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Abstrakt

Kráčejı́cı́ roboty mohou být v současné době považovány za rostoucı́ segment autonomnı́ mo-
bilnı́ robotiky se záběrem od industriálnı́ inspekce po dlouhodobé operovánı́ v nehostinném
prostředı́. Hlavnı́ výhodou těchto robotů je jejich schopnost operovat v obtı́žných terénech,
které mohou být neprostupné pro kolová a pásová vozidla. Aby roboty efektivně operovaly v
takových podmı́nkách, musejı́ dokázat odhadnout nárožnost zdolánı́ různých terénů a napřı́klad
zvolit takový terén, který je pro robot eneregický výhodný. Energetickou náročnost lze ohod-
notit Cost of Transport (CoT) metrikou průchodnosti prostředı́, která je založená na energet-
ické spotřebě a rychlosti robotu. V této práci navrhujeme teoretický rámec pro řešenı́ problému
průchodnosti terénu, který odhaduje CoT metriku na základě dat z proprioceptivnı́ch a extero-
ceptivnı́ch senzorů. V práci použı́váme jednoduché vizuálnı́ a geometrické deskriptory postavené
nad daty z RGB-D kamery. Navržené řešenı́ je otestováno v několika scénářı́ch, včetně scénářů
se změnou úhlu pohledu a scénářů obsahujı́cı́ch předem neznámé terény.

Klı́čová slova: kráčejı́cı́ robot; průchodnost terénu; Cost of Transport; CoT
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Abstract

Multi-legged robots are being increasingly deployed in autonomous missions. Such missions can
range from autonomous plant inspection to long-term operation in extraterrestrial environments.
The main advantage of multi-legged robots is their ability to operate in hard to traverse terrains
that can be impassable by wheeled or tracked vehicles. The multi-legged robots must be able to
assess the terrain difficulty regarding the robot traversability capabilities based on the necessary
effort to traverse the terrain. Such an assessment can be based on the Cost of Transport (CoT) that
is a traversability measure computed from robot’s power consumption and speed in traversing
the particular terrain. In this thesis, we propose a terrain traversability regression framework
to estimate CoT using information from the robot’s proprioceptive and exteroceptive sensors.
Namely, we utilize lightweight visual and geometric features computed from RGB-D image. We
test the proposed traversability regression framework in several scenarios, including scenarios
with viewpoint changes and tests using observed, but untraversed terrains.

Keywords: multi-legged robot; terrain traversability; Cost of Transport; CoT
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Chapter 1

Introduction

Nowadays, autonomous robots are being deployed in various missions, including long-term data col-
lection in unknown environments [1] or inspection of areas hostile for humans [2]. Numerous types
of autonomous robots exist, ranging from ground robots through marine robots to unmanned aerial
vehicles (UAVs). Ground robots utilize several types of locomotion, including walking, rolling, or
crawling, using components such as wheels, tracks, and legs. They also possess certain advantages
over UAVs. For example, ground robots can carry higher loads than UAVs, which directly influences
maximal battery/fuel capacity and therefore mission effectiveness. Besides, UAV mounted cameras
cannot be used in dusty areas, as UAV propellers cause a swirl effect and are thus detrimental to visi-
bility.

(a) (b) (c)

Figure 1: (a) Hexapod robots in rough terrain, FEL CTU; (b, c) Deployment in power plant and waste
pool inspection - courtesy of [2] and [3], respectively.

However, some terrain types are almost impassable by a wheeled or tracked robot. Fortunately, such
terrains can often be traversed by a legged robot with little to no difficulty. Figure 1a presents an ex-
ample of hexapod crawling robots in rough terrain. The main advantage of a legged robot is its ability
to choose and change its gait. By doing so, the robot is capable of traversing rough terrains, where
the robot can choose more stable gait or even decides to select footholds for its legs individually [4].
The advantage is most profound for multi-legged robots, which can move individual legs while main-
taining static stability by standing on at least one leg. For example, a hexapod robot is stable when
using the tripod gait, i.e., when moving three of its legs while the other three are stable, see Figure 2.
Moreover, a hexapod robot can further enhance its stability by using the pentapod gait, i.e., gait with
five stable and one moving leg. Thus multi-legged robots appear to be the best agents for long-term
autonomous operation in rough terrain.

Multi-legged robots can be deployed in various applications ranging from a single large crawler to
swarms of smaller spiderbots. Walking robots are often deployed in environments that are not suitable
for human workers, but are too cluttered for regular wheeled robots, e.g., in contaminated industrial
areas. Figure 1b shows a four-legged robot designed for inspection of the contaminated Fukushima
nuclear plant. An underwater walking hexapod robot presented in Figure 1c is being used for cleaning
of nuclear waste ponds. Alternatively, walking robots are deployed in areas that are unreachable
or unsuitable for the long-term presence of a human crew. A large crab-like underwater robot [5]

1



1. Introduction

1. 2. 3. 4. 5. 6.

Figure 2: Tripod gait used by hexa-pedal entities.

in Figure 3a has been successfully tested. A versatile search-and-rescue hexapod robot [6] is shown
in Figure 3b. Moreover, some locations in need of inspection may simply be hard to access for a full-
sized human, and a small robot [7] such as the one presented in Figure 3c has to be utilized. Finally,
small robots can be utilized in swarm-like configurations. Siemens is developing a swarm-like system
of 3D-printing small octapod robots [8], see Figure 3d.

(a) (b) (c) (d)

Figure 3: (a) CR-200 seabed robot [5]; (b) LAURON V search-and-rescue robot [6]; (c) JPL spiderbot
prototype [7]; (d) Siemens spiderbot prototype [8].

The ability to navigate effectively in the environment greatly influences the mission effectiveness for
all types of ground robots. Although multi-legged robots are capable of traversing a wide range of
terrains, some terrains are much more difficult to traverse than others. Therefore, multi-legged robots
need to be concerned with efficient locomotion control over terrains of particular types. To do so, it is
needed to differentiate between terrains that are easy and hard to traverse. This can be further utilized
either for trajectory planning or gait selection, and thus a faster and safer navigation.

Various traversability metrics have been introduced in the literature to describe the ability of a given
robot to traverse a particular type of the terrain. Such measures include a binary division between
passable and impassable terrain [9], and more complicated proprioceptive, geometric, and appearance
based measures [10]. Since multi-legged robots are capable of traversing most types of terrain, it is
advantageous to measure the terrain traversability as a continuous variable, e.g., as a function of locally
observed properties [11] or as an energy-based score such as the Cost of Transport (CoT) described
in [12; 13], which represents a measure of the effectiveness of the robot locomotion. Note that the
CoT-like approaches are inherently influenced by many factors, such as terra-mechanical properties
of the terrain, construction of the robot, or by seasonal and weather condition changes in long-term
missions.

If the knowledge of the terrain traversability is utilized for planning, it is necessary to have the ability
to predict the metric before a given terrain is traversed by the robot, which is, e.g., not the case of
the CoT defined in [12]. While some terrain traversability approaches are based on exteroceptive ter-
rain observation, some are proprioceptive. By definition, proprioceptive data are localized to robot’s
position. Hence, such a terrain traversability measure cannot be known for yet untraversed terrain.
Estimation based on exteroceptive data is therefore needed. However, multi-legged robots often ob-
serve terrain from viewpoints that are relatively close to the ground, thus being limited in their ability

2



1. Introduction

Figure 4: Deployment of crawling hexapod robots and UAVs in planning. The legged robot collects
data about its traversability cost by crawling in the terrain, but it can observe only a limited area. On
the other hand, the UAV can observe a larger area, thus the robot can benefit from knowledge sharing.

to observe and map large areas. Therefore it is desirable to deploy multi-legged robots in cooper-
ation with other robot types. The authors of [14] present a system where a UAV helps a walking
quadruped robot with localization and path planning. Imagine a load-bearing walking robot and a
lightweight UAV that is capable of docking with the robot. The legged robot can experience how hard
the terrain is to traverse but is limited in both its viewpoint and speed. The UAV cannot sample the
terra-mechanical properties of the terrain but is suitable for exploration of large areas due to its raised
viewpoint and high speed. Thus, this setup can benefit from advantages of both types of vehicles by
inference of knowledge between the UAV and legged robot. In Figure 4, we present a visualization of
our interpretation of such a setup.

In this work, we are concerning traversability cost estimation from exteroceptive data for a small
hexapod multi-legged robot that is equipped with RGB-D camera. We use CoT [13] as a measure of
the terra-mechanical properties of the traversed area. We select the CoT estimation from exteroceptive

3



1. Introduction

data since this approach allows us to model the robot’s proprioceptive terrain traversal experience
and to predict it from remote exteroceptive data. Moreover, we do not rely on explicit classification
into a set of discrete terrain classes, which has been extensively studied, e.g. [15; 16; 17; 18]. We
rely on robot learning and adaptation to new and unforeseen conditions. This setup favors continuous
metrics such as CoT, as they can be gradually updated by an incremental learning algorithm. Note that
continous metrics cannot be directly used for terrain classification, as visually distinct terrain classes
may easily have similar CoT. Still, some of the terrain characterization approaches used for discrete
terrain classification can be utilized for CoT inference. This work aims to build on terrain descriptors
yielded from visual terrain classification approaches and explore their usefulness in the problem of the
CoT inference.

The rest of the thesis is structured as follows,

• in Chapter 2, we provide an overview of works concerning multi-legged terrain traversal and
other terrain related tasks;

• in Chapter 3, we describe the aim of this work in detail;

• Chapter 4 presents our proposed solution to the terrain traversability regression task;

• Chapter 5 reports on the performed experiments;

• finally, in Chapter 6, a conclusion is drawn and discussion of further possible developments of
terrain traversability tasks is presented.
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Chapter 2

Related Work

In this chapter, we provide a short overview of existing approaches and topics on multi-legged robots
and efficient traversing various terrains. In Section 2.1, we discuss the state of the art terrain traversabil-
ity metrics and overview of the terrain characterization features and approaches is presented in Sec-
tion 2.2.

2.1 Terrain Traversability Measures

When traversing different terrains, legged robots experience various levels of difficulty, e.g., smooth
flat pavement is easy to traverse, while rough woodland terrains are much harder. Robot’s ability to
efficiently pass over various terrains greatly influences its mission effectiveness. Hence, it is desirable
for the robot to create a model of its ability to overcome different terrains, especially in missions in an
a priori unknown environment.

Two types of approaches can be identified for definition of the terrain traversability property. The
first type can be based on a discrete set of terrain classes, e.g., a particular terrain is traversable in
binary classes passable and impassable. The second type can be based on a traversability scale. Both
approaches can be combined as in [9] by creating a two-level metric. Note that since this thesis is con-
cerned with the regression of the continuous traversability measure, the following section emphasizes
existing continuous traversability measures utilized for passable terrains.

We consider two groups of traversability assessment approaches. In the first group, the traversability
is computed from proprioceptive data available to the robot, e.g., using its power consumption and
velocity. For the second group, one can construct terrain traversability assessment directly as a func-
tion the of captured exteroceptive data, e.g., from the ground slope or vegetation density observed in
the robot’s vicinity. The main advantage of the former approaches is that it is based on the experi-
ence of the robot with traversing of the terrain, i.e., it can reflect on changes in terrain traversability,
and it can cope with an unknown atypical terrain. For example, a sloped surface can be much harder
to pass when it is wet, yet its slope property remains the same. On the other hand, the exterocep-
tive approaches are easily adaptable to a wider range of robots. For example, two robots may move
over a given terrain with different speed and consume various amounts of energy, but the terrain they
exteroceptively perceive remains the same.

The classification of terrain types into given discrete classes can be considered as the simplest approach
to the traversability assessment. Although terrain classification does not explicitly indicate that the
individual classes have different traversability property, it is often implied. For example, the authors
of [15] motivate their classification work by safe navigation over extraterrestrial terrain. However, as
it is shown in [1], a false estimation of the traversability property may have fatal consequences to the
mission itself.

A combination of discrete classes and a continuous variable is presented in [9], where the model of
the traversability is denoted as danger level, which is perceived as exteroceptive half-continuous-half-
discrete variable describing the terrain difficulty. The variable describes passable terrains with danger
level values d ∈ [0, 1], with d = 0 being completely smooth terrain and d = 1 representing a terrain
that is barely traversable or unknown. Non-traversable terrain is represented by d = ∞. The danger

5



2. Related Work

level estimation is based on steep slopes, roughness, and terrain step height.

Authors of [11] use a continuous traversal cost based on position, density, and point cloud distributions
of sensed obstacles. The traversal cost is constructed in such a way that very low values describe
areas such as roads, while high values describe dense vegetation. The metric is designed to work on
logarithmic scale in order to minimize errors in the lower portion of the traversal cost spectrum.

The Cost of Transport (CoT) is a continuous proprioceptive metric defined in [19] as

CoToriginal =
Pi

v
, (1)

where Pi is the power input and v is speed of the robot. The metric has recently been utilized by [20;
21; 22; 13; 12] in various forms suitable for robotic and biological locomotion. The CoT metric is well
defined for terrains that can be traversed, where it is a nonnegative real number, i.e., CoT ∈ [0,∞). For
terrains that are not traversable, the robot’s velocity equals 0 and the respective CoT is thus considered
either undefined or infinite. Arguably, this approach is similar to the danger level approach from [9]
as it assigns a continuous value to passable and infinity to impassable terrains. However, the infinity
is not explicitly used as in [9].

