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Abstract 
The task of recognizing one user across multiple devices became 

extremely important nowadays as everyone owns different devices to 
perform tasks and user's identity becomes fragmented which isn't good for 
advertising.  

The diploma's main goal is to develop an algorithm which could link 
computers and mobile devices that belong to the same person. We are 
provided with anonymous data that include user’s behavior on sites and 
mobile apps along with visited IP addresses. 

The thesis is focused on various machine learning techniques that could 
be applied to solve the problem. 
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Introduction 
Nowadays, with constant development of technology, the number of our 

devices for accessing the Internet is increasing rapidly. Every day we use 
mobile phones, tablets and laptops for googling and watching videos with 
cats. If all devices are not joined by a shared account, then our personality 
becomes fragmented. Services can’t offer the most appropriate advertising 
or relevant search results. Personalization is blocked by the inability to realize 
that several users on different devices are the same person. 

Returning integrity to the user is especially important in marketing. There 
is a special advertising direction describing how to target the same user 
across multiple devices which is called "cross-device targeting" or "cross-
device marketing". This direction is extremely popular. For example, Google 
added the ability to identify users across devices to Google Analytics in 2017
[1], there are also hundreds of large companies that generate business 
solutions in the area ( [2], [3], [4]). 

Why is it so important for marketing to tie devices together? The thing is 
that devices of different types receive different amounts of information. One 
of the reasons why mobile advertising is not in high demand among 
marketers is the lack of a large amount of data. In the "big" Internet, thanks 
to cookies we know almost everything about users - which sites they visited, 
what they were looking for, what they are interested in. On phones and 
tablets we usually know only device’s type and operator. 

Goal 

The main goal of this work is the construction of an algorithm that can 
find and link mobile devices and personal computers (cookies) belonging to 
one user. The algorithm will use the machine learning methods to achieve 
the maximum accuracy of predictions. Particular attention will be paid to the 
analysis of data and work with them, as well as the choice of model for 
training.  
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In the course of the work, the following tasks will be solved: how to work 
with large data effectively and how to reduce them; how to classify the 
problem and how the chosen approach changes preferred methods for 
solution. In particular, our algorithm of choice for the competition is a 
gradient boosting machine which produces a score by iteratively fitting small 
decision trees. The problem itself will be considered as a binary classification 
problem or as a ranking task. To improve the result obtained, various 
modifications of the learning process will be applied such as: bagging, 
selection of parameters using cross-validation, etc. 

The formulation of the problem together with the data was taken from 
the international scientific and practical contest Kaggle [5].The competition 
was organized by one of the industry leaders, Drawbridge [4], in 2015 and 
340 teams took part in it. 
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1 Problem formulation  
In this chapter we will strictly formulate the problem and how to evaluate 

the results. We also provide a brief description of the provided tables. 

The main task of the work is to build an algorithm for linking mobile 
devices and cookies based on anonymous information and public data, such 
as user-visited IP addresses, sites and mobile applications. The solution of 
the problem should be received in the following form: for each device it is 
necessary to get the list of cookies that belong to the same user as devices. 

The correctness of the provided list is evaluated based on the mean 
score calculated by the formula (for more details see the Definitions): 

where 

– true positive decisions,
false positive decisions, 
false negative decisions. 

Data includes the following tables: 

1. Device basic information table (dev_train_basic.csv and 
dev_test_basic.csv)  

Property name Description
Drawbridge Handle Drawbridge identifier, uniquely 

identify a person behind device 
and cookie. 
The owner is equal to -1 for the 
test set.

Device ID Unique device identifier
Device type Device type (categorical)
Device OS version Device OS version (categorical)
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Device Country Info Which country this device belongs 
to (categorical)

Anonymous_c0 Anonymous feature to describe 
device (Boolean)

Anonymous_c1 Anonymous feature to describe 
device (categorical)

Anonymous_c2 Anonymous feature to describe 
device (categorical)

Anonymous_5 Anonymous feature to describe 
device

Anonymous_6 Anonymous feature to describe 
device

Anonymous_7 Anonymous feature to describe 
device

Table 1.1: Device basic information table

2. Cookie basic information table (cookie_basic.csv) 

Property name Description
Drawbridge Handle Drawbridge identifier, uniquely 

identify a person behind device 
and cookie. 
The owner is equal to -1 for the test 
set.

Cookie ID Unique cookie identifier
Computer OS type Computer OS version (categorical)
Browser version Cookie browser version 

(categorical)
Cookie country info Which country this cookie belongs 

to (categorical)
Anonymous_c0 Anonymous feature to describe 

cookie (with the same meaning as 
feature Anonymous_c0 from
dev_train_basic)
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Anonymous_c1 Anonymous feature to describe 
cookie (with the same meaning as 
feature Anonymous_c1 from
dev_train_basic)

Anonymous_c2 Anonymous feature to describe 
cookie (with the same meaning as 
feature Anonymous_c2 from
dev_train_basic)

Anonymous_5 Anonymous feature to describe 
cookie (with the same meaning as 
feature Anonymous_5 from
dev_train_basic)

Anonymous_6 Anonymous feature to describe 
cookie (with the same meaning as 
feature Anonymous_6 from
dev_train_basic)

Anonymous_7 Anonymous feature to describe 
cookie (with the same meaning as 
feature Anonymous_7 from
dev_train_basic)

Table 1.2: Cookie basic information table

3. IP table (id_all_ip.csv) describes the joint behavior of device or cookie 
on IP address. 

Property name Description
Device/cookie ID Device or cookie identifier
Device or Cookie Boolean variable. If its equal to 0 

then the table row refers to the 
device, otherwise – to the cookie

IP IP address
Freq count How many times have we seen dev 

or cookie in column 1 appear on 
the IP in column 3
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Anonymous Count 1 Anonymous number that 
describes the behavior

Anonymous Count 2 Anonymous number that 
describes the behavior

Anonymous Count 3 Anonymous number that 
describes the behavior

Anonymous Count 4 Anonymous number that 
describes the behavior

Anonymous Count 5 Anonymous number that 
describes the behavior

Table 1.3: IP table

4. IP aggregation table (ipagg_all.csv) provides aggregated behavior of 
each IP. 

Property name Description
IP IP address
Is cell IP If IP is cellular IP or not. 1 for cellular 

and 0 for non-cellular.
Total Freq Total number of observations seen 

on this IP (This number is the 
aggregated observation count on 
all the devices and cookies seen 
from this IP)

Anonymous count c0 Anonymous count that describes 
the behavior of the IP

Anonymous count c1 Anonymous count that describes 
the behavior of the IP

Anonymous count c2 Anonymous count that describes 
the behavior of the IP

Table 1.4: IP aggregation table

5. Property observation table (id_all_property.csv) provides the 
information regarding website (for cookie) and mobile app (for 
device) that user has visited before. 
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Property name Description
Device/cookie ID Device or cookie identifier
Device or cookie 
indicator

Boolean variable. If its equal to 0 
then the table row refers to the 
device, otherwise – to the cookie

Property ID Website name for cookie, and 
mobile app name for the device

Property unique count How many times have we seen 
device or cookie on this property

Table 1.5: Property observation table

6. Property category table (property_category.csv) lists the categorical 
information of the website/mobile app. 

Property name Description
Property ID Website name for cookie, and 

mobile app name for the device
Property category Category of the website or the 

mobile app

Table 1.6: Property category table
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3 Background 
In this chapter, we will provide formal definitions of terms and methods 

that would be used further. Some important notes will be given about F-score 
and other classification measures. We will have a deep look into gradient 
boosting and how it can be applied to classification problem.

3.1 Definitions 
Classification problem.  

Let be a set of descriptions of objects, – a finite set of numbers 
(names, labels) of classes. There is an unknown target dependence – mapping 

whose values are known only at the objects of the final training 

set . The task is to construct an algorithm
which is able to classify a [6]n arbitrary object .

Often, instead of the previous one, a probabilistic statement of the 
classification problem is used:

Let the set of pairs be a probability space with an unknown 
probability measure . There is a finite training set of observations

generated according to the probability measure . It is 
required to construct an algorithm that can classify an arbitrary 
object .

If we speak of binary classification, then the number of classes is two.

Learning to rank problem.  

Let be the set of descriptions of objects, be a training 
set, be a regular order on the pairs .

It is required to construct a ranking function such that

There are 3 approaches to the solution of the learning to rank problem:
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1. Point-wise 
In this case, it is assumed that each query-document pair in the 
training data has a numerical or ordinal score. Then the learning-
to-rank problem can be approximated by a regression problem –
given a single query-document pair, predict its score. 

2. Pairwise 
In this case, the learning-to-rank problem is approximated by a 
classification problem – learning a binary classifier that can tell 
which document is better in a given pair of documents. The goal 
is to minimize the average number of inversions in ranking. 

3. List-wise 
It consists in constructing a model, the input of which is received 
immediately by all the documents corresponding to the query, 
and the output is obtained by their permutation. Adjustment of 
model parameters is carried out for direct maximization of one of 
the above ranking metrics. 

Decision trees
Decision Tree is a decision support tool used in statistics and data analysis 

for predictive models. The structure of the tree includes nodes and branches. 
Each inner node ask some question based on the attributes of the model, 
each leaf keeps value of the objective function. To get a solution, you need 
to go down the tree to the leaf and take the value that it keeps. 

 The goal is to create a tree that predicts the value of the target variable 
based on several variables at the input. 

To solve classification problems, the model is adapted as follows: class 
label is written in the leaf of the tree and each element that gets in the leaf 
automatically refers to this class. 
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Figure 3.1: Example of decision tree 

The decision tree is built on the basis of the training set so as to minimize 
the error in each leaf. Unfortunately, the creation of the specified tree is an 
NP-complete problem [7], therefore when building the decision tree, greedy 
algorithms are used. They do not guarantee that the constructed tree will be 
optimal. 

Decision trees are used as an inner part of more complex algorithms: 
bagging, gradient boosting, Random forest, etc [8]. 

Bagging 

Bagging (Bootstrap aggregation) is a classification technique that uses 
algorithm compositions, each of which is learned independently. The result 
of the classification is determined by voting or averaging. It is expected that 
the result of the forecast of the aggregated classifier will be much more 
accurate than the result of the forecast of a single model on the same data 
set. 
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Figure 3.2: Basic principle of bagging 

Statistical measures of a binary classification 
Suppose that we have two classes and an algorithm that predicts the 

belonging of each object to one of the classes. The following table calls 
confusion matrix:  

True Positive (TP) False Positive (FP)
False Negative (FN) True Negative (TN)

Table 3.1: Confusion matrix

Here is the algorithm response on the object, and is the true class 
label on the same object. Thus, there are two types of classification errors: 
false-negative and false-positive.

