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Abstrakt

Tato práce se zabývá replikaćı útoku na RSA kryptosystém časovým postranńım
kanálem, který je realizován měřeńım času algoritmu opakovaných čtvercu s
Montgomeryho násobeńım. Útok se zameřuje na měřeńı času trvańı dešifrováńı
rozd́ılných zpráv s určitými vlastnostmi. Práce popisuje základńı principy
a slabiny RSA kryptosystému. Výsledkem práce je demonstrativńı aplikace,
která bude pouzita ve vyuce předmetech, zabyvaj́ıćımi se poč́ıtačovou bezpečnost́ı.

Kĺıčová slova RSA, kryptoanalýza, časový útok, postranńı kanál, Mont-
gomeryho násobeńı
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Abstract

This thesis is focused on replication of timing attack on RSA cryptosystem
introduced by Paul Kocher, which is done by measuring time of square and
multiply algorithm with Montgomery multiplication. The attack is based on
measuring execution time of decryption function on messages with different
properties. The thesis describe main principles and vulnerabilities of RSA
cryptosystem. Implementation should be used for education purposes, mainly
in security courses.

Keywords RSA, cryptanalysis, timing attack, side channel, Montgomery
multiplication
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Introduction

Information security is nowadays very important. Through the network
flows lot of information which is essential to keep in private. Due to this, many
ciphers were invented and are used to encrypt communication over network.
One of these ciphers is RSA. In past time there were several vulnerabilities
on this cipher. I will focus on timing attack which exploit data dependency
of decrypting algorithm.

This thesis will explain the main thoughts of RSA cryptosystem, its known
vulnerabilities and how to defend against them. Thesis also introduce reader
to timing attack problematic. It will compare two targets of timing attack,
Kochers original attack on multiplication versus Dhems attack on square. Al-
though both attack can be easily defended just by eliminating data depend-
ency in decryption (resp. signing) algorithm.

Purpose of this thesis is demonstrative. The final application should be
used in cryptography courses on Faculty of Information chnologies on CTU,
mainly in Advanced Cryptology course. It should demonstrate progress of
guessing private key bit by bit. There will be two approaches of guessing
key. First original introduced by Paul Kocher which focuses on extra modural
reduction during multiply operation[2]. The second approach was introduced
by J.-F. Dhem and collective where they focus on extra modular reduction
during square phase[3].

Lastly, I will introduce several ways of defense against timing attacks which
will avoid data dependency. So that execution of time will be either constant
or not telling us any usable information.
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Chapter 1
State-of-the-art

In 1996 Paul Kocher presented timing attack on several cryptosystems in-
cluding RSA[2]. The cryptosystems have in common that all of them are
using modular exponentiation or they are public key cryptosystems. Kochers
idea was to attack square and multiply algorithm which uses Montgomery
multiplication. He intend to exploit execution time of decrypting and signing
algorithms because there is dependency on private exponent. After Kocher
there have been more tries with better success, for example J.-F. Dhem, F.
Koeune, P.-A. Leroux, P. Mestre, J.-J. Quisquater and J.-L. Willems who
improved Kochers study[3].
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Chapter 2
Used mathematical principles

In this chapter I will introduce mathematical theorems and principles which
will be referenced through the thesis

2.1 Fermat’s little theorem

Theorem 1 (Fermat) “For prime p and any a ∈ Z such that a 6≡ 0 (mod p),

ap−1 ≡ 1 (mod p)′′[4]

Fermat’s little theorem is restricted only on prime numbers so that we will
need to extend it to all integers. For that we will use Euler’s theorem.

2.2 Euler’s totient function

First we need to define Euler’s totient function which is used in Euler’s
theorem.