The authors of [13] have recently reintroduced CoT for battery powered robots, defined as

CoTpow =
Pin

mg v
, (2)

where Pin is the instantaneous power consumption, m is the weight of the robot, g is the gravitational
acceleration, and v is the robot speed. The power consumption based CoT definition can be easily
utilized in mobile robotics, as it is defined using instantaneous power consumption Pin, which can be
computed as

Pin = V Iin, (3)

where V is the battery voltage and Iin is the instantaneous current drawn from battery. The time t
and speed v can be measured by the localization system and the robot body weight m is typically
constant, although this may not hold for load transporting robots. As the power consumption based
definition requires measuring power consumed by the robot, it is not suitable for application where
such information is not available, e.g., when computing the biological cost of locomotion.

Alternatively, the mechanical CoT is defined in [21; 22] as

CoTmech =
E

l
(4)

using the energy expenditure/work E and stride length l. However, the mechanical locomotion is
often accompanied by additional energy loss via heat generation. For example, biological locomotion
is accompanied by heat loss from muscle fiber. The traditional definition of CoT is expanded in [12]
by accounting for heat energy loss as

CoTheat =

∑n
i=1(Wi +Hi)

mv t
, (5)

where Wi and Hi are the mechanical energy consumed and heat energy lost, respectively, while mov-
ing leg i (out of n legs), m is the body mass of the robot, v its body speed, and t its stride period, i.e.,
the duration of one gait cycle.

The units to measure CoT in its original form (1) and (4) are given as

CoToriginal

[
W

ms−1

]
= CoTmech

[
J
m

]
= CoT

[
kgm
s2

]
. (6)
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2. Related Work

As some of the CoT definitions discount for body weight or gravitational acceleration, the respective
units derived for such definitions differ. For example, the power consumption based CoT (2) in [13] is
a dimensionless quantity

CoTpow

[
W

kgms−2ms−1

]
= CoTpow [−] , (7)

while [12] defines their CoT (5) as “energetic cost for moving a unit weight by a unit distance” and it
is measured as

CoTheat

[
J

kgms−1s

]
= CoTheat

[m
s2
]
. (8)

2.2 Terrain Description

Terrain classes or terrain traversability property can be characterized by terrain description features.
In the following section, we provide an overview of features that are utilized in various terrain related
tasks, e.g., terrain classification, terrain traversability assessment, or obstacle identification in field
environments. Although such features can be constructed using proprioceptive or exteroceptive data,
exteroceptive features are emphasized, as this work aims to utilize them.

Some of the terrain traversability measurement approaches presented in the previous section may
also be considered as representatives of standalone terrain description features. For example, the
approach [9] constructs a continuous terrain traversability metric from exteroceptive data observed
from the robot’s vicinity. Although the data are used only for one specific model, the local terrain
properties can also be utilized as terrain descriptors in a combination with different traversability
metric.

The various approaches that can be used to extract terrain characterization features from visual and
geometric data can be categorized into several groups. We consider following three categorizations:
whether the feature is primarily based on geometric or appearance data, whether the feature makes use
of color information, and whether the feature is dependent on the current robot position and orienta-
tion. In Table 1, we classify the approaches presented in the rest of this chapter.

A feature describing the shape of the point cloud is considered to be geometric without color infor-
mation. Similarly, the color channel of the point cloud segment is a geometric feature with the color
information. On the other hand, the color of the image segment is an appearance-based feature with
the color information. The color information enriches both appearance and geometric approaches but
it also has several pitfalls. Primarily, the illumination has a considerable effect on the color, although
this effect can be somewhat limited by using certain color spaces. Moreover, vegetation may change
its color properties during the year, but geometric and traversability properties may remain unchanged.
Besides, various man-made surfaces can be produced in a broad spectrum of colors.

An online, appearance-based approach that computes a description of the image segments or patches
is position dependent, and an approach that computes geometric features for an externally localized
robot from an externally supplied point cloud is not position dependent. In the former case, the feature
representation itself (i.e., the image segment captured from the robot position) is dependent on the
localization, while in the latter case, only the externally supplied information is location dependent.
We consider a setup where a robot incrementally builds a point cloud using an onboard sensor and uses
such data to localize itself and the terrain descriptor is computed based on the point cloud that remains
the same even after the robot moves. Thus, the terrain description is indepedent on the robot position.
However, individual point clouds are reconstructed from a particular robot positions, and thus the point
cloud can be considered as position dependent because of possible view obstructions and varying point
cloud density influenced by the robot viewpoint.. Approaches that are dependent on the current robot
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Descriptor Type Origin/Application A/G C P
Basic Descriptor Types

Pixel Value [11; 16] A - -
Voxel Value [18; 17] G C I
Superpixel Color [15] A C D
Wavelet [23; 24] A G -
Gabor Filters [25; 11] A G -
Terrain Height [26; 27; 9; 28] G G I
Terrain Slope [9; 28] G G I
Terrain PCA [26; 27; 29] G G I
Line of Sight Shadows [28] G G D
Vegetation Index [30; 29; 18] - C I
Object Detection Features [31; 32; 33] G G -

Overhead Local Feature Set [11] A - I
Pixel Intensity HSV A C I
Pixel Intensity Gray A G I
Gabor Filter A G I
Grayscale Window A G I

Overhead Disaster Feature [34] A G I
Image-to-Voxel Color [17] - C -
Danger Level Approach [9] G G I

Slope G G I
Step Height G G I
Roughness G G I

General Global Feature Set [11] A G D
Obstacle Position A G D
Obstacle Density A G D
Obstacle Point Cloud Dist. A G D

Field Terrain Feature Set [26] G G I
Terrain Height G G I
Terrain Shape G G I
Terrain Orientation G G I

Off-Road Env. Voxel Feature Set [18] G - I
Scan Line Features G G I
Point Cloud Features G G I
Color Features G C I

Rough Terrain Feature Set [28] G G -
Terrain Roughness G G D�

height, slope, variance�

line of sight shadows
Step Height G G I

Object Detection Features G G -
Fast Point Feature Histograms [31] G G I
Viewpoint Feature Histogram [32] G G D
Ensemble Set [33] G G I

Table 1: Terrain characterization features classified, where A/G stands for Appearance/Geometric
Based, C stands for Color (C - Color, G - Colorless/Grayscale), P stands for the robot position (D -
Depedent, I - Independent), and the symbol ’-’ denotes the particular category is not defined.
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position suffer from different visual properties of the terrain from different viewpoints. This problem
is prevalent not only in appearance based classification but also in geometric point clouds, as for
most sensors, the point cloud density is lower for longer distances. On the other hand, the position
independent data may be harder to acquire, e.g., data reconstructed from multiple angles or captured
from an unchanging viewpoint such as an overhead position.

The following Sections 2.2.1 and 2.2.2 present a set of various terrain description approaches or-
ganized according to the appearance-geometric categorization. Selected approaches that utilize both
appearance and geometric features are presented in both sections with the particular attention given
on the respective feature type.

2.2.1 Appearance Based Approaches

In this section, we discuss appearance-based approaches that are utilized in terrain classification and
terrain traversability regression. These approaches range from simple color-based features to systems
utilizing overhead data. We also discuss texture recognition approaches that can be utilized as ter-
rain descriptors. Finally, we examine the recent advances in season independent features, which can
potentially prove useful in terrain assessment tasks.

The approach presented in [11] uses overhead data to construct a Gaussian model to infer dense ge-
ometric LiDAR terrain features while testing the approach based on the global general features, i.e.,
features that extend well into new domains, and local locale-specific features that are limited to a sin-
gle domain. The overhead local features are based on HSV and gray-scale pixel intensity, Gabor filter
response, and gray-scale window mean and variance. As this system utilizes overhead images of the
traversed terrain, it is an example of the position independent appearance approach. Such datasets can
be obtained from a UAV mapping the terrain, or even from publicly available data. However, a large
amount of available data has to be captured from a considerable height and the approach is suitable
only for systems that do not need high detail, e.g., systems designed for car-sized vehicles. Regardless,
the aerial viewpoint is advantageous, as it can capture a large area including patterns obstructed from
ground viewpoints. The authors of [34] use an interesting approach to localize roads from the over-
head UAV captured images of urban terrain affected by natural disasters. Their algorithm constructs a
tree-like structure by adding new road representing edges based on orientation difference with known
edges and brightness difference along the edge.

Although the aerial viewpoint represents a specific setup that requires either deployment of a UAV or
usage of large georeferenced database, the appearance features used in such systems do not necessar-
ily differ from those used in systems utilizing only near to ground viewpoints. In [15], the authors
consider a simple two-dimensional feature based on superpixel means of color dimensions of the Lab
color space, where the superpixels are extracted with the Simple Linear Iterative Clustering (SLIC).
The visual feature is used as one component of co-training scheme for discrete classification of the
simulated extraterrestrial terrain. The other component is a vibration based feature and both compo-
nents use support vector machines (SVM).

Similarly to [15], the approach proposed in [16] uses a combination of vibration, vision, and addi-
tionally also a laser scan based classifier. Unlike SVM co-training in [15], Bayes model with decision
rules is used to combine the classifiers. The vision-based classifier uses Gaussian Mixture Models in
the RGB space (with equalized Y dimension in YCbCr) to model different terrain types.

An alternative technique that can be utilized for terrain description is texture recognition. Naturally, we
classify texture characterization approaches as appearance based. A considerable amount of work has
been done to classify textures using various frequency-based approaches. Authors of [35] compare
several approaches to texture classification of steel samples with varying roughness and report that
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wavelet-based features outperform both gray level co-occurrence matrix (GLCM) and PCA/PLS based
approaches.

The wavelet texture representation is further developed in [24], where are compared various setups
for wavelet features on several natural textures, including textures that can occur in terrain datasets.
The authors conclude that texture characteristics are encoded mainly in high and middle-frequency
regions. The best wavelet energy signature is a four-dimensional feature extracted from two level
discrete wavelet transform (DWT), that outperformes other more complicated setups for all wavelet
bases. Moreover, they have found that wavelet base choice affects texture discrimination, but the best
performing base has not been selected.

Other works commenting on wavelet transforms in the context of texture classification or segmentation
include [23], which pioneered wavelet transform in texture recognition, DWT-based texture segmen-
tation algorithm proposed in [36], and various scale and rotation invariant wavelet extensions reported
in [37; 38; 39].

Although works concerning wavelet-based texture analysis such as [36] often consider wavelets to
be superior, other frequency-based approaches have also been developed. 2D Gabor filters are linear
filters combining Gaussian and cosine functions. An analysis of number of Gabor filter based features
is reported in [25], where it is concluded that grating cell operators from [40] perform the best. A more
recent approach for texture classification using Steerable Pyramid based Laws’ Masks is proposed
in [41].

Virtually all appearance-based approaches can suffer from seasonal changes that cause changes in
vegetation structure and color. While the geometric based approaches also suffer from this problem,
the problem is more prevalent for appearance-based methods, especially if color is used. This problem
is addressed in [42], where various image feature extractors are evaluated with cross-seasonal perfor-
mance in mind. Some attempts to transform images from one season to another also exist, e.g., [43].
However, it should be noted that an application to the terrain classification would be more complicated
than just transforming the appearance, as the terrain traversability property may also differ across sea-
sons.

2.2.2 Geometry Based Approaches

In this section, we provide an overview of geometric features utilized in terrain classification and ter-
rain traversability assessment. Geometric features range from simple features describing color prop-
erties of a point cloud section or voxels to complicated features sets based on data captured using
multi-sensor arrays. We shortly discuss general properties of geometric features and present examples
of the terrain characterization features, including some features that were not originally designed as
such.

Geometric features have several advantages over appearance features. Most notably, geometric fea-
tures describe shape property of the terrain and they are not affected by lighting changes. However,
this holds only if the features are captured by certain sensor types. If the geometric features are re-
constructed from an RGB-D camera or have some special property, e.g., added color information,
illumination changes can still have some effect. Other than greater invariance to illumination changes,
the geometric features are also less likely to be influenced by weather and seasonal changes.

Geometric features are often utilized as a basis for evaluation of other predictions, serving as input
data for fixed traversability assessment models. The approach presented in [11] uses position, density,
and point cloud distributions of the sensed obstacles as global features, i.e., features that extend to
other domains, and utilizes them to evaluate predictions from local features. Authors of [9] propose
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to construct a danger level metric based on locally observed slope, roughness, and maximal height
difference.

The approach [17] uses the combination of a geometric and an appearance-based approaches. A simple
average voxel color in the HSV space is utilized to classify particular terrain types. However, unlike
in most of the previous cases, the SVM classifier is not trained on the same type of data, i.e., voxels,
but rather on raw images with hand-labeled pixels. This approach is combined with an elevation map
to plan motion of the robot.

