
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague November 28, 2017

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Automated Acceptance Testing on macOS – A survey study focused on Avast Passwords

for mac
 Student: David Mokoš

 Supervisor: MSc Felix Javier Acero Salazar

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2018/19

Instructions

1] Survey the different technologies available for writing acceptance tests on macOS.
2] Select an appropriate test stack: GUI driving technology, testing framework, etc.
3] Prepare application for acceptance testing based on the selected test stack.
4] Implement a suite of acceptance tests to cover the most relevant requirements of Avast Passwords for
mac.

References

Will be provided by the supervisor.

Czech Technical University in Prague

Faculty of Information Technology

Department of Software Engineering

Bachelor’s thesis

Automated Acceptance Testing on macOS
– A survey study focused on Avast
Passwords for Mac

David Mokoš

Supervisor: MSc. Felix Javier Acero Salazar

May 14, 2018

Acknowledgements

First and foremost, I would like to thank my thesis supervisor, MSc. Felix
Javier Acero Salazar, for his patient guidance, advice and encouragement he
has provided throughout the whole time I have been working in Avast. I have
been lucky to meet such a hardworking, inspirative and helpful person who
cares so much about my work and who always keeps his word. His curiosity
and positive mindset inspired me and helped me particularly when exploring
new ideas. His careful revising contributed hugely to the creation of the thesis.

I take this opportunity to express gratitude to all of the Department faculty
members for their help and support throughout my studies. I also thank my
parents for the endless encouragement, support and attention. Last but not
least, I am grateful to my partner who supported me and accepted my limited
free time during this venture.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on May 14, 2018 .

Czech Technical University in Prague
Faculty of Information Technology
© 2018 David Mokoš. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Mokoš, David. Automated Acceptance Testing on macOS – A survey study
focused on Avast Passwords for Mac. Bachelor’s thesis. Czech Technical
University in Prague, Faculty of Information Technology, 2018.

Abstract

Software development requires adequate methods for quality assurance. One
of those methods is acceptance testing. This thesis introduces the automated
acceptance testing and its need in the software development process along
with its common pitfalls. It summarizes the existing tools and technologies
that could be used for automating acceptance tests on macOS as well as
best practices for writing maintainable automated acceptance test suites. The
gathered knowledge from the literature review is put into practice through the
implementation of an automated acceptance test suite for Avast Passwords for
Mac, a macOS application developed by Avast.

Keywords acceptance testing, test automation, GUI (Graphical User In-
terface) driving on macOS, automated tests maintainability

vii

Abstrakt

Ve vývoji softwaru je pro zajǐstěńı kvality nezbytné použit́ı vhodných metod.
Mezi tyto metody patř́ı akceptačńı testováńı. Tato práce popisuje výhody
akceptačńıho testováńı v procesu vývoje softwaru a zároveň upozorňuje na
jeho časté problémy. Práce také shrnuje dostupné nástroje a technologie,
které jsou vhodné pro automatizaci akceptačńıch test̊u na macOS, a zároveň
popisuje osvědčené zp̊usoby pro vývoj snadno udržovatelných automatických
akceptačńıch test̊u. Znalosti źıskané z literárńı rešerše jsou převedeny do praxe
skrze implementaci sady automatických akceptačńıch test̊u pro Avast Pass-
words for Mac, aplikaci pro macOS od společnosti Avast.

Kĺıčová slova akceptačńı testováńı, automatizace test̊u, ovládańı GUI (Graph-
ical User Interface) na macOS, udržovatelnost automatických test̊u

ix

Contents

Introduction 1
Goals of the Thesis . 2

1 State of the Art 3
1.1 Software Testing Fundamentals 3

1.1.1 Business Facing Tests that Support the Development
Process . 3

Functional Acceptance tests 3
1.1.2 Technology Facing Tests that Support the Development

Process . 3
Unit Tests . 4
Component Tests 4
Deployment Tests 4

1.1.3 Business Facing Tests that Critique the Project 5
Exploratory tests 5
Showcases . 5
Usability Tests 5

1.1.4 Technology Facing Tests that Critique the Project . . . 6
Nonfunctional Acceptance tests 6

1.1.5 Regression Testing . 6
1.2 Acceptance Testing . 6

1.2.1 Overview . 6
1.2.2 Automation . 7
1.2.3 Implementation Patterns 8

Behavior driven development 8
Application Driver Layer 10
Page Object Pattern 11
Layered Architecture 11

1.3 Acceptance Testing on macOS 11

xi

1.3.1 The macOS operating system 11
Accessibility 11

1.3.2 GUI Driving Tools . 12
Xcode User Interface Testing 12
AppleScript . 13
Javascript for Automation 14
Appium For Mac 14

2 Analysis 17
2.1 The Application Under Test – Avast Passwords for Mac 17

2.1.1 Introduction . 17
2.1.2 Features . 17
2.1.3 Architecture . 19

2.2 Automated Acceptance Test Suite 21
2.2.1 Requirements . 21
2.2.2 Architecture . 22

2.3 Tools Selection . 23
2.3.1 Acceptance Criteria . 23
2.3.2 Test Implementation Layer 24
2.3.3 Application Driver Layer 24

Xcode UI Testing 24
AppleScript . 25
JavaScript for Automation 27
Appium for Mac 28
Tool Selection 31

3 Design & Realization 33
3.1 Test Suite Implementation . 33

3.1.1 Acceptance Criteria . 33
3.1.2 Test Implementation Layer 35
3.1.3 Application Driver Layer 37

Interacting with the UI Elements 37
Page Object Pattern 40

3.2 Test Suite Execution . 43
3.3 Challenges . 45

3.3.1 Locating UI Elements 45
3.3.2 Interacting with the Environment 45
3.3.3 Performing Privileged Operations 46
3.3.4 Integration with the Continuous Integration Pipeline . . 47

3.4 Implementation State . 48

Conclusion 51
Further work . 51

xii

Bibliography 53

A Acronyms 59

B Contents of enclosed SD card 61

C Diagrams 63

xiii

List of Figures

1.1 Brian Marick’s four quadrant diagram describing types of tests
used in software projects . 4

1.2 The three layers of maintainable automated acceptance tests . . . 12

2.1 The credit card list screen of Avast Passwords for Mac 18
2.2 The different components of Avast Passwords for Mac as well as

the main interactions that occur between them 20
2.3 The three layers of maintainable automated acceptance tests along

with the tools that can be used . 23
2.4 Usage of the Accessibility Inspector tool to determine the accessi-

bility identifiers of the UI elements 30

3.1 Folder structure of the Gherkin .feature files and corresponding
steps implementation . 36

3.2 The domain model of the Application Driver Layer 38
3.3 Class diagram of the Element class and one of its subclasses–

TextFieldElement . 39
3.4 Class diagram of the login list screen and login detail screen (page

objects) of the application . 42
3.5 The login list screen and login detail screen of Avast Passwords for

Mac . 42
3.6 The integration of the test suite into the Continuous Integration

pipeline . 48

C.1 Class diagram of Element class and all of its subclasses 63
C.2 All implemented screens (Page Objects) of the Avast Passwords for

Mac application . 64

xv

List of Tables

2.1 Selection of the tool for the application driver layer of Avast Pass-
words for Mac . 31

xvii

Introduction

A key challenge faced by software industry is quality. To provide the highest
quality software, testing is an essential part of any development process [1].
Acceptance testing, an essential part of software testing, is typically conducted
at the end of the release cycle to guarantee that all functional requirements
of the software are met [2]. Acceptance tests are usually conducted manually
by QA engineers each time the software is released. This process is very
tedious, prone to human error, time consuming and thus expensive for the
developer team. This does not fit with the paradigm of agile development,
that relies on quick feedback and short development cycles [3]. To ease and
speed up this process, the automation of acceptance tests may be seen as a
promising initiative. It can significantly reduce the time QA engineers spend
on repetitive tasks and also makes the feedback loop shorter, which helps to
find the defects sooner, when they are less expensive to fix [2, 4].

However even acceptance testing automation has its pitfalls. First, unless
carefully designed, automated acceptance test suites can be very expensive
to develop and maintain. Tests may become too brittle and overly coupled
with the implementation details of the application under test, or in the worst
scenario, tests may become unreliable and report false positive results [5].
A second important issue that arises when developing automated acceptance
tests is tooling support. This issue is particularly prominent in macOS. In
fact, the existing tooling support for the automation of native macOS appli-
cations is relatively poor and the existing documentation around it offers very
basic information. All matters considered, the automation of native macOS
applications seems to be a barely explored area in the academic and developer
communities.

Avast is one of the largest security companies in the world [6] that places
high emphasis on the quality of its software and is therefore constantly look-
ing to improve its software development process. Quality Assurance (QA) is
considered to be one of top priorities of the company. QA engineers in Avast
spend a large portion of their time on manual testing. A particular stage in the

1

Introduction

software development cycle where manual testing is used is during acceptance
testing. Since acceptance tests need to be conducted every time a new release
candidate is produced, QA engineers spend a lot of their time on repetitive
tasks neglecting other tasks that could bring more value to the application.

In this context, the automation of the acceptance tests may help reduce
the time QA engineers in Avast spend in manual testing and allow them to
focus their efforts in more productive tasks.

The second part of this thesis will demonstrate the usage of automated
acceptance tests applied to Avast Passwords for Mac, a password manager
developed by Avast.

Goals of the Thesis

The aim of this thesis is to explore the possibilities available on macOS for
building automated acceptance tests suites, to point out their potential ben-
efits and to highlight their common problems. To validate the information
gathered in the theory, this thesis will describe the development of an auto-
mated acceptance test suite that covers the most important use cases of Avast
Passwords for Mac.

A secondary goal of this thesis is to contribute to the testing community by
submitting improvements to open source projects such as Appium For Mac, as
well as to provide a useful learning resource about common best practices for
developing automated acceptance tests through implementation examples. In
conclusion, this thesis should be a good source of information for QA engineers
implementing an automated acceptance test suite for a macOS application.

2

Chapter 1
State of the Art

1.1 Software Testing Fundamentals

Testing is a fundamental tool for ensuring the quality of the software [7]. It
can be characterized as a process of executing an application with the intent
of finding errors [1]. Studies indicate that testing consumes more than 50% of
the development time [8, 9]. On safety critical applications, testing can take
up to 80% of the development time [7].

There are many types of tests. Each of these types focuses on a different
aspect of the application and should be considered as part of the QA processes
in the software development cycle. The diagram 1.1, presents various types of
tests according to whether they are business facing or technology facing and
whether they support the development process or they critique the project. [2]

The most common categories of tests along with their definitions are pre-
sented below.

1.1.1 Business Facing Tests that Support the Development
Process

Functional Acceptance tests

The main focus of this thesis are functional acceptance tests that are funda-
mental part of this category. They will be discussed deeply in section 1.2.

1.1.2 Technology Facing Tests that Support the
Development Process

There are three main types of tests in this category. All of them are developed
and maintained consecutively by developers.

3

1. State of the Art

Funct ional Acceptance
Test ing

Showcases
Usability test ing

Exploratory test ing

Unit tests
Integrat ion tests

System tests

Nonfunct ional acceptance
tests

Business facing

Technology facing

C
ritique project

Su
pp

or
t

pr
og

ra
m

m
in

g

A U T OM AT ED M A N U A L

A U T OM AT ED M A N U A L / A U T OM AT ED

Figure 1.1: Brian Marick’s four quadrant diagram describing types of tests
used in software projects, adopted from [2, p. 85 (modified)]

Unit Tests

One of the main types of tests in this category are Unit tests. They occur
at the lowest level of abstraction. For instance, they test a method or mod-
ule in isolation from the logic and architecture of the application. To ensure
maximum error detection, unit testing relies heavily on white box testing tech-
niques, in which the tester has the knowledge of the internal structure of the
program and uses it as an advantage for designing better tests [1]. They should
not cover any interaction between parts of the application or interaction with
the environment, such as a file system or an external service. [2, 7, 10,11]

Component Tests

Component tests (sometimes called Integration tests [2]), on the other hand,
are performed against groups of methods or modules to ensure that they
work together as a whole. Component tests can catch errors caused by in-
correct management of the life cycles of objects or data. To address these
kinds of errors, they rely on black box testing techniques, in which the tester
is completely unconcerned about the internal behavior and structure of the
application. [1, 2, 7, 10,11]

Deployment Tests

A different type of tests in this category are Deployment tests. They ensure
that the application can be correctly installed, configured and run in the
production environment – the environment where the application is supposed

4

1.1. Software Testing Fundamentals

to perform. Deployment tests also make sure that the application is able to
communicate with all external services and is responsive. [2, 7]

1.1.3 Business Facing Tests that Critique the Project

There are three primary types of tests in this section, mostly performed man-
ually. These are the tests conducted to verify that the application provides
the expected value to the users. These tests not only check requirements, but
also check whether the requirements are correct and a user would be satisfied
with the experience of using the application [2].

