due to the fact that both downloads finished
within 1 second of one another, making the traffic pattern a little more similar
to one another than it was with the other tests.

27

3. Execution of a correlation attack

3.4.4 Three clients
The goal of this group of tests was to see how does the attack deal with an
additional client (C3). Another goal was to test if the circuit creation and
keeping the circuit it alive affect the correlation. Therefore, for this attack, I
did not always close the circuit after the download finished.

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

test number

co
rr

el
at

io
n

co
effi

ci
en

t
r

L S

Figure 3.4: Tests 3_0 - 3_9 for C1

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

test number

co
rr

el
at

io
n

co
effi

ci
en

t
r

L S

Figure 3.5: Tests 3_0 - 3_9 for C2

The results show a high correlation on the majority of the tests for both
methods. The average r for the target client is 0.84 for both methods. The

28

3.4. Tests

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

test number

co
rr

el
at

io
n

co
effi

ci
en

t
r

L S

Figure 3.6: Tests 3_0 - 3_9 for C3

average r for C2 and C3 is less than 0.25 for both methods. H0 for C1 was
rejected in favor of H1 on a level of confidence 0.01% for both methods and
all of the tests. H0 for C2 and C3 was not rejected in favor of H1 on a level of
confidence 0.01% for both methods and all of the tests except for C2’s test 3_0
and C3’s test 3_8. Figures 3.4, 3.5 and 3.6 show results for the three-client
setup.

The first two tests 3_0 and 3_1 showed an almost perfect correlation,
the download speed for these tests was fast, and each client closed the circuit
immediately after the download finished.

In the rest of the tests, all the clients closed their circuits simultaneously
after they all finished downloading, which could make the distinction between
them worse. However, probably the main cause for the lower correlations
in tests 3_4, 3_7 and 3_9 was the higher latency and lower bandwidth of
the circuits created. These factors cause a slow download. Therefore, the
simultaneous increase or decrease in traffic on both sides was not as significant
which could cause the lower correlation.

The reason that H0 was rejected for C2’s test 3_0 and C3’s test 3_8 was
possibly the low latency of the given clients’ circuit combined with the fact,
that the differences in the total download times were within one time window,
which could cause a higher correlation even for streams with no connection to
one another.

3.4.5 Additional tests
Usually, when the latency of a circuit would be extremely slow that I would
have to wait several minutes just to start the download, I would start the

29

3. Execution of a correlation attack

test over and change the circuit. However, I performed two tests (4_0 and
4_1) where I continued with the test even when the latency of C2’s circuit
was significantly lower than the latency of the other circuits created. The
slow download resulted in C1 finishing the download earlier and then just
keeping the circuit alive but not communicating with the server. Thus C1
was creating traffic on one side of the communication and not on the other
side. And because the download speed was so low, the impact of the circuit
management on the correlation was even higher. This was one of the reasons
why r for C1 and the test 4_0 was as low as 0.24 and 0.20 for method L and
S respectively.

Test 4_1 for C1 had negative r for both methods. H0 was not rejected for
either of these tests and either of the methods.

Another cause for this low correlation could have been a number of dropped
packets resulting in an increase of packet count and data transmitted on one
side and not on the other side.

I performed several additional tests to see how much does just keeping the
circuit alive affect the correlation. The setup was the same as in section 3.4.2
except that when the download concluded, C1 kept the circuit alive for ten
minutes and after that ended the communication. The results showed a very
good correlation with r > 0.9 for all the tests (5_0, 5_1, 5_2). The size of
the data transmitted and the count of packets used to keep a circuit alive is
not significant compared to the 20MB file download. Therefore the correlation
was not affected. Also, the file download was fast for all of these tests, so the
packets for circuit maintenance were irrelevant to the correlation in the small
time frame.

The goal of tests 5_3 and 5_4 was the same as for test 5_0-2, only the
communication pattern was a little different. C1 created and torn down three
circuits before creating the one which would be used for the file download.
After that, C1 torn down the original circuit. Lastly, C1 created and torn
down a new circuit three times, after which the eavesdropping stopped. The
OP, therefore, generated more traffic on the client’s side which did not match
any traffic on the server’s side.

The results for tests 5_3 and 5_4 showed a very good correlation with
r > 0.9 for both methods. H0 for C1 was rejected in favor of H1 on level of
confidence 0.01% for both tests.

To see if a longer period of time can increase the correlation, I performed
one circa two-hour long test (6_0). The test consisted of four 20MB file
downloads. It started by downloading a file, then 5 minutes of keeping the
circuit alive and then C1 destroyed the circuit and followed up with 20 minutes
of waiting. C1 repeated this pattern four times. The results showed an almost
perfect correlation for both methods. H0 was rejected for test 6_0 and client
C1 in favor of H1 on a level of confidence 0.01%.

