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Abstract

Private security companies o�er a service of incident response vehicle deployment to inspect
the cause of an alarm in the client's building. Due to the increasing popularity of this
service, security companies are facing a �eet management problem. They need to optimize
idle positions of incident vehicles in a patrolled region such that the coverage of protected
buildings is maximized while keeping the arrival time reasonably low. In this thesis, we
present two solutions to vehicle allocation combining shortest path search and integer linear
programming. First assigns a permanent idle position to each vehicle and the second one is
able to dynamically change idle positions depending on the current operation of the whole
�eet. An event-based simulator is used to evaluate these solutions both on synthetic and
real-world scenarios. Results indicate the e�ectiveness of our solution and advantages of
dynamic reallocation.

Keywords: �eet management, static resource allocation, dynamic resource allocation, max-
imum coverage problem

Abstrakt

Soukromé bezpe£nostní spole£nosti nabízejí sluºbu nasazení zásahového vozidla, které zkon-
troluje p°í£inu poplachu v budov¥ klienta. Vzhledem k nar·stající popularit¥ této sluºby
se bezpe£nostní spole£nosti potýkají s problémem °ízení vozového parku. Pot°ebují optima-
lizovat rozmíst¥ní vozidel po hlídaném regionu tak, aby bylo pokrytí chrán¥ních budov co
nejv¥t²í a dojezdový £as byl p°im¥°en¥ nízký. V této práci uvádíme dv¥ r·zná °e²ení pro op-
timalizaci rozmíst¥ní vozidel, které kombinují hledání nejkrat²ích cest a celo£íselné lineární
programování. První p°id¥luje kaºdému vozidlu stálou pozici a druhé je schopné m¥nit po-
zice vozidel v £ase v závislosti na aktuálním stavu celého vozového parku. K vyhodnocení
t¥chto °e²ení na um¥lých a reálných datech pouºíváme simulátor. Výsledky ukazují ú£innost
na²ich °e²ení spolu s výhodami dynamické realokace.

Klí£ová slova: °ízení vozového parku, statické p°id¥lování zdroj·, dynamické p°id¥lování
zdroj·, problém maximálního pokrytí
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Chapter 1

Introduction

Private security companies nowadays o�er a�ordable complete solutions for building security.
The main purpose of such a solution is to trigger an alarm when a burglar illegally enters
the property. However, it is not forbidding him from stealing valuable items and successfully
escaping. This is a task for incident response vehicles. Their goal is to arrive at the location
of an alarm as soon as possible, inspect the cause of an alarm, and potentially capture the
criminal and handle him to the police. Nonetheless, it is not always an illegal activity that
triggers the alarm, as it can also be activated by a �re, gas leak, water leak or other natural
disasters, while inhabitants are away. In these scenarios, time also plays a crucial role when
it is desired to minimize the damage. Since the service of building protection is becoming
increasingly more popular, private security companies are faced with a problem of choosing
idle positions for their incident response vehicles, such that they maximize the number of
protected buildings while keeping the arrival time reasonably low.

In this work, we are interested in the optimization of idle incident vehicle allocation.
Having said that, we are not particularly interested in the quality of the building's alarm
system, distinguishing between true positive or false positive alarms and the inspection
process. Given a set of buildings and a set of potential idle vehicle locations, our task is
to manage a �eet of vehicles � that is to distribute them between potential idle locations
and potentially reallocate them to a di�erent idle location � in a way that the coverage
of protected buildings is maximized and the arrival time of a vehicle to an alarm event is
reasonably low.

A similar problem of resource allocation is researched in the domain of Emergency Med-
ical Services. Their task is to allocate a set of stationary medical facilities or a set of mobile
ambulances in such a way, that their response time to crucial incidents is minimized or the
covered area is maximized. These problems are formulated as mathematical programs, es-
pecially linear programs. However, they either have too many hard constraints that are not
satis�able with a small �eet of vehicles or do not optimize both covered area and arrival
time.

We present two approaches to optimize the idle incident vehicle allocation formulated as
linear integer programs. Moreover, we introduce an event-based simulator, that evaluates the
coverage of protected buildings and response time. First presented method associates each
vehicle with its own idle location which does not change in time. Once the vehicle is deployed
and �nishes the inspection, it returns to its original idle place. Second presented method,

1



CHAPTER 1. INTRODUCTION

motivated by an intuition that temporal repositioning of available idle vehicles provides a
better coverage, recomputes positions of idle vehicles each time a new alarm is detected or
when an inspection of an alarm is completed. Both of those approaches are �rstly analyzed
in a small, controlled synthetic environment. Finally, we use these approaches to simulate a
real-world scenario taking place in the city of Prague.

Situations with a varying number of vehicles and varying frequency of alarm events are
explored. We conclude, that when the frequency of alarm events is high, such that the �eet
of vehicles is too small to handle them all, there is no real bene�t in continuous reallocation.
Similarly, when the frequency is low, such that large �eet can handle them with ease, there is
not much room for improvement via dynamic reallocation. However, there is a combination
of �eet size and alarm frequency, where the dynamic reallocation helps signi�cantly.

1.1 Thesis goals

The overall goal of this thesis is to design and evaluate an algorithm that is able to optimally
allocate vehicles and maximize the coverage of protected buildings. Additionally, we also
design and evaluate a dynamic scenario, where idle vehicles reallocate to better positions
when an alarm event is detected. In order to do so, we solve related tasks in chapters as
described below.

First, in chapter 2 we explore the building security domain background, which consists
of securing a building with an alarm system, detecting when this system goes o�, and �nally
dispatching an incident response vehicle to inspect the cause.

Secondly, in chapter 4 we study related literature on various approaches to vehicle alloca-
tion that usually come from Emergency Medical Services domain. Their goal is to minimize
the response time of emergency vehicles. Additionally, we add a small introduction to pa-
trolling games domain which formulates its problems as a two-player game.

Thirdly, in chapter 5 we de�ne the allocation problem as a maximum coverage problem
and present both static and dynamic integer linear programs, that are used to allocate
incident response vehicles. We also present an event-based simulation that is used to evaluate
the quality of the allocation.

Finally, in chapter 7 we use this simulation to evaluate both of our approaches on a set
of small, controlled, synthetically generated data and real-world data consisting of a Prague
road network.
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Chapter 2

Domain background

Criminality is undoubtedly a big worldwide concern and many resources are expended to
reduce it. However, this work is interested only in burglary � an illegal entry into a building
with intent to commit a crime, especially theft. Indeed, break-ins are not negligible crime
o�ence, for instance, the Police of the Czech Republic released an annual 2017 criminality
statistics [1] which registers 24 127 committed burglaries with only 5 714 marked as closed.
This results in only 23.7% successful solve rate, which is together with other thefts one of
the lowest one. In macro perspective, the statistical o�ce of the European Union, Eurostat,
states in its statistic report [2] that in the year of 2015 total number of 2 387 770 burglary
o�ences were committed in EU-28. That year it was the lowest one since 2008 with 8.8%
decrease.

The high percentage of unsolved housebreakings suggests that prevention might be more
valuable than relying on the criminal's capture and that is not considering the potential
loss of priceless personal belongings. Fortunately, private security companies with a strong
background and many years of practice o�er professional services related to the security of
buildings. Furthermore, the rapid growth of this industrial sector opens a�ordable complete
solutions for average citizens. One of the world's leading international security solutions
group � as stated by data journalist Niall McCarthy [3] � is G4S1 that also has its share on
the Czech market together with local competitors such as Jablotron2 or D.I.Seven3.

Following sections brie�y explain products sold by these companies. Firstly, section 2.1
describes how a typical professional building security system looks like, how an alarm is
triggered and how the user is noti�ed. Latter section 2.2 explains how a security company
monitors your property and the protocol they follow once an alarm occurs. Finally, section 2.3
explains the deployment of an incident vehicle that inspects the cause of an alarm on the
spot.

3



CHAPTER 2. DOMAIN BACKGROUND

(a) JA-120PC (b) JA-114E (c) JA-106KR-3G (d) JA-111A (e) JA-111M

Figure 2.1: Various parts of building security system

JA-120PC 2.1a is an area motion detector with RGB camera to visually inspect the cause of the alarm.
JA-114E 2.1b is an authentication module with a keypad, LCD display and RFID reader.
JA-106KR-3G 2.1c is a control module with built-in 3G / LAN communicator and a radio module.
JA-111A 2.1d is an external siren designed to sound alarms and signal activation or deactivation of system
outputs.
JA-111M 2.1e is a two-part magnetic detector designed for window or door opening detection.

Image and information source: [4]

2.1 Building security solutions

A typical modular building security solution, as product catalogue [4] of Jablotron suggests,
consists of a wide variety of detectors, authentication devices and a control module 2.1c that
connects the whole system together. Some examples of detectors are a motion sensor 2.1a
that detects motions in the whole room, an opening detector 2.1e that triggers once a door,
or a window is opened, a glass break sensor capable of recognizing a window-breaking sound
or even not break-in related sensors such as �ood or smoke detectors. Additionally, sensors
may have integrated camera 2.1a, that takes a photo of the cause.

Once the system is activated, these devices will trigger an alarm once a monitored event
occurs. This commonly means a loud sound siren 2.1d is set o� to warn everyone about
the intrusion and to scare the burglar. Additionally, property inhabitants are noti�ed via
various communication channels like SMS, phone call, email or push noti�cation. To switch
o� this security system one requires a special remote control, control chip keychain or pin
code that was previously paired with the authentication module 2.1b.

Unfortunately, currently used solutions cannot distinguish whether the source of an alarm
is an actual threat. This means that the user may unintentionally set o� their alarm if not
careful. That usually happens when they forgot to deactivate the alarm, or they take too
long to exit the building when they activate the alarm. Such activation is called false positive
� it was triggered but there was no actual threat. On the other hand, a true positive is an
alarm triggered by a burglar, �re caused by forgotten stove being on or a �ood caused by a
broken pipe et cetera.

After an alarm goes o� it is useful to have a couple of CCTV cameras in place to
immediately inspect the cause in real time and high quality. This is the fastest way to
di�erentiate between false positive and true positive. However due to higher cost, they are

1<http://www.g4s.com/>, accessed on 3-April-2018
2<www.jablotron.com>, accessed on 3-April-2018
3<www.diseven.cz>, accessed on 3-April-2018

4

http://www.g4s.com/
www.jablotron.com
www.diseven.cz


2.2. ALARM RECEIVING CENTRES

(a) Incident response vehicle (b) Vehicle with crew

Figure 2.2: Incident response vehicle

Incident response vehicle is ready to be deployed at any time and its goal is to arrive at the location of
an alarm and inspect the cause. The Kruh project has 215 of such vehicles all around the Czech Republic
with the average arrival time of 10 minutes. Over the past 12 months, they were involved in around 85 000
interventions.
Image sources: <http://www.bezpecnostnicentrum.cz/en#krok4>, <https://www.diseven.cz/

tiskove-centrum/> accessed on 3-April-2018
Information source: <http://www.zasahovasluzba.cz/o-projektu/>, accessed on 3-April-2018

not a usual part of home security systems but rather industrial, business or community
buildings systems.

2.2 Alarm receiving centres

One of the latest service o�ered by previously mentioned companies [5], [6], are alarm re-
ceiving centres (ARC) that are connected to the control module of an alarm system and
constantly monitor its state. Modern digital communication formats allow transmission of
status signals, a full range of events � for example, photos or camera feed � or combination
of both.

This information, once obtained by the ARC, is evaluated. If a suspicious situation
occurs in the monitored building a standard protocol is initiated. This protocol obviously
di�ers by the company, but in general, the �rst action is to inform the customer about the
event. This helps to determine whether the alarm is false positive or true positive. Once
a true positive alarm is con�rmed by the client, or when the client is unreachable for some
period, a mobile patrol is sent to inspect the location. Finally, a report is handed to the
client and other designated parties.

