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Abstrakt

Doposud znamé a uzivané postupy pii detekei skodlivého softwaru (malwaru)
prestavaji poskytovat dostacujici iroven ochrany, a proto je zfejmé, ze v bu-
doucnu budou muset byt nahrazeny, nebo minimalné doplnény inovativnimi
metodami. Tato prace se zaméruje na vyuziti metod a algoritmu strojového
ucCeni pro detekci malwaru. Pouzitim statickych priznakt extrahovanych ze
souborti ve formatu PE, jimiz jsou napiiklad importované funkce, se nam
podarilo natrénovat vice modelt pro detekci skodlivych soubort. Nejlepsi
z modeli dosahl témér 95% uspésnosti. Tento model mize byt pouZzit, mimo
jiné, na predbéznou eliminaci, nasledovanou klasickymi postupy detekci. Dalsi
vyuziti muze tato prace nalézt ve vyzkumu, kde poslouzi jako dalsi z moznych
vstupt pro probihajici vyzkum v oblasti automatické detekce malwaru.

Klicovaslova Statickd analyza malwaru, Detekce malwaru, Statické atributy,
Strojové uceni, PE format, Python

Abstract

Since the classical used approaches for malicious software (malware) detection
are failing to provide sufficient level of protection, it is becoming clear that
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these will have to be substituted or at least enhanced by new, inovative meth-
ods in the future. This thesis focuses on utilizing machine learning techniques
for malware detection. Using static features extracted from the PE files like
imported functions, we were able to train various machine learning models for
malware detection. The best performing model reached almost 95% accuracy.
This model can be used for instance, for preliminary detection of malicious
PE files. Another purpose of the thesis can be found in the following research,
it could serve as another input for future automatic malware analysis studies.

Keywords Static malware analysis, Malware detection, Static attributes,
Machine learning, PE file format, Python
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Introduction

Ever since computers came into existence, there has been malicious software
(malware). Over the years, motivation for malware creators arose from just
minor jokes to serious money or identity thefts. In late 2016, the world was
left shocked by the capabilities of Mirai malware [I] to create a botnet con-
sisting of 300,000 IoT devices with destructive power for DDoS attacks. One
year later, more than 230,000 machines running Microsoft Windows OS got
infected by WannaCry ransomware, [2], which misuses Eternal blue vulnera-
bility. The ambition of ransomware (type of malware) is to collect money from
the victims in return for decrypting their hard drives that were encrypted dur-
ing the infection. Current anti-viral commercial products are unable to detect
previously unseen malware. This is because the principle of signature-based
methods that being used. To solve this problem, machine learning methods
and classifiers are utilized for malware detection. In 2001, it was shown by
[3], that this approach could indeed lead to successful malware detection.

The need for successful detection of malware should be clear from previ-
ously mentioned real world cases, despite these being just drops in the ocean
of cyber security incidents. Another reason I chose this topic for my bachelor
thesis is that am greatly interested in cyber security, but at the same time
a I was curious to see it combined with machine learning. In this thesis we
will utilize machine learning approaches for malware detection. Therefore, I
took the opportunity to combine two fields and get a deeper insight into both
malware detection problematics and machine learning.

The goal of this thesis is to train machine learning model for malware
detection. After accumulating and studying previous research on this topic,
we will perform a workflow of classic machine learning study. This will consist
of gathering data, selecting relevant attributes, training and finally evaluating
the results of our classifier. Each of these phases will be described in details.
This thesis only focuses on usage of static information extracted from PE files,
the thesis does not encompass dynamic analysis, nor files in other formats.

Structure of the thesis corresponds to the goal. In the first 4 chapters we
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INTRODUCTION

provide the necessary knowledge and current state of the art, followed by the
description of our tools we developed for successful completion of this thesis
and description of our approach and achieved results.



CHAPTER 1

Malware analysis and detection

In this chapter we will introduce the terms and concepts necessary to under-
stand the thesis and current state of malware detection field. The first are
general malware analysis approaches, followed by the ways these are used for
malware detection. The final section of this chapter is dedicated to obfusca-
tion, which is heavily used by malware writers to evade detection.

1.1 Malware analysis

In our context, we will understand malware analysis as a process of analysing
the executable to help us determine if it is malicious. In order to decide about
maliciousness, one needs to have a decent insight into what the executable
does. To gain this insight, malware analysis methods are used. These methods
are divided into three categories based on the traces that are followed and
considered in the process. The division often differs amongst sources. We
decided to follow the division introduced in [4].

1.1.1 Static malware analysis

Static analysis uses methods that do not require the executable to be run.
These can be static information extracted from the executable such as at-
tributes of PE (Microsoft’s format for DLL’s and executables, described in
more details later) file or the list of functions which the executable imports,
not to mention many more. Gathering this information, a malware analyst
can already be able to decide if the original file is malicious or not. In case
the information gathered from the structure is not sufficient, the executable
needs to be reverse engineered, decomposed into small parts and analysed
once more. Since we don’t need to run the executable for static analysis, the
extraction of the information is fast in comparison to dynamic analysis. How-
ever, there is much information, and relationships that cannot be revealed by
static analysis.
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1.1.2 Dynamic malware analysis

Dynamic analysis comprises of running the file in a so-called sandbox. Sand-
box is an isolated environment, which is pre-built so that it can record all
actions of the process. The reasons for using a sandbox environment are keep-
ing the host machine clean while having more control over analysis. Based on
analyst’s observations of actions taken by the executable, his task is to evalu-
ate the maliciousness. However, there are some drawbacks to this method. In
the first place, not all malware executes its malicious activities right after be-
ing started. Therefore, these methods are time consuming in general. Other
than that, there are methods for the detection of virtualized environments.
Once the malware recognizes that it is being run in a sandbox, it can totally
change its behaviour and act benign. Therefore, it can evade the detection
by dynamic analysis. Raffetseder et al. dedicated their study to detection of
emulated environments in [5].

1.1.3 Hybrid malware analysis

Both static and dynamic malware analysis methods have significant advan-
tages and disadvantages. In order to eliminate the disadvantages, hybrid
analysis methods were proposed. Any combination of static and dynamic
methods can be referred to as a hybrid malware analysis.