All of the tests’ results are on the enclosed CD.

30

3.5. Results

3.5 Results
The results showed an overall good correlation for most of the tests. Consid-
ering only the three main groups of tests ([1-3]_[0-9]), the overall average r
was 0.874 and 0.875 for method L and S respectively. H0 for C1 was rejected
in favor of H1 on a level of confidence 0.01% for 29 out of the 30 main tests.
The error rate was 5% for both methods, which means, there were three times
out of 60 where the given method supported the wrong hypothesis for a given
client. However, there were no false positives.

The average r slightly decreased with the number of clients, which was
probably due to the combination of more traffic on the server and circuits
with higher overall latency. However, the number of clients should not affect
the resulted correlation directly, because both method L and S dissect the
traffic into streams. With the increase of clients, the adversary only needs to
compute a correlation for more combinations of streams. On the other hand, a
higher traffic on a server can definitely affect latency which can cause a lower
correlation.

Methods L and S showed overall very similar results mainly because the
traffic pattern that I used resulted in a majority of the cells sent by OP to
be the same size. Thus there was a relatively linear relationship between the
packet count and the size transmitted. In a more variable communication
pattern, the relation between packet count and overall size of transmitted
data would be a little different.

Finally, I tried to recreate what happened in tests 4_0 and 4_1 to get
a better understanding of such low correlation results, but I was not able to
achieve it even with slow connections and high latency circuits. And in the
scope of the overall success rate, these two results seem to be more of an
anomaly.

3.5.1 Feasibility and applicability
The results suggest that an attacker in an ideal position can perform an end-to-
end correlation attack on Tor’s users. However, depending on the position of
the attacker and the traffic on the server, the amount of traffic to be analyzed
can require a lot of computing power.

For an attacker with limited resources, it is crucial to find the best position
for the attack so she does not have to correlate a lot of traffic for a long time.
If the attacker does not have access to the traffic flowing directly to the server
and the traffic flowing from the client, it could be difficult to get into the right
position. Especially now, with the size of Tor’s network, the probability for
the targeted client to choose the attacker’s corrupt node as an exit node is
small.

For an AS-level adversary with a lot of resources the ability to observe a
large amount of the Tor network can pose a significant threat to Tor users.

31

3. Execution of a correlation attack

Especially if the adversary is not looking for a specific client-server pair but
instead looks for anyone connecting to a particular server, the probability of
finding such a client is significantly higher than for an attacker with limited
resources.

3.5.2 Factors affecting the correlation

There are several factors affecting the end-to-end correlation attacks on Tor
but it is difficult to evaluate exactly how much does each of them influence
the correlation of the two given streams.

• The first one is the Tor cells, which tamper with the size and the count
of a packet leaving the client. That results in a different size and number
of packets that enter the server compared to the traffic leaving a client,
which can lead to a decrease in correlation depending on the method
used. However, depending on the nature of the traffic, sometimes there
can be observed a linear relationship between the number and size of
packets leaving a client and packets reaching a server, which was the
case with the tests that I executed.

• Circuits that are used for communication through Tor can cause a
higher latency. This factor possibly affects the correlation of the two
given streams the most. As described in 3.4.3, high latency tampers
with the correlation of two streams, especially when the latency changes
throughout the connection.

• Operations handling the circuit proved not to be a significant factor
when correlating streams of a file download. On the other hand, when
the attacker does not download as much data, operations regarding the
circuits can lower the correlation.

• Time can help correlation significantly as shown with the test 6_0.

• A traffic that is not linear but has a distinctive pattern is easier to
correlate and better distinguishes the given stream from others.

• There are several factors affecting the speed of the connection through
Tor. And as described in 3.4.4, download speed is also a factor that can
influence the correlation.

To specify how much does each factor affect the correlation attacks on
Tor would require further testing using different patterns and set-ups which
is beyond the scope of this work.

32

3.5. Results

3.5.3 Improvements
With the nature of Tor and its low latency as one of the key design features,
the end-to-end attacks do have a future. In this section, I describe several
ideas for future work and improvements of these attacks. However, I did not
test any of these since it is beyond the scope of my work.

To study a pattern in connection with ORs could help automatically rec-
ognize traffic that operating the circuit creates. Cutting out this traffic from
the overall computations could increase the success rate of correlation attacks,
trying to correlate traffic that does not transfer a lot of data.

Study of correlation methods L, S and others using different types of
traffic patterns such as simple web browsing, file download, upload or video
streaming could help combine the advantages of each method and create one.
This method could adjust to the type of the given connection and therefore
be more durable to various kinds of connections.

Methods L and S could take into account the ORs that are involved in
the targeted circuit. With the public information about all ORs, the method
could adjust the time window size based on the circuit’s latency or incorporate
a delay into the correlation coefficient calculation according to the information
gathered about the given OR.