A number of geometric features in terrain related tasks is specifically designed to cope with vegetation.
For example, the authors of [26] use a set of thirteen features to describe terrain, vegetation, and
obstacles in an agricultural environment. The features are computed from a local neighborhood of
the point of the interest and features are divided into four height features based on the features’ z
coordinate, four shape features based on the PCA, three orientation features based on the normal
vectors of the local plane, a distance feature, and a reflectance feature. The PCA features are based
on various statistics computed from the 3-by-3 covariance matrix eigenvalues λ1, λ2, λ3. The PCA
features are specifically capable of distinguishing vegetation from a plain terrain, using the intuition
that for planar structures λ2, λ3 � λ1 and for linear structures λ3 � λ1, λ2. The classifier is trained
by the SVM from the labeled data. The variable size of the local neighborhood is considered to
compensate for growing sparsity of the point cloud at longer distances from the robot position, where
the relation is captured by a linear equation. This approach requires the z-coordinate of the point cloud
to be orthogonal to the surface to properly compute the height of the features. This is done by fitting
a global ground plane to the dataset. Although this seems to be sufficient in a flat field environment, a
more structured environment can be problematic. Note a similar approach that is proposed in [27].

The approach presented in [18] uses a set of various LIDAR based features to estimate the height of
the support ground surface with possible vegetation occlusion. The used features are based on scan-
line, point cloud, and color information. Scan-line features are computed for constructed scan line
segments. Used statistics are the number of returns, the distance between the first and last points in the
segment, and the cumulative distance between the neighboring points in the segment divided by the
total distance between the first and last points in the segment. Point cloud features represent a large
set of features based on various previous approaches. The used color features are the number of points
with the properly exposed color tags, average intensity normalized values for red, blue and green
channels, the normalized difference vegetation index (NDVI) as in [29; 30], the green channel relative
to other channels, and the saturation and value channels from the HSV color space. The random forest
classifier [44] is used with a hand-labeled dataset.

Another feature set has been developed for rough terrains in [28], where data are recovered from
a stereo camera to describe the area of interest in front of the robot, which traverses a test track
comprised of a rocky and a brick-filled area. The features are based on the center line average, slope,
average local variance, line of sight shadows, maximum step height, and even run length. Similarly
to [26], this presumes the existence of the elevation, i.e., the approach requires the ability to fit a
reasonable plane for the obtained point cloud data. The motion efficiency is then computed as the
power consumption CoT, i.e., it is based on the power consumption and robot speed.

Similarly to features used in texture recognition, numerous features developed for object detection and
description can be potentially utilized in terrain related tasks. The Point Cloud Library1 provides an
implementation of a considerable amount of such features. Some of such approaches are [45; 31; 32;
46]. The main advantage of the commonly used geometric approaches is available implementation.
Moreover, works comparing at least some of these approaches do exist. On the other hand, a compar-
ison reported in [47] concerns general object description, and the actual performance for a particular

1http://pointclouds.org/
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terrain may differ significantly.

A considerable portion of geometric feature approaches is based on a statistic using the normals of
the points in the question. The point normals are most commonly computed by fitting a plane to some
local neighborhood and computing its normal. However, unlike in image-based approaches, where a
window centered over a pixel always covers the same amount of points (if border regions are omitted)
two-point cloud regions may differ in density. Therefore, if we compute normals in two regions that
differ in density, two situations may arise. If the region under investigation is defined by a fixed radius,
the normal is based on regions that differ in the number of points. If the normal is computed from a
fixed number of the closest neighbors, it is based on regions that differ in radius.

Authors of [45] propose a point cloud feature based on the normal vector comparison. All point pairs
in its neighborhood are considered to compute the feature for a point of interest, and four statistics
based on the angle differences between the points’ normals and the distance vector between them are
computed and binned into a histogram. In [31], an improvement of this approach is proposed: only
pairs with the point of interest are considered, and only three statistics are computed. The histogram
is enriched by distance weighted histograms of the points in the neighborhood to reintroduce the
information lost by the limited point selection. A close-to-realtime online incremental implementation
based on scanlines is possible. Further extension of this principle is provided in [32] and [46] by
combining the previous approaches with statistics based on the viewpoint and point cloud centroid
relation. However, the viewpoint approaches are primarily designed for object description in robotic
manipulation and would probably not generalize well to terrain descriptors.

Another approach is presented in [48], where an interest point is represented by the minimal and
maximal curvature estimates for its neighborhood. These estimates are computed from the normal
vectors and distances between the points. The authors of [33] present an ensemble approach that uses
a number of shape functions histograms (10 histograms) to capture the shape property. The histograms
are matched using the L1 distance [49].

Based on reported literature survey, we have selected a set of the terrain characterization features and
traversability metric for the terrain traversability assessment scenario. The individual features, the
used metric, and our learning framework are detailed in Chapter 4.
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Chapter 3

Problem Statement

This work searches for suitable terrain descriptors that are invariant to certain types of viewpoint
changes in the task of terrain traversability regression. Specifically, we are interested in viewpoint
changes between near-to-ground robot viewpoints and aerial UAV viewpoints. We explore several
combinations of existing terrain descriptors and learning models. The individual combinations are
used for the regression of the terrain traversability property in one- or two-viewpoint setups. A simple
chart describing the flow of data in this work is presented in Figure 5. The power consumption based
CoT metric (2) is used as the terrain traversability measure.

ModelGround Truth CoT

Learning

Exteroceptive Data

Estimation

CoT Estimate

Figure 5: Input and Output Data in Terrain Treversability Regression Task.

The considered scenario consists of a hexapod walking robot and a UAV. The robot walks along its
trajectory on the ground and observes the terrain using both proprioceptive and exteroceptive sensors.
Specifically, it captures the cost to traverse the terrain and RGB-D representation of its surroundings.
The UAV senses the terrain only exteroceptively, capturing an additional RGB-D dataset. When view-
point invariant terrain features are utilized, this setup allows for evaluation of the terrain traversability
property in much larger areas than those visited solely by the hexapod robot, as the UAV is not con-
strained by the ground robot trajectory and its raised viewpoint allows it to cover a larger area. In the
scope of this work, two alternative dataset types allow us to test for viewpoint invariance of the terrain
characterization features.

Besides, particular scenarios for a single viewpoint are also utilized, but they do not test viewpoint
invariance of the terrain descriptors. Still, they provide additional opportunity to evaluate the quality
of the various terrain descriptors and learning approaches.

We consider both incremental and nonincremental approaches to terrain traversability estimation, be-
cause both types have specific merits. If the robot is deployed in an unknown environment, it has
to be able to learn the terrain property incrementally. On the other hand, nonincremental approaches
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can provide more informed results, if a large enough dataset is available. In the next section, we
introduce the concept of problem life stages to further describe and compare the incremental and
non-incremental models.

3.1 Problem Life Stages

The problem of terrain traversability regression is divided into two life stages: the learning stage and
the inference stage. The model learns the terrain traversability property in the learning stage and
responds to queries in the inference stage. The learning stage accepts pairs of exteroceptive terrain
descriptors and proprioceptive ground truth CoT. The inference stage accepts the terrain descriptors
and returns the respective CoT estimate. This is not to say that the individual stages are executed in
a pre-set order. For the class of incremental learning approaches, it is possible to use and update the
model in any given order, making the two life stages concurrent.

When a non-incremental approach is used, the two life stages are easily differentiated as they are
separated in time. First, the model is prepared from the descriptor-CoT pairs in the learning stage. It is
done only once at a given instant which separates the learning phase and the inference phase. Further
on, the model is in the inference stage and cannot be expanded with new data. It is only used for the
terrain evaluation, i.e., it returns CoT estimate for descriptor queries. The individual stages quite often
correspond to different types of datasets. For example, in our two-viewpoint setup, the individual
life stages correspond to the individual viewpoints, i.e., the model is created using one viewpoint and
tested using the other.

When an incremental approach is used, the two life stages are executed concurrently. Each datapoint
can be used both to estimate the CoT and to learn the model if the ground truth CoT is known. As a
result, there is not a difference between the ways how the data captured from different viewpoints are
added to the model. However, for a single datapoint, a given sequence of actions still exists. First, if
CoT estimation is required, the model is queried for CoT using the datapoint. This query is a part of
the inference stage. Only after this query, the datapoint is used to update the model. This update is
a part of the learning stage. This specific sequence is necessary to avoid spurious results, i.e., in this
case of querying a descriptor immediately after it has been added to the model.

NON-INCREMENTAL

Learning Stage

Inference Stage

Data point Data point Data point Data point

RGB-D
CoT-GT

RGB-D
CoT-GT

RGB-D RGB-D

Store data Store data

Compute model

Infer estimate Infer estimate

CoT estimate CoT estimate

INCREMENTAL

Learning stage

Inference stage

Data point Data point Data point

RGB-D
CoT-GT

RGB-D RGB-D
CoT-GT

RGB-D RGB-D

Update model Update model

Infer estimate Infer estimate Infer estimate

CoT estimate CoT estimate CoT estimate

Figure 6: Life stages of incremental and nonincremental model.
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In this work, we aim to create a terrain CoT model which utilizes the two life stages problem formu-
lation. A comparison of the life stages in different setups is presented in Figure 6.

3.2 Quality Metrics

We utilize both quantitative and qualitative analysis of our CoT estimation. Our quantitative metric is
based on the absolute error of the terrain traversability inference, which is computed as the absolute
difference between the ground truth traversability, i.e., the traversability computed from the real data
collected by the robot, and traversability inferred by the model. The mean and variance of the inference
error are considered, with the mean being the primary metric.

In the qualitative analysis, we first check how the model reacts on areas with different traversability.
This check should provide a result similar to the result of the quantitative analysis. Afterward, we
investigate how the model behaves near areas with high CoT variances which is usually exhibited by
spikes in the CoT estimate. Typically, such areas are results of the robot being temporarily stuck in
a particularly tricky area, meaning that spikes are a direct results of the particular terrain properties.
Still, we consider such spikes to be undesirable, as we aim to model the terrain property on a scale
larger than a single robot step and our robot moves using a specific gait. Finally, we investigate border
areas between different terrain types.
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Chapter 4

Proposed Solution

The primary aim of this work is to search for suitable terrain characterization features invariant to
certain types of viewpoint changes. These features are used in the inference of CoT perceived by the
hexapod crawling robot in several experimental setups. In this chapter, a framework for terrain feature
extraction and CoT learning and estimation is introduced. The core components of the framework
are the following individual building blocks, i.e., the RGB-D datasets, utilized terrain features, the
learning procedure and the CoT metric, and the strategies used for obtaining, storing, and exploiting
aforementioned building blocks. The individual building blocks and strategies are described in the
following sections.

4.1 Framework Building Blocks

In this section, we describe the individual building blocks used in the CoT inference framework. We
also provide information about the made implementation of the specific blocks, mainly reporting on
the utilized third party toolboxes.

4.1.1 Exteroceptive Data Representaion

Regarding the form of our exteroceptive datasets, the utilized data differ both in viewpoint (ground,
aerial) and type (image, point cloud). Near-to-ground viewpoint captures a walk scan, i.e., data repre-
senting the robot’s field of view when traversing the terrain. These ground datasets additionally carry
proprioceptive information regarding the robot’s traversal of the terrain. The aerial viewpoint cap-
tures an environment scan and represents an overview of the traversed terrain. In each of our datasets,
we store the exteroceptive data in two forms: RGB-depth image pairs and point clouds with color
information.

Each image carries a time tag and a georeference information representing the robot’s position. We
use georeference information in the point cloud reconstruction. This holds for both ground and aerial
datasets, as the same sensor is used to capture both types. The localization of individual image pairs
has been obtained using the ORB simultaneous localization and mapping (SLAM) [50]. In such a way,
the localized image represents an unbiased believe of the robot about the structure of its surroundings.
This has shown to be the most precise solution available for our indoor experiments, where a precise
GPS-based localization is not available.

The walk scan point clouds are computed incrementally along the robot’s trajectory to provide the
robot with up to date information about the environment. Hence, at any given time, the reconstructed
point cloud represents only areas already observed by the robot. The terrain assessment framework
is passed point cloud “snapshots” of the environment, i.e., the robot is provided with the ability to
incrementally learn the terrains. An environment scan, on the other hand, represents the terrain visible
from an aerial location, e.g., a UAV passing over the terrain. Therefore it represents the terrain as a
whole and we construct only one environment scan point cloud that is used at any time. A visualization
of typical walk and environment scans is shown in Figure 7.

Point clouds are reconstructed in the following two steps. First, each RGB-depth image pair is used to
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(a) (b)

(c) (d)

Figure 7: Visualization of (a,b,c) three stages of the incremental walk scan construction; and the (d)
environment scan.

reconstruct a single-view point cloud. Simple colorless point coordinates denoted pr = [xr, yr, zr] are
obtained using

zr = dimg

xr = zr
ximg−cd

x
fd

x

yr = zr
yimg−cd

y
fd

y

, (9)

where dimg is the depth from the undistorted depth image, ximg and yimg are the column and row
coordinates in the depth image, and the depth sensor calibration matrix Kd is

Kd =

 fd
x 0 cd

x
0 fd

y cd
y

0 0 1

 . (10)

Afterwards, the points are paired with color information from the undistorted RGB image, making
the reconstructed RGB point denoted prc = [xr, yr, zr, cr, cg, cb]. Only points sufficiently close to the
sensor (2.0 m for walk scans and 1.5 m for environment scan) are considered in further computation.
The world coordinate points denoted pwc = [xw, yw, zw, cr, cg, cb] are then obtained using,

λ


xw
yw
zw
1

 = Hpos


xr
yr
zr
1

 , (11)

where Hpos ∈ M4×4 is the homogeneous transformation obtained from the robot’s known position,
orientation, and λ 6= 0.