Based on the confusion matrix, the simplest metrics are determined to 
assess the quality of the classification: 

1. Precision shows the proportion of objects that are called 
positive by the classifier and are in fact positive. It is calculated 
by the formula: 
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2. Recall determines which fraction of objects of a positive class 
from all objects of a positive class found an algorithm. The 
formula for the calculation is as follows: 

The difference between accuracy and completeness is clearly illustrated 
in the figure below.

Figure 3.3: Visual representation of the basic metrics
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It is clear that the higher the precision and recall, the better. But in real 
life, maximum precision and recall are not achievable at the same time and 
we have to look for a certain balance. F-score can give us this balance: 

defines the weight of precision in the metric.

F-score is the harmonic mean with β = 1 (precision and recall are equally 
important), but if the parameter takes values in the range (0; 1), precision is 
given preference [9]. 

3.2 Gradient boosting [6] 
Consider the problem of recognizing objects from a multidimensional 

space with a space of labels . Suppose we are given a training sample
where . Also consider that we know the true values of the labels 

of each object where . It is necessary to build a recognizing 
operator that can predict the labels for each new object .

Suppose we are given a family of basic algorithms , each element
of which is defined by some parameter vector .

We will search for the final classification algorithm in the form of a 
composition

Since the selection of the optimal set of parameters is a 
laborious task, we will try to construct such a composition by means of a 
greedy buildup, each time adding to the sum a term that is the most optimal 
algorithm possible. We assume that we have already constructed a classifier

of length . Thus, the problem reduces to finding the pair of the 
most optimal parameters for the classifier of length :
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The criterion of optimality is a loss function
showing how much the predicted response differs from the correct 
answer . And then the error functional is minimized

It is remarkable that the error functional is a real function 
depending on the points in -dimensional space, and we need 
to solve the problem of minimizing this functional. We do this by 
implementing one step of the gradient descent method. As a point for which 
we will seek the optimal increment, consider . Let us find the gradient of 
the error functional:

Thus, by the method of gradient descent, it is most advantageous to add 
a new term to the classifier as follows: 

where  is chosen by linear search in real numbers R:

However, is only a vector of optimal values for each object , and not 
a basic algorithm from the family defined by . Therefore, we need 
to find most similar to . We do this, again minimizing the 
error functional, based on the principle of explicitly maximizing indentation:

which simply corresponds to the basic learning algorithm. Next, find the 
coefficient , using the linear search:
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Gradient boosting is used to solve a wide range of problems [10]. Let's 
consider its features in the appendix to classification problems. 

3.3 Gradient boosting in an application to 
classification problems 

The idea of boosting is applicable to the classification problem. In the 
case of a binary classification, this means that . Then it is often 
assumed that each algorithm returns the real "degree" of the object's 
belonging to a certain class, and the resulting response is obtained by 
applying the threshold rule to the composition. 

In the case of classification, the loss function from one argument is usually 
used: 

in fact, indent is replaced by the product of the present class and the 
predicted value. 

In this case, there is a slightly different view of the gradient boosting 
approach than the one described above. Under the gradient of the error 
functional, we can mean a vector of weights of training objects, multiplied by 
the correct values of classes: 

where Then the learning algorithm in accordance with the 

principle of maximization of indentations acquires the following form:
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Thus can be viewed from the point of view of the weights that are 
attached to objects and are taken into account when learning each basic 
algorithm. 

The most commonly used loss functions are [11]: 

1. Logistic loss

This is the most common and often used loss function in binary 
classification.  

2. Adaboost loss 

Used in the classical implementation of the gradient descent algorithm 
Adaboost. Similar to Logistic loss, but it has a tougher exponential penalty 
for classification errors. 
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5 Design and Implementation 
In this chapter we will define two main approaches to the problem. 

Implementation details will also be described here. 

5.1 Methodology and Approach 
Studying articles devoted to the competition, you can see that the task of 

cross-device connection is assigned by the authors to one of two types of 
tasks: binary classification (for example, in [12], [13], [14], [15], [16]) or 
learning to rank problem [17]. Let's consider each of the approaches. 

Cross-device connection as a binary classification problem. 

Let there be a device and a list of cookies , among which you 
want to select those whose owners are the same as the owner of the device. 
Then all pairs with information about devices and cookie make up the 
set (the set of descriptions of objects), and the set of labels , 
where 1 means that the pair has the same user, 0 - that users are different.

For each cookie from the list of candidates, the probability is predicted 
that the owner is the same. After that on the basis of the probabilities 
obtained, it is decided which cookies fall into the final list. The easiest way is 
to select the cookie that showed the highest probability, but algorithms can 
act more sophisticated, for example, look at the distribution of these 
probabilities, etc. 

Cross-device connection as learning-to-rank problem

We have the same formulation as in the previous approach, but now we 
are not interested in the prediction of the connection of individual pairs 

, but the rearrangement of all candidates so that the most probable 
ones turn out to be less than others in rank. In a sense, this is a generalization 
of the previous approach: again we estimate the probability of each 
candidate, but now we take into account the presence of competitors.
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To solve the ranking problem any of the approaches described above can 
be applied: in this paper we used a pairwise approach. Since pairwise 
approach is approximated by a binary classification, it does not require 
strong changes in the data structure and code as compared to the first 
formulation. 

Conclusion on the analysis 

Based on the results of the analysis, it was decided to implement both 
approaches and compare the effectiveness of models, training time and the 
complexity of implementation. 

Gradient boosting was chosen as the main learning algorithm for both 
approaches due to its power in solving such problems. 

5.2 Architecture of the system 
The system consists of 4 logical parts: 

1. DataBuilder. This module processes initial tables. It has a set of 
methods for loading information, building dataset and saving it 
after all. 

2. ModelBuilder works with dataset constructed by DataBuilder. The 
module trains algorithms and do postprocessing.  

3. Analytics module calculates coverage, sizes, creates plots etc. 

4. Variables is a configuration file 

5.3 Tools 
Here is a list of the primary tools and frameworks which we used for 

solving cross-device connection problem. All used tools are free and open-
source. 

Used programming languages: Python 3.6.0 for all processing, training 
and data analysis procedures. 
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Python stack: scikit-learn, numpy libraries for data manipulation and 
model building; xgboost framework [18] for boosted trees algorithm; pickle
– for storing and loading intermediate result. We also used re, csv and other 
Python packages.

Visualization: Matplotlib - Python libraries for dataset visualization. 

Computation: Windows 10, Processor 2,4GHz Intel Core i7, RAM 16 GB. 

IDE: PyCharm IDE 
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6 Experimental part 
In this chapter, we will present the process of building the whole 

algorithm from the very beginning. The solution of the problem consisted of 
the following consecutive stages: 

1. Preprocessing 
This stage included the merging of tables, downsampling and 
generation of new properties based on existing ones. The obtained 
set was divided into two unequal parts: 85% of all the rows were 
assigned to the training set, 15% to the validation set. The training 
involved only the first set of records, the second one was used to 
compare the overall efficiency of the algorithms. 

2. Training of models and selection of parameters 
For each of the selected models, the parameters were iteratively 
selected, so as to minimize the error in the training sample. At the 
same step, the methods of bagging and composition of models were 
used.  

3. Postprocessing 
During the stage we constructed an algorithm that received the 
desired output. Algorithm was based on the predictions of the models 
trained earlier. Joint model was built on this stage, too. 

6.1 Preprocessing 
One of the distinguishing features of the problem, singling it out against 

the background of other similar ones, was the absence of expected training 
set with rows and labels. All information was divided into several files and it 
was required to determine an algorithm that could join the tables and 
construct the training set.

Tables were joined according to the following scheme: 
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Figure 6.1: Schema join table

Joining files seems like a simple task until we look at the size of the main 
tables that store unique devices, cookies and IP addresses: 

Name of the table Amount of unique objects
device_train_basic.csv (devices) 142770
cookie_basic.csv (cookies) 2175520
ipagg_all.csv (IP addresses) 10097555

Table 6.1: Information on the main tables 

As a result, we get approximately  device-cookie pairs in the 
training set, which cannot be processed in an acceptable time. 
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Therefore, instead of looking over all possible pairs of objects, it was 
decided to find a list of cookie candidates for each device in advance and use 
only the selected pairs in training. 

The filtering of candidates (downsampling) was performed under the 
following conditions: 

I. The device and the cookie must have a common IP address 
that was accessed from both the mobile device and the 
computer. 

II. As noted in [17] and [13], dynamic (cellular) IP addresses form 
a large number of pairs of cookies, most of which are negative 
examples, while static (non-cellular) addresses integrate most 
of the correct pairs. Therefore, it was decided to exclude links 
obtained through dynamic IP addresses from the training set. 

III. All cookies with an undetermined owner (Drawbridge Handle 
equals to -1) were also excluded from candidates. The solution 
is dictated by the fact that such cookies can only be used as 
negative examples. 

IV. The next filter based on the generalized information about the 
IP address. As suggested in [12], we are interested in IP 
addresses that are rarely used by users. Every cookie-device 
pair that both visited such an address also has high probability 
of having the same user.  

Considering this remark, we build an empirical rule that chose 
rarely visited addresses as candidates in the first place. 

The results of each filter can be seen in Table 6.2 (the "Coverage 
percentage" column indicates the percentage of devices for which the 
candidate list contains at least one correct cookie). Filters were applied one 
after another.

Type of filtration Amount of pairs
(order of magnitude)

Coverage percentage 
(%)
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Without filter 100
I 99,92
I+II 98,00
I+II+III 98.00
I+II+III+IV 97.09

Table 6.2: Results of filtration

As we can see, reducing the number of pairs by all filters leads to a 
decrease in coverage, for example, in the latter case, for 3% of all devices the 
desired cookie cannot be found in principle, but it was decided that this is a 
small fee for reducing the training sample in  times. 

The next step was to build a training set composed from the data of each 
pair of cookies. Based on the results of the experiments, the following fields 
were included in the final record of the set: 

 all fields that aren’t identifiers from the table device_train_basic.csv 
with basic information about devices (9 fields) 

 all fields that aren’t identifiers from the table cookie_basic.csv with 
basic information about cookies (9 fields) 

 56 new properties that summarize the behavior of the cookie-device 
pair on joint IP addresses (more details on new properties are 
described below) 

A total of 74 properties were obtained. 

