
Ing. Michal Valenta, Ph.D.
vedoucí katedry

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
děkan

V Praze dne 10. ledna 2018

ZADÁNÍ BAKALÁŘSKÉ PRÁCE
 Název: Cestovní seznam pro Android

 Student: Marek Alexa

 Vedoucí: Ing. Vratislav Zima

 Studijní program: Informatika

 Studijní obor: Softwarové inženýrství

 Katedra: Katedra softwarového inženýrství

 Platnost zadání: Do konce letního semestru 2017/18

Pokyny pro vypracování

Analyzujte potřeby cestovatelů při balení zavazadel a navrhněte aplikaci, která umožní pohodlné sestavení
kontrolního seznamu.
Implementujte aplikaci pro operační systém Android vhodnou pro telefony i pro tablety.
V aplikaci implementujte vhodné kategorie, omezení (váha), historii a pokuste se navrhnout vhodný způsob
adaptace (doporučení).
Umožněte vhodný import a export dat a navrhněte proces sdílení seznamů mezi několika uživateli.
Výslednou aplikaci otestujte s uživateli a ověřte funkčnost i použitelnost (usability) uživatelského rozhraní.

Seznam odborné literatury

Dodá vedoucí práce.

Bachelor’s thesis

Travel Checklist for Android devices

Marek Alexa

Department of Software Engineering
Supervisor: Ing. Vratislav Zima

May 15, 2018

Acknowledgements

I would like to thank my supervisor, Ing. Vratislav Zima, for supervising this
thesis. His advice and remarks were constructive. I would also like to thank
my family and my friends for supporting me during my studies. Last but not
least, I would like to thank everyone that has helped me with this thesis.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive au-
thorization (license) to utilize this thesis, including any and all computer pro-
grams incorporated therein or attached thereto and all corresponding docu-
mentation (hereinafter collectively referred to as the “Work”), to any and all
persons that wish to utilize the Work. Such persons are entitled to use the
Work in any way (including for-profit purposes) that does not detract from its
value. This authorization is not limited in terms of time, location and quan-
tity. However, all persons that makes use of the above license shall be obliged
to grant a license at least in the same scope as defined above with respect to
each and every work that is created (wholly or in part) based on the Work, by
modifying the Work, by combining the Work with another work, by including
the Work in a collection of works or by adapting the Work (including trans-
lation), and at the same time make available the source code of such work at
least in a way and scope that are comparable to the way and scope in which
the source code of the Work is made available.

In Prague on May 15, 2018 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2018 Marek Alexa. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Alexa, Marek. Travel Checklist for Android devices. Bachelor’s thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2018. Also
available from: 〈https://github.com/skvaryk/android-travelcheck〉.

https://github.com/skvaryk/android-travelcheck

Abstrakt

Ćılem této bakalářské práce bylo navrhnout a implementovat mobilńı aplikaci
pro OS Android, která umožńı jej́ım uživatel̊um pohodlné sestaveńı cestovńıho
seznamu. Byla provedena analýza současných řešeńı problematiky, návrh a
implementace aplikace a následné otestováńı s uživateli testy použitelnosti.

Kĺıčová slova Android, mobilńı aplikace, cestováńı, zavazadla, cestovńı sez-
nam

Abstract

The goal of this bachelor thesis was to design and implement a mobile appli-
cation for OS Android, which will allow its users comfortable compilation of
a travelling list. An analysis of current solutions of the problematics, solution
proposition, and implementation of the application and subsequent usability
testing were all done.

Keywords Android, mobile application, travelling, luggage, travel checklist

vii

Contents

Introduction 1

1 Analysis 3
1.1 Problem definition . 3
1.2 Possible solutions . 3
1.3 Current solutions . 5

2 Solution proposition 9
2.1 Proposed solution . 9
2.2 Requirements . 10
2.3 Use cases . 11
2.4 User interface design . 13
2.5 Domain model . 16
2.6 Relational model . 18

3 Implementation 21
3.1 Used libraries . 21
3.2 Database implementation . 22
3.3 Web API . 23
3.4 Import and export of trips . 24
3.5 Activity design . 24
3.6 Activity implementation . 26
3.7 Adaptivity . 32

4 Testing 33
4.1 Usability testing . 33
4.2 Conclusion from testing . 36

Conclusion 37

ix

Bibliography 39

A List of used abbreviations 43

B User’s manual 45
B.1 Requirements . 45
B.2 Application instalation . 45
B.3 Navigation in the application 45

C Programmer’s manual 47
C.1 Opening and running the project 47

D Contents of the enclosed CD 49

x

List of Figures

1.1 PackMeApp overview . 6
1.2 PackKing overview . 6
1.3 PackPoint overview . 7

2.1 Use-case model . 12
2.2 Trip list - GUI design . 13
2.3 Add trip - GUI design . 14
2.4 Show trip - GUI design . 15
2.5 User selection – GUI design . 16
2.6 Domain model . 17
2.7 Relational model . 19

3.1 Activity lifecycle [1] . 25
3.2 Activity model . 26
3.3 Trip list implementation . 27
3.4 Add trip implementation . 29
3.5 Show trip implementation . 30
3.6 Trip evalution implementation . 31
3.7 User selection and New user creation implementation 31
3.8 Activities management implementation 32

C.1 SDK installation help . 48

xi

List of Tables

1.1 Mobile operating system market share 4
1.2 Analysed applications summary based on [2] 5

2.1 Analysed applications and proposed solution feature summary . . 10

4.1 Evaluation by users . 36

4.2 Rating by the users in 1-5 scale 37

xiii

Introduction

Travelling is steadily rising in popularity year by year and so is the need to
keep luggage organized. Because finding out that you have forgotten to pack
a notebook adapter for a business trip presents a well-justified fear, people
have been keeping lists of travelling necessities to avoid similar scenarios.

Handwritten lists, albeit familiar, have a number of disadvantages. Fore-
most, travellers have to put them together by themselves, and they are sus-
ceptible to physical damage or loss. It could be argued, that there are thought
out lists for various occasions, however, those rarely fit one’s needs.

The age of smartphones is upon us for a few years now. Therefore the
solution is at hand – an application for smartphones that facilitates the cre-
ation of a travel checklist and adapts to individual needs of users. Android
OS presents with 85% [3] market share one of the technological trends in the
smartphone market.

The goal of this thesis is to create a user-friendly application for Android
OS. The application should handle creation and management of travel check-
lists and serve as a modern substitution of a handwritten checklist. Specifi-
cally, this thesis consists of an analysis of present solutions, design, and im-
plementation of a solution. The result will be tested by targeted users.

1

Chapter 1
Analysis

The goal of analytical phase is to collect enough information to be able to take
care of user’s needs. This chapter comprises an analysis of possible solutions
and currently available solutions. Gathered information will crystallize in the
form of a list containing both functional and non-functional requirements,
which will be used when it comes to designing the application.

1.1 Problem definition

The problem this thesis is trying to solve is rather simple. The user has a
need to keep a list of items they want to bring with them to a holiday or a
trip. The difficulty comes with trying to optimize this process and make it as
comfortable as possible for the user.

1.2 Possible solutions

1.2.1 Trivial solution

The problematics of a travel checklist could be solved very easily – pencil with
a piece of paper is enough for the user to form a list. This solution, though
simple and practical, is very time-consuming and the burden of actually pick-
ing out the items lies on the user.

