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Abstract

Realistic LIDAR data that can be used
for machine learning and algorithm vali-
dation and verification are hard to come
by, especially in the quantities required
by today’s machine learning applications.
Recent studies showed that it is feasible
to use artificially generated images for the
training of the machine learning systems
focused on images. Rendering realistic
RGB images has a long history driven
by gaming and movie industry. Generat-
ing artificial LiDAR data are much less
mature. The generated LiDAR data are
often unrealistically precise and accurate.

The goal of this thesis is to introduce a
pipeline which can generate LiDAR data
which look as realistically as possible. We
use RGB and depth data from GTA V
computer game to create initial precise
LiDAR representation and employed Cy-
cleGANSs to introduce realism. The Cycle-
GAN is trained with the help of real-world
dataset kindly provided by the Valeo com-

pany.
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measurements, GTA V
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Abstrakt

Redlna LiDARova data vyuzitelna pro
strojové uceni a verifikaci a validaci algo-
ritmu jsou tézké ziskat, zejména v mnoz-
stvi pozadovaném aktualnimi aplikacemi
strojového uceni. Nedavné studie uka-
zuji, ze je mozné vyuzit uméle vytvo-
fené obrazky pro trénovani systému za-
lozenych na strojovém uceni. Uméle vy-
generovand obrazova data maji dlouhou
historii zejména kviuli pottebam herniho a
filmového priumyslu, nicméné generovani
LiDARovych dat je prozkoumano mno-
hem méné. Uméle generovand LiDARova
data jsou také nerealisticky presna a je
treba nejprve pridat realismus, aby bylo
mozné je vyuzit pro systémy strojového
ucendi.

Cilem této prace je vytvorit funkéni al-
goritmus, ktery je schopen generovat co
jsme hloubkova a RGB data z pocitacové
hry GTA V, abychom vytvorili pfesnou
LiDARovou reprezentaci a vyuzili jsme
CycleGAN k tomu, abychom tuto repre-
zentaci co nejvice priblizili reAlnému svétu.
CycleGAN byl natrénovany s pomoci da-
tasetu z redlnych méreni, ktery laskave
poskytla spolec¢nost Valeo.

Klicova slova: Generativni
adversarialni sité, CycleGAN, LiDAR,
hloubkova data, GTA V

Preklad nazvu: Simulace hloubkovych
senzoru pro autonomni uceni a testovani
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Chapter 1

Introduction

. 1.1 Motivation

A large number of machine learning applications rely on a vast amount of data
from the real world to infer useful relations. However, obtaining this amount
data is not always a viable option. The problems with obtaining data are
multiple — i.e. human labor costs for labeling, hardware wear and situations
impossible to create in real world (such as crashing). Luckily, computer
graphics started to become more and more realistic in recent years [I], and
it is now possible to capture image and depth data from computer games.
The in-game data have one significant advantage — it can simulate almost any
scenario such as crashing, unusual environment, etc., as long as it is possible
within the game.

Although the data captured from the modern computer games look almost
realistic, it suffers from many problems to be readily usable by machine
learning applications. The most significant drawback is the fact, that they
look too perfect — real-world sensors often measure data with noise or fail
altogether.

Our goal in this thesis is to find such a mapping between the in-game data
and the real world data to be able to transform the in-game data to look as
realistically as possible. Since we do not have a one-to-one correspondences
between these data, it is necessary to apply methods of unsupervised learning.
Recently, a new method suitable for unsupervised generative learning called
CycleGAN [2] emerged and it is based on Generative Adversarial Networks
(GANs) [3]. This method was shown to work on various unpaired image
datasets, however, as far as we know this is the first work which is trying to
apply it on LiDAR measurements.

The full pipeline will therefore accept RGBD images from GTA V as an
input and we will try to model LiDAR sensors using these data as realistically
as possible. The additional input to the pipeline are the real LiDAR scans
kindly provided by the Valeo company which serve as a reality constraint.
For better understanding of the work see schema of the pipeline in the figure
1l
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GTA Depth images

GTA RGB images Our pipeline
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Figure 1.1: Schema of the resulting pipeline. On the left side there is an input
to the pipeline, RGBD images from GTA V. We are trying to convert the data
into realistically looking LiDAR data with depth and intensity information. In
order to model the data realistically, we use Valeo data from Velodyne LiDAR
as an additional input to the pipeline, however, these data don’t have one-to-one
correspondences to the GTA data.

. 1.2 Contribution

In this thesis we created a modular framework for easy training of Cycle-
GANSs and implemented various state-of-the-art methods such as GAN [3],
LSGAN [4], WGAN-GP [5], SimGAN [6] and CycleGAN [2]. We also im-
plemented a pipeline for creating LiDAR-like data from GTA images. We
qualitatively evaluated different GAN implementations employed in Cycle-
GAN on LiDAR-like data using created framework.

Main contribution of this thesis was to show that CycleGAN and by
extension generative modeling applied to LiDAR sensors is feasible.

. 1.3 Thesis structure

In this first chapter, we set up motivation and reasoning for this work and
also briefly summarize contribution of this thesis. The next chapter is an
overview of related theoretical work. The first section of said chapter briefly
summarizes recent work in the field, while the next section explores more
deeply neural networks used in this thesis. The last section of this chapter
describes operation of LIDAR which we are trying to simulate in chapter |5

Chapter [3]is dedicated to the used datasets. In this chapter, we summarize
key characteristics of the datasets and how they were obtained.

Chapter |4 describes all the programs written for the purpose of this thesis
and shows their functionality. This chapter can also serve as a user guide for
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the programs.

Chapter 5| describes the performed experiments. We also describe all the
drawbacks we encountered during the experiments. The chapter ends with a
showcase of results.

In the last chapter, we analyze all the results and discuss the achieved
contributions of this thesis, followed by plans for the future work and conclu-
sion.






Chapter 2
Theory

. 2.1 Related work

Johnson-Roberson et al. [I] showed that using data from the computer games
as a training set for the machine learning tasks is a promising approach
showing potential. However, oftentimes these data are not realistic enough,
especially when interested in different data than RGB images.

Interesting approach for recreating the data could be style transfer [7] by
Gatis et al., however, these methods are usually interested only in artistic
image translation which is not useful for creating realistically looking images.

The first major work in the area of generating images was done by Goodfel-
low et al. [3] by introduction of Generative Adversarial Networks. Since then
many variants improving on the original paper emerged focusing on different
tasks.

An interesting approach taken by Koltun [8] tries to generate realistically
looking images from pixel-wise annotation. This approach seems to work
really well, however, is only suitable if you know pixel-wise annotation of the
images, therefore we could not use it in our work.

In the area of image-to-image translation, Isola et al. [9] introduced pixel-
wise loss in order to generate visually appealing yet constrained images.
Similar approach was taken by Shrivastava et al. [6], with their SinGAN
which introduced self-regularization loss to constrain generation process
within the desired direction and were able to solve the generative task within
semi-supervised settings.

Later on Zhu et al. introduced CycleGAN [2] with the cycle consistency
loss in order to solve the image-to-image translation task without paired
correspondences. However, all of the recent work was done only on regular
images. As far as we know we have not found any published work in the area
of generating or translating depth data from LiDAR sensors.

. 2.2 Used neural networks

The neural networks (sometimes also called artificial neural networks or ANNs)
are a powerful tool of today’s machine learning. The main component is an
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artificial neuron, a computational unit which takes an input and computes
a predefined (usually linear) function with its internal parameters. This
output is then optionally fed through (usually nonlinear) activation function
to introduce nonlinearities in the output. The artificial neurons can be stacked
next to each other to form layers, and if we connect multiple layers together,
we have a neural network. We can think of the neural network as a nonlinear
transformation function with multiple internal parameters.

The process of training the neural network to give the output we desire
then consists of feeding the input data into the network and evaluating the
performance by the loss function, which computes a real-valued number
associating the actual output of the network with a notion of a “badness” in
comparison with the expected output. This loss function could be for example
a norm of a difference between the output of the network and the output
given by a human in the case of image labeling or it could be more complex
function altogether. The loss function is then minimized with respect to the
internal parameters of the neural network by gradient descent algorithm. The
most used gradient descent algorithm is a stochastic descent and its variants
such as Adam [I0] or Adagrad [11].

If the loss function is well defined over the problem set, then the network
will give the desired results at the global minimum of the loss function.
However, since this function is a function of the parameters of the network, it
is generally not convex and highly dimensional, and therefore it is hard to
reach the global minimum. LeCun [I2] gave numerous tricks to improve the
likelihood of finding a good enough local minimum.