1.2. Malware detection

1.2 Malware detection

Once familiar with the malware analysis methods to extract the information,
we can move to decide the problem if the executable is malicious or not. This
problem is called malware detection and it is in general considered undecid-
able. In [6], Chess and White proved this in a theoretical way. For practical
usage, of course, malware detection can achieve solid results and help to pro-
tect the computer systems.

Moreover, malware is not straightforwardly defined. In [7], the definition
of malware was mentioned as one of the open problems in computer virology.
In [8], it was formally defined. To follow, there are infinite numbers of ways
to write the same program or functionality. Or, in other words, there are an
infinite number of instruction sequences, that lead to the same result. This
could be achieved for instance by using the obfuscation methods described in
[9] or later in this chapter.

1.2.1 Signature based detection approach

The classic approach to malware detection, used by most of the commer-
cial AV’s, is signature-based detection, [I0]. This approach comprises of two
phases. In the first phase, the executable is manually analysed by a human
malware analyst. If he decides that the executable is malicious, signature
of the malware is extracted and stored in the database. Signature is simply
anything that uniquely identifies the malware. From sequence of bytes to com-
bination of imported functions. Moreover, the way signatures are created is
the most valued secret of commercial AV companies. After the extraction, the
signature is stored in the database. The detection phase itself then consists of
inspection of the suspicious executable and searching for any known signature
that would recognize it as a known malware. This technique is commonly
used by commercial AV’s because of its low false positive rate (described in
section. However, this method is not able to detect new kinds of malware,
or even obfuscated malware, because it relies on presence of known signature.
It also needs the human factor to intervene and create the signature. An-
other disadvantage is the dependence on frequent malware signature database
updates.

1.2.2 Using machine learning for malware detection

In past years, scientists started to utilize machine learning algorithms for
malware detection. Schultz et al’s work, [3], in 2001 is generally considered the
first ever usage of machine learning for malware detection. In this approach,
detection model is trained by machine learning algorithms on training data and
then used for detection. In comparison to a signature based approach, machine
learning methods tend to have a higher false positive rate. However, thanks to
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predictive models, these methods proved to be able to recognize malware that
wasn’t previously seen by the model and there is no need to manually analyse
each sample. Therefore, until suspicious executable is properly analysed and
added to signature database, machine learning models can provide a decent
first level of defence.



1.3. Malware obfuscation

1.3 Malware obfuscation

Obfuscation, or “attempt to hide the original intention”, is widely used as
an evasion technique by malware writers. In [9], the whole malware detection
problem is viewed as an “obfuscation-deobfuscation game between malware an-
alysts and creators”. Every time a newly obfuscated malware occurs, malware
analysts need to find a reliable way to detect it. Once they succeed, the mal-
ware creators come with a newly obfuscated malware which can evade the
detection. This process repeats constantly.

1.3.1 Classic malware obfuscation techniques

Various techniques are used by malware developers to make the code look
different while the behaviour remains the same. We will stick to the most
known techniques mentioned in [9]. Most of these techniques are pretty much
self-explaining:

1. dead code insertion
code transposition

register substitution

Ll

instruction substitution

Dead code insertion

This technique uses insertion of instructions that “do nothing” between effec-
tive instructions. The most basic dead code insertion is, for example, using
NOP instruction to break the signature. NOP stands for no operation instruc-
tion. This is easily detected, but there are infinite numbers of ways to insert
instruction sequence that leaves the state of CPU unchanged. The other basic
example can be seen at Listing [I]

add eax, O
sub edx, O

Listing 1: Example of dead code sequences

Code transposition

Changing the order of independent instructions would be the most basic exam-
ple of code transposition. However, we can go further by using small distance
relative jumps. Listing [2| represents the original code, Listing [3| depicts one
of the possible instruction transposition. Both jumps and independent in-
struction reordering was used. These two codes are equivalent, but will be
represented by different machine code.
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start:
XOor eax, eax
mov edx, 0x58
add eax, edx

; code continuing

Listing 2: Original code

start:
mov edx, 0x58
jmp 12

11:
add eax, edx
jmp 13

12:
XO0r eax, eax
jmp 11

13:

; code continuing

Listing 3: code after transposition

Register substitution

Another method to break the malware signature is interchanging used regis-
ters. For instance, let’s say the target function uses eax register as a counter
and edx to store the result. In case we interchange all occurrences of eax and
edx in the function, it will remain functionally equivalent to its original form,
despite the machine code being different, therefore, the potential signature
match evaded.

Instruction substitution

Thanks to the wealth of x86 instruction set, which is prevalent amongst today’s
PCs, there are many possibilities to find equivalent instructions. For example,
using the XOR operation on register itself is equal to setting it to 0. Therefore
the effect of xor eax, eaxisequal tomov eax, 0, but the machine codes are
different.

1.3.2 Obfuscated malware

Stamp and Wong divided obfuscated malware into three categories, based on
the complexness of obfuscation, in [I1]:
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1.3. Malware obfuscation

e Encrypted
e Polymorphic

¢ Metamorphic

Encrypted malware

Encrypted malware consists of two parts. Decryptor and encrypted body.
Decryptor is a small piece of code, intended to run first, that is responsible
for decrypting the malware body. Body is usually encrypted using some basic
encryption, for instance xor-ing the bytes with different key. It is important
to use different key for each infection (to make sure each body is different).
However, it is relatively easy to detect encrypted malware with signature-
based methods, focusing on matching the decryptor, which remains the same.

Polymorphic malware

Consisting of decryptor and body too, polymorphic malware adds another
layer of obfuscation to the executable. To create polymorphic malware cre-
ators use various obfuscation techniques to change the decryptor for each
infection, therefore undetectable by the plain signature based approach.

Metamorphic malware

Metamorphic malware brings the obfuscation to a whole new level. Metamor-
phic is defined in [II] as “Software is said to be metamorphic provided that
copies of the software are all functionally equivalent, but the internal structure
differs” As mentioned previously, there are an infinite number of ways how to
write a code with the same functionality. Metamorphic malware has the abil-
ity to be completely different for every single infection, making it undetectable
by signature-based detection.

11






CHAPTER 2

Related work

In the years it has become clear that with the amounts of malware being
created, it is impossible to wait for each suspicious file to be manually analysed
by professionals - leaving the computer systems at risk of being infected by
it. We certainly need some layer to protect our computers and infrastructure
from the files that have newly occurred and are yet to be analysed.