Therefore, it would be a better idea to try and solve this problem with
the help of electronic devices. Possible devices include a personal computer,
mobile device, or even smart television, however mobile devices make the
most sense, as they are widely spread among young people, the dominant
target group. Another advantage is the accessibility of smartphones.

With mobile devices chosen as the platform for this solution, it is still
needed to select the targeted operating system. The two dominant mobile
operating systems are Android and iOS, which together have 99.9 % market
share, as can be seen in table 1.1.

3

1. Analysis

Operating system 2017 Market Share 2017 Units
Android 85.9 % 1,320,118

iOS 14.0 % 214,924
Other OS 0.1 % 1,493

Table 1.1: Mobile operating system market share

I have chosen Android OS because it is open-source, it is by far the most
prominent mobile OS, and because it has low hardware prerequisities.

1.2.2 Trivial solution for Android platform

A trivial solution for OS Android would be an application that imitates the
mentioned pen and paper solution. The user would be presented with a text
field, where he could fill out an item designated to be packed, and confirm by
pressing a button. Once approved, the item will be added to the list, where
it can be checked or deleted.

In comparison to pen and paper, this solution has the advantage of always
being at hand, but that is it. User comfort is comparable and time demands
are higher when compared to writing your list by hand.

1.2.3 Improved solution for Android platform

Problems mentioned in the previous subsection could be alleviated by already
having a list of items from which the user could choose.

Due to the large number of possible items to choose from, it would be
sensible to organize them into categories. Organizing items into groups can
be tackled from a few different perspectives. For example, elements can be
divided into clothing, electronics, hygiene, etc. Another option could be to
organize the items based on the type of landscape of the destination. However,
the best solution was found to be to divide the items based on activities the
user is planning to do on the trip – for example skiing, camping, business
meeting, etc. It would also be wise to separate some items by gender.

1.2.4 Travel checklist generation

The problem that the user has to manually put together their checklist per-
sists, which is agonizing and time-consuming. The solution is to generate the
checklist by the application itself.

This solution can be implemented in a few ways. The easiest is to include
all items from an activity in the checklist followed by manual modification.
An improvement of this solution would be to add the influence of weather – an
umbrella is not always necessary. Furthermore, it is possible to preserve item’s

4

1.3. Current solutions

popularity in respect to a specific user and choose items from given activity
based on the item’s popularity. By implementing popularity bound to items,
the user’s trip history is also projected into the generation of a checklist.

A good solution would be to generate travel checklists based on global
statistics and subsequently modify them based on user’s preferences
and weather. Unfortunately, no such figures are freely accessible by the pub-
lic. A solution to this problem would be to collect enough data from the
application to make such a statistic. However, that is a long shot.

1.3 Current solutions

Currently, there are several applications for Android platform which address
the problematics of creating and managing travel checklist. However, only a
few of them are worth analyzing, as most of them do not offer more than a
simple checklist. Applications were mainly chosen based on rating and number
of downloads. Specifically, PackMeApp [4], PackKing [5] and PackPoint [6]
were chosen. From the table 1.2 we can see that all analyzed applications have
had at least a mild success.

Application name Rating Number of downloads
PackMeApp 4,0 50 000+

PackKing 4,6 100 000+
PackPoint 4,6 500 000+

Table 1.2: Analysed applications summary based on [2]

1.3.1 PackMeApp

A straightforward user interface (see fig. 1.1) of the application PackMeApp [4]
serves its function well enough and sticks to a uniform design. Navigating
between individual screens can be confusing because the application does not
follow Android guidelines [7].

The user creates their checklist with the help of in-app items, which are
organized by categories. The application allows adding new items to existing
categories but does not allow creating new categories. Items have a relevance
rating, by which they are sorted.

1.3.2 PackKing

The user interface (see fig. 1.2) of the application PackKing [4] is comfortable
and easy to use, the most noticeable flaws being missing translations and
confusing transitions between screens.

5

1. Analysis

Figure 1.1: PackMeApp overview

The user creates their checklist by selecting from a list of items. Items
by divided by activities, weather, and means of transport. The application
allows the creation of custom activities. All categories are editable, meaning
the user can add new or remove existing items.

The application has a premium version, which offers the creation of more
than one checklist at a time, export of a checklist to pdf or uploading list’s
backup to Google Drive [8].

Figure 1.2: PackKing overview

6

1.3. Current solutions

1.3.3 PackPoint

The user interface (see fig. 1.3) of the PackPoint [6] application is organized,
intuitive and practical. The application reacts adequately to user’s gestures.
The only controversial choice is frequent notifications.

Individual items are organized by activities and nothing else. The appli-
cation differentiates between business and leisure activities. It seems like the
application checks weather, but the weather itself doesn’t project into checklist
creation.

PackPoint [6] also offers a premium version, which allows the editing of
item categories. Premium version also includes Tripit and Evernote integra-
tion.

Figure 1.3: PackPoint overview

7

Chapter 2
Solution proposition

This chapter will be using findings from the previous chapter 1 to create a
design that will lead to a successful implementation. The chapter comprises
of chosen solution, functional and non-functional requirements, description of
use-cases, UI (User Interface) design, and domain and database model.

All diagrams and models are modelled in Enterprise Architect [9] appli-
cation. Enterprise Architect is a visual editor used for modelling and design
based on the UML (Unified Modelling Language). It can be used to encompass
full application development life-cycle.

2.1 Proposed solution

From the analyses of possible solutions (section 1.2) and current solutions
(section 1.3) was drafted the following theoretical solution.

Items will be organized into activities, which will be used as templates for
travel checklist generation. Items can be exclusive to one of the (two) genders
or be unisex. The generating will also be influenced by weather – some items
will be chosen only when it will snow, etc. Items will be attributed a score
(popularity), based on which they will be decided whether to add an item
to a list that is being generated. This highly adaptive solution was found to
provide the best experience for the user.

The following table 2.1) compares proposed solution with analysed appli-
cations (see section 1.3. The table shows which feature is implemented by
which application. From this comparison, the proposed solution stands out as
the best.

9

2. Solution proposition

Feature PackMeApp PackKing PackPoint
Proposed
solution

Editation of
categories 51 3 5 3

Item
suggestion 5 3 3 3

Weather
influence 5 5 3 3

No
advertisements 5 5 5 3

User’s gender
influence 5 3 3 3

List evaluation 5 5 5 3

Export/import 5 5 5 3

Table 2.1: Analysed applications and proposed solution feature summary

2.2 Requirements

The following lists of functional and non-functional requirements have been
compiled based on previous section proposed solution 2.1.

2.2.1 Functional requirements

• Trip’s location selection

• Picking date and length of stay

• Activities selection

• Checklist generation

• Checklist organization – adding and deleting items and activities from
given checklist

• General management of activities and items they are containing

• Gesture recognition

• Import and export of chosen checklists
1In the PackMeApp application, it is possible to add items to categories, but it is not

allowed to add custom categories.