The neural layers we introduced above are usually called fully connected
because all the outputs from one layer are connected to all the neurons from
the next layer. This was one of the first formulations of artificial neural
networks [13]. However, these fully connected layers are not well suited for
computer vision applications, since we would like to have the same response
to the particular object in the image regardless of its position or orientation.
To overcome this issue, the convolutional layers [14], which perform a mathe-
matical operation of convolution over the input, were introduced. Quite often
these convolutional layers are followed by the fully connected layers at the
end of the network.

A recently proposed residual block [15] also plays an important role in
current state of the art architectures. The paper proposes it should be easier
for the network to learn the mapping h(-) from equation y = h(x) + x instead
of learning the mapping y = f(x). The reasoning for this reformulation is
that if it is needed to learn mapping close to identity it is much easier to learn
it in this settings. It was shown by the original paper that it was possible to
reduce the sizes of the well-performing architectures while still maintaining
or improving their accuracy. The only drawback of this residual block is that
it cannot change the size of the input.

6
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B 2.2.1 Generative adversarial network (GAN)

A generative adversarial network is a concept by Ian Goodfellow [3] aimed at
learning to generate a sample from a particular distribution. The main goal is
to train a generator network to produce samples from the target distribution
given a sample from some noise distribution. In order to achieve this, a second
network called discriminator is introduced, and its main goal is to distinguish
between the samples from the real target distribution and the “fake” samples
produced by the generator network given a noise sample. If the whole setup
is modeled in such a way that the trained discriminator outputs a scalar
assigning a probability of the sample coming from the target distribution, the
generator is then trying to produce the samples that are convincing enough
to the discriminator so that discriminator’s output for the generated samples
is as close to 1 as possible. This setup was originally formulated within the
maximum log-likelihood estimation setup. It could be seen as a two-player
minimax game with the value function V(G, D) shown in equation [2.1, where
G and D are generator and discriminator functions respectively, piarget is a
target distribution and pj;se iS a noise distribution that is usually chosen as
a uniform, however, it could be any other source of noise data.

minmax V(G, D) = Eonpigryed 108 D(2)]+ Eznp,,i.. [log(1-D(G(2)))] (2.1)

This formulation immediately yields loss functions for the generator (equa-
tion 2.2)) and discriminator (equation 2.3) where @ are the samples from the
target distribution that we present to the networks during the learning and z
is a noise sampled at each iteration of the training algorithm.

Lo =log(1 - D(G(2))) (2.2)

Lp = —(log D(zx) + log(1 — D(G(2)))) (2.3)

It was theoretically shown [3] that in the case of generator and discriminator
having enough capacity this setup allows to train the generator to be able to
generate samples indistinguishable from the samples from pigrge¢. However,
this is not easily achievable in practice. One of the main problems is that
generator usually does not have an infinite capacity. More problems stem
from the fact that the original loss function (equation 2.2)) for the generator
does not provide strong enough gradients early in the process of training,
therefore a new loss function with the same theoretical properties, but stronger
gradients was introduced as shown in the equation |2.4.

Le = —log(D(G(2))) (2.4)

In practice, we are trying to find the Nash equilibrium [I6] of a highly
dimensional, non-convex function and while we can obtain gradients for
this function using training samples, there is no known algorithm to solve
this game exactly [I7]. To overcome this obstacle, it is recommended [3] to

7
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alternate between training step of the generator and the discriminator on the
same data with discriminator being trained first. It is helpful for the training
process to train discriminator near its optimum before updating generator
and to achieve this, it might be necessary to train discriminator more than
once for one batch of samples.

Another problem that could very easily occur is a mode collapse of the
generator — a point, where generator does not use its full potential and
generates a fixed point for multiple inputs keeping discriminator in the
dark. Since the generator receives its gradients from the discriminator and
discriminator cannot give any useful information anymore, the generator
will not be updated in any sensible direction past the point where the mode
collapse occurred. After the mode collapse, it does not make any sense to
train the affected networks anymore.

B 2.2.2 GAN variants

Since the inception of GANs, many variants emerged trying to overcome some
of the issues outlined in the previous subsection. According to DeepHunt [1§],
there were 354 papers proposing a variation of GAN as of 10" May 2018.
Most of these improvements revolve around redefining the loss functions and
introducing various tricks to achieve better training stability.

In the following subsections we will shortly describe some of these variants
with their particular improvements and differences from the original GAN.

B DCGAN - Deep Convolutional GAN

DCGAN [19] is not a variant of GAN per se, as it mostly involves guidelines
for stable training of GAN where discriminator and generator consist of
multiple convolutional layers. The said guidelines can be briefly summarized
as:

® Use strided convolution and deconvolution instead of pooling layers.
The reasoning behind this is to allow the networks to find their own
representations of up-sampling and down-sampling operations.

® Use batch normalization [20] everywhere applicable (i.e. in every layer
except the last one). This allows to normalize the gradients for every
layer according to the batch.

® Do not use fully connected layers that are not the direct output of the
discriminator. If there are hidden fully connected layers, then the model
stability might improve, however, it reduces convergence speed of the
training process.

® Use ReLU [21] activation for generator’s layers except the last layer using
hyperbolic tangent. It was observed, that ReLU helps convergence speed
of the training process the most.
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® Use LeakyReLU [22] activation for discriminator’s layers. This seems to
be especially helpful in higher resolution settings.

® Use Adam [I0] optimizer with different hyperparameters than the usual
default. Especially necessary is to lower the learning rate and momentum
terms.

B LSGAN - Least Squares GAN

The main idea behind LSGAN [4] is not to use maximum log-likelihood
framework, but to use least squares instead. The formulation of the generator
and discriminator loss functions can be then seen in equations [2.5| and [2.6],
where a, b and ¢ are target values of the discriminator that we are aiming
for. In most applications, ¢ = a =1 (or 0.9 to introduce label smoothing, as
proposed by [17, 23]) and b = 0.

L= L(D(G(2) — o) (25)
Lo = 5(Dlx) —a) + S(D(G(2)) b (26)

The reasoning for this reformulation of the loss functions is mostly to
provide better gradients and to move the generated samples closer to the
decision boundary. In traditional GAN, samples that pass the decision
boundary do not provide strong enough gradients and do not contribute to
the learning process. However, with the LSGAN, there is only one flat point
of the loss functions without strong gradients.

B WGAN and WGAN-GP — Wasserstein GAN (with gradient penalty)

One of the ideas of the original GANs we have not talked about before is
minimizing some metric between the generated and the target distributions.
This metric is usually well defined by the respective loss function and for
original formulation of GAN it was Kullback-Leibler divergence [24] and for
LSGAN it is Pearson x? divergence [25].

WGAN [26] was introduced to minimize Wasserstein-1 distance [27], also
known as Earth-Mover. This definition yields following loss functions as seen
on equations [2.7] and [2.8.

Lo =—-D(G(2)) (2.7)

Lp = D(G(z)) — D(z) (2.8)

However, to enforce a Wasserstein-1 distance, it is necessary to satisfy the
condition that function D is K-Lipshitz continuous for any given K. This is
not easy to achieve and the method used in the original paper was weight
clipping to a tight bounding box after each update. It is worth noting the

9
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authors admit that this solution is impractical and obviously wrong, however,
they could not think of a better solution at the time.

The reformulation of WGAN called WGAN-GP [5] emerged soon after and
introduced less drastic way to enforce K-Lipshitz continuity. The discrimina-
tor’s loss function would receive an additional term called gradient penalty
forcing the gradients of the function to be “approximately 1 almost every-
where”. This gradient penalty removes the need for the weight clipping in the
original paper and it is shown in equation 2.9, where & = ex + (1 — €)G(2)
and € is a uniform random number from the range [0; 1].

Lap = (|[VaD(E)]|, —1)° (2.9)

It is now even more critical than in the original formulation of GAN to
train the discriminator to almost optimum. This stems for the fact that
better discriminator yields much stronger gradients than poorly trained one.

Authors of WGAN-GP showed, that the gradient penalty is superior to
the weight clipping since the original WGAN exhibited either vanishing or
exploding gradients quite often. To demonstrate higher stability, WGAN-
GP authors trained many architectures with this criterion on ImageNet [28]
dataset and measured the Inception score [I7] (score based on ability to
produce samples from different ImageNet classes with high classification
rate by Inception network [29]) achieved by the network. It was shown [5],
that many more architectures were able to obtain high Inception score when
trained by WGAN-GP loss functions instead of original GAN loss functions.

Quite an important thing to note is the fact, that WGAN-GP cannot use
popular Batch normalization [20] layers as it alters the gradients of the layers
and makes the gradient penalty useless. The recommendation by the article
authors is to use Layer normalization [30] layers instead. It is also beneficial
to widen the range of the discriminator function to [-1; 1] (as opposed to
[0; 1] in the original GAN) and to achieve this, it suffices to only change
the activation function of the last layer of the discriminator to hyperbolic
tangent.