Definition 1 (totient) “For n ≥ 1, φ(n) can be characterised as the number
of postive integers less than n and relatively prime to it. The function φ is
usually called the Euler totient function after its originator , ( sometimes the
phi-function ).”[5]

2.3 Euler’s theorem

Theorem 2 (Euler) “For m ≥ 2 ∈ Z+ and any a ∈ Z such that gcd(a,m) =
1

aφ(n) ≡ 1 (mod n)

where φ(m) is the number of invertible integers modulo m.”[4]
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2. Used mathematical principles

2.4 Chinese remainder theorem

Theorem 3 (CRT) “Let m1, ...,mr be pairwise coprime natural numbers, and
ai, (1 ≤ i ≤ r) be arbitrary integers. Write Mi = Πj 6=imj.Let ni be the
multiplicative inverse of Mi modulo mi. Then, the unique solution N mod
m1m2...mr to the system of congruences N ≡ ai mod mi for all i ≤ r is given
by

N = a1n1M1 + a2n2M2 + ...+ arnrMr.
′′[6]
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Chapter 3
RSA

RSA is public-key cryptosystem which was developed at MIT by Ron Rivest,
Adi Shamir and Leonard Adleman. The cryptosystem was published in the
1977. [7]

Main thought of public-key cryptosystem is sharing encryption key to who-
ever asks for it. Beacause it is used just for encryption, we can be sure that
attacker could not retrieve any information about secret decryption key. Each
subject of the conversation keeps his decryption key in private.

3.1 Principle

RSA is based on modular exponentiation. There is three important numbers
which are used in computing modular exponation resp. crypting messages.

• n - Modulus which is used during whole cipher algorith.

• e - Encryption exponent. Exponent e is used to modular exponation
of message so that we get ciphertext. Exponent must meet the con-
dition gcd(e, φ(n)) = 1 where φ is Euler’s totient function and gcd is
the greatest common divider function. This condition will be explained
later.

• d - Decryption exponent. It is computed by finding modular inversion
of public exponet e in modulus φ(n).

Commonly used value of e is 65537.

The cryprosystem consist of two keys, public and privat. Public key is used
for encrypting messages and is composed of modulus n and public exponet e.
Private key is composed of modulus n and private exponent d.

7



3. RSA

Figure 3.1: RSA illustration[1]

3.1.1 Key generation

This is steps needed to generate keypair including public and private key

• Generate p and q, which have to be distinct prime numbers large enough
to make factorization of their product hard problem. If we choose too
small p and q, we are risking that attacker could do factorization of n
so that he could easily compute our private exponent d using Euler’s
totient function φ.

• Compute n, where n = pq

• Compute Euler’s totient function φ(n). Because we know p and q it
is simple to compute it. We know that n is product of p and q which
are prime numbers. Euler’s totient function φ for prime numers equals
φ(P ) = P − 1 where P is prime number. Also we know that Euler’s
totient function φ is multiplicative. So the problem is:

φ(n) = φ(p ∗ q)

Now we use multiplicative rule:

φ(p ∗ q) = φ(p) ∗ φ(q) = (p− 1)(q − 1)

Then we get simple formula for comupting φ(n)

φ(n) = (p− 1)(q − 1)

8



3.1. Principle

• Generate e from 3 to n − 1 which meets condition gcd(e, φ(n)) = 1. In
most implementation of RSA is used e = 65537 = 216 + 1

• Compute d = e−1 mod φ(n)

• The pair (e, n) is released as public key

• The pair (d, n) is kept secret as private key

3.1.2 Key distribution

• Alice would like to send Bob secret message.

• Bob generates public key (e, n) and his private key (d, n).

• Bob sends Alice public key using reliable route (it has not to be secret
route).

• Due to high value of n possible attacker will not be able compute d
from public keypair (e, n) because factorization of n is not possible in
polynomial time.

• Alice uses it to encrypt her message and sends it to Bob.

• Bob decrypts her message using his private key.

3.1.3 Encryption

Encryption is done by using public keypair (e, n):

c = |me|n
where m is plaintext message and c is encrypted message which will be sent
to receiver.

3.1.4 Decryption

Decryption is done similar thanks to relation ed ≡ 1 (mod φ(n)). We can
simply power ciphertext to our private exponent d to obtain original message.

|cd|n = |(me)d|n = |med|n
Now that we know, that ed ≡ 1 (mod φ(n)) which can be overwriten to

form ed = 1 + k ∗ φ(n). From that we get:

|med|n = |m1+k∗φ(n)|n = |m1 ∗mk∗φ(n)|n
From Euler’s theorem (aφ(n) ≡ 1 (mod n)) we can substitute mk∗φ(n) for

1.

|m1 ∗mk∗φ(n)|n = |m1 ∗ 1|n = m

We got desired message m.