10

2.3. Use cases

2.2.2 Non-functional requirements

• Support of phones and tablets with Android OS 4.1.x and above (API
16)2

• Use of integrated relational database system SQLite

• Download of weather from web API

• Multiple users in one application’s instance

• Offline mode

• List generation adaptation

API (application program interface): a set of protocols used by program-
mers to create applications for a specific operating system or to interface
between the different modules of an application. [11]

SQLite [12] database is a software library that implements a database
engine, which is self-sufficient and without a need for a server or any configu-
ration.

List generation adaptation means collecting data about the user (mainly
past trips), which will be used in new checklist compilation, while also taking
weather into account.

2.3 Use cases

From requirements laid out in section 2.2 can be comfortably created use-case
model (fig. 2.1). The model will be helpful in creating user interface and in
formulating scenarios for usability tests.

The application will start on a list of created trips, wherefrom the user
can choose any depicted action.

The action Geolocation selection serves mainly for weather forecasting,
which will help in checklist generation. This action will not be accessible in
offline mode.

The difference between adding item and categories in the View trip and
Activities management actions is that when adding an item to a trip, the
item is added to both the current checklist and a database for later usage
in trip generation. Whereas adding items in Activities management will not
add them to any trip’s checklist. In the case of item deletion, the situation
reverses. Deleting an item from a trip’s checklist will not remove it from the
database, but deleting an item from the database will delete it from all the
trips.

2This represents 99.3 % of all Android devices [10]

11

2. Solution proposition

Figure 2.1: Use-case model

12

2.4. User interface design

2.4 User interface design

The user interface is designed with an emphasis on intuitiveness and practi-
cality. The online tool NinjaMock [13] was used in the design process to create
mockups.

The design is based on use-cases, which were defined in section 2.3. This
model provides information about the structure and functionality of the user
interface. The design has undergone changes in the implementation phase.

2.4.1 Trip list

The GUI (graphical user interface) design (see fig. 2.2) of the Trip list screen
contains, as the name suggests, a list of created trips. After clicking on a trip,
one of two actions follows. Those two actions are Show trip or Trip evaluation
(referencing use-case model 2.1). Which action takes place depends whether
the trip has elapsed or not.

The design also includes a button on the bottom portion of the screen,
which will start series of actions designated for new trip creation.

Last two main actions (User selection and Activities management) can
be initiated by clicking on the Overflow menu [14]. These two actions are
expected to be the least frequent, so they are relatively small and unobtrusive
in the screen design.

Figure 2.2: Trip list - GUI design

13

2. Solution proposition

2.4.2 Add trip action

The action Add trip comprises of three consecutive actions and does not exist
on its own.

The user interface (see fig. 2.3) of the Geolocation selection action is a
straightforward one. The user will be shown a map, where they will choose
a location by tapping on the map. The selection has to be confirmed by a
button on the bottom of the screen. The action Date and length of stay
selection follows.

The interface (see fig. 2.3) of the Date and length of stay action is rather
simple. The user is shown two text fields with labels, where they will enter
the date of start and end of their trip. After confirming, the Select activities
screen is displayed.

The GUI design (see fig. 2.3) of Select activities3 contains a grid layout
of activities’ icons, which can be selected by clicking. After confirming by a
button on the bottom of the screen, the Show trip action will follow.

Figure 2.3: Add trip - GUI design

2.4.3 Show trip

The design of this GUI (see fig 2.4) holds a list which can contain four different
items: a category, an item in a category, and two buttons for adding new item
or category. The list will support checking items.

3The activities are referencing categories of items, not Android activities.

14

2.4. User interface design

Figure 2.4: Show trip - GUI design

2.4.4 Trip evaluation

The user interface of Trip evaluation has a similar design to the Show trip
action’s user interface (see fig. 2.4). However, it serves for selecting which
items were useful and which were not, thus evaluating the trip’s checklist.
Unlike the Show trip design, this design does not contain buttons for adding
new items or categories.

2.4.5 User selection and Add new user

These two actions are for practical reasons designed as pop-up windows.

The GUI (see fig. 2.5) of User selection contains a list of users and a button
to add a new user, which facilitates the Add new user action.

The design of the action Add new user (not shown in the figure) comprises
of a text field for the new user’s username and a button used for gender
selection.

15

2. Solution proposition

Figure 2.5: User selection – GUI design

2.4.6 Activities management

The user interface is of Activities management is based on the design of View
trip design. However, the interface only serves as template management. Tem-
plate management means adding and deleting items and categories from the
database.

2.5 Domain model

A domain model is created together with the use-case model (see fig. 2.1) in
the early stage of software development. A domain model is a form of a class
diagram. The classes in domain model are simplified, as they do not contain
methods and have only important attributes. A domain model is platform
independent. [15, 16]

2.5.1 User

The entity User serves primarily to determine the ownership of a trip. It has
two attributes representing user’s name and gender.

16

2.5. Domain model

Figure 2.6: Domain model

2.5.2 Trip

Trip is the central entity of the domain model. Every trip contains a date of
start and end, geolocation, trip’s name and an indication, whether the trip
has been evaluated. Furthermore, the entity contains one WeatherSummary
and can contain any amount of Items.

17

2. Solution proposition

2.5.3 WeatherSummary

The entity WeatherSummary contains a summary of the weather forecast dur-
ing the stay. It comprises of lowest temperature, highest temperature, and the
highest precipitation probability. In relation to other entities, WeatherSum-
mary contains one WeatherIcons entity and several WeatherForDay entities,
the exact number being the number of days of a planned stay.

2.5.4 WeatherForDay

The WeatherForDay entity represents weather forecast for one day. Its at-
tributes are minimal temperature, maximal temperature, text summary, pre-
cipitation probability, a text representation of an icon and a date to which the
forecast applies.

2.5.5 WeatherIcons

WeatherIcons is a collection of six indicators for weather icons. It is used for
saving all possibilities of a weather forecast summary.

2.5.6 Category

The Category4 represents a category of items and its only attribute is a name.

2.5.7 Item

The Item entity represents an item which can be packed for a trip. Its at-
tributes are name, score and target gender. Items belong to a category.

2.6 Relational model

A relational model specifies the domain model usage for concrete database
system (in this case SQLite). SQLite support only five data types [17]. These
data types are:

• NULL – The value is a NULL value.

• INTEGER – The value is a signed integer, stored in 1, 2, 3, 4, 6, or 8
bytes depending on the magnitude of the value.

• REAL – The value is a floating point value, stored as an 8-byte IEEE
floating point number.

• TEXT – The value is a text string, stored using the database encoding
(UTF-8, UTF-16BE or UTF-16LE).

4In the context of a user interface, categories are called activities.

18

2.6. Relational model

• BLOB – The value is a blob of data, stored exactly as it was input.

Because of the data types constraints, it is needed to adapt the data types
from the domain model 2.6. The only three relevant data types are integer,
real, and text. For example, a date is converted into text.

Figure 2.7: Relational model

Primary keys in this relational model are marked with ID (identifier), while
foreign keys have FK (foreign key) prefix. The keys distribution is based on the
cardinality of relations. The relation between Trip and Item (M:N cardinality)
had to be resolved by adding another table named ChosenItem, which contains

19

2. Solution proposition

two foreign keys and no primary key – an entry is identified by combining these
two foreign keys into a composite key. The M:1 relations is resolved by adding
a foreign key attribute to the table with M cardinality. In the 1:1 cardinality
case, it does not matter where the foreign key is put.