B 223 SimGAN

SimGAN [6] is GAN variant aiming to learn a refinement of simulated data
to make them look realistic enough. The paper called the generator network
with the name refiner to emphasize the fact, that it received simulated
data (instead of noise) on the input. The paper introduced three important
concepts in the field of GANs. The first one is local adversarial loss — this idea
means, that the discriminator should not produce only scalar output, but
a response map, where each part of this map corresponds to the particular
patch of the evaluated image. The reasoning behind this is to allow patches
with not so dominant features to contribute to the loss of the discriminator
and by extension of the refiner as well.

Second key idea is adding a so-called self-regularization term to the refiner’s
loss function. This term can be seen in equation [2.10, where x is a sample

10
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from simulated data (refiner’s input), & is a refined sample (refiner’s output),
Areg is a relative weight given to the importance of this loss term and v is a
feature mapping from image space to the feature space. This feature mapping
could be any function with important properties (such as classification of
the data), or it could be a simple identity and then the L., would become
pixel-wise distance.

Lreg = Areg |Y0(x) — ¥(2)]] (2.10)

This self-regularization term allows to teach the refiner to keep the most
important information of the image during the refinement process.

Third key idea is to introduce memory for the discriminator’s learning
process. The discriminator should be unable to forget about the images it has
seen an epoch ago. In order to facilitate this memory, a history buffer which
keeps the refined samples is introduced. When performing single optimization
step on discriminator weights, approximately half of the used batch is replaced
with the samples from this history buffer. To be able to limit the buffer
size, after performing the training step, half of the samples from the batch is
randomly selected and random samples in the history buffer are replaced by
this selection.

Bl 2.2.4 CycleGAN

CycleGAN [2] is a concept aiming to match two different distributions by the
means of GANs. The core idea is to have two GANs trained simultaneously
with one generator learning the mapping from the first distribution to the
second and the other generator learning the reverse mapping. To enforce this
reverse mapping, new term called cycle consistency loss is added to the loss
function of the generators. This loss term can be seen in the equation 2.11],
where px, py are the distributions between which we try to find a mapping
x ~ px, Yy~ py, Gx_y is a generator mapping from px to py, Gx_y is a
generator mapping from py to px and Ay is a relative weight given to the
importance of this loss term.

Leye = Aeye(|Gy - x (Gxoy (@) — 2l + [|Gx oy (Gy-x(y) —yll) (2.11)

This approach of training two GANs simultaneously can give us mapping
between these two distributions without having a pair-to-pair correspondences.
It is important to note that even though this closely relates to the style
transfer problem, the resulting mappings should work in both directions
which is usually not the case with more common approaches [7] to the style
transfer. Since this seems like an approach that could help us model the
mapping between real-life and in-game data of the cars’ sensors, we decided
to use CycleGAN as a basis for our experiments using various underlying
architectures of GANs.

The CycleGAN does not concern itself with the particular type of GAN
used as a generator mapping, however, original results were published using

11



2. Theory

LSGAN with instance normalization [31], Ay = 10 and local adversarial loss
used for discriminator.

B 2.3 Description of LIDAR

The LiDAR (which stands for Light detection and ranging) is an essential
technology for autonomous cars. It is a variation on radar (Radio detection
and ranging) which uses light beams instead of radio waves. The main idea is
to emit an infrared laser beam and measure the time it took for the reflected
beam to arrive at the emitting point. It is then possible to measure the
distance of reflected object using the measured time and the speed of light.

In order to be able to capture the whole 2D range around the car, it is
necessary to revolve the emitted laser. Traditionally, this was accomplished
by the means of rotating mirror, however, this limits the number of points
retrievable from the system. Another issue with the rotating mirror approach
is the fact, that it scans only one fixed line around its perimeter. To overcome
this issue, Velodyne company developed a new type of LiDAR in 2007 using
64 fixed lasers with varying vertical angles spinning together. This allows to
widen the vertical field of view and obtain many more points as compared
to the rotating mirror approach. The scheme of the Velodyne HDL-64E
LiDAR can be seen in the figure [2.1. This was the first occurrence of such an
advanced system for autonomous cars’ applications and Velodyne became the
de facto standard for depth imaging in the car industry. Since then, six more
models were introduced by the Velodyne company in an effort to reduce the
size and weight of the LiDAR, but many companies including Valeo still uses
HDL-64E due to the highest bandwidth. It can produce up to 2.6 million
points per second.

Bl 2.3.1 Technical details of Velodyne HDL-64E LiDAR

Velodyne HDL-64E LiDAR produces two types of information for each laser
ray — distance (up to 131 meters) and intensity of the returned ray. The
returned intensity depends on the reflectance of the object hit by the laser
ray, which in turn depends on the material and the color of the object.

It is possible to operate LiDAR in three modes according to the reported
data — “strongest” (the point with the highest intensity is reported), “last”
(the point with the largest distance is reported, which is useful if one wants
to discard partially reflective materials such as glass) or “both”, meaning
that both strongest and last is returned. If they happen to be the same, then
the second strongest response is returned as well. If the return mode is either
“strongest” or “last”, then the number of returned points is essentially halved
since only in “both” return mode each laser returns 2 points per firing.

The reported accuracy of the LiDAR is less than two centimeters. It
has vertical field of view of 26.8° with upper block of lasers having vertical
resolution of 0.33° and lower block of lasers having vertical resolution of 0.5°.
It is able to rotate at various speeds ranging from 300 RPM to 1200 RPM.
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Figure 2.1: Scheme of Velodyne HDL-64E LiDAR

The data is reported with the same rate regardless of rotation speed, therefore
horizontal resolution depends on the current rotational speed. For the speed
of 600 RPM (default value [32]) the horizontal resolution is 0.1728° and the
number of generated points per one rotation of the unit is 133376.
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Chapter 3

Datasets

B 31 Depth sensors

Using outputs from depth sensors in neural network can be quite challenging.
The main difficulty stems from the fact that even though most of the depth
sensors (including LiDAR) capture data on a regular grid, there is usually
needed some post-processing of the data which discards some invalid points
(for various reasons, i.e. the point is too far to be considered reliable or the laser
did not return any response). This post-processing usually results in a point
cloud (with additional information such as intensity) of an #rregular shape —
meaning there is not the same amount of points in one measurement. This is
a problem that is not easily solved by neural networks with convolutional and
fully-connected layers. The reasoning for why this is an obstacle is provided
in section [2.2L

Since we are aiming at generating data using CycleGAN [2], we ideally
want measurement from both datasets to have equal shape. If that would
not be possible for some reason, the least constraining requirement is that
there is a mapping representable by a neural network which transforms a
measurement from one dataset to a measurement from other dataset with
matching shapes and vice versa.

To ease the work of neural networks, we decided to use representation
as close to LIDAR as possible for both datasets. Velodyne HDL-64E (the
LiDAR used by Valeo company) has 64 lasers (each with different vertical
angle) and by default spins at 600 RPM, which according to the LiDAR
manual [32] means that horizontal resolution is 0.1728°. We can then create a
grid of 64x2084 virtual lasers, where this grid corresponds to all data points
collected during one full rotation of LiDAR. The process of creating such
grid consists of casting a ray from the camera center corresponding to the
particular horizontal and vertical angle to the point cloud and finding the
closest point to this ray. Then, threshold of the distance of the point from
the ray is necessary to make sure our closest point is not too far away. We set
up this threshold as 0.5 % of the distance from the camera to simulate conic
nature of the laser. This reasoning immediately shows that a multi-channel
grid is necessary where at least one of the channels encodes validity of the
corresponding ray. One measurement therefore consists of an “image” of size

15
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(a) : Grayscale image (b) : Depth image

Figure 3.1: Example of images from GTA

64 %2084 x 3, where first channel corresponds to the distance of the ray from
the camera center, second channel corresponds to intensity of the response
(information that real LiDAR outputs as well) and third channel corresponds
to validity of a particular ray.

Another way a particular laser in this “image” can be invalid is if the
corresponding point found in point cloud is either too far or too close from
the camera center. These limits come again from the Velodyne HDL-64E
manual, minimal distance is 0.9 meters, maximal distance is 131 meters.

It could happen, that substantial amount of information would be missing
from one measurement — especially if the point cloud was rather sparse (as it
was in Valeo dataset case). Even worse, the missing information could look
entirely random. To remedy this, we employed linear interpolation of the
rays, that are marked as invalid and have at least half of their neighbors in a
neighborhood of size 3 valid. The said interpolation involved distance and
intensity as well.

There are numerous advantages of this representation. One is that such
representation could be easily treated as an image by neural networks and
therefore convolution is applicable. Also, for neural networks, fixed-size
input is often desired. Another advantage is that this representation is easily
transformable to the point cloud representation. And if we take first channel
separately and mask it with validity channel, then it can be easily displayed
as a depth image of size 64x2048.