Over the past decades, numerous attempts to employ machine learning
and statistical methods to malware detection problem occurred. Applying
various approaches and using many different features, researchers have mostly
acquired solid results. As mentioned previously, these methods could be the
solution for providing a certain level of security during the time that new
malicious executables are being analysed.

In [3], Schultz et. al. used 3 different classification models with the fol-
lowing features: strings extracted from the executable, carefully chosen byte
sequences occurring in the executable, functions/DLLs gathered from the PE
headers. It is believed to be the first attempt to use machine learning to solve
malware detection problems. The detection rate they reached was quite im-
pressive and hinted that machine learning methods could be efficiently used
for malware detection in the future.

Recently, Kozachok [12] reached new heights with carefully crafted features
- binary values, that were in some way computed from PE header contents
(e.g. if number of different DLLs used by executable surpassed a threshold
or not). His detection rate while using decision forest and artificial neural
network rose to more than 0.992 and 0.991 respectively.

Merkel et. al. proposed a nice, simple statistical approach based on hy-
pothesis testing in [I3]. Using PE header attributes, points were assigned
to each executable to measure its maliciousness (the more points, the more
malicious). Then, threshold was used to determine if the executable is la-
belled malicious or benign. The points assignment was calculated based on
conditional probability.

Chistodorescu et. al. [9] provided a unique view on malware detection as

13
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a “obfuscation-deobfuscation game between malware developers and analysts”.
Their work produced a SAFE model which was focused on recognizing known
signatures even in amongst highly obfuscated executables.

Both [14] and [15] focus on recap and description of current state in using
machine learning models for malware detection.

Wang et. al. [16] focused on detection of unknown malware again. They
trained another model, using SVM algorithm this time, with also comparing
various feature selection methods. The features they used were binarized PE
header attributes.

Belaoued et. al. [I7] successfully used concatenation of name and value
from the Optional PE header files to create binary features. Then used chi-
square hypotheses test for feature selection. To conclude, they trained rotation
forest as a classifier with very high detection rate. They also put emphasis on
the importance of detection speed and feature selection’s contribution.

Based on previous research we believe combining PE header attributes
with imported functions might be the lightweight and efficient way to train
our malware detector.
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CHAPTER 3

PE file format description

Portable executable file format defines the structure of Windows executables
and dynamically linked libraries (DLLs). It defines how the loader should
map the data in memory when process is being loaded. This chapter should
give you a brief idea on how files stored in PE file format are structured and
how we can take advantage of static examination of PE file to detect malware.
More details about the file format can be found in [I8]. PE format is used to
store the object files as well.

3.1 Structure of PE File

See Figure for general overview of the PE file structure. The following
sections contain descriptions of particular elements of PE formatted files.

3.1.1 DOS Header and DOS Stub

To ensure backward compatibility, each PE file starts with a DOS header to
allow the DOS stub placed right after it run on DOS platform. In most PE
files, DOS Stub contains code to be run in case the executable is run on MS-
DOS, usually just prints a line that the executable cannot be run on that
particular platform.

3.1.2 Image File Header

The file header of the PE file is actually the beginning of PE document,
anything before is just to make the format compatible with the DOS platform.
It contains basic information about the file that can differ among the types of
files that can be stored in PE format (executable, dynamically linked library or
object file). Some significant fields of this header are the time stamp that tells
us when the file was created, machine, which specifies the machine that the file
was compiled for, characteristics field specifies the exact type of file (executable

15



3. PE FILE FORMAT DESCRIPTION

DOS MZ HEADER

DOS Stub

PE Header h

Image Optional Header

Data Directories

SECTION TABLE

Sections ...

Figure 3.1: Structure of a PE File

vs dynamically linked library), number of sections that the executable contains
and so on.

3.1.3 Image Optional Header

Ounly present in image files stored in PE file format (doesn’t apply to object
files). Contains various fields containing information that provides overview
of the file. This information containing Subsystem version, various Flags for
loader and for instance, file alignment amongst others can be valuable when
distinguishing between malicious and benign files.

3.1.4 Data Directories

This special part of optional header is an array of structures that holds the
addresses of particular data directories in the file. Each data directory can
contain various information needed for loader. However, we are mainly inter-
ested in the DIRECTORY_ENTRY_IMPORT that leads us to the imported libraries
and functions from these libraries. The list of functions used by a program is
widely used for malware analysis. It is no surprise that the list of used func-
tions can give us a pretty good insight on what the program actually does.

16



3.2. The reasoning behind choosing PE file format

We will definitely consider using imported functions as our features when it
comes to training the model.

3.1.5 Section Headers

The main part of the PE file is divided into sections to separate the code,
the data and other possible sections of the program. Each of these sections
has its own header that contains information about that particular section.
Information like section name, size of the section, and so on are stored in these
section headers. This information can hint for example on whether the file
is packed, or whether it contains any other anomalies and therefore can be
valuable for malware detection.

3.2 The reasoning behind choosing PE file format

We decided to choose Portable Executable format for simple reasons: Win-
dows is the most common operating system, therefore the vast majority of
malicious files worldwide are targeted towards Windows users. At the same
time collecting benign executables for Windows should be fairly easy, therefore
the availability of data (files in PE format) is the next reason. Another reason
being the usability of methods for detection based on PE header attributes.
As mentioned before, Windows is the prevalent operating system, develop-
ing working solution for protection against malicious PE files will affect most
users. Third reason is the detailed documentation of this file format.

17






CHAPTER 4

Machine learning background

Since our approach for detection relies heavily on machine learning methods,
we will briefly introduce and describe machine learning principles in this chap-
ter. Machine learning in general is a very broad topic. Therefore, we will only
focus on making the reader familiar with the expressions we used in this thesis.
binning method

According to [19], learning in general is a process that makes the individual
able to inductively generalize his observations. Of course, this generalization
will always be dependent on the particular observations. Therefore, all the
machine learning studies are data-dependent. When performing a machine
learning study, some portion of collected data is used to “learn” or train our
classifier and the other portion of data to evaluate classifier’s performance. Be-
sides data dependency of each classifier, misclassification errors can be caused
by mistakes committed during learning. The two most common classification
mistakes according to [20], are overfitting and bias. Overfitting of classifier
leads to perfect performance on previously seen data and poor performance
on unseen data. The purpose of machine learning, however is the ability to
perform well on unseen data (to predict). Bias can be vaguely explained as
inclination towards one particular class.