2.3 Incident response vehicle deployment

Incident response vehicles � depicted in �gure 2.2 � are deployed by ARC to inspect the
cause of an alarm. Once at the location, the vehicle crew checks the perimeter for any signs
of illegal entry including the fence, windows, doors or other possible entry points. If an
unauthorized entry is con�rmed the property is guarded until the police arrive. This also
includes a possible capture of the intruder.
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CHAPTER 2. DOMAIN BACKGROUND

Since time plays such a crucial role, the ARC operators have only a couple of minutes
to check with the owner of monitored property whether the alarm is true positive or false
positive, to possibly prevent unnecessary and costly intervention. Another huge time factor
is the route from current incident response vehicle location to the event alone.

One of the main concerns of private security companies and projects like Kruh4 is to
maximize the covered area while minimizing the travel time to the event. The common
practice is, that inactive vehicles are waiting at a speci�c location � headquarters � and once
engaged in an intervention event, they must ful�l all obligations before they can respond to
other events. When multiple incidents happen in an area patrolled by a single vehicle, the
response is not immediate but rather processed in a queue like order.

2.4 Area for improvement

This work explores a possible limitation of this system. We believe that computer aided
design with appropriate algorithm will choose better idle locations of response vehicles that
maximizes the covered area while minimizing the arrival time. Furthermore, after the dis-
patch of a single vehicle, the remaining idle vehicles may optimize their position to cover the
newly uncovered sector.

4<http://www.zasahovasluzba.cz>, accessed on 3-April-2018
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Chapter 3

Technical Background

In this chapter, we present mathematical problems we are dealing with in this work � namely
maximum coverage problem in section 3.1 and shortest paths in section 3.2.1. Mathematical
notation of these problems and notation of graphs in section 3.2 is given an is kept the same
throughout this work. Additionally, each problem is placed in its corresponding complexity
class.

3.1 Maximum coverage problem

Since we formulate the optimal placement of incident response vehicles as a maximum cov-
erage problem, we �rst present it in a general version, which is de�ned as follows. Given
the �nite universe U = {u1, u2, . . . , un}, a �nite family of �nite sets S = {S1, S2, . . . , Sm},
where each set contains elements from the universe Si=1,...,m ⊆ U , and a positive integer k,
the goal is to select at most k sets from S

S′ ⊆ S, |S′| ≤ k,

such that the size of their union |
⋃
S′
i∈S′ S′i| is maximized. This union of sets S′i cover

elements from U and since we are trying to maximize the number of covered elements, this
problem is named maximum coverage problem. In this work, we formulate this problem
using following integer linear program.

max

n∑
j=1

yj (3.1a)

subject to
m∑
i=1

xi ≤ k (3.1b)∑
i:uj∈Si

xi ≥ yj j = 1, . . . , n (3.1c)

xi ∈ {0, 1} i = 1, . . . ,m (3.1d)

yj ∈ {0, 1} j = 1, . . . , n (3.1e)

7
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This linear program has m + n binary decision variables. Binary variable xi (3.1d)
determines, whether Si is present in S′

xi =

{
1 Si ∈ S′

0 Si 6∈ S′,

while the binary variable yj (3.1e) determines, if the element uj is covered

yj =

{
1 uj ∈

⋃
S′
i∈S′ S′i

0 uj 6∈
⋃
S′
i∈S′ S′i.

Moreover, the linear program has n+ 1 constraints. Constraint (3.1b) limits the number
of selected sets in the cover |S′| ≤ k, and n constraints of type (3.1c) saying that if element
uj is covered (yj = 1), at least one S′i must be selected, such that uj ∈ S′i. Finally, the
objective function (3.1a) maximizes the number of covered elements.

In the following section, we prove that this maximum coverage problem belongs to NP−
hard complexity class. The proof is done by a polynomial reduction from set cover, which
is in NP − complete class [7].

3.1.1 Complexity class

In this section, we prove that the maximum coverage problem de�ned above is NP − hard,
but �rst, let us state the following lemmas about NP − hard problems and polynomial
reductions.

Lemma 1 (NP − hard problems). If we know that any NP problem polynomially reduces
to a problem U (or we know that there is a NP−complete problem that polynomially reduces
to U), then we say that U is NP − hard. Note that this means that U is at least as di�cult
as all NP − complete problems. [8, 1.8.7]

Lemma 2 (Reductions and polynomial reductions). Given two decision problems U and V.
We say that a problem U reduces to a problem V, if there is an algorithm (a program for
RAM, a TM)M that for every instance I of U constructs an instance I ′ of V such that

I is a YES-instance of U i� I ′ is a YES-instance of V.

The fact that U reduces to V is denoted by

U C V.

Moreover, if the algorithm M works in polynomial time, then we say that U polynomially
reduces to V, and we denote it

U Cp V.

Roughly speaking, U C V means that U is not more di�cult than V. [8, 1.8.1]

If we can polynomially reduce some NP − complete problem to the maximum coverage
problem, then by lemma (1) we prove, that maximum coverage problem is NP − hard.
For this purpose we chose the decision variant of set covering problem, that was proven by
Richard M. Karp [7] to be NP − complete. He de�ned the problem as follows:

8
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Given a �nite family of �nite sets R and a positive integer l, the goal is to
determine, whether a subfamily T ⊆ R with size bound |T | ≤ l exists, such that⋃
T =

⋃
R.

Finally, following lemma (2), we formulate a YES-instance I ′ of maximum coverage
problem from a YES-instance I of set cover trivially. Given a YES-instance of set cover
TI ⊆ RI and lI , we construct an instance I ′ of maximum coverage

UI′ =
⋃
RI

SI′ = RI

S′I′ = TI

kI′ = lI .

It is easy to see, that |S′I′ | ≤ kI′ , because |TI | ≤ lI . Moreover
⋃
S′I′ covers the whole

universe UI′ , as
⋃
TI =

⋃
RI , therefore the coverage maximal. This reduction is indeed

polynomial, hence given lemma (1), the maximum coverage problem is NP − hard.

3.2 Graph theory

Later in this work, we rely on graph structures that are studied in graph theory, namely
shortest paths. We use Graph theory with applications by John A. Bondy et al. [9] as a
reference book and since our graph notation is a bit di�erent, we de�ne it in this section.

John A. Bondy [9, sec. 1.1] de�nes a directed graph D as an ordered triple
D = (V (D), A(D), ψD) consisting of a non-empty set V (D) of vertices, a set A(D) � disjoint
from V (D) � of arcs and an incidence function ψD. The function ψD associates with each
arc of D an ordered pair of vertices of D. We say, that arc a joins u to v if ψD(a) = (u, v),
where a ∈ A(D) and u, v ∈ V (D). The pictorial representation of an arc is an arrow u→ v
that can also be seen in �gure 3.1.

In contrast to this, we de�ne a directed graph G as an ordered pair G = (V,E), where
V is a non-empty set of vertices � also called nodes � and E ⊆ V × V is a set of arcs � also
called edges. Each edge e ∈ E is an ordered pair of vertices e = (u, v), where u, v ∈ V . The
meaning is the same as above, that is e joins u to v.

Furthermore, with the use of our notation, the book de�nes a walk W on graphG = (V,E)
as a sequence of alternating vertices and edges W = v0, e1, v1, e2, . . . ek, vk, such that ei =
(vi−1, vi) ∈ E holds for 1 ≤ i ≤ k and vj ∈ V for 0 ≤ j ≤ k. A walk W is called a trail if
the edges e1, . . . , ek of W are distinct. A trail T is called a path if all vertices v0, . . . , vk of
T are distinct, and we call this path a (v0, vk)-path. We label a set of all paths from v0 to
vk as P (v0, vk).

3.2.1 Shortest paths problem

In order to formulate our shortest path problem, we need a graph G = (V,E) de�ned in
previous section 3.2. On top of this graph, the book [9] additionally de�nes a weight function

9
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Figure 3.1: Example of a weighted directed graph

Reprinted from [9, �g. 11.1]

w(e) 7→ R, that associates each edge e ∈ E with a real number. This extended graph is called
a weighted graph (see �gure 3.1).

One of many optimization problems de�ned on weighted graphs is the shortest path
problem. The goal is to �nd a path of minimum weight connecting two vertices u and v.
The cost of a path p ∈ P (u, v) is equal to the sum of weights of its edges.

cost(p) =
∑
ei∈p

w(ei) (3.2)

SP (u, v) = argmin
p∈P (u,v)

cost(p) (3.3)

As declared in [8, 1.7.9] shortest paths problem in a general directed graph � that is the
graph de�ned above � is from a class of NP problems. However, shortest paths in graphs
with positive weights w(e) 7→ R>0 are solvable in polynomial time, for example by Dijkstra's
algorithm as stated in [9]. In this work we use travel time as a weight function, therefore the
weight function is positive, thus the problem can be solved in polynomial time and belongs
in complexity class P.

10



Chapter 4

Related work

This chapter is divided into two main parts. First, in section 4.1 we explore di�erent ap-
proaches to solving resource allocation, especially vehicle allocation. Secondly, in section 4.2
we brie�y summarize recent work in the patrolling games domain. As opposed to the alloca-
tion domain, where the majority bene�ts from the optimal distribution of resources, in the
patrolling games domain, one party tries to maximize their pro�t at the expense of another
party.

4.1 Resource allocation domain

The problem of vehicle allocation and possible reallocation has been drawing the attention of
researchers for over 40 years. One of the most explored real-world application is Emergency
Medical Services (EMS), systems that are making sure that the response time of emergency
vehicles is minimal when faced with crucial life or death situations. In general, the challenge
of EMS is to choose locations for ambulances or medical facilities, such that they are ready to
handle emergency calls or substitute at places with high demand. The quality of an allocation
and further reallocation is measured by an objective function which usually considers the
arrival time, extent of covered population, limited available resources, local laws, strict state
institution budgets or even unknowns like tra�c situation. The biggest achievements and
breakthroughs in this topic are nicely and categorically order up to the year 2010 in a review
by Xueping Li et al. [10].

Following section 4.1.1 covers some of the in�uential research in the static allocation
domain over the course of time. By static allocation, we mean one-time optimization of
resource allocation that does not change in time. Further, in section 4.1.2 we explore re-
search dealing with dynamic allocation and reallocation. In contrast to static allocation,
the dynamic allocation and reallocation optimize resource allocation in the course of time.
To provide a simpler and more understandable comparison between di�erent approaches a
common notation is presented in table 4.1.

4.1.1 Static covering models

The literature starts with the �rst formulation of covering model of emergency facilities
proposed by Toregas et al. [11] in 1971. Given a set of demand points B, set of potential

11
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Variable De�nition

B set of demand points
W set of potential facility locations

t, t1, t2 ∈ R maximal arrival time or distance
Wi ⊆W set of facility locations that cover demand point i ∈ B
dji ∈ R distance or travel time between locations j ∈W and i ∈ B
si ∈ R population size at demand point i ∈ B
p ∈ N+

0 number of available resources
pj ∈ N+

0 maximum capacity of facility j ∈W
α ∈ [0; 1] desired proportion of covered population

xj ∈ {0, 1} decision variable deciding the presence of facility at location j ∈W
yi ∈ {0, 1} equals to 1 only if demand i ∈ B is covered at least once
zj ∈ N number of resources allocated to facility j ∈W

Table 4.1: Common notation of variables

facility locations W and a maximum arrival time or distance t, the goal is to determine a
minimum number of facilities (4.1a) such that all demand points are covered (4.1b) within
the arrival time or distance. This formulation has many potential applications ranging from
optimal positions of �re stations, hospitals, schools to private sectors such as positions of
warehouses. The mathematical program written bellow is used to solve this problem.

min
∑
j∈W

xj (4.1a)

subject to
∑
j∈Wi

xj ≥ 1, i ∈ B (4.1b)

xj ∈ {0, 1}, j ∈W (4.1c)

The set of facility sites covering demand point i is Wi = {j | dji ≤ t} given that dji is a
distance measured between sites j ∈ W and i ∈ B. And xj is a binary decision variable
deciding the presence of a facility at j. However, this model does not allow to specify the
number of available resources.