The only thing considering depth dataset creation we have not talked about
yet is the method of obtaining the corresponding point clouds, camera center
and starting rotation. Those aspects vary depending on the dataset and
therefore we will talk about them in the next two subsections.

B 3.1.1 Grand Theft Auto dataset

Thanks to Matéj Racinsky, who did tremendous work on exploiting Grand
Theft Auto and extracting information from it automatically (such as depth,
stencil buffer, etc.), we only had to use the data provided by his scripts.
The data came in the form of the depth image such as |3.1b| from in-game
camera and corresponding camera matrix transforming the image to the world
coordinates. However, due to the game limitations, it was always possible
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(a) : Full point cloud (b) : Reconstructed point cloud

Figure 3.2: Point clouds from GTA dataset

to capture only one camera at a time and it took non-zero time to switch
the cameras to capture another image. Because of these limitations it took
about one second of in-game time to capture the full 360° scene around
the car. Data in Valeo dataset produce a full scan at a rate of 10 Hz and
since we wanted to match the Valeo data as closely as possible, we simply
interpolated positions of the car with 100 ms intervals. This actually created
more measurements than depth images, however they are all taken from a
different position in the in-game world.

All four virtual cameras sit at the height of one meter from the car center,
which later proved to be too low and therefore quite a large portion of the
car was reflected in LiDAR-like image. To correct for that, the center of
the virtual LIDAR was shifted by 1.5 meters above the camera centers (2.5
meters above the car center).

Since the intensity of real-life LiDAR largely depends on the color of
the surface, we decided that the intensity component of each ray would be
determined by gray-scale value of the corresponding pixel of the in-game
camera. The example of this grayscale image is shown in the figure |3.1a.
The dataset has 14046 LiDAR-like measurements, and it was split into two
parts — training and testing. Training portion of the dataset consists of
8427 measurements, testing contains 5619 measurements. Data from testing
portion were not seen by the network during the training phase. The size of
the dataset translates into 1404.6 seconds of in-game time that was recorded
continuously.

Figure [3.2a] shows an example of the original point cloud, figure [3.2b|shows
the recreated point cloud from the LiDAR-like data from GTA dataset, figure
3.3/ shows an example of a first channel of the data corresponding to the depth
and figure [3.4] shows the second channel corresponding to the intensity. To
ease the viewing, the horizontal stripe of 64x2084 is cut into 4 pieces stacked
on top of each other, creating the new size of 256 x521.
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Figure 3.3: First channel (depth) of LiDAR-like data from GTA dataset. For
easier viewing, the stripe of data is divided into 4 equal stripes stacked on top of
each other.

Figure 3.4: Second channel (intensity) of LiDAR-like data from GTA dataset.
For easier viewing, the stripe of data is divided into 4 equal stripes stacked on
top of each other.

B 3.1.2 Valeo dataset

Valeo company provided us with two types of data — raw and converted.
Raw data contained UDP packets from various sensors before any processing
with most prominent being Velodyne HDL-64E LiDAR and OXTS xNAV
550 which is a GNSS-aided inertial measurement system. Converted data
consisted of point clouds and transformation matrices. Each point cloud
corresponded to one full rotation of LIDAR and was already compensated for
the movement of the car. The matrices served for transforming particular
point clouds into common reference frame. This reference frame was usually
the same as the coordinate frame of the first point cloud — therefore the
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(a) : Original LiDAR point cloud (b) : Reconstructed point cloud

Figure 3.5: Point clouds from Valeo dataset

first point cloud had identity as this transformation matrix. The origin of
the coordinate frame seemed to be in the car center — we moved the virtual
LiDAR center by two meters up to simulate it being on top of the roof of the
car.

We decided it would be easier to use converted data — mostly because it
seemed that it contained precisely the same data as the raw, but without
the hassle of parsing and processing Velodyne and OXTS UDP packets.
Converted data also contained intensity measurements.

The dataset consists of 22 runs of lengths from 60 to 80 seconds in a
cityscape only, resulting in total of 17393 full scans. Training portion of the
dataset contains 10435 samples, testing part has 6958 measurements. The
data were recorded from 22" February 2017 till 28" March 2017 with two
different cars.

‘.'ﬁlun——-—- —— e R

Figure 3.6: First channel (depth) of LiDAR-like data from Valeo dataset. For
easier viewing, the stripe of data is divided into 4 equal stripes stacked on top of
each other.
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Figure 3.7: Second channel (intensity) of LiDAR-like data from Valeo dataset.
For easier viewing, the stripe of data is divided into 4 equal stripes stacked on
top of each other.

Figure shows an example of the original LiDAR full scan, figure 3.5b
shows the recreated point cloud from LiDAR-like data, figure [3.6| shows an
example of a first channel of the data corresponding to the depth and figure
3.7 shows the second channel of the data corresponding to the intensity. The
last two images are partitioned similarly as in figure |3.3
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Chapter 4

Programs

The main program developed for the purpose of this thesis was a Python
package cycle implementing modular CycleGAN [2] in TensorFlow [33] and
two programs built on top of this package. This package and associated
programs reside in a directory mod-cycle-gan at https://gitlab.fel.cvut,
\cz/jasekota/master-thesis/tree/master/code/mod-cycle-gan and will
be therefore together referenced as mod-cycle-gan. There is also an utility
program written in C++ called dat-unpacker which reads ADTF DAT files
used by Valeo company and extracts data from them into an intermediate
format similar to the one gathered from GTA. Last portion of the code
developed for this thesis is a folder with various Python modules (with
critical part of the code written in Cython) and scripts with simple name
data-processing. These three programs/packages will be described more
in depth in the following sections.

The entire developed code is in the directory code on enclosed DVD (see
appendix |A| for more contents of the DVD) and also available at
//gitlab.fel.cvut.cz/jasekota/master-thesis/tree/master/codel

B mod-cycle-gan — Python package cycle and
programs train.py and test.py

Python package cycle is the implementation of CycleGAN [2] with large
inspiration from GitHub repository of Van Huy at https://github.com/
vanhuyz/CycleGAN-TensorFlow,

B 4.1.1 Exported classes
® CycleGAN — Main class implementing CycleGAN.

__init__QO
Constructor of this class takes numerous arguments. First two argu-
ments (XtoY, YtoX) correspond to GANSs to be set in cycle fashion
(instances of nets.GAN or its subclasses), another two (X_feed,
Y_feed) are for TFRecords file readers (utils.TFReader) and an-
other two (X_name, Y_name) correspond to names of the dataset
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4. Programs

for pretty printing of logs and Tensorboard messages. Following
argument (cycle_lambda) is a A for cyclic loss function (for more
detail see section [2.2.4). Next argument (tb_verbose) is a boolean
for deciding whether to create summaries for Tensorboard and fol-
lowing argument (visualizer) is a function to use for visualizing
the data in Tensorboard — if this argument is set to False or None
then no function will be used for visualization.

Next four arguments (learning_rate, betal, steps, decay_from)
control optimization process — namely initial learning rate for Adam
optimizer [I0], parameter betal of said optimizer, number of steps
(where one step corresponds to one batch) and number of steps after
which the learning rate starts to decay to eventually stop at zero.
Following argument (history) indicates, whether to use history
pool according to [6] and finally, last argument (graph) specifies
the computational TensorFlow graph in which the model should be
created. If it is left as None, then new graph will be created.

get_model()
This method actually creates the full model in TensorFlow graph.
As such, it should be only called once. It sets up all the losses and
their respective optimizers. This method has no arguments.

train()

This method is the main training loop. The only required argu-
ment (checkpoints_dir) is the top-level checkpoints directory in
which a new directory for this session is either created if needed
or selected as a loading point in case of retrying training. Next
two arguments (gen_train, dis_train) specify how often should
be generator and discriminator trained within one training step.
Next argument (pool_size) specifies the size of the history pool.
Following argument (load_model) specifies a directory from which
to load a saved model if retrying. Note that it is a path relative
to top-level checkpoints directory. If this argument is None, new
directory with current timestamp is created and new training starts.
Next argument (log_verbose) is a boolean specifying whether to
log current loss periodically or not. Next argument (param_string)
specifies string which is a serialized version of arguments with
which [train.py| script was executed. This string will be saved
to checkpoint directory with name params.flagfile. Last argu-
ment (export_final) specifies whether to export final model after
training as a binary protobuf used for testing.

export ()
This method requires two arguments — first argument (sess) is a
session in which a model was run and the second (export_dir) is
a directory in which to save the model. There will be two saved
models of names {Xname}2{Yname}.pb and {Yname}2{Xname}.pb
which can then be used for testing. This method is automatically at
the end of the train() method if the last argument (export_final)
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was set to True.

export_from_checkpoint () — static method
This method is a static counterpart of the export() method. It
requires more arguments than method export() because it does
not have all the book-keeping information the instance method
has. First two arguments (XtoY, YtoX) are instances of GANs
with the same model as used for training, another four arguments
(X_normer, X_denormer, Y_normer, Y_denormer) are normaliza-
tion and denormalization functions to be used for both datasets
prior feeding the examples to network and converting them back
to useful values. Next argument (checkpoint_dir) corresponds to
checkpoint directory where the model is stored and following argu-
ment (export_dir) specifies directory in which the output models
will be saved. Last two arguments (X_name, Y_name) correspond to
the names of the datasets for easier identification of created models.

test_one_part() — static method

This method tests the stored exported model with a NumPy file and
saves the important outputs of the network to a new NumPy file.
First argument (pb_model) is a path to an exported binary protobuf
model of the network to test. Another argument (infile) specifies
the path to the input file to test and next argument (outfile)
corresponds to a path of output file. This output file will be a Npz
NumPy file with three fields — output (output generated by corre-
sponding generator), d_input (value of corresponding discriminator
evaluated on input data) and d_output (value of corresponding
discriminator evaluated on output data).