9



3. RSA

3.1.5 Signing

RSA signing is used to verify wheter the message was not changed on the
way from sender to reciever. The process is really similar to decryption but
we do not encrypt message itself. We first use some one way function on
message, mostly there is used some hash function, then we encrypt the hash
of the message but we use our private exponent for encryption. That would
mean anyone could decrypt the signature by using our public key and compare
it with actual has of the recieved message. If they equals we can be sure that it
is original message and was not changed on the way to from sender. If someone
tries to change the content of message, he has to have sender private key to
generate valid signature, otherwise he will not be able to generate signature
from different hash (which has to change, when he change the content of
message).

All content in this chapter to this point is based on [7].

3.2 Security

Security of RSA is relied on inability to do factorization of large integer
in polynomial time. From paper “Factoring estimates for a 1024-bit RSA
modulus”[8] we can say that breaking 1024-bit RSA key would last about
year long on device worth of 10 milions american dolars.

There is a community challenge where people trying to factorize RSA keys
of different length. The latest succces was on 768-bit length key which was
factored in 2009. In that time the facotrization took 3 years of execution time.
Nowadays standart key length is 1024 which have not been factored yet.[9]

3.3 Optimization

Because we generally use high value of modulus n the exponentiation of
message of similar bit length is quite time consuming so several algorithms to
increase speed of computation was developed.

3.3.1 Chinese remainder theorem

By using CRT we can significantly speed-up decryption of received messages
or signing outcoming message. This method is not usable during encrypting
phase because we need to know p and q factors of n which are parts of private
key. Assuming that p > q we can divide :

dP = e−1 (mod p− 1)

10



3.3. Optimization

dQ = e−1 (mod q − 1)

qInv = q−1 (mod p)

After that, we compute message m with given c:

m1 = cdP (mod p)

m2 = cdQ (mod q)

h = qInv · (m1 −m2) (mod p)

m = m2 + hq

Finding modular exponentiation cost grows with cube of number of the
bits in n, so it is still more efficient to do two exponentiation with half sized
modulus

This whole section is based on [10].

3.3.2 Montgomery Multiplication

Normal modular multiplication could be quite slow for large numbers, due
to processor have to run several operations before it gets desired remainder.
On the other hand P. L. Montgomery developed algorithm which assumes that
processor do division by power of 2 really fast.

Montgomery presented algorithm, which transform numbers to Montgomery
base and then compute modular multiplication efficiently. To transform num-
ber to Montgomery base we need to compute ā = ar (mod n) where r is the
next power of 2 greater than n. For example if 263 < n < 264 then desired r
will be 264. The multiplication in Montgomery base is done by:

ū = āb̄r−1 (mod n)

where r−1 is modular inversion of r.

As we can see ū is in Montgomery base of the corresponding u = ab (mod n)
since

ū = āb̄r−1 (mod n)
= (ar)(br)r−1 (mod n)
= (ab)r (mod n)

(3.1)

11



3. RSA

Montgomery reduction which gives us ū is implemented this way:

Algorithm 1 Montgomery Reduction
1: function Mon Red(ā, b̄, N)
2: t← ā ∗ b̄
3: m← N−1 ∗ t (mod r)
4: ū← (t+mN)/r
5: if ū > N then
6: ū← ū−N
7: end if
8: return ū
9: end function

Its main advance is that it never performs division by the modulus n but
we still need to find out u and precompute n−1 using the extended Euclidean
algorithm. It is done by this algorithm:

Algorithm 2 Montgomery Multiplication
1: function Mon Mult(a, b, n)
2: r ← 2BitLen(n)

3: Compute n−1 using the extended Euclidean algorithm
4: ā← a ∗ r (mod n)
5: b̄← b ∗ r (mod n)
6: ū←Mon Red(ā, b̄)
7: u←Mon Red(ū, 1)
8: return u
9: end function

This section derives from [11]

3.3.3 Square and Multiply

This optimization uses bitwise representation of the exponent. The al-
gorithm picks all byte from left (MSB) to right and despite their value, it
determines which operation will be performed for each bit. For bits equal to
1 we perform squaring preset value c then we multiply it with the base of ex-
ponentiation m. For bits equal to 0 we just perform squaring part. Therefore
we get data dependent operation, which will be used in our attack. For even
faster implementation we use Montgomery multiplication instead of normal
one. In some papers this Square and Multiply algorithm is called Montgomery
exponentiation