The result is indeed a minimum number of facilities providing full coverage, but all
demand points are treated equally. This becomes a problem when considering town centres
with a high concentration of requests and less dense rural areas. This complication was
tackled by R. Church and Ch. ReVelle in The maximal covering location problem [12]. They
gave each location i ∈ B a population size si which serves as a weight of i, making this a
weighted set cover. Also, a new binary decision variable yi was introduced to ensure that

12
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each point i is su�ciently covered by at least one facility (4.2b).

max
∑
i∈B

siyi (4.2a)

subject to
∑
j∈Wi

xj ≥ yi, i ∈ B (4.2b)

∑
j∈W

xj = p (4.2c)

xj ∈ {0, 1}, j ∈W (4.2d)

yi ∈ {0, 1}, i ∈ B (4.2e)

The objective (4.2a) is to maximize the population reachable within distance t. Given the
desired number p of facilities, this program can compute the largest amount of population
covered together with the location of p facilities that grant this coverage.

This formulation was a great achievement as it was successfully applied to solve practical
vehicle allocation problems. However, both previous formulations share a common drawback.
It is the fact that the processing of an emergency request lasts some not negligible time. Once
a facility is at its full capacity, meaning that all its resources are allocated to some demand
points, other locations covered by this facility may no longer be covered.

One of the possible solutions to this issue was proposed by M. Gendreau et al. [13].
Two arrival times t1 < t2 are introduced and the main objective (4.3a) is to maximize the
number of points covered by at least two ambulances within smaller radius t1 while covering
all demands by some ambulance within arrival time t2. This formulation even allows assigning
multiple vehicles zj to a single location j ∈W , such that they can respond to multiple calls
at the same time. The fact that demand point i ∈ B is covered in time t1 by a facility j,
given travel time dji between j and i, is represented by a binary variable

γji =

{
1 dji ≤ t1
0 otherwise

Very similarly the variable δij depicts the coverage of point i by j within t2

δji =

{
1 dji ≤ t2
0 otherwise

Similarly to yi in previous mentions the variables y′i and y′′i are equal to one only if the
demand point i is reachable within t1 by at least one ambulance or by at least two ambu-
lances respectively. The �exibility of this model even allows specifying the total number of
available ambulances p as well as maximum �eet size per each facility pj , which is presented
in constraints (4.3f) and (4.3g). However, there is no real bene�t for assigning more than
2 ambulances to a single hospital, thus pj = 2 can be imposed in practice. Another user-
speci�ed variable α ∈ [0; 1] speci�es the proportion of the population that must be covered
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by an ambulance located within t1 time (4.3c).

max
∑
i∈B

siy
′′
i (4.3a)

subject to
∑
j∈W

δjizj ≥ 1 i ∈ B (4.3b)

∑
i∈B

siy
′
i ≥ α

∑
i∈B

si (4.3c)∑
j∈W

γjizj ≥ y′i + y′′i i ∈ B (4.3d)

y′′i ≤ y′i i ∈ B (4.3e)∑
j∈W

zj = p (4.3f)

zj ≤ pj j ∈W (4.3g)

y′i ∈ {0, 1} i ∈ B (4.3h)

y′′i ∈ {0, 1} i ∈ B (4.3i)

zj ∈ N+
0 j ∈W (4.3j)

The constraint (4.3b) states that all demands must be covered by at least one vehicle within
the bigger time t2. The correct behaviour of variable y′i and y

′′
i is enforced by (4.3d) that

counts the number of vehicles covering demand point i on the left-hand side; the right-hand
side is then equal to 1 or 2. Additionally, by (4.3e) the demand is covered two times only if
it is covered at least once. However, this model becomes infeasible when it is not possible to
cover all demand points within arrival time t2. Additionally, it does not optimize the actual
arrival time.

Karl F. Doerner et al. extended this work in 2005 with a paper called Heuristic solution
of an extended double-coverage ambulance location problem for Austria [14]. A density of the
population in di�erent demand points is considered and the sought solution limits the ratio
between the number of inhabitants and the number of available ambulances for the areas
with a higher time limit. These speci�cations of their model are based on real data from
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Austria that were published by the Austrian Red Cross.

max
∑
i∈B

f −M1f1 −M2f2 −M3f3 (4.4a)

subject to (4.3d), (4.3e), (4.3f), (4.3g), (4.3h), (4.3i), (4.3j) (4.4b)

f = (4.3a) (4.4c)

f1 = |{vi ∈ B :
∑
j∈W

δjizj = 0}| (4.4d)

f2 = α−min
{
α,
(∑
i∈B

siy
′
i

)
/
(∑
i∈B

si

)}
(4.4e)

f3 =
∑
i∈B

max(0, ωi − ω0) (4.4f)

wi =
si∑

j∈W δjizj
(4.4g)

The constraint (4.4d) counts the number of demands not covered within the larger time t2
which is a modi�cation of the original (4.3b). As an alternative to (4.3c), at the line (4.4e),
the di�erence between desired coverage proportion α and the actual coverage is computed.
Since an allocation of ambulances where some have to cover a large demand within t2, while
others cover only a small demand may be unrealistic, the �nal penalty (4.4f) is added to the
model. It penalizes when wi � the number of inhabitants per ambulance within t2 � exceeds
the prede�ned limit of w0. Finally weight factors M1,M2,M3 ∈ R>0 balance the impact of
each of the three soft constraints.

In work by O. Karasakal et al. [15], they address the problem of binary decision between
covered and not covered facility, which is based on a critical distance. When the facility is
within this critical distance, it is covered otherwise it is not. This assumption is not always
reasonable as the level of provided service does not change in a crisp way from fully covered
to not covered at all. They introduce a new notion named partial coverage which is de�ned
as a function of the distance of the demand point to the facility. They formulate the problem
as follows

max
∑
i∈B

∑
j∈Wi

Cijuij (4.5a)

subject to
∑
j∈W

xj = p (4.5b)

uij ≤ xj i ∈ B, j ∈W (4.5c)∑
j∈Wi

uij ≤ 1 i ∈ B (4.5d)

xj ∈ {0, 1} i ∈ B (4.5e)

uij ∈ {0, 1} i ∈ B, j ∈W (4.5f)

(4.5g)

The binary variable uij is equal to one only if facility j covers demand point i. Con-
straint (4.5b) ensures, that total number of sited facilities is equal to the number of available
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facilities, constraint of type (4.5c) limits uij according to selected facilities and (4.5d) require
that the demand point i is covered at most once, where only the facility providing the best
coverage level is selected. The coverage level Cij is de�ned using two thresholds, t1 is the
maximum full coverage distance and t2 is the maximum partial coverage distance (t1 < t2),
as

Cij =


1 if dji ≤ t1
f(dji) if t1 < dji ≤ t2
0 otherwise

where 0 < f(dji) < 1 is called the partial coverage function. They conclude that introduction
of partial coverage has a substantial e�ect on the optimal solution. Unfortunately, this model
does not guarantee a backup facility for demand points, that is used, when the closest facility
reaches its maximum capacity.

4.1.2 Dynamic allocation and relocation models

While static models presented in section 4.1.1 are useful on the coarse strategic level, they
lack �exibility on the �ner operational level. Suppose that a high-demand area has used up
all emergency vehicles within its reach. Other idle ambulances located at places with a low
probability of demand should be relocated to help where needed. In this section, models are
able to redeploy facilities to provide better temporal and spatial coverage.

One of the possible improvements of static allocation of EMS is provided in a work by
Yisong Yue et al. [16], where a simulation-based approach is used to substitute for mathe-
matical models. In this paper, it is claimed that abstractions of mathematical programming
usually fail to capture crucial temporal features such as time-dependent travel times, con-
gestion patterns or the fact that a patient may specify the preferred hospital. Since the
simulation was already commonly used for the measurement of quality of some mathemat-
ical models, the optimization via simulation is highly motivated. Nonetheless, a potential
limitation is the reliability of the simulator, which requires a considerable amount of histor-
ical data. Unfortunately, this is our case, as we possess very limited data.

The quality of particular allocation is measured by seemingly black box simulator that
is built upon circa ten thousand logged emergency requests over the course of one month.
Firstly, a time-dependent sequence of emergency calls is generated and is processed in �rst-
come �rst-served fashion. Whenever a request arrives, the dispatch o�cer assigns the closest
available ambulance to handle the situation. This ambulance becomes unavailable for the
processing time of the request, any other idle ambulances are candidates for possible re-
deployment. Given the initial distribution of resources and the redeployment strategy, the
simulator outputs a �tness measure such as a number of requests served in 15 minutes. Given
this objective function, a simple greedy allocation algorithm is used. It iteratively selects the
best position for an ambulance with highest incremental gain relative to the current solution.
Similarly, a redeployment strategy chooses such relocation that the expected utility of the
next time interval is maximized.
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4.2 Patrolling games domain

In contrast to Emergency Medical Services application, where the victim does not usually
exploit the position of emergency vehicles, the allocation of resources may be exploited in the
security domain. For example, if the burglar knew positions of incident response vehicles,
he could target the building with longer arrival time.

As written by Branislav Bo²anský et al. in [17], these situations are often modelled using
game theoretical models. One defending party needs to protect an area in order to prevent an
attack on high-valued targets from the other attacking party. Contrary to our work, where
we assume � in assumption (5), section 5.3.1 � that the attacker does not know positions
of incident response vehicles, they allow the attacker to observe defender's current position.
This knowledge is then exploited when planning the attack. Additionally to previous work
in the �eld of patrolling games, they allow the targets to move, however, they also formulate
game with stationary targets. A typical real-world application is in the maritime domain,
where moving vessels targeted by pirates need protection. The sought solution is found using
non-linear mathematical programs.
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Chapter 5

Technical approach

5.1 Informal problem de�nition

The main objective of this work is to improve the area coverage and response time of incident
response vehicles in the building security domain � which was brie�y introduced in chapter 2
� by modifying their idle locations. However, in such a complex domain where one subsystem
depends on the reliability and response time of the previous one in the chain, one could argue
that there are multiple ways to improve the response time. We will de�ne the variables we
are allowed to modify and other parts of the system that are treated as black boxes and
assumed to work as expected without any problems.

The chain of events starts at the customer's building that is being monitored. A network
of detectors, connected by a control module scans the property and triggers an alarm when a
suspicious action happens. A reader can get a better insight into this process in section 2.1,
where we brie�y explain limitations of this subsystem. For instance, location and con�gura-
tion of individual detector indoors or outdoors of a building matter. It might happen that
an alarm triggers too late when it is no longer possible to catch the burglar. In this work,
however, we are not interested in the proper con�guration or placement of these detectors.

Another big concern is an alarm triggered by accident � called false positive. This
usually happens when a person walks into a monitored area without turning o� the alarm
�rst. Deployment of incident response vehicle is unnecessary in such cases, yet it is hard for
an alarm receiving centre worker to distinguish between true and false alarm. As described
in section 2.2 he �rst informs the customer and asks whether the cause of the alarm is known.
In case of any uncertainty, the vehicle is deployed. In this work, we are not interested in this
problem and we treat each alarm as a proper one caused by a burglar or other deployment
worthy event.

At this point, we have a black box that tells us about a burglary in progress at a certain
location. All such possible locations are known in advance as a customer needs to register
each property in order to subscribe to this type of service. Additionally, we need all possible
locations, where an idle vehicle can be placed. We also require geographic data containing
road network of the area we are interested in. This network encodes information about pos-
sible movements of vehicles and local motor vehicle laws, such as one-way streets, forbidden
turns and speed limits. Vehicles cannot take a road that is not present in this network.
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Variable De�nition

l ∈ L locatable point l = (ϕ(l), λ(l))
ϕ(x) ∈ [−π

2 ,
π
2 ] latitude of x

λ(x) ∈ [−π, π] longitude of x
v ∈ V ⊆ L road network node, V is a �nite set of all such nodes
e = (i, j) ∈ E road network directed edge from i to j, where i, j ∈ V

E is a �nite set of all such edges
speed(e) ∈ R>0 average travel speed on edge e ∈ E
distance(e) ∈ R>0 the road distance of edge e ∈ E

b ∈ B ⊆ L set of monitored buildings
time(b) ∈ R>0 maximum allowed arrival time to monitored building b ∈ B
w ∈W ⊆ L set of potential idle vehicle locations
v̂x ∈ V representative of a location x snapped to road network V
Wb ⊆W set of idle vehicle locations that cover building b ∈ B within time(b)
Bw ⊆ B set of buildings that are covered by idle location w ∈W
SP (x, y) shortest path between nodes x ∈ V and y ∈ V

a ∈ A = R≥t0 ×B alarm event a = (at, ab) at time at, building ab and t0 as the start of the simulation

Table 5.1: Description of mathematical notation

Furthermore, we expect that each monitored location is accessible by a road that is present
in this network, otherwise, we assume that the vehicle crew can park on the nearest road
and continue on foot.