Last argument (include_input) is a boolean specifying whether to
include input data in the output file or not. If set to True, outfile
will become larger, however it will be more self-contained.

® utils.TFReader — Class for reading TFRecords file, which is a Tensor-
Flow binary format for efficient storage of data and features based on
Protobuf.

__init__Q)
First argument (tfrecords_file) specifies the path to the TFRecords
file to read. Another argument (name) specifies the name of the
dataset. This name is rather important, because it needs to be
the same as set in TFRecords file utils.TFWriter for parsing of
the TFRecords file to be successful. Next argument (shape) is a
shape of one example stored in TFRecords file. Since all the data
in TFRecords file are stored as flattened arrays, this needs to be
set to correct size in order to reshape it to desired size. Next argu-
ment (shuffle_buffer_size) is passed to the method shuffle()
of tf.data.Dataset and as such represents the number of samples
used for shuffling. Following two arguments (normer, denormer)
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are functions operating on tensors for normalizing and denormaliz-
ing elements of the dataset (i.e. casting to correct type, squeezing
or expanding range, etc.) By default these are identity functions.
These functions should be able to accept a keyword name (they are
used for exporting). Next argument (batch_size) is a size of one
batch produced by this reader and the last argument (num_threads)
specifies how many threads should be used in operations concerning
creating the dataset where applicable.

feed()
This method returns new batch of elements from the dataset
when run in TensorFlow session. It is used by CycleGAN meth-
ods get_model () and train(). It does not accept any parameters.

B utils.TFWriter — Class for creating TFRecords file from NumPy files.

__init__ QO

The constructor accepts three arguments — first argument (name) is
a name of a dataset. Next argument (infiles) is either a single
NumPy file or a list of such files comprising the full dataset. It is
expected, that all dimensions except the first one will match within
the files. The first dimension represents number of single elements
(with possibly more complex shape, such as 64 x 2084 x 3 as is the
case in LiDAR-like data used in our experiments) of datasets. Last
argument (process_data) is a function operating on these single
elements and tweaking them somehow if needed before storing the
data to TFRecords file. The reason, why this argument might be
useful (instead of using argument normer of class utils.TFReader)
is that this function does not operate on tensors which makes most
functions more limiting.

run()
This method takes one argument (outfile) specifying path to the
output TFRecords file. It will report progress to the default logger
(with level INFO) every 10 examples processed.

® utils.DataBuffer — Class implementing history pool according to [6].
This class is used by method train() of class CycleGAN and should not
be instantiated on its own.

__init__QO
Constructor of this class takes three arguments. First argument
(pool_size) manages the size of the pool to be used. It has to be
either —1 (where essentially there is no pool and this particular
instance of the class has no effect) or at least as large as the second
argument, batch_size. Third argument (old_prob) controls the
probability with which the older image is returned by method
query () instead of the one that was given. This probability comes
to play only when the buffer is filled to its maximum (pool_size).
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query ()

This method will return the data of the same shape it was fed (by
first argument — data). If the internal buffer was already filled,
then it will replace randomly elements of the data forming a batch
with a probability given in the constructor by argument old_prob
and swaps the elements it replaced into its buffer in the places of
the elements that are used in replacement. If the buffer is not filled
yet, it will only store the elements from data argument and not
replace them.

Second argument (cur_step) indicates the global step of the train-
ing process in order to be able to return the same data for the
same step (for example, if training uses multiple training step for
discriminator or generator).

® nets.BaseNet — Base class for mapping networks (Generator and Dis-
criminator). This class encapsulates mapping network and if you want
to create your own mapping network and feel limited by the capabilities
of this, you should subclass it and re-implement method transform().

__init__QO
Constructor of this class takes five arguments. First argument
(name) is a name of the network as it will appear in TensorFlow
computational graph and this name will encapsulate all of the
operations of the network. Second argument (network_desc) is
a string describing layers of the network and will be dissected in
more detail at subsection 4.1.2. Third argument (is_training) is
a boolean indicating whether the network is in a training or testing
mode. This is mostly important for norms.
Next argument (weight_lambda) is a A of weight term of the loss
function for this particular network. This was motivated by having
lot of networks with skip connection where we wanted to make only
small changes to the image and thus minimizing the weights of
generators and therefore generating only small perturbations.
Last argument (norm) is a type of normalization used in network
layers. Can be either ’instance’ [31], *batch’ [20], ’layer’ [30]
or anything else for no normalization between layers. It does not
make any sense to use different normalizations within one network
so this setting can be made global for the whole network.

__call__0O

This is the way how the mapping induced by this object will be called.
It essentially just wraps the call to transform() method inside a
variable scope of the name specified by the first argument of the
constructor (name) and collects all the trainable variables into the list
called variables. This book-keeping is done to ease the subclassing
since now the only method to be replaced is transform() without
the need to worry about collecting all the trainable variables and
placing it under same particular variable scope.
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transform()

This method accepts one argument (data) — tensor that will be
transformed by the network. It is the core of the class nets.BaseNet
and if you decide to write your own mapping network by subclassing,
this method must be implemented. By default, it creates the
mapping network according to the argument network_desc supplied
to the constructor. The syntax of this simple string will be more in
depth explained at subsection |4.1.2.

weight_loss()
This method return weight loss of the mapping network defined by
equation 4.1, where 0 is a set of trainable variables of a mapping
function F' represented by this object, Ay r is a multiplier denoting
the contribution of this loss term to the overall loss function and
Lwr is a loss term returned by this method.

1
Lyr = /\wF@ > llwl; (4.1)

webp

® nets.GAN - Implementation of Generative Adversarial Network (GAN) [3].
Uses original loss functions.

__init__QO

First two arguments (gen, dis) of the constructor are the mapping
networks — generator and discriminator (in the original paper G(-)
and D(-)), where discriminator should produce real number in a
range [0; 1] due to the way how is loss function defined. If the
discriminator function’s output is of higher dimension than one,
then the appropriate loss function is computed in each dimension
independently and the final loss is the arithmetical mean of these
loss functions. If discriminator network is a convolutional network,
one can think of this as the loss computed at different patches
extracted by the network [6].

Next two arguments (in_shape, out_shape) specify input and
output shapes of generator without the batch size. Though this
information could be easily obtained from the generator function,
it is there mostly to check that the shapes are correct and indeed
what you intended them to be. Next two arguments (gen_lambda,
dis_lambda) are As that correspond to the weight of the respective
terms in the final loss function. Next argument (selfreg_lambda)
corresponds to the weight of the self-regularization term [6] of the
generator’s loss. Last argument (selfreg_transform) is a mapping
used in the self-regularization term. If set to None, then identity
mapping will be used.

gen_loss()
This method expects one argument — data of in_shape that will
be fed to generator to produce the loss term of the generator
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according to the equation [4.2, where A\g is a multiplier denoting
the contribution of this loss term, G(-) is a generator mapping, D(-)
is a discriminator mapping, x is input data for generator mapping
and Lq is a loss term returned by this method.

Lo = —Aglog(D(G(x))) (4.2)

Note, that the original formulation of the generator loss function
by [3] is slightly different (as seen in the equation 4.3 where all the
symbols have the same meaning as in the equation 4.2)), however
it was suggested in the same paper, that the formulation [4.2] is
equivalent with an important advantage of stronger gradients early
in the training process.

Le = Aglog(l — D(G(x))) (4.3)

dis_loss()

This method takes two arguments (real, fake) which are both of
the out_shape — real is a real sample from the target distribution
and fake is a result of applying G(-) to a sample from the input dis-
tribution. This method then computes the discriminator term of the
loss function specified by the equation 4.4, where Ap is a multiplier
denoting the contribution of this loss term, D(-) is a discriminator
mapping, & corresponds to real argument, y corresponds to fake
argument and Lp is a loss term returned by this method. Original
paper was maximizing the same function without minus sign, and
since we are minimizing all terms of the loss functions, we added
minus in front of the loss function. The division by 2 is there only
to scale both terms equally with respect to the generator loss.