The training set was constructed in such a way that if a cookie with a 
known owner (Drawbridge Handle <> -1) visited any IP address, then all 
other cookies of this owner were considered visiting this address, even if such 
data was not originally in the table. The ratio of positive and negative 
examples in the final set was approximately 1 : 3. 



27 

In order to characterize the new fields, we need to introduce some 
notation. 

Denote by the line of the table ipagg_all with the values of 
the fields (total_freq, c0, c1, c2). Similarly, is the row of the 
id_all_ip table with all fields except the id and object type. The vector 

is obtained by joining two tables by the IP address.

Denote the set of all sites associated with the object (device or 
cookie), - the set of IP addresses of the object.

According to the algorithm described earlier, for each device d there was 
a candidate list . Then for each pair we defined: 

 – a string describing the aggregate behavior of 

a pair on a common IP address

 – a set of all devices belonging to the same user as 

(excluding )

 a set of all cookies belonging to the same user as 

(excluding )

The table below briefly summarizes all the generated properties (the sum 
symbol means vector summation).

Property number Property value
18 
19
20
21
22
23
24
25
26
27
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28-47
48-67

68-74

Table 6.3: Generated properties

6.2 Models training and selection of parameters 
Since we compared two approaches to the solution of the problem, we 

built two models. The actions described in this section and further were 
carried out independently on both ones. The main difference between the 
two approaches from the point of view of implementation was that for the 
ranking task the training and test set should have been grouped by the 
device id. In addition, the "objective" parameter for the binary classification 
problem was "binary: logistic", and for ranking - "rank: pairwise". 

As described earlier, all the labeled data was divided into 2 halves: 85% 
of the devices went to the training set, the remaining 15% went to the test 
set and did not participate in the training. 

In order to build the algorithm of gradient boosting on decision trees, we 
had to configure the following training parameters [19]: 

 eta 

 gamma 

 max_depth 

 subsample 

 min_child_weight 

 eval_metric 

All of them were chosen so as to minimize the error on the training set. 

To improve efficiency and generalize the properties, bagging was applied 
to the best model in the previous step. The cumulative probability was 
considered as the arithmetic mean of the predictions of all independent 
models. As in the case of learning parameters, their number was chosen so 
as to minimize the resulting error. 
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6.3 Postprocessing 
Postprocessing was necessary for this task, because models themselves 

didn’t get the output It was required to construct an algorithm by which the 
list of probabilities of all candidates could turn into the required list of 
cookies. 

The simplest solution of all would be to take the cookie with the greatest 
probability and give it out as a response. However, this decision led to not 
the best results, and that's why. 

The metric for the competition was named F0.5 score, which, as is known, 
gives preference to accuracy, i.e. the proportion of objects that are called 
positive by the classifier and in this case are actually positive. That means that 
the insufficient number of cookies selected is penalized more than an 
inadequate number of incorrect choices. 

Given this feature, an algorithm was constructed that could select cookies 
based on their probability values. Here are the steps of the algorithm: 

1. Sort all candidates by the probability value 

2. The best candidate is added to the resulting list

3. For each other cookie , if  

then it is added to the resulting list, too. 

4. To each cookie from the list all cookies of the same user are added 

The parameter was chosen to minimize the error on the 
training set. It’s important to note that we didn’t have to train the model 
every time to find the optimal value of parameter – it was once trained and 
saved. After that we could use it for every experiment we wanted.
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Moreover the algorithm has become more complicated due to the 
imposition of conditions. If number of already added in the final list cookies 
was small, become smaller, too, if number was large, then 

increased. This strategy allowed to slightly improve the final result.

In addition to creating the algorithm, at this stage we combine two 
ensembles of models into one. At the training stage, as it was done for 
bagging, it was impossible to do this because of different training samples. 
The combination was made as follows: composition of models for each 
device independently predicted its list of cookies, and the results were united. 
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7 Results 
In this chapter we will perform key results that we got on every step and 

discuss them.  

7.1 Preprocessing results 
Filtering candidates according to the rules described in the relevant 

chapter proved to be quite effective (see Table 7.1) and allowed to 
significantly reduce the set size from non-trainable  pairs to 740 
thousands, which can be trained for an acceptable time. Unfortunately, along 
with downsampling, the coverage percentage (maximum accuracy that can 
be obtained on the set) also decreased, but not so much - only 3%. 

Type of filtration Number of pairs Coverage percentage 
(%)

Without filtration 100
I 99,92
I+II 98,00
I+II+III 98.00
I+II+III+IV 97.09

Table 7.1: General results of filtration

It is noteworthy that the II filter excluded from the set all dynamic IP 
addresses that made up the majority of the ipagg_all table (see Table 1.4), 
which stores about 10 million addresses. Therefore we were provided by 
much more data than necessary for training.

Pairs obtained during preprocessing were divided into two subsets (see 
Table 7.2). 

Name of set Size
training set 634764
validation set 114046

Table 7.2: Division into subsets
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7.2 Training results 
Let’s compare the results obtained for each of the approaches. 

Binary classification 
problem

Learning-to-rank 
problem

Training parameters eta: 0.1
gamma: 5
max_depth: 10
min_child_weight: 4
eval_metric: error
objective: binary:logistic

eta: 0.2
gamma: 5
max_depth: 10
min_child_weight: 4
eval_metric: error
objective:
rank:pairwise

Number of models 
for bagging

6 6

Number of rounds of 
training

100 200

F0.5 score 0.86538 0.86588
F0.5 score with 
bagging

0.86546 0.86775

Table 7.3: Key results of the training stage 

As you can see from Table 7.3, ranking required more rounds for training 
(i.e. time and resources), but it proved to be better than the first approach. In 
addition, bagging for ranking seemed to be more effective: its accuracy 
increased more than for the binary classification. 

It is interesting to observe which of the parameters ultimately proved to 
be the most important for training [20]. The diagrams below show 10 and 20 
most important properties according to the version of each model. 
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Figure 7.1: 10 most important properties according to binary classification

Figure 7.2: 10 most important properties according to ranking algorithm



34 

Figure 7.3: 20 most important properties according to binary classification

Figure 7.4: 20 most important properties according to ranking algorithm
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Comparing the two models you can see that among the first ten 
important properties only 50% of them coincide, for the first twenty this value 
increases to 75%. 

On average, both models recognize equally important the following 
properties:  

 f23 – number of cookie’s IP addresses 

 f15 – cookie property Anonymous_5  

 f36 –

 f22 – number of device’s IP addresses 

 f34 –

The binary classifier also actively uses: 

 f6 – device property Anonymous_5 

 f25 – number of other cookies of the same owner 

 f56 – property f36, averaged over all IPs 

 f54 – property f34, averaged over all IPs 

 f24 – the number of mobile apps visited by the device 

The ranking algorithm considers them necessary: 

 f13 – cookie property Anonymous_с1

 f16 – cookie property Anonymous_6 

 f38 –

 f14 – cookie property Anonymous_с2

 f37 –
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As we see, the chosen properties largely depend on the approach that we 
use. The binary classification highlights general parameters of the cookie-
device pair: among the unique properties there are both device and cookie 
fields. Ranking makes an explicit emphasis on the cookie: all its unique 
properties are somehow related to the behavior of the cookie, there is no 
one field describing the device. Moreover, f13, set by the ranking algorithm 
as the third most important feature, did not even hit the top twenty of the 
binary classification! 

7.3 Postprocessing results 
The following main results were obtained for postprocessing. 

Binary classification 
problem

Learning-to-rank 
problem

F0.5 score before
postprocessing

0.86546 0.86775

Simple algorithm

0.96 0.84
F0.5 score 0.86736 0.86871

Advanced algorithm

Parameters
F0.5 score 0.86834 0.86941

Table 7.4: Key results of postprocessing

The ranking algorithm showed better results than the binary classification. 
As we see, the threshold in the ranking is lower - this means that the 
algorithm has a broader probability spread than the first approach, i.e. the 
most likely candidate is more distant from all the others. In general, for both 
algorithms postprocessing increased the initial estimate in approximately 
equal parts. 

The combined model did not show any particular results: the complex 
selection algorithm gave F0.5 a measure of 0.8692, which is somewhere in 
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between the results of both models. It was decided not to include it in the 
final table. 

7.4 Summary 
Table 7.5 stores the overall results of the work. Here is: 

 I – gradient boosting model 

 II – bagging 

 III – simple algorithm for selecting cookies 

 IV – advanced algorithm for selecting cookies 

Binary classification 
problem

Learning-to-rank 
problem

I 0.86538 0.86588
I+II 0.86546 0.86775
I+II+III 0.86736 0.86871
I+II+III+IV 0.86834 0.86941

Table 7.5: Summary results

The best result was shown by the ranking algorithm, to which was added 
bagging and advanced selection of cookies. The F0.5 score for this matter is 
equal to 0.86941 and it lies between the results of 4 and 5 places in the public 
leaderboard on Kaggle. 

The binary classification in comparison with the ranking algorithm 
showed itself somewhat worse, but it required less resources and time for 
training. 

In general, the difference in the results is not so great, but the approach 
significantly affects the optimal parameters and selection of the best 
properties: the ranking is sharpened to search for differences in cookies, 
therefore, focuses on the properties of the cookie and significantly 
differentiates the candidate list in probability. The binary classification pays 
more attention to the pair as a whole, looks not only at the parameters of the 
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cookie, but also on the characteristics of the device. Differentiation for 
cookies is weak. To strengthen each model, you need to add more properties 
that it considers important: for binary classification - more information about 
joint behavior on IP addresses and sites/mobile applications, for ranking 
algorithm – more properties that distinguish cookies. This was demonstrated 
in the works of winners: for example, the team that took first place manually 
generated about 700 properties [17]. 

The cardinal difference of our work from all that participated in the 
competition in the size of training set: on average, for the leaders of the rating 
the number of pairs ranged from 4 [12] to 14 million [17], we were able to 
reduce the dimension to 700,000, which greatly accelerated the training time 
and simplified the work with data. 

Based on the results of the work, it can be confidently asserted that both 
approaches to the problem (as to binary classification and as to learning-to-
rank problem) are justified: the algorithms showed good results of the same 
order. But it should be noted that for effective implementation of each of the 
approaches it is necessary to build their training set so as to take into account 
their features.
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Conclusion 
In the paper we solved the problem of cross-device connection between 

computers and mobile devices. We had to find those which belong to the 
same user based on the behavior of objects and the IP addresses they used. 
To solve the problem various machine learning techniques and algorithms 
were applied. 