To summarize, the objective of this work is to manage a �eet of incident response vehicles,
given the number of those vehicles, road network, locations of monitored buildings and all
possible idle locations of vehicles. Firstly, we explore a static allocation strategy, that selects
idle locations of incident response vehicles only once. When an alarm is detected, the closest
vehicle is deployed and returns to the original spot after the inspection. Secondly, a dynamic
allocation strategy is presented. Initially, it works the same as static allocation, but when
an alarm is detected, not only that the closest vehicle is deployed, but other idle vehicles
move as well to optimize the coverage and substitute for currently intervening ones.

5.2 Formal problem de�nition

In this section, we decompose the problem of incident response vehicle placement into smaller
problems. These are individually de�ned and a solution to each one is presented. Throughout
following sections, we incrementally add to our mathematical notation that is presented in
table 5.1.

Firstly we de�ne a graph on top of a road network in section 5.2.1, then we tackle a real-
world problem that is the consequence of this graph representation in 5.2.2. The navigation
of incident response vehicles between two points is done via shortest paths in 5.2.3. Finally,
in section 5.2.4 we formalize the allocation of incident response vehicles as maximum coverage
problem, that was de�ned in section 3.1.
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(a) Cartography of a network data model.

Reprinted and adapted from [18, �g. 10.16]

(b) Topology of a network data model

Reprinted and adapted from [18, �g. 10.15]

Figure 5.1: Di�erence between network data cartography 5.1a and topology 5.1b

Purpose of cartography is a visualization of a transport network that allows for simple navigation. Di�erent
elements have speci�c attributes, for example, a highway, main street or one-way. It can also include other
features such as landmarks to provide better orientation.

Topology is an arrangement of nodes and links in the network. Nodes represent locations and links represent
direction and connectivity. This topology abstraction should be as close as possible to the real world structure
it represents.

5.2.1 Road network as a graph

Graph theory, discussed in section 3.2, is an extensively studied branch of mathematics
with well-de�ned problems, their solutions and mathematical guarantees. Fortunately, it
is possible to de�ne a graph on top of a road network, which will allow us to apply well-
known algorithms for solving shortest path problem. Such algorithm will provide a path from
the current location of the incident response vehicle to the location that needs inspection
with fastest arrival time guarantee. However, this does not hold in the real-world, where
unpredictable tra�c varies the duration of travel or changes the optimal route completely.
In our case we assume ideal travel conditions.

Assumption 1 (Ideal travel condition). All speeds that were considered during planning are
met on all possible paths during plan execution. In other words the transportation speed along
all edges remains the same during the actual transport as during planning.

The book by Jean-Paul Rodrigue, The Geography of Transport Systems [18], describes
the process of transforming a real road network into its graph representation. A simple
illustration of this process is depicted in �gure 5.1. The number one rule used in this book
is that every street dead end and an intersection becomes a node. If the node was connected
to some other node in the real network, it remains connected by an edge in the graph
representation.

For our purposes, a node v is an abstraction of a location such as an intersection or
street dead end and has GPS coordinates associated with it � latitude ϕ(v) ∈ [−π

2 ,
π
2 ] and

longitude λ(v) ∈ [−π, π]. A �nite set of all such nodes is V . An edge e = (i, j) is a directed
link between nodes i, j ∈ V and a �nite set of all such edges is E. Edges represent the
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direction of one way streets and hold other road properties such as speed(e) ∈ R>0 which is
the average travel speed on this edge. Additionally, distance(e) ∈ R>0 is the road distance
from node i to node j, using the edge e = (i, j). On top of all nodes V and all edges E we
de�ne a directed graph G = (V,E).

Other rules can also be applied such as an arbitrary node that is not a dead end or
an intersection can be added to the graph if within that segment an attribute of the edge
is changing. For instance, a speed limit or a number of lanes. Indeed, some attributes
does not need to change at an intersection and an urban district speed limit is a good
example. Additional 'dummy node' can be also added for aesthetic purposes so that the
graph representation remains comparable to the real network.

Using this method, we are able to encode road graph information and tra�c rules in a
directed graph G = (V,E). For example, if a road from i to j is bi-directional both edges
e1 = (i, j) and e2 = (j, i) are in E. Otherwise, in a case of a one-way route, one of e1 or e2

is missing and it's the one corresponding to the forbidden direction. Another example is a
roundabout with 3 exits, those are represented by nodes v1, v2, v3 in clockwise direction. In
the Czech Republic vehicles drive on the right side of the road and tra�c on roundabouts
travels in a counter-clockwise direction. The graph representation of such situation would
include only edges (v1, v3), (v3, v2) and (v2, v1) between the roundabout nodes. It is not
possible to travel in the wrong direction and we cannot visit v2 from v1 without visiting v3

�rst.

5.2.2 Points to road snapping

One of the reasons we de�ned the road network as a graph in section 5.2.1 was that we
can use well-known shortest path algorithms to �nd optimal route between two nodes. Such
algorithms often require a starting node v ∈ V and a set of goal nodes G ⊆ V . Unfortunately
this is not always met in our case, as we would like to �nd the shortest path between each
possible vehicle location w ∈ W and monitored building b ∈ B, but our de�nition of a road
graph G = (V,E) does not specify anything about the location of monitored buildings B
and idle vehicle locations W . In general, they are not incident with graph edges B 6⊆ V ,
W 6⊆ V . This means that we are not able to �nd the shortest path to a monitored building
using general shortest path algorithm.

Common approaches to this problem are to use the closest node v ∈ V instead. However,
there may be certain obstacles � fence, escarpment, etc. � that are not known, making this
method inapplicable in some sporadic cases. In our case, we make following assumption.

Assumption 2 (Location reachability). We assume that each potential idle vehicle location
w ∈W is accessible by a road that is connected with our road network G with negligible travel
time. In case of monitored buildings b ∈ B, we assume that they are connected by a road as
in the previous case, or that the crew of incident response vehicle can park on the nearest
road and continue on foot, again in negligible travel time.

The process � known as snapping and visualized in �gure 5.2 � takes as an input a graph
G = (V,E) and a point w 6∈ V , where both w and v ∈ V have associated GPS coordinates
� latitudes ϕ(v), ϕ(w) and longitudes λ(v), λ(w). Using these coordinates, we can de�ne a
distance function d and �nd the node v̂w ∈ V to w that lies on the graph and minimizes d.
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Figure 5.2: Snapping to road network

Snapping is a process where a point that is not incident with the road network (green circle) is represented
by the nearest point from the road network (red circle). The distance (d1, d2) between those points is called
snapping error. Visualization made by Lea�et [19].

v̂w = argmin
x∈V

d(w, x) (5.1)

A standard method of calculating distances over the surface of the Earth is the Haversine
formula (5.2), where the shape of the Earth is approximated by a sphere of radius r.

haversine(x, y) = 2r arcsin

√
sin2

(ϕ(y)− ϕ(x)

2

)
+ cos(ϕ(x)) cos(ϕ(y))sin2

(λ(y)− λ(x)

2

)
(5.2)

Nonetheless, under certain conditions, we can assume that the surface of the Earth is �at and
use the computationally more e�cient method � the Pythagoras theorem (formula (5.3)).

Assumption 3 (Approximation by plane). When dealing with small distances between two
points not located near geographic poles, we can assume that the surface of the Earth is �at,
thus it can be approximated with a plane.

In our case we expect measured distances to be small because the distance from a building
to the nearest road is generally in meters. Since experimental data used in this work are
located in the Czech Republic, we do not expect points around geographic poles, which
make this approximation method more inaccurate. Furthermore, since square root is strictly
increasing function it can be omitted from formula (5.3) when used in formula (5.1) as it
does not change the argmin.

planar(x, y) = r

√
(ϕ(y)− ϕ(x))2 +

[
cos
(ϕ(x) + ϕ(y)

2

)
(λ(y)− λ(x))

]2
(5.3)

However, such process can be computationally demanding and requires distance compu-
tation between all (w, x) pairs for one query point w and graph nodes x ∈ V . The complexity
of naive approach linearly depends on the number of nodes |V | in the road graph. This query
for the nearest point can be optimized using spatial indexing methods. They usually come
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with initial build computational cost, but improve the average time of the query, making
them useful for multiple queries. Since spatial indexing is not the focus of this work, we will
point an interested reader to a book Computational Geometry: Algorithms and Applications
[20] where a tree data structure called quadtree is discussed.

Ultimately, an even better approach is to snap to the closest edge, where a new 'dummy'
node can be created, such that the distance to the original location is minimized, and ap-
propriately connected to the rest of the graph.

5.2.3 Shortest paths

As preliminaries to the shortest paths computation, we de�ned a road network as a graph
in section 5.2.1 and we snapped points of our interest to this graph in section 5.2.2. In this
section, we will be �nding the shortest path between any nodes on the graph. The term
shortest path may be a bit misleading in vehicle routing since we are actually interested in
the fastest path, that is to minimize the travel time, not the travel distance. This is due
to the fact that the shortest path problem is a well-established term in graph theory, where
edge has a cost associated. In our case, it is the time needed to traverse that edge.

In this work, we are interested in the shortest path between all pairs of potential idle
vehicle locations w ∈ W and monitored buildings b ∈ B, or rather their snapped represen-
tatives SP (v̂w, v̂b), where v̂w, v̂b ∈ V . Moreover, during dynamic reallocation, the vehicles
may be on their way to their new idle location when another alarm is detected. In that case,
we need to compute the shortest path between any snapped point v̂x to snapped monitored
building v̂b (to determine the closest vehicle), or to snapped potential idle location v̂w (to
compute reallocation cost to other idle locations).

Since both speed(e) and distance(e) are positive in our graph, the resulting time(e) will
be also positive. Therefore, if we use time(e) as the cost function of the edge e ∈ E the
graph would not contain any negative or zero cycles, which is bene�cial for shortest path
algorithms.

cost(e) = time(e) =
distance(e)

speed(e)
(5.4)

Another observation is that each building b has maximum arrival time time(b) ∈ R>0.
Any shortest path SP (x, b) that takes longer than time(b) is not interesting and can be
omitted. This essentially prunes our search tree only to nodes, that are reachable in less
than time(b).

Given the facts above, we need a single-source shortest path algorithm to �nd accessible
idle locations from any node x ∈ V , including snapped points, on the graph SP (x, v̂w). We
also need a cost bounded single-destination shortest path algorithm to �nd all possible idle
locations, such that the monitored building b is reachable within the arrival time time(b)
� we need to �nd all SP (v̂w, v̂b), such that cost(SP (v̂w, v̂b)) ≤ time(b). Fortunately, the
single-destination problem can be reduced to the single-source one just by reversing the
orientation of all edges in the graph.

The chosen algorithm for this task is a modi�cation of uniform cost search that is pre-
sented in [21]. Our modi�cation � algorithm (1) � adds bounds to the cost of the ex-
plored paths and reverses the edges of the graph in the beginning. As an input, it takes
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a road graph G = (V,E), source node v̂b ∈ V , arrival limit time(b) and true �ag for
singleDestination. New graph G′ = (V,E′) with reversed edges is constructed, such that
E′ = {e′ = (j, i) | e = (i, j) ∈ E, i, j ∈ V }.