If the adversary had control over several ORs, she could improve the meth-
ods for correlating. The attacker could filter out the streams used for correla-
tion as she would use only the ones with matching middle ORs. The packets
used for the circuit management would not be included in the correlation com-
putation. The adversary would have a more accurate idea about the overall
latency and bandwidth of the circuit, which could be used to adjust the meth-
ods for correlating as well.

33

Chapter 4
Countermeasures

The goal of this chapter is to propose countermeasures against end-to-end
correlation attacks described in chapters 2 and 3.

I divided the countermeasures against correlation attacks into several cat-
egories. The first two categories consider the entity trying to prevent these
attacks. It can be either an ordinary user of Tor or the Tor’s developers
themselves. Another way of analyzing these countermeasures is whether the
protection is aiming at tampering the correlation itself or whether it aims at
preventing the adversary from getting to the ideal position from which she
could execute the attack.

I analyze the effectiveness of dummy traffic protection using the same setup
as in chapter 3. Finally, I propose a pattern of dummy traffic that Tor users
can use to protect themselves against end-to-end correlation attacks.

4.1 Users
There are several ways how an ordinary Tor user can prevent a successful
end-to-end correlation attack.

4.1.1 Correlation

To prevent an attacker from executing a successful correlation attack, a client
can try to tamper with the correlation of two streams.

The first thing that can be done is taking advantage of the fact that
Tor does not split connections to different destination into different streams.
Therefore a dummy traffic distorting the original communication pattern could
decrease the correlation. It is hard for the adversary to distinguish the addi-
tional dummy traffic from the communication with the targeted server. How-
ever, if the adversary controls the given entry node, the client would have to
make sure that the dummy traffic follows the communication stream to the

35

4. Countermeasures

next hop in the circuit because otherwise the entry OR would recognize the
targeted traffic from the dummy traffic.

Another way of protecting against these attacks is using busy nodes. As
suggested by Adam Billman [36], choosing busy nodes as a part of the circuit
increases the difficulty of correlating and requires more computing power from
the given attacker.

4.1.2 Position
To prevent an adversary from even getting into the right position to correlate
or make the eavesdropping harder, Tor users can apply several tips.

To lower the chances of using a corrupt exit node for a significant time, a
client should switch the circuit frequently.

A client could only choose “more trusted” ORs to route the traffic through
them, however, this poses more threat if one of these ORs would get corrupted.

Attackers who want to increase the chances for correlation attacks often
target entry ORs. After that, they get the identity of a client connecting to
Tor. Therefore using a proxy to connect to Tor could be helpful as the attacker
cannot easily identify the client connecting through the proxy.

4.2 Tor Developers
Even though Tor distances itself from protecting against end-to-end corre-
lation attacks, it already contains several features that help protect against
these attacks.

4.2.1 Correlation
Tor could incorporate dummy traffic into the protocol. OPs12 would generate
dummy traffic automatically. The additional traffic between a client and an
entry node in the given circuit could lower the correlation that an attacker
would compute for two streams. However, on a small scale the dummy traffic
may not be efficient, and on a bigger scale it could significantly slow down the
connection.

Another modification to the Tor protocol could be a little random latent
time added to each packet in the Tor network. It could make the correlation
attacks less successful, but this adjustment may not be as efficient using just
small delays. And longer packet delays could compromise one of the main
goals of Tor, the low latency.

Defensive packet dropping or adaptive padding are methods suggested by
Müller [37] that could help defend Tor’s users from end-to-end correlation
attacks.

12defined in section 1.4

36

4.3. Dummy traffic tests

4.2.2 Position
By keeping the same entry node by a Tor client for nine months decreases
the chances of several traffic analysis attacks including end-to-end correlation
attacks. [38]

According to the Tor project [39], Tor switches circuits to prevent a user
to route traffic through a possibly corrupt node for a long time. The OP uses
a single circuit for ten minutes before switching to a different one. However,
Tor does not create multiple circuits for a single TCP stream but waits until
the stream ends and switches to a new circuit immediately after that.

However, any kind of additional traffic or additional delay of packets that
would Tor add to its network would go against its initial goals which made
this anonymity network so popular.

Finally, perhaps the best defense is Tor’s popularity. The fact that the
Tor network consists of thousands of ORs and millions of users connect to it
regularly [40] dramatically increases its overall security. The ability to route
traffic over several continents can help protect even from AS-level adversaries.
And the volume of traffic that is routed through the network makes it harder
for a potential attacker to find the correct stream.

4.3 Dummy traffic tests
As described above in subsection 4.2.1, dummy traffic can help Tor users
defend themselves against correlation attacks. I tested the effectiveness of
several types of dummy traffic and proposed a specific pattern that is effective
against these attacks.