Lo = -2 (og(D(@) +log(L - D) (4.4)

selfreg_loss()

This method takes two arguments (orig, conv) and computes self-
regularization [6] term of the generator’s loss function according
to the equation 4.5, where x corresponds to the orig argument,
& corresponds to the conv argument, 9 (-) is a feature mapping
(specified at the constructor), A.ey is a multiplier denoting the
contribution of this loss term to the overall loss and L., is a loss
term returned by this method.

Lreg = Areg [l9(z) — (@), (4.5)

® nets.LSGAN — Implementation of Least Squares GAN [4]. This is a
subclass of nets.GAN and as such all of the methods accept the same
arguments. The only difference is in the equations governing the compu-
tation of respective terms of the loss function in methods gen_loss ()
and dis_loss().
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gen_loss()
This method implements the generator loss function according to
the equation [4.6l The meaning of the used symbols is the same as
in equation [4.2. The reason for number 0.9 comes from the label
smoothing proposed by [17, 23].

Le = ¢ |D(G(z)) —0.9]3 (4.6)

dis_loss()
This method implements the discriminator loss function according
to the equation 4.7, The meaning of the used symbols is the same
as in equation [4.4.

Lp = Aé)(HD(ﬁ:) —0.9]3+ [D(y)3) (4.7)

B nets.WGAN — Implementation of Wasserstein GAN with gradient penalty
[5]. This is a subclass of nets.GAN as well, however it introduces one
more term to the loss function, so called gradient penalty. This is
implemented in method grad_loss().

__init__Q
The constructor takes the same arguments as the constructor of
nets.GAN with one more argument (grad_lambda) specifying the
weight of the gradient penalty.

gen_loss()
This method implements the generator loss function according to
the equation [4.81 The meaning of the symbols is the same as in
equation [4.2].
Le = -MaD(G()) (48)

dis_loss()
This method implements the discriminator loss function according
to the equation 4.9. The meaning of the used symbols is the same
as in equation |4.4. Note that the gradient penalty term of the loss
function is computed in the method grad_loss()
Lo ="2(Dly) - D(@)) (19)
grad_loss()
This method computes the gradient penalty term according to the
equation |4.10, where Agp is a multiplier denoting the contribution
of the gradient penalty term to the overall loss, & = e + (1 — €)y,
€ is a uniform random number from [0,1] and Lgp is a loss term
returned by this method.

Lap = Aep(|VaD@)]l, - 1) (4.10)

full _dis_loss()
This method computes the full loss of the discriminator, Lpap+Lp.
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B 4.1.2 Parameterization of the mapping networks by
network_desc

The mapping network could be easily parameterized by a special network_desc
string. This string comprises of layers separated by semicolon (’;’). All
layers comprise of letter from {’c’, ’b’, ’r’, ’f’} specifying the layer
type, followed by hyphen (’-?) and a list of numerical parameters specific to
particular layer each of them separated by hyphen as well. The last part of a
layer is again a letter from {’r’, ’t’, ’1’, ’s’, ’i’} specifying the used
activation function for this particular layer. All of the trainable variables
are initialized using Xavier initializer [34] in order to keep the scale of the
gradients approximately the same across all layers. Normalization (either
instance, batch, layer or none) is always used before applying activation
function.

Note that the parameterization using this notation is rather simple and
does not allow all possible configurations of specified layers. If you desire
finer control over created layers, then using this network_desc string is not
ideal for you.

The tail of the network_desc string after last semicolon specifies output
operation and could be any number of the letters from the set {’s’, ’c’,
’a’}. These output operations are chained in the order in which they appear
in the tail of the network_desc string.

B Layers description

’c’ — 2D Convolutional layer [14]

This layer accepts three integer arguments — first argument is a kernel size
(the kernel will have square shape), second argument is a stride (same in
all directions) used in the convolution and third argument specifies the
number of filters used (number of channels in the output). For example
the string ’c-7-1-64-r’ specifies the convolutional layer with kernel of
size 7, stride 1, 64 output channels and ReLU [2I] used as activation
function.

’b’ — 2D Convolutional ResNet [15] block

This layer creates a ResNet block and accepts two integer arguments.
First argument is a kernel size of each layer comprising this block and
second argument specifies the number of repetitions of this convolutional
layer. Since ResNet block requires the input and output dimension to
match, stride is implicitly set to 1 and number of the output channels is
the same as the number of the input channels. For example, the string
’b-3-2-r’ specifies the most classical ResNet block comprising of two
convolutional layers with kernel size 3, stride 1 and ReLU activation in
between of those two layers.

’r’> — Resize and 2D Convolutional layer [35]
This layer was originally deconvolutional [36] layer, however to mitigate
checkerboard artifacts stemming from using deconvolutional layer [35],
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we decided to use instead resize and convolutional layer. It accepts
three integer arguments and one float argument. First three argu-
ments correspond to the same arguments as regular convolutional layer
and last argument corresponds to coefficient of resizing. The resizing
is done using method tf.image.resize_images with resize method
tf.image.ResizeMethod.NEAREST_NEIGHBOR. The number of channels
after resizing stays the same as number of channels in the input image.
For example, the string ’r-3-1-32-2-r’ will first resize the input im-
age making it twice as large as input and then perform convolutional
operation with kernel of size 3, stride 1, 32 output channels and ReLLU
as activation function.

’f’> — Fully connected layer
This is the simple fully connected layer. It accepts one integer argument
specifying the number of output neurons. The input gets flattened before
performing it is fed into the neurons.

B Auvailable activation functions

® ’r’ — Rectified Linear Unit (ReLU) [21]
® ’1’ — Leaky Rectified Linear Unit (Leaky ReLU) [22]

® ’t’ — Hyperbolic tangent function defined by tanh(x) = %
® ’s’ — Sigmoid function defined by S(x) = efil

® ’i’ — Identity, no nonlinear activation function is used.

B Output operation

These operations are chained in order in which they appear in the tail of the
network_desc. Note, that this part of the network_desc can be empty if
you don’t want to use any special output operation.

B ’s’ — Sums the current output with input to the whole mapping network.
® ’c’ — Clip the output of the whole network to the range [-1; 1].

B ’a’ — Use activation function on the output. Since the operating range
for most of the networks is [-1; 1], the only activation function that makes
sense to use is tanh, so this function will be used.

B Example of the full network

The full network could be for example parameterized by string

’c-7-1-64-r;c-5-2-128-r;b-3-3-r;r-5-1-64-2-r;c-7-1-3-t;sc’. This
network consists of two regular convolutional layers with kernel sizes 7 and 5,
strides 1 and 2 and having 64 and 128 output channels. Both of these layers
use ReLLU as activation function. Convolutional layers are then followed by
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one ResNet block with three convolutional layers and kernel size 3 and again,
ReLU is used. Next resize operation follows which creates the image double
the size and is followed by another two convolutional layers with kernel sizes
5 and 7, both strides equal to 1 and having 64 and 3 output channels. First
of these convolutional layers is followed by ReLU activation function, the
second one uses tanh as activation. Output of the last convolutional layer is
then added to the original input and this sum is then clipped to the range
[-1; 1].

B 4.1.3 Models

The module cycle contains a folder called models in which the settings for
different experiments and mapping networks reside. Each submodule in this
folder should correspond to one different parameterization specific to different
dataset. Each submodule should export these variables and classes in order
to be able to use it as a valid model for CycleGAN:

X_name, Y_name
Names of the X and Y dataset.

X_DATA_SHAPE, Y_DATA_SHAPE
Tuples specifying shape of one element of X and Y dataset.

XY_Generator, YX_Generator
Classes specifying generators from X to Y and from Y to X dataset
respectively. Note that these classes should be either nets.BaseNet or
its subclasses accepting the same arguments in its constructor.

X_Discriminator, Y_Discriminator
Classes specifying discriminators of X and Y datasets. Note that these
classes should be either nets.BaseNet or its subclasses accepting the
same arguments in its constructor.

X_normer, Y_normer
Functions operating on tensors and accepting keyword argument name.
These functions will be used to normalize data from X and Y datasets
before feeding them into the network.

X_denormer, Y_denormer
Functions operating on tensors and accepting keyword argument name.
These functions will be used to denormalize outputs from the network.
They should be inverse functions to functions X_normer and Y_normer.

visualize — optional
Function to visualize data during training. This function should accept
three batches of images, original data, output of first generator and
output of second generator applied to the output of the first generator.
The function should return one batch of images (with same batch size
as it received) to show at appropriate place in TensorBoard, therefore
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using concatenate operation is preferred. This function is necessary to
implement if you specify visualizing in train.py] script.