This chapter is structured as follows. In Section differences between
attribute types are explained. In Section how to prepare these types of
data for classifier training phase. Followed by Section where selecting
the relevant features is described. Section contains description of machine
learning models related to this thesis. Finally, in Section we will describe
metrics for evaluating classifiers’ performances.

Please bear in mind that this chapter serves to explain the machine learn-
ing minimum needed to understand this thesis, for more information about
machine learning, refer to [21], [22], [I9] or many more.
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4. MACHINE LEARNING BACKGROUND

4.1 Attribute data types

When collecting data, we need to distinguish between diverse types of at-
tributes. Of course, types of attributes can be divided to various categories,
in this case we divide the attribute types from a practical point of view, mean-
ing by the different aspects of handling each attribute category.

Binomial attributes

Probably the most basic type of data is binomial attribute. This attribute can
only acquire two states - true/false (alternatively 0/1 or present/absent). For
instance, presence of a particular imported function in the PE file is a binomial
attribute.

Nominal attributes

Nominal, or so called categorical attribute can occur in finite number of dis-
crete states. It is important to note, that values of nominal attribute cannot
be ordered in any way. For example, OPTIONAL_HEADER.Subsysten is a nom-
inal attribute, despite it might appear numerical. It is necessary to realize,
that each of the possible subsystem values stands for a different subsystem
and besides probing for equality, we cannot do any operations between them
(multiplying, ordering, ...).

Numerical attributes

Numerical attributes are attributes that are numbers. Additionally these can
be divided into continuous and discrete attributes. Numerical attributes can
be ordered and compared with each other, all the mathematical operations
are permitted.

4.2 Data preprocessing

In the previous section we described diverse types of attributes used for model
training. As the specific machine learning algorithms are working on different
principles, some can handle types of data others cannot. Before training
a particular model, we need to prepare the data into a form which can be
handled by this model. This phase is called data pre-processing and two of
the pre-processing methods will be described in this section.

Binning

Binning is a method used to discretize a continuous attribute. Let’s say we
have an attribute with continuous values from range (a,b). We want to divide
all the possible values into n “bins”. Therefore, we will define intervals for each

20



4.2. Data preprocessing

bin, and when the value of the attribute falls in between the margins of the
bin, we take the value of the bin as the attributes value. For the equal-width
binning the i-th can be defined as follows:

(a+(i—1)(b—a),a+i(b—a)) (4.1)

n n

Equal-height binning defines the intervals to contain the same number of
samples. Figures and depict the difference of equal-width and equal-
height binning performed on the same data set.

e e e I

b

Figure 4.1: Equal-width binning

I S A

Figure 4.2: Equal-height binning

Normalization

Some classifiers may be sensitive to different ranges of attributes. Normal-
ization is a process of scaling values for attribute to make attributes equally
significant. For instance, we might want all the values of the attribute to be
rescaled, so each value is a number from range (0,1). This is called rescaling
and is achieved by the following transformation:

, Sij —min(A;)

9 max(A;) —min(A;) (42)

Where S, is the new value of attribute A; on sample S;, S;; is the original
value, min(A;) and maz(A;) are minimal and maximal value of the attribute
Aj in the training data set. However, there are problems with rescaling. For
instance, if enormous S;; exists, this value suppresses the significance of other
possible value for this attribute. Standardization is immune against this:

Sij — 4;

- (4.3)

I —_—

Where Aj is the mean and o7 is the standard deviation of values of at-
tribute A; from training set.
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4.3 Feature selection

Once the data is pre-processed, the next step is to select those features (or
attributes) from the samples that are relevant for classification. In other
words, selecting subset of the attributes with the best decision ability. This
step is rather difficult, as stated in [23], the number of possible feature subsets
of size n selected from set of size m is

(m — 7!1)!71! (44)

Since the metric for evaluating the quality of given subset may not be triv-
ial as well, this number is more than can be satisfactorily computed even for
quite low n and m. Therefore, various heuristical approaches were introduced
to solve this problem.

Uni-variate feature selection

Uni-variate feature selection evaluates each feature individually, without con-
sidering any relationships with other features. The most straightforward uni-
variate feature selection method is Best individual N. The quality measure
for attribute A, Q(A), is computed for each attribute individually and the N
best-performing attributes are selected. Plenty of different methods can be
found in [23].

Multi-variate feature selection

In multi-variate feature selection, multiple features are evaluated at the same
time. These methods measure the added value of particular feature subset
for classification. The most straightforward multi-variate selection would be
training the classifier with each feature subset. However, as depicted earlier,
this approach would be too computationally difficult. In [23], several methods
are introduced. One, for instance, is Sequential forward selection. Having
attribute quality function Q(A), where A is a subset of attributes, Sequential
forward selection adds attributes to the A one at a time. Starting with empty
A, in each step, the attribute A; ¢ A, which yields the highest value of quality
function Q(A + {4;}) is added to the A subset. The number of steps is
either set to a constant, if a particular number of attributes is desired, or the
procedure is repeated until the quality is rising.

Another, widely-used method is Principal Component Analysis (PCA).
In PCA, new attributes are computed as the linear combinations of original
attributes to provide more information in less attributes. Refer to [23] for
more information.
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4.4. Trained models

4.4 Trained models

In this section, we will briefly describe the models that we used in our approach
for detection.

4.4.1 Decision tree

Decision tree is described as one of the most simple classifiers [21]. Introduced
by Quinlan, in [24], it has been used for a fairly long time. It is a hierarchical
tree structure containing conditions in inner nodes and decisions in leaf nodes.
When a sample is being classified by a tree, the condition for node it reaches is
evaluated and based on the result, the corresponding edge is followed. When-
ever a leaf node is reached, the classification process is over, and the sample
is assigned a class belonging to given leaf. You can see an example of a single
decision tree at Figure We will discuss the algorithms for constructing
decision trees and how to use them for classification.

Figure 4.3: Simple example of trained decision tree used for detection

Training phase

The goal of the training phase is building the decision tree. The most clas-
sical training algorithms are ID3 [24], C4.5 [25] and CART [26]. All these
algorithms work on the same principle.