We considered two basic approaches to the solution: as to the task of 
binary classification or ranking. For each interpretation a rigorous 
formulation was defined and the methods of solution chosen. Gradient 
boosting on decision trees became the main learning algorithm for each 
approach. We used Python 3.6.0 for all processing, training and data analysis 
procedures. We found XGBoost framework extremely efficient in solving the 
problem. 

Extensive preliminary work with the data was carried out. This work 
included creating a training set and generating properties based on the data 
presented in the tables. We had to add a number of filters related to the 
properties of IP addresses and cookies in order to reduce initial size of 
candidates’ set. In the course of the work, it was shown that a large amount 
of data is not required for a successful solution of the problem. A detailed 
description of the objects and their behavior on static IP addresses is enough 
for 97% coverage. Set that was built according to this rules took up only a 
little space, which became an important indicator for training. 

Selection model parameters and postprocessing stages revealed that 
although the two approaches showed similar results, they reach those across 
fundamentally different means: ranking model focuses more on cookies than 
the device, the binary classification seems to be more balanced. At the same 
time, both models identify the number of IP addresses of cookies and devices 
as one of the most important parameters. The first approach required less 
time for training than the second. Adding bagging and postprocessing 
improved the results of both models. 
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Ranking algorithm showed itself better than binary classification, it has a 
final F0.5 score on the test set equal to 0.86941. Behind it, with a small margin, 
followed a binary classification with a score of 0.86834. The obtained values 
lie between the results of 4 and 5 places in the public leaderboard on Kaggle. 

Further steps to improve the algorithm can be an extension of the list of 
generated properties, which must be selected according to the features of 
the approach (binary classification or ranking). You can also try to combine 
the models of the two approaches at earlier stages (learning, not 
postprocessing). 

Based on the results of the work, it can be said with certainty that cross-
device marketing is closer than ever: modern algorithms allow to link devices 
and computers belonging to one person with high accuracy and do not need 
to collect large amounts of information. The choice of the approach was not 
as critical as it might seem - to get good results it is enough to clearly 
represent the essence of the approach and accurately generate the training 
sample according to its essence. 
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Contents of enclosed CD

src.......................................................................the directory of source codes
text................................................................................the thesis text directory 
 thesis.pdf............................................the thesis text in PDF format 
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Appendix 
Below you can see the main code files: 

1. DataBuilder 

from Variables import * 
from CookieLibrary import * 
from Analytics import * 
from TrainLibrary import calculateF05 

validationPercent = 0.15 

def createDatasets(dictHandle, dictDevice, dictCookie, devicesTrain, 
cookies, labels, groups, whosDevice, time1): 

    print('STEP: Loading Properties File') 
    devProperties = initPropDict(propFile, dictDevice, dictCookie) 
    (time1) = measureTime(time1) 

    print('STEP: Loading IP Files') 
    XIPS = loadIPAGG(ipaggFile) 
    (time1) = measureTime(time1) 

    print('STEP: Loading IPs') 
    (IPDev, IPCoo, deviceIPs, cookieIPs) = loadIPS(ipFile, 
dictDevice, dictCookie, XIPS, groups) 
    (time1) = measureTime(time1) 

    print('STEP: Initial selection of candidates') 
    deviceSize = len(dictDevice) 
    validationSize = np.int(deviceSize * validationPercent) 
    print("Validation size: ", validationSize) 

    (candidatesTrain, totalSizeTrain) = 
selectCandidates(devicesTrain[0:-validationSize, :], cookies, IPCoo, 
IPDev, deviceIPs, dictHandle) 
    (candidatesTest, totalSizeTest) = 
selectCandidates(devicesTrain[-validationSize:-1, :], cookies, 
IPCoo, IPDev, deviceIPs, dictHandle) 

    (time1) = measureTime(time1) 
    # all available devices are divided int 2 parts: 
    # 85% - training set 
    # 15% - validation set 
    # training set divided once more to train anf test set 
    print('STEP: Creating training dataset') 
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    (xTrain, originalIndexTrain) = createDataSet(candidatesTrain, 
devicesTrain, cookies, deviceIPs, cookieIPs, groups, whosDevice, 
devProperties) 
    time1 = measureTime(time1) 

    print('STEP: Creating test dataset') 
    (xTest, originalIndexTest) = createDataSet(candidatesTest, 
devicesTrain, cookies, deviceIPs, cookieIPs, groups, whosDevice, 
devProperties) 

    print("Train set size:", xTrain.shape[0]) 
    print("Test set size:", xTest.shape[0]) 
    time1 = measureTime(time1) 

    print('STEP: Creating labels') 
    yTrain = createTrainingLabels(candidatesTrain, labels) 
    time1 = measureTime(time1) 

    print('STEP: Saving training and test data') 
    saveDatasets(xTrain, yTrain, xTest, originalIndexTrain, 
originalIndexTest, groups, labels, genDataPath) 
    time1 = measureTime(time1) 

    return xTrain, yTrain, xTest, originalIndexTrain, 
originalIndexTest, time1 

def calcSizeAndCoverage(dictHandle, dictDevice, dictCookie, 
devicesTrain, cookies, labels, groups, whosDevice, time1): 

    print('STEP: Loading IP Files') 
    XIPS = loadIPAGG(ipaggFile) 
    (time1) = measureTime(time1) 

    print('STEP: Loading IPs') 
    (IPDev, IPCoo, deviceIPs, cookieIPs) = loadIPS(ipFile, 
dictDevice, dictCookie, XIPS, groups) 
    (time1) = measureTime(time1) 

    print('STEP: Selecting candidates') 
    (candidates, totalSize) = selectCandidates(devicesTrain, 
cookies, IPCoo, IPDev, deviceIPs, dictHandle) 
    (time1) = measureTime(time1) 

    print('STEP: Calculating coverage') 
    coverage = calcCoverage(labels, candidates) 
    (time1) = measureTime(time1) 

    print('STEP: Calculating max F05') 
    trueLabels = findTrueLabels(labels, candidates) 
    F05 = calculateF05(trueLabels, labels) 
    (time1) = measureTime(time1) 
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    print("Total size: ", totalSize) 
    print("Coverage: ", coverage) 
    print("Max F05: ", F05) 

    return totalSize, coverage 

def findTrueLabels(labels, candidates): 
    trueLabels = dict() 
    for deviceId, cookies in labels.items(): 
        localCandidates = candidates.get(deviceId, set()) 
        trueLabels[deviceId] = set() 
        for cookie in cookies: 
            if cookie in localCandidates: 
                trueLabels[deviceId].add(cookie) 

    return trueLabels 

2. CookieLibrary 

import csv 
import numpy as np 
import re 
from collections import defaultdict 
import time 
import pickle 

def initDictionaries(trainFile, cookieFile): 
    deviceList = list() 
    cookieList = list() 
    handleList = list() 
    devTypeList = list() 
    devOsList = list() 
    computerOsList = list() 
    computerVList = list() 
    countryList = list() 
    annC1List = list() 
    annC2List = list() 

    with open(trainFile, 'rt') as csvfile: 
        spamreader = csv.reader(csvfile, delimiter=',') 
        spamreader.__next__() 
        for row in spamreader: 
            handleList.append(row[0]) 
            deviceList.append(row[1]) 
            devTypeList.append(row[2]) 
            devOsList.append(row[3]) 
            countryList.append(row[4]) 
            annC1List.append(row[6]) 
            annC2List.append(row[7]) 
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    deviceList = list(set(deviceList)) 
    handleList = list(set(handleList)) 
    devTypeList = list(set(devTypeList)) 
    devOsList = list(set(devOsList)) 
    countryList = list(set(countryList)) 
    annC1List = list(set(annC1List)) 
    annC2List = list(set(annC2List)) 

    devNum = len(deviceList) 
    print("Train device number: %s" % devNum) 

    with open(cookieFile, 'rt') as csvfile: 
        spamreader = csv.reader(csvfile, delimiter=',') 
        spamreader.__next__() 
        for row in spamreader: 
            handleList.append(row[0]) 
            cookieList.append(row[1]) 
            computerOsList.append(row[2]) 
            computerVList.append(row[3]) 
            countryList.append(row[4]) 
            annC1List.append(row[6]) 
            annC2List.append(row[7]) 

    cookieList = list(set(cookieList)) 
    handleList = list(set(handleList)) 
    computerOsList = list(set(computerOsList)) 
    computerVList = list(set(computerVList)) 
    countryList = list(set(countryList)) 
    annC1List = list(set(annC1List)) 
    annC2List = list(set(annC2List)) 

    print("Cookie number: %s" % len(cookieList)) 

    dictHandle = list2Dict(handleList) 
    dictDevice = list2Dict(deviceList) 
    dictCookie = list2Dict(cookieList) 
    dictDevType = list2Dict(devTypeList) 
    dictDevOs = list2Dict(devOsList) 
    dictComputerOs = list2Dict(computerOsList) 
    dictComputerV = list2Dict(computerVList) 
    dictCountry = list2Dict(countryList) 
    dictAnnC1 = list2Dict(annC1List) 
    dictAnnC2 = list2Dict(annC2List) 

    return (dictDevice, dictCookie, dictHandle, dictDevType, 
dictDevOs, dictComputerOs, dictComputerV, dictCountry, 
            dictAnnC1, dictAnnC2) 

def list2Dict(list): 
    newDict = dict() 
    for i in range(len(list)): 
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        newDict[list[i]] = i 
    return newDict 

def loadDevices(trainFile, dictHandle, dictDevice, dictDevType, 
dictDevOs, dictCountry, dictAnnC1, dictAnnC2): 
    with open(trainFile, 'rt') as csvfile: 
        spamreader = csv.reader(csvfile, delimiter=',') 
        spamreader.__next__() 
        rowNumber = sum(1 for row in spamreader) 