Algorithm 1: Time bounded uniform cost search algorithm

1 function uniformCostSearch (graph, source, timeThreshold, singleDestination);
Input : G = (V,E), source node ∈ V , maximum arrival time ∈ R>0, true if

single-destination
Output: Map where keys are all explored nodes within timeThreshold and values

contain parent node and time from source.
2 if singleDestination then
3 graph.reverseEdges();
4 end
5 Q← emptyPriorityQueue(); . contains objects (node, parent of node, arrival time)
6 Q.add((source, null, 0));
7 explored← emptyMap(); . node → (parent of node, time from source to node)
8 while Q.isNotEmpty() do
9 node, parent, time← Q.popMin(); . minimum by arrival time
10 if explored.contains(node) then
11 continue;
12 end
13 explored.put(node, (parent, time));
14 foreach child in graph.childrenOf(node) do
15 if notV alidTransition(node, child) then
16 continue; . checks for U-turns, etc.
17 end
18 childT ime← time+ graph.getT ime(node, child);
19 if childT ime ≤ timeThreshold and explored.notContains(child) then
20 Q.add(child, node, childT ime);
21 end

22 end

23 end
24 return explored

This search �nds all nodes that are reachable from v̂b in the given time limit time(b).
It returns a mapping f(x) → {(px, tx) | tx ∈ R>0, px ∈ X} de�ned on all explored nodes
x ∈ X ⊆ V ∪ {null}, where tx is the arrival time to x from the source node v̂b and px is
the immediate predecessor of x on the shortest path SP (v̂b, x). Note that f(v̂b) = (null, 0)
every time, where null is a special identi�er stating that the start of the path does not have
any immediate predecessor.

However, since the edges were reversed in the beginning it returns all nodes x from whose
the destination node vb is reachable within the time limit time(b). The mapping f(x) must
be also treated di�erently since the edges were reversed. It is easy to see that without the
reversal of graph edges, the algorithm can be used for single-source shortest path queries.
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5.2.3.1 Proof of completeness

This section proves that the algorithm terminates for any input. This proof for general
uniform cost search is available in [21], however, our proof is a bit di�erent since we modi�ed
the algorithm. As the cost of an edge e is de�ned as traversal time time(e) (equation 5.4),
it is always positive, thus the cost of a child (line 18) is always greater than the cost of its
parent (line 9). This means that we either hit the time threshold and stop adding new nodes
to the queue (lines 19 - 21) or we explore all nodes in the �nite graph, which would also
stop adding new nodes to the queue (lines 19 - 21). Finally, in each iteration of the main
loop (line 8) we remove one node from the queue, therefore the queue will be empty at some
point.

5.2.3.2 Proof of correctness

The proof that this algorithm indeed returns shortest paths is also similar to the one in [21].
It states that once the search selects a node n for expansion for the �rst time (lines 9 - 12),
the optimal path to that node has been found. If that was not the case, shorter path to n
must exists. Let us say that S is a set of all explored nodes (line 7) that contains source
node s ∈ S and some arbitrary node a ∈ S and the shortest path SP (s, a) is known. Once
a node is explored, all of its valid successors are added to the frontier queue (lines 14 - 22).

Let the contents of a frontier queue Q be a triplet (node, its parent, its cost).

Q = {(n, s, cost((s, n))), (n, a, cost(SP (s, a)) + cost((a, n)))}

The algorithm then correctly selects the tuple with the shorter arrival time �rst (line 9),
because it extracts the tuple with the smallest cost from Q. Further expansions of node n
are ignored (lines 10 - 12).

Now let us suppose that the frontier queue Q contents are

Q = {(n, s, cost((s, n))), (n′, s, cost((s, n′)))}

and the algorithm incorrectly expands node n because the shortest path to n is via nodes
s, n′, n.

cost((s, n)) > cost((s, n′)) + cost(SP (n′, n)) (5.5)

Since the cost of all edges in the graph is positive, cost(SP (n′, n)) must be positive as
well, and we can transition from (5.5) to (5.6).

cost((s, n)) > cost((s, n′)) (5.6)

But now cost((s, n)) > cost((s, n′)), thus the algorithm will not expand node n, but node
n′ instead. This leads to contradiction and completes the proof.

Finally, no path will take longer than speci�ed time threshold t ∈ R>0. The �rst element
added to the queue (at line 6) has cost 0, and 0 < t. Any additional elements are added to
the queue only if their cost is less or equal to threshold t (lines 19 - 21). Only nodes from
the queue appear in the �nal result, thus if they are not added to the queue, they are not in
the �nal result.
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5.2.4 Maximum coverage problem

Now that we can compute arrival times between possible idle vehicle locations w ∈ W and
monitored buildings b ∈ B using the procedure de�ned in previous section 5.2.3, it is possible
to formulate the problem of maximizing the coverage of buildings protected as a maximum
coverage problem.

One run of uniform cost search algorithm (1) for monitored building b and its arrival
time limit time(b) yields a result from which a set Wb ⊆W that consists of all possible idle
vehicle locations that are within arrival time time(b) is extracted.

Wb = {w | w ∈W, cost(SP (w, b)) ≤ time(b)}, where b ∈ B (5.7)

After obtaining Wb for each building b ∈ B, we can construct sets Bw ⊆ B that contains
all buildings b that are covered from idle location w.

Bw = {b | b ∈ B, cost(SP (w, b)) ≤ time(b)}, where w ∈W (5.8)

The maximum coverage problem, as de�ned in section 3.1, requires a universe U , col-
lections of sets S and integer k. In our case, we are covering monitored buildings B using
coverages Bw with a limited amount of vehicles k.

U = B (5.9a)

Sw = Bw, where w ∈W (5.9b)

S = {Sw | w ∈W} (5.9c)

k = number of available vehicles (5.9d)

The objective of the maximum coverage is to �nd a subset S′ ⊆ S, such that |S′| ≤ k and
|
⋃
Sw∈S′ Sw| is maximized. In our domain, this means to �nd locations of idle vehicles w,

where Sw ∈ S′, such that we use at most k vehicles and maximize the number of covered
buildings |

⋃
Sw∈S′ Sw|.

This formulation alone would maximize the coverage of protected buildings, as the
building b is considered covered if at least one incident vehicle is located within arrival
time time(b). However, it comes with a drawback, such as we are not able to control the
actual arrival time, we only know if the building b is covered within time(b). Additionally,
it is su�cient to cover a building only once, leaving some available vehicles unused. Once
a vehicle is deployed, it is likely to leave a signi�cant amount of buildings uncovered, which
could be prevented by using more available vehicles. These problems are tackled in upcoming
sections.

5.3 Main components

In order to evaluate the quality of incident response vehicle allocation and monitored build-
ing coverage, we need to replicate the process consisting of an alarm detection 2.1, vehicle
deployment 2.2 and vehicle intervention 2.3. We designed a system consisting of 4 indepen-
dent components, each one dealing with its own task. Top level architecture can be seen in
�gure 5.3.
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Figure 5.3: Diagram of our system structure

Our system consists of 4 independent components. O�ine alarm generator creates a sequence of alarms at
monitored buildings that are triggered over a period of time. Set cover solver optimizes the next position
of idle vehicles given monitored buildings and the current position of idle vehicles. Event-based simulator

computes the actual positions of all vehicles at given time. Dispatcher assigns an idle vehicle to alarm
location. The main system loop is highlighted with bold arrows.

First of all, the o�ine alarm generator generates a sequence of alarms and the set cover
solver computes the starting locations of idle incident response vehicles. Those two inputs
are fed into the event-based simulator that simulates the 'world' and computes the location
of all vehicles in given time. When an alarm occurs, the simulator delegates the choice of
incident response vehicle to the dispatcher, which then asks the set cover solver to reallocate
remaining idle vehicles. When a vehicle �nishes with the building inspection, the simulator
tells the set cover solver that there is a new vehicle available and re-computation of idle
vehicles allocation is needed.

This decomposition of the problem into smaller parts allows for easier understanding,
programming and overall maintenance of the whole system. Following sections 5.3.1 - 5.3.4
describe each component in detail.

5.3.1 Alarm generator

Purpose of an alarm generator is to simulate alarms at monitored buildings B. As described
in section 2.1, there are two types of alarms � true positive and false positive. One of the
tasks of alarm receiving centre employee is to distinguish these two and prevent unnecessary
deployment of a vehicle to false positive alarms when possible. In order to eliminate this
variable from our system, we assume that all alarms are true positive.

Assumption 4 (Alarm detection reliability). We assume that each triggered alarm is true
positive and requires an intervention of an incident response vehicle.

We further assume alarm independence.

Assumption 5 (Alarm independence). Sampling an alarm event depends only on external
factors, such as location or time, and is independent of other alarms along with allocation,
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dispatch strategy and operation of incident response vehicles.1

This independence between alarms and operation of vehicles allows comparing multiple
approaches to solving maximum building coverage on the same sequence of alarms. Moreover,
the sequence of alarms can be pre-sampled for a given time span and if required, this time
span can be incrementally prolonged.

Alarms are de�ned as

A = R≥t0 ×B = {(time(a), building(a)) | time(a) ∈ R≥t0 , building(a) ∈ B}, (5.10)

where time(a) stands for a time of the alarm since the beginning of the simulation t0 and
building(a) stands for the monitored building b, where the alarm occurs. Finally, the output
of alarm generator is an ordered sequence of alarms a0, a1, . . . , an, where ai ∈ A,

t0 ≤ time(a0) and time(ai) ≤ time(ai+1) for 0 ≤ i < n.

.

5.3.2 Simulator

Since the state of our system depends on time, we need a component � the simulator � that
determines this state given time. This simulation happens in an idealized world that is free
of real-world complications.

Assumption 6 (Ideal simulation). During our simulation, we assume ideal world conditions.
This means that we do not model situations such as our incident response vehicle having
a car accident, malfunctioning or running out of fuel. Additionally, we do not take into
consideration needs of the vehicle crew, such as working hours, and assume that the vehicle
is available at all times.

There are two types of events that are particularly interesting. Firstly, when an alarm
is triggered, a vehicle should be deployed immediately and the rest of idle vehicles can be
reallocated for better coverage. Secondly, when a vehicle �nishes the inspection of a building,
it should be moved to its new idle location. Other time instants are not of our interest, hence
we de�ne our simulator as event-driven. Because events cannot a�ect the past, it is su�cient
to store them in a data structure that specializes in extract minimum operation � such as
min-heap. This process is visualized in �gure 5.4.

In each iteration, an action from this heap will be extracted, such that this action is
the nearest one in the future. This action will either be an alarm detection or completed
inspection. In both cases, the position of all vehicles is determined using process later
described in section 5.3.2.1. Afterwards, in case of alarm detection, the alarm handler (see
section 5.3.3) is executed in order to dispatch a vehicle. This process will also provide the
route of the dispatched vehicle to the inspected building. An entry that represents the
completion of this inspection is added to the heap. Finally, in both cases, the set cover
solver � section 5.3.4 � is run and paths to new idle vehicle locations are obtained.

1Please note that this assumption is not suitable for situations when the burglar monitors the operation
of vehicles. In such cases, a more game theoretic approach should be taken into consideration. We o�er a
starting point on this topic in section 4.2.
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Figure 5.4: Simulator timeline

Our event-based simulator stores time ordered events and routing of idle vehicles (black dotted arrows).
These idle vehicles are reallocating to a di�erent location and arrive when the arrow meets the timeline.
When an important event occurs, plans of idle vehicles may be disrupted (red dotted arrows) and replaned
(black circles). If the event is an alarm event, one of the idle vehicles is dispatched (black solid arrow).

Interpretation: At time a, an alarm is triggered and vehicle 2 is dispatched to handle it. Simultaneously
vehicle 1 and n start reallocating to better idle positions. At b, vehicle 1 arrives at its new idle location. At c,
vehicle 2 �nishes the inspection of the alarm and becomes idle again. All vehicles start reallocating to their
new location, to which they arrive at times d, f and g. Note that vehicle n was still moving. This route, that
would end at time e is cancelled. At time h another alarm is detected and the nearest vehicle 1 is dispatched,
while other vehicles 2 and n start reallocating. At i, the idle vehicles are 2 and n, we dispatch vehicle 2
(its current route ending in j is cancelled). Again route of vehicle n ending at k is cancelled because it is
reallocated to a di�erent location. At time l vehicle 1 �nished the inspection. It does not have to reallocate,
because it is already in the best position, however vehicle n reallocates again and the route ending in m is
cancelled. Vehicle 2 is handling an event, therefore it is not idle and does not reallocate. Finally, at o vehicle
2 �nishes inspection and all 3 idle vehicles start reallocating.