Then a global point cloud is reconstructed by merging reconstructions of the individual images. In the
merging process, we sequentially add new information to the global merged point cloud. This is done
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in a two-step process. First, for each point to be added, i.e., a point pwc reconstructed from the last
image, we query the merged point cloud (represented in a search tree), and add the point only if its
local area is not dense enough, i.e., there is less than 5 points in the 10 mm neighborhood. Second, we
filter outliers by keeping only new points that have at least 3 points in their 10 mm neighborhood. Note
that for each added image, each of the two search trees is constructed only once. First, the first tree
for filtering dense areas is constructed from the global merged point cloud. Then, all the new points
are tested. The global point cloud and the new points that passed the first test are used to construct the
second tree, and the new points are tested again. Therefore, this design actually allows density higher
than that specified in the first test, i.e.. higher than 5 points in 10 mm neighborhood, as the design
only limits where new points are added in the bulk. The bulk of the new points is only checked for
the minimal, not the maximal density. Moreover, the total size of the point cloud is limited. When
the limit is exceeded, the point cloud is randomly subsampled, i.e., a third of its points is randomly
selected and removed until the point cloud does not exceed the limit. The size of the point cloud is
limited to 2, 000, 000 points in the creation process, and the maximal size of the point cloud passed
the learning framework is 500, 000 points.

4.1.2 Terrain Characterization Features

Based on the literature survey and preliminary results, we considered the following features for bench-
marking. Both geometric and appearance data, including frequency-based features that are not orig-
inally designed for terrain description have been utilized. Note that appearance-based features are
based on time-referenced images captured from an onboard sensor and cannot be extracted for datasets
captured from the aerial viewpoint, as the aerial images cannot be referenced with respect to the robot’s
trajectory. Therefore, they are tested only in a subset of the performed experimental runs. The follow-
ing features are considered:

Image segmentation features are appearance based image-segment color-channel features. They are
similar to segmentation features utilized in the approach [15] that segments images using the
SLIC algorithm and uses patch means of the ab channels of the Lab color space as the features.
First, we segment the image by the SLIC algorithm. Contrary to [15], which segments on
grayscale images for the sake of computation efficiency, we segment on the Lab color space. A
SLIC implementation available in the scikit-image package [51] is utilized. The channel means
of the individual segments serve as feature descriptors, i.e., each image point is described by the
channel mean of its respective segment. We construct three features based on two color spaces:
the RGB channel means (3 dim), Lab channel means (3 dim), and ab channel means on the Lab
space (2 dim).

Image wavelet features are appearance image frequency features based on Db2-F2 feature presented
in [24]. The feature is computed in the following manner. First, the DWT response is computed
by applying the Daubechies 2-tap DWT to a grayscale image. Then the cumulative sum of the
DWT response for each image point is computed. Finally, the energy signature feature at a
given point is the cumulative sum of the responses in its respective local image area, i.e., the
72× 72 pixel neighborhood with the DWT response normalized by the area size. Note that this
neighborhood is extracted from the raw image, as image transformations, e.g., resizing the im-
age, appear to have a negative impact on the frequency-based feature discrimination. We use the
F2 (based on the classification listed in [24]) feature, i.e., our feature is three dimensional, rep-
resenting the level 1 horizontal, vertical, and diagonal DWT response. The Python PyWavelet
toolbox [52] is utilized for the DWT computation.

Point cloud color features are geometric color-channel features computed on reconstructed point
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clouds. Every point cloud color feature is based on sampled point of interest. Two types of
features are used: the channel values of the sampled point (denoted as P in the reported results)
and channel means of the points in the spherical neighborhood with the 0.2 m radius spherical
neighborhood (denoted as M in the reported results). The RGB and Lab color spaces are used
with both types, making four point cloud color features in the total.

Point cloud geometric features are a set of geometric features based on terrain classification features
presented in [26]. We have used 11 out of 13 therein presented features, combining them in
four sets. Namely, we use the shape feature set, height feature set, orientation feature set, and
all of them combined in a full feature set, leaving out the reflectance and distance features
which are not suitable for our experimental hardware and setup (see Sections 5.1 and 5.2 for
details). As the features are not invariant to coordinate system rotation, it is necessary to base the
coordinate frame on a known ground plane. If the ground plane is not known, it is estimated by
fitting a single plane to the whole point cloud. The normals needed for the orientation feature
computation are estimated by fitting a plane to the 5 nearest neighbors of the sampled point.
Feature statistics are computed for a spherical region with 0.3 m radius around the sampled
point.

4.1.3 Learning Algorithms

We have considered four learning approaches on top of the selected terrain features. Two of them
support online incremental learning. The following approaches have been evaluated:

Support Vector Regression (SVR) [53] is a maximum-margin regression algorithm. We use a scikit-
learn [54] Python implementation of the SVR with the radial basis function (RBF) kernel. SVM
and assorted support vector variations have been commonly used in terrain classification tasks
as it is reported in [15; 26; 17].

Regression trees are a precomputed decision structures that utilize recursive partitioning to infer a
continuous variable. We used a scikit-learn Python implementation. Previously, a random forest
classifier has been used in the terrain classification task in [18].

Incremental Gaussian Mixture Network Model (IGMN) presented in [55; 56] is an online incre-
mental learning approach thats creates and updates Gaussian mixture model based on streamed
data points. The IGMN supports a full prediction of a data point based on an incomplete input
of any kind. The Fast-IGMN is an IGMN improvement presented in [56], which improves the
IGMN time complexity to O(NKD2), where N is the number of data points, K is the number
of components, and D is the data point dimensionality. We have used our implementation of
the Fast-IGMN. Gaussian mixture models has been used for terrain classification task in [16].

Hoeffding tree or Very Fast Decision Tree Learner (VFDT) [57] is an online incremental decision
tree learning algorithm that utilizes the Hoeffding bound. Its output is asymptotically identical
to that of a conventional learner. We have used a slightly modified VFDT implementation based
on [58]. However, unlike the other utilized regression approaches, Hoeffding tree is used with a
discrete number of classes and nine evenly spaced intervals and one interval for any larger value
are used for the results reported in this thesis.

4.1.4 Cost of Transport

This work utilizes the power consumption CoT (2) as the terrain traversability metric. CoT is com-
puted based on the robot’s power readings, its weight, and its localization which is utilized for robot
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speed estimation. As there is a considerable difference between the robot’s stride period and the fre-
quency of the power consumption readings, CoT has a periodic nature. Therefore CoT is smoothed
using a median filter roughly sized to the typical stride period to mitigate this problem

4.2 Framework Strategies

This section explains how the above-selected data representation, terrain features, learning algorithms,
and cost of transport (i.e., the forming building blocks) are combined in an inference learning frame-
work that estimates CoT. There are two main parts of the framework: Data Aquisition and CoT Mod-
elling. See Figure 8 for a scheme of the complete CoT inference framework. In the Data Aquisition
framework, the individual images, point clouds, and CoT ground truth data are utilized to create the
terrain descriptors. The task of the CoT Modelling framework is to create the CoT-feature descriptor
pairs, i.e., dealing with the time delay between the acquisition of the terrain visual descriptors and its
CoT characterization, and using them in the CoT regression model itself.

DATA AQUISITION

Sample data based on current image

Compute terrain features

Image Sampler

Use image visible from robot

Location Sampler

Find robot location

Interest Point Sampler

Sample visible interest points from
point cloud based on robot location

CoT Sampler

Sample GT CoT based on robot location

Feature Computation

Compute features for in-
dividual interest points

FEATURES and CoT
GT (Not Synchronized)

WORLD REPRESENTATION

CoT ESTIMATE

INPUT & OUTPUT

Teaching CoT Model

Teach CoT Model from GT CoT and current location Features

Do this in the Learning Phase

CoT Model Inference

Use CoT model with current location features to aquire CoT estimate

Do this in the Inference Phase

Georeferenced Feature Storage

Store feature georeferenced by interest point location

Extract current location features based on current robots location

CoT MODELLING

Store computed features

Teach model using features and GT CoT

Use the model to infer CoT

Figure 8: Scheme of the CoT inference framework.

4.2.1 Data Acquisition

The data acquisition framework operates on individual datasets consisting of georeferenced RGB-D
images, i.e., the color image data RGB with depth, from the robot and georeferenced RGB point clouds
of the operational environment. The task of the data acquisition framework is to sample points in the
robot’s field of view (FOV), compute the terrain descriptors at these points, and pass these further on
to the CoT Modelling framework. This is repeated for the given number of iterations, i.e., either for
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each of the available RGB-D images, or for a subset of the images.

The point cloud and robot’s location is utilized to compute the terrain descriptors. First, the point
cloud section located in the robot’s FOV is isolated. Although the point cloud may contain points that
are located out of the robot’s FOV, the FOV is selected as it represents an area that is located in front
of the robot, i.e., an area that the robot is likely to traverse. Then, visible points of interest are sampled
semi-randomly from the FOV, with each new point being discounted by its distance from the points
already sampled in this iteration. Usually, 30 points are sampled in each iteration. Afterward, if a walk
scan point cloud is used, an image captured by the RGB sensor is sampled based on the time tag. The
sampled points, the image, and the point cloud are then used to compute the individual features.

If such data are available and required, the robot’s location is then used to sample CoT information
from the known trajectory. The individual sampled points, their respective feature descriptors, the
robot’s location, and the CoT ground truth are then passed to the CoT modeling framework.

4.2.2 CoT Modelling

The CoT Modelling framework accepts data sampled by the Data Acquisition framework and uses
them to either enrich its CoT regression model or to infer the CoT estimate. Primarily, the framework
accepts sampled points described by terrain features and CoT ground truth data, which are either used
in learning or paired with CoT estimates and passed to be evaluated by the error metric. The Data
Acquisition framework provides the CoT ground truth related to the robot’s position and descriptors
of the terrain visible from that position, i.e., the descriptors and CoT are not on the same location, since
the robot knows the CoT ground truth only after successfully traversing the terrain and estimating the
speed it traversed the particular part of the terrain from the georeferenced data. We introduce feature
storage that maintains a georeferenced feature dictionary to deal with the RGB-D-CoT pair acquisition
delay. The dictionary is queried when the robot reaches any arbitrary location, and all features located
in close proximity, i.e., in a spherical region with radius 0.2 m, are passed to the learning framework
together with CoT for the current location. The size of the feature storage is limited, and it is randomly
pruned when its capacity overflows. Hence, a persistent feature map of the environment is not created,
and the robot rather incrementally learns the forthcoming terrain.

The features from the storage are paired with the CoT ground truth respective to their location and
used to expand the model or to query the model for the CoT estimate. When they are used for both,
the estimation is executed first in order to avoid spurious results. Note that the model expansion
corresponds to the learning stage and the CoT estimation corresponds to the inference stage of the
CoT regression problem presented in Section 3.1. The incremental models can be simply passed any
data at any time, i.e., at any point, it is able to accept new feature-CoT pair and learn or respond
with the CoT estimate on the feature query. When learning, the model updates online as the data
are presented. The non-incremental models need a more strict distinction between the learning and
inference stages. In the learning stage, the model only accepts new feature-CoT pairs and stores them.
After the learning stage is finished, the model uses the stored data to finalize itself, i.e., to precompute
the part of the model that is capable of the CoT estimation. This computed model is then used in the
inference stage, where it is only capable of the CoT estimation.
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Chapter 5

Experiments

The solution for the terrain traversability regression proposed in Chapter 4 has been evaluated using
several test scenarios. We utilize an indoor test track consisting of six different terrains of varying
roughness, foothold stability, and appearance. The test track has been traversed by our hexapod crawl-
ing robot that senses the terrain both proprioceptively, i.e., measuring its power consumption and
motion progress, and exteroceptively, using the captured RGB-D representation of the terrain.

In this chapter, we report on the achieved results in the terrain traversability regression experiments
as follows. In Section 5.1, we describe our experimental platform. In Section 5.2, we report on the
specifics of our individual experimental setups. Specifically, we describe our indoor test track and the
way it is traversed by the hexapod crawling robot. Finally, we discuss the results of our experiments
regarding quantitative and qualitative analysis in Section 5.3.

5.1 Experimental Platform

The used robot is an electrically actuated low-cost hexapod crawling robot depicted in Figure 9a. It
features six legs, each with three joints (formed by Dynamixel AX12A servomotors) attached to the
trunk. The trunk hosts the electronics and sensory equipment. In the default configuration, the robot
dimensions are approx. 45× 40× 25 cm.

(a)

Swing up

Swing forward

Swing down

Swing phase

Move leg down

(small step)

Ground

detected?
NO

Body Leveling

Stable state

Stance phase

Compute posture

transform from

leg positions

Apply positions

- level body

YES

(b)

Figure 9: (a) The used hexapod crawling robot and (b) a scheme of its adaptive motion gait, courtesy
of [59].