20

Chapter 3
Implementation

For the development phase, mainly Android Studio version 3.1.2 [18], including
an integrated LayoutEditor [19]. The code is written in Kotlin language [20]
version 1.2.0. The minimum SDK version is 14 (Android 4.0) because lower
SDK versions do not support newest Android support libraries [21]. The
targeted SDK is 27, which corresponds to Android 8.1. A Gradle system [22]
is used for project compiling. For persistence, the SQLite [12] database system
is used in version 3.7.4+ (depends on Android OS version).

Kotlin is a statically typed programming language for modern multiplat-
form applications that runs on the Java virtual machine. Since Android Studio
3.0, Kotlin is fully supported programming language on the Android OS.

SDK (software development kit) is a programming package that enables
a programmer to develop applications for a specific platform. Typically an
SDK includes one or more APIs, programming tools, and documentation. [23]

3.1 Used libraries

For the implementation, two external libraries were used. First library is Gson
(more in detail in subsection 3.1.1). The second external library is Google Play
Services [24], which facilitates the usage of Google maps in the application.
Furthermore, three Android support libraries were used, mainly to lower the
minimum SDK requirement.

3.1.1 Gson

Gson is a Java library that can be used to convert Java Objects into their
JSON representation. It can also be used to convert a JSON string to an
equivalent Java object. Gson can work with arbitrary Java objects including
pre-existing objects that you do not have source-code of. [25]

21

3. Implementation

3.1.2 Android support libraries

Android support libraries mainly offer backward compatibility of features,
classes, and methods implemented in newer SDKs. They can also provide
convenience and helper classes, and utilities (for example support for annota-
tions). [26]

List of used support libraries:

• v7 appcompat library: For backwards compability of ActionBar [27].

• v7 gridlayout library: Because the application uses GridLayout
class [28].

• Multidex Support Library: Needed for applications that exceed 64K
reference limit. [29]

A list of all support libraries and their description can be found in official
documentation. [26].

3.2 Database implementation

As was mentioned in the previous section, the chosen database engine is
SQLite, which is integrated into Android and has direct access to a database.
All requests for getting, deleting or saving data are facilitated by DatabaseM-
anager class (see code example 3.1). DatabaseManager has a static variable
instance, which is set when the application starts. Thanks to this static vari-
able, the DatabaseManager is accessible from anywhere in the application.

For initialization, opening and general administration of the database, the
MySQLiteHelper class is used. MySQLiteHelper inherits from abstract class
SQLiteOpenHelper [30] and contains scripts for creating tables according to
the relational model (section 2.6). It also includes scripts for initial database
fill with basic data (items and categories).

Listing 3.1: Example of acquiring an entry from the Item table in the
DatabaseManager class.
pub l i c Item getItemByID (i n t itemID) {

Cursor cur so r = db . query (” item ” , new St r ing [] {
” ID item ” ,”name” , ” s co r e ” , ” targetGender ” ,
”FKCategory ”} ,
” ID item = ” + itemID , nu l l , nu l l , nu l l ,

nu l l , n u l l) ;
i f (cu r so r . moveToFirst ()) {

Item item = new Item () ;
item . setID (cur so r . g e t In t (0)) ;
item . setName (cur so r . g e t S t r i n g (1)) ;

22

3.3. Web API

item . s e tSco r e (cur so r . g e t In t (2)) ;
item . setTargetGender (cur so r . g e t In t (3)) ;
item . setFKCategory (cur so r . g e t In t (4)) ;
cu r so r . c l o s e () ;
r e turn item ;

} e l s e {
cur so r . c l o s e () ;
r e turn n u l l ;

}
}

3.3 Web API

In the application, web API with the name The Dark Sky Forecast API [31]
was used for getting a weather forecast. The authors offer a thousand calls
for forecast a day without a fee. This amount is sufficient for developing an
application with a small userbase. However, if the application will get larger,
a change of API will be required. The other option is to start paying for the
usage. An example of calling the API:

https://api.forecast.io/forecast/*key*/
50.43884235565519,14.882826134562492,1467151200?
units=si&exclude=hourly,currently

In place of the part of address marked as *key* should be private key to the
web API.

Following are three numbers separated by a comma. These three numbers
are latitude, longitude and Unix timestamp respectively. The Unix time (or
Unix epoch or POSIX time or Unix timestamp) is a system for describing
points in time, defined as the number of seconds elapsed since midnight pro-
leptic Coordinated Universal Time (UTC) of January 1, 1970, not counting
leap seconds. [32]

The first of the two parameters for this request specifies that the answer
should be using the international system of units form. The second parameter
specifies that we do not need a forecast for individual hours and a current
forecast. For more information about this API, please see online documenta-
tion [33].

The answer has a JSON format, containing weather forecast for one day.
The response string is then processed with the help of the Gson library (see
subsection Gson 3.1.1).

23

3. Implementation

3.4 Import and export of trips

The export of a trip begins by invalidating a Trip’s ID. Then follows a serial-
ization of TripExportContainer, which contains a Trip, an array of Items, and
an array of corresponding Categories. The serialization is done through Gson
library (see subsection Gson 3.1.1). The resulting string is written into a file.

The import of a trip can be initiated by clicking on file with json extension,
as the application is registered to react to this intent. By deserializing the
exported file, we get a trip object. However, it is still needed to set the trip’s
ID, user’s ID, and to get the weather forecast. The resulting trip is saved into
the database.

3.5 Activity design

Activities are one of the fundamental building blocks of apps on the Android
platform. They serve as the entry point for a user’s interaction with an app,
and are also central to how a user navigates within an app (as with the Back
button) or between apps (as with the Recents button). [34]

A software framework is a concrete or conceptual platform where common
code with generic functionality can be selectively specialized or overridden
by developers or users. Frameworks take the form of libraries, where a well-
defined application program interface (API) is reusable anywhere within the
software under development. [35]

In simplified terms, activity is one screen, with which the user can in-
teract. Because of this, the activity model is crucial for designing the user
interface. The activity model defines relations between individual activities.
The diagram 3.1 shows an activity lifecycle and its behavior under varied
circumstances.

3.5.1 Activity model

The main activity is the Trip list activity. This activity contains a list of cre-
ated trips and serves as the starting point for all other actions. The activities
User selection and New user creation are designed as Dialogs, which are more
appropriate for these fast and simple actions. Conversely, the activity Add
trip is broken down into three sequential activities. The Add trip activity
does not exist on its own. From any activity, it is possible to navigate in
the opposite direction of an arrow by clicking on the back button. The only
exception to this back navigation is Show trip activity, from which the user
cannot return to Add trip.

A Dialog5 is a small window that prompts the user to make a decision or
enter additional information. A dialog does not fill the screen and is normally

5 From now on referred to as a dialog.

24

3.5. Activity design

Figure 3.1: Activity lifecycle [1]

25

3. Implementation

Figure 3.2: Activity model6

used for modal events that require users to take an action before they can
proceed. [36]

3.6 Activity implementation

The activity implementation is based on Activity design (section 3.5) and
User interface design (section 2.4). The functionalities of the implemented
activities are described in section User interface design.

The user interface is designed for a vertical screen layout. However, thanks
to the implementation of ScrollView [37], the application can handle even
horizontal screen layout.