12



3.3. Optimization

Algorithm 3 Square & Multiply algorithm
1: function Square and Multiply(m, e, n)
2: c← 1
3: k ← BitLen(e)
4: for i← k − 1, 0 do
5: c←Mon Mult(c, c)
6: if e[i] == 1 then . ith bit of exponent e
7: c←Mon Mult(c,m)
8: end if
9: end for

10: return c
11: end function

This section derives from [11]
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Chapter 4
Attacks

The basic idea of timing attacks was presented by Kocher in 1996. He
specified theoretical attacks not only on RSA. [2]

Both variant of attack are based on similar principle. They divide messages
from set M to several subsets Mi due to response of some Oracle O. Then by
measuring time of decrypting or signing and guessing bits of secret exponent
by comparing times of each set.[2][12]

4.1 Attack on multiply

First Kochers idea was to exploit multiply operation in Square and Multiply
algorithm. Kocher mean to measure time of decryption (or signing) messages
using the private key d and focus on conditional multiply step. We are attack-
ing each bit of d with knowledge of i − 1 bits we can guess the ith bit. Let
d = d1, d2, . . . , dk where k is bit length of d and d1 is MSB. We can assume
that d1 = 1 so we can attack bit d2.[2]

We need oracleO which predict whether final Montgomery reduction happened
during multiply step: [12]

O(m) =
{

1 if m2 ∗m is done with final reduction
0 if m2 ∗m is done without final reduction

where m is message from set M . We can now divide messages to 2 subsets:

M1 = {m ∈M : O(m) = 1}

M2 = {m ∈M : O(m) = 0}

15



4. Attacks

We can now measure time of these two subsets. We are expecting same
times for doing square part, but in multiply part will be messages from M1
higher, due to final Montgomery Reduction. We compare means of sets M1
and M2. If time of M1 is significantly bigger then the final reduction was done
therefore bit d2 is 1. If the times of M1 and M2 are equal then bit d2 is 0. .

Problem: We cannot be sure what is significant difference between time
means. So our guesses cannot be precise.[12]

4.2 Attack on square

Focusing on squaring operation will give us better results. The procedure
is similar but we generate two oracles and four sets of messages. We similarly
iterate through the bits of secret key d as in multiply attack. When we know
i−1 bits and we are guessing ith bit we compute mtemp which has value before
unknown possible multiplication step.[3]

We first presume that bit di is 1. If the presumption is right then the
following steps will be executed. mtemp will be multiplied by m, then the
result of multiplication will be squared. We will execute the multiplication
step and then we will check if in the square step is done with or without
reduction. By this criterion we divide messages to subsets M1 if the reduction
was computed or M2 if not. The oracle will be: [3][12]

O1(m) =
{

1 if (mtemp ∗m)2 is done with final reduction
0 if (mtemp ∗m)2 is done without final reduction

Secondly, we presume that bit di is 0. In that case only the square phase
m2
temp will be executed so we similarly divide messages to subsets M3 with

reduction and M4 without reduction. Oracle O2: [3][12]

O2(m) =
{

1 if m2
temp is done with final reduction

0 if m2
temp is done without final reduction

We now get 4 subsets of M :

M1 = {m ∈M : O1(m) = 1}

M2 = {m ∈M : O1(m) = 0}

M3 = {m ∈M : O2(m) = 1}

M4 = {m ∈M : O2(m) = 0}

16



4.2. Attack on square

Let Ti(Mi) be the mean time of computing messages from Mi.

Certainly, only one of oracles is giving us the right results. We can compare
time difference between O1 and O2. That means if T1 − T2 is greater than
T3−T4 then we can be sure that bit di is 1, otherwise d− i is 0. The problem
from multiply attack is no more actual because one of the differences have to
be higher than other. [3][12]

17





Chapter 5
Defense

5.1 Additional reduction

The most obvious defense is to add dummy subtraction to Montgomery
reduction algorithm which does not change any value but consume the same
amount of time as if the real subtraction was performed. This should not
significantly slow the computation but it totally eliminate this type of timing
attack by making Montgomery reduction constant time function.