    XDevices = np.zeros((rowNumber, 11)) 

    rowNumber = 0 
    with open(trainFile, 'rt') as csvfile: 
        spamreader = csv.reader(csvfile, delimiter=',') 
        spamreader.__next__() 
        for row in spamreader: 
            XDevices[rowNumber, 0] = dictHandle[row[0]] 
            XDevices[rowNumber, 1] = dictDevice[row[1]] 
            XDevices[rowNumber, 2] = dictDevType[row[2]] 
            XDevices[rowNumber, 3] = dictDevOs[row[3]] 
            XDevices[rowNumber, 4] = dictCountry[row[4]] 
            XDevices[rowNumber, 5] = np.float_(row[5]) 
            XDevices[rowNumber, 6] = dictAnnC1[row[6]] 
            XDevices[rowNumber, 7] = dictAnnC2[row[7]] 
            XDevices[rowNumber, 8] = np.float_(row[8]) 
            XDevices[rowNumber, 9] = np.float_(row[9]) 
            XDevices[rowNumber, 10] = np.float_(row[10]) 
            rowNumber += 1 

    return XDevices 

def loadCookies(cookieFile, dictHandle, dictCookie, dictComputerOs, 
dictComputerV, dictCountry, dictAnnC1, dictAnnC2): 
    maxindex = max(dictCookie.values()) 
    XCookies = np.zeros((maxindex + 1, 11)) 

    with open(cookieFile, 'rt') as csvfile: 
        spamreader = csv.reader(csvfile, delimiter=',') 
        spamreader.__next__() 
        for row in spamreader: 
            cookieId = np.int(dictCookie[row[1]]) 
            XCookies[cookieId, 0] = dictHandle[row[0]] 
            XCookies[cookieId, 1] = dictCookie[row[1]] 
            XCookies[cookieId, 2] = dictComputerOs[row[2]] 
            XCookies[cookieId, 3] = dictComputerV[row[3]] 
            XCookies[cookieId, 4] = dictCountry[row[4]] 
            XCookies[cookieId, 5] = np.float_(row[5]) 
            XCookies[cookieId, 6] = dictAnnC1[row[6]] 
            XCookies[cookieId, 7] = dictAnnC2[row[7]] 
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            XCookies[cookieId, 8] = np.float_(row[8]) 
            XCookies[cookieId, 9] = np.float_(row[9]) 
            XCookies[cookieId, 10] = np.float_(row[10]) 

    return XCookies 

def initPropDict(fileProps, dictDevice, dictCookie): 
    devProps = dict() 

    with open(fileProps) as fp: 
        fp.readline() 

        for line in fp: 
            matchObj = re.match(r'([a-zA-Z0-9_]*),([0-1]),{([(a-zA-
Z0-9.(),\-_]*)}', line, flags=0) 

            if matchObj.group(2) == '0': 
                props = re.findall(r'\((.*?)\)', matchObj.group(3)) 
                valProps = dict() 
                for prop in props: 
                    propV = prop.split(',') 
                    valProps[propV[0]] = np.float_(propV[1]) 
                deviceId = dictDevice.get(matchObj.group(1), -1) 
                if deviceId > -1: 
                    devProps[deviceId] = valProps 

    return devProps 

def creatingLabels(devices, cookies, dictHandle): 

    handleData = dict() 
    unknown = dictHandle['-1'] 
    handles = np.unique(cookies[:, 0]) 
    for i in range(len(handles)): 
        if handles[i] != unknown: 
            handleData[handles[i]] = dict() 
            handleData[handles[i]]['Devices'] = set() 
            handleData[handles[i]]['Cookies'] = set() 

    (nDevices, nDim) = devices.shape 

    for i in range(nDevices): 
        handleData[devices[i, 0]]['Devices'].add(devices[i, 1]) 

    (nCookies, nDim) = cookies.shape 

    for i in range(nCookies): 
        if cookies[i, 0] != unknown: 
            handle = handleData.get(cookies[i, 0]) 
            handle['Cookies'].add(cookies[i, 1]) 
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    labels = dict() 
    groups = dict() 
    whosDevice = dict() 

    for id, handle in handleData.items(): 
        for dev in handle['Devices']: 
            labels[dev] = handle['Cookies'] 
        for cookie in handle['Cookies']: 
            groups[cookie] = handle['Cookies'] 
            whosDevice[cookie] = handle['Devices'] 

    for i in range(nCookies): 
        if cookies[i, 0] == unknown: 
            name = cookies[i, 1] 
            cookieSet = set() 
            cookieSet.add(name) 

groups[name] = cookieSet  # каждый в своем мирке

    return labels, groups, whosDevice 
    #return labels 

def loadIPAGG(ipaggFile): 
    XIPS = dict() 

    with open(ipaggFile, 'rt') as csvfile: 
        spamreader = csv.reader(csvfile, delimiter=',') 
        spamreader.__next__() 

        inx = 0 
        for row in spamreader: 

            if inx % 500000 == 0: 
                print(inx) 

            if row[2] == '0': 
                data = np.zeros(4) 
                # data[0] = np.int32(row[2]) 
                data[0] = np.int32(row[3]) 
                data[1] = np.int32(row[4]) 
                data[2] = np.int32(row[5]) 
                data[3] = np.int32(row[6]) 
                XIPS[row[1]] = data 

            inx += 1 

    print("Total amount of IP is %s" % len(XIPS)) 
    return XIPS 

def loadIPS(ipFile, dictDevice, dictCookie, IPs, groups): 



54 

    deviceIPs = dict() 
    cookieIPs = dict() 
    IPDev = defaultdict(set) 
    IPCoo = defaultdict(set) 

    with open(ipFile) as fp: 
        fp.readline() 

        ind = 0 
        for line in fp: 
            matchObj = re.match(r'([a-zA-Z0-9_]*),([0-1]),{([(a-zA-
Z0-9(),\-_]*)}', line, flags=0) 
            ips = re.findall(r'(\w*,\w*,\w*,\w*,\w*,\w*,\w*)', 
matchObj.group(3)) 

            if ind % 100000 == 0: 
                print(ind) 

            ipRecord = dict() 
            for ip in ips: 
                ipInfo = ip.split(',') 
                ipGenInfo = IPs.get(ipInfo[0], np.empty(0)) 

                if len(ipGenInfo) > 0: 
                    arr = np.zeros(10) 
                    arr[0] = np.int_(ipInfo[1]) 
                    arr[1] = np.int_(ipInfo[2]) 
                    arr[2] = np.int_(ipInfo[3]) 
                    arr[3] = np.int_(ipInfo[4]) 
                    arr[4] = np.int_(ipInfo[5]) 
                    arr[5] = np.int_(ipInfo[6]) 

                    arr[6] = np.int_(ipGenInfo[0]) 
                    arr[7] = np.int_(ipGenInfo[1]) 
                    arr[8] = np.int_(ipGenInfo[2]) 
                    arr[9] = np.int_(ipGenInfo[3]) 

                    ipRecord[ipInfo[0]] = arr 

            if matchObj.group(2) == '0': 
                deviceId = dictDevice.get(matchObj.group(1), -1) 
                if deviceId > -1: 
                    deviceIPs[deviceId] = ipRecord 
                    for k in ipRecord.keys(): 
                        IPDev[k].add(deviceId) 
            else: 
                cookieId = dictCookie[matchObj.group(1)] 
                cookieIPs[cookieId] = ipRecord 
                for ip in ipRecord.keys(): 
                    IPCoo[ip].add(cookieId) 

            ind += 1 
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    for k, v in groups.items(): 
        if len(v) > 1: 
            for cook1 in v: 
                for cook2 in v: 
                    if cook1 != cook2: 
                        d1 = cookieIPs[cook1] 
                        d2 = cookieIPs[cook2] 
                        for n1, n2 in d1.items(): 
                            if n1 not in d2.keys(): 
                                d2[n1] = n2 
                                IPCoo[n1].add(cook2) 

    return IPDev, IPCoo, deviceIPs, cookieIPs 

def measureTime(time1): 
    time2 = time1 
    time1 = time.time() 
    print("--- %s seconds ---" % round(time1 - time2, 2)) 
    return time1 

def selectCandidates(devices, cookies, IPCoo, IPDev, deviceIPS, 
dictHandle): 

    deviceIds = np.unique(devices[:, 1]) 
    candidates = dict() 
    unknown = dictHandle['-1'] 
    totalSize = 0 
    index = 0 
    for deviceId in deviceIds: 
        candidateSet = set() 

        if index % 10000 == 0: 
            print(index) 

        ips = deviceIPS[deviceId] 
        for ip in ips.keys(): 
            if len(IPDev.get(ip, set())) <= 10 and len(IPCoo.get(ip, 
set())) <= 20: 
                localCandidates = IPCoo[ip] 
                for candidate in localCandidates: 
                    if cookies[np.int(candidate), 0] != unknown: 
                        candidateSet.add(candidate) 

        if len(candidateSet) == 0: 
            for ip in ips: 
                if len(IPDev.get(ip, set())) <= 25 and 
len(IPCoo.get(ip, set())) <= 50: 
                    localCandidates = IPCoo[ip] 
                    for candidate in localCandidates: 
                        if cookies[np.int(candidate), 0] != unknown: 
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                            candidateSet.add(candidate) 

        if len(candidateSet) == 0: 
            for ip in ips: 
                localCandidates = IPCoo[ip] 
                for candidate in localCandidates: 
                    if cookies[np.int(candidate), 0] != unknown: 
                        candidateSet.add(candidate) 

        if len(candidateSet) == 0: 
            for ip in ips: 
                localCandidates = IPCoo[ip] 
                for candidate in localCandidates: 
                    candidateSet.add(candidate) 

        totalSize += len(candidateSet) 
        candidates[deviceId] = candidateSet 
        index += 1 

    print("Pairs total: %s" % totalSize) 
    return candidates, totalSize 

def createDataSet(candidates, devices, cookies, deviceIPS, 
cookieIPS, groups, whosDevice, devProps): 

    originalIndex = dict() 
    numPatterns = 0 
    for deviceId, cookieIds in candidates.items(): 
        numPatterns = numPatterns + len(cookieIds) 

    added = 0 
    index = 0 
    for deviceId, cookieIds in candidates.items(): 

        if index % 5000 == 0: 
            print(index) 

        deviceRecord = devices[devices[:, 1] == deviceId, 
np.array([2, 3, 4, 5, 6, 7, 8, 9, 10])] 

        indivIndex = dict() 
        deviceSet = set() 
        deviceSet.add(deviceId) 
        deviceIps = set(deviceIPS.get(deviceId, dict()).keys()) 
        deviceProps = set(devProps.get(deviceId, dict()).keys()) 

        for cookieId in cookieIds: 
            cookieRecord = cookies[np.int(cookieId), np.array([2, 3, 
4, 5, 6, 7, 8, 9, 10])] 

            row = np.concatenate((deviceRecord, cookieRecord)) 
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            cookieIps = set(cookieIPS.get(cookieId, dict()).keys()) 
            ips = (deviceIps & cookieIps) 
            otherDevices = set(whosDevice.get(cookieId, set())) - 
deviceSet 

            devp = set() 
            devi = set() 
            for odev in otherDevices: 
                devp = devp | set(devProps.get(odev, dict()).keys()) 
                devi = devi | set(deviceIPS.get(odev, 
dict()).keys()) 