Exploratory tests

Exploratory tests are particularly important. They can be described as “simul-
taneous learning, test design, and test execution” [12, p. 2]. In other words,
“exploratory testing is any testing to the extent that the tester actively con-
trols the design of the tests as those tests are performed and uses information
gained while testing to design new and better tests” [12, p. 2]. Exploratory
testing is a creative process which leads not only to finding errors, but also
to suggesting improvements or designing new tests based on the results and
experience. [2]

Showcases

Other important addition to this category are showcases. They are frequently
performed to demonstrate the customers the functionality the team have de-
livered. They should be realized as often as possible to provide the customer
an opportunity for suggesting improvements or even radical changes in the
application early in the development process when the changes are not as
expensive. [2]

Usability Tests

Usability testing is another way of getting feedback about the application, its
functionality and user experience. There are different approaches to usability
testing. One of the common approaches is contextual inquiry – watching users
while they work with the application to get the data from the observation.
Another approach similar to the previous one is to give the users some sce-
narios and observe the users while they are trying to achieve them. There are
some other methods, such as eye tracking or first click testing. [1, 2, 10]

In summary, these tests are conducted to collect data about the usage of
the application. This data can help reveal whether the application is useful,
comfortable to use, intuitive and consistent.

5

1. State of the Art

1.1.4 Technology Facing Tests that Critique the Project

Nonfunctional Acceptance tests

These tests are used for testing the non-functional requirements of the appli-
cation. These are the qualities of the application other than its functional-
ity. Non-functional requirements may include reliability, security, availability
among others. The tests used to verify whether these criteria have been met
are quite different from those verifying the functional requirements. These
tests often need significant resources, such as special environments in which
the application runs or special tools to simulate different behaviors of the
system, such as limited network access or disk space. [2]

1.1.5 Regression Testing

Regression testing is a cross-cutting type of testing and thus is not mentioned
in the four quadrant diagram in figure 1.1. Regression testing is applied after
the software is modified during the development process to make sure that
no new errors were introduced by the changes. If done properly, it can help
ensure that fixing an error does not introduce any new errors in other parts
of the application. [1, 10,13]

1.2 Acceptance Testing

1.2.1 Overview

Acceptance testing can be defined as “testing conducted to determine whether
a system satisfies its acceptance criteria and to enable the customer to deter-
mine whether to accept the system” [14, p. 22]. Acceptance testing is a testing
method conducted at the very end of the development cycle that tests the over-
all functionality of the system to determine whether the software has met the
acceptance criteria and whether it provides end users with expected function-
ality [2,10]. The acceptance criteria is the subset of software requirements that
the application must fulfill in order to by accepted by a customer [15]. The
main difference between Acceptance Tests and Unit Tests is that Acceptance
Tests are business-facing, not developer-facing.

An acceptance test is a formal description of the behavior of an application,
usually expressed by scenarios or examples. Different approaches have been
proposed for writing these scenarios, oftentimes with the aim of having the
possibility of automating the execution of the tests with the help of appropriate
tools. [2, 16]

The whole team should be responsible for the acceptance testing process,
including developers, QA engineers and business participants such as product
owners. The product owner is responsible for writing the software require-
ments and deriving scenarios from them. Software developers should always

6

1.2. Acceptance Testing

make sure that the requirements are met for all new functionalities. Software
testers should go through the scenarios and verify the expected functionality
of the software. This process needs to be done at least once before each release
of the application, but is advisable to do it as frequently as possible to catch
errors early in the development process when the cost of the fixing them is
not so high. [2]

There are clear advantages that make Acceptance Testing an essential stage
of the software development process. First and foremost, because they simu-
late the behavior of the end user and run on a production like environment,
acceptance tests help identify problems that may be missed by other types of
tests like unit or component tests. Another advantage of Acceptance Tests is
that they capture the customer requirements in a way that can be directly
verified and provide an unambiguous contract between the customer and the
development team. In addition, since developers, QA engineers and customers
(or a product owner) need to work closely on the Acceptance Tests, the collab-
oration between them is strengthened. This results in the whole team having
the same focus: to make sure the application delivers the expected business
value. [2, 10]

1.2.2 Automation

Acceptance test automation has always been a controversial topic. In some
circles, automated acceptance tests are seen as too expensive to create and
maintain [5]. In fact, when implemented poorly, the cost of maintaining an
automated acceptance test suite can offset its benefits. On the other hand,
and as suggested by the experience related by several case studies, the value of
a properly designed automated acceptance test suite clearly exceeds its cost.
In fact, the cost is much lower than that of manual acceptance and regression
testing and even lower than that of releasing a poor-quality application. [2,4,
17,18]

In general, tests automation has some undoubted benefits.

Faster Tests Since automated tests are written in code, they can be executed
several orders of magnitude faster than manual tests.

Optimized QA resources They reduce the time testers spend on repeti-
tive tasks allowing them to concentrate on higher level tasks, such as
exploratory testing.

Better Test Reliability Automated tests reduce the room for human errors
which may occur when performing repetitive tasks. [2, 10]

In addition to these, automated acceptance tests have other benefits.

7

1. State of the Art

Increased Defect Detection They can catch problems that neither unit
nor component tests could. For example, they can catch threading prob-
lems, architectural mistakes or configuration and environmental prob-
lems.

Timely Defect Detection Running automated acceptance test suite in the
Continuous Integration pipeline makes the feedback loops much faster,
allowing for defects to be found and fixed early when the cost is not so
high.

Faster Developer Feedback Automated acceptance tests can also be a valu-
able tool for the developers. They provide them a quick response as to
whether they have finished a particular task. Developers can easily run
the automated acceptance test suite during development and see which
requirements of the task have been met and which are yet to be imple-
mented.

Safer Code Modifications When used by developers, the automated ac-
ceptance tests can ensure that a modification of some part of the applica-
tion does not break any existing functionality, which can be particularly
helpful when making large changes across the application code. [2,10,19]

Despite the aforementioned benefits, is important to highlight that au-
tomated acceptance tests do not replace other types of testing. Although,
acceptance tests do verify the overall functionality and are able to catch some
cross cutting errors, they cannot completely replace unit nor component test-
ing. Similarly, automated acceptance tests do not eliminate personnel costs
because without constant maintenance, the automated acceptance test suite
could easily become unusable. [2, 18]

1.2.3 Implementation Patterns

The biggest challenge faced by an automated acceptance test suite is the cost
of maintainability. This cost can be offset by following proper and verified
practices [2, 19]. Similarly, writing maintainable automated acceptance test
suites requires the help of the appropriate tools [2, 10]. These practices and
tools will be detailed in this section.

Behavior driven development

An important part of developing a maintainable automated acceptance test
suite is the analysis process. During this process, the acceptance criteria
are defined and are used as the starting point for deriving the acceptance
tests. Consequently, failing to define the acceptance criteria, could lead to an
acceptance test suite that does not deliver the expected value to the project
stakeholders. Similarly, automating badly defined acceptance criteria would

8

1.2. Acceptance Testing

contribute to a hard-to-maintain and thus very expensive acceptance test suite
[2,10]. Acceptance criteria must therefore be defined very carefully, keeping in
mind that they will be the starting point from which the automated acceptance
test suite will be derived. [2, 20,21]

There are several approaches that can be used for defining the acceptance
criteria. For manual tests, IEEE Computer Society has released a Standard for
Software and System Test Documentation [22] that offers a well documented
template for defining test cases.

A common issue in long term software projects is that the acceptance cri-
teria are written at the beginning of the development process and become
outdated as soon as new functionality is added to the project [2]. Outdated
acceptance criteria cause troubles while testing the functionality of the appli-
cation, and should be addressed as soon as possible. An strategy that can
help mitigate this issue, is to use human readable test suites, which connect
the acceptance criteria directly to the tests implementation [23]. This way the
acceptance criteria are kept alongside the test code and can be easily updated.
There are tools and techniques that allow the usage of acceptance criteria as
executable specifications. One of this approaches is known as behavior driven
development.

Behavior driven development (BDD) is an agile software development tech-
nique that encourages close collaboration between QA engineers, developers
and non-technical business participants in the project. It focuses on defining
clear specifications that are easy to read and write, are unambiguous, and
can be easily bound with implementation code. This approach has several
benefits. First, by having the acceptance criteria as a part of the acceptance
test suite, they are being kept up to date as new tests are developed. Second,
because an automated acceptance test suite that uses a BDD approach uses
natural language for defining the acceptance criteria, it can be easily written
and updated by non-technical members of the project, like product managers.
Third, having the acceptance criteria as part of the automated acceptance test
suite avoids duplication of the requirements specifications and the acceptance
tests. [2, 23]

In most cases, BDD uses natural language constructs for defining the ac-
ceptance criteria. Tools like Cucumber [24], JBehave [25] or Behave [26] use
a domain specific language called Gherkin. Gherkin uses plain English lan-
guage with some additional structure to describe even the most complicated
scenarios. Gherkin is designed to be easy to learn even for non-technical per-
sonnel. [23, 27]

In Gherkin, the scenarios that describe the acceptance criteria are written
in .feature files. The .feature file describes one functionality of the ap-
plication by defining one or more scenarios which consist of a series of steps.
Each step needs to begin with the keyword Given followed by When, Then,
And or But. A sentence starting with Given puts the system into a known
state that stands as a prerequisite for the scenario. When steps describe the

9

1. State of the Art

key actions that need to be performed in order to fulfill the scenario. Finally,
Then steps verify the outcome of the scenario. And and But keywords serve to
improve the readability of the steps. An example of a .feature file written
in Gherkin language is shown in section 2.3. [23, 24,27]

The tools discussed above allow to link the acceptance criteria with the
implementation code that drives the application under test. They typically
use a regular expression matching to parse the steps defined in a domain
specific language, such as Gherkin. Behave [26], for instance, is a Python
framework that binds Python code with the acceptance criteria defined using
the Gherkin language. JBehave [25] is a Java framework that implements the
same functionality. Cucumber [24] is a framework written in Ruby and offers
integrations with more than dozen programming languages and frameworks.

In summary, the essence of Behavior Driven Development is making the
acceptance criteria executable. This is a big improvement over alternative
approaches like writing the acceptance criteria in an Excel sheet or a Word
document.

Application Driver Layer

An issue that negatively impacts the maintainability of automated acceptance
test suites is the tight coupling between the tests and the GUI of the appli-
cation under test. This issue is amplified by most GUI test recording tools
which, unless carefully utilized, produce test code that is overly coupled with
the GUI of the application under test.

Tools, such as Marathon or TestComplete usually offer an automated test
recording feature that makes writing the first version of the tests very easy [28–
30]. However, these tests are overly coupled with the GUI of the application
under test, and thus they tend to be very brittle. [2, 17,18]

One way to address this problem is by adding an abstraction layer between
the test implementation and the GUI of the application under test [2].

The Application Driver Layer is the layer that lays closer to the application
under test. It understands how the application works and how to communicate
with it. It provides a high level API for controlling the application. For
instance, if the application under test has a GUI, the application driver layer
would know about the buttons and text fields on the screen and would be
able to perform operations such as clicking the buttons and writing text to
the text fields. [2]

From the implementation perspective, there are several tools that can be
used for driving the GUI of the application under test. Some of these tools,
however, are platform and technology specific. In the case of macOS, there are
several alternatives available. The section 1.3.2 present the most prominent
tools for driving GUIs on macOS. Their benefits and disadvantages in the
context of acceptance testing are highlighted in chapter 2.

10

1.3. Acceptance Testing on macOS

Page Object Pattern

Keeping the application driver layer as decoupled as possible from the ap-
plication under test is an important part of preserving the maintainability of
the automated acceptance test suite. In this context, a pattern like the Page
Object can also be very useful [31].

The Page Object pattern is used to model areas or whole screens of the
application as individual objects. All the functionality of a single screen is
encapsulated into the Page Object which in turn should manage all the in-
teractions with the screen. Since all the interactions with the GUI of the
application under test are implemented in a single place, this pattern reduces
code duplication, facilitates modification, and makes the tests more resilient
to changes on the application under test. [2, 31,32]

Layered Architecture

In order to create maintainable automated acceptance test suite and to follow
the implementation patterns mentioned above, a layered architecture is essen-
tial. Figure 1.2 shows a layered architecture of an automated acceptance test
suite.

The Acceptance Criteria layer should follow the BDD principles and be
written in a domain specific language. These criteria should be backed up by
implementation code in the Test Implementation Layer. This layer, in turn,
communicates with the Application Driver Layer, which interacts directly with
the application under test.

1.3 Acceptance Testing on macOS

1.3.1 The macOS operating system

macOS is a UNIX operating system developed by Apple which powers every
Mac [33]. It offers several security mechanisms including application sandbox-
ing. A sandbox isolates applications from critical system components and en-
forces policies that constraint the behavior of an application. More important
for our discussion, the sandboxing enforced by macOS prevents applications
from controlling other applications or driving their GUI [34]. One way to
overcome this limitation is to use the accessibility features offered by macOS.

Accessibility

macOS comes with a variety of assistive technologies that help people with
disabilities to seamlessly use the macOS system and the applications running
on it.

From the developer’s perspective, enabling accessibility in an application
is as simple as using the accessibility APIs offered by Apple. Using these APIs,

11

1. State of the Art

developers can include semantic data about the elements in the UI of their
application. This data can include: the role of a specific widget (e.g: button,
checkbox), a description, a label and a unique identifier. [35–37]

This semantic data can later be leveraged by assistive applications such as
VoiceOver, a built-in screen reader, to allow disabled users interact with the
application. Similarly, GUI driving tools can rely on this data to automate
interactions with the elements in the GUI; hence the relevance of accessibility
in the discussion of GUI driving tools in macOS.

1.3.2 GUI Driving Tools

Xcode User Interface Testing

Xcode is an integrated development environment for building applications for
macOS, iOS, watchOS, and tvOS [38]. It was first released in 2003 and is
available via the Mac App Store free of charge for macOS High Sierra and
macOS Sierra users [39].