For the following groups of tests I used the same setup as in section 3.2.
I considered an adversary who does not control an OR but is in the right
position to eavesdrop the traffic on client’s side (X) and the traffic on server’s
side (Y). The adversary uses methods L13 and S14 to execute the attack.

4.3.1 Linear
To see how does dummy traffic produced by a client affect the correlation,
I executed five tests. The primary goal was to test a simple linear dummy
traffic that any user could generate. The setup is the same as in chapter 3,
except that the client is additionally streaming a video from the start to finish
of the test, which should simulate additional dummy traffic.

The results of tests 7_0 - 4 showed lower correlation than in the previous
tests. However, the average was r = 0.79 with method L and r = 0.80 with
method S which is still a good correlation. And H0 for all tests and both

13 defined in subsection 3.1.1
14 defined in subsection 3.1.2

37

4. Countermeasures

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

test number

co
rr

el
at

io
n

co
effi

ci
en

t
r

L S

Figure 4.1: Tests 7_0 - 7_4 for C1 with linear dummy traffic

methods was rejected in favor of H1 on a level of confidence 0.01%. Figure
4.1 shows results of tests with the linear dummy traffic.

4.3.2 Nonlinear

I executed another five tests 7_5 - 9. This communication pattern was the
same as above with the exception that after the download finished, the client
waited for 20 s, then began streaming a video for 20 s and did this three
times over. The goal of these tests was to see whether such a pattern of traffic
would affect the resulted correlation coefficient more than just a relatively
linear dummy traffic.

The results showed an overall lower correlation than in the test above.
This communication pattern resulted in avarage r = 0.66 with method L and
r = 0.67 with method S. Moreover, H0 for both methods and tests 7_6, 7_8
and 7_9 was not rejected in favor of H1 on a level of confidence 0.01%. Figure
4.2 shows results of tests with the nonlinear dummy traffic.

The test above shows that a dummy traffic which is not linear can lower
the correlation. The volume of the dummy traffic is also important, as a
significantly lower volume of dummy traffic might not have any results.

On the other hand, the adversary who has the ability to observe both ends
of a given communication could use the longer period of time to perform a
correlation attack successfully if the dummy traffic would be used only while
the client would communicate with a given server.

38

4.3. Dummy traffic tests

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

test number

co
rr

el
at

io
n

co
effi

ci
en

t
r

L S

Figure 4.2: Tests 7_5 - 7_9 for C1 with non linear dummy traffic

4.3.3 Effective
Dummy traffic can protect against end-to-end correlation attacks and every
Tor user has the possibility to use this protection. However, as shown above,
not every pattern of dummy traffic ruins the possibility of correlating the two
given streams. I will describe a dummy traffic pattern that could significantly
increase a client’s protection against correlation attacks.

Goal of the dummy traffic is to modify the traffic pattern of X and balance
the overall size of data and number of packets transmitted so that the two
streams X and Y on each side have a correlation close to zero.

To achieve that, the traffic patterns on each side should not appear to have
any relation with one another. Therefore, with and increase of traffic flow on
one side, there should not be a noticible increase in traffic on the other side. It
would be dangerous if the dummy traffic created a completely opposite traffic
pattern, as the adversary could notice it and suspect the use of dummy traffic
by C.

The ideal dummy traffic can be simmulated by creating several dummy
connections as follows.

1. At first, C creates a dummy connection D1 which transmits a similar
or more significant amount of data and packets on avarage than the
connection between C and S is going to generate. D1 should execute
some random pattern.

2. After that, C creates another dummy connection D2, which should gen-
erate similar traffic as the upcoming connection between C and S. The
longer these two dummy connections are maintained, the worse it is for

39

4. Countermeasures

the adversary to succesfully execute the attack. However, it should last
at least for several time windows and at least half of the expected time
of communication between C and S to increase the impact of the dummy
conections on the attack.

3. After that, C connects to S and at the same time ends D2. There should
not be a significant increase in data and packets transmitted between C
and OR1, however, betweeen OR3 and S the increase should be noticible.

4. C establishes a dummy connection D3 and ends connection with S at
the same time. This should result in a decrease in data and packets
transmitted over Y as opposed to X where the traffic flow should appear
more linear.

5. Finally, the connection D1 should continue with the random pattern for
several time windows and at least half of the time of communication
between C and S. After that C ends all conections.

I executed tests 8_0 - 4 to analyze the effectiveness of this method. The
connection D1 was a three times interrupted file download from a dummy
server. D2 and D3 were 10MB file downloads from a dummy server.

On the server’s side there usually occurred a short stream of just 20 packets
within a one time window. I ignored streams with such a small lifespan as
their relevancy was low considering the short-term attacks I performed.