5.3.2.1 Determining position of vehicle at time t

During simulation, one of the most requested operations is to determine a position of a
vehicle in time t ∈ R≥tn , where tn is the current time of the simulation. In other words,
we do not need to determine the position of the vehicle in the past, but only now or in the
future. Since after every important event the action of each vehicle is computed and the
ideal travel conditions assumption (1), it is possible to answer such request.

The only thing we need to store for each vehicle is the time when a new path was
scheduled tv, and the actual path P . Let us extract the sequence of vertices v0, . . . , vp from
P and set time(v0) = 0. Now we can incrementally compute arrival time to each node using
the following formula

time(vi) = time(vi−1) +
distance((vi−1, vi))

speed((vi−1, vi))
(5.11)

As a result of both distance(e) and speed(e) being positive, the sequence

time(v0), . . . , time(vp)

is in increasing order, such that time(vi) ≤ time(vi+1) for 0 ≤ i < p.
This ordered property can be utilized by the binary search algorithm. In general, the

binary search �nds exact matches in sorted sequence in logarithmic time but can be easily
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modi�ed to return approximate matches. In our case, we would like to �nd the predecessor
� next smaller value. Given a query time t = tv + tq, our binary search locates vj such that

time(vj) ≤ tq ≤ time(vj+1).

When tq ≥ time(vp), there is no such node as vj , instead vp is returned as the position of
the vehicle at time t and the following step is skipped.

Now that we have nodes vj and vj+1, we can use linear interpolation under the approxi-
mation by plane assumption (3). The position of vehicle x = (ϕ(x), λ(x)) at time t is then
computed as

y =
tq − time(vj)

time(vj+1)− time(vj)
(5.12a)

ϕ(x) = y[ϕ(vj+1)− ϕ(vj)] + ϕ(vj) (5.12b)

λ(x) = y[λ(vj+1)− λ(vj)] + λ(vj) (5.12c)

When there is no path for the vehicle (e.g. after initialization, or when standing still),
we can assume that there is a path of length 1 starting and ending at the location of the
vehicle.

5.3.2.2 Corner cases

It may happen, that there is an alarm that requires attention, but there is no idle incident
response vehicle. In that case, it is investigated by the next idle vehicle.

Due to the nature of an alarm sequence generation (see section 5.3.1), there is a possibility
that multiple alarms at the same building are triggered before a vehicle arrives. It is common
sense that this situation can be covered by a single vehicle and does not require additional
deployment.

5.3.3 Dispatcher

The dispatcher is an abstraction of an alarm receiving centre � described in section 2.2.
Similarly to its real-world counterpart, it reacts to alarms that are triggered in monitored
buildings. Due to our alarm reliability assumption (4) it does not have to distinguish between
false positive and true positive alarms, because the alarm generator � section 5.3.1 � only
generates valid alarms.

Given positions of ni ≥ 1 idle vehicles Li = {lij | lij ∈ L, j ∈ 1 . . . ni} at time ti and the
building bi ∈ B that requires attention, the goal of a dispatcher is to deploy a single vehicle
di ∈ Li, that inspects the building bi. The choice of di is called deployment strategy and may
be di�erent at each iteration of the system cycle. However, we use greedy strategy (5.13),
that always selects the vehicle with fastest arrival time.

di = argmin
j∈1...ni

cost(SP ( ˆvlij , v̂bi)) (5.13)
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It is worth noting, that positions of idle vehicles are in general not incident with possible
locations of incident response vehicles Li 6⊂ W , because, in dynamic allocation strategy, a
vehicle can be on its way from previous idle location to the next one. This does not happen
during static allocation, however vehicle that just �nished an intervention may be returning
to its original idle location when another alarm occurs.

The computation of greedy deployment strategy (5.13) in general requires snapping of
all vehicle positions Li onto road network and running algorithm (1) once. Even better is to
run a slight modi�cation of uniform cost search, that terminates after the �rst one of ˆvlij is
popped from the queue (line 9 of algorithm (1)).

5.3.4 Set cover solver

Finally, the set cover solver optimizes positions of idle vehicles. By idle vehicle, we mean a
vehicle that is not inspecting an alarm. Once this inspection is done, the vehicle becomes
idle again. In general idle vehicles are parked at selected location w ∈W or they are driving
towards one.

We formulate this optimization task as an integer linear program. In this program,
we combine a maximum coverage problem, as de�ned in section 5.2.4, with the constraint
from [13] that tries to cover a building at least twice, which helps in situations, where multiple
alarms are triggered. Additionally, we also minimize arrival time.

Two scenarios are presented. Static allocation, in section 5.3.4.1, computes idle positions
of vehicles only once and vehicles always return to this position after �nished alarm inspec-
tion. On the other hand, dynamic allocation � section 5.3.4.2 � optimizes positions of idle
vehicles during the simulation such that they substitute for currently intervening vehicles.

5.3.4.1 Static allocation

Given a set of monitored buildings B, a set of potential idle vehicle locations W , a set
of idle vehicle locations Wb that cover building b within its arrival time time(b) for each
building b ∈ B, and total number of vehicles p, the objective of static allocation is to assign
an idle location w to each vehicle. We solve this as an integer linear program, that maximizes
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the coverage while minimizing the arrival time.

max M1

∑
b∈B

y′b +M2

∑
b∈B

y′′b −M3

∑
w∈W

xwp̄1(w) (5.14a)

subject to
∑
w∈W

xw = p (5.14b)∑
w∈Wb

xw ≥ y′b + y′′b b ∈ B (5.14c)

y′′b ≤ y′b b ∈ B (5.14d)

y′b ∈ {0, 1} b ∈ B (5.14e)

y′′b ∈ {0, 1} b ∈ B (5.14f)

xw ∈ {0, 1} w ∈W (5.14g)

In order to minimize the arrival time, we de�ne a cost function p1(w) that associates a
potential idle location w ∈ W with a penalty. It is equal to a sum of squared arrival times
to covered buildings bw ∈ Bw.

p1(w) =
∑

bw∈Bw

cost(SP (v̂w, ˆvbw))2 (5.15)

However, the range of this cost function depends on the arrival times, that may vary in
di�erent instances of this problem. Therefore, we normalize the outcome of this function to
[0, 1] interval and present it as function p̄1(w).

α = max
w∈W

p1(w)

p̄1(w) =
p1(w)

α
(5.16)

The integer linear program has 2|B| + |W | binary variables and 2|B| + 1 constraints.
Following the maximum coverage problem, de�ned in section 3.1, variable y′b (5.14e) is equal
to one only if building b ∈ B is covered at least once and variable xw (5.14g) is equal to one
if a vehicle is located at w ∈ W . Similarly to y′b, variable y

′′
b (5.14f) is equal to one only

if building b is covered at least twice. This variable is taken from [13] as it improves the
coverage in a case where multiple alarms are detected.

Most of the hard constraints de�ne a correct behaviour of decision variables. Constraint
stating, that a building b must be covered at least once before it can be covered at least
twice (5.14d) is the same as in (4.3e). Similarly, constraint (5.14c) is a variant of (4.3d).
Finally, constraint (5.14b) enforces the total number of used vehicles.

The only remaining part is the objective function (5.14a), that is composed of 3 dif-
ferent soft constraints. First, the

∑
b∈B y

′
b counts the number of buildings covered at least

once, secondly
∑

b∈B y
′′
b counts the number of buildings covered at least twice. Thirdly,
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∑
w∈W xwp̄1(w) summarizes the penalty of chosen idle vehicle locations. The importance of

each component can be tuned by M1,M2 and M3 constants. We chose a cascading pattern,
�rst of all, maximize the number of buildings covered at least once, then maximize the num-
ber of buildings at least twice and then minimize the arrival time penalty. This corresponds
to

M1 = M2 · |B|
M2 = M3 · p
M3 = 1

Because p̄1(w) is normalized to the interval [0, 1] and constraint (5.14b), the maximum value
of
∑

w∈W xwp̄1(w) is equal to p, thereforeM2 = p. Similarly, the maximum value of
∑

b∈B y
′′
b

is equal to all buildings covered at least twice, which is |B|, thus M1 = M2 · |B|.

In the end, we are interested only in values of decision variables xw which determine po-
sitions of idle incident response vehicles. In the static allocation, this program is solved only
once and each vehicle is associated with one idle location. Vehicles do not move away from
those locations apart from when they are dispatched. Once they �nish an alarm inspection,
they return to their associated idle location. One possible limitation of this formulation is
that it cannot assign more vehicles to the same idle location.

5.3.4.2 Dynamic allocation

Dynamic allocation is an extension of a static allocation. The di�erence is, that the dynamic
allocation re-computes positions of idle vehicles when the set of idle vehicles or the set of
idle monitored buildings updates at time ti. By idle monitored building, we mean a building
where no alarm is currently triggered.

To distinguish a set of all buildings B from a set of idle buildings at time ti, we label this
set of idle buildings as B̄i. Similarly the number of idle vehicles changes over time, so we
label it as ni instead of p. The optimization problem is formulated as an extension of static
allocation (5.14a) - (5.14g) integer linear program.
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max M1

∑
b̄∈B̄i

y′b̄ +M2

∑
b̄∈B̄i

y′′b̄ −M3

∑
w∈W

xwp̄1i(w)−M4

∑
w∈W

ni∑
h=1

zhwp̄2i(h,w) (5.17a)

subject to
∑
w∈W

xw = ni (5.17b)∑
w∈Wb̄

xw ≥ y′b̄ + y′′b̄ b̄ ∈ B̄i (5.17c)

y′′b̄ ≤ y
′
b̄ b̄ ∈ B̄i (5.17d)∑

w∈W
zhw ≤ 1 h ∈ 1, . . . , ni (5.17e)

ni∑
h=1

zhw ≥ xw w ∈W (5.17f)

y′b̄ ∈ {0, 1} b̄ ∈ B̄i (5.17g)

y′′b̄ ∈ {0, 1} b̄ ∈ B̄i (5.17h)

xw ∈ {0, 1} w ∈W (5.17i)

zhw ∈ {0, 1} w ∈W,h ∈ 1, . . . , ni (5.17j)

The meaning of penalty function (5.15) stays the same, however, it is de�ned only on
idle buildings B̄i.

p1i(w) =
∑

bw∈B̄iw

cost(SP (v̂w, ˆvbw))2 (5.18)

Similar holds for its normalized variant.

αi = max
w∈W

p1i(w)

p̄1i(w) =
p1i(w)

αi
(5.19)

To minimize the reallocation time, we de�ne a cost function p2i(h,w) that assigns a
reallocation cost to each idle vehicle h ∈ 1, . . . , ni and potential idle location w ∈W .

p2i(h,w) = cost(SP ( ˆvlih , v̂w))2 (5.20)

Where the location of vehicle h at time ti is lih and ˆvlih corresponds to its snapped location
to the road network graph. Again, since the range of p21(h,w) depends on current positions
of vehicles and road network distances, we normalize it to [0, 1] interval.

βi = max
w∈W ;h∈1,...,ni

p2i(h,w)

p̄2i(h,w) =
p2i(h,w)

βi
(5.21)
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In this linear program extension, we added ni · |W | new binary variables (5.17j). The
variable zhw equals one only if the vehicle h ∈ 1, . . . , ni reallocates to idle location w ∈ W .
The proper behaviour of this variable is enforced with |W |+ ni additional hard constraints.
The constraint (5.17e) assures that each vehicle is reallocated to at most one idle location.
Lastly, the constraint (5.17f) is satis�ed only if the idle location w ∈ W is selected when at
least one idle vehicle reallocates to w. All remaining hard constraints are covered in static
allocation in section 5.3.4.1.

As for the objective function (5.17a), there is one additional soft constraint

∑
w∈W

ni∑
h=1

zhwp̄2i(h,w)

which minimizes the reallocation time. Similarly to static allocation importance of each soft
constraint can be tuned by M1,M2,M3 and M4. However, we use greedy cascading pattern

M1 = M2 · |B̄i|
M2 = M3 · ni
M3 = M4 · ni
M4 = 1

that is described in static allocation, section 5.3.4.1.

The result obtained by solving the linear program (5.17a) - (5.17j) is a new idle location
loc(h) for each vehicle h ∈ 1, . . . , ni that is de�ned as

loc(h) = w i� zhw = 1.