For reference implementation of a particular model for LIDAR-like datasets,
see folder mod-cycle-gan/cycle/models/lidar.

B 4.1.4 Scripts train.py and test.py

The folder mod-cycle-gan also contains two executable scripts — train.py
and test.py. The script train.py is used for training a CycleGAN and
has 36 different flags. However, the script is mostly only a wrapper around
instantiating various classes and running the method train of the class
CycleGAN. Running the script with the help flag ——helpfull lists all the
available flags and their short description. You can set up almost all of the
parameters mentioned in the description of the public methods of exported
classes.

The script test.py is used for testing the resulting network and has 9
flags. It is a wrapper around the static method test_one_part of the class
CycleGAN. Running the script with the help flag —-helpfull lists all the
available flags and their short description.

B a2 dat-unpacker — C++ utility

dat-unpacker is a small utility program based on ADTF Streaming library
by Audi Electronics Venture GmbH. The reasoning for writing this util-
ity program is to be able to unpack data obtained in ADTF DAT format
and further process them. In order to build dat-unpacker, C+-+ compiler,
CMake'| in version at least 3.5, Boost? and ADTF Streaming library are
needed. Binary copy of ADTF Streaming library is provided in the directory
code/external/adtf-streaminglib.

The utility was written with Valeo dataset in mind, therefore a lot of
features are hardcoded and specific to the data from Valeo dataset only. The
utility takes a DAT file as an input, extracts information such as point clouds,
timestamps, etc. from it and dumps the data on disk in a very crude format
for further processing by Python.

This utility accepts four arguments:

-i/-input-file [FILE_NAME] - required
Input DAT file to read. This file needs to contain at least streams with
names containing strings "matrix", "scan" and "3dod". The number
of datablocks within the streams with the names "matrix" and "scan"
needs to be the same. Furthermore, it is expected that each block of
the stream "scan" will contain 4 X 4 X n bytes, where every 16 bytes
correspond to 4 float numbers indicating one point scanned by Velodyne

"https://cmake.org/
Zhttps://www.boost.org/
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LiDAR in XYZI format. All points within one data-block will be in the
same coordinate frame, where position (0, 0, 0) corresponds to the center
of the car, and will correspond to one revolution of LiDAR. Each block
of the stream "matrix" will contain a string "<matrix>[x]" where x is
a string representation of 16 float numbers encoding a 4 x 4 matrix used
to convert each corresponding block of stream "scan" into a reference
coordinate frame. Stream "3dod" contains one datablock consisting of
4 x 4 x m bytes with the same format as blocks from the stream "scan"
with all the points transformed into one common reference frame and
optionally filtered out according to some rule.

The input DAT file may contain additional streams which do not concern
the dat-unpacker utility. The utility probably will not accept DAT files
produced by other companies, unless the adhere to the requirements
specified above.

-o/-output-dir [DIR_PATH] — required

The directory in which to dump all the useful data. The directory will
be created if it does not exist yet. There will be data numbered from
0 with three different extensions — .ts, .matrix and .pts. All of them
are only binary representations of the numeric data contained in the
input DAT file. Files with the extension .ts have size of 8 bytes and it
is one signed long integer corresponding to the timestamp of the block
with microsecond resolution. Files with the extension .matrix have size
of 128 bytes and it is 16 doubles corresponding to the transformation
matrix. Files with the extension .pts have size of 4 X 4 X n bytes and
they correspond to one unmodified block from the stream "scan" of the
input file.

-a/-all — optional

-h

If this flag is specified, there will be one additional file in the output
directory called 0000.dod which contains all the points recorded within
the datablock from the stream "3dod".

Prints the simple help and exits.

4.3 data-processing — various Python modules
and scripts

Folder data-processing contains two Python modules and one Cython
module as well as 4 scripts in a folder scripts. The creation of LiDAR-like
dataset is split into two parts — first we create unified ZIP files containing all
the info we have (metadata such as camera position, rotation, timestamp, etc.,
point clouds and transformation matrix to one common coordinate frame)
and then we create NumPy LiDAR-like data from these ZIP files by casting
virtual rays into the point clouds.
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B 4.3.1 Module zip_processing
The module zip_processing has 4 functions:

rgb2gs
Simple function converting RGB image (rgb) to grayscale without gamma
correction.

depth_to_pcl
Conversion of GTA depth images into point clouds. Takes depth image
(depth), RGB image (rgb, for using grayscale value as intensity of the
point in resulting point cloud), inversion of projection (proji) and view
matrices (viewi) and bounding box (bbox) in which to convert the points.
The points that are further in distance from the camera center than the
limits specified by the bounding box will be thrown away.

make_gta_zip
Creates one ZIP file from GTA data. It expects ID (i) of the GTA file,
paths to json (json_file) with metadata, depth image (depth_file)
and RGB image (rgb_file), bounding box (bbox, with same semantics
as depth_to_pcl) and two optional arguments outputdir (if None, no
data will be saved) and return_data.

make_valeo_zips
Creates ZIP files from Valeo DAT files. Expects a DAT file (datfile),
path to the binary of dat-unpacker (binary) and a directory in which to
store the results (outputdir). It also has one optional argument (remove)
specifying whether to remove temporary files created by dat-unpacker
after processing them into one ZIP file. It creates one ZIP file for each
revolution of LiDAR in the outputdir.

B 4.3.2 Module datapool

The module datapool contains two classes for manipulating ZIP files created
by module zip_processing and three functions for reading data from the
ZIP file. The class DataPool keeps ZIP files in a cache and is primarily
intended for Valeo dataset, since point cloud from one ZIP file corresponds
to the full rotation of LiDAR. The constructor expects a list of ZIP files in a
format produced by functions in module zip_processing. The constructor
will read only metadata from these ZIP files and fetches the data only when
requested by method load_data. This method returns a point cloud and
car center at a particular timestamp. There is also a method load_rotmat
which returns a rotational matrix specifying the the angle between a ray in
the direction (1, 0, 0) and heading of the car.

The class GTADataPool extends the class DataPool and serves the same
purpose, only for GTA data. The reasoning for this is the fact that it is
necessary to concatenate multiple point clouds to simulate a full rotation
of LiDAR. The method load_full_rot fetches the point clouds at nearest
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timestamps, concatenates them together and interpolates the position of the
car at particular timestamp.

The module also has functions read_pcl, read_metadata and read_both
for reading data from ZIP files in format produced by module zip_processing.
All of them expect a path to the ZIP file.

B 4.3.3 Module rays

Module rays is a Cython module, so before using it, it is necessary to compile
the module. For a convenience, there is a simple Makefile provided which
does the compilation. After that you can use it as any you would any other
Python module. It has 4 public functions.

gta_cam_rot
Creates rotational matrix from two NumPy vectors of Euler angles. The
first vector (world_rot) corresponds to world rotation and second vector
(relative_rot) corresponds to relative rotation, since the camera can be
rotated differently than the heading of the car. Third optional argument
(rads) specifies, whether the angles are already in radians or in degrees.

interpolate_lidar

This function fills in missing values of the LiDAR-like data. This pro-
cedure is described more in detail in the section |3 First argument
(lidar_data) is a NumPy array of LiDAR-like data, second argument
(to_fill) specifies the minimal percentage of neighboring rays that
has to be valid in order to fill in the missing value. Next argument
(mask_size) specifies the size of the neighborhood across which to in-
terpolate missing values and last argument (iters) specifies how many
times should the procedure be done. If there is no more values to fill (ei-
ther all values are filled or no missing value has enough filled neighbors),
then this method will do less iterations than prescribed by argument
iters.

get_lidar_data
This method computes the LiDAR-like data from an instance of either
DataPool or GTADataPool classes at a given timestamp. First argument
(pool) corresponds to the instance of the DataPool class, second argu-
ment (timestamp) corresponds to the timestamp at which to compute
the data (double, in seconds, however with double precision), third argu-
ment (lidar_correction) corresponds to the shift of the virtual center
of the LiDAR if it is not located at the origin of the coordinate frame of
the point cloud and could be set to None, if no correction is necessary.
The last argument (allowance) corresponds to the maximal ratio of the
distance of the point to the ray and the length of the ray itself in order
to be considered valid. Note, that even though the function is written in
quite an optimized fashion, it still takes large amount of time on a dense
point clouds because it needs to cast 64 x 2084 virtual rays and find the
nearest point in the point cloud from them. It takes about three to four
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minutes on a GTA dataset for one element of LIDAR like data. It takes
significantly less time on Valeo dataset since it is much sparser.

reconstruct_pcl
This method creates point cloud corresponding to the instance of LiDAR-
like data. It takes one argument (lidar_data) and returns point cloud
in the form of NumPy array in the shape of 4 x n where n is a number
of valid rays. The returned point cloud is in XYZI format.