The adaptive motion gait [59] is utilized for locomotion over the rough terrains. It uses the estimation
of the ground-reaction forces based on position data provided by the joint actuators, which allows
the robot to negotiate individual footsteps and traverse irregular terrain. The adaptive motion gait is
independent of exteroceptive sensors. The basic premise of the adaptive motion gait is to distribute
the weight of the robot evenly among its legs, which increases the robot’s stability.
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The adaptive motion gait operates as follows. During the locomotion, individual legs alternate in
swing phase, reaching new footholds, and stance phase, supporting the body. In [59], the swing phase
is further divided into 3 individual parts with the ground contact detection only in the swing down
phase of the motion as it is visualized in Figure 9b. When the swinging leg touches the ground, the
ground reaction force causes an increase in the load applied to the individual leg joints. This allows
the hexapod robot to identify the ground level using a position error threshold. After the foothold
position is acquired, the robot’s body is moved into an equilibrium position, i.e., a stable position from
which the robot can easily move in any direction. This part is called body leveling and it is a part of
the stance phase. As the equlibrium position is always given by the new footholds, it makes the whole
robot thrust forward.

The RGB-D ASUS Xtion Pro Live camera has been utilized for the terrain perception and hall-effect
current sensor for estimation of the robot instantaneous power consumption. On the robot the camera
is mounted on its frontal part approx. 17 cm above the ground level. The camera provides the data
with 30 Hz, and the power consumption data are provided with 62 Hz. The RGB-D data are further
processed by the Robot Operating System (ROS) [60] nodes to extract the individual RGB and Depth
images and the trajectory using the ORB-SLAM [50].

5.2 Experimental Setups

The experimental data have been obtained on our indoor laboratory test-track. The laboratory test-
track is used to create several artificial terrains. The individual terrain types differ in roughness, color,
and foothold visibility. Specifically, each of our test-track terrains is a three-meter length path over
a different surface. The terrains with the increasing presumed difficulty of traversing are (with short
identifiers in brackets): PVC flooring (flat), turf-like carpet (grass), and semi-transparent soft black
fabric (black) represent different flat terrains. In rough terrain scenarios we use turf-like carpet covered
wooden blocks (grass rough), black fabric covered wooden blocks (black rough), and bare wooden
blocks (blocks). The wooden blocks are 10 × 10 cm large with variable height and top slope. The
three rough terrain setups are shown in Figure 10. Note that the different flat and rough terrains have
been covered by the same artificial turf and black fabric. This selection of the terrain types allowed us
to simulate a rough and flat surfaces with various levels of occlusion. The artificial turf occluded the
wooden bricks fully, including the shape of the covered terrain. The black fabric occluded the terrain
only partially, with the bricks being visible at certain locations, and sticking to the shape of the terrain
somewhat better.

Figure 10: Rough terrains in laboratory trials.

We guide the robot remotely over the terrains during each of our experiments, while we collect visual
and power consumption data. The incremental localization technique [50] is then utilized to process
the visual data to obtain the robot pose that is utilized to estimate the robot velocity, and thus cal-
culation of CoT according to (2). Besides, the ground-based data, simulated aerial scans have been
collected for the individual terrain types using an elevated camera to provide a simulation of a UAV
overfly over the whole test track. Note that the same camera was used in both ground and aerial scans.
Generally, at least two ground walks and one environment scan have been captured for each of the
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terrains.

In each of the experiments, we have merged the trials over the individual terrains into a single dataset.
Typically, for each terrain, it is repeated two times and data from the one trial is utilized for learning
and the second trial for testing. After merging, the proposed framework in a given setup is used
according to the description presented in Section 4.2. In the non-increnemental setups, the algorithm
learns on the first half of the terrain sections, whereas the CoT estimate for the following sections
is inferred from the rest. In the incremental setups, the full dataset is utilized for both learning and
inference.

We test four main experimental setups: walk-to-flight test, walk-to-walk test, flight-to-flight test, and
exploration test. The individual tests are designed to evaluate the performance of the system when
concerning a certain situation.

In the walk-to-flight setup, the model learns on data from robot walk through the environment, but
CoT is inferred from the data recovered from the environment scans. This setup simulates the situation
when a robot “samples” an area by learning properties of the traversed terrain on a smaller patch of
the land and passes this information to the UAV that explores and evaluates the whole area. For this
setup, a feature has to be invariant to viewpoint changes, i.e., the setup is designed to test for feature
viewpoint invariance. In the other setups, the learning and testing is performed using different robot
walks, i.e., different walk scans and trajectories are used in learinng and testing to avoid spurious
results. This is not the case in the walk-to-flight setup. The goal of the walk-to-flight setup is not to
test the general performance of the inference system, but rather to test the invariance of the features
to viewpoint changes. Note that while the point clouds utilized in the inference part of this setup are
based on the environment scans, the respective trajectory and ground truth CoT are based on the robot
walks, as no such information exists for the environment scans. The same goes for all environment
scan setups.

The walk-to-walk and flight-to-flight setups are both designed to evaluate performance of the system
when simply traversing various terrains. The two setups differ in the utilized data. The walk setup uses
the walk scan point clouds, while the flight setup uses the environment scans. However, both setups
use the same walk-scan based trajectories and traversability ground truths. Different trajectories and
scans are used in learning and testing to avoid spurious results. Note that unlike the environment scan
utilizing setups, the walk setup can be used to test the performance of the appearance-based features,
as the location-specific images are available.

Finally, the unknown terrain exploration setup is designed to evaluate the system’s performance when
encountering unknown terrain. The scenario is specific in that different terrains are used for learning
and testing. Specifically, the flat, grass, black, and cubes terrains are used for learning, and grass
rough, black rough, and flat are used for testing. Otherwise, the setup is similar to the walk or flight
setups.

5.3 Experiment Results

This section discusses the achieved results and it is divided based on the setups presented in the
previous section, i.e., walk-to-flight, walk-to-walk, flight-to-flight, and unknown terrain exploration
setup. For each of these setups, we compare the selected feature sets and learning approaches using
quantitative and qualitative analysis according to the description presented in Section 3. Note that
not all possible combinations of the selected features sets and approaches are explored. We combine
geometry based features with color/appearance describing features in such a way that the feature
combinations are lightweight and easy to compute, a typical combination feature is comprised of 6–7
double precision floating point numbers.

25



5. Experiments

5.3.1 Walk-to-Flight Viewpoint Invariance Testing

In Table 2, the quantitative measures, i.e, the mean absolute error between the estimated and ground-
truth CoT, and its variance, are reported. In Figures 12 and 19, we present the model responses in the
individual walk-to-flight setups. The Hoeffding trees and SVR learning algorithms have not performed
well in the preliminary analysis of the walk-to-flight scenario, thus shifting the focus of the evaluation
on the IGMN and Regression trees.

As this setup utilizes the environment scan data, it was not possible to use image-based features.
Therefore we test standalone point cloud color and geometric features, and combinations thereof. In
Figure 11, we present the representations of the terrain traversed by our hexapod robot in a walk-to-
flight scenario with multiple terrains.

(a)

(b)

(c)

(d)

Figure 11: (a) External overview, (b) CoT and Terrain Visualization (Walk scan, Lab-M-Shape Fea-
ture), (c) robots’s RGB and (d) depth view in a walk-to-flight-like scenario with multiple indoor ter-
rains.

Only a limited difference between the CoT values for the flat, grass and grass rough terrains has been
observed. However, this is an expected behavior. We are interested in the CoT estimation rather than
the terrain classification. The cost similarity for the flat and grass terrains is not surprising, as the grass
track is basically the flat track covered by artificial turf carpet. The grass rough cost is somewhat more
surprising, as covering the cubes by the artificial turf leads to the existence of areas where turf is not
lying directly on the cubes, and thus it is not directly supported by the firm ground. It appears that the
artificial turf is firm enough to support the robot and prevent its legs from sinking down to the cube
level.
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Table 2: Walk-to-flight scenario statistics

Learning Feature Mean Var

Hoeffding RGB-M Shape 7.460 69.869
IGMN Height 9.032 37.984
IGMN Lab-M 5.694 38.299
IGMN Lab-M Shape 9.449 147.173
IGMN Lab-P 7.533 39.598
IGMN Lab-P Shape 7.153 67.636
IGMN Ori 8.708 57.418
IGMN RGB-M 5.720 44.463
IGMN RGB-M Height 6.631 39.042
IGMN RGB-M Ori 5.845 43.600
IGMN RGB-M Set 7.828 38.904
IGMN RGB-M Shape 5.688 38.525
IGMN RGB-P 7.334 59.442
IGMN RGB-P Shape 6.760 40.448
IGMN Set 9.007 58.455
IGMN Shape 8.399 44.910
Reg Tree Height 7.303 58.589
Reg Tree Lab-M 6.968 66.616
Reg Tree Lab-M Shape 6.140 46.042
Reg Tree Lab-P 6.417 37.860
Reg Tree Lab-P Shape 7.075 70.896
Reg Tree Ori 8.135 60.325
Reg Tree RGB-M 6.352 48.358
Reg Tree RGB-M Height 6.352 48.358
Reg Tree RGB-M Ori 5.833 47.513
Reg Tree RGB-M Set 6.864 63.257
Reg Tree RGB-M Shape 5.975 49.563
Reg Tree RGB-P 6.227 41.483
Reg Tree RGB-P Shape 6.588 58.684
Reg Tree Set 7.945 59.022
Reg Tree Shape 6.938 77.151
SVR RGB-M Shape 6.757 76.273

IGMN RGB-M                    

IGMN Ori                      

IGMN Shape                    

IGMN Lab-P                    

IGMN Lab-M                    

IGMN RGB-P                    

5.71983

8.70807

8.39903

7.55330

5.69369

7.33374

 44.46307

 57.41809

 44.90983

 39.59756

 38.29940

 59.44221

Mean Variance

IGMN RGB-M-Ori                

IGMN RGB-M-Height             

IGMN Height                   

IGMN RGB-M-Shape              

IGMN Set                      

IGMN RGB-M-Set                

5.84456

6.63090

9.03184

5.68791

9.00667

7.82804

 43.60050

 39.04174

 37.98371

 38.52526

 58.45499

 38.90371

Reg Tree RGB-P-Shape          

Reg Tree Lab-M-Shape          

Reg Tree RGB-M-Shape          

IGMN Lab-P-Shape              

IGMN RGB-P-Shape              

IGMN Lab-M-Shape              

6.58832

6.13991

5.97507

7.15257

6.75961

9.44908

 58.68363

 46.04198

 49.56291

 67.63581

 40.44799

147.17330
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Further, we observed several other traits of our terrain datasets. The CoT value over the wooden
blocks is less uniform. The low-cost areas are comparable to flat or grass datasets but it also contains
high-cost peaks. This is not surprising, as some areas form elevated plateaus, which can be traversed
relatively easily. Other areas are rugged with a considerable height difference between the individual
flat areas.

Finally, the black, and black rough datasets are the most costly with the high-cost peaks, which makes
the black the most costly flat setup. The black rough dataset is the most costly terrain in total, with the
highest CoT peaks and the highest non-peak areas. Presumably, the robot is unable to find proper grip
on the fabric covered terrain. Moreover, unlike the artificial turf, the black fabric is not firm enough to
support the robot.

The RGB-M-Shape feature, i.e., the combination of the RGB-M point cloud color feature and the
point cloud geometric shape feature, and the standalone point cloud Lab-M color feature, perform
best quantitatively. Since there are four distinguishable colors on the terrains, a good performance (i.e.,
low absolute error mean and variance) of the standalone Lab-M feature is not surprising. Although
there are two similarly colored pairs with a different terrain shape, the pairs had surprisingly similar
CoT, allowing the standalone color-based features to distinguish CoT quite well. The standalone color
features learned by the IGMN are presented in Figure 12a.

From the qualitative analysis in Figures 12b and 12c, we conclude that the sole geometric features
perform badly with both the incremental and non-incremental models. The color and shape feature
combination is able, in our opinion, to better cope with the CoT peaks and valleys. Therefore, it
provides the best results. Moreover, the combination does not exhibit overfitting as the model does
not exhibit any particularly strong reaction on the CoT spikes. We present various color-geometric
combination features in Figures 12d and 12e.

Results of a comparison of different models favor the IGMN setup in both quantitative and qualita-
tive measures. IGMN’s incremental learning property allows it to quickly adapt to the CoT changes.
In Figure 12f, we present all four models learning the RGB-M-Shape feature. The incremental ap-
proaches do not overfit the current terrain and do remember previously visited areas. See Figure 13a,
where it is possible to induce this from the existence of inferred CoT jumps when a new terrain is vis-
ited. Moreover, in this particular setup, the incremental model does not only learn from the walk-scan,
but also from the second aerial environment scan.

Another property of our datasets presented in Figures 13b and 13c is that at the far end of each of the
examined terrain, a small flat area is often traversed by the robot. This area can be interpreted as a
terrain type border. We conclude that the most of the well-performing setups are capable of reacting
on this terrain type border and estimate a lower CoT value in that region.

5.3.2 Walk-to-Walk

The results of the walk-to-walk scenario, i.e., a scenario when the framework learns from a walk
scan of a particular trajectory and is tested using a walk scan of another trajectory, are similar to the
results of the walk-to-flight setup, although some interesting differences exist. Table 3 presents an
integral portion of the quantitative results of the walk-to-walk and Table 6 presents the full exhaustive
test results of the setup. In Figure 14 and Figure 20, the framework responses in individual runs are
presented.