Xcode UI Testing is the most recent addition to the Apple test toolkit.
It gives developers the ability to validate the UI requirements of their appli-
cations in an automated fashion. It includes a UI recording feature, which
helps developers generate test code by simply interacting with the GUI of the
application under test. There are also enhanced test reports that provide de-
tailed information about the test execution, including snapshots of the state

A ccept ance Cr i t er ia
"Given ...
When ...
Then ..."

Test I mplement at ion Layer

Code uses domain language;
no reference to UI elements.

A ppl icat ion D r iver Layer
Understands how to interact with the

applicat ion to perform act ions and return
results.

Figure 1.2: The three layers of maintainable automated acceptance tests,
adopted from [2, p. 191 (modified)]

12

1.3. Acceptance Testing on macOS

of the user interface at test failures. This tool can be used for both checking
correctness and evaluating performance. [37,40,41]

Xcode UI Testing relies on two core technologies: the XCTest framework
and the accessibility features of macOS, described in section 1.3.1 [37].

XCTest is a framework that enables a good part of the UI testing features
integrated in Xcode. The framework contains base test classes as well as an
API for assertions. Since XCTest is used for the creation of both unit and
UI tests, the usage and creation of UI tests is very similar to the creation of
unit tests. Finally, like most of the frameworks offered by Apple, the XCTest
framework is fully compatible with both Objective-C and Swift. [37]

The API for writing UI tests is based on three classes: XCUIApplication,
XCUIElement and XCUIElementQuery. XCUIApplication and XCUIElement
classes represent the application under test and the UI elements in it. The
XCUIElementQuery class is used for querying and finding those UI elements.
To help developers with the structure of the tests, Xcode offers a feature for
recording the basic steps of these tests. The generated test code can then be
edited to, for instance, add assertions. [37]

AppleScript

AppleScript is a technology readily available in recent versions of the macOS
operating system. On one hand, AppleScript is a scripting language that
provides direct control over scriptable applications and over many parts of the
macOS operating system [42]. On the other hand, AppleScript also describes
the underlying technology supporting the language [43].

The automation offered by AppleScript is based on the Open Scripting Ar-
chitecture [44], which provides a standard and extensible mechanism for inter-
process communication in the macOS operating system. The communication
occurs via messages called Apple Events, to which scriptable applications can
respond to by performing operations or supplying the requested data [42,45].
In this context, a scriptable application is an application that can recognize a
variety of Apple Events that can be leveraged by an AppleScript [46].

While Apple has made it easier to add scriptability support to an applica-
tion [45], the task still requires action from the developers, who need to write
code to manage the different Apple Events sent to their applications by an
AppleScript [43].

It is possible, however, to use AppleScript with applications without sup-
port for scriptability. To achieve this, an intermediate component called Sys-
tem Events is required. The System Events component acts as an intermediary
between AppleScript and the application, enabling basic operations such as
finding GUI elements, performing clicks and key presses on them as well as
retrieving responses from these actions [45].

The actual scripting language offered by AppleScript is rich, object-oriented
and capable of performing complicated programming tasks [47]. Its syntax

13

1. State of the Art

uses English-like constructs in an effort to be more accessible for less technical
users. This being said, the language also has some limitations. For instance it
lacks APIs for advanced numeric operations like logarithms or trigonometric
functions [43]. Similarly, it features rudimentary text processing APIs with no
support for the regular expressions. Some of these limitations, however, can
be addressed through interactions with other scripting languages available in
macOS, which include Python, Ruby and Bash [43, 45].

Javascript for Automation

Until recently, AppleScript was the only Open Scripting Architecture compo-
nent1 provided by Apple. However, one of the design goals of the Open Script-
ing Architecture was to enable integrations with other scripting languages [45].
With the release of OS X 10.10 Yosemite, JavaScript for Automation became
a peer to AppleScript, thus allowing users to control scriptable applications
using JavaScript [48].

Using JavaScript developers could create automation scripts in a familiar
scripting language, enabling more complex use cases, while improving the
readability and maintainability of their code; not to mention access to a more
robust and extensible library of native functions. [48, 49]

Appium For Mac

Appium is an open-source tool for automating native, hybrid and web applica-
tions. Thanks to its cross-platform support, tests can be easily shared across
platforms. [50]

Although the original Appium project only offers official support for An-
droid, iOS, Windows and FirefoxOS [51], in 2013 the developers started Ap-
pium For Mac, an open-source project hosted on GitHub [52] for automating
native macOS applications [53].

Appium For Mac implements the WebDriver API following the same ap-
proach as the Chromedriver or the Firefox driver for driving web browsers [54].
It is a standalone HTTP server that runs on the destination device (the device
running the application under test) and relies on the JSON Wire Protocol [55]
for communicating with the client (the device running the test suite). The
JSON Wire Protocol is a transport protocol developed by WebDriver devel-
opers that implements a standardized set of endpoints exposed via a REST
API [53,56]. This client-server architecture opens interesting possibilities such
as allowing the test code to be written in any programming language with sup-
port for the WebDriver API [54] thus effectively decoupling the test code from
the implementation code of the application under test [51].

1Under the Open Scripting Architecture, the scripting language is implemented by a
component. These components can be installed dynamically. [45]

14

1.3. Acceptance Testing on macOS

The current implementation of Appium For Mac is built on top of a com-
mercial, closed source, framework called PFAssistive [52]. This framework is
responsible for the interactions with the GUI of macOS applications, and does
so via the Accessibility APIs offered by Apple [57].

15

Chapter 2
Analysis

The state of the art introduced the QA benefits brought by automated ac-
ceptance tests and presented the tools available for their implementation in
the macOS platform. This chapter describes the usage of these tools for im-
plementing an acceptance test suite that covers the fundamental use cases of
Avast Passwords for Mac.

2.1 The Application Under Test – Avast
Passwords for Mac

2.1.1 Introduction

Avast Passwords for Mac is a password manager developed by Avast Software
s.r.o. [58]. It is an application that securely stores all users’ logins, notes and
credit card details. It also offers a password generator that generates and saves
a unique and strong password for each account. The user data is encrypted
with the use of both symmetric and asymmetric cryptography and protected
by a single Master Password [59].

Besides macOS, the Avast Passwords application is also available on iOS,
Windows and Android and offers users the possibility of synchronizing their
data across their devices.

Figure 2.1 shows one of the main screens of Avast Passwords for Mac–the
credit card list screen.

2.1.2 Features

The most important features of Avast Passwords for Mac are:

Storing sensitive data Like the clients available for other platforms, the
main functionality of Avast Passwords for Mac is storing delicate data,
such as logins, credit cards and notes. All data is stored in a secure

17

2. Analysis

Figure 2.1: The credit card list screen of Avast Passwords for Mac

vault that is encrypted by a single Master Password. Users need to
provide the Master Password for accessing the data. Additionally, users
can set different triggers to lock their vault. For instance, users can
choose to lock their vault automatically after certain period of inactivity,
after their computer goes to sleep or right after they logout of their user
session.

Synchronization across platforms Users can synchronize their data across
supported devices and platforms with the aid of the Avast infrastructure.
To enable the synchronization, users only need to create a free Avast ac-
count.

18

2.1. The Application Under Test – Avast Passwords for Mac

Communication with Browsers An important component of the applica-
tion is the browser extension which is available for Safari, Chrome and
Firefox and which allows users to automatically save and fill up the
logins and credit card details on websites, as well as generate secure
passwords for new accounts.

Password Generator Using the Password Generator users can create unique
strong passwords to better protect their online accounts.

Password Guardian Avast Passwords for Mac also offers one paid feature –
Password Guardian. The Password Guardian periodically checks against
Avast servers for information about recent password leaks and advises
users to change their password in case one of their accounts has been
compromised. The Password Guardian also detects duplicate and weak
passwords and notifies users about them.

2.1.3 Architecture

Avast Passwords for Mac requires the interaction of three components: the
Main Application, the Helper Application and the Browser Extension. Each
of these components offers assistance to the user in a subset of specific tasks.
To the user, these components appear equally important, however, from a
technical point of view, the Helper Application is the one that packs most of
the business logic and is the only one that can access the encrypted user data.
This design optimizes the usability of the application while focusing the code
that has access to the protected data in a single point.

The different components of Avast Passwords for Mac as well as the main
interactions that occur between them are shown in figure 2.2 and described
below:

Main Application The main application provides the GUI that users can
use for managing their logins, notes and credit cards. The GUI also
allows users to configure the security of the application, manage their
synced devices and browser extensions, generate new passwords, and
access the information gathered by Password Guardian. The Main Ap-
plication manages the life-cycle of the Helper Application and commu-
nicates with it via XPC 2. The functionality of the Main Application is
highly dependent on the services offered by the Helper Application.

Helper Application The helper application is the process that manages the
access to the encrypted user data. It communicates with the Main Ap-
plication via XPC, and offers an HTTP server that is used in the commu-
nication with the Browser Extension. The Helper Application is always

2one of the RPC mechanisms offered by macOS [60, 61]

19

2. Analysis

available from an icon in the System Top Bar, from where users can per-
form a few tasks such as: locking and unlocking their vault and opening
the Main Application.

Browser Extension The browser extension offers assistance to the user while
using the web browser. With the Browser Extension, users can login to
their online accounts with one click. They can also generate and save
strong passwords for their accounts or save and automatically fill up
their credit card details.

Avast Passwords for Mac is distributed via the Mac App Store as well as
through the distribution channels of Avast such as the Avast Antivirus for
Mac. Users that install the Mac App Store version of the application receive
their updates through the update mechanism enabled by Apple. In contrast,
users that install the application from a different source, receive their updates
through a custom updater deployed along side the application during the first
install.

Main
Applicat ion

Browser
Extension

PAM Core

RPC HTTP

PAM Backend Server

PAM Client

Helper Applicat ion

Figure 2.2: The different components of Avast Passwords for Mac as well as
the main interactions that occur between them

20

2.2. Automated Acceptance Test Suite

2.2 Automated Acceptance Test Suite

2.2.1 Requirements

To guarantee the quality of Avast Passwords for Mac, different types of testing
are used. Unit tests run with each build of the application and are part of
the Continuous Integration pipeline. Exploratory tests are performed by QA
engineers most often during the development of new features to check the
usability of the application and to look for improvements. Acceptance tests
are conducted for each release candidate and also during the development of
new functionalities to confirm that all functional requirements are met.

The most time consuming QA process is acceptance testing. This pro-
cess, currently requires manually verifying several different scenarios which
lack proper definition and in most cases are not documented. Testing all the
scenarios can take QA engineers several hours.

This process, however, can be made more efficient by implementing an
automated acceptance test suite.

Before diving into the of the automation process, is important to define
the high level requirements of the test suite.

In general, a good acceptance test suite should meet three general require-
ments:

Running against the GUI Acceptance tests should simulate the behavior
of the end user. To ensure the behavior is as accurate as possible, the
tests should interact with the application in the same way an end user
would. In the case of an application with GUI, the acceptance tests
should be run directly against it. If the tests run directly against the
business logic, some errors in the UI or in the interactions between the
business logic and the GUI would remain undiscovered. [2, 10]

Clean Environment Acceptance tests should be executed in a production
like environment. This means that the application should be tested
on a machine whose configuration and environment are as similar as
possible to the ones end users will run it on. This is necessary because,
frequently, the tools used by developers pollute the testing environment
to the extent where successfully running the application on a developer’s
machine gives no guarantees as to whether the application will work
correctly in production. For this purpose, virtual machines with clean
operating systems are generally used. [2]

Binary Integrity Every time the code is compiled, there is a probability of
introducing differences in the final binary. For example, the code may
have been changed unintentionally, some settings may have changed in
the build machine, or a different compiler version may have been used.
Therefore the application binary used during acceptance testing should

21

2. Analysis

be the same binary that will be eventually be promoted to the production
environment. This, so-called binary integrity, guarantees that the binary
released to production is the exact same binary that was tested, and thus
reduce the probability of delivering untested software. [2]

In summary, a good acceptance test suite: strives to behave like a reg-
ular user by interacting with the application via the same channels an end
user would; is executed on a clean machine that resembles the production
environment; uses the exact same binary that will be eventually promoted to
production.

Besides these general requirements, five additional requirements have been
specified for the automated acceptance test suite for Avast Passwords for Mac:

Readability and maintainability Writing new tests should be easy and
comparatively faster than manually testing the same scenarios. More-
over, changes in the code of the application do not change any functional
requirements should not affect the results of the tests. Similarly, changes
in the specification of the requirements should be easy to implement in
the test suite.

Reliability The result of the tests should not contain any false positives.
Passing all the tests should mean that the application does not contain
any important errors and is ready to be released.

Language Independence Avast Passwords for Mac will be available in 19
languages in the near future. The automated acceptance test suite
should be able to verify the functionality of the application in all these
languages. For this reason, tests must not be dependent on the text in
the labels of the UI.

macOS Compatibility The automated acceptance test suite must be able
to run on all the operating system versions supported by Avast Pass-
words for Mac, namely: OSX El Capitan, macOS Sierra and macOS
High Sierra.

Tests Shareability Because most of the functional requirements are shared
across platforms, it should be possible to share at least a fraction of
the test definitions. Consequently, when a new feature is developed, the
definitions of the tests could be written only once for all the platforms
while keeping the implementation details different and specific for each
platform.