5.2 Masking

We can mask the ciphertext before computation of cd (mod n) so the at-
tacker will not know which cipher text is decrypted. It is done simply by
generating pair of masks before each exponentiation. We generate random
mask m. Then we compute m′:

m′ = (m−1)e (mod n)

where e is public exponent.

Before each exponentiation we multiply the ciphertext c with mask m′ so
we get masked xm:

xm = (c ∗m′)d (mod n)
= (c ∗ (m−1)e)d (mod n)
= cd ∗m−1 (mod n)

(5.1)

19



5. Defense

from where we can see that cd is our desired message masked by m−1. Then
we simply recover x by multiplying by m:[2]

x = xm ∗m (mod n)
= x ∗m−1 ∗m (mod n)
= x (mod n)

(5.2)

To avoid situation when even generating of mask could become target of
timing attack, there is simple workaround. To generate new mask, just square
the mask pair:[2]

m = m2 (mod n)

m′ = m′2 (mod n)

20



Chapter 6
Realisation

6.1 RSA implementation

For our purposes we cannot use existing RSA implementation because they
commonly have this vulnerability fixed. So it was needed to write own unse-
cure implementation of RSA cryptosystem. It is still possible use key gener-
ation algorithm from OpenSSL because it is not target of our attack. 128-bit
key was used. Python 3.6.1 was used and module Crypto for working with
keys. After some problem with time measurement I was forced to write core of
the algorithm in C. For support big number which RSA operates with I used
BIGNUM library from OpenSSL implementation of RSA. This transformation
leads to significant speed-up of attack.

6.1.1 Montgomery

The main part of RSA is mechanism for modular exponentiation. As was told
before we are using Montgomery multiplication for speed-up computation. It
is based on pseudocode in section 2.2.2.

def montgomery product ( a , b , n , r , n inv ) :
t = ( a ∗ b)
m = ( ( t & ( r − 1) ) ∗ n inv ) & ( r − 1)
u = ( t + m ∗ n) >> ( r . b i t l e n g t h ( ) − 1)
i f u > n :

return u − n
return u

Some optimization was done to let reduction have greater time impact.
Instead of modulo r is used bitwise AND with r − 1 and instead of division
by r is used bitwise shift to right r.bit length()− 1.

21



6. Realisation

Beacause operations in Python are not constant time so that attack have
been failning. Decision was made to transform exponatiation of message to C
with using BIGNUM library from OpenSSL which is used in OpenSSL RSA
implementation to handle large integers.

BIGNUM ∗ mon prod (BIGNUM ∗ a , BIGNUM ∗ b , BIGNUM ∗ N,
int R length , BIGNUM ∗ Ni , BIGNUM ∗ R){

BIGNUM ∗ t = BN new ( ) ;
BIGNUM ∗ m = BN new ( ) ;
BIGNUM ∗ u = BN new ( ) ;
BN mul( t , a , b , ctx ) ;

BN mod mul (m, t , Ni , R , ctx ) ;

BN mul(u , m, N, ctx ) ;

BN add(m, u , t ) ;
BN rsh i f t (u , m, R length ) ;

i f (BN cmp(u , N) >= 0 ){
BN sub (m, u , N) ;
return m;

}

return u ;

I have ommited alocation and destruction local variables, to make code
more readable.

Altough this transformation brings significant speed-up of execution, the
successfulness of attack was even worse. Even when I had added some dummy
operations in reduction branch, the successfulness was not improved.

6.1.2 Square and Multiply

Due to computation in Montgomery base we also need to little edit the
square and multiply algorithm to transform arguments to Montgomery base
and at the end back to normal base. We also need precompute r and n−1.

22



6.1. RSA implementation

def square and mul t ip ly ( ot , n , e ) :
r = 2 ∗∗ (n . b i t l e n g t h ( ) )
g , n inv , r i n v = egcd (n , r )

i f ( r ∗ r i n v + n ∗ n inv ) == 1 :
n inv = −n inv % r

else :
raise Exception ( ”bad GCD” )

ot = ( ot ∗ r ) % n
s t = (1 ∗ r ) % n
for i in ” {0 : b}” . format ( int ( e ) ) :

s t = montgomery product ( st , st , n , r , n inv )
i f i == ’ 1 ’ :

s t = montgomery product ( st , ot , n , r , n inv )
return montgomery product ( st , 1 , n , r , n inv )

As I had tried to eliminate any unnecessary operations I have moved com-
putation of gcd, r−1 and n′ outside of measured part of code. I would had
liked to try if this “cheating” would help to improve successfulness of attack.