Starting with available attributes set A = {A1, As,...., A}, we choose the
attribute A; that is able to provide the best split (has maz(Q(A;)) amongst
the available attributes), remove it from available attributes A = A\ {4;} and
create a node with the best split condition. One of the differences between
the algorithms is their ability to perform multi-split or just binary split. Then
descend to children of this node and recursively repeat this procedure. Simply
choosing the attribute that can best divide the training set samples into classes
each time. This “best split” is evaluated by various metrics mentioned later.

Tree training process can be stopped either when no more attributes for
splitting are available, or when all the leaf nodes contain samples of one class.
The latter case, on most occasions means overfitting of the tree to the training
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data. Imagine the edge case where each of the leaf nodes is corresponding to
exactly one sample of the training set. To avoid these problems, various
methods called pruning are used. The tree can be either pre-pruned or post-
pruned. In pre-pruning, we would define some simple rules to follow while
building the tree, e.g. minimum number of samples corresponding to a certain
node to permit further splitting. An even more straightforward example of
pre-pruning could be simply setting the maximum depth of trained tree. In
post-pruning, the tree is built into its full size and then simplified.

During training of a decision tree, best-split metric is needed. Most of
these metrics are based on entropy, defined in

H(A) ==Y P(a;)logy P(a;) (4.5)
=1

Where A is attribute, a; are possible values for attribute A and P(a;) is
the probability that attribute A contains value a;.

One of the metrics used for determination of best split is information gain
[27]. For binary attribute A and given set of samples S, Information gain,
IG(S, A) is defined as follows:

S S
1G(4,8) = H(S) — (H(sl)||51|| + H(50)||S"||) (4.6)
Where S; is the subset of S with value ¢ on attribute A and |S|, |S;| are the
sizes of these sets.

Another metric for best split is for instance gini criterion [23].

Decision phase

Example from Figure let’s say we have PE sample S = (a1, a9,as,as),
where aq to a4 are extracted attributes of the PE file. v; and vy being the
threshold constant values learnt in the training process. First, the condition
in the root node is evaluated. If the result is true, the file is labelled as benign
and the classification is over. On the other hand, if it’s false, the process
continues to the other node, where another condition is evaluated. The class
is then chosen accordingly.

4.4.2 K-Nearest Neighbours

K-nearest neighbours (K-NN) is another of the simpler classifiers. The training
phase is fairly simple and consists of storing the training dataset. K-NN
classifier is defined by the training set and distance metric, that is computed to
find the nearest neighbours and the parameter K, which defines the number of
the neighbours considered in classification. The classification process consists
of computing the distance of classified sample from all other samples stored
during the training phase.
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Training phase

Training phase in K-NN classifier consists of storing all the training samples
in the data structure. The most straightforward approach is storing all the
data in a list. A more advanced method is to use tree structures that make
the decision phase faster, eliminating computing distance from samples that
are visibly more distant than those already compared.

Decision phase

Decision phase consists of computing the distance between classified sample
and all the stored sample to find the closest samples from the training set.
Or in other words, the most similar. Since it is not always trivial to decide,
how “similar” two samples are, various distance metrics are defined. One of
the most widely used is Fuclidian distance. When x and y are samples with
n attributes and z; and y; are the values of i-th attribute on sample z and
y respectively, Euclidian distance between x and y is defined as follows in

equation [£.7

To measure distance between two samples with both nominal and numer-
ical attribute types, for instance, heterogeneous distance metric like HVDM
[28] can be used. Many more distance metrics can be found in [28§].

In the standard version of K-NN classifier, once K nearest neighbours
are identified, classic voting is performed, meaning the weight of each of K
neighbours is equal. To prioritize the neighbours that are closer to classified
sample, weighted voting is used. Vote of each neighbour can be weighted by
the inverted value of the distance of a particular neighbour from the classified
sample.

4.4.3 Custom classifier

We also decided to use our custom classifier inspired by [I3]. We need to
state that only binary attributes are considered for this classifier. A score is
assigned to each classified sample, based on the conditional probabilities of
presence of attributes amongst the classes in training set. The score is then
compared to threshold value and if it is surpassed, the sample is labelled as
malware. This provides good control over FPR and FNR results. The quality
Q(A4;) for each attribute A; is computed as follows.

Q(Ai) = max (P(M|A;), P(B|A;)) (4.8)

Where P(M|A;) and P(B|A4;) is conditional probability that file from testing
set with attribute A; is malware and benign, respectively. The quality is then
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corrected as follows:
Q(Ai) = —-Q(A;) if P(B|A;) > P(M|A;) (4.9)

Therefore, if the attribute presence stands for benignity of the file, the quality
is negative, to decrease the score of the sample and lean it more to being
benign.

For imported functions only malware probability was considered, Q(A;) =
P(M]|A4;). In testing phase, for each tested sample S, score was computed as

following:

Score(S) = Q(A;) = S(4;) (4.10)

i=1
Where Q(A4;) is the previously defined quality of ¢ — th attribute, S(A;) is
the value of ¢ — th attribute on sample S. Then the score is compared with

threshold value T', and if the surpassed the threshold Score(S) >= T , it was
labelled as a malware. Otherwise, it was considered to be benign.

4.5 Performance evaluation

Once the model is trained, it is tested on the testing data set and the results
are recorded. Several metrics are used to evaluate how well the classifier
performed on given testing data set. In this section we will describe those
that we used in our performance evaluation.

FP, FN, TP, TN

There are four possible results of detection process:
o True positive (TP) - Malicious PE file correctly classified as malware
o True negative (TN) - Benign PE file correctly classified as benign
o False positive (FP) - Benign PE file incorrectly classified as malware

o False negative (FN) - Malicious PE file incorrectly classified as benign

classified as
Malicious | Benign
Malicious TP FN
Benign FP TP

in reality

Table 4.1: Exchange matrix

Table sums up these results for better understanding.
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From these values we can compute false positive (FPR) and false negative
rate (FNR). False positive rate is ratio of benign files that were incorrectly
labelled as malware to all benign files from our set, whereas false negative rate
is ratio of malware files that were correctly classified to all malware files in our
testing set. This is depicted at equation [£.11] and equation [£.12] respectively.