An additional trajectory covering the same set of terrains has been utilized in this and following sce-
narios. However, although the new trajectory covers the same set of terrains, it is still slightly different,
and some difference in the captured CoT ground truth has been observed. Most notably, the robot has
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(a) CoT estimation for different variants of the point cloud color-based features using the IGMN
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(b) CoT estimation for different variants of the geometric-based features using the IGMN
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(c) CoT estimation for different variants of the geometric-based features using the Regression Tree
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(d) Comparison of the CoT estimation for different variants of the combined appearence and geometric features
using the IGMN
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(e) Comparison of the CoT estimation for different variants of the combined appearence and geometric features
using the Regression Tree
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(f) Comparison of the CoT estimation for the RGB-M-Shape feature using different learning algorithms

Figure 12: Learned and predicted values of CoT for a different combination of features and learning
algorithms in the walk-to-flight setup. The first six terrains (parts) represent the learning phase. The
following six parts represent the inference phase.
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Figure 13: (a) Jump in inferred CoT when reaching a new area, the IGMN for Color Feautures, (b)
and (c) Terrain change to flat CoT drops, RGB-M-Shape features.

been able to traverse the black covered flat ground smoothly, thus making the overall CoT in the area
lower. Similarly, in the cubes terrain, trajectory partially leads over a plateau on top of the wooden
bricks which makes CoT lower.

The IGMN learned combination of the point cloud Lab-M and Orientation features is the quantitatively
best-performing feature in the walk-to-walk setup. This is somewhat similar to the results observed in
the walk-to-flight setup, where another combination feature, the RGB-M-Shape feature has performed
the best. Other features notable for their performance in the walk-to-walk setup are the sole Lab-M
feature, which performs quite well under multiple learning approaches despite being rather limited,
and the sole orientation feature, which performs well combined with color features, but terribly when
it is a lone feature.

When compared with the other IGMN learned color-geometric combination feature, the Lab-M-
Orientation feature is the best performing features, but does not differ drastically. The Lab-M feature
correctly identifies areas of relatively low CoT, including the black fabric covered flat terrain and bare
cubes. Other Lab-M-Geometric feature combinations, such as those presented in Figure 14a, have
problems identifying some areas. The Lab-M-Shape combination feature drastically overestimates
CoT for the black flat terrain. The Lab-M-Set and Lab-M-Height features additionally overestimate
some turf covered and flat areas. On the other hand, the Lab-M-Orientation feature appears to have
only a limited reaction on terrain changes. In Figure 15, a detail of the CoT estimation around the
border area is presented. Other features, such as the Lab-M-Set and Lab-M-Shape, react on low-CoT
areas that are often present at the ends of the individual terrain trajectories by estimating the relatively
low CoT of the flat area, while the Lab-M-Orientation feature usually assigns the CoT values of the
more expensive terrain.

The Lab-M-Orientation feature performs well with most of the learning algorithms. In Figure 14b,
we present the Lab-M-Orientation feature used under all four learning approaches. All the models
evaluate the individual terrains correctly, recognizing high- and low-cost areas. The IGMN and the
Hoeffding tree react on the the large high-CoT area of black rough terrain somewhat better than the
regression tree and SVR. This is not surprising given the IGMN and Hoeffding tree are the two incre-
mental approaches.

The second best performing feature is the Lab-M feature. This simple point cloud color feature per-
forms well when used with the IGMN, SVR, and regression tree. In Figure 14c, the feature is presented
with all four of our models. The feature behaves as one would expect a color based feature to behave,
i.e., it overestimates the black flat area, as it is hard to distinguish it from the black rough based only
on color information. This behavior is especially prevalent for incremental learning, as its estimation
is influenced by the expensive black rough area on the second trajectory. Moreover, such a behavior
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Table 3: Walk-to-walk scenario statistics

Learning Feature Mean Var

Hoeffding Lab-M 7.750 90.177
Hoeffding Lab-M Ori 6.973 87.580
IGMN ab-S 7.527 73.985
IGMN Height 10.737 76.048
IGMN Lab-M 5.463 63.782
IGMN Lab-M Height 8.490 111.242
IGMN Lab-M Ori 4.879 54.631
IGMN Lab-M Set 10.156 202.966
IGMN Lab-M Shape 7.643 90.989
IGMN Lab-P 8.550 74.864
IGMN Lab-S 9.265 77.643
IGMN Ori 28.725 492.838
IGMN RGB-M 9.644 110.255
IGMN RGB-M Ori 7.550 93.046
IGMN RGB-P 7.675 99.859
IGMN RGB-P Ori 6.888 86.462
IGMN RGB-S 10.644 73.111
IGMN Set 8.034 99.178
IGMN Shape 7.391 88.402
IGMN Wave 10.201 75.290
Reg Tree Height 8.287 108.883
Reg Tree Lab-M 5.835 97.819
Reg Tree Lab-M Height 6.852 87.882
Reg Tree Lab-M Ori 5.834 97.769
Reg Tree Lab-M Set 6.438 91.429
Reg Tree Lab-M Shape 5.925 81.897
Reg Tree Lab-P 7.106 106.065
Reg Tree Lab-S 8.552 98.232
Reg Tree Ori 9.455 95.993
Reg Tree RGB-M 5.508 90.968
Reg Tree RGB-P 7.643 107.963
Reg Tree RGB-S 10.679 91.996
Reg Tree Set 6.591 79.512
Reg Tree Shape 6.407 94.094
SVR Height 10.889 155.765
SVR Lab-M 5.481 94.700
SVR Lab-M Ori 5.548 94.421
SVR Lab-M Shape 7.455 120.396
SVR Lab-P 6.155 120.056
SVR Ori 9.062 103.553
SVR RGB-M 6.602 119.747
SVR RGB-P 7.007 109.752
SVR Set 6.986 133.726
SVR Shape 6.245 95.858

IGMN RGB-M                    

IGMN Ori                      

IGMN Shape                    

IGMN Lab-P                    

IGMN Lab-M                    

IGMN RGB-P                    

9.64441

28.72501

7.39069

8.55042

5.46254

7.67508

110.25495

492.83806

 88.40212

 74.86434

 63.78180

 99.85936

Mean Variance

IGMN Lab-M-Height             

IGMN Lab-M-Ori                

IGMN Height                   

IGMN Lab-M-Set                

IGMN Set                      

IGMN Lab-M-Shape              

8.48968

4.87935

10.73660

10.15555

8.03396

7.64330

111.24195

 54.63054

 76.04793

202.96559

 99.17781

 90.98949

Reg Tree Lab-M                

Hoeffding Lab-M-Ori           

Heoffding Lab-M               

Reg Tree Lab-M-Ori            

SVR Lab-M                     

SVR Lab-M-Ori                 

5.83456

6.97327

7.75009

5.83432

5.48105

5.54777

 97.81927

 87.57959

 90.17656

 97.76888

 94.70013

 94.42131
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(d) CoT estimation for different variants of the point cloud color features using the IGMN
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(e) CoT estimation for different variants of the geometric-based features using the IGMN
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(f) CoT estimation for different variants of the image-based features using the IGMN

Figure 14: Learned and predicted values of CoT for a different combination of features and learning
algorithms in the walk-to-walk setup. The first six terrains (parts) represent the learning phase. The
following six parts represent the inference phase.
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Figure 15: Walk-to-walk terrain change details.

is not specific for the Lab-M feature, but rather is a property of the utilized color-based features in
general. In Figure 14d, we present the point cloud features under the IGMN learning approach.

The behavior of the sole orientation feature under the IGMN learning is rather peculiar. In general,
geometric features, such as those presented in Figure 14e, are capable of discriminating between flat
and rough terrains. However, the sole Orientation feature, which is a part of the best performing Lab-
M-orientation feature, overestimates CoT for most areas and assigns values normally found only in
the most extreme black rough terrain. Although the exact reason for this behavior is not known, we
presume that this is caused by the incremental learning in the IGMN approach. More specifically, the
model probably receives a “shock” from the CoT spikes on the black rough terrain.

Finally, in the walk-to-walk setup, we also test our image features, i.e., the Wavelet feature and the
Image segmentation features. The results are presented in Figure 14f. The behavior of the image
features is similar to the point cloud color features, although the image features also considerably
overestimate CoT for flat areas. Moreover, the image features do not perform particularly well for the
terrain border areas.

5.3.3 Flight-to-Flight

The flight-to-flight scenario is a scenario where the robot both learns and estimates using one environ-
ment scan for each terrain, albeit different trajectories and associated CoT time series are used in the
learning and inference phases. Tables 4 and 7 present the selection from and the full statistics of the
flight-to-flight scenario testing. In Figures 16 and 21 the individual runs are shown.

Similarly to the walk-to-walk setup, the IGMN learned Lab-M-Orientation feature is the best per-
former in the flight-to-flight setup. The Lab-M based features dominated the setup in general, i.e.,
the sole Lab-M, Lab-M-shape, and Lab-M-set features performed well under some of the learning
approaches.

The IGMN Lab-M-Orientation feature behaves quite predictably, as its behavior is similar to the walk-
to-walk setup. It is able to discriminate between high-cost and low-cost terrains. The black flat and
cube terrains are slightly overestimated, although much less than for the other color-geometric feature
combinations, such as those presented in Figure 16a. On the other hand, some of the feature combi-
nations perform decently when paired with some of the nonincremental approaches. Specifically, the
Lab-M-Shape features perform well under the SVR, while the Lab-M-Set and Lab-M-Height features
do better under the regression tree. The performance of various Lab-M-Geometric features under the
regression tree learning approach is presented in Figure 16b. Note that the Lab-M-Orientation feature
performs decently under all of the approaches, as it is presented in Figure 16c. Although the Lab-M-
Orientation feature is the best performer regarding quantitative analysis and appears to discriminate
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Table 4: Flight-to-flight scenario statistics

Learning Feature Mean Var

Hoeffding Lab-M 7.189 76.481
Hoeffding Lab-M Ori 7.018 66.911
IGMN Height 7.390 54.706
IGMN Lab-M 5.448 55.151
IGMN Lab-M Height 7.433 64.117
IGMN Lab-M Ori 5.229 58.489
IGMN Lab-M Set 7.622 59.607
IGMN Lab-M Shape 7.565 59.582
IGMN Lab-P 6.932 59.353
IGMN Lab-P Ori 7.768 63.331
IGMN Lab-P Shape 7.677 58.118
IGMN Ori 14.095 127.257
IGMN RGB-M 11.383 135.562
IGMN RGB-M Ori 11.622 137.297
IGMN RGB-M Shape 7.264 61.659
IGMN RGB-P 16.504 256.782
IGMN RGB-P Ori 15.641 233.964
IGMN RGB-P Shape 7.348 57.839
IGMN Set 7.621 56.482
IGMN Shape 7.022 62.460
Reg Tree Lab-M 7.610 89.214
Reg Tree Lab-M Height 5.997 89.901
Reg Tree Lab-M Ori 7.610 89.214
Reg Tree Lab-M Set 5.951 90.249
Reg Tree Lab-M Shape 6.732 95.003
Reg Tree Lab-P 7.195 85.103
Reg Tree RGB-M 6.022 92.347
Reg Tree RGB-P 7.068 88.858
SVR Height 7.786 131.404
SVR Lab-M 6.393 86.490
SVR Lab-M Ori 6.474 85.951
SVR Lab-M Shape 5.417 100.921
SVR Lab-P 5.865 98.150
SVR Lab-P Ori 6.986 88.912
SVR Lab-P Shape 6.189 93.494
SVR Ori 7.930 94.635
SVR RGB-M 6.198 97.596
SVR RGB-M Ori 6.369 100.920
SVR RGB-M Shape 6.360 96.901
SVR RGB-P 6.917 94.211
SVR RGB-P Ori 6.892 94.106
SVR RGB-P Shape 6.274 96.316
SVR Set 7.938 110.359
SVR Shape 6.110 104.596

IGMN RGB-M                    

IGMN Ori                      

IGMN Shape                    

IGMN Lab-P                    

IGMN Lab-M                    

IGMN RGB-P                    
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14.09458
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IGMN Height                   
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IGMN Set                      
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 59.58195
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(a) CoT estimation for different variants of the Lab-M + Geometric features using the IGMN
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(b) CoT estimation for different variants of the Lab-M + Geometric features using the Regression Tree
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(c) CoT estimation for different learning algorithms on the Lab-M + Orientation Features
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(d) CoT estimation for different variants of the geometric-based features using the IGMN
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(e) CoT estimation for different variants of the Color + Orientation features using the IGMN
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(f) CoT estimation for different variants of the point cloud color features using the IGMN

Figure 16: Learned and predicted CoT values for a different combination of the features and learning
algorithms in the flight-to-flight setup. The first six terrains (parts) represent the learning phase. The
following six parts represent the inference phase.
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terrains quite well, it suffers from the same problems as we have observed in the walk-to-walk setup,
i.e., it exhibits only a limited reaction to partial terrain changes. Figure 17 presents a detail of the
behavior for the border areas.

Again, the behavior of the sole geometric features does not differ drastically between the walk-to-walk
and flight-to-flight scenarios. The sole geometric features, such those under the IGMN model which
are presented in Figure 16d, perform decently with the exception of the IGMN learned orientation
feature, which again drastically overestimates CoT for all areas. However, unlike in the walk-to-walk
scenario, this behavior influences the composite features, when certain color based features are uti-
lized. In Figure 16e, we present the Color-Geometric combination features under the IGMN. The
likely reason why this behavior is propagated to the combination features is that the behavior is not
prevalent only in the sole geometric features but also in the some of the sole point cloud color fea-
tures. Specifically, the RGB based features appear to suffer from this problem, as can be observed in
Figure 16f.
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Figure 17: Flight-to-flight terrain change details.