2.2.2 Architecture

As discussed in section 1.2.3, a layered architecture may be very helpful in
keeping the automated acceptance test suite maintainable. The layers should

22

2.3. Tools Selection

be loosely coupled allowing different technologies and even languages to be
used in each of them. This approach has been taken for developing the au-
tomated acceptance test suite for Avast Passwords for Mac application. The
figure 2.3 shows the layering of the test suite along with the tools selected for
each of them.

A ccept ance Cr i t er ia
Gherkin language that describes the scenarios

Test I mplement at ion Layer
Behave framework that maps

Acceptance Criteria layer
to the Python code implementat ion

A ppl icat ion D r iver Layer
Python code that sends commands to Appium

for Mac which drives the GUI of Avast
Passwords for Mac

Figure 2.3: The three layers of maintainable automated acceptance tests along
with the tools that can be used, adopted from [2, p. 191 (modified)]

2.3 Tools Selection

2.3.1 Acceptance Criteria

The Gherkin language will be used for writing the acceptance criteria. First,
writing the acceptance criteria in an English-like language fulfills the require-
ment of Readability and Maintainability of the test suite. Non-technical and
business stakeholders of the project can easily contribute and update the ac-
ceptance criteria. Second, given that Avast Passwords for Windows has al-
ready implemented an automated acceptance test suite with the use of Gherkin
language, this fulfills the Tests Shareability requirement. With Gherkin, it
would be possible to share the test definitions across the platforms supported
by Avast Passwords to the extent where the .feature files could be written
only once and the platform specific details could be managed by the Applica-
tion Driver layer.

23

2. Analysis

2.3.2 Test Implementation Layer

Python is the most widely used programming language among QA engineers
in Avast. Because of this, and due to its ease of use Python is an ideal choice
for the Test Implementation Layer ; not to mention the extensive functionality
that has already been implemented by other QA teams using the language.

Besides preserving the company preference of programming language for
QA tasks, Python is also an appealing choice because there are several tools
for mapping Gherkin .feature files into Python code. The tool chosen for
Avast Passwords for Mac is Behave [26]. Not only is it easy to install using
the Python package manager pip, but also is easy to use from the command
line and has a good documentation [26]. Furthermore, it has been successfully
used for the acceptance test suite of Avast Passwords for Windows.

Finally, IDEs such as PyCharm have native BDD support and offer auto-
completion for writing the acceptance criteria as well as support for linking
the criteria to the implementation code [62].

2.3.3 Application Driver Layer

An important part of the Application Driver Layer appertains to the automa-
tion of the GUI. Four technologies have been tested for driving the GUI on
macOS – Xcode UI Testing, AppleScript, JavaScript for Automation and Ap-
pium for Mac. These tools have been evaluated and compared based on the
requirements of the acceptance tests suite described in section 2.2.1. What
follows is a recount of the experiences had with each of the tools, highlighting
their positive and negative aspects.

Xcode UI Testing

Xcode UI Testing is the most recent addition to the Apple test toolkit. It
allows developers to write their tests using languages that are familiar to
the developers of Avast Passwords for Mac like Swift or Objective-C [37].
This makes it a strong candidate from the perspective of Readability and
Maintainability.

Similarly, by using the accessibility identifiers in the UI widgets of Avast
Passwords for Mac, the tests written with this tool can be decoupled from the
text of the the labels in the application thus confirming the appeal of Xcode
UI Testing from the perspective of Language Independence [37].

Up to this point, Xcode UI Testing appears as the go-to solution for im-
plementing the Application Driver Layer of the acceptance test suite. After
a more careful inspection, however, four particular issues make the Xcode UI
Testing unusable for the automated acceptance tests of Avast Passwords for
Mac.

First, just like unit tests, Xcode UI tests can only be run from within
Xcode [63]. This runs against the Clean Environment requirement, because

24

2.3. Tools Selection

it introduces noticeable environment changes that will not be available in the
actual production environment.

Second, the application binary needs to be built along with the tests in
order to execute them [63]. This setup goes against the Binary Integrity
requirement, because it requires a binary that is created for the purpose of
acceptance testing instead of running against the release candidate binary that
will later be promoted to production,

Third, because Xcode needs to be able to compile the application in order
to run the tests, some compatibility issues appear when trying to run the tests
on older operating systems. For instance, OSX El Capitan can not run the
latest version of Xcode [64], and is thus unable to compile and run the tests
over Avast Passwords for Mac.

Forth, based on experience with using Xcode UI Testing, the tests are not
so reliable, reporting a considerable number of false positive test results. On
the other hand, it is possible to easily debug the tests in Xcode.

In summary, Xcode UI Testing is not suitable for automated acceptance
tests for Avast Passwords for Mac project because: the tests can only be run
on a machine with a compatible Xcode installation; they can not be executed
against the production binary; they can not run on older versions of macOS ;
they report too many false positives.

AppleScript

Although AppleScript is a rather old technology (included in macOS since
1991 [65], it offers interesting possibilities.

First of all, due to its age, it is virtually ubiquitous on macOS systems.
This means that no additional software is required for running the accep-
tance tests; very much in keeping with the Clean Environment requirement.
Similarly, it means that AppleScript does not suffer from the compatibility
issues suffered by Xcode UI Testing, standing as a strong candidate from the
perspective of the macOS compatibility requirement.

Next, because AppleScript is part of macOS system, it is able to drive the
GUI of any executable application without running against important security
policies. This allows the tests to be executed against the binary intended for
production fulfilling the requirement of Binary Integrity.

AppleScript, however, has several problems.
The first problem is the programming language and its syntax. AppleScript

is quite different from other programming languages. It uses an English-like
syntax that allows non-programmers to use the language [47]. Paradoxically,
the same syntax makes it hard to understand and maintain for software en-
gineers, who are familiar with Object Oriented Languages like Swift. Addi-
tionally, the language imposes important constraints on the programmers, for
example, only strings and numbers can be passed as parameters to a function,

25

2. Analysis

not objects. For this reason, AppleScript does not fulfill the Readability and
Maintainability requirement.

The second issue is that unless the application under test is modified to be
able to react to specific Apple Events, the possibilities offered by AppleScript
for driving the UI of the application are limited. One alternative to get around
these limitations, is to make the application under test scriptable and respon-
sive to Apple Events [46]. This, however, implies that for every UI widget (e.g:
buttons, text fields, labels, etc.) the tests need to interact with, there should
be a matching Apple Event. This not only introduces considerable complexity
to the production code only for the purpose of acceptance testing, but also
means that the acceptance tests would not run against the actual GUI of the
application, but rather against a different layer that achieves similar effects as
the interactions with GUI.

Another alternative to get around the limitations of AppleScript, without
requiring important modifications to the source code of the application under
test is to drive the GUI of the application using an intermediate process called
System Events [45]. Using this process, an AppleScript can control the GUI
of any application by leveraging the accessibility features of macOS. However,
the script can only access the UI elements based on the accessibility tree
structure and sometimes also the labels. This is a deficient approach, because
it makes the tests highly dependent on the UI structure and the localization of
the strings in the application; if any of these changed even slightly, the tests
would break. This is a clear infringement over the Language Independence
requirement.

Here is an example of clicking the Add button using the System Events
process. In this case it is impossible to locate the button based on the label,
because it does not have any. Instead, it has a static text element inside.

tell application "System Events"
tell process "Avast Passwords"

click button 3 of window 1
end tell

end tell

Writing and specially debugging an AppleScript is rather cumbersome.
There is limited official documentation and since the practitioners community
is rather small there are very few unofficial sources. Finally, the project has
not received any major updates since OSX El Capitan and seems to rank very
low in the development priorities of Apple [65].

26

2.3. Tools Selection

JavaScript for Automation

Because JavaScript for Automation uses the same core technology as Apple-
Script [44], it shares all of its positive aspects. These include: keeping the
testing environment clean, preserving binary integrity and having no compat-
ibility issues. Furthermore, and unlike AppleScript, the JavaScript program-
ming language is much more familiar to QA engineers and developers, making
it a better choice from the perspective of Readability and Maintainability.

Despite its benefits, JavaScript for Automation has issues of its own.
First of all, and as it was the case with AppleScript, UI elements are located

using the accessibility tree and the text of the labels of the application. This
goes against the requirement of Language Independence. To get a glimpse
of the issue, the next snippet shows the JavaScript function used for unin-
stalling Avast Passwords for Mac using the GUI. The snippet highlights the
tight coupling that appears between the structure of the GUI and the labels
in it with the code of the tests. The example also shows the implementation
of the waitAndClickButton function which waits until the specified button
appears in the GUI and then clicks on it. This is necessary because JavaScript
for Automation does not provide any built-in API for waiting for the UI ele-
ments to appear, which is a very common requirement when implementing an
automated acceptance test suite.

function waitAndClickButton(button,seconds) {
var startTime = Application.currentApplication().currentDate()
while (! button.exists() || ! button.enabled())

if ((app.currentDate() - startTime) > (seconds * 1000))
throw new Error("button was not found")

delay(0.2)

button.click()
}

function clickUninstallButton() {
// Activate the window
Application('Avast Passwords').activate()

// Click on check for updates in Avast Passwords menu
var proc = Application('System

Events').processes.byName('Avast Passwords')↪→

var helpMenu = proc.menuBars[0].menuBarItems.byName('Help');
var uninstallMenuItem =

helpMenu.menus[0].menuItems.byName('Uninstall...');↪→

waitAndClickButton(uninstallMenuItem, 5)

27

2. Analysis

// Checks if window "Uninstall" appears
var uninstallWindow = proc.windows.byName("")
if (! wait(uninstallWindow, 5) ||

uninstallWindow.staticTexts[0].value() != "Uninstall")↪→

throw new Error("Window Uninstall was not found!")
}

The second issue regards the available tooling and documentation. Al-
though the process and tools available for writing tests in JavaScript for
Automation are very similar to ones available for AppleScript, when using
JavaScript, developers can debug their scripts using Safari [48]. This seems
like a good thing. Unfortunately the debugger is very unstable and crashes
frequently. As for the documentation, the official resources are rather shallow
and introductory and the unofficial documentation is very scarce.

Appium for Mac

Because Appium for Mac is an HTTP server listening on a specific port and
interacting with he application under test by leveraging the Accessibility API
[52], it does not modify the testing environment as much as Xcode UI Tests
would.

Because it leverages the Accessibility API for controlling the GUI of the
application under test, Appium for Mac can interact with the production
binary and does not require a special build for the purpose of acceptance
testing.

The client–server architecture of Appium for Mac allows QA engineers to
use various languages for writing the tests, including Python for the Applica-
tion Driver Layer. This makes the tests easy to write and maintain.

Appium for Mac runs on all macOS versions supported by Avast Passwords
for Mac and can therefore be used for testing on all of them. In addition, a
single machine can orchestrate the execution of the tests on several different
machines with different versions of macOS.

While the Selenium WebDriver API supports several methods for locating
UI elements, queries by ID and XPath are the only ones implemented in the
Appium for Mac driver. An XPath expression represents a path through the
accessibility tree of an application all the way down to a specific UI element.
These XPaths can be deduced using developer tools such as the Accessibility
Inspector which is bundled with Xcode. Alternatively, Appium for Mac offers
a feature for getting the XPath of a UI element by simply clicking on it. For
example, the XPath provided by Appium for Mac for the Add Login button
looks as follows:

28

2.3. Tools Selection

add_button_xpath = "/AXApplication[@AXTitle='Avast
Passwords']/AXWindow[@AXTitle='Avast Passwords' and
@AXIdentifier='main_window' and
@AXSubrole='AXStandardWindow']/
AXButton[@AXIdentifier='pl_top_add']"

↪→

↪→

↪→

↪→

Even though they are very effective, several issues appear when relying
on XPath expressions for finding elements in the GUI of the the application
under test.

First of all, because they represent the path through the whole accessibility
tree of the application, XPaths may be hard to read and maintain. This
problem can be somewhat alleviated by disconnecting parts of the XPath and
concatenate them using basic string operations. For example:

application_xpath = "/AXApplication[@AXTitle='Avast Passwords']"

main_window_xpath = application_xpath +
"/AXWindow[@AXTitle='Avast Passwords' and
@AXIdentifier='main_window' and
@AXSubrole='AXStandardWindow']"

↪→

↪→

↪→

add_button_xpath = main_window_xpath +
"/AXButton[@AXIdentifier='pl_top_add']"↪→

A second issue emerges because, by definition, XPaths are tightly coupled
with the structure of the accessibility tree of the application, which means
that if the UI structure changes, even slightly, all XPaths used in the tests
would need to be modified.

The second option for locating UI elements when using Appium for Mac
is to use queries by IDs. These IDs are accessibility identifiers that need to
be set in the code of the application. Tools like Accessibility Inspector can
help to reveal the accessibility identifiers of the UI elements. Figure 2.4 shows
the Accessibility Inspector in action while locating a UI element. Using the
provided information is possible to determine the accessibility identifiers and
also the tree structure (both shown in red boxes).

Three aspects should be considered when using this approach. First, when
locating a UI element using the ID, the whole UI tree needs to be searched,
which makes this approach a bit slower than locating elements using their
XPath. However in case of an application with a relatively simple UI structure,
the time complexity is negligible. Second, the accessibility identifiers need to

29

2. Analysis

Figure 2.4: Usage of the Accessibility Inspector tool to determine the accessi-
bility identifiers of the UI elements

be set for each UI Element directly in the source code of the application.
Third, the accessibility identifiers need to be unique in order to reliably find
the right UI element.