FN

FNR = TP + FN (4.11)
FP

FPR= ——~ 4.12

FP+TN (4.12)

Accuracy

Another evaluation metric is called accuracy(ACC). Accuracy provides a gen-
eral reliability of classifier. It encompasses all the files, not just those of one
particular class, as was the case with previous metrics. Accuracy is ratio of
correctly classified files to all files.

TP+TN

A =
ce TP+ FN+TN + FP

(4.13)
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CHAPTER 5

Tools

As a programming language for our study, we chose Python, as it comes with
several modules for PE files parsing as well as machine learning modules. We
profited from these modules and Python’s simplicity. However, we also had
to write our own tools to serve our particular purpose. In this chapter we will
describe the most important tools and python modules we used as well as the
tools we built.

5.1 Used tools

This section contains description of the third-party tools that we benefited
from.m

5.1.1 Python pefile module

Python pefile module, [29], is a python module used to parse files in PE
format. Module loads all attributes of a PE file into an object. These at-
tributes are then easily accessible via this object. Our custom-built tool in
python, extractor.py, relies heavily on features of pefile module. Listing
shows how to load file in PE format to python object and access some basic
attributes.

import pefile
pe = pefile.PE('/path/to/file_in_pe_format.exe')

pe.OPTIONAL_HEADER.AddressOfEntryPoint
pe.OPTIONAL_HEADER.ImageBase
pe.FILE_HEADER.NumberOfSections

Listing 4: Parsing PE file in pefile module
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5.1.2 Jupyter notebook

Jupyter notebook, [30], is a web-based application that enables structuring
and re-running of chunks of code in a user-friendly way. We used it for the
data pre-processing and classifying phases.

5.1.3 pandas library

Pandas library, [31], is a python module widely used in the data science com-
munity. It provides functionality to encapsulate data manipulation, preparing
data frames for training phase that is provided by scikit-learn.

5.1.4 scikit-learn library

Scikit-learn, [32], is python framework for machine learning. Encompassing
feature selection methods, classifier algorithms, validation and performance
evaluation functionality.

5.2 Custom built tools

This section contains introduction and description of our custom written tools
to utilize the comfortable extraction of PE file attributes.

5.2.1 extractor.py

extractor.py is a command line tool responsible for extracting features from
PE files. It is able to extract PE header attributes, imported functions and
section attributes. Whole tool consists of three self-sufficient modules, each
is responsible for extracting particular attributes. The extractor.py supports
two modes of extraction. Either extracting all the section names/functions
and computing the number of occurrences for each — the counter mode — or
extracting particular attributes that are given to the extractor.py via config-
uration file according to the format depicted in Listing [5| — extracting mode.
Example of command with arguments to invoke the extractor.py can be
found in Listing [6]

When invoked in counter mode, directory is expected as an input argu-
ment. Extractor runs through each file in the directory and uses one of the
sub-extractors to extract all the functions (or section names, depending on the
option). Maintaining the data structure holding the number of occurrences
for each function (section names, respectively). The data structure is then
written in csv format into specified output file. Simplified example is in Table
Bl

If the extracting mode is used, the configuration file is given as an ar-
gument. The input can be either file or directory. Extractor then uses sub-
extractor modules to extract specified functions, section header attributes and
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[HEADERS]

OPTIONAL_HEADER.Magic
OPTIONAL_HEADER.MajorLinkerVersion
OPTIONAL_HEADER.MinorLinkerVersion
OPTIONAL_HEADER.ImageBase
FILE_HEADER.TimeDateStamp
FILE_HEADER.SizeOfOptionalHeader
FILE_HEADER.NumberOfSections

[SECTIONS]
PointerToRawData
Characteristics

[FUNCTIONS]
kernel32.d11l.removedirectorya
kernel32.d1ll.createdirectorya
user32.dll.loadbitmapa
shell32.dl1l.shellexecuteexa
kernel32.d11.enumcalendarinfoa

[MAX SECTIONS]
2

Listing 5: Format of configuration file for extractor.py

user3d2.dll.loadbitmapa | shell32.dll.shellexecuteexa

count 74 53

Table 5.1: Sample extraction

PE header attributes and writes them in the output file. Simplified example

of how the extracted data looks like can be seen at Table (.2

Name of File | NumberOfSections | shell32.dll.shellexecuteexa

mdbstring 4 1

mdbstring 11 0

Table 5.2: Sample extraction

5.2.2 file_ gatherer.py

This script arose for clean set gathering. It searches given source directory for
PE files(recursively), computes the MD5 hash of each PE file and than copies
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./extractor.py --config config_file.txt input_directory output.csv

Listing 6: Invoking extractor from the command line

the file renamed according to its MD5 hash (to avoid duplicates) to target
directory.
5.2.3 writer.py

Writer.py is module used in extractor.py for encapsulating the action of writ-
ing data to the output file. Its modularity allows to easily add different output
format processing.
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CHAPTER 6

Our approach

In this chapter we will describe our approach and continuation of our steps
resulting into evaluation of performance of our trained models.

6.1 Workflow

Brief workflow of our classifier training is depicted at[6.1} It consists of classic
machine learning phases. Each of the phases is described in more details in
individual sections.

Extrac-
tion

Feature
[ Feature ] [ Classiﬁer] [ Eval- ]

Selection uation

Figure 6.1: Proposed workflow diagram

6.2 Data Gathering stage

Obtaining data is the first step, our training set consisted of 1469 benign and
1361 malicious PE files. Test set contained 367 benign and 12251 malicious
executables.

6.2.1 Malware dataset

Getting malware turned out to be easier than obtaining clean set. Discovering
Virusshare.com| malware database, we asked for access via email, explaining
that the malware will be used for research and as a part of bachelor thesis.
We were granted the permission to enter the malware database. Malware is
organized in archives per 64k files. However, the archives contained all sorts
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of malware files. Therefore, we needed to filter the PE executable files. This
was done by another simple script we wrote.

6.2.2 Clean dataset

We decided to scrap working windows image of a computer for all the exe-
cutables available. The script used for this was described earlier, in Section
Gathering clean set with this tool consisted of the following steps:

o mounting the disk partition containing Windows 10 installation

e running the script, specifying the source and target directory for extrac-
tion

To avoid duplicates and inconsistencies, the files are saved with names gener-
ated by python hash utility using the MD5 hash algorithm. This also provides
some sort of randomness to the order of the files. Despite it being totally deter-
ministic, a human is not able to guess what a particular executable does, once
it has a name being a MDb5 hash, whereas the original name of the executable
could provide a good hint.