0 1 2 3 4
−0.4

−0.3

−0.2

−0.1

0

0.1

test number

co
rr

el
at

io
n

co
effi

ci
en

t
r

L S

Figure 4.3: Tests 8_0 - 8_4 for C1 with effective dummy traffic protection

The results showed almost no correlation with an average r = -0.06 with
method L and r = -0.07 with method S. As shown on figure 4.3 the r was

40

4.3. Dummy traffic tests

close to 0 for all of the tests. H0 for both methods and tests 8_0 - 4 was
not rejected in favor of H1 on a level of confidence 0.01%.

The correlation was so low because D2 and D3 masked the beginning and
the end of the download on the client’s side. D1 created a random pattern
on top of this linear connection that started with D2, continued with the
download and ended with D3.

The results of these tests showed that dummy traffic in short-term eaves-
dropping attacks can be very effective. However, as stated above, attacks
lasting for a longer period of time could find a better correlation. When
selecting time series of hours, this dummy traffic pattern would not be as
effective.

Therefore, if a user is connecting to a particular server frequently, she
should consider switching the location she is connecting from which would
make it harder for the adversary to match the given users’ connections to-
gether.

41

Conclusion

The goal of the practical part of this thesis was to demonstrate a correlation
attack, analyze what affects correlation attacks and propose countermeasures
against these attacks.

I demonstrated the execution of a correlation attack using the Levine at
al. method and a modified version of Sun et al. method. The execution
was successful and showed that these attacks are feasible even with minimal
resources. I achieved an average correlation coefficient r of 0.87 for the Levine
et al. method and an average r of 0.88 for the modified Sun et al. method.
The error rate was 5% for both methods with no false positives.

I analyzed the conditions that influence such attacks. In the short term
attacks that I performed, the phase in which an onion proxy connects to an
onion router proved to have some effect on the attacks I presented. However,
this does not affect long-term attacks as I showed in a two-hour test 6_0
which showed an almost perfect correlation. Moreover, the latency difference
that depends on the onion routers in a circuit proved to be among the more
significant factors affecting these attacks.

In the last chapter, I proposed several countermeasures which could be
executed from the point of a user connecting to Tor as well as countermeasures
possibly implemented by the Tor developers. These countermeasures could be
useful, especially when an adversary monitors the network for just a small
period of time. I executed several additional tests to analyze the effectiveness
of dummy traffic on end-to-end correlation attacks. The results showed that
linear dummy traffic may not be sufficient enough and that a pattern within
the dummy traffic might increase the protection. At the end of this chapter,
I suggested and tested an effective dummy traffic pattern which protects Tor
users. The results using this method showed minimal correlation with r < 0.1
for all of the tests.

Finally, the end-to-end correlation attacks exploit low latency which is a
part of the Tor design that Tor’s developers will most probably never change.
Therefore, as long as the original Tor design does not change, these attacks

43

Conclusion

will be feasible in some shape or form.
Tor users can limit the chance of someone detecting their activity online

by trying to defend against these attacks using dummy traffic, but the Tor’s
popularity and the ability to route each user’s traffic around the world is
perhaps the best defense against them.

44

Bibliography

[1] The Tor Project, Inc. Tor Project: Overview. [online], 2018, (Accessed
on 04/14/2018). Available from: https://www.torproject.org/about/
overview.html.en

[2] The Tor Project, Inc. Tor: Onion Service Protocol. [online], (Accessed
on 04/14/2018). Available from: https://www.torproject.org/docs/
onion-services.html.en

[3] The Tor Project, Inc. Onion Routing: History. [online], 2005, (Accessed
on 04/14/2018). Available from: https://www.onion-router.net/
History.html

[4] Levine, Y. Pando: Almost Everyone Involved in Developing Tor was
(or is) Funded by the US Government. [online], jul 2014, (Accessed
on 04/14/2018). Available from: https://pando.com/2014/07/16/tor-
spooks/

[5] The Tor Project, Inc. Servers – Tor Metrics – Servers. [online], (Accessed
on 04/14/2018). Available from: https://metrics.torproject.org/
networksize.html?start=2018-03-21&end=2018-03-23

[6] The Tor Project, Inc. Traffic – Tor Metrics – Traffic (2017-
03-01 - 2018-03-23). [online], (Accessed on 04/14/2018). Avail-
able from: https://metrics.torproject.org/bandwidth.html?start=
2018-03-01&end=2018-03-23

[7] The Tor Project, Inc. Traffic – Tor Metrics – Traffic (2018-
03-01 - 2018-03-23). [online], (Accessed on 04/14/2018). Avail-
able from: https://metrics.torproject.org/bandwidth.html?start=
2017-03-01&end=2018-03-23

[8] The Tor Project, Inc. Tor: Sponsors. [online]. Available from: https:
//www.torproject.org/about/sponsors.html.en