Finally, here are some closing remarks regarding the overall Appium for
Mac project as well as the tooling and documentation available.

Appium for Mac is a relatively active open source project with regular
contributions. Because the project is open source, it is also relatively easy
to implement modifications with the purpose of fixing bugs or adding new
functionality; this was, in fact, what was done to implement a couple of test
scenarios of Avast Passwords for Mac3.

As for the process and tooling available for writing tests using Appium for
Mac, the landscape appears more favorable. Tests can be written using Python
and mature IDEs like PyCharm [66] can be used for writing and debugging
the code.

Finally, because Appium for Mac is built on top of seasoned projects like
the Selenium WebDriver API, and JSON Wire Protocol the available docu-
mentation is deep and extensive.

3The contributing to the Appium for Mac project is discussed in section 3.3

30

2.3. Tools Selection

GUI Driving Tools

X
co

de
U

IT
es

tin
g

A
pp

le
Sc

rip
t

Ja
va

Sc
rip

t
fo

r
A

ut
om

at
io

n

A
pp

iu
m

fo
r

M
ac

Running against the GUI 3 3 3 3

Clean Environment 7 3 3 3

Binary Integrity 7 3 3 3

Ease of writing and maintaining 3 7 3 3

Experienced Reliability 7 3 3 3

C
rit

er
ia

Language Independence 3 7 7 3

macOS Compatibility 7 3 3 3

Table 2.1: Selection of the tool for the application driver layer of Avast Pass-
words for Mac

Tool Selection

Each of the tools described in the previous section, has been tested to find
out the compliance with the acceptance tests requirements defined in section
2.2.1. The table 2.1 shows the list of requirements along with the evaluated
tools. The table shows a check mark when the tool meets the requirement or
an X mark when it doesn’t. As shown in the table Appium for Mac is the
tool that seems to fit more tightly the requirements of the acceptance tests of
Avast Passwords for Mac.

31

Chapter 3
Design & Realization

This chapter describes the implementation of the automated acceptance test
suite for Avast Passwords for Mac using the tools selected in chapter 2.

The tools selected for implementing the automated acceptance test suite
are:

• Gherkin language used for writing the acceptance criteria

• behave Python framework used for linking the criteria to the application
driver layer

• Selenium WebDriver API for implementing the application driver layer
and communicating with the GUI driver

• Appium for Mac for driving the GUI of the application on macOS

3.1 Test Suite Implementation

3.1.1 Acceptance Criteria

The acceptance criteria were specified using the Gherkin language. They were
written keeping in mind two goals: automation and lose coupling with the im-
plementation details of the tests. For example, they do not contain steps like I
click the Add button or I click on the Create Vault button. Instead
they describe the steps using a higher level of abstraction. For instance, I add
a new login and I have a vault.

To give a wider example, consider a feature from Avast Passwords for Mac
like retrieving and creating a new login. The acceptance criteria (taken from
the Gherkin logins.feature file) looks as follows:

33

3. Design & Realization

Feature: Logins
Tests the storing and retrieval of the logins

Scenario: User should be able to create and retrieve the login
Given I have vault
And I am on logins screen
When I add new login
And I fill login service name as Test service
And I fill login url as example.com
And I fill login username as testuser
And I fill login password as passwd
And I fill login note as Login note
And I save the login
Then login is saved
When I open details of login Test service
Then service name in login detail is Test service
And url in login detail is example.com
And username in login detail is testuser
And password in login detail is passwd
And note in login detail is Login note

The Gherkin language offers a feature called Scenario Outlines. This fea-
ture reduces code repetition by allowing the definition of a table with exam-
ples, each of which can be referenced via placeholders in the scenarios. In the
following example, an Scenario Outline is used for verifying that the correct
credit card type is displayed for a given credit card number:

Feature: Credit cards
Tests the storing and retrieval of the credit card details

Scenario Outline: The types of cards are displayed correctly
Given I have vault
And I am on credit cards screen
When I add new credit card with card number <card_number>
Then credit card is saved
And Credit card <name> exists

Examples:
card_number	name
4539049282009264	Visa •••9264
5247033672052399	MasterCard •••2399

34

3.1. Test Suite Implementation

6011352096160097	Discover •••0097
340267047080100	Amex •••0100
6759649826438453	Maestro •••8453
36700102000000	Diners Club •••0000
3528000700000000	JCB •••0000

3.1.2 Test Implementation Layer

The implementation of the steps defined in the .feature files lays in cor-
responding Python files that the behave framework links with the .feature
files. These steps definitions need to be located in the same directory as the
.feature files, which can be seen in figure 3.1. The majority of the steps from
the previous example are backed up by the logins.py file.

The steps definitions call directly the application driver layer through the
ap = AvastPasswordsProxy() object that will be discussed in section 3.1.3.
Some example steps definitions are shown below:

from behave import given, when, then
ap = AvastPasswordsProxy()

@given("I am on logins screen")
def step_impl(context):

ap.main_screen().navigate_to_logins_screen()

@when("I open details of login {service_name}")
def step_impl(context, service_name):

ap.main_screen().logins_screen().logins_list_screen().
select_login_by_service_name(service_name)↪→

@then("username in login detail is {username}")
def step_impl(context, username):

assert_that(ap.main_screen().logins_screen().
logins_detail_screen().get_username(), equal_to(username))↪→

The environment.py module defines actions that happen before and af-
ter certain events. For example, it defines actions that happen before and
after running the whole test suite as well as actions that should take place
before and after specific .feature files and specific scenarios. In this case,
the environment.py contains the following functions that are executed by the
behave framework automatically:

35

3. Design & Realization

def before_all(context):
context.config.setup_logging()
driver.get()
ap.open_app()
ap.new_vault()

def after_all(context):
driver.close()

def before_scenario(context, scenario):
ap.open_app()

def after_scenario(context, scenario):
ap.close_app()

The before all method is executed before the whole test suite and takes
care of setting up the logging, creating the WebDriver instance and getting the
application to a completely clean state. The after all method is executed
at the end of the test suite and closes the WebDriver instance. The meth-
ods before scenario and after scenario make sure that the application is
restarted between scenarios.

The whole folder structure of the the Gherkin .feature files and corre-
sponding steps implementations is shown in figure 3.1.

features............................The folder with the .feature files
logins.feature
credit cards.feature
notes.feature
generator.feature
environment.py
steps The folder with the steps implementation

general.py
logins.py
credit cards.py
notes.py
generator.py

ap driver The folder with the application driver layer

Figure 3.1: Folder structure of the Gherkin .feature files and corresponding
steps implementation

36

3.1. Test Suite Implementation

3.1.3 Application Driver Layer

The figure 1.2 shows the layering of the acceptance test suite. The implemen-
tation of the test suite follows this approach and adds a little more complexity.
Figure 3.2 describes in more detail the architecture of the actual implementa-
tion of the automated acceptance test suite for Avast Passwords for Mac.

Appium for Mac is, at its core, an HTTP server. For communicating with
it, the test suite needs to instantiate a Selenium WebDriver object, which then
acts as proxy for all the communications with the Appium for Mac server.
Because this WebDriver instance is needed in many places in the application
driver layer, it is offered as a singleton object through the wrapper driver.py.
The IP address of the runner machine is set in a configuration file config.json

Interacting with the UI Elements

To locate the UI elements in the application, the test suite relies on the ac-
cessibility identifiers put in place in the application source code. For this pur-
pose, the Accessibility.swift file was added to the source code of Avast
Passwords for Mac. This file contains all the accessibility identifiers used
in the application organized in nested enumerations. Using the Apple API
NSAccessibility.setAccessibilityIdentifier(: String?), the identi-
fiers were set for all UI elements that the tests need to interact with.

The WebDriver API supported by Appium for Mac offers several methods
for locating and interacting with the UI elements of the application under test.
In the Python implementation of this API, the methods used for locating
the UI elements are WebDriver.find element by id(id) and WebDriver.
find element by xpath(xpath). These methods return a WebElement object
which has methods like click() or send keys(keys).

Appium for Mac offers two options for clicking on the UI elements. The
first one is implemented via the accessibility features of macOS and clicks
the element without moving the mouse cursor to it. This is achieved by
the click() method of the WebElement instance. The second option moves
the mouse cursor to the UI element first, which simulates more closely the
interaction of a real user. To achieve this behavior, the ActionChains class
needs to be used. An example of clicking the UI element with this approach
could be this: ActionChains(WebDriver).click(WebElement).perform()

To manage this additional complexity, proxy objects that wrap the We-
bElement API were created. These WebElement proxies implement all the
methods needed for interacting with the UI elements. These methods are
divided into specific subclasses of the Element class. The Element class im-
plements general methods for interacting with all types of UI elements. For
example, it offers methods for locating an element, clicking on it, moving the
mouse cursor etc.

37

3. Design & Realization

AvastPasswordsProxy

A ccept ance Cr i t er ia
"Given ...
When ...
Then ..."

Test I mplement at ion Layer

Code uses domain language;
no reference to UI elements.

MainScreen

LoginsScreen

BaseScreen

APCLI

APUt ils

APElements

Element

TextFieldElement

...

...

A ppl icat ion D r iver Layer
Understands how to interact with the

applicat ion to perform act ions and return
results.

Figure 3.2: The domain model of the Application Driver Layer

There are also more specific WebElement proxies. For instance,
the CheckboxElement, which represents a checkbox, has three additional meth-
ods. These methods offer a high level API for selecting, deselecting and query-
ing the state of a checkbox. Another example is the TextFieldElement, which

38

3.1. Test Suite Implementation

offers an API for clearing a text field and setting its value.
In contrast, the ListElement class, acts as a different type of proxy. This

class represents a list of WebElement objects. It overrides the method for
locating the UI element with the method for locating multiple objects. It
offers high level APIs for counting the elements, getting their values etc.

An example of WebElement proxy classes is shown in figure 3.3. This figure
shows the Element base class with one of its subclasses–TextFieldElement.
All subclasses of the Element class can be found in figure C.1

Element

+ locat or : st ring
+ met hod : By

st r () : st ring
find(t ime : int) : WebElement
+ get _ locat or () : st ring
+ get _ met hod() : By
+ exist s(t ime : int) : bool
+ asser t _ exist s(t ime : int) : void
+ asser t _ not _ exist s(t ime : int) : void
+ cl ick () : Element()
+ double_ cl ick () : Element()
+ get _ at t r ibut e(name : st ring) : st ring
+ get _ t i t le() : st ring
+ get _ value() : st ring

TextFieldElement

+ get _ t ext () : st ring
+ send_ keys() : TextFieldElement()
+ set _ t ext () : TextFieldElement()
+ clear () : TextFieldElement()

Figure 3.3: Class diagram of the Element class and one of its subclasses–
TextFieldElement

Each WebElement proxy class is initialized with a locator and a method for
locating it. The method can be either selenium.By.ID or selenium.By.XPATH.
The locator is a string with either the accessibility identifier or the xpath of
the element.

The protected method find(time) defined in Element class uses the lo-
cator and the method for locating the element, waiting for it the amount of
time defined in parameter and returns the WebElement object if the element
is found or throws and exception if the element can not be located.

In Element class, there are also methods for checking the existence of
the UI element on the screen. The method exists(time) returns true if
the UI element can be located on the screen or false otherwise. Methods
assert exists(time) and assert not exists(time) throw an exception if
the element could not be found or could be found, respectively.

The complete list of instances of Element class and its subclasses that the
tests interact with is defined in the APElements class. The approach of nested

39

3. Design & Realization

classes was used for better navigation in the UI elements. A few defined UI
elements from the APElements class are shown below:

from selenium.webdriver.common.by import By
from ap_driver.element import *

class APElements:
class LockedWindow:

title = Element(By.ID, "ml_lockedtitle")
password_field = TextFieldElement(By.ID, "ml_passwordfield")
unlock_button = ButtonElement(By.ID, "ml_unlockbutton")

class MainWindow:
window = Element(By.ID, "main_window")
logins_button = ButtonElement(By.ID, "mw_passwords")
scroll_area = ScrollAreaElement(By.ID, "mw_scrollarea")

class Logins:
class List:

title = Element(By.ID, "pl_top_title")
add_button = ButtonElement(By.ID, "pl_top_add")
service_names = ListElement(By.ID, "pl_servicename")

class Detail:
service_name_field = TextFieldElement(By.ID,

"pe_servicenamefield")↪→

username = TextFieldElement(By.ID, "pe_usernamefield")
password = TextFieldElement(By.ID, "pe_passwordfield")

Page Object Pattern

To decouple the test implementation layer from the implementation details
of the application driver layer, the Page Object Pattern was used. For each
screen of the application that the tests interact with, a page object class exists.
These classes are named screens. Figure C.2 shows the complete diagram of
all implemented screens.

All screen classes extend a BaseScreen class. The BaseScreen class offers
three dependencies that are accessible to subclasses. These dependencies are
APElement, APUtils and APCLI classes. The APElement class is described in
section Interacting with the UI Elements. The APUtils class offers APIs that
are used across all the screens such as wait(). The APCLI class acts as a
proxy for the command line interface (CLI) of Avast Passwords for Mac, and

40

3.1. Test Suite Implementation

offers APIs for achieving tasks like removing the vault from the file system.
The BaseScreen class has also the abstract method is shown(time), that
all subclasses need to override. The class diagram of the BaseScreen class is
shown in figure 3.4.