            intersec = np.float_(len(devp & deviceProps)) 
            interseci = np.float_(len(devi & deviceIps)) 

            if intersec > 0: 
                intersec = intersec / np.float_(len(deviceProps)) 

            if interseci > 0: 
                intersec = intersec / np.float_(len(deviceIps)) 

            row = np.concatenate((row, 
np.array([np.float_(len(otherDevices))]))) 
            row = np.concatenate((row, 
np.array([np.float_(intersec)]))) 

            row = np.concatenate((row, 
np.array([np.float_(interseci)]))) 

            row = np.concatenate((row, 
np.array([np.float_(len(ips))]))) 
            row = np.concatenate((row, 
np.array([np.float_(len(deviceIps))]))) 
            row = np.concatenate((row, 
np.array([np.float_(len(cookieIps))]))) 

            row = np.concatenate((row, 
np.array([np.float_(len(deviceProps))]))) 

            row = np.concatenate((row, 
np.array([np.float_(len(groups.get(cookieId, set())))]))) 
            row = np.concatenate((row, 
np.array([np.float_(len(groups.get(cookieId, set()) & 
cookieIds))]))) 
            row = np.concatenate((row, 
np.array([np.float_(len(ips))]))) 

            iprow = np.zeros(20) 
            niprows = 0 
            for ip in ips: 
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                iprow = iprow + 
np.concatenate((deviceIPS[deviceId][ip].reshape(-1), 
cookieIPS[cookieId][ip].reshape(-1))) 
                niprows = niprows + 1 

            if niprows > 0: 
                meaniprows = iprow / np.float_(niprows) 
            else: 
                meaniprows = iprow 

            row = np.concatenate((row.reshape(-1), iprow.reshape(-
1))) 
            row = np.concatenate((row.reshape(-1), 
meaniprows.reshape(-1))) 
            row = np.concatenate((row.reshape(-1), (iprow[0:6] - 
iprow[10:16]).reshape(-1))) 

            if added == 0: 
                xTrain = np.zeros((numPatterns, len(row))) 

            indivIndex[cookieId] = added 

            xTrain[added, :] = row 

            added = added + 1 
        originalIndex[deviceId] = indivIndex 

        index += 1 

    print("xTrain shape is {}".format(xTrain.shape)) 
    return xTrain, originalIndex 

def createTrainingLabels(candidates, labels): 
    numPatterns = 0 

    for k, v in candidates.items(): 
        numPatterns = numPatterns + len(v) 

    yTrain = np.zeros(numPatterns) 

    added = 0 
    for k, v in candidates.items(): 
        for coo in v: 
            if coo in labels[k]: 
                yTrain[added] = 1.0 
            added = added + 1 

    return yTrain 
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def saveDatasets(xTrain, yTrain, xTest, originalIndexTrain, 
originalIndexTest, groups, labels, genDataPath): 
    np.save(genDataPath + 'xTrain.npy', xTrain) 
    np.save(genDataPath + 'xTest.npy', xTest) 
    np.save(genDataPath + 'yTrain.npy', yTrain) 

    modelFile = genDataPath + 'originalIndexTrain.pkl' 
    f = open(modelFile, "wb") 
    pickle.dump(originalIndexTrain, f) 
    f.close() 

    modelFile = genDataPath + 'originalIndexTest.pkl' 
    f = open(modelFile, "wb") 
    pickle.dump(originalIndexTest, f) 
    f.close() 

    modelFile = genDataPath + 'groups.pkl' 
    f = open(modelFile, "wb") 
    pickle.dump(groups, f) 
    f.close() 

    modelFile = genDataPath + 'labels.pkl' 
    f = open(modelFile, "wb") 
    pickle.dump(labels, f) 
    f.close() 

3. ModelBuilder 

from TrainLibrary import * 
from Variables import * 
from CookieLibrary import * 

os.environ['PATH'] = os.environ['PATH'] + ';' + pathXGBoost 

def buildModel(time1): 

    print('STEP: Loading datasets') 
    (xTrain, yTrain, xTest, originalIndexTrain, originalIndexTest, 
groups, labels) = loadDatasets(genDataPath) 
    (time1) = measureTime(time1) 

    print('STEP: Training Supervised Learning') 
    (resultadosVal, resultadosTest, classifiers) \ 
        = fullTraining(xTrain, yTrain, xTest, originalIndexTrain, 
groups) 
    (time1) = measureTime(time1) 

    print('STEP: Post Processing') 
    (validate, thTR) = bestSelection(resultadosVal, 
originalIndexTrain, np.array([1.0, 0.9]), groups, 1) 
    (test, thTest) = bestSelection(resultadosTest, 
originalIndexTest, np.array([1.0, 0.9]), groups, 1) 
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    (time1) = measureTime(time1) 

    F05 = calculateF05(validate, labels) 
    print("F05 validation ", F05) 
    (time1) = measureTime(time1) 

    F05 = calculateF05(test, labels) 
    print("F05 test ", F05) 
    (time1) = measureTime(time1) 

    print('STEP: Saving model') 
    saveModel(modelPath, classifiers) 
    (time1) = measureTime(time1) 

    return classifiers, time1 

def buildPairwiseModel(time1): 
    print('STEP: Loading datasets') 
    (xTrain, yTrain, xTest, originalIndexTrain, originalIndexTest, 
groups, labels) = loadDatasets(genDataPath) 
    (time1) = measureTime(time1) 

    print('STEP: Prepare data') 
    (orderedXTrain, orderedIndexTrain, orderedYTrain) = 
orderByDevice(xTrain, originalIndexTrain, yTrain) 
    (orderedXTest, orderedIndexTest) = orderByDevice(xTest, 
originalIndexTest) 
    (time1) = measureTime(time1) 

    print('STEP: Training Supervised Learning') 
    (resultadosVal, resultadosTest, classifiers) \ 
        = fullTrainingPairwise(orderedXTrain, orderedYTrain, 
orderedXTest, orderedIndexTrain, groups) 
    (time1) = measureTime(time1) 

    print('STEP: Post Processing') 
    (validate, thTR) = bestSelection(resultadosVal, 
originalIndexTrain, np.array([1.0, 0.9]), groups, 1) 
    (test, thTest) = bestSelection(resultadosTest, originalIndexTest, 
np.array([1.0, 0.9]), groups, 1) 
    (time1) = measureTime(time1) 

    F05 = calculateF05(validate, labels) 
    print("F05 validation ", F05) 

    F05 = calculateF05(test, labels) 
    print("F05 test ", F05) 
    (time1) = measureTime(time1) 

    print('STEP: Saving model') 
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    saveModel(pairwiseModelPath, classifiers) 
    (time1) = measureTime(time1) 

    return classifiers, time1 

def postProcessingEvaluation(time1): 

    print('STEP: Loading datasets') 
    (xTrain, yTrain, xTest, originalIndexTrain, originalIndexTest, 
groups, labels) = loadDatasets(genDataPath) 
    (time1) = measureTime(time1) 

    print('STEP: Loading model') 
    classifiers = loadModel(modelPath) 
    (time1) = measureTime(time1) 

    print('STEP: Post Processing') 
    resultsTrain = np.zeros(xTrain.shape[0]) 
    resultsTest = np.zeros(xTest.shape[0]) 
    index = 0 
    for classifier in classifiers: 
        index += 1 
        print(index) 

        pTrain = predictXGBoost(xTrain, classifier) 
        resultsTrain = resultsTrain + pTrain 
        pTest = predictXGBoost(xTest, classifier) 
        resultsTest = resultsTest + pTest 

    resultsTrain = resultsTrain / np.float_(len(classifiers)) 
    resultsTest = resultsTest / np.float_(len(classifiers)) 

    betas = [0.8+x*0.02 for x in range(1)] 
    print(betas) 
    for beta in betas: 
        print("----> Beta is", beta) 

        (resultTrain, thresholdTrain) = bestSelection(resultsTrain, 
originalIndexTrain, np.array([1.0, 0.96]), groups, beta) 
        F05 = calculateF05(resultTrain, labels) 
        print("Train F0.5", F05) 

        (resultTest, thresholdTest) = bestSelection(resultsTest, 
originalIndexTest, np.array([1.0, 0.96]), groups, beta) 
        F05 = calculateF05(resultTest, labels) 
        print("Test F0.5", F05) 
    (time1) = measureTime(time1) 

def postProcessingPairwise(time1): 
    print('STEP: Loading datasets') 
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    (xTrain, yTrain, xTest, originalIndexTrain, originalIndexTest, 
groups, labels) = loadDatasets(genDataPath) 
    (time1) = measureTime(time1) 

    print('STEP: Prepare data') 
    (orderedXTrain, orderedIndexTrain, orderedYTrain) = 
orderByDevice(xTrain, originalIndexTrain, yTrain) 
    (orderedXTest, orderedIndexTest) = orderByDevice(xTest, 
originalIndexTest) 

    print('STEP: Loading model') 
    classifiers = loadModel(pairwiseModelPath) 
    (time1) = measureTime(time1) 

    print('STEP: Post Processing') 
    resultsTrain = np.zeros(orderedXTrain.shape[0]) 
    resultsTest = np.zeros(orderedXTest.shape[0]) 
    index = 0 
    for classifier in classifiers: 
        index += 1 
        print(index) 

        pTrain = predictXGBoost(orderedXTrain, classifier) 
        resultsTrain = resultsTrain + pTrain 
        pTest = predictXGBoost(orderedXTest, classifier) 
        resultsTest = resultsTest + pTest 

    resultsTrain = resultsTrain / np.float_(len(classifiers)) 
    resultsTest = resultsTest / np.float_(len(classifiers)) 

    betas = [0.8 + x * 0.02 for x in range(1)] 
    print(betas) 
    for beta in betas: 
        print("Beta is", beta) 

        (resultTrain, thresholdTrain) = bestSelection(resultsTrain, 
orderedIndexTrain, np.array([1.0, 0.84]), groups, beta) 
        F05 = calculateF05(resultTrain, labels) 
        print("Train F0.5", F05) 

        (resultTest, thresholdTest) = bestSelection(resultsTest, 
orderedIndexTest, np.array([1.0, 0.84]), groups, beta) 
        F05 = calculateF05(resultTest, labels) 
        print("Test F0.5", F05) 