45

https://www.torproject.org/about/overview.html.en
https://www.torproject.org/about/overview.html.en
https://www.torproject.org/docs/onion-services.html.en
https://www.torproject.org/docs/onion-services.html.en
https://www.onion-router.net/History.html
https://www.onion-router.net/History.html
https://pando.com/2014/07/16/tor-spooks/
https://pando.com/2014/07/16/tor-spooks/
https://metrics.torproject.org/networksize.html?start=2018-03-21&end=2018-03-23
https://metrics.torproject.org/networksize.html?start=2018-03-21&end=2018-03-23
https://metrics.torproject.org/bandwidth.html?start=2018-03-01&end=2018-03-23
https://metrics.torproject.org/bandwidth.html?start=2018-03-01&end=2018-03-23
https://metrics.torproject.org/bandwidth.html?start=2017-03-01&end=2018-03-23
https://metrics.torproject.org/bandwidth.html?start=2017-03-01&end=2018-03-23
https://www.torproject.org/about/sponsors.html.en
https://www.torproject.org/about/sponsors.html.en

Bibliography

[9] Dingledine, R.; Mathewson, N.; et al. Tor: The Second-Generation Onion
Router. [online], 2004. Available from: https://svn.torproject.org/
svn/projects/design-paper/tor-design.pdf

[10] The Tor Project, Inc. Who uses Tor? [online], (Accessed on 04/14/2018).
Available from: https://www.torproject.org/about/torusers.html.en

[11] The Tor Project, Inc. Tor Browser. [online], (Accessed on
04/14/2018). Available from: https://www.torproject.org/projects/
torbrowser.html

[12] The Tor Project, Inc. Tor Project: Projects Overview. [online], (Ac-
cessed on 04/14/2018). Available from: https://www.torproject.org/
projects/projects.html.en

[13] Stoica, I. Overlay networks. [online], (Accessed on 04/15/2018). Avail-
able from: http://www.cs.virginia.edu/~cs757/slidespdf/757-09-
overlay.pdf

[14] Dingledine, R. and N. Mathewson. Tor’s protocol specifications.
[online], (Accessed on 04/15/2018). Available from: https://
gitweb.torproject.org/torspec.git/tree/tor-spec.txt

[15] The Tor Project, Inc. Relay Search. [online], apr 2014, (Accessed
on 04/15/2018). Available from: https://metrics.torproject.org/
rs.html#search/flag:authority

[16] The Tor Project, Inc. Tor directory protocol, version 3. [online], (Accessed
on 04/15/2018). Available from: https://gitweb.torproject.org/
torspec.git/tree/dir-spec.txt

[17] The Tor Project, Inc. Relay Search: dizum. [online], (Accessed
on 04/15/2018). Available from: https://metrics.torproject.org/
rs.html#details/7EA6EAD6FD83083C538F44038BBFA077587DD755

[18] The Tor Project, Inc. Tor Rendezvous Specification - Version
3. [online], (Accessed on 04/15/2018). Available from: https://
gitweb.torproject.org/torspec.git/tree/rend-spec-v3.txt

[19] Elaine, B.; Roginsky, A. Transitions: Recommendation for Transitioning
the Use of Cryptographic Algorithms and Key Lengths. [online], nov 2015,
(Accessed on 04/17/2018). Available from: https://nvlpubs.nist.gov/
nistpubs/specialpublications/nist.sp.800-131ar1.pdf

[20] The Tor Project, Inc. Tor Project: FAQ. [online], (Accessed
on 04/16/2018). Available from: https://www.torproject.org/docs/
faq.html.en#AttacksOnOnionRouting

46

https://svn.torproject.org/svn/projects/design-paper/tor-design.pdf
https://svn.torproject.org/svn/projects/design-paper/tor-design.pdf
https://www.torproject.org/about/torusers.html.en
https://www.torproject.org/projects/torbrowser.html
https://www.torproject.org/projects/torbrowser.html
https://www.torproject.org/projects/projects.html.en
https://www.torproject.org/projects/projects.html.en
http://www.cs.virginia.edu/~cs757/slidespdf/757-09-overlay.pdf
http://www.cs.virginia.edu/~cs757/slidespdf/757-09-overlay.pdf
https://gitweb.torproject.org/torspec.git/tree/tor-spec.txt
https://gitweb.torproject.org/torspec.git/tree/tor-spec.txt
https://metrics.torproject.org/rs.html#search/flag:authority
https://metrics.torproject.org/rs.html#search/flag:authority
https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt
https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt
https://metrics.torproject.org/rs.html#details/7EA6EAD6FD83083C538F44038BBFA077587DD755
https://metrics.torproject.org/rs.html#details/7EA6EAD6FD83083C538F44038BBFA077587DD755
https://gitweb.torproject.org/torspec.git/tree/rend-spec-v3.txt
https://gitweb.torproject.org/torspec.git/tree/rend-spec-v3.txt
https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-131ar1.pdf
https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-131ar1.pdf
https://www.torproject.org/docs/faq.html.en#AttacksOnOnionRouting
https://www.torproject.org/docs/faq.html.en#AttacksOnOnionRouting