After transforming this to C in this function remains only calling Python
C-extension , where is whole computation of square and multiply algorith.

stat ic PyObject ∗
montgomery mult ( PyObject ∗ s e l f , PyObject ∗ args )
{

BIGNUM ∗ N = BN new ( ) ;
BIGNUM ∗ Ni = BN new ( ) ;
BIGNUM ∗ R = BN new ( ) ;

BIGNUM ∗ ot = BN new ( ) ;
BIGNUM ∗ s t = BN new ( ) ;
BIGNUM ∗ one = BN new ( ) ;
BN CTX ∗ ctx = BN CTX new ( ) ;

char ∗ a , ∗n , ∗ bi t exp , ∗ s t s , ∗ n inv ;
char ∗ r ;
int l ength ;
unsigned int i ;
i f ( ! PyArg ParseTuple ( args , ” s s s s i s ” , &a , &n , &bit exp , &r , &length , &n inv ) )

return NULL;
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6. Realisation

BN dec2bn(&one , ”1” ) ;
BN dec2bn(&N, ( const char∗) n ) ;
BN dec2bn(&Ni , ( const char∗) n inv ) ;
BN dec2bn(&ot , ( const char∗) a ) ;
BN dec2bn(&R, ( const char∗) r ) ;

BN mod mul ( ot , ot , R, N, ctx ) ;

BN mod mul ( st , one , R, N, ctx ) ;

for ( i = 0 ; i < s t r l e n ( b i t exp ) ; i ++){
s t = mon prod ( st , st , N, length , Ni ,R) ;
i f ( b i t exp [ i ] == ’ 1 ’ ){

s t = mon prod ( st , ot , N, length , Ni , R) ;
}

}

s t = mon prod ( st , one , N, length , Ni , R) ;

s t s = BN bn2dec ( s t ) ;
return Py BuildValue ( ” s ” , s t s ) ;

}

6.1.3 Encryption and decryption

Encryption and decryption are done just by loading keys from .pem file, then
passing them to square and multiply function

6.2 Attack implementation

6.2.1 Generating and sorting messages

For both types of attack we are starting with set of randomly generated
messages. We give them to oracle which tell us which subset message belongs
to. Python module timeit is used for time measurements. This chunk of code
assign times to messages:
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6.2. Attack implementation

import t i m e i t

message t imes = dict ( )
message range = 50000

for i in range (0 , message range ) :
tmp = random . rand int (0 , n )

t = t i m e i t . Timer ( ’ decrypt . decrypt ( i n t (m1) ) ’ ,
setup=’ import decrypt ; m1 = %i ’ % tmp)

r = t . t i m e i t (1 )

message t imes [ tmp ] = r

6.2.1.1 Multiply

In this version we are attacking multiply operation. We use oracle which
is very similar to RSA square and multiply function only with one difference.
When the final reduction is processed, function return not only result of ex-
ponentiation but also bit which tell us that the reduction have been done.

. . .
i f u > n :

return u − n , 1
return u , 0

Based on this bit we decide in which subset the message is. The subsets
are distinct. Experimentally, we can say that about one quarter of messages
belongs to subset with reduction computed.

6.2.1.2 Square

Square attack is similar but we have two oracles which are telling us about
reduction on squaring phase. Every time we give the oracle even exponent so
multiplication phase will never be the last operation. Each of these oracles
divide set of messages to two subsets which are distinct to each other. Each
message belongs to one of M1 or M2 and to one of M3 or M4

6.2.2 Deciding the bit

6.2.2.1 Multiply

We will compare mean times of the subsets of messages. IfM1 is significantly
greater then we set guessed bit to 1 and if they differ slightly we set the bit to
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6. Realisation

0. There is problem with telling what is significant difference because there
is lot of noise. The noise is caused by other reductions done by other bits of
secret key.