5.3.4 Unknown Terrain Exploration

In the unknown terrain exploration scenario, the framework learns from four basic terrains (cubes,
flat, grass flat, and black flat) and is tested on the combined terrains (black rough and grass rough),
and flat terrain, which is added to test framework’s ability to retain the information learned several
terrains back. The setup uses both walk and environment scans with either walk- or environment-scan
point cloud, i.e., the point clouds are used in the same manner as in the walk-to-walk or flight-to-
flight scenario, respectively. The overall quantitative statistics are presented in Tables 5, 8, and 9. In
Figures 18, 22, and 23, we present the model responses in individual the unknown terrain exploration
setups.

Unlike in the simple walk-to-walk and flight-to-flight setups, the best performing feature is the IGMN
learned RGB-M-Shape feature under the flight-to-flight-exploration setup. However, the Lab-M-
Geometric features that have proven successful in other setups also perform decently. Namely, under
the flight-to-flight-exploration setup, the sole Lab-M, Lab-M-Orientation, Lab-M-Set, and also the
Lab-M-Height performed decently. Under the walk-to-walk-exploration scenario, the performance is
notably worse with the sole Lab-M feature being the best. All the mentioned features were learned
using the IGMN approach.

The performance of the RGB-M-Shape feature is surprising. In the walk-to-walk and flight-to-flight
setups, the Lab based features performed better, presumably because some lighting changes may have
been present during capturing the dataset. Presumably, in the exploration setup, somewhat lower
variance of the terrains and trajectories allows the RGB based features to perform quite decently. A
similar phenomenon can be observed in the walk-to-flight scenario, where each terrain is represented
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Table 5: Exploration scenario statistics

Flight-to-flight

Learning Feature Mean Var

Hoeffding Lab-M 7.416 67.174
IGMN Height 6.084 80.776
IGMN Lab-M 5.186 65.264
IGMN Lab-M Height 5.413 56.304
IGMN Lab-M Ori 5.938 85.583
IGMN Lab-M Set 9.821 149.407
IGMN Lab-M Shape 8.046 123.891
IGMN Lab-P 6.289 92.768
IGMN Ori 7.004 106.666
IGMN RGB-M 8.144 92.952
IGMN RGB-M Ori 18.631 441.283
IGMN RGB-M Shape 4.776 53.706
IGMN RGB-P 18.436 417.342
IGMN Set 5.763 56.175
IGMN Shape 7.802 116.188
Reg Tree Lab-M 7.690 167.393
Reg Tree RGB-M Shape 7.316 203.796
SVR Lab-M 7.616 205.117
SVR Lab-M Shape 7.414 201.844
SVR Lab-P 7.606 190.827

Walk-to-walk

Learning Feature Mean Var

Hoeffding Lab-M 7.692 105.646
Hoeffding Lab-M Ori 7.800 93.814
IGMN Height 10.156 92.699
IGMN Lab-M 5.304 80.220
IGMN Lab-M Height 10.294 181.473
IGMN Lab-M Ori 9.695 184.820
IGMN Lab-M Set 6.840 87.844
IGMN Lab-M Shape 9.736 219.595
IGMN Lab-P 7.475 106.035
IGMN Ori 28.547 721.531
IGMN RGB-M 24.156 692.893
IGMN RGB-M Shape 5.618 72.997
IGMN Set 12.044 136.896
IGMN Shape 8.995 97.325
Reg Tree Lab-M 8.621 233.504
Reg Tree Lab-M Ori 8.621 233.517
Reg Tree Ori 8.670 252.610
Reg Tree RGB-M 8.815 233.840
Reg Tree RGB-M Shape 8.933 228.813
SVR Lab-M 8.557 252.507
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(a) CoT estimation for different variants of the flight RGB-M + Geometric features using the IGMN
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(c) CoT estimation for different variants of the walk point cloud color features using the IGMN
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(d) CoT estimation for different variants of the walk Lab-M + Geometric features using the IGMN
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(f) CoT estimation for different learning algorithms on the walk Lab-M color features

Figure 18: Learned and predicted values of CoT for a different combination of the features and learn-
ing algorithms in the exploration setup. The first four terrains (parts) represent the learning phase. The
following three parts represent the inference phase.
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by one specific trajectory. Figure 18a presents the various RGB-M-Geometric features. Note that the
RGB-M-Orientation feature suffers from the same problem as some of the RGB-M and Orientation
based features in the previous setups, i.e., after encountering a high-CoT area, it does estimate all
further terrains as a high CoT. The Lab-M-Geometric features presented in Figure 18b, despite of a
worse quantitative performance, perform quite decently and do not suffer from this problem. The
Lab-M-Shape feature produces a high-CoT spike in the grass rough terrain area, but it is not of the
same magnitude as the aforementioned problem.

Although the sole Lab-M feature perfomes the best in the walk-to-walk-exploration scenario quan-
titative analysis, a detailed examination of Figure 18c shows otherwise. Most of the color based
features exhibited a considerable inaccuracy for several terrains. The Lab-M performs best quantita-
tively, albeit the Lab-P feature appears to be better, as it does not produce any considerable peak. The
Lab-M-Geometric features, presented in Figure 18d, do not perform particularly well in the walk-to-
walk-exploration setup. All variants produce high CoT spikes in areas where there is a low ground
truth CoT.

The performance of the individual features somewhat differs between the walk-to-walk and flight-to-
flight exploration setups, and the previous setups. However, the performance of the learning algorithms
appears to be straightforward. Figure 18e and Figure 18f present model comparisons for the flight-to-
flight-exploration RGB-M-Shape feature and walk-to-walk-exploration Lab-M feature, respectively.
The non-incemental methods have not encountered many high-CoT areas in the learning stage, and
thus are not capable of the proper reaction on such areas in the inference phase. On the other hand,
the incremental approaches, are suitable for exploration of unknown terrains, as they can add new
information on the go.
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Chapter 6

Conclusion

In this work, we present a framework for regression of exteroceptively perceived terrain traversabil-
ity assessment for a hexapod walking robot. The framework clusters terrain data based on terrain
traversability assessment from visual and geometric features. It also supports incremental learning
and can be used with datasets captured from multiple viewpoints. Based on the presented overview
of the state of the art in the field of terrain traversability and terrain description, we have selected
a traversability metric and a set of terrain description features. Namely, we have utilized the power
consumption based Cost of Transport and various lightweight and easy to compute color and geome-
try based terrain description features. We compare these lightweight terrain description features and
comment on their impact on the precision of the traversability assessment estimation.

Our hexapod walking robot captures an RGB-D dataset, which is further utilized to construct point
cloud representation of the traversed terrain. The robot also collects proprioceptive data which is uti-
lized in the CoT computation. The dataset consists of hexapod robot locomotion data on different
terrains in an indoor laboratory scenario. Moreover, we simulate a UAV overflight over our test track
and create addition point clouds captured from aerial viewpoints. These point clouds, combined with
the RGB images from the robot, are further utilized by our framework to learn the terrain descrip-
tion features. Moreover, we also investigate the possibility of using the framework for traversability
assessment estimation in observed, yet untraversed terrain.

We compare the selected combination of the approaches on several scenarios designed to test specific
properties of the individual learning and feature combinations. In walk and flight tests, we simply
test the performance of the individual combinations when traversing arbitrary terrains using the point
clouds captured from the robot and aerial viewpoints, respectively. In the walk-to-flight test, we
test the viewpoint invariance of the individual features, where the framework learns from the ground
viewpoint data, and it is tested on the aerial viewpoint. Finally, in the exploration tests, we test the
ability of the framework to deal with new terrains and the robot is tested on terrains that were not used
in the learning process.

Our testing has revealed several interesting results. We conclude that the combined point cloud color-
geometric features are the best performers. The individual color or geometric features may have
performed decently in some setups, but appear to be much more susceptible to a reaction on high-
CoT peaks and other overfitting problems. Additionally, frequency-based image wavelet features and
image segmentation features were tested but did not perform particularly well.

Among the point cloud color-geometric combinations, we consider the combinations of the Lab color
channel means feature with either the eigenvalue-based shape feature or normal-based orientation
feature to be the best performers. Some variation of the Lab feature is among the best performing
features in all of our setups, either alone or combined with one of the geometric features. Although in
some of the setups it is outperformed by RGB based features, its overall performance is convincing.
Moreover, the RGB based features perform well only in setups where there is limited possibilty of
the ilumination change for individual terrains. The shape and orientation based features appear to be
comparable in performance. The orientation based combination features perform better in the simple
walk and flight scenarios, while the shape feature is better in the walk-to-flight and exploration setups
and appears to be less prone to overfitting in general. The shape feature is four dimensional, while the
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orientation feature is only three dimensional, but requires a fixed coordinate frame orientation.

We observe that the terrain traversability estimation benefits greatly from incremental learning ap-
proaches. In all of our setups, the best performing feature has been learned using the IGMN approach.
The benefit of the incremental learning is best observable in the exploration setup, where the non-
incremental approaches are not capable of coping with new terrains, while the incremental methods
simply add them on-the-go. Similarly, the multi-viewpoint setups benefits from incremental learning,
because the possible differences between the individual representations can be mitigated on-the-go.

Our work is open to various extensions. For example, features more specific to terrain types that can
be encountered could be developed. Moreover, for practical applications, it would be beneficial to
extend the system with assigning terrain types with direction based traversability metric. On a more
technical note, our work could be further utilized by creating a multi-robot system, where the robot
traversing the terrain is accompanied by a UAV that explores the area around the robot and allows a
terrain evaluation in areas that are occluded to the ground robot exteroceptive sensors.
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C. Detailed Results

Table 6: Full walk-to-walk scenario statistics

Learning Feature Mean Var

Hoeffding Lab-M 7.750 90.177
Hoeffding Lab-M Ori 6.973 87.580
Hoeffding Lab-M Shape 7.246 87.628
Hoeffding Lab-P 7.415 117.329
Hoeffding RGB-M 7.396 98.870
IGMN ab-S 7.527 73.985
IGMN ab-S Ori 8.091 72.056
IGMN ab-S Shape 6.720 73.752
IGMN Height 10.737 76.048
IGMN Lab-M 5.463 63.782
IGMN Lab-M Height 8.490 111.242
IGMN Lab-M Ori 4.879 54.631
IGMN Lab-M Set 10.156 202.966
IGMN Lab-M Shape 7.643 90.989
IGMN Lab-P 8.550 74.864
IGMN Lab-P Ori 8.435 72.631
IGMN Lab-P Shape 7.533 77.848
IGMN Lab-S 9.265 77.643
IGMN Lab-S Ori 10.042 75.499
IGMN Lab-S Shape 7.693 65.152
IGMN Ori 28.725 492.838
IGMN RGB-M 9.644 110.255
IGMN RGB-M Ori 7.550 93.046
IGMN RGB-M Shape 6.175 64.173
IGMN RGB-P 7.675 99.859
IGMN RGB-P Ori 6.888 86.462
IGMN RGB-P Shape 7.409 66.755
IGMN RGB-S 10.644 73.111
IGMN RGB-S Ori 10.550 72.426
IGMN RGB-S Shape 8.772 119.959
IGMN Set 8.034 99.178
IGMN Shape 7.391 88.402
IGMN Wave 10.201 75.290
IGMN Wave Ori 9.675 75.966
IGMN Wave Shape 7.040 64.586
Reg Tree ab-S 8.227 98.684
Reg Tree ab-S Ori 8.131 98.065
Reg Tree ab-S Shape 6.202 91.656
Reg Tree Height 8.287 108.883
Reg Tree Lab-M 5.835 97.819
Reg Tree Lab-M Height 6.852 87.882
Reg Tree Lab-M Ori 5.834 97.769
Reg Tree Lab-M Set 6.438 91.429
Reg Tree Lab-M Shape 5.925 81.897
Reg Tree Lab-P 7.106 106.065
Reg Tree Lab-P Ori 7.113 106.377
Reg Tree Lab-P Shape 6.700 92.712