6.3 Extracting features from gathered PE files

After we successfully gathered clean and malicious PE files, we needed to
extract features that are significant for malware detection. To extract these
attributes from a PE file, we chose to build our own python modules built on
pefile library. These modules are described in Section

6.3.1 Extracting header attributes

Extraction of PE header attributes was done in two steps. The first step
comprised of extracting all the PE header attributes from all the files in our
training data set by our extractor.py tool. Relevant PE header were then
selected, as described in Section[4.3] In the second step, only relevant headers
were extracted and new data sets for classifier training were created.

6.3.2 Extracting imported functions

The extraction of imported functions is done by our custom tool, extractor.py.
In the first phase, we use it to extract all functions from all files in our train-
ing dataset, to create a nice overview on what functions our dataset contains.
With knowing the counts of occurrences for particular functions in malware
and benign executables respectively, we selected functions with the best dis-
tinguishing ability (See more in section . In the second phase, where the
names of the functions that are to be extracted are already known, we specify
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the names of the functions in a configuration file in correct format and use
extractor.py to extract these according to the configuration file.

6.4 Feature selection

The following section describes how we selected our features for classifica-
tion. We used different approach for selecting either functions and PE Header
attributes, as each of these attributes have a different nature.

6.4.1 Selecting functions

First, we extracted the number of occurrences in malicious and benign ex-
ecutables for each imported function spotted in our training set using our
extractor.py tool. Then we used jupyter notebook with python and pandas
library for the next steps. Then, excluding imported functions with less than
50 total occurrences in our training set to eliminate the functions that are
rarely seen. To choose the most relevant imported functions for classification,
we decided to rate each function’s quality. Quality being function’s ability to
distinguish between benign and malicious files. We computed each function’s
quality using conditional probability as follows: (This approach is not con-
sidering correlation between the functions and is similar to the one used in
[13))

First, we computed the conditional probabilities that a file importing func-
tion f; is benign and malicious, respectively:

P(M N F;)  #malicious executables importing f;

P(M|F) = (6.1)

P(F) #all executables importing f;

P(BNF;)  #benign executables importing f;

P(B|F;) = (6.2)

P(F))  4all executables importing f;

Where M is set of all malware executables, B is set of all benign executa-
bles and Fj is set of all executables containing function f; in our training set.
Then, P(M]|F;) is probability that executable importing function f; is mali-
cious, or number of malicious files containing f; divided by the total number
of files containing f; in our training set.

The quality for function f; will simply be the conditional probability that
executable containing particular function is a malware.

Q(f:) = P(M|F;) (6.3)

The best performing functions (with quality higher than threshold value)
are depicted at the Figure 6.2
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user32.dll.getkeyboardtype
useri2.dll.sendmessagetimeouta
useri2 dll. messageboxindirecta
useri2 dll leadbitmapa

shell32 dllshfileoperationa
wserdz dll.chartooema

useri2 dll.createdialogparama
user32 dll.wvsprintfa

wserd2 dil.charpreva
kernel32.dilIstrcpyna
kernel32.dilIstrcata

kernel32 dilisdbcsleadbyte
userd2.dil.findwindowexa
wersion.dll.verqueryvaluea
kernel32 dil.arefileapisansi
comctl32. dilimagelist_addmasked
useriz dll exitwindowsex
kernel32 dilIstrcatw

comctl32. dilinitcommoncontrals
comctl32 dilimagelist_destroy
gdi32 dll.createbrushindiract
kernel32 dilistrepynw

gdi32 dll.createfontindirecta
shell32.dll.shgetpathfromidlista
shell32.dllshgetfileinfoa
shell32.dll shbrowseforfoldera
advapi32.dil.regenumkeya
user32 dll.dispatchmessagea
wseriz dil.appendmenua
user32 dil setwindowlonga
wser32 dll.callwindewproca
wseri2 dil.defwindowproca
userd2 dll.getclassinfoa
userd2 dll.createwindowexa
user32.dll.loadicona
user3d2.dll.drawtexta

user3d? dll leadcursora

Function name

userd? dll.charnexta

useri2 dll setclasslonga

user32 dil.loadimagea

useri2 dil.registerclassexa
kernel32 dil findresourcea

kernel32 dilwriteprivateprofilestringa
kernel32 dil.getprivateprofilestringa
kernel32.dll.copyfilea
kernel32.dilIstrepya
kernel32.dll.searchpatha

kernel32 dil_createdirectorya
kernel32 dil.removedirectorya
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6.4.2 Selecting PE Header attributes

When considering the assets provided by the PE header attributes, we looked
at each attribute separately. In other words, we used the univariate feature
selection approach once again. The idea behind is the same as when selecting
functions. For each attribute we computed its ability to distinguish between
malicious and benign executables. We called this number the attribute’s qual-
ity.

First, it was necessary to prepare our data in a form suited to our needs.
We computed a table for each attribute, with rows being the possible values
(that occurred in our train sets) for a particular attribute and columns depict-
ing the count of malware, resp. benign executables matching the particular
value for that attribute.

This table for OPTIONAL_HEADER.MajorSubsystemVersion is depicted in
Table [6.1]

value | malware occurrences | benign occurrences
1 3 0
3 4 0
4 195 576
5 880 770
6 344 8
10 43 0

Table 6.1: Dataframe for OPTIONAL_HEADER.MajorSubsystemVersion

In case any attribute had more values than 20, we decided to use binning
method to reduce the number of possible values to 20. Therefore, we created
20 possible values, each representing some interval into which the original
value of the attribute fell. We used the equal width approach for the binning,
meaning all the intervals covered same width. Binning is described in Section
4.2l in more details.

The quality for each attribute was then computed on our method based
on entropy. Detailed description is following. We computed entropy for each
possible value of examined attribute. Having attribute A with n possible
values {V1,Va,...,V,} we defined the entropy of i-th possible value:

M M; B Bi

Where M; is the number of malware executables with value V; on examined
attribute A. B; is the number of benign executables with value V; on examined
attribute A. Finally, T; is the number of all executables with value V; on
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examined attribute A. Therefore, T; = M; + B;. We defined the quality Q(A)
of attribute A as follows:

QU =Y (1~ B

i=1

(6.5)

Where n is number of possible values for examined attribute A, E; is
the previously defined entropy and total is the number of all samples in our
training set.