All activities (not dialogs) use ActionBar [27]. ActionBar’s creation is han-
dled by ToolbarFactory class. ToolbarFactory uses an android support library
to create toolbars when requested through a static method createToolbar. The

26

3.6. Activity implementation

appearance is uniformly defined in the file toolbar.xml.
The activities Trip list and all the activities that are realizing Add trip

use a uniform button on the bottom of the screen. The button is defined in
custom_button.

Several adapters were used in the implementation. These adapters de-
fine the appearance and reactions on user’s actions for individual items in
ListView [38]. All the adapters inherit from BaseAdapter [39] class.

3.6.1 Trip list

The Trip list activity is the main activity, which means, that the application
starts with this activity. If the application is run for the first time, a dialog
for New user creating is shown to create the first user. The active user ID is
saved to shared preferences (see SharedPreferences [40]). If none is found in
the preferences, the first created user is marked as the active user.

A trip that has passed is distinguished by having its name crossed out.
Furthermore, trips that have been evaluated are marked with a green check-
mark. A trip can be deleted by swiping gesture.

A ListView [38] is responsible for layout and deciding how to react to user’s
actions. The ListView uses TripListAdapter as an adapter.

The resulting implementation of the user interface design (subsection 2.4.1)
can be see in figure 3.3.

Figure 3.3: Trip list implementation

6Activities selection and Activities management in this model do not refer to Android
activities, but to a category of items.

27

3. Implementation

3.6.2 Add trip

As was meantioned earlier in section 3.5.1, the activity Add trip consist of
three subsequent activities and does not exist on its own.

The first activity Location selection only displays a map and a button for
confirmation. The map is implemented through a Google Play Services [24]
library. The map itself is represented by GoogleMap [41] class. The user
selects a location by clicking on the map and confirming by the button on
the bottom of the screen. The confirmation button is inactive (greyed out)
until the user clicks the map. After clicking on the confirmation button, the
activity Date and length of stay selection is initiated, which is passed on the
geolocation and trip name (from address) information by using the Intent [42]
class.

The following activity is Date and length of stay selection. The user
chooses a date by clicking on a CalendarView [43]. For displaying the length
of stay, two TextViews [44] are used that mark the beginning and end of a
trip. Which textview is currently being changed is indicated by a green frame
around the textview, which displays when the view has a focus. The focus
is switched between the two textview after every date selection. It is also
possible to change to focus by tapping the textview itself. The confirmation
button is inactive if the start of the trip is in the past, or if the end of the
trip is before the start of the trip. The number of possible days a trip can
have is bounded above by thirty days. After confirming the selected dates, an
Activities selection activity is started, which is sent information from previous
activity (geolocation and a name) and the start and end dates of the trip.

Before starting the Choose activities7 activity, it is needed to download
the weather forecast with the help of a web API (see section 3.3). Acquiring
the forecast can take up to a few tens of seconds, depending on the number of
days. Because of this delay, a ProgressDialog [45] is shown with information
on which day’s forecast is being downloaded. The acquired data are processed
and displayed in a weather summary. The activity comprises a weather sum-
mary and a GridLayout [28] which contains all available categories of items
in the form of pictures. For displaying these categories, a custom Check-
ableImageView class is used. The CheckableImageView class inherits from
ImageView [46] class and add the ability to select or unselect a picture by ap-
plying a gray filter over the image. The same custom class is used for weather
icons, in the case the user decides they do not want the weather to affect the
list generation. After confirming the selection, all information about the trip
is stored in a database and Show trip activity is initiated.

The implementation (see fig. 3.4) of user interface differs from the design
(subsection 2.4.1) in two notable ways. The Date and length of stay activity
uses a CalendarView to select a date instead of two text fields. The second
difference is the inclusion of a weather summary in Choose activities screen.

7Choose activities refers to categories of items, not Android activities.

28

3.6. Activity implementation

Figure 3.4: Add trip implementation

3.6.3 Show trip

The Show trip activity consists of two main components: a weather summary
at the top and a Listview, which has its adapter – ViewTripAdapter. This
adapter distinguishes between three types of items: a category title, an item
in a category, and buttons to add new or existing items into a category. The
categories can be added by clicking on the Overflow menu [14] and choosing the
appropriate action. The categories are sorted alphabetically. Items are sorted
by being checked or not and secondary by alphabetical order. A category will
collapse when clicked, hiding items it contains. A user can check or uncheck
an item by clicking on it. The list reacts on the horizontal swipe gesture by
removing the swiped item. If the last item is deleted from a category, the
category will be automatically deleted too. The buttons for adding new or
existing items are at the end of each category.

After clicking on Add existing item button, a new dialog will be displayed
with a list of all the items from given category. By clicking on Add new
item button, a different dialog will be shown. This dialog has an EditText
field for the new item’s name, and a Spinner [47] for specifying the item’s
targeted gender. The dialogs for adding categories (accessed through the
overflow menu) are almost the same. The only difference is that you cannot
choose a targeted gender a new category.

The differences between user interface implementation (fig. 3.5) and the
design (subsection 2.4.3) are adding a weather summary and moving the add
category buttons to overflow menu. The weather summary is identical with
the one displayed in Select activities implementation.

The overflow menu also contains a few new features. It is now possible to

29

3. Implementation

set the trip’s name, and if the trip was created without access to the internet,
a user could specify its location, allowing it to receive weather forecast.

Figure 3.5: Show trip implementation

3.6.4 Trip evaluation

The Trip evaluation activity is very similar to the Show trip activity. It also
has a ListView with its adapter, but it has far fewer functionalities. The only
one left over is the ability to check items. However, the items are checked
with a different icon. By going back from this activity, the displayed items
have their score adjusted in the database based on being checked out or not
(checked items are the ones the user did not need).

As the user interface design has suggested (subsection 2.4.4), the imple-
mentation is based on the Show trip activity (subsection 3.6.3). The resulting
implementation can be seen in figure 3.6.

3.6.5 User selection and New user creation

The activities User selection and New user creation are implemented as di-
alogs. The dialog User selection contains a ListView with its adapter, the
UserListAdapter class. More information about these dialogs is accessible in
the Solution proposal chapter (subsection 2.4.5). Following a User selection
action, the title in the action bar will be changed to their name and their trips
will be shown. The implementation of these dialogs can be seen in figure 3.7.

30

3.6. Activity implementation

Figure 3.6: Trip evalution implementation

Figure 3.7: User selection and New user creation implementation

3.6.6 Activities management

The Activities management activity only has a ListView, which uses Man-
ageActivitiesAdapter class as an adapter. After clicking on an item in the
list, a dialog that asks the user to confirm deletion is shown. Either items or
whole categories can be deleted. The creation of new items or categories is
the same as in Show trip activity. Changes made to this list will be reflected
in the templates in the database. This activity is accessible by clicking on the
overflow menu in Trip list activity. The implemented user interface can be

31

3. Implementation

seen in figure 3.8.

Figure 3.8: Activities management implementation

3.7 Adaptivity

The term adaptation in computer science refers to a process, in which an
interactive system (adaptive system) adapts its behavior to individual users
based on information acquired about its user(s) and its environment. Adap-
tivity indicates a system that adapts automatically to its users according to
changing conditions, i.e., an adaptive system. [48]

A weather forecast in the context of the developed application is informa-
tion about the environment. The information about the user is their gender,
trip evaluation and chosen items in trips. The behaviors adaptation manifests
in the travel checklist generation, which is affected by the collected informa-
tion. This adaptivity system was determined based on the section Chosen
solution 2.1.