Bibliography

[21] Le Blond, S. et al. One Bad Apple Spoils the Bunch: Exploiting
P2P Applications to Trace and Profile Tor Users. [online], (Accessed
on 04/16/2018). Available from: https://www.usenix.org/legacy/
events/leet11/tech/full_papers/LeBlond.pdf

[22] Murdoch, S. J. and G. Danezis. Low-Cost Traffic Analysis of Tor. [online],
(Accessed on 04/16/2018). Available from: http://sec.cs.ucl.ac.uk/
users/smurdoch/papers/oakland05torta.pdf

[23] Kwon, A. et al. Circuit Fingerprinting Attacks: Passive Deanonymiza-
tion of Tor Hidden Services. [online], (Accessed on 04/16/2018).
Available from: https://www.usenix.org/system/files/conference/
usenixsecurity15/sec15-paper-kwon.pdf

[24] Schneier, B. How the NSA Attacks Tor/Firefox Users With QUAN-
TUM and FOXACID - Schneier on Security. [online], oct 2013, (Ac-
cessed on 04/16/2018). Available from: https://www.schneier.com/
blog/archives/2013/10/how_the_nsa_att.html

[25] Paganini, P. The impact of the HeartBleed Bug on Tor
Anonymity. [online], apr 2014, (Accessed on 04/16/2018). Avail-
able from: https://securityaffairs.co/wordpress/24110/hacking/
heartbleed-bug-tor.html

[26] Johnson, A. et al. Users Get Routed: Traffic Correlation on Tor by Re-
alistic Adversaries. [online], nov 2013, (Accessed on 05/03/2018). Avail-
able from: https://www.ohmygodel.com/publications/usersrouted-
ccs13.pdf

[27] Violeta, I. Introduction to MATLAB: Data Analysis and Statistics.
[online], 2007, (Accessed on 05/03/2018). Available from: http://
web.mit.edu/acmath/matlab/IAP2007/IntroMatlabStatistics.pdf

[28] Lund Research Ltd. Pearson Product-Moment Correlation. [on-
line], (Accessed on 05/09/2018). Available from: https://
statistics.laerd.com/statistical-guides/pearson-correlation-
coefficient-statistical-guide.php

[29] SPSS Tutorials. Pearson Correlations – Quick Introduction. [on-
line], (Accessed on 05/03/2018). Available from: https://www.spss-
tutorials.com/pearson-correlation-coefficient/

[30] Press, H. W. et al. Numerical Recipes in Fortran 77: The Art of Scientific
Computing. Numerical Recipes Software, 1986-1992, ISBN 052143064X,
14.5 Linear Correlation.

47

https://www.usenix.org/legacy/events/leet11/tech/full_papers/LeBlond.pdf
https://www.usenix.org/legacy/events/leet11/tech/full_papers/LeBlond.pdf
http://sec.cs.ucl.ac.uk/users/smurdoch/papers/oakland05torta.pdf
http://sec.cs.ucl.ac.uk/users/smurdoch/papers/oakland05torta.pdf
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-kwon.pdf
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-kwon.pdf
https://www.schneier.com/blog/archives/2013/10/how_the_nsa_att.html
https://www.schneier.com/blog/archives/2013/10/how_the_nsa_att.html
https://securityaffairs.co/wordpress/24110/hacking/heartbleed-bug-tor.html
https://securityaffairs.co/wordpress/24110/hacking/heartbleed-bug-tor.html
https://www.ohmygodel.com/publications/usersrouted-ccs13.pdf
https://www.ohmygodel.com/publications/usersrouted-ccs13.pdf
http://web.mit.edu/acmath/matlab/IAP2007/IntroMatlabStatistics.pdf
http://web.mit.edu/acmath/matlab/IAP2007/IntroMatlabStatistics.pdf
https://statistics.laerd.com/statistical-guides/pearson-correlation-coefficient-statistical-guide.php
https://statistics.laerd.com/statistical-guides/pearson-correlation-coefficient-statistical-guide.php
https://statistics.laerd.com/statistical-guides/pearson-correlation-coefficient-statistical-guide.php
https://www.spss-tutorials.com/pearson-correlation-coefficient/
https://www.spss-tutorials.com/pearson-correlation-coefficient/

Bibliography

[31] Murdoch, J. S. and P. Zieliński. Sampled Traffic Analysis by
Internet-Exchange-Level Adversaries. [online], (Accessed on 05/03/2018).
Available from: http://sec.cs.ucl.ac.uk/users/smurdoch/papers/
pet07ixanalysis.pdf