The point of interaction between the test implementation layer and the
application driver layer is the AvastPasswordsProxy class. This class also
extends the BaseScreen class and represents the whole application as a sin-
gle screen. It offers attributes that allow easy access to the MainScreen,
LockedScreen and OnboardingStartScreen. These attributes enable a flu-
ent API that allows invocation chains to execute deeply nested methods. For
example, the client call to access a method defined in LoginsListScreen
would look like this:

AvastPasswordsProxy().main_screen().
logins_screen().logins_list_screen().
select_login_by_service_name(service_name)

↪→

↪→

Each screen class offers different methods that correspond with the func-
tionality provided by an actual screen in the application. These methods deal
with the implementation details needed to achieve a higher level tasks. For
example, consider the creation of a new login. This process takes several steps,
such as clicking the Add button, filling the required text fields and clicking
on the Save button. All these steps are implemented in one publicly accessi-
ble method LoginsScreen.add(...), accessible from the test implementation
layer through the AvastPasswordsProxy object as follows:

@when("I add new login with service name {service_name}, url
{url}, username {username}, password {password} and note
{note}")

↪→

↪→

def step_impl(context, service_name, url, username, password,
note):↪→

AvastPasswordsProxy().main_screen().logins_screen().
add(service_name, url, username, password, note)↪→

The class diagram in figure 3.4 shows the methods implemented
in LoginsListScreen and LoginsDetailScreen. The figure 3.5 then shows
the actual screens of the Avast Passwords for Mac application that corre-
sponds to the page objects in figure 3.4.

41

3. Design & Realization

BaseScreen

ut ils : APUt ils()
cli : APCLI()
elements : APElements()

+ is_ shown() : bool

LoginsListScreen

- screen_ elements : APElements()

+ is_ shown() : bool
+ is_ empty() : bool
+ is_ login_ in_ list (name) : bool
+ select_ login_ by_ service_ name(name)
: LoginsDetailScreen()
+ add() : LoginsAddScreen()
+ search() : LoginsListScreen()
+ cancel_ search() : LoginsListScreen()

LoginsDetailScreen

- screen_ elements : APElements()

+ is_ shown() : bool
+ get_ service_ name() : st ring
+ get_ url() : st ring
+ get_ username() : st ring
+ get_ password() : st ring
+ get_ note() : st ring
+ edit () : LoginsEditScreen()
+ delete() : LoginsListScreen()
+ back() : LoginsListScreen()

Figure 3.4: Class diagram of the login list screen and login detail screen (page
objects) of the application

Figure 3.5: The login list screen and login detail screen of Avast Passwords
for Mac

42

3.2. Test Suite Execution

As stated before, the methods in the screen classes know how to interact
with the application and how to achieve higher level tasks. Below, there
is an example implementation of one of those methods–get password() in
LoginsDetailScreen class. This method first clicks the Password Reveal
Button and then gets the text from appropriate text field. It uses the API
provided by the WebElement proxy classes–Element and TextFieldElement.

def get_password(self):
self.elements.MainWindow.Logins.password_reveal_button.click()
return self.elements.MainWindow.Logins.password.get_value()

This layer does not implement any tests logic. It only represents an in-
terface for achieving high level tasks that the Avast Passwords for Mac ap-
plication offers. Therefor, in none of the screens there is an assert nor failure
reporting. All asserts are part of the tests logic and are implemented in the
test implementation layer.

To follow the Page Object Pattern completely, all methods that do not
need to return any value return the class itself. To achieve this in Python,
the self keyword can be used. Alternatively, if some operation results in
switching of the screens, the new screen is returned. This allows clients to
chain the test code like this:

LoginsListScreen().add().set_service_name(service_name).
set_url(url).set_username(username).set_password(password).
set_note(note).save()

↪→

↪→

3.2 Test Suite Execution

The automated acceptance test suite can be both executed and run on the
machine of a QA engineer. To initiate the automatic acceptance testing,
several tools need to be present on the machine:

Python 3.4 The Python language in which the test code
is implemented

Behave The Python framework that maps the accep-
tance criteria written in Gherkin language to
the Python implementation code

Selenium Python language bindings for Selenium Web-
Driver

43

3. Design & Realization

PyHamcrest The Python framework for better verifying
the matches

Appium for Mac The application that drives the GUI of Avast
Passwords for Mac

Avast Passwords for Mac The application under test

Also, the machine needs two important configuration changes:

Accessibility Access Allowing Appium for Mac the accessibility ac-
cess in the system settings. This allows it to
take control of the GUI of any application.

Keychain Integration Deploying the administrator password into the
macOS Keychain. This is necessary for per-
forming privileged operations. It is described
in more detail in section 3.3.3.

After all the tools are installed and the machine is properly configured, the
tests can be easily executed from the terminal using the behave command in
the tests folder. The Behave framework automatically finds all the .feature
files and executes the scenarios [26].

The results of the tests start to appear in the terminal as soon as the tests
are run. The example output of the automated acceptance test suite looks as
follows:

....

Feature: Notes # features/notes.feature:1

Scenario: Delete note # features/notes.feature:36
Given I have vault # features/steps/general.py:84 0.771s
And I am on notes screen # features/steps/general.py:34 0.882s
When I add new note with title Note2 # features/steps/notes.py:19 3.083s
And I open details of note Note2 # features/steps/notes.py:39 2.101s
Then note title is Note2 # features/steps/notes.py:44 0.046s
When I delete the note # features/steps/notes.py:54 1.408s
Then note Note2 doesn't exist # features/steps/notes.py:64 0.748s

Assertion Failed: note Note2 exists

Failing scenarios:
features/notes.feature:36 Delete note

3 features passed, 1 failed, 0 skipped
28 scenarios passed, 1 failed, 0 skipped
281 steps passed, 1 failed, 0 skipped, 0 undefined
Took 4m45.114s

44

3.3. Challenges

3.3 Challenges

Several problems arose during the development of the automated acceptance
test suite. These include problems locating the UI elements, interacting with
the environment, performing privileged operations and integrating the test
suite into the Continuous Integration Pipeline.

3.3.1 Locating UI Elements

Three blocking issues appeared while locating the UI elements:
The first one was a bug in Appium for Mac when trying to find more than

one element using the WebDriver API WebDriver.find elements(). This
issue was resolved directly in the source code of Appium for Mac through a
pull request4. This pull request has been approved and merged.

The second issue emerged when trying to locate the UI elements within
a scrollable area that were out of view. To locate them, the view needed to
be scrolled first. Appium for Mac did not implement any functionality for
scrolling. This issue was solved by adding a new feature to the Appium for
Mac source code that allows scrolling.

The third issue was caused by some elements that could not be found using
the accessibility identifiers even though they could be seen using the Accessi-
bility Inspector. The issue originated in a misuse of Apple NSAccessibility API
and was solved by modifying the source code of Avast Passwords for Mac.

In summary, to solve problems locating the UI elements, two modifica-
tions had to be made to the Appium for Mac open source project and several
modifications regarding the NSAccessibility API had to be made in the source
code of Avast Passwords for Mac.

3.3.2 Interacting with the Environment

An important challenge appears when using two machines for executing the
acceptance tests. In this setup an executor machine runs the python tests
and transmits the GUI driving commands to a runner machine, which has an
instance of Appium for Mac for receiving and executing the commands on the
GUI of the application under test 5. A significant limitation of this setup is
that the tests in the executor machine do not have an easy way of interacting
with the environment of the runner machine, making it very hard to achieve
simple tasks such as running a Bash script as part of the implementation of a
test.

To solve this issue, a new feature had to be added to the Appium for
Mac project. The feature allows tests to execute Bash commands from the
executor machine. These commands will be transferred through the JSON

4The pull request can be found at https://github.com/appium/appium-for-mac/pull/31
5This setup is further described in section 3.3.4

45

3. Design & Realization

Wire Protocol and run on the runner machine via Appium for Mac. The pull
request with the changes have been submitted6. While the project maintainers
have not accepted the changes yet, discussions of how to improve the feature
have started.

Here is the implementation of the run bash() method implemented in the
APUtils class. This method uses the implemented functionality to execute
the Bash command in the runner machine:

@staticmethod
def run_bash(bash_command):

return driver.get().execute_script(bash_command)

3.3.3 Performing Privileged Operations

For some operations, such as uninstalling the application or modifying some
preferences, administrator rights are necessary. In those cases, a native di-
alog is presented by the OS asking the user to introduce an administrator’s
username and password. The class APUtils offers a method for handling the
interactions with this dialog and filling the username and password:

@staticmethod
def get_system_password():

config = json.load(open("config.json"))
return APUtils.run_bash('security find-generic-password -s ' +

config["keyChainItem"] + ' -w')↪→

@staticmethod
def security_agent():

driver.get().get("coreautha")
sec_agent = APElements.SecurityAgent
if sec_agent.window.exists(1):

sec_agent.password_field.click()
sec_agent.password_field.send_keys(

APUtils.get_system_password())↪→

sec_agent.ok_button.click()
driver.get().get("Avast Passwords")

6The pull request can be found at https://github.com/appium/appium-for-mac/pull/30

46

3.3. Challenges

Because this dialog is created by a system process called coreautha, the
WebDriver instance needs to point to this process. At the end of this method,
the WebDriver instance is pointed back to the Avast Passwords process.

To be able to automatically fill in the administrator password from the
tests without saving these credentials in the code, the macOS Keychain was
used [67]. The Keychain is a native password manager available on every in-
stallation of macOS. It has a CLI which allows Python scripts to retrieve cre-
dentials stored in it by invoking a simple Bash command. The retrieval of the
administrator password is implemented in the method get system password().
The name of the Keychain item as saved in the macOS Keychain is stored in
the configuration file config.json.

In summary, to perform privileged operations, the interactions with the
security dialog needed to be handled. Also, to avoid storing the administrator
credentials in plain text in the source of the tests, an integration with macOS
Keychain was used.

3.3.4 Integration with the Continuous Integration Pipeline

Because Appium for Mac is an HTTP server, it is possible to connect to it
and execute the tests from a different machine. This opens up two important
possibilities. First, the runner machine needs only Appium for Mac and the
application binary running, which means that the environment of machine can
be kept clean. The executor7 machine, on the other hand, requires Python 3
along with behave, Selenium and PyHamcrest packages 8. Second, it is possible
to execute the test suite simultaneously on several machines. Consequently,
this allows running the tests on all supported macOS versions at the same
time.

While this has not been completely implemented, a proof of concept has
been created. The figure 3.6 shows how the automated acceptance test suite
should be executed in the Continuous Integration pipeline. Two bash scripts
were created for this purpose. The execute tests.sh copies the tests code
and Avast Passwords for Mac binary to the executor machine and executes
the runner execute.sh script which handles the provisioning of the runner
machines, copies the Avast Passwords for Mac binary there and executes the
tests.

To summarize, a proof of concept for integrating the acceptance test into
the Continuous Integration pipeline was developed and successfully tested.
The proof of concept consists of two Bash scripts that manage the provisioning
of the runner and executor machines as well as the actual execution of the
tests.

7The executor machine has all the test code and executes the tests by sending commands
to the runner machine which drives the application GUI and returns the results back to the
executor machine

8These tools are described in section 3.2

47

3. Design & Realization

Execut or machine

Pyt hon

Runner machine
OSX El Capit an

A ppium
for M ac

Selenium

behave

Cont inuos
I nt egr at ion
machine

...

Avast
Passwor ds

Runner machine
macOS Sier r a

A ppium
for M ac

Avast
Passwor ds

Runner machine
macOS H igh Sier r a

A ppium
for M ac

Avast
Passwor ds

Figure 3.6: The integration of the test suite into the Continuous Integration
pipeline

3.4 Implementation State

The current automated acceptance test suite covers approximately five eighths
of the essential features of Avast Passwords for Mac. The tests cover:

Storing login information
Storing secure notes
Storing credit card details

The tests cover the important scenarios re-
garding the login information, secure notes
and credit card details including storing, re-
trieval, editing and deletion.

48

3.4. Implementation State

Creating a new secure
vault

In order to get to a clean state, the tests are
able to remove the secure vault and create a
new one by completing the on-boarding pro-
cess, which includes creation of the new Mas-
ter Password

Password Generator The tests cover the generation of a secure
password including setting the desired length,
setting the types of characters allowed, regen-
erating the password and copying the pass-
word to the clipboard.

The features of Avast Passwords for Mac that have not yet been covered
by acceptance tests are:

Synchronization across
platforms

The synchronization is a complicated process
that involves the interaction of several ma-
chines as well as the usage of several back-end
services including a service that manages the
Avast Account needed for the synchronization
process.

Communication with
Browsers

Testing of this feature would involve driving
of the web browsers’ GUI, including the in-
teractions with the Browser Extension.

Password Guardian Since Password Guardian is a premium fea-
ture, the testing of it would involve the navi-
gation to the preferences window and manag-
ing the license subscription.

All implemented screens (Page Objects) of the Avast Passwords for Mac
application can be found in figure C.2

49

Conclusion

The literature review of this thesis was focused on the topic of acceptance
testing as part of the broader subject of software testing. In this context,
acceptance tests automation was thoroughly described giving special emphasis
to the potential benefits it brings to the development process as well as the
common problems that arise when integrating it into the software development
cycle. Later in this section, several tools for building automated acceptance
tests suites on macOS were explored.