32

Chapter 4
Testing

Given that the application’s success is dependent on a simple and practical
GUI, the main part of tests is usability testing with users.

Besides the usability testing with users, the application has been tested
on these devices and emulators:

• Oneplus 2 (Android 6.0.1)

• Sony Bravia KD-55XD8005 (Android 6.0)

• Sony Xperia Z2 (Android 5.1.1)

• Nexus 5X (Android 4.4.2)

• Emulated Nexus 10 (Android 6.0)

• HUAWEI VNS-L21 (Android 7.0)

4.1 Usability testing

Usability testing refers to evaluating a product or service by testing it with
representative users. Typically, during a test, participants will try to complete
typical tasks while observers watch, listen and takes notes. The goal is to
identify any usability problems, collect qualitative and quantitative data and
determine the participant’s satisfaction with the product. [49]

The application was tested by six users on their devices. Some notes and
remarks were personally written, that is why some answers are just comments
on the user’s behavior. The first and second respondent have experience with
application development, while other users are ordinary users. The users were
given a modified version of the application with test data in order for the user
to be able to test all features. The users were asked to be critical before the
test started. Following are the results of the testing in the form of a question
(or a task) and a list of answers from the individual users.

33

4. Testing

1. Create new user:

• I’m missing an option to delete a user.

• No problem.

• A brief confusion, if the displayed value on ToggleButton corre-
sponds with the chosen value.

• Easy, there is nothing to be debated.

• I’m missing a button to cancel the dialog.

• Easy.

2. Add new trip:

• Everything alright.

• The application had stopped working on the first try when I tried
to set the trip’s date a year in advance. The second try with a
sooner date was ok.

• The user appreciates the information displayed in ProgressDialog
when the forecast is being acquired.

• The date choosing is a bit confusing. Personally, I would be satisfied
with two text fields. The weather summary could be divided into
days. Otherwise ok.

• Too few activities to choose from.

• Nice icons.

3. When viewing the trip, add an activity and add an item to the activity:

• I would replace Fitness activity with Sports, and I would add a
selection which sports the user plans to do. Based on this, I would
choose more specific items that the user needs. I would also add an
activity for a business trip, something where a person needs formal
clothing and so on. But that could be put into the work activity.

• Absolutely perfect, but it could be shown in a tutorial.

• Very nice design. I love it.

• No problem.

• It works.

• The user could not find the requested actions at first.

34

4.1. Usability testing

4. Delete items in a category until it disappears:

• I would for sure leave in the option to delete a whole category.
• I want to delete a category, maybe with a confirmation dialog.
• There is no help to find out how to do this.
• It took me a while to figure out how to delete an item.
• The sensitivity for the deletion is too much. The gesture can be

only indicated, and the item is deleted.
• The user could not figure out how to delete an item. There was no

problem after a small suggestion.

5. Delete an arbitrary item and category in the Activities management:

• All right.
• This could work the same as when viewing a trip. Or the other

way around, in trips, it could function the same as here.
• Intuitive, without a problem.
• Functional.
• No problem.

6. Switch to the user Pavel8 and evaluate the trip named Praha:

• OK.
• A confirmation dialog really should pop-up here.
• I have left the evaluation by mistake and it is now locked.
• I have removed that trip by mistake.
• Evaluation works great.
• The user did not recognize that they are evaluating the trip.

7. General comments and reactions:

• The gesture for deleting is too sensitive, resulting in unwanted item
deletion when clicking.
• No general comments.
• I have described everything in previous questions.
• The graphical interface is good, but the controls are not really

intuitive. A tutorial would be nice.
• Most things are serviceable, but the application could definitely

take a few adjustments.
• The application looks good. For me, as a layman, a few things were

confusing, but next time I would know what to do.

8This is part of the testing data.

35

4. Testing

8. Score the application on a scale 1-5:

Graphical interface Intuitivity Features Overall
User 1 1 3 2 2
User 2 2 2 2 2
User 3 1 1 1 1
User 4 2 2 3 2
User 5 3 1 2 2
User 6 1 3 1 2

Table 4.1: Evaluation by users

9. Used phone or tablet.

• Lenovo Vibe S1 (Android 5.0)
• Oneplus One (Android 5.0.2: Hydroxen OS)
• Lenovo S90 (Android 4.4)
• Samsung Galaxy S4 mini (Android 4.4.4)
• Lenovo Vibe Shot (Android 5.1)
• Aligator S5500 Duo HD IPS (Android 4.4.2)

4.2 Conclusion from testing

The comments from users that have tested the application have resulted in
these changes in the application:

• An option to delete a user has been added.

• Negative buttons have been added to dialogs.

• Acquiring the feather forecast a long time in advance has been fixed.

• An option to delete a whole category was added.

• The deletion gesture’s sensitivity has been lowered.

• A dialog has been added when leaving the trip’s evaluation

I would like to mention again that the data the user have been given were
only for testing purposes. From the user’s comments and answers, a need for
a tutorial has emerged. The tutorial has not been implemented due to time
constraints.

36

Conclusion

The goal of this thesis was to analyze the needs of travelers when packing and
subsequently, to design and implement a mobile application for Android OS.
This application should help its users to put together and manage travel check-
lists comfortably. It should target smartphones and tablets. The application
should have implemented these features: appropriate categories, limitations
(weight), history, suitable means of adaptation (recommendations), import
and export of data. Also, a sharing process of checklists between users should
have been designed. The resulting application should have been tested with
users, and the GUI’s functionality and usability should have been verified.

The analysis of traveler’s needs has been done through an analysis of cur-
rent solutions (section 1.3). The result of this thesis is a mobile application for
Android OS, with which a comfortable and effective assembly of a checklist
is facilitated. The application is suitable for smartphones and tablets with
vertical or horizontal screen layout. Categories (activities), trip history, im-
port and export of checklists, and adaptation in the form of generation of a
personalized checklist are implemented. However, limitations have not been
implemented. The resulting application has been tested, mainly in the form of
usability tests with users (section 4.1). From these tests, several minor changes
have been revealed and fixed. The users were asked to rate the application at
the end of the test. The following table 4.2 summarizes the results.

Graphical interface Intuitivity Features Overall
Average score 1,6 2 1,8 1,8

Table 4.2: Rating by the users in 1-5 scale

The application could be expanded upon in a few ways. The user’s comfort
can be improved by adding a tutorial in order to familiarize the user with the
application. Internally, the application could be improved by implementing a
modern database system, replacing the dated SQLite. The application could

37

Conclusion

be improved by implementing online shared checklists, but this would require
a server for communication between individual applications. A server could
also be used to collect data about the user’s behavior. These data could be
used to refine the templates from which the checklists are generated and for
further improvement of the user experience.