[32] Back, A. et al. Traffic Analysis Attacks and Trade-Offs in Anonymity
Providing Systems. [online], (Accessed on 04/17/2018). Available from:
http://www.cypherspace.org/adam/pubs/traffic.pdf

[33] Sun, Y. et al. RAPTOR: Routing Attacks on Privacy in Tor. [on-
line], 2015, (Accessed on 04/17/2018). Available from: https://
www.freehaven.net/anonbib/cache/raptor-sec2015.pdf

[34] Savvius, Inc. Glossary of Network Terms. [online], (Accessed on
05/09/2018). Available from: https://www.savvius.com/networking-
glossary/glossary-network-terms/

[35] Levine, N. B. et al. Timing Attacks in Low-Latency Mix Systems. [online],
(Accessed on 04/17/2018). Available from: https://www.freehaven.net/
anonbib/cache/timing-fc2004.pdf

[36] Billman, A. Use Traffic Analysis to Defeat TOR. [online], 2013, (Accessed
on 05/03/2018). Available from: https://null-byte.wonderhowto.com/
how-to/use-traffic-analysis-defeat-tor-0149100/

[37] Müller, K. Defending End-to-End Confirmation Attacks against
the Tor Network. [online], 2015, (Accessed on 05/03/2018). Avail-
able from: https://brage.bibsys.no/xmlui/bitstream/id/355191/
KMuller_2015.pdf

[38] Dingledine, R. et al. One Fast Guard for Life (or 9 months). [online],
(Accessed on 05/03/2018). Available from: https://petsymposium.org/
2014/papers/Dingledine.pdf

[39] The Tor Project, Inc. Tor Project: FAQ. [online], (Accessed
on 04/16/2018). Available from: https://www.torproject.org/docs/
faq.html.en#ChangePaths

[40] The Tor Project, Inc. Users – Tor Metrics – Users. [online], (Accessed
on 05/03/2018). Available from: https://metrics.torproject.org/
userstats-relay-country.html

48

http://sec.cs.ucl.ac.uk/users/smurdoch/papers/pet07ixanalysis.pdf
http://sec.cs.ucl.ac.uk/users/smurdoch/papers/pet07ixanalysis.pdf
http://www.cypherspace.org/adam/pubs/traffic.pdf
https://www.freehaven.net/anonbib/cache/raptor-sec2015.pdf
https://www.freehaven.net/anonbib/cache/raptor-sec2015.pdf
https://www.savvius.com/networking-glossary/glossary-network-terms/
https://www.savvius.com/networking-glossary/glossary-network-terms/
https://www.freehaven.net/anonbib/cache/timing-fc2004.pdf
https://www.freehaven.net/anonbib/cache/timing-fc2004.pdf
https://null-byte.wonderhowto.com/how-to/use-traffic-analysis-defeat-tor-0149100/
https://null-byte.wonderhowto.com/how-to/use-traffic-analysis-defeat-tor-0149100/
https://brage.bibsys.no/xmlui/bitstream/id/355191/KMuller_2015.pdf
https://brage.bibsys.no/xmlui/bitstream/id/355191/KMuller_2015.pdf
https://petsymposium.org/2014/papers/Dingledine.pdf
https://petsymposium.org/2014/papers/Dingledine.pdf
https://www.torproject.org/docs/faq.html.en#ChangePaths
https://www.torproject.org/docs/faq.html.en#ChangePaths
https://metrics.torproject.org/userstats-relay-country.html
https://metrics.torproject.org/userstats-relay-country.html

Appendix A
Acronyms

AS Autonomous System

BGP Border Gateway Protocol

DARPA The Defence Advanced Research Projects Agency

DDoS Distributed Denial of Service

DNS Domain Name System

DoS Denial of Service

HTTP Hypertext Transfer Protocol

IP Internet Protocol

ISP Internet service provider

NIST National Institute of Standards and Technology

OP Onion Proxy

OR Onion Router

TCP Transmission Control Protocol

49

Appendix B
Contents of the enclosed CD

readme.txt.........................the file with CD contents description
src...the directory of source codes

analyze.py............ the script used for testing in chapters 3 and 4
thesis...............the directory of LATEX source codes of the thesis

text.. the thesis text directory
thesis.pdf............................the thesis text in PDF format

test_results the directory with the results of all the tests

51

	Introduction
	Tor
	Goals and purpose
	Design
	Browser
	Protocol
	Strengths
	Weaknesses
	Notable attacks

	Correlation attacks on Tor
	Correlation
	Motivation
	Preconditions
	Methods

	Execution of a correlation attack
	Definitions of the methods
	Set-up
	Traffic capture and analysis
	Tests
	Results

	Countermeasures
	Users
	Tor Developers
	Dummy traffic tests

	Conclusion
	Bibliography
	Acronyms
	Contents of the enclosed CD