The practical part of this thesis focused in the implementation of an auto-
mated acceptance test suite for Avast Passwords for Mac. Chapter 2 evaluated
the available tools for implementing acceptance test suites in macOS, and pre-
sented the subset of tools that were considered more appropriate for building
the test suite of Avast Passwords for Mac. The final chapter of the thesis
centered in the actual implementation of the automated acceptance tests for
Avast Passwords for Mac, and presented snippets and examples of the tests
used for covering the most important use cases of the application.

Regarding the goals of the thesis:
The main goal of implementing an automated acceptance test suite for

Avast Passwords for Mac was achieved satisfactorily. The delivered test suite
covers the most important use cases of the application and was implemented
using the tools that more tightly address the requirements of the development
team and the product owner.

The secondary goal of contributing to the overall testing community was
also achieved satisfactorily. Three pull requests to the Appium for Mac open
source project were submitted, each of which aimed at improving and com-
plementing the overall functionality of the tool.

Further work

The next step in the implementation would be to complete the integration of
the automated acceptance test suite into the Continuous Integration pipeline.

51

Conclusion

This integration would provide developers with very useful feedback while
developing new features for the application.

To make the most out of the integration with the Continuous Integration
pipeline, special attention should be given to the reporting of the test results.
A relatively simple improvement, would be to add support for standard re-
port formats like JUnit XML, which are also supported by the Continuous
Integration environment used in Avast.

A second avenue of improvement would be the implementation of addi-
tional tests to cover the rest of the use cases of Avast Passwords for Mac.
Features like the Password Guardian or the Synchronization across platforms
may be good places to start.

Finally, an additional tool for snapshot testing should be considered. This
tool would catch errors such as broken layouts and truncated texts, which the
current acceptance test suite would have a hard time detecting. These types
of checks will become more relevant in the near future, since there is a plan
to localize Avast Passwords for Mac into 19 languages in upcoming versions.

52

Bibliography

[1] Myers, G. J.; Sandler, C.; et al. The Art of Software Testing. Wiley, 2011,
ISBN 1118031962.

[2] Humble, J.; Farley, D. Continuous Delivery: Reliable Software Re-
leases through Build, Test, and Deployment Automation (Addison-Wesley
Signature Series (Fowler)). Addison-Wesley Professional, 2011, ISBN
0321601912.

[3] Crispin, L.; Gregory, J. Agile Testing: A Practical Guide for Testers and
Agile Teams. Addison-Wesley Professional, 2009, ISBN 0321534468.

[4] Haugset, B.; Hanssen, G. K. Automated Acceptance Testing: A Liter-
ature Review and an Industrial Case Study. In Agile 2008 Conference,
Aug 2008, pp. 27–38, doi:10.1109/Agile.2008.82.

[5] James Shore. The Problems With Acceptance Testing [online]. [Accessed:
2018-02-12]. Available from: http://www.jamesshore.com/Blog/The-
Problems-With-Acceptance-Testing.html

[6] Soeken, M.; Wille, R.; et al. Assisted Behavior Driven Development Using
Natural Language Processing. In Objects, Models, Components, Patterns,
edited by C. A. Furia; S. Nanz, Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2012, ISBN 978-3-642-30561-0, pp. 269–287.

[7] Mathur, S.; Shaily, M. Advancements in the V-Model. volume 1, 02 2010.

[8] Harrold, M. J. Testing: A Roadmap. In ICSE - Future of SE Track, 2000.

[9] Introducing Test Automation and Test-Driven Development: An Expe-
rience Report. Electronic Notes in Theoretical Computer Science, vol-
ume 116, 2005: pp. 3 – 15, ISSN 1571-0661, doi:https://doi.org/10.1016/
j.entcs.2004.02.090, proceedings of the International Workshop on Test
and Analysis of Component Based Systems (TACoS 2004).

53

http://www.jamesshore.com/Blog/The-Problems-With-Acceptance-Testing.html
http://www.jamesshore.com/Blog/The-Problems-With-Acceptance-Testing.html

Bibliography

[10] Patton, R. Software Testing. Sams, 2000, ISBN 0672319837.

[11] Sardana, M.; Choudhury, T.; et al. Extensive review on software testing
and pipeline testing softwares. In 2017 International Conference on Big
Data Analytics and Computational Intelligence (ICBDAC), March 2017,
pp. 246–251, doi:10.1109/ICBDACI.2017.8070842.

[12] Bach, J. Exploratory Testing Explained. 2003. Available from: http:
//www.satisfice.com/articles/et-article.pdf

[13] Leung, H. K. N.; White, L. Insights into regression testing [software test-
ing]. In Proceedings. Conference on Software Maintenance - 1989, Oct
1989, pp. 60–69, doi:10.1109/ICSM.1989.65194.

[14] IEEE Standard for System, Software, and Hardware Verification and
Validation. IEEE Std 1012-2016 (Revision of IEEE Std 1012-2012/ In-
corporates IEEE Std 1012-2016/Cor1-2017), Sept 2017: pp. 1–260, doi:
10.1109/IEEESTD.2017.8055462.

[15] Wiegers, K.; Beatty, J. Software Requirements (3rd Edition) (Developer
Best Practices). Microsoft Press, 2013, ISBN 0735679665.

[16] Agile Alliance. Acceptance Testing [online]. [Accessed: 2018-03-10]. Avail-
able from: https://www.agilealliance.org/glossary/acceptance/

[17] Alégroth, E.; Feldt, R.; et al. Maintenance of automated test suites in
industry: An empirical study on Visual GUI Testing. Information and
Software Technology, volume 73, 2016: pp. 66 – 80, ISSN 0950-5849,
doi:https://doi.org/10.1016/j.infsof.2016.01.012.

[18] Garousi, V.; Mäntylä, M. V. When and what to automate in soft-
ware testing? A multi-vocal literature review. Information and Soft-
ware Technology, volume 76, 2016: pp. 92 – 117, ISSN 0950-5849, doi:
https://doi.org/10.1016/j.infsof.2016.04.015.

[19] Bob Martin. Automated Acceptance Testing [online]. [Accessed: 2018-04-
03]. Available from: https://skillsmatter.com/skillscasts/4143-
automated-acceptance-testing

[20] Weiss, J.; Schill, A.; et al. Literature Review of Empirical Research Stud-
ies within the Domain of Acceptance Testing. In 2016 42th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA),
Aug 2016, ISSN 2376-9505, pp. 181–188, doi:10.1109/SEAA.2016.33.

[21] Ricca, F.; Torchiano, M.; et al. Using acceptance tests as a support for
clarifying requirements: A series of experiments. Information and Soft-
ware Technology, volume 51, no. 2, 2009: pp. 270 – 283, ISSN 0950-5849,
doi:https://doi.org/10.1016/j.infsof.2008.01.007.

54

http://www.satisfice.com/articles/et-article.pdf
http://www.satisfice.com/articles/et-article.pdf
https://www.agilealliance.org/glossary/acceptance/
https://skillsmatter.com/skillscasts/4143-automated-acceptance-testing
https://skillsmatter.com/skillscasts/4143-automated-acceptance-testing

Bibliography

[22] IEEE Standard for Software and System Test Documentation. IEEE Std
829-2008, July 2008: pp. 1–150, doi:10.1109/IEEESTD.2008.4578383.

[23] Solis, C.; Wang, X. A Study of the Characteristics of Behaviour Driven
Development. In 2011 37th EUROMICRO Conference on Software Engi-
neering and Advanced Applications, Aug 2011, ISSN 1089-6503, pp. 383–
387, doi:10.1109/SEAA.2011.76.

[24] Cucumber. Cucumber Reference [online]. [Accessed: 2018-04-07]. Avail-
able from: https://cucumber.io/docs/reference

[25] JBehave. What is JBehave? [online]. [Accessed: 2018-04-08]. Available
from: http://jbehave.org/

[26] GitHub. Behave [online]. [Accessed: 2018-04-07]. Available from: https:
//github.com/behave/behave

[27] GitHub. Cucumber – Gherkin [online]. [Accessed: 2018-04-07]. Available
from: https://github.com/cucumber/cucumber/wiki/Gherkin

[28] Lowell, C.; Stell-Smith, J. Successful Automation of GUI Driven Ac-
ceptance Testing. In Extreme Programming and Agile Processes in Soft-
ware Engineering, edited by M. Marchesi; G. Succi, Berlin, Heidelberg:
Springer Berlin Heidelberg, 2003, ISBN 978-3-540-44870-9, pp. 331–333.

[29] SmartBear Software. TestComplete Overview [online]. [Accessed:
2018-04-06]. Available from: https://smartbear.com/product/
testcomplete/overview/

[30] Software Testing Help. 35+ Best GUI Testing Tools with Complete
Details [online]. [Accessed: 2018-04-16]. Available from: http://
www.softwaretestinghelp.com/best-gui-testing-tools/

[31] GitHub - SeleniumHQ. Page Objects [online]. [Accessed: 2018-04-
07]. Available from: https://github.com/SeleniumHQ/selenium/wiki/
PageObjects

[32] Leotta, M.; Clerissi, D.; et al. Improving Test Suites Maintainability with
the Page Object Pattern: An Industrial Case Study. In 2013 IEEE Sixth
International Conference on Software Testing, Verification and Valida-
tion Workshops, March 2013, pp. 108–113, doi:10.1109/ICSTW.2013.19.

[33] Apple. What is macOS [online]. [Accessed: 2018-05-05]. Available from:
https://www.apple.com/lae/macos/what-is/

[34] Apple. macOS - Security [online]. [Accessed: 2018-05-05]. Available from:
https://www.apple.com/lae/macos/security/

55

https://cucumber.io/docs/reference
http://jbehave.org/
https://github.com/behave/behave
https://github.com/behave/behave
https://github.com/cucumber/cucumber/wiki/Gherkin
https://smartbear.com/product/testcomplete/overview/
https://smartbear.com/product/testcomplete/overview/
http://www.softwaretestinghelp.com/best-gui-testing-tools/
http://www.softwaretestinghelp.com/best-gui-testing-tools/
https://github.com/SeleniumHQ/selenium/wiki/PageObjects
https://github.com/SeleniumHQ/selenium/wiki/PageObjects
https://www.apple.com/lae/macos/what-is/
https://www.apple.com/lae/macos/security/

Bibliography

[35] Apple. Accessibility on macOS [online]. [Accessed: 2018-04-23]. Available
from: https://developer.apple.com/accessibility/macos/

[36] Apple. Accessibility Programming Guide for OS X [online]. [Ac-
cessed: 2018-04-23]. Available from: https://developer.apple.com/
library/content/documentation/Accessibility/Conceptual/
AccessibilityMacOSX/

[37] Apple. Testing with Xcode – User Interface Testing [online]. [Accessed
2018-02-12]. Available from: https://developer.apple.com/library/
content/documentation/DeveloperTools/Conceptual/testing_
with_xcode/chapters/09-ui_testing.html

[38] Apple. Xcode [online]. [Accessed: 2018-05-10]. Available from: https:
//developer.apple.com/xcode/

[39] Apple. Xcode – Mac App Store [online]. [Accessed: 2018-02-13]. Available
from: https://itunes.apple.com/us/app/xcode/id497799835

[40] Apple. What’s New in Testing [online]. [Accessed: 2018-02-12]. Available
from: https://developer.apple.com/videos/play/wwdc2017/409/

[41] Apple. UI Testing in Xcode [online]. [Accessed: 2018-02-12]. Available
from: https://developer.apple.com/videos/play/wwdc2015/406/

[42] Apple. Introduction to AppleScript Overview [online]. [Accessed: 2018-
02-13]. Available from: https://developer.apple.com/library/
content/documentation/AppleScript/Conceptual/AppleScriptX/
AppleScriptX.html

[43] Apple. About AppleScript [online]. [Accessed: 2018-02-13]. Avail-
able from: https://developer.apple.com/library/content/
documentation/AppleScript/Conceptual/AppleScriptX/Concepts/
ScriptingOnOSX.html

[44] Apple. Open Scripting Architecture [online]. [Accessed: 2018-02-14].
Available from: https://developer.apple.com/library/content/
documentation/AppleScript/Conceptual/AppleScriptX/Concepts/
osa.html

[45] Neuburg, M. AppleScript: The Definitive Guide: Scripting and Automat-
ing Your Mac. Beijing Sebastopol, CA: O’Reilly Media, Inc, 2006, ISBN
978-1449379155.