    (time1) = measureTime(time1) 

def calcRatio(time1): 
    print('STEP: Loading datasets') 
    (xTrain, yTrain, xTest, originalIndexTrain, originalIndexTest, 
groups, labels) = loadDatasets(genDataPath) 
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    (time1) = measureTime(time1) 

    total = np.int(yTrain.shape[0]) 
    totalPositive = np.int(sum(yTrain)) 
    print(total) 
    print(totalPositive) 
    (time1) = measureTime(time1) 

def evaluateComposition(time1): 
    print('STEP: Loading datasets') 
    (xTrain, yTrain, xTest, originalIndexTrain, originalIndexTest, 
groups, labels) = loadDatasets(genDataPath) 
    (time1) = measureTime(time1) 

    print('STEP: Loading binary classification model') 
    classifiers = loadModel(modelPath) 
    (time1) = measureTime(time1) 

    print('STEP: Prepare data') 
    (orderedXTrain, orderedIndexTrain, orderedYTrain) = 
orderByDevice(xTrain, originalIndexTrain, yTrain) 
    (orderedXTest, orderedIndexTest) = orderByDevice(xTest, 
originalIndexTest) 

    print('STEP: Loading pairwise model') 
    pairwiseClassifiers = loadModel(pairwiseModelPath) 
    (time1) = measureTime(time1) 

    print('STEP: Predicting') 

    resultsTrain = np.zeros(xTrain.shape[0]) 
    resultsTest = np.zeros(xTest.shape[0]) 
    index = 0 
    for classifier in classifiers: 
        index += 1 
        print(index) 

        pTrain = predictXGBoost(xTrain, classifier) 
        resultsTrain = resultsTrain + pTrain 
        pTest = predictXGBoost(xTest, classifier) 
        resultsTest = resultsTest + pTest 

    resultsTrain = resultsTrain / np.float_(len(classifiers)) 
    resultsTest = resultsTest / np.float_(len(classifiers)) 

    (resultTrain, thresholdTrain) = bestSelection(resultsTrain, 
originalIndexTrain, np.array([1.0, 0.96]), groups, 0) 
    (resultTest, thresholdTest) = bestSelection(resultsTest, 
originalIndexTest, np.array([1.0, 0.96]), groups, 0) 

    index = 0 



64 

    for classifier in pairwiseClassifiers: 
        index += 1 
        print(index) 

        pTrain = predictXGBoost(orderedXTrain, classifier) 
        resultsTrain = resultsTrain + pTrain 
        pTest = predictXGBoost(orderedXTest, classifier) 
        resultsTest = resultsTest + pTest 

    resultsTrain = resultsTrain / np.float_(len(pairwiseClassifiers)) 
    resultsTest = resultsTest / np.float_(len(pairwiseClassifiers)) 

    (resultPairwiseTrain, thresholdTrain) = 
bestSelection(resultsTrain, orderedIndexTrain, np.array([1.0, 
0.84]), groups, 0) 
    (resultPairwiseTest, thresholdTest) = bestSelection(resultsTest, 
orderedIndexTest, np.array([1.0, 0.84]), groups, 0) 

    for deviceId, cookieSet in resultPairwiseTrain.items(): 
        id = np.int(deviceId) 
        otherSet = resultTrain[id] 
        otherSet = (otherSet | cookieSet) 
        resultTrain[id] = otherSet 

    for deviceId, cookieSet in resultPairwiseTest.items(): 
        id = np.int(deviceId) 
        otherSet = resultTest[id] 
        otherSet = (otherSet | cookieSet) 
        resultTest[id] = otherSet 

    F05 = calculateF05(resultTrain, labels) 
    print("Train F0.5", F05) 

    F05 = calculateF05(resultTest, labels) 
    print("Test F0.5", F05) 

    (time1) = measureTime(time1) 

4. TrainLibrary 

import numpy as np 
import os 
import sklearn 
import pickle 
import xgboost as xgb 

def bestSelection(predictions, originalIndex, values, groups, beta): 

    result = dict() 
    threshold = dict() 
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    for deviceId, cookieDict in originalIndex.items(): 

        resultCookieSet = set() 
        maxval = 0.0 
        cookiesList = list(cookieDict.keys()) 

        scores = np.zeros(len(cookiesList)) 

        for i in range(len(cookiesList)): 
            scores[i] = predictions[cookieDict[cookiesList[i]]] 

        ordering = sorted(range(len(scores)), key=lambda x: -
scores[x]) 

        if len(cookiesList) > 0: 
            if groups.get(cookiesList[ordering[0]], -100) != -100: 
                maxval = scores[ordering[0]] 
                resultCookieSet = (resultCookieSet | 
groups[cookiesList[ordering[0]]]) 

        for i in range(len(values)): 
            if i <= len(resultCookieSet): 
                if i < len(cookiesList) and (i < len(values)): 
                    tam1 = len(groups.get(cookiesList[ordering[0]], 
set())) 
                    tam2 = len(groups.get(cookiesList[ordering[i]], 
set())) 
                    if tam1 > 1 & tam2 == 1: 
                        if scores[ordering[i]] > maxval*(values[i]-
0.15): 
                            resultCookieSet = (resultCookieSet | 
groups.get(cookiesList[ordering[i]], set())) 
                    elif tam1 > 1 & tam2 > 1: 
                        if scores[ordering[i]] > 
maxval*(values[i]+0.1): 
                            resultCookieSet = (resultCookieSet | 
groups.get(cookiesList[ordering[i]], set())) 
                    elif tam1 == 1 & tam2 == 1: 
                        if scores[ordering[i]] > maxval*(values[i]): 
                            resultCookieSet = (resultCookieSet | 
groups.get(cookiesList[ordering[i]], set())) 

        result[deviceId] = resultCookieSet 
        threshold[deviceId] = maxval 
    return result, threshold 

def fullTraining(xTrain, yTrain, xTest, originalIndexTrain, groups): 

    nFolds = 6 
    nRounds = 100 
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    kFold = sklearn.model_selection.KFold(n_splits=nFolds, 
random_state=0) 

    resultadosVal = np.zeros(len(yTrain)) 

    (tamTST, dTST) = xTest.shape 
    resultadosTST = np.zeros(tamTST) 

    classifiers = list() 

    iteration = 0 
    mapper = list(originalIndexTrain.keys()) 
    for (train, test) in kFold.split(mapper): 

        iteration = iteration + 1 
        Originaltmp = dict() 
        print("Training bagger {0} of {1}".format(iteration, nFolds)) 

        trainIndexes = list() 
        testIndexes = list() 
        trainDevices = list() 
        testDevices = list() 

        for i in train: 
            deviceId = mapper[i] 
            trainDevices.append(deviceId) 

trainIndexes.extend(originalIndexTrain[deviceId].values()) 

        for i in test: 
            deviceId = mapper[i] 
            testDevices.append(deviceId) 

testIndexes.extend(originalIndexTrain[deviceId].values()) 
            Originaltmp[deviceId] = originalIndexTrain[deviceId] 

        trainIndexes = np.array(trainIndexes) 
        testIndexes = np.array(testIndexes) 

        xValueTrain = xTrain[trainIndexes, :] 
        xValueTest = xTrain[testIndexes, :] 

        yValueTrain = yTrain[trainIndexes] 
        yValueTest = yTrain[testIndexes] 

        bst = trainXGBoost(xValueTrain, yValueTrain, nRounds, 0.10, 
xValueTest, yValueTest) 

        classifiers.append((bst, trainDevices, testDevices)) 

        predictedTest = predictXGBoost(xValueTest, bst) 
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        resultadosVal[testIndexes] = predictedTest 

        (validat, thTR) = bestSelection(resultadosVal, Originaltmp, 
np.array([1.0]), groups, 1) 

        pTST = predictXGBoost(xTest, bst) 

        resultadosTST = resultadosTST + pTST 

    resultadosTST = resultadosTST / np.float_(nFolds) 
    return resultadosVal, resultadosTST, classifiers 

def trainXGBoost(xtr, ytr, rounds, eta, xtst, ytst): 
    xgmat = xgb.DMatrix(xtr, label=ytr) 
    xgmat2 = xgb.DMatrix(xtst, label=ytst) 
    param = {'eta': eta, 
             'max_depth': 10, 
             'subsample': 1.0, 
             'nthread': 12, 
             'min_child_weight': 4, 
             'gamma': 5.0, 
             'colsample_bytree': 1.0, 
             'silent': 1, 
             'objective': 'binary:logistic', 
             'eval_metric': 'error'} 

    watchlist = [(xgmat, 'train'), (xgmat2, 'test')] 
    num_round = rounds 
    bst = xgb.train(param, xgmat, num_round, watchlist) 
    return bst 

def fullTrainingPairwise(xTrain, yTrain, xTest, originalIndexTrain, 
groups): 

    nFolds = 6 
    nRounds = 200 

    kFold = sklearn.model_selection.KFold(n_splits=nFolds, 
random_state=0) 

    resultadosVal = np.zeros(len(yTrain)) 

    (tamTST, dTST) = xTest.shape 
    resultadosTST = np.zeros(tamTST) 

    classifiers = list() 
    iteration = 0 
    mapper = list(originalIndexTrain.keys()) 
    for (train, test) in kFold.split(mapper): 
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        iteration = iteration + 1 
        originalTestTemp = dict() 
        print("Training bagger {0} of {1}".format(iteration, nFolds)) 

        trainIndexes = list() 
        testIndexes = list() 
        trainDevices = list() 
        testDevices = list() 
        groupTrain = list() 
        groupTest = list() 

        for i in train: 
            deviceId = mapper[i] 
            trainDevices.append(deviceId) 

groupTrain.append(len(originalIndexTrain[deviceId].values())) 

trainIndexes.extend(originalIndexTrain[deviceId].values()) 

        for i in test: 
            deviceId = mapper[i] 
            testDevices.append(deviceId) 

groupTest.append(len(originalIndexTrain[deviceId].values())) 

testIndexes.extend(originalIndexTrain[deviceId].values()) 
            originalTestTemp[deviceId] = 
originalIndexTrain[deviceId] 

        trainIndexes = np.array(trainIndexes) 
        testIndexes = np.array(testIndexes) 
        groupTrain = np.array(groupTrain) 
        groupTest = np.array(groupTest) 

        xValueTrain = xTrain[trainIndexes, :] 
        xValueTest = xTrain[testIndexes, :] 
        yValueTrain = yTrain[trainIndexes] 
        yValueTest = yTrain[testIndexes] 

        bst = trainXGBoostPairwise(xValueTrain, yValueTrain, nRounds, 
0.2, xValueTest, yValueTest, 
                                   groupTrain, groupTest) 

        classifiers.append((bst, trainDevices, testDevices)) 

        predictedTest = predictXGBoost(xValueTest, bst) 