38

Bibliography

[1] Android. Understand the Activity Lifecycle. [online], [Accessed:
13.5.2018]. Available from: https://developer.android.com/guide/
components/activities/activity-lifecycle

[2] Google. Google Play Store. [online], [Accessed: 7.5.2018]. Available from:
https://play.google.com/store

[3] Gartner, I. Gartner Says Worldwide Sales of Smartphones Recorded First
Ever Decline During the Fourth Quarter of 2017. [online], [Accessed:
12.5.2018]. Available from: https://www.gartner.com/newsroom/id/
3859963

[4] PackMeApp. PackMeApp Packing List. [mobile application], [Ac-
cessed: 7.5.2018]. Available from: https://play.google.com/store/
apps/details?id=net.henrykratajczak.packmeapp

[5] Wer, M. Packing List for Travel - PackKing. [mobile application], [Ac-
cessed: 7.5.2018]. Available from: https://play.google.com/store/
apps/details?id=com.adotis.packking

[6] Wawwo. PackPoint travel packing list. [mobile application], [Ac-
cessed: 7.5.2019]. Available from: https://play.google.com/store/
apps/details?id=com.YRH.PackPoint

[7] Android. Designing Back and Up navigation. [online], [Accessed:
12.5.2018]. Available from: https://developer.android.com/
training/design-navigation/ancestral-temporal

[8] Google. Google Drive. [online], [Accessed: 12.5.2018]. Available from:
https://drive.google.com/

[9] systems, S. Enterprise Architect. [online], [Accessed: 25.6.2016]. Available
from: http://sparxsystems.com.au/products/ea/index.html

39

https://developer.android.com/guide/components/activities/activity-lifecycle
https://developer.android.com/guide/components/activities/activity-lifecycle
https://play.google.com/store
https://www.gartner.com/newsroom/id/3859963
https://www.gartner.com/newsroom/id/3859963
https://play.google.com/store/apps/details?id=net.henrykratajczak.packmeapp
https://play.google.com/store/apps/details?id=net.henrykratajczak.packmeapp
https://play.google.com/store/apps/details?id=com.adotis.packking
https://play.google.com/store/apps/details?id=com.adotis.packking
https://play.google.com/store/apps/details?id=com.YRH.PackPoint
https://play.google.com/store/apps/details?id=com.YRH.PackPoint
https://developer.android.com/training/design-navigation/ancestral-temporal
https://developer.android.com/training/design-navigation/ancestral-temporal
https://drive.google.com/
http://sparxsystems.com.au/products/ea/index.html

Bibliography

[10] Google. Distribution dashboard. [online], [Accessed: 7.5.2018]. Available
from: https://developer.android.com/about/dashboards/

[11] Dictionary. API. [online], [Accessed: 7.5.2018]. Available from: http:
//www.dictionary.com/browse/api

[12] SQLite. SQLite. [online], [Accessed: 11.5.2018]. Available from: https:
//sqlite.org/

[13] ninjamock.com. NinjaMock. [online], [Accessed: 10.5.2018]. Available
from: https://ninjamock.com/

[14] Android. Menus. [online], [Accessed: 10.5.2018]. Available from: https:
//developer.android.com/guide/topics/ui/menus

[15] Mlejnek, J. Analýza problémové domény. [online], [Accessed: 11.5.2018].
Available from: https://edux.fit.cvut.cz/oppa/BI-SI1/prednasky/
BI-SI1-P04m.pdf

[16] Scaled Agile, I. Domain Modeling. [online], [Accessed: 11.5.2018].
Available from: https://www.scaledagileframework.com/domain-
modeling/

[17] SQLite. Datatypes In SQLite Version 3. [online], [Accessed: 26.6.2016].
Available from: https://www.sqlite.org/datatype3.html

[18] Android. Android Studio. [online], [Accessed: 11.5.2018]. Available from:
https://developer.android.com/studio/

[19] Android. Design a UI with Layout Editor. [online], [Accessed:
11.5.2018]. Available from: https://developer.android.com/studio/
write/layout-editor

[20] JetBrains. Kotlin. [online], [Accessed: 12.5.2018]. Available from: https:
//kotlinlang.org/

[21] Android. Support Library. [online], [Accessed: 12.5.2018]. Available
from: https://developer.android.com/topic/libraries/support-
library/#api-versions

[22] Gradle. Gradle. [online], [Accessed: 12.5.2018]. Available from: https:
//gradle.org/

[23] Beal, V. SDK - software development kit. [online], [Accessed: 12.5.2018].
Available from: https://www.webopedia.com/TERM/S/SDK.html

[24] Android. Google Play Services. [online], [Accessed: 12.5.2018]. Available
from: https://developers.google.com/android/guides/overview

40

https://developer.android.com/about/dashboards/
http://www.dictionary.com/browse/api
http://www.dictionary.com/browse/api
https://sqlite.org/
https://sqlite.org/
https://ninjamock.com/
https://developer.android.com/guide/topics/ui/menus
https://developer.android.com/guide/topics/ui/menus
https://edux.fit.cvut.cz/oppa/BI-SI1/prednasky/BI-SI1-P04m.pdf
https://edux.fit.cvut.cz/oppa/BI-SI1/prednasky/BI-SI1-P04m.pdf
https://www.scaledagileframework.com/domain-modeling/
https://www.scaledagileframework.com/domain-modeling/
https://www.sqlite.org/datatype3.html
https://developer.android.com/studio/
https://developer.android.com/studio/write/layout-editor
https://developer.android.com/studio/write/layout-editor
https://kotlinlang.org/
https://kotlinlang.org/
https://developer.android.com/topic/libraries/support-library/#api-versions
https://developer.android.com/topic/libraries/support-library/#api-versions
https://gradle.org/
https://gradle.org/
https://www.webopedia.com/TERM/S/SDK.html
https://developers.google.com/android/guides/overview

Bibliography

[25] Google. Gson. [online], [Accessed: 12.5.2018]. Available from: https:
//github.com/google/gson

[26] Android. Support Library. [online], [Accessed: 12.5.2018]. Available
from: https://developer.android.com/topic/libraries/support-
library/packages

[27] Android. ActionBar. [online], [Accessed: 12.5.2018]. Available from:
https://developer.android.com/reference/android/app/ActionBar

[28] Android. GridLayout. [online], [Accessed: 12.5.2018]. Available
from: https://developer.android.com/reference/android/support/
v7/widget/GridLayout

[29] Android. Enable Multidex. [online], [Accessed: 12.5.2018]. Available from:
https://developer.android.com/studio/build/multidex

[30] Android. SQLiteOpenHelper. [online], [Accessed: 12.5.2018]. Avail-
able from: https://developer.android.com/reference/android/
database/sqlite/SQLiteOpenHelper

[31] Company, T. D. S. The Dark Sky Forecast API. [online], [Accessed:
12.5.2018]. Available from: https://developer.forecast.io/

[32] Ltd, V. About UNIX timestamp. [online], [Accessed: 12.5.2018]. Available
from: http://unixtimestamp.50x.eu/about.php

[33] Company, T. D. S. v2 Forecast API. [online], [Accessed: 12.5.2018]. Avail-
able from: https://darksky.net/dev/docs

[34] Android. Activities. [online], [Accessed: 13.5.2018]. Available from:
https://developer.android.com/guide/components/activities/

[35] Techopedia. Software Framework. [online], [Accessed: 13.5.2018].
Available from: https://www.techopedia.com/definition/14384/
software-framework

[36] Android. Dialog. [online], [Accessed: 13.5.2018]. Available from: https:
//developer.android.com/guide/topics/ui/dialogs