We computed the quality of all attributes and selected all that surpassed
our chosen threshold. You can see how, for instance, attribute representing
the number of sections in a particular file performed on figure [6.3]

FILE_HEADER.MumberOfSections

1000 + BN be count
W _count

800 4

600 4

Value

200 4

17
18
26

T T T T
Number of occurencies

Figure 6.3: NumberOfSections amongst training set, computed quality: 23.62

6.4.3 Additional selection

After we computed the final list of attributes to extract from PE files, we ran
our extractor.py to produce . csv for each data set(benign training, malware
training, benign testing and malware testing). This .csv was then imported
by Jupyter Notebook, where we performed some other corrections:

1. Binarizing categorical attributes
2. Further, more restrictive attribute selection

We added the option of more restrictive attribute selection to be able to
evaluate the performance of classifiers trained on attribute sets containing
both larger amount and smaller amount of attributes.
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Binarizing categorical attributes

The classifiers we used are mostly treating data as numerical. Binary at-
tributes are compatible with numerical, categorical are not. Therefore, we had
to process categorical attributes as following: for each categorical attribute A
with n possible values {v1,v9,...,v,}, n new attributes were created. Each
new attribute was a binary attribute, indicating if A = v;.

Further attribute selection

Finally, we chose to use two different attribute sets of different size. Both
attribute sets were chosen from previously selected numerical PE header at-
tributes, binarized PE header attributes and imported functions. The numer-
ical attributes were selected previously, we just conducted more restrictive
selection on binarized PE attributes and imported functions. Selection was
based on conditional probability. For each attribute set, we chose thresh-
old values for conditional probability and minimal number of occurrences for
given attribute in training data set (all the evaluated attributes were binary,
indicating the presence). Threshold for quality and threshold for occurrences
differed for binarized PE header attributes and imported functions. With T,
as threshold for attributes and O,for the minimal occurrences, attribute was
chosen if P(M|a;) >= T, or P(Bla;) >= T, and more than O, occurrences
on training set were found. For imported functions, threshold values T’y and
Oy were used. We then chose functions that met the following conditions:
P(M|f;) >= Ty and more than O occurrences on training set.

6.5 Classifier evaluation

In this section, we will be evaluating various models for detection, with previ-
ously extracted attributes. Each subsection contains the results reached with
each model. We considered two different set of attributes for each model.
We used our testing set containing 367 benign files and 12251 malware files.
Therefore, the accuracy will be skewed by the amount of malware files and
will actually be rather close to true positive rate.

Decision tree classifier

The decision tree classifier acquired the best results among the models we
tested. We decided to pre-prune the tree with the following parameters. The
minimal number of samples for splitting to continue was set to 5. The maximal
depth of the tree was restricted to 23.
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K-NN classifier
For K-NN classifier, described in Section we chose weighted distance

metric for voting, meaning the samples from training set that were closer
to classified sample had bigger impact on the classification. The number of
neighbours considered was 5.

Custom classifier

Described in details in section we used the classifier with three different
threshold values. Each of the values was set to get results with either equal
FPR and FNR, or low FPR or low FNR. In Table results for all three
thresholds are shown. We used this classifier with different threshold values,
T, described in Section Classifier with thresholds set to have low FNR
or FPR could be used as pre-elimination for decision tree classifier.

Original feature set Reduced feature set

Classifier FPR FNR FPR FNR
Decision Tree 2.18% 5.48% 2.99% 5.57%
K-NN 8.45% 9.53% 8.45% 9.61%

Custom (T=1.9) | 8.72% | 19.22% | 5.99% | 15.77%
Custom (T=1) | 34.33% | 0.41% | 40.60% | 0.16%
Custom (T=10) | 2.18% | 74.60% | 0.82% | 83.00%

Table 6.2: Classifier performances

Comparison

With our approach, our results are similar to those achieved by Schultz, in
[3] with Multi-Naive Bayes classifier. Our FPR, 2.18% is better than their
proposed 6.01%, but on the other hand, we achieved higher FNR, 5.48%. The
results of custom classifier based on Merkel el. al’s [I3], can be compared to
their study. The results are not significantly better, nor worse. Both studies
support the claim, that this approach can choose between having a good FNR
or good FPR, but having good values for both at the same time is unlikely.
However, it is not always straightforward to compare machine learning studies
performed on different data sets.
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Conclusion

The goal of this thesis was to study previous research on usage of machine
learning methods for malware detection, to gather enough data in PE format
to perform our own machine learning study, to employ feature selection meth-
ods to select the relevant attributes for classification, and finally, to train our
own classifier that can be used for malware detection.

In the first step, we performed state of the art research consisting of sum-
marizing various sources of literature containing books, scientific articles and
documentation of PE format and python libraries. After that, we successfully
gathered more than 15 000 PE files. Followed by writing our own tools for
attribute extraction and then performing the feature selection before train-
ing our own classifiers for malware detection. Besides this, we tried various
machine learning models and evaluated the results. Thus, meeting the re-
quirements of the task of this thesis.

Our classifier confirmed, just like the previous research, that usage of ma-
chine learning approaches for malware detection can be successful. However,
in the commercial sphere, the FPR needs to be lower than the one achieved by
machine learning models. Therefore, combining traditional signature match-
ing with new methods started to be encompassed by the commercial AV’s.
This thesis contains relevant information for future research and the classifier
trained can be used for malware detection.
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APPENDIX A

Acronyms

PE Portable Executable - Microsoft Windows’ format for executable files and
libraries

DLL Format for Microsoft Windows’ dynamically loaded library
AV Anti virus software

IoT Internet of Things

SVM Support Vector Machine

MD5 Message Digest algorithm

HVDM Heterogeneous value difference metric

FPR False positive rate

FNR False negative rate

K-NN K-nearest neighbours
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APPENDIX B

Contents of enclosed CD drive

ST o o PPN the directory of source codes
tnotebooks ........................ the directory of jupyter notebooks

BOOLS ettt the directory of tools used
L= v PO the thesis text directory
Lthesis.pdf ........................... the thesis text in PDF format
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