        resultadosVal[testIndexes] = predictedTest 

        pTST = predictXGBoost(xTest, bst) 
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        resultadosTST = resultadosTST + pTST 

    resultadosTST = resultadosTST / np.float_(nFolds) 
    return resultadosVal, resultadosTST, classifiers 

def orderByDevice(xValues, originalIndex, yValues = None): 
    added = 0 
    triples = np.zeros([xValues.shape[0], 3]) 
    orderedIndex = dict() 
    for deviceId, cookieDict in originalIndex.items(): 
        orderedIndex[deviceId] = dict() 
        for cookieId, index in cookieDict.items(): 
            triples[added, 0] = deviceId 
            triples[added, 1] = cookieId 
            triples[added, 2] = index 
            added += 1 

    ordering = sorted(range(triples.shape[0]), key=lambda x: 
triples[x, 0]) 
    orderedXValues = np.zeros(xValues.shape) 

    if yValues is not None: 
        orderedYValues = np.zeros(yValues.shape) 
        for i in range(xValues.shape[0]): 
            ind = np.int(triples[ordering[i], 2]) 
            orderedYValues[i] = yValues[ind] 
            orderedXValues[i, :] = xValues[ind, :] 
            orderedIndex[np.int(triples[ordering[i], 
0])][np.int(triples[ordering[i], 1])] = i 
        return orderedXValues, orderedIndex, orderedYValues 

    else: 
        for i in range(xValues.shape[0]): 
            ind = np.int(triples[ordering[i], 2]) 
            orderedXValues[i, :] = xValues[ind, :] 
            orderedIndex[np.int(triples[ordering[i], 
0])][np.int(triples[ordering[i], 1])] = i 

        return orderedXValues, orderedIndex 

def trainXGBoostPairwise(xtr, ytr, rounds, eta, xtst, ytst, 
groupTrain, groupTest): 
    xgmat = xgb.DMatrix(xtr, label=ytr) 
    xgmat2 = xgb.DMatrix(xtst, label=ytst) 
    param = {'eta': eta, 
             'max_depth': 10, 
             'subsample': 1.0, 
             'nthread': 12, 
             'min_child_weight': 4, 
             'gamma': 5.0, 
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             'colsample_bytree': 1.0, 
             'silent': 1, 
             'objective': 'rank:pairwise', 
             'eval_metric': 'error'} 

    xgmat.set_group(groupTrain) 
    xgmat2.set_group(groupTest) 
    watchlist = [(xgmat, 'train'), (xgmat2, 'test')] 
    num_round = rounds 
    bst = xgb.train(param, xgmat, num_round, watchlist) 
    return bst 

def predictXGBoost(x, bst): 
    xgmat = xgb.DMatrix(x) 
    return bst.predict(xgmat) 

def calculateF05(results, target): 
    BetaQ = 0.5 * 0.5 

    F05 = list() 

    for k in results.keys(): 
        correctCookies = results[k] 
        predictedCookies = target[k] 

        tp = np.float_(len(correctCookies & predictedCookies)) 
        fp = np.float_(len(correctCookies) - tp) 
        fn = np.float_(len(predictedCookies) - tp) 

        if tp > 0: 
            p = tp / (tp + fp) 
            r = tp / (tp + fn) 
        else: 
            p = r = 0 

        if p * r > 0.0: 
            f = (1.0 + BetaQ) * p * r / (BetaQ * p + r) 
        else: 
            f = 0.0 

        F05.append(f) 
    return np.mean(F05) 

def loadDatasets(genDataPath): 

    indexTrainFile = genDataPath + 'originalIndexTrain.pkl' 
    f = open(indexTrainFile, "rb") 
    originalIndexTrain = pickle.load(f) 
    f.close() 
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    indexTestFile = genDataPath + 'originalIndexTest.pkl' 
    f = open(indexTestFile, "rb") 
    originalIndexTest = pickle.load(f) 
    f.close() 

    indexTestFile = genDataPath + 'groups.pkl' 
    f = open(indexTestFile, "rb") 
    groups = pickle.load(f) 
    f.close() 

    indexTestFile = genDataPath + 'labels.pkl' 
    f = open(indexTestFile, "rb") 
    labels = pickle.load(f) 
    f.close() 

    xTrain = np.load(genDataPath + 'xTrain.npy') 
    yTrain = np.load(genDataPath + 'yTrain.npy') 
    xTest = np.load(genDataPath + 'xTest.npy') 

    return xTrain, yTrain, xTest, originalIndexTrain, 
originalIndexTest, groups, labels 

def saveModel(modelPath, classifiers): 
    d = os.path.dirname(modelPath) 

    if not os.path.exists(d): 
        os.makedirs(d) 

    modelFile = modelPath + os.path.sep + 'model.pkl' 

    f = open(modelFile, "wb") 

    pickle.dump(len(classifiers), f) 

    nClassifier = 0 

    for (classifier, indtr, indtst) in classifiers: 
        classifier.save_model(modelPath + os.path.sep + 
str(nClassifier) + '.model') 
        nClassifier = nClassifier + 1 
    f.close() 

def loadModel(modelpath): 
    modelfile = modelpath + 'model.pkl' 

    f = open(modelfile, "rb") 

    nclassifier = pickle.load(f) 

    f.close() 



72 

    classifiers = list() 

    for i in range(nclassifier): 
        classifier = xgb.Booster({'nthread': 12}) 
        classifier.load_model(modelpath + str(i) + '.model') 
        classifiers.append(classifier) 

    return classifiers 

5. Analytics 

import re 
import matplotlib.pylab as plt 

def calcConformity(ipFile, dictDevice, dictCookie, IPs, labels): 

    deviceIPS = dict() 
    cookieIPS = dict() 

    with open(ipFile) as fp: 
        fp.readline() 

        ind = 0 

        for line in fp: 

            if ind % 200000 == 0: 
                print(ind) 

            matchObj = re.match(r'([a-zA-Z0-9_]*),([0-1]),{([(a-zA-
Z0-9(),\-_]*)}', line, flags=0) 
            ips = re.findall(r'(\w*,\w*,\w*,\w*,\w*,\w*,\w*)', 
matchObj.group(3)) 

            ipDict = dict() 
            for ip in ips: 
                ipInfo = ip.split(',') 
                ipGenInfo = IPs[ipInfo[0]] 
                ipDict[ipInfo[0]] = ipGenInfo[0] 

            if matchObj.group(2) == '0': 
                deviceId = dictDevice.get(matchObj.group(1), -1) 
                if deviceId > -1: 
                    deviceIPS[deviceId] = ipDict 
            else: 
                cookieId = dictCookie[matchObj.group(1)] 
                cookieIPS[cookieId] = ipDict 

            ind += 1 

    commonDeviceCookieIps = dict() 
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    for deviceId in labels.keys(): 
        cookieDict = dict() 
        commonDeviceCookieIps[deviceId] = cookieDict 

    sum = 0 
    cookieNumberDict = dict() 

    print('Begin association') 
    for deviceId, cookieIds in labels.items(): 

        curNumber = cookieNumberDict.get(len(cookieIds), 0) 
        curNumber += 1 
        cookieNumberDict[len(cookieIds)] = curNumber 

        sum += len(cookieIds) 
        for cookieId in cookieIds: 
            for dIp in deviceIPS[deviceId]: 
                isCellular = cookieIPS[cookieId].get(dIp, -1) 
                if isCellular > -1: 
                    curValue = 
commonDeviceCookieIps[deviceId].get(cookieId, False) 
                    commonDeviceCookieIps[deviceId][cookieId] = 
curValue or isCellular == 0 

    print(sum) 
    print('Begin calculation') 
    deviceNum = len(labels) 
    print(deviceNum) 

    percent = 0 
    nonCellularPercent = 0 
    dataSize = 0 
    for deviceId, cookieDict in commonDeviceCookieIps.items(): 
        if len(cookieDict) > 0: 
            percent += 1 
            dataSize += len(cookieDict) 
            for value in cookieDict.values(): 
                if value: 
                    nonCellularPercent += 1 
                    break 

    percent = percent / deviceNum * 100 
    nonCellularPercent = nonCellularPercent / deviceNum * 100 

    lists = sorted(cookieNumberDict.items())  # sorted by key, return 
a list of tuples 
    x, y = zip(*lists)  # unpack a list of pairs into two tuples 
    plt.plot(x, y) 
    plt.ylabel('Amount of devices') 
    plt.xlabel('Amount of belonging cookies') 
    plt.grid(True) 
    plt.show() 
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    return percent, nonCellularPercent, dataSize 

def calcTrainSize(ipFile, dictDevice, IPs): 
    deviceIPS = dict() 
    cookieIPS = dict() 

    with open(ipFile) as fp: 
        fp.readline() 

        ind = 0 
        for line in fp: 

            if ind % 200000 == 0: 
                print(ind) 

            matchObj = re.match(r'([a-zA-Z0-9_]*),([0-1]),{([(a-zA-
Z0-9(),\-_]*)}', line, flags=0) 
            ips = re.findall(r'(\w*,\w*,\w*,\w*,\w*,\w*,\w*)', 
matchObj.group(3)) 

            ipDict = dict() 
            for ip in ips: 
                ipInfo = ip.split(',') 
                ipGenInfo = IPs[ipInfo[0]] 
                ipDict[ipInfo[0]] = ipGenInfo[0] 

            if matchObj.group(2) == '0': 
                deviceId = dictDevice.get(matchObj.group(1), -1) 
                if deviceId > -1: 
                    deviceIPS[deviceId] = ipDict 
            else: 
                for ip in ipDict.keys(): 
                    curAmount = cookieIPS.get(ip, 0) 
                    curAmount += 1 
                    cookieIPS[ip] = curAmount 

            ind += 1 

    totalAmount = 0 
    totalAmountNonCellular = 0 

    for deviceId, ips in deviceIPS.items(): 
        for ip, isCellular in ips.items(): 
            cookieAmount = cookieIPS.get(ip, 0) 
            totalAmount += cookieAmount 
            if isCellular == 0: 
                totalAmountNonCellular += cookieAmount 

    return totalAmount, totalAmountNonCellular 
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def calcCoverage(labels, candidates): 
    properlyFound = 0 
    for deviceId, cookies in labels.items(): 
        containsCookie = False 
        localCandidates = candidates.get(deviceId, set()) 
        for cookie in cookies: 
            containsCookie = containsCookie or cookie in 
localCandidates 
            if containsCookie: 
                properlyFound += 1 
                break 

    coverage = properlyFound/len(labels)*100 
    print("Coverage is %s" % coverage) 
    return coverage 