Similarly to the static allocation, this formulation cannot allocate multiple vehicles to one
idle location.
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Implementation

The system de�ned in section 5.3 was implemented and evaluated using technologies de-
scribed in section 6.2. In order to run real-world scenarios, we use publicly available road
network data as pointed out in section 6.1.

6.1 Data collection

Unlike synthetic scenario, where the road network was made purposefully simple, in real-world
scenario we use map of Prague. We use OpenStreetMap (see section 6.1.1) as it o�ers all
needed map features and is compatible with some of the technologies that we use.

6.1.1 OpenStreetMap

OpenStreetMap [22] is an editable map database maintained by volunteers. This geospatial
information is collected through car trips, jogs, photos, videos or GPS traces. This project
was motivated by the limited availability of maps, that required a university-level degree
and expensive equipment to keep them accurate and current, and rapid growth of low-cost
GPS receivers [23]. Our main use of OpenStreetMap data is to extract locations of buildings
and parking lots using OSMonaut (see section 6.2.4) and to compute shortest paths between
multiple locations using Graphhopper (see section 6.2.3).

6.1.2 Security data

We were able to collect data from an unnamed security company, but due to the sensitive
nature of the data, that could a�ect business model of this company, it remains classi�ed.
It was used to better understand the security domain and problems they are dealing with.
Our simulation is su�cient as it captures the most important properties of incident response
vehicle operations.
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6.2 Technologies

In following sections, we introduce technologies that were used in this work. Our system, as
described in section 5.3, is implemented in Kotlin and tested using JUnit. We use Graph-
hopper and OSMonaut libraries when working with OpenStreetMaps and Gurobi for solv-
ing integer linear programs. Finally, we use JSON format to transfer data to Lea�et and
Matlab R© which both serve for data visualisation.

6.2.1 Kotlin

Most of this work was implemented in Kotlin. Kotlin is a fairly new programming language,
the �rst version was released on February 15, 2016 [24]. It is developed as an open source
language, but the language design and the overall steering of the project are done by Jet-
Brains team. One of its key focuses is interoperability with popular Java language that allows
mixing Java and Kotlin together in one project. We bene�t from this property as we use
several Java libraries and frameworks: Graphhopper, OSMonaut, Maven or JUnit. Some of
Kotlin bene�ts are null-safety, operator overloading, extension functions, range expressions
or data classes.

6.2.2 JUnit

JUnit is a Java unit testing framework. It is used to assure proper functionality of the ap-
plication. This testing is done by targeting small pieces of code where external dependencies
are removed.

6.2.3 Graphhopper

Graphhopper [25] is an open source routing library written in Java. It tackles many problems,
one of them is described in our work as snapping, in section 5.2.2, and provides simple
user web interface called Graphhopper maps1. It can be con�gured to use di�erent graph
exploring algorithms such as Dijkstra or A*. In this work, we have integrated a custom
version of uniform search algorithm (1) and used this library to �nd shortest paths between
multiple locations. By default, it uses OpenStreetMap data.

6.2.4 OSMonaut

OSMonaut [26] is an OpenStreetMap data parser framework written in Java. It o�ers a way
of converting raw OpenStreetMap data into other �le formats. We use this tool to extract
locations of buildings and parking lots.

1<https://graphhopper.com/maps/>
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6.2.5 Gurobi

Gurobi [27] is a commercial state-of-the-art mathematical programming solver. It covers
optimization problems such as linear programming, mixed-integer programming, quadratic
programming, mixed-integer quadratic programming and more. It o�ers application pro-
gramming interfaces into many languages amongst which is also Java. We use Gurobi version
7.5.2 to solve integer linear programs formulated in section 5.3.4.

6.2.6 Maven

Apache Maven was used as a software project management tool. It manages project's de-
pendencies, build and documentation from central piece of information. Maven is mainly
used in Java projects, but it is also supported by Kotlin.

6.2.7 Matlab R©

Matlab R© [28] � an abbreviation for Matrix laboratory � is a matrix-based programming
language and programming environment. It specializes in matrix operations which allow
most natural expression of computational mathematics. It o�ers interactive graphical output.
The main use of Matlab R© in this work was for plotting simulation data.

6.2.8 Lea�et

Lea�et [19] is an open source JavaScript library used to build maps for web applications. It
provides a way of displaying interactive layers, such as markers, points, polygons, paths and
more, on top of maps. If o�ers basic controls such as zooming or dragging, that is supported
on multiple platforms. Lea�et was used to visualize routing data in an easy to read form.
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Chapter 7

Evaluation

7.1 Synthetic scenarios

The ability of vehicles to respond to triggered alarms is �rst measured in a small, controlled
and synthetically generated environment. Description of this environment is given in sec-
tion 7.1.1, followed by results from static and dynamic approaches, in sections 7.1.2 and
7.1.3 respectively.

7.1.1 Environment

Synthetic road graph contains 25 nodes that are arranged into a 5 by 5 grid. This grid
contains only vertical and horizontal edges. While all horizontal edges are bidirectional, all
vertical edges are unidirectional and the direction alternates each column. This pattern can
be seen in �gure 7.1. The length of each edge is 1 km with 60 km/h travel speed resulting
in 1 minute travel time. This property causes discontinuities in following graphs, due to the
discrete arrival times of vehicles that are located directly at nodes. Moreover, each node
is considered as a monitored building b ∈ B and a possible idle incident vehicle location
w ∈W . Both alarm time and location are drawn from the uniform distribution.

7.1.2 Static scenario

In the static scenario, each incident response vehicle is associated with and placed in its idle
location, in the beginning, using approach de�ned in section 5.3.4.1. Vehicles do not move
apart from when they are dispatched to an alarm event or when they return from an alarm
event to their associated location.

Firstly, we present examples of chosen idle vehicle positions in �gure 7.1. The solution
for one vehicle 7.1a is trivial and the location is in the middle. Positions for two vehicles 7.1b
might seem a bit counter-intuitive as one would expect di�erent locations (same as in 7.1d).
However this is caused by the one-way middle vertical road, the other placement would result
in higher arrival times in the bottom row. In the case of four vehicles 7.1c, the two locations
in the middle vertical road already cover every building twice (as seen in 7.1b), therefore
additional vehicles are placed such that their sum of squared arrival times is minimal.
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Secondly, a 14 days worth simulation is run with 1 vehicle covering the varying amount
of triggered alarms 7.2. This process was repeated 50 times to minimize the impact of
'very good' or 'very bad' alarm sequences. An example of a 'bad' alarm sequence would
be alternating alarms on the opposite side of the grid, while 'good' alarm sequence would
be alarms appearing in the close neighbourhood. As expected, one vehicle performs well
when the alarm frequency is low � it can cover about 96% of all alarms within arrival time
threshold. With increasing frequency , the vehicle start falling behind, since it processes the
alarms in the order they were triggered.

Lastly, we compare the performance of varying amount of vehicles 7.3 in a similar sim-
ulation as described above. Again, one vehicle fails to handle high demand and covers only
26% of requests in time. However, one additional vehicle boosts the coverage to 88%. Three
vehicles manage to handle 98% of requests and adding additional vehicles does not increase
the performance much.

7.1.3 Dynamic scenario

In contrast to the static scenario, in the dynamic scenario, we allow idle vehicles to move
from their original position to some other potential idle location. The idea behind this is that
they would �ll in for currently intervening vehicles which would increase the coverage. As
seen in the results 7.4, there is a slight improvement � about 6% more alarms covered within
2 minutes arrival time. However this assumes that we have more vehicles at our disposal,
otherwise, as in the case of only 2 vehicles, the performance is the same.

Other that that, we measured distance driven by idle vehicles 7.5. That is the distance
they drive when reallocating from one idle position to another or when they return from
an inspected alarm event. In the case of dynamic optimization, the mileage is almost 3
times higher than in the static case. In real-world, this approach requires a lot of extra
organization. Due to our assumptions about ideal simulation (6) (section 5.3.2) and ideal
travel conditions (1) (section 5.2.1), the application of the dynamic approach to the real-
world would bring additional disturbance because longer driven distance means higher error
caused by assumptions.
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(c) Solution for 4 vehicles, 5 minute threshold
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Figure 7.1: Optimal static idle incident response vehicle positions for synthetic graph

The �gure shows optimal positions of idle incident response vehicles (in red) and arrival times within time
threshold (node labels) computed using static allocation. Each node is considered both as a monitored
building b ∈ B and a potential idle vehicle location w ∈ W . Please note that horizontal roads are bi-
directional and vertical roads are unidirectional. Positions in �gures 7.1a, 7.1b, 7.1c are optimized for arrival
time within 5 minutes, whereas �gure 7.1d for arrival time within 3 minutes.
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Figure 7.2: Arrival times on synthetic data with varying alarm frequency

Varying alarm frequency is evaluated in a simulation with 14 days time span and 1 incident response vehicle.
This simulation is repeated 50 times with di�erent alarm sequences and results are averaged. The inspection
time is set to constant 2 minutes. Results show, that 1 vehicle is able to respond to 96% of alarms within the
arrival time threshold of 5 minutes when the alarm frequency is low (25 alarm per day on average). With
increasing frequency, the percentage of covered alarms within 5 minutes drops. Discontinuities are caused
by an idle vehicle on a node, because it has discrete arrival times of 0, 1, . . . , 5 minutes.
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Figure 7.3: Arrival times on synthetic data with varying number of used vehicles

The varying number of vehicles is evaluated in a simulation with 14 days time span and 250 alarms, on
average, triggered each day. This simulation is repeated 50 times with di�erent alarm sequences and results
are averaged. The inspection time is set to constant 2 minutes. Results show, that 1 vehicle is able to respond
to only 26% of alarms within 5 minutes arrival time threshold. When 2 vehicles were used, 88% of those
alarms are covered. Finally, the coverage was above 98% when 3, 4 or 5 vehicles were used. Discontinuities
are caused by an idle vehicle on a node, because it has discrete arrival times of 0, 1, . . . , 5 minutes.
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Figure 7.4: Di�erence between static and dynamic approach

In dynamic approach, we allow reallocation of idle vehicles to di�erent potential idle locations to substitute
for currently intervening vehicles. The increase in coverage only happens when we have enough vehicles to
work with. In case of 2 vehicles, they fall behind and results are very similar. On the other hand, dynamic
approach managed to cover 6% more alarms within 2 minute arrival time. However at the cost of mileage (see
�gure 7.5). Discontinuities are caused by an idle vehicle on a node, because it has discrete arrival times of
0, 1, . . . , 5 minutes.
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Figure 7.5: Distances driven by idle vehicles in static and dynamic approaches

The slight coverage increment of the dynamic approach shown in �gure 7.4 comes at a high price � additional
mileage that is almost 3 times higher than in the static approach.
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7.2 Real-world scenarios

Rather than using unit distances and grid graph layout as in synthetic scenarios, in real-world
scenarios, we utilize real road connections, distances and speed limits. Moreover, we use real
buildings for monitoring and real parking lots as locations for idle vehicles. Furthermore, we
employ arrival and inspection time that is close to reality.

7.2.1 Environment

We de�ned two real-world scenarios on a road network of the Prague city � speci�cally smaller
red instance and bigger blue instance in sections 7.2.2 and 7.2.3 respectively. In order to
represent this city as close to reality as possible, we used publicly available OpenStreetMap
data � more about OpenStreetMap in section 6.1.1. This map contains road network with
speed limits, buildings and parking lots. We used this information to construct a set of
monitored buildings B and set of possible idle vehicle locations W .

However, due to incompleteness or generalisation in the data, it is not trivial to conclude,
whether a parking lot is available for public use. In following experiments, we assume, that
we are able to park idle incident vehicles in all of them.

We set arrival threshold to 20 minutes and the inspection time � that is the time the
vehicle needs to wait in order to properly inspect the cause of an alarm � also to 20 minutes1,
as these values closely correspond to reality. Additionally, we use four di�erent frequencies
of alarm sequences, namely uniformly sampled number of alarms corresponding to 0.1%, 1%,
5% and 10% of monitored buildings daily. Please note, that 5% and 10% are extreme cases
and very rarely happen in reality.