[37] Android. ScrollView. [online], [Accessed: 13.5.2018]. Available from:
https://developer.android.com/reference/android/widget/
ScrollView

[38] Android. ListView. [online], [Accessed: 13.5.2018]. Available from:
https://developer.android.com/reference/android/widget/
ListView

41

https://github.com/google/gson
https://github.com/google/gson
https://developer.android.com/topic/libraries/support-library/packages
https://developer.android.com/topic/libraries/support-library/packages
https://developer.android.com/reference/android/app/ActionBar
https://developer.android.com/reference/android/support/v7/widget/GridLayout
https://developer.android.com/reference/android/support/v7/widget/GridLayout
https://developer.android.com/studio/build/multidex
https://developer.android.com/reference/android/database/sqlite/SQLiteOpenHelper
https://developer.android.com/reference/android/database/sqlite/SQLiteOpenHelper
https://developer.forecast.io/
http://unixtimestamp.50x.eu/about.php
https://darksky.net/dev/docs
https://developer.android.com/guide/components/activities/
https://www.techopedia.com/definition/14384/software-framework
https://www.techopedia.com/definition/14384/software-framework
https://developer.android.com/guide/topics/ui/dialogs
https://developer.android.com/guide/topics/ui/dialogs
https://developer.android.com/reference/android/widget/ScrollView
https://developer.android.com/reference/android/widget/ScrollView
https://developer.android.com/reference/android/widget/ListView
https://developer.android.com/reference/android/widget/ListView

Bibliography

[39] Android. BaseAdapter. [online], [Accessed: 13.5.2018]. Available
from: https://developer.android.com/reference/android/widget/
BaseAdapter

[40] Android. SharedPreferences. [online], [Accessed: 29.6.2016]. Available
from: https://developer.android.com/reference/android/content/
SharedPreferences

[41] Google. GoogleMap. [online], [Accessed: 29.6.2016]. Available from:
https://developers.google.com/android/reference/com/google/
android/gms/maps/GoogleMap

[42] Android. Intent. [online], [Accessed: 29.6.2016]. Available from: https:
//developer.android.com/reference/android/content/Intent.html

[43] Android. CalendarView. [online], [Accessed: 13.5.2018]. Available
from: https://developer.android.com/reference/android/widget/
CalendarView

[44] Android. TextView. [online], [Accessed: 13.5.2018]. Available from:
https://developer.android.com/reference/android/widget/
TextView

[45] Android. ProgressDialog. [online], [Accessed: 14.5.2018]. Avail-
able from: https://developer.android.com/reference/android/app/
ProgressDialog

[46] Android. ImageView. [online], [Accessed: 14.5.2018]. Available from:
https://developer.android.com/reference/android/widget/
ImageView

[47] Android. Spinner. [online], [Accessed: 25.6.2016]. Available from: https:
//developer.android.com/reference/android/widget/Spinner.html

[48] Brogi A., P. E., Canal C. On the semantics of software adap-
tation. [online], [Accessed: 14.5.2018]. Available from: http://
www.sciencedirect.com/science/article/pii/S0167642306000220

[49] usability.gov. Usability Testing. [online], [Accessed: 14.5.2018]. Avail-
able from: https://www.usability.gov/how-to-and-tools/methods/
usability-testing.html

42

https://developer.android.com/reference/android/widget/BaseAdapter
https://developer.android.com/reference/android/widget/BaseAdapter
https://developer.android.com/reference/android/content/SharedPreferences
https://developer.android.com/reference/android/content/SharedPreferences
https://developers.google.com/android/reference/com/google/android/gms/maps/GoogleMap
https://developers.google.com/android/reference/com/google/android/gms/maps/GoogleMap
https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/widget/CalendarView
https://developer.android.com/reference/android/widget/CalendarView
https://developer.android.com/reference/android/widget/TextView
https://developer.android.com/reference/android/widget/TextView
https://developer.android.com/reference/android/app/ProgressDialog
https://developer.android.com/reference/android/app/ProgressDialog
https://developer.android.com/reference/android/widget/ImageView
https://developer.android.com/reference/android/widget/ImageView
https://developer.android.com/reference/android/widget/Spinner.html
https://developer.android.com/reference/android/widget/Spinner.html
http://www.sciencedirect.com/science/article/pii/S0167642306000220
http://www.sciencedirect.com/science/article/pii/S0167642306000220
https://www.usability.gov/how-to-and-tools/methods/usability-testing.html
https://www.usability.gov/how-to-and-tools/methods/usability-testing.html

Appendix A
List of used abbreviations

OS Operating system

GUI Graphical user interface

UML Unified Modeling Language

API Application program interface

SDK Software development kit

JSON JavaScript Object Notation

UTF Unicode Transformation Format

43

Appendix B
User’s manual

B.1 Requirements

The application is not graphically or performance demanding. The only limi-
tation is Android OS version. The application supports Android version 4.1.x
and above.

B.2 Application instalation

In order to install the application, it is needed to do these three following
steps:

• Transfer the file TravelCheck.apk from the apk directory on the provided
CD (or visit the GitHub page) into your devices.

• Find the transferred file with a file manager.

• Click on the found file to initiate the installation. (Make sure that you
have allowed installation from unknown sources in the settings.)

B.3 Navigation in the application

The main screen is a trip list. Here you can find a list of future, current, and
past trips. A new trip can be added by clicking on the Add trip button and
subsequent selection of destination, date, and activities. After clicking on the
overflow menu located in the top right, you can manage the activities (saved
templates from which the checklists are generated) or change the user.

45

Appendix C
Programmer’s manual

The project is using libraries described in section 3.1. The libraries are in-
cluded in the provided project.

C.1 Opening and running the project

Opening and running the project requires these steps:

• You need to download and install the Android Studio. Accessible from
https://developer.android.com/studio/index.html

• Download and install an SDK of version 14 and above and an Android
Support Repository.

– Click on the SDK Manager icon (see fig. C.1). The icon is located
in the top bar of Android Studio.

– Download and install one SDK from the selected options in fig-
ure C.1.

– Download and install Android Support Repository as shown in the
figure C.1.

• Open the project by clicking on File at the top left and choosing the
Open option.

• The project can be run by using the Shift+F10 shortcut, or by clicking
on the run icon.

47

https://developer.android.com/studio/index.html

C. Programmer’s manual

Figure C.1: SDK installation help

48

Appendix D
Contents of the enclosed CD

readme.txt brief description of the contents
apk a directory with runnable form of the application
src... sources

impl......................................project with source codes
thesis....................................source code of this thesis

text .. text of this thesis
thesis.pdf...............................text of this thesis in PDF

49

	Introduction
	Analysis
	Problem definition
	Possible solutions
	Current solutions

	Solution proposition
	Proposed solution
	Requirements
	Use cases
	User interface design
	Domain model
	Relational model

	Implementation
	Used libraries
	Database implementation
	Web API
	Import and export of trips
	Activity design
	Activity implementation
	Adaptivity

	Testing
	Usability testing
	Conclusion from testing

	Conclusion
	Bibliography
	List of used abbreviations
	User's manual
	Requirements
	Application instalation
	Navigation in the application

	Programmer's manual
	Opening and running the project

	Contents of the enclosed CD