6.2.2.2 Square

We will compare differences between oracles. If oracle predicting multiply
has greater difference between subsets we set 1, otherwise we set 0

I tested two different implementation of square attack. The difference is
between oracles. One implementation has naive oracle which simply do whole
square and multiply algorithm for each message. The second approach is to
safe values of particular powers so the oracle does not need to compute whole
square and multiply algorithm in each iteration. It just need one square and
optional multiplication in each step.

On the other hand, the naive implementation gives better results but is
slightly slower.

6.2.3 Assembling secret exponent

After every guessed bit, it is added to variable d which is used by the
oracles. After concatenation the new guessed exponent is tested if it is correct
exponent. The the test is:

• Pick some message from set

• Decrypt that message

• Do exponentiation of encrypted message to guessed private exponent d

During attack on square we are one cycle ahead so we have no option how
to decide LSB so we just try to test both values of last bit.

For better fault toleration we could try guessing of last few bits by brute-
force. When the whole attack is finished unsuccessfuly, we can go back few
bits and try to all the possibilities of key suffix. It seems reasonable to do
this with maximally last 10 bits. There will be extra 1024 encryption and
decryption, but it is still more efficient then repeating whole attack.

6.3 Problems and experiments

After attack written in Python fails to guess private key, there were hopeful
solution to rewrite the crucial part of RSA to C. I have written Python C-
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6.3. Problems and experiments

extension module which handle exponatiation of message. Module is compiled
using python setup file:

from d i s t u t i l s . core import setup , Extension
setup (name=’ montgomery ’ , v e r s i on=’ 1 .0 ’ ,

ext modules =[ Extension ( ’ montgomery ’ ,
s ou r c e s =[ ’ . . / montgomery . c ’ ] ,
l i b r a r i e s =[ ’ crypto ’ , ’ s s l ’ ] ,
) ] )

After builded it is imported like any other Python modul. With this ap-
proach I get singificant speed-up. On the other hand, guessing of key got
much worse, it can guess maximally 10 bits of key. I was thinking, that it
is because the execution time of square and multiply in C is significaly lesser
then in Python so that any other operation in Python will have greater impact
on final time than single iteration of square and multiply. I have moved pre-
computation of r−1 and n′ outside of measured part of code. Unfortunately,
it has almost no effect.

Second thought was that reading key from disk is also taking too much
time. It could distort measured times by a big amount. But if this will be
removed from measured part, the attack will no longer be valid, beacause
we use private key which we are guessing as a parameter to time meassuring
function. Even thought that change does not help to solve the problem and
attack is still failling.
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Conclusion

In my environment it was impossible to make any attack sufficient. Attack
on multiply have a great problem setting coefficient when the average times
of two message groups differs. Which was expectable by nature of this form of
attack. Even with sufficient coefficient and 10 000 samples there was no more
than 50% success on guessing first unknown bit so it looks completly random

Attacking square was far more interesting. On 50 000 samples algorithm oc-
casionally fails up to guessing 3 bits, but there are more cases when algorithm
correctly guess more than 40 bits of key.

To improve performance I have rewriten core of the decrypting algorithm
from Python to C language. It did have better performance, but from lesser
execution time there are more space for noises to distort measurements.

I have probably identified two biggest noise generators which are precom-
putation of r−1 and n′ and reading private key from disk. But when I try to
meassure time without these operations it had almost no effect on successful-
ness of attack.

I have tried lot of minor changes in code, trying to isolate program in
docker, running extended Euclidean algorihm in C and lot of another changes
but nothing have made any mentionable result.

I am asking question, if it is even possible to make this attack work on my
home workstation. Because there is lot of noise, iteruption from system and
other events which can distort my measurements.

Because attacks do not work entirely there was no need of implementing
defenses in RSA implementation.
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Appendix A
Acronyms

RSA Rivest, Shamir, Adleman

MSB Most significant bit

LSB Least significant bit

CRT Chinese remainder theorem
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Appendix B
Contents of enclosed CD

readme.txt ....................... the file with CD contents description
exe ..................................... the directory with executables
keys.........................the directory with keys used during attack
src.......................................the directory of source codes

wbdcm ...................................... implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..........................................the thesis text directory
thesis.pdf...........................the thesis text in PDF format
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