Learning Feature Mean Var

Reg Tree Lab-S 8.552 98.232
Reg Tree Lab-S Ori 8.507 98.566
Reg Tree Lab-S Shape 5.957 88.278
Reg Tree Ori 9.455 95.993
Reg Tree RGB-M 5.508 90.968
Reg Tree RGB-M Ori 5.522 91.137
Reg Tree RGB-M Shape 5.507 75.188
Reg Tree RGB-P 7.643 107.963
Reg Tree RGB-P Ori 7.892 105.488
Reg Tree RGB-P Shape 6.507 92.986
Reg Tree RGB-S 10.679 91.996
Reg Tree RGB-S Ori 10.256 89.574
Reg Tree RGB-S Shape 6.075 89.669
Reg Tree Set 6.591 79.512
Reg Tree Shape 6.407 94.094
Reg Tree Wave 8.728 107.873
Reg Tree Wave Ori 8.812 106.819
Reg Tree Wave Shape 6.174 93.282
SVR ab-S 7.830 97.605
SVR ab-SOri 7.625 97.490
SVR ab-SShape 5.803 83.509
SVR Height 10.889 155.765
SVR Lab-M 5.481 94.700
SVR Lab-M Ori 5.548 94.421
SVR Lab-M Shape 7.455 120.396
SVR Lab-P 6.155 120.056
SVR Lab-POri 7.389 114.499
SVR Lab-PShape 6.105 84.536
SVR Lab-S 8.219 96.409
SVR Lab-SOri 7.990 92.611
SVR Lab-SShape 5.597 83.539
SVR Ori 9.062 103.553
SVR RGB-M 6.602 119.747
SVR RGB-M Ori 5.656 105.255
SVR RGB-M Shape 6.093 69.685
SVR RGB-P 7.007 109.752
SVR RGB-P Ori 7.286 109.204
SVR RGB-P Shape 5.850 84.981
SVR RGB-S 9.294 103.206
SVR RGB-S Ori 9.012 91.019
SVR RGB-S Shape 5.835 95.590
SVR Set 6.986 133.726
SVR Shape 6.245 95.858
SVR Wave 9.001 111.738
SVR Wave Ori 8.242 108.734
SVR Wave Shape 5.965 94.845
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C. Detailed Results

Table 7: Full flight-to-flight scenario statistics

Learning Feature Mean Var

Hoeffding Lab-M 7.189 76.481
Hoeffding Lab-M Ori 7.018 66.911
Hoeffding Lab-M Shape 7.142 78.206
Hoeffding Lab-P 6.744 70.794
Hoeffding RGB-M 7.055 67.859
IGMN Height 7.390 54.706
IGMN Lab-M 5.448 55.151
IGMN Lab-M Height 7.433 64.117
IGMN Lab-M Ori 5.229 58.489
IGMN Lab-M Set 7.622 59.607
IGMN Lab-M Shape 7.565 59.582
IGMN Lab-P 6.932 59.353
IGMN Lab-P Ori 7.768 63.331
IGMN Lab-P Shape 7.677 58.118
IGMN Ori 14.095 127.257
IGMN RGB-M 11.383 135.562
IGMN RGB-M Ori 11.622 137.297
IGMN RGB-M Shape 7.264 61.659
IGMN RGB-P 16.504 256.782
IGMN RGB-P Ori 15.641 233.964
IGMN RGB-P Shape 7.348 57.839
IGMN Set 7.621 56.482
IGMN Shape 7.022 62.460
Reg Tree Height 7.515 111.048
Reg Tree Lab-M 7.610 89.214
Reg Tree Lab-M Height 5.997 89.901
Reg Tree Lab-M Ori 7.610 89.214
Reg Tree Lab-M Set 5.951 90.249
Reg Tree Lab-M Shape 6.732 95.003

Learning Feature Mean Var

Reg Tree Lab-P 7.195 85.103
Reg Tree Lab-P Ori 7.189 85.142
Reg Tree Lab-P Shape 6.324 90.253
Reg Tree Ori 8.286 92.904
Reg Tree RGB-M 6.022 92.347
Reg Tree RGB-M Ori 6.029 92.179
Reg Tree RGB-M Shape 6.316 88.825
Reg Tree RGB-P 7.068 88.858
Reg Tree RGB-P Ori 7.065 89.594
Reg Tree RGB-P Shape 6.763 99.664
Reg Tree Set 7.449 98.419
Reg Tree Shape 6.585 102.228
SVR Height 7.786 131.404
SVR Lab-M 6.393 86.490
SVR Lab-M Ori 6.474 85.951
SVR Lab-M Shape 5.417 100.921
SVR Lab-P 5.865 98.150
SVR Lab-P Ori 6.986 88.912
SVR Lab-P Shape 6.189 93.494
SVR Ori 7.930 94.635
SVR RGB-M 6.198 97.596
SVR RGB-M Ori 6.369 100.920
SVR RGB-M Shape 6.360 96.901
SVR RGB-P 6.917 94.211
SVR RGB-P Ori 6.892 94.106
SVR RGB-P Shape 6.274 96.316
SVR Set 7.938 110.359
SVR Shape 6.110 104.596
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C. Detailed Results

Table 8: Full walk-to-walk-exploration scenario statistics

Learning Feature Mean Var

Hoeffding Lab-M 7.692 105.646
Hoeffding Lab-M Ori 7.800 93.814
Hoeffding Lab-M Shape 10.364 193.357
Hoeffding Lab-P 8.073 117.782
Hoeffding RGB-M 9.430 146.286
IGMN ab-S 6.586 131.555
IGMN ab-S Ori 9.743 107.790
IGMN ab-S Shape 8.330 98.607
IGMN Height 10.156 92.699
IGMN Lab-M 5.304 80.220
IGMN Lab-M Height 10.294 181.473
IGMN Lab-M Ori 9.695 184.820
IGMN Lab-M Set 6.840 87.844
IGMN Lab-M Shape 9.736 219.595
IGMN Lab-P 7.475 106.035
IGMN Lab-P Ori 7.185 93.333
IGMN Lab-P Shape 11.140 132.079
IGMN Lab-S 8.269 108.692
IGMN Lab-S Ori 8.595 90.184
IGMN Lab-S Shape 10.483 142.965
IGMN Ori 28.547 721.531
IGMN RGB-M 24.156 692.893
IGMN RGB-M Ori 22.922 659.637
IGMN RGB-M Shape 5.618 72.997
IGMN RGB-P 23.965 642.121
IGMN RGB-P Ori 24.195 664.523
IGMN RGB-P Shape 7.606 83.073
IGMN RGB-S 9.063 108.171
IGMN RGB-S Ori 8.765 105.558
IGMN RGB-S Shape 11.097 138.984
IGMN Set 12.044 136.896
IGMN Shape 8.995 97.325
IGMN wv 8.002 130.635
IGMN wv Ori 7.473 134.422
IGMN wv Shape 8.726 92.329

Learning Feature Mean Var

Reg Tree ab-S 9.042 254.305
Reg Tree ab-S Ori 8.926 251.878
Reg Tree ab-S Shape 9.077 238.272
Reg Tree Height 10.982 225.083
Reg Tree Lab-M 8.621 233.504
Reg Tree Lab-M Height 8.348 215.078
Reg Tree Lab-M Ori 8.621 233.517
Reg Tree Lab-M Set 8.422 214.863
Reg Tree Lab-M Shape 7.735 213.843
Reg Tree Lab-P 9.138 220.355
Reg Tree Lab-P Ori 8.117 229.471
Reg Tree Lab-P Shape 8.933 234.272
Reg Tree Lab-S 8.576 223.699
Reg Tree Lab-S Ori 8.480 223.813
Reg Tree Lab-S Shape 8.252 236.942
Reg Tree Ori 8.670 252.610
Reg Tree RGB-M 8.815 233.840
Reg Tree RGB-M Ori 8.810 233.681
Reg Tree RGB-M Shape 8.933 228.813
Reg Tree RGB-P 8.139 229.757
Reg Tree RGB-P Ori 8.104 231.208
Reg Tree RGB-P Shape 9.223 233.997
Reg Tree RGB-S 8.435 235.220
Reg Tree RGB-S Ori 8.357 235.896
Reg Tree RGB-S Shape 8.597 246.280
Reg Tree Set 10.790 226.379
Reg Tree Shape 8.177 244.333
Reg Tree wv 8.555 252.282
Reg Tree wv Ori 8.563 253.574
Reg Tree wv Shape 8.630 240.265
SVR Lab-M 8.557 252.507
SVR Lab-M Ori 8.511 251.005
SVR Lab-M Shape 8.499 248.929
SVR Lab-P 8.570 248.463
SVR RGB-M 7.913 231.387
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C. Detailed Results

Table 9: Full flight-to-flight-exploration scenario statistics

Learning Feature Mean Var

Hoeffding Lab-M 7.416 67.174
Hoeffding Lab-M Ori 8.146 91.096
Hoeffding Lab-M Shape 7.230 81.491
Hoeffding Lab-P 7.170 85.642
Hoeffding RGB-M 7.443 73.546
Hoeffding RGB-M Shape 7.031 61.895
IGMN Height 6.084 80.776
IGMN Lab-M 5.186 65.264
IGMN Lab-M Height 5.413 56.304
IGMN Lab-M Ori 5.938 85.583
IGMN Lab-M Set 9.821 149.407
IGMN Lab-M Shape 8.046 123.891
IGMN Lab-P 6.289 92.768
IGMN Lab-P Ori 6.280 88.832
IGMN Lab-P Shape 6.290 67.883
IGMN Ori 7.004 106.666
IGMN RGB-M 8.144 92.952
IGMN RGB-M Height 5.267 51.814
IGMN RGB-M Ori 18.631 441.283
IGMN RGB-M Shape 4.776 53.706
IGMN RGB-P 18.436 417.342
IGMN RGB-P Ori 17.265 366.808
IGMN RGB-P Shape 8.043 92.712
IGMN Set 5.763 56.175
IGMN Shape 7.802 116.188

Learning Feature Mean Var

Reg Tree Height 7.801 167.335
Reg Tree Lab-M 7.690 167.393
Reg Tree Lab-M Height 7.456 164.962
Reg Tree Lab-M Ori 7.689 167.401
Reg Tree Lab-M Set 7.289 167.390
Reg Tree Lab-M Shape 7.977 216.385
Reg Tree Lab-P 7.284 186.605
Reg Tree Lab-P Ori 7.415 191.274
Reg Tree Lab-P Shape 7.753 214.104
Reg Tree Ori 7.556 198.452
Reg Tree RGB-M 7.790 212.173
Reg Tree RGB-M Ori 7.790 212.173
Reg Tree RGB-M Shape 7.316 203.796
Reg Tree RGB-P 7.346 195.571
Reg Tree RGB-P Ori 7.324 196.993
Reg Tree RGB-P Shape 8.217 213.407
Reg Tree Set 8.101 185.670
Reg Tree Shape 7.831 220.484
SVR Lab-M 7.616 205.117
SVR Lab-M Ori 7.615 203.203
SVR Lab-M Shape 7.414 201.844
SVR Lab-P 7.606 190.827
SVR RGB-M 7.536 202.858
SBR RGB-M Shape 7.625 208.615
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(a) CoT estimation for different variants of the RGB-M-geometric features using the IGMN
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(b) CoT estimation for different variants of the color features using the Regression trees

Figure 19: Learned and predicted values of CoT for different combinations of the features and learning
algorithms in the walk-to-flight setup. The first six terrains (parts) represent the learning phase. The
following six parts represent the inference phase.
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(a) CoT estimation for different variants of the geometric-based features using the Regression Trees
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(b) CoT estimation for different variants of the image-based features using the Regression Trees
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(c) CoT estimation for different variants of the point cloud color features using the Regression Trees
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(d) CoT estimation for different variants of the color-orientation features using the Regression Trees
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(e) CoT estimation for different variants of the color-shape features using the Regression Trees
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(f) CoT estimation for different variants of the Lab-M-geometric features using the Regression Trees

Figure 20: Learned and predicted values of CoT for different combinations of the features and learning
algorithms in the walk-to-walk setup. The first six terrains (parts) represent the learning phase. The
following six parts represent the inference phase.
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1 grass black rough cubes black     grass rough     flat 7 black rough cubes grass black grass rough flat

0

20

40

60

CoT Ground Truth Lab-M + Shape Lab-P + Shape RGB-M + Shape RGB-P + Shape

(a) CoT estimation for different variants of the color-shape features using the IGMN
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(b) CoT estimation for different models using the Lab-M features
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(c) CoT estimation for different variants of the color features using the Regression trees
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(d) CoT estimation for different variants of the geometric features using the Regression trees
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(e) CoT estimation for different variants of the geometric features using the SVR
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(f) CoT estimation for different variants of the color features using the SVR

Figure 21: Learned and predicted values of CoT for different combinations of the features and learning
algorithms in the flight-to-flight setup. The first six terrains (parts) represent the learning phase. The
following six parts represent the inference phase.

59



C. Detailed Results

1 grass cubes black flat 5 black rough grass rough flat

0

20

40

60

CoT Ground Truth Lab-M Lab-P RGB-M RGB-P

(a) CoT estimation for different variants of the color features using the IGMN
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(b) CoT estimation for different variants of the geometric features using the IGMN
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(c) CoT estimation for different variants of the color features using the Regression Trees
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(d) CoT estimation for different variants of the geometric features using the Regression Trees
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(e) CoT estimation for different variants of the color-shape features using the Regression Trees
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(f) CoT estimation for different variants of the color-orientation features using the Regression Trees

Figure 22: Learned and predicted values of CoT for different combinations of the features and learning
algorithms in the flight-to-flight-exploration setup. The first four terrains (parts) represent the learning
phase. The following three parts represent the inference phase.
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(a) CoT estimation for different variants of the color-orientation features using the IGMN
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(b) CoT estimation for different variants of the geometric features using the IGMN
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(c) CoT estimation for different variants of the image appearance features using the IGMN
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(d) CoT estimation for different variants of the color-shape features using the Regression Trees
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(e) CoT estimation for different variants of the color features using the Regression Trees
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(f) CoT estimation for different variants of the geometric features using the Regression Trees

Figure 23: Learned and predicted values of CoT for different combinations of the features and learning
algorithms in the walk-to-walk-exploration setup. The first four terrains (parts) represent the learning
phase. The following three parts represent the inference phase.
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