B 4.3.4 data-processing scripts

There are three scripts for processing data to create a dataset and one script
to get the viewable data from finished experiments. The processing scripts
are gta-lidar.py, gta-zip.py and valeo-lidar.py and all of these take
three arguments — input folder, output folder and optionally third argument
specifying the number of threads to use. If the third argument is not set, the
script will use half of the available CPUs. The scripts are mostly wrappers
around the functions in the modules in data-processing folder.

The last script called process-output . py takes two arguments — first argu-
ment corresponds to the folder where two files with the names gta2valeo.npz
and valeo2gta.npz are located and second argument optionally specifies the
number of samples to process. If it is not set, then the number of samples
is assumed to be 100. It creates two folders within the input folder called
gta2valeo and valeo2gta each of them containing 6 files for each sample
processed. The files are depth and intensity images (saved as 64 x 2084
grayscale PNG images) and point cloud stored as a text file (for viewing
by for example CloudCompare softward’) with each row corresponding to
one point in the point cloud. The files are stored as original input data
to the CycleGAN network and their transformed counterparts. The re-
sulting filenames are therefore %03d.{depth,inten}.{orig,conv}.png and
%03d.pcl.{orig,conv}.txt, where %03d is ID number of the sample within
the processed files.

3http://www.danielgm.net/cc
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Chapter 5

Experiments

B 5.1 CycleGANSs with depth data

We proposed a set of experiments in order to determine which of the GAN
variants performed better for the LiDAR-like images in the CycleGAN [2]
setting. Therefore all of the experiments were the same except the used
loss functions for generator and discriminators. There were altogether six
experiments — original GAN [3], LSGAN [4] and WGAN-GP [5] with and
without self-regularization [6] term in the generators’ loss function. We used
mini-batches of size 4 (due to the memory limit of used GPUs) and trained
all the networks for 80000 steps resulting in approximately 37 runs through
all the training data for GTA dataset and about 32 runs for Valeo dataset. It
makes no sense to use the term epoch in the setting of two different dataset
with various magnitudes.

The only difference in the architecture was the use of Layer normaliza-
tions [30] for the WGAN-GP instead of Batch normalizations [20] for the
GAN and LSGAN. This was motivated by the explicit mention of hurting
the training process with batch normalization for WGAN-GP [5].

The CycleGAN was trained using three training steps for the discriminators
for every training step of the generators. This was to ensure the proper
training of the discriminator in order to be able to provide good gradients
for the training phase of the generators. The Adam optimizer with initial
learning rate of 0.0002 and 1 parameter of 0.5 was used and after half of the
training steps (40000), the learning rate was linearly decreasing until zero at
the end of the training.

The structure of the generator networks can be seen at the figure 5.1l
Note, that the ResNet [15] block is repeating 6 times. Dark blue node
indicates input LiDAR-like image, light blue node indicates output LiDAR-
like image and each arrow represents flow of the data of specified shape.
Green nodes represent convolutional layers and yellow layers represent resize
and convolution blocks, which consist of first resizing the data twice (not
affecting the number of channels and samples in the mini-batch) and then
performing convolution. The structure of the generators was largely inspired
by the structure of the generators used by the original paper [2].

The structure of the used discriminator can be seen at the figure 5.2l
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Figure 5.1: Structure of the used generators
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Figure 5.2: Structure of the used discriminators

Coloring is the same as in the figure |5.1, the gray node corresponds to the
fully-connected layer.

The feature map for the self-regularization term of the generators’ loss func-
tions was formulated as follows — if the pixel corresponding to the particular
ray was valid (third channel) in both depth images (original and converted
by the generator), then the feature corresponding to that pixel was its depth
and intensity (i.e. identity on the first two channels), but if it was not valid
in either of the depth images, then the feature map would return tuple (0, 0).
The feature map had the shape of 64 x 2084 x 3 as an input and 64 x 2084 x 2
as its output shape.

All of the experiments used the history pool [6] with the size of the pool
being 50. All of the trainable variables in the networks were initialized using
the Xavier [34] initialization. The other important hyperparameters are:
Ap =1, Ag = 1, Aeye = 3, A\gp = 3 (where applicable), A\reg = 3 (where
applicable).
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B 5.1.1 Results

This subsection will show the examples of the results generated by the trained
generators from the CycleGAN model. Figure 5.3 shows data generated from
the testing portion of the GTA dataset transformed into Valeo dataset by the
means of different GANs used within CycleGAN model. Figure [5.4] shows the
same data, but only small part of the images is shown to ease the viewing.
Note that while the part displayed in the depth and intensity images show the
same part of the data, the portion displayed in the point cloud section does
not correspond to the same part of the scene. The figures 5.5/ and [5.6| have
the same layout as figures |5.3| and |5.4], only they show the data transformed
from the testing portion of the Valeo dataset to GTA dataset.

For more data see the contents of enclosed DVD, as described in the
appendix |Al

w
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Figure 5.4: Comparison of different GAN variants used in CycleGAN, in a GTA
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Chapter 0

Conclusion

. 6.1 Discussion of the achieved results

It is important to note, that there seems to be no universally accepted evalu-
ation metric of realism. Most of today’s generative networks are compared
using Inception score [29], however, this is only suitable if one is generating
actual images and not the depth image with completely different semantics.
Another option researches often use is Amazon’s Mechanical Turk, however
this suffers from the limitation that it might not be clearly obvious how a
“real” LiDAR-like image (or reconstructed point cloud) from a GTA or Valeo
dataset should look like. To properly evaluate the results, whole pipeline
using these refined artificial data is needed which was not in the scope of
this thesis. Therefore we performed only qualitative analysis of the results
showing the generated images.

If we look at the data shown in the figures |5.3| and [5.5, we can safely say
that the original GAN does not work in this setting regardless of the self
regularization of the generators.

This seems to hold for LSGAN without self-regularization as well, however
when self-regularization was added, LSGAN started to perform a lot better,
preserving the important intensity information. However, it is safe to say that
even without rigorous evaluation metric, WGAN-GP with self-regularization
term was the winner. It seems to be able to maintain the important informa-
tion and to introduce noise similar to the real world noise when transforming
from the GTA dataset to Valeo dataset, as seen in the point cloud portion of
the results.

The most important part of the results is the fact, that the generator
of the WGAN-GP network with the self-regularization loss term is able to
distinguish between the different objects in the scene and adds the noise in
accordance with the expected noise induced by different objects. This can be
visible at the figure [6.1], where left figure is the original intensity of the car
in the GTA data, right figure is the intensity from the refined intensity by
WGAN-GP and center figure is the difference between the two figures scaled
by 10. The difference is shown in such a way, that if there was no difference,
the color has gray-scale value of 0.5 and if the color is lighter than 0.5, then
the original intensity was higher than the converted intensity and vice-versa.
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(a) : Original intensity (b) : Difference of in- (c) : Refined intensity
on the car tensities on the car

Figure 6.1: Comparison of LiDAR intensities on the car

As you can see, the car and surrounding road is still distinguishable even
in the difference image indicating that the generated difference depends on
the semantics of the object in the original image. You can also see that the
intensity was lowered on the car which has reflective surface and raised on
the road which is in accordance with the physical state of the world and our
expectations.

. 6.2 Future work

In the future we would like to develop a sensible metric for generating depth
data. This can be seen as the biggest shortcoming of this thesis. It will be
also beneficial to leverage more information from the data in order to be able
to create more accurate models of the depth sensors. The most beneficial
would be to use RGB data with the LiDAR data simultaneously, however
this was not possible due to the missing calibrated RGB images in the Valeo
dataset.

It might be interesting to explore the idea of asymmetric CycleGAN in
which the generators’ structures as well as the input and output shapes differ.
This use-case can be potentially very interesting as it can lead to using more
information from one dataset if available.

. 6.3 Conclusion

We showed that the generative modeling of LiDAR-like data is feasible in the
CycleGAN setting. This is an important result since as far as we know it was
never tried before. The results indicate that it is necessary to be extremely
careful about used loss functions and underlying generative models used in
the CycleGAN. We believe that if more detailed data (namely RGB images
corresponding to the LiDAR scans) were available to the training pipeline,
achieved results would be even more convincing.
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Appendix A
Contents of the enclosed DVD

The enclosed DVD contains two directories, thesis and code and one TAR
archive (data.tar.gz) containing examples of generated data. The folder
thesis contains this document and all the source files needed for compiling
it from the scratch. There is also a Makefile in this directory for easier
compilation of the final document.

The folder code contains all the code created for the purposes of this thesis
as described in the chapter |4 with the same folder structure.

The TAR archive data.tar.gz contains an example of generated data
by various models. It also contains params.flagfile file containing the
parameters used for training various models by the script. Last
thing contained are the exported binary protobuf models that can be used
for generating your own data. Due to space limitations of the DVD, only 20
generated examples are included for each model.
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