[46] Apple. Scriptable Applications [online]. [Accessed: 2018-02-13].
Available from: https://developer.apple.com/library/content/
documentation/AppleScript/Conceptual/AppleScriptX/Concepts/
scriptable_apps.html

56

https://developer.apple.com/accessibility/macos/
https://developer.apple.com/library/content/documentation/Accessibility/Conceptual/AccessibilityMacOSX/
https://developer.apple.com/library/content/documentation/Accessibility/Conceptual/AccessibilityMacOSX/
https://developer.apple.com/library/content/documentation/Accessibility/Conceptual/AccessibilityMacOSX/
https://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/09-ui_testing.html
https://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/09-ui_testing.html
https://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/09-ui_testing.html
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://itunes.apple.com/us/app/xcode/id497799835
https://developer.apple.com/videos/play/wwdc2017/409/
https://developer.apple.com/videos/play/wwdc2015/406/
https://developer.apple.com/library/content/documentation/AppleScript/Conceptual/AppleScriptX/AppleScriptX.html
https://developer.apple.com/library/content/documentation/AppleScript/Conceptual/AppleScriptX/AppleScriptX.html
https://developer.apple.com/library/content/documentation/AppleScript/Conceptual/AppleScriptX/AppleScriptX.html
https://developer.apple.com/library/content/documentation/AppleScript/Conceptual/AppleScriptX/Concepts/ScriptingOnOSX.html
https://developer.apple.com/library/content/documentation/AppleScript/Conceptual/AppleScriptX/Concepts/ScriptingOnOSX.html
https://developer.apple.com/library/content/documentation/AppleScript/Conceptual/AppleScriptX/Concepts/ScriptingOnOSX.html
https://developer.apple.com/library/content/documentation/AppleScript/Conceptual/AppleScriptX/Concepts/osa.html
https://developer.apple.com/library/content/documentation/AppleScript/Conceptual/AppleScriptX/Concepts/osa.html
https://developer.apple.com/library/content/documentation/AppleScript/Conceptual/AppleScriptX/Concepts/osa.html
https://developer.apple.com/library/content/documentation/AppleScript/Conceptual/AppleScriptX/Concepts/scriptable_apps.html
https://developer.apple.com/library/content/documentation/AppleScript/Conceptual/AppleScriptX/Concepts/scriptable_apps.html
https://developer.apple.com/library/content/documentation/AppleScript/Conceptual/AppleScriptX/Concepts/scriptable_apps.html

Bibliography

[47] Apple. Introduction to AppleScript Language Guide [online]. [Ac-
cessed: 2018-02-13]. Available from: https://developer.apple.com/
library/content/documentation/AppleScript/Conceptual/
AppleScriptLangGuide/introduction/ASLR_intro.html

[48] Apple. JavaScript for Automation Release Notes [online]. [Accessed:
2018-02-13]. Available from: https://developer.apple.com/library/
content/releasenotes/InterapplicationCommunication/RN-
JavaScriptForAutomation/Articles/Introduction.html

[49] GitHub. JavaScript for Automation Cookbook [online]. [Accessed:
2018-02-13]. Available from: https://github.com/JXA-Cookbook/JXA-
Cookbook/wiki

[50] Appium. Introduction to Appium [online]. [Accessed: 2018-02-14]. Avail-
able from: http://appium.io/docs/en/about-appium/intro/

[51] Appium. Getting started [online]. [Accessed: 2018-02-14]. Available from:
http://appium.io/getting-started.html

[52] GitHub - Appium. Appium For Mac [online]. [Accessed: 2018-02-14].
Available from: https://github.com/appium/appium-for-mac

[53] Appium. The Mac Driver for OS X [online]. [Accessed: 2018-02-14].
Available from: https://appium.io/docs/en/drivers/mac/

[54] SeleniumHQ. Selenium WebDriver [online]. [Accessed: 2018-05-05]. Avail-
able from: https://www.seleniumhq.org/docs/03_webdriver.jsp

[55] GitHub - SeleniumHQ. JsonWireProtocol [online]. [Accessed: 2018-05-
12]. Available from: https://github.com/SeleniumHQ/selenium/wiki/
JsonWireProtocol

[56] Hans, M. Appium Essentials. Birmingham, UK: Packt Publishing, 2015,
ISBN 978-1-78439-248-2.

[57] PFiddlesoft. PFiddlesoft Frameworks [online]. [Accessed: 2018-05-13].
Available from: http://pfiddlesoft.com/frameworks/

[58] Avast. Avast Passwords for Mac [online]. [Accessed: 2018-05-12]. Avail-
able from: https://www.avast.com/passwords#mac

[59] Avast. Avast Passwords Security Model [online]. [Accessed: 2018-02-23].
Available from: http://files.avast.com/files/passwords/security-
whitepaper.pdf

[60] Apple. XPC Framework Documentation [online]. [Accessed: 2018-04-06].
Available from: https://developer.apple.com/documentation/xpc

57

https://developer.apple.com/library/content/documentation/AppleScript/Conceptual/AppleScriptLangGuide/introduction/ASLR_intro.html
https://developer.apple.com/library/content/documentation/AppleScript/Conceptual/AppleScriptLangGuide/introduction/ASLR_intro.html
https://developer.apple.com/library/content/documentation/AppleScript/Conceptual/AppleScriptLangGuide/introduction/ASLR_intro.html
https://developer.apple.com/library/content/releasenotes/InterapplicationCommunication/RN-JavaScriptForAutomation/Articles/Introduction.html
https://developer.apple.com/library/content/releasenotes/InterapplicationCommunication/RN-JavaScriptForAutomation/Articles/Introduction.html
https://developer.apple.com/library/content/releasenotes/InterapplicationCommunication/RN-JavaScriptForAutomation/Articles/Introduction.html
https://github.com/JXA-Cookbook/JXA-Cookbook/wiki
https://github.com/JXA-Cookbook/JXA-Cookbook/wiki
http://appium.io/docs/en/about-appium/intro/
http://appium.io/getting-started.html
https://github.com/appium/appium-for-mac
https://appium.io/docs/en/drivers/mac/
https://www.seleniumhq.org/docs/03_webdriver.jsp
https://github.com/SeleniumHQ/selenium/wiki/JsonWireProtocol
https://github.com/SeleniumHQ/selenium/wiki/JsonWireProtocol
http://pfiddlesoft.com/frameworks/
https://www.avast.com/passwords#mac
http://files.avast.com/files/passwords/security-whitepaper.pdf
http://files.avast.com/files/passwords/security-whitepaper.pdf
https://developer.apple.com/documentation/xpc

Bibliography

[61] Apple. Creating XPC Services [online]. [Accessed: 2018-04-06].
Available from: https://developer.apple.com/library/content/
documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/
CreatingXPCServices.html

[62] Filippov, D. Feature Spotlight: Behavior-Driven Development in
PyCharm. https://blog.jetbrains.com/pycharm/2014/09/feature-
spotlight-behavior-driven-development-in-pycharm/, 2014, [Ac-
cessed: 2018-04-07].

[63] Apple. Testing with Xcode – Running Tests and Viewing Results [online].
[Accessed 2018-02-12]. Available from: https://developer.apple.com/
library/content/documentation/DeveloperTools/Conceptual/
testing_with_xcode/chapters/05-running_tests.html

[64] Apple. Xcode Release Notes [online]. [Accessed: 2018-05-
13]. Available from: https://developer.apple.com/library/
content/releasenotes/DeveloperTools/RN-Xcode/Chapters/
Introduction.html

[65] Apple. Introduction to AppleScript Release Notes [online]. [Ac-
cessed: 2018-02-13]. Available from: https://developer.apple.com/
library/content/releasenotes/AppleScript/RN-AppleScript/
Introduction/Introduction.html

[66] JetBrains. PyCharm [online]. [Accessed: 2018-04-7]. Available from:
https://www.jetbrains.com/pycharm/

[67] Apple. What is Keychain Access? [online]. [Accessed: 2018-04-16].
Available from: https://support.apple.com/guide/keychain-access/
what-is-keychain-access-kyca1083/mac

58

https://developer.apple.com/library/content/documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/CreatingXPCServices.html
https://developer.apple.com/library/content/documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/CreatingXPCServices.html
https://developer.apple.com/library/content/documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/CreatingXPCServices.html
https://blog.jetbrains.com/pycharm/2014/09/feature-spotlight-behavior-driven-development-in-pycharm/
https://blog.jetbrains.com/pycharm/2014/09/feature-spotlight-behavior-driven-development-in-pycharm/
https://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/05-running_tests.html
https://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/05-running_tests.html
https://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/05-running_tests.html
https://developer.apple.com/library/content/releasenotes/DeveloperTools/RN-Xcode/Chapters/Introduction.html
https://developer.apple.com/library/content/releasenotes/DeveloperTools/RN-Xcode/Chapters/Introduction.html
https://developer.apple.com/library/content/releasenotes/DeveloperTools/RN-Xcode/Chapters/Introduction.html
https://developer.apple.com/library/content/releasenotes/AppleScript/RN-AppleScript/Introduction/Introduction.html
https://developer.apple.com/library/content/releasenotes/AppleScript/RN-AppleScript/Introduction/Introduction.html
https://developer.apple.com/library/content/releasenotes/AppleScript/RN-AppleScript/Introduction/Introduction.html
https://www.jetbrains.com/pycharm/
https://support.apple.com/guide/keychain-access/what-is-keychain-access-kyca1083/mac
https://support.apple.com/guide/keychain-access/what-is-keychain-access-kyca1083/mac

Appendix A
Acronyms

API Application Programming Interface

CLI Command Line Interface

GUI Graphical User Interface

HTTP Hyper Text Transfer Protocol

PAM Password Manager

RPC Remote Procedure Call

UI User Interface

XML Extensible Markup Language

59

Appendix B
Contents of enclosed SD card

readme.txt...................the file with SD card contents description
example...........the folder with the acceptance test suite performance

video.mp4............the video of the acceptance test suite in action
results.txt................. the output of the acceptance test suite

acceptance test suite............the automated acceptance test suite
sources automated acceptance test suite sources
software.................the software necessary to execute the tests

avast passwords.pkg......the Avast Passwords for Mac installer
appium for mac.zip the Appium for Mac binary

thesis....................................the directory with the thesis
BP Mokos David 2018.pdf.............the thesis text in PDF format
sources.............the directory of LATEX source codes of the thesis

61

Appendix C
Diagrams

Element

+ locat or : st ring
+ met hod : By

st r () : st ring
find(t ime : int) : WebElement
+ get _ locat or () : st ring
+ get _ met hod() : By
+ exist s(t ime : int) : bool
+ asser t _ exist s(t ime : int) : void
+ asser t _ not _ exist s(t ime : int) : void
+ cl ick () : Element()
+ double_ cl ick () : Element()
+ get _ at t r ibut e(name : st ring) : st ring
+ get _ t i t le() : st ring
+ get _ value() : st ring

CheckboxElement

+ checked() : bool
+ check () : CheckboxElement()
+ uncheck () : CheckboxElement()

TextFieldElement

+ get _ t ext () : st ring
+ send_ keys() : TextFieldElement()
+ set _ t ext () : TextFieldElement()
+ clear () : TextFieldElement()

MenuElement

+ par ent : MenuElement

+ navigat e() : MenuElement()

ScrollAreaElement

+ scr ol l_ up() : ScrollAreaElement()
+ scr ol l_ down() : ScrollAreaElement()

ListElement

- find(t ime : int) : [WebElement]
+ exist s(t ime : int) : bool
+ asser t _ exist s(t ime : int) : void
+ asser t _ not _ exist s(t ime : int) : void
+ count (t ime : int) : int
+ count _ wit h_ value(value : st ring, t ime : int) : int
+ cl ick_ wit h_ value(value : st ring, t ime : int) : bool
+ get _ at t r ibut es() : [st ring]
+ get _ values() : [st ring]

Figure C.1: Class diagram of Element class and all of its subclasses

63

C. Diagrams

LoginsScreen

NotesScreen

CreditCardsScreen

GeneratorScreen

MainScreen

OnboardingStartScreen

OnboardingMasterPasswordScreen

OnboardingExtensionScreen

OnboardingImportScreen

LockedScreen

LoginsListScreen

LoginsDetailScreen

LoginsEditScreen

LoginsAddScreen

NotesListScreen

NotesDetailScreen

NotesEditScreen

NotesAddScreen

CreditCardsListScreen

CreditCardsDetailScreen

CreditCardsEditScreen

CreditCardsAddScreen

AvastPasswordsProxy

BaseScreenTest I mplement at ion Layer

Code uses domain language;
no reference to UI elements.

Figure C.2: All implemented screens (Page Objects) of the Avast Passwords
for Mac application

64

	Introduction
	Goals of the Thesis

	State of the Art
	Software Testing Fundamentals
	Business Facing Tests that Support the Development Process
	Functional Acceptance tests

	Technology Facing Tests that Support the Development Process
	Unit Tests
	Component Tests
	Deployment Tests

	Business Facing Tests that Critique the Project
	Exploratory tests
	Showcases
	Usability Tests

	Technology Facing Tests that Critique the Project
	Nonfunctional Acceptance tests

	Regression Testing

	Acceptance Testing
	Overview
	Automation
	Implementation Patterns
	Behavior driven development
	Application Driver Layer
	Page Object Pattern
	Layered Architecture

	Acceptance Testing on macOS
	The macOS operating system
	Accessibility

	GUI Driving Tools
	Xcode User Interface Testing
	AppleScript
	Javascript for Automation
	Appium For Mac

	Analysis
	The Application Under Test – Avast Passwords for Mac
	Introduction
	Features
	Architecture

	Automated Acceptance Test Suite
	Requirements
	Architecture

	Tools Selection
	Acceptance Criteria
	Test Implementation Layer
	Application Driver Layer
	Xcode UI Testing
	AppleScript
	JavaScript for Automation
	Appium for Mac
	Tool Selection

	Design & Realization
	Test Suite Implementation
	Acceptance Criteria
	Test Implementation Layer
	Application Driver Layer
	Interacting with the UI Elements
	Page Object Pattern

	Test Suite Execution
	Challenges
	Locating UI Elements
	Interacting with the Environment
	Performing Privileged Operations
	Integration with the Continuous Integration Pipeline

	Implementation State

	Conclusion
	Further work

	Bibliography
	Acronyms
	Contents of enclosed SD card
	Diagrams