7.2.2 Red instance

The smaller red instance roughly corresponds to Prague 3 city district (see �gure 7.6), more
speci�cally it is a bounding box with top left tl and bottom right br corners speci�ed by
following GPS coordinates in degrees.

tl = (50.0913156, 14.4421000)

br = (50.0779717, 14.5035300)

It contains 59 parking lots, that were selected as the set of potential idle vehicle locationsW .
Furthermore, we uniformly sampled 1000 out of extracted buildings as the set of monitored
properties B. Therefore the number of sampled alarm each day of the simulation equals to
1, 10, 50 and 100.

1The inspection time is not known before or during the inspection, similarly as in real-world. We only
get noti�ed, once the inspection ends. It could easily be a di�erent value for each inspection, however, we
use a constant for simplicity.
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Figure 7.6: Real-world instances

We evaluated our approach on two real-world instances. First, a smaller one (red bounding box) that roughly
corresponds to Prague 3 city district which has 59 parking lots and 1000 monitored buildings. Second instance
(blue bounding box) roughly corresponds to city districts Prague 2, Prague 3, Prague 10 and partly Prague 1
and Prague 4. It contains 247 parking lots and 4000 monitored buildings.

7.2.3 Blue instance

The bigger blue has a bounding box with top left tl corner and bottom right br corner that
is speci�ed by GPS points in degrees below. As depicted in �gure 7.6, it roughly corresponds
to city districts Prague 2, Prague 3, Prague 10 and partially Prague 1 and Prague 4.

tl = (50.0913156, 14.4166511)

br = (50.0487414, 14.5296522)

From this bounding box, we extracted 247 parking lots as the set of potential idle vehicle
locations W and uniformly chose 4000 buildings as the set of monitored buildings B. The
number of daily sampled alarms equals to 4, 40, 200 and 400.

7.2.4 Static scenario

In the static scenario, each vehicle is assigned one parking lot w ∈ W and due to the
de�nition of static linear program in section 5.3.4.1, there can be at most one vehicle on a
single parking lot. Once an alarm is activated, the closest vehicle is dispatched and after
arriving at the location of the alarm, it performs a 20-minute inspection. Then, it returns
to its assigned parking lot.

First, we evaluated this scenario on the red instance. The percentage of alarms, that
was handled within 20 minutes is shown in table 7.1. A single vehicle performs well when
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the frequency is low (0.1% and 1%), but the performance drops signi�cantly at and above
5%. This is caused by the duration of an inspection, 5% alarm frequency corresponds to 50
alarms daily, each one requires a 20 minutes long inspection which equals 1000 minutes in
inspections only. Provided that a day has 1440 minutes, there is no doubt about the poor
performance.

Intuitively, adding more vehicles helps. Three vehicles can handle up to 86.84% of alarms
with the highest frequency within 20 minutes. Ultimately, �ve vehicles handle 100% of all
alarm frequencies, therefore adding more vehicles yields no additional improvement.

Secondly, the results from the blue instance in table 7.2 show similar phenomena for 5
vehicles as in the red instance.

Percentage of buildings with daily alarms
Number of vehicles 0.1% 1% 5% 10%

1 100% 91.18% 18.34% 0.17%
2 100% 98.53% 85.43% 30.07%
3 100% 100% 98% 86.84%
4 100% 100% 99.71% 98.57%
5 100% 100% 100% 100%

Table 7.1: Percentage of alarms handled within 20 minutes on the red instance, static allocation

Since the red instance contains 1000 buildings, the percentage 0.1%, 1%, 5%, 10% correspond to 1, 10, 50
and 100 alarms daily.

Percentage of buildings with daily alarms
Number of vehicles 0.1% 1% 5% 10%

5 92.86% 91.43% 58.60% 0.32%
10 100% 98.93% 98.28% 80.02%
15 100% 100% 99.71% 98.96%

Table 7.2: Percentage of alarms handled within 20 minutes on the blue instance, static allocation

Since the blue instance contains 4000 buildings, the percentage 0.1%, 1%, 5%, 10% correspond to 4, 40, 200
and 400 alarms daily.

7.2.5 Dynamic scenario

In dynamic scenarios, idle vehicles may re-allocate to a di�erent idle location as opposed to
static allocation where they use only the one, which was assigned to them at the start.

The percentage of covered buildings within arrival time of 20 minutes is presented in
tables 7.5 and 7.6 for red instance and blue instance respectively. More importantly, the
absolute increase in the favour of dynamic scenarios over static ones is shown in tables 7.3
and 7.4.

In latter tables, there are three distinguishable regions that share the same properties.
Firstly, when the �eet size is big enough, such that the static allocation handles most of the
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request in the given alarm frequency in time, there is no real bene�t in dynamic allocation
as there is a little room for improvement. This sector corresponds to the entries on or below
the main diagonal.

Secondly, when the �eet size is small and alarm frequency high, the inspection time
becomes a bottle neck. Since all vehicles are probably deployed at the same time, there are
no remaining vehicles that could substitute for intervening ones. This sector corresponds to
the upper right corner.

Thirdly, there is a combination of the �eet size and alarm frequency, that lies in between
the �rst and the second region. Namely 2 vehicles with 5% alarm frequency and 3 vehicles
with 10% alarm frequency on the red instance and 5 vehicles with 5% alarm frequency and 10
vehicles with 10% alarm frequency on the blue instance. In these experiments, there remains
enough idle vehicles that the dynamic approach handles more alarms within the arrival time,
more precisely by +4%, +5.72% more on the red instance and by +21.7%, +15.22% more
on the blue instance.

Percentage of buildings with daily alarms
Number of vehicles 0.1% 1% 5% 10%

2 0% +1.47% +4% +2.35%
3 0% 0% +1.43% +5.72%
4 0% 0% −0.28% +0.29%
5 0% 0% 0% −0.29%

Table 7.3: The increase in the percentage of alarms handled within 20 minutes in the favour of dynamic
allocation, red instance

Percentage of buildings with daily alarms
Number of vehicles 0.1% 1% 5% 10%

5 +7.14% +8.57% +21.7% +1.73%
10 0% +1.07% +1.72% +15.22%
15 0% 0% +0.29% +1.04%

Table 7.4: The increase in the percentage of alarms handled within 20 minutes in the favour of dynamic
allocation, blue instance
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Percentage of buildings with daily alarms
Number of vehicles 0.1% 1% 5% 10%

2 100% 100% 89.43% 32.42%
3 100% 100% 99.43% 92.56%
4 100% 100% 99.43% 98.86%
5 100% 100% 100% 99.71%

Table 7.5: Percentage of alarms handled within 20 minutes on red instance, dynamic allocation

Since the red instance contains 1000 buildings, the percentage 0.1%, 1%, 5%, 10% correspond to 1, 10, 50
and 100 alarms daily.

Percentage of buildings with daily alarms
Number of vehicles 0.1% 1% 5% 10%

5 100% 100% 80.30% 2.05%
10 100% 100% 100% 95.24%
15 100% 100% 100% 100%

Table 7.6: Percentage of alarms handled within 20 minutes on blue instance, dynamic allocation

Since the blue instance contains 4000 buildings, the percentage 0.1%, 1%, 5%, 10% correspond to 4, 40, 200
and 400 alarms daily.

7.3 Road network

In order to speed up computation, in section 5.2.2, we assumed (assumption 3) that distances
between two points are small. We support this assumption by measuring distances between
relevant pairs of points, that is all snapping distances and distances between nodes lying on
an edge. These distances are displayed in �gure 7.8.

Another possible error that is introduced with the real-world road network and Graph-
hopper happens during a computation of vehicle's location � this process is described in
section 5.3.2.1. Since we are using linear interpolation to determine the position and then
snapping this position to the graph, it is possible, that the snapped point will not lie on
the same edge. This may happen when the true location is on a bridge, but the snapped
location is under a bridge as depicted in �gure 7.7a. A similar problem may occur when
the resolution of the graph is low as the snapped point might end up on di�erent road �
�gure 7.7b. In both of these cases, the vehicle might spend a not negligible time to recover
and return to its original route.
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(a) Snapping failure on a bridge (b) Snapping failure in a turn

Figure 7.7: Possible snapping failures

In some special cases, the process of determining a vehicle position as described in section 5.3.2.1 might fail.
In situation depicted in 7.7a the vehicle is driving over a bridge (blue line), but when we try to determine its
position shown by a red circle, the closest node might be under the bridge. A similar situation happens in a
sharp turn, �gure 7.7b, where the position (red circle) might end up in the opposite direction. Visualizations
made by Lea�et [19].
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Figure 7.8: Distances between pairs of points

In the assumption (3) (section 5.2.2), we assumed, that distances between two points are small. To support
this assumption, we calculated both snapping distances and edge lengths on our road network. The graph
shows, that approximately 94% of snapped distances is below 50 meters. The distances between nodes on
edges are a bit larger, circa 90% is below 150 meters.
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Chapter 8

Conclusion

The goal of this thesis was to propose and evaluate two approaches for incident response
vehicle �eet management in building security domain. These vehicles are distributed around
the region and in case an alarm is detected, one of the vehicles is dispatched to investigate
a cause of the alarm. A good �eet management should maximize the coverage of protected
buildings while keeping the arrival time reasonably low. First approach � called static al-
location � should allocate the vehicles prior any alarm is detected. On the other hand, the
second approach � dynamic allocation � should react to alarm events, such that they are
able to substitute currently intervening response vehicles.

We explained the process of alarm detection up to the point of incident vehicle deployment
in chapter 3. Additionally, in chapter 4, we studied related problems of facility and vehicle
allocation, especially in the Emergency Medical Services domain. Static models in the form
of mathematical programs, presented in related work, are either too restrictive and infeasible
with a small �eet of vehicles or do not optimize both coverage and arrival time. Finally, we
brie�y introduced a game-theoretic approach that is to be taken in order to drop the alarm
independence assumption (5, section 5.3.1), as there exists a possibility, that the burglar is
monitoring positions of incident vehicles and plans its attack based on this observation.

Our approach was formulated in chapter 5, where we also reason about complications
that arise when dealing with real-world data. A system consisting of four independent
components was designed and implemented in Kotlin programming language. This system,
consisting of o�ine alarm generator, linear integer program solver, event-based simulator
and greedy dispatcher, is capable of using both static and dynamic optimization models and
work with real-world or synthetic data.

Finally, in chapter 7, we evaluated both of our approaches on synthetic and real-world
data. Small and comprehensible synthetic data is used to analyze the two algorithms in
greater depth. On the other hand, real-world scenario, taking place in the city of Prague, is
evaluated to explore possible bene�ts of our approach to current building security systems.
We show, that in two situations, where the static allocation of a large �eet can handle alarm
events easily and where the static allocation of a small �eet cannot handle alarm events at
all, there is no real bene�t of dynamic allocation. However, between those two extrema, the
potential bene�t of the dynamic approach is noticeable, as the percentage of covered alarms
increased by 15.22% and 21.7% on the larger region with bigger �eet size and by 4% and
5.72% on the smaller region with smaller �eet size.
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Appendix A

CD content

The attached CD contains following directories:

maps/ road map network used in real-world scenarios

maps/graphhopperCache/ map data cached by GraphHopper

matlab/ Matlab R© functions used to generate graph visualisations

persistence/ precomputed location data

src/ Kotlin source code

thesis/ thesis LATEXsource code

thesis/images/ �gures in high resolution

A.1 Evaluation description

The evaluation is implemented in JUnit test environment and located in

src/test/kotlin/thesisdata.

In order to compile and run the evaluation, one needs to provide a path to Gurobi Java
Archive in the �le pom.xml on line 25. For example in order to run changing frequency
experiment on synthetic data, one runs a test

src/test/kotlin/thesisdata/SyntheticScenarios.changingFrequency().

The evaluation creates a new directory results/ and stores the results of an evaluation in
an appropriate directory structure that corresponds to the experiment. In this folder, �les
in JSON format will be generated and their structure corresponds to

src/main/kotlin/logging/SimulationLog.
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Additionally, one JSON �le experiment.json is generated, that corresponds to

src/main/kotlin/logging/ResponseExperiment.

The script also automatically generates a visualisation using MATLAB R©, if a path to the
matlab executable is provided in

src/main/kotlin/Constants.kt

and Matlab contains folder matlab/ in its path.
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