

2

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Computer Graphics and Interaction

Master’s Thesis

Ontology of information storing in e-commerce environment

Bc. Michal Novotný

Supervisor: Ing. Martin Klíma, Ph.D.

Study Program: Open informatics, Masters degree

Field of Study: Software Engineering

May 24, 2018

iv

v

Aknowledgements
I would like to thank everyone who helped and supported me during this thesis and my
whole studying time.

vi

vii

Declaration
I declare that I elaborated this thesis on my own and that I mentioned all the information
sources and literature that have been used in accordance with the Guideline for adhering to
ethical principles in the course of elaborating an academic final thesis.

In Prague on May 25, 2018 .

viii

Abstract

This thesis is focused on a summary of existing methods and structures for storing e-
commerce data. The goal is to design, implement and test a system which collects and
analyzes data from multiple e-commerce sources for knowledge extraction. Another part of
this theses deals with the design of a unified model for e-commerce data representation which
is used to store the extracted semantic data. A method for data querying is designed and
implemented to enable logical searching within the data structure. Stored data and extracted
knowledge are tested against user annotated dataset. The whole system is implemented as
a web application for data search visualization and testing.

Abstrakt

Tato práce je zaměřená na shrnutí existujících metod a stuktur pro ukládání e-commerce
dat. Hlavním cílem je navrhnout, implementovat a otestovat systém, který shromáždí a
zanalyzuje e-commerce data z různých zdrojů za účelem extrakce znalostí. Dalším aspektem
této práce je návrh jednotného modelu pro popis e-commerce dat. Tento model je využit
pro uložení vytěžených sémantických dat. Dále je navrhnuta a implementována metoda pro
logické dotazování nad uloženými daty. Uložená data a vytěžené znalosti jsou otestovány
proti uživatelsky anotovanému souboru dat. Celý systém je dále naimplementován jako
webová aplikace pro vizualizaci uložených dat a testování vyhledávání nad daty.

ix

x

Contents

1 Introduction 1
1.1 Problem definition and motivation . 1

1.1.1 Data meaning and problems . 2
1.2 Goals of this project . 2

1.2.1 Scenarios . 3

2 Analysis of the problem 5
2.1 Data in e commerce system . 5

2.1.1 Data feeds . 6
2.1.1.1 Existing feed formats . 8

2.1.2 E-commerce data . 8
2.1.2.1 Product representation . 9

2.2 Ontology and Semantic web . 9
2.2.1 What is Data? . 9
2.2.2 Semantic web . 10

2.2.2.1 RDF and RDF Schema . 11
2.2.2.2 OWL . 12
2.2.2.3 OWL: Resoning . 14

2.2.3 Defining ontology . 15
2.2.3.1 Modeling tools . 16

2.3 Methods for product similarity and relation 16
2.3.1 Product similarity methods . 17
2.3.2 Product clustering methods . 18

2.4 Data storage . 19
2.4.1 SQL Databases . 20
2.4.2 NoSQL Databases . 20
2.4.3 SQL vs NoSQL Databases . 21
2.4.4 Storing and retrieving semantic data 21

2.5 Data scraping . 21
2.5.1 Scraped data feeds . 22

3 Design 23
3.1 Data structure . 23

3.1.1 Ontology . 23
3.1.2 Unified format . 25

xi

xii CONTENTS

3.2 Solution design . 25
3.2.1 Feed component . 26

3.2.1.1 Converting data . 26
3.2.1.2 Conversion maps and vocabularies 26
3.2.1.3 Data annotation . 27
3.2.1.4 Vocabularies . 30

3.2.2 Consolidating component . 30
3.2.2.1 Product relation building . 31
3.2.2.2 Data transformation and reasoning 32
3.2.2.3 Storing data . 34

3.2.3 Data querying . 35
3.2.3.1 Building the query . 36

4 Implementation 37
4.1 System infrastructure . 37

4.1.1 Tools and technologies . 38
4.1.2 Feeder library . 39

4.1.2.1 Library components . 39
4.1.2.2 Data meaning extraction . 39
4.1.2.3 Ontology building and data storage 40

4.1.3 API service . 43
4.1.3.1 Cypher query building . 43

4.1.4 Client application . 44

5 Evaluation 47
5.1 Data evaluation . 47

5.1.1 Testing data . 48
5.1.1.1 User annotated data . 48

5.1.2 Testing scenarios . 49
5.1.2.1 I. Data annotation, ontology building and storing 49
5.1.2.2 II: Ontology evaluation . 50
5.1.2.3 III: Relationship building evaluation 51
5.1.2.4 IV. Stored data evaluation 52

6 Conclusion 53
6.1 Summary . 53
6.2 Further steps . 54

A Nomenclature 57

B API service documentation 59

C Contents of attached CD 65

List of Figures

1.1 E-commerce data top level view . 2

2.1 Basic category and product diagram . 6
2.2 E-shop: Basic Entity Relation diagram . 8
2.3 E-shop: Product represented as collection of properties 10
2.4 DIKW Pyramid - ROWLEY, Jennifer. 11
2.5 RDF - Resource Description Framework triple 11
2.6 Example of data in RDF format . 12
2.7 Example of data in RDF format . 13
2.8 OWL reasoner inferred object property diagram 15
2.9 K-Means algorithm diagram . 19
2.10 Hierarchical agglomerative clustering diagram 20

3.1 Top level diagram of feed component . 26
3.2 Attribute annotation processing diagram . 27
3.3 Price attribute processing diagram . 29
3.4 Top level diagram of consolidation component 31
3.5 Product to vector diagram . 32
3.6 Ontology individuals creation processing diagram 33
3.7 Diagram of ontology individuals created from annotated product data. 34
3.8 Specific attribute representation transformation. 35
3.9 Pseudo-query graphical definition. 36

4.1 Deployment diagram of the system. 38
4.2 System architecture diagram. 39
4.3 Feeder Library component and interface architecture diagram. 40
4.4 Amount unit parsing factory class diagram. 41
4.5 Product relationship builder class diagram. 41
4.6 Product, price and currency connection in Neo4J database. 42
4.7 Client application query building screenshot 45
4.8 Client application screenshot . 45

5.1 Neo4J stored data scheme . 51

xiii

xiv LIST OF FIGURES

List of Tables

2.1 Data available for analysis . 5
2.2 Common Attribute keys table . 9
2.3 Object property characteristics . 13
2.4 Semantic reasoners . 15
2.5 Database systems and their advantages and disadvantages for storing semantic

data . 21

3.1 Ontology classes . 24
3.2 Ontology object properties . 24
3.3 Ontology data properties . 24
3.4 List of currency types and their annotation 28
3.5 List of units, their annotation and domain . 28
3.6 Unit types with basic unit for annotation . 29

4.1 Server parameters. 38
4.2 Main component technologies used for implementation. 38
4.3 Application service endpoints . 43

5.1 General statistics generated from all annotated data feeds. 47
5.2 Testing data overview . 48
5.3 General statistics for each dataset. 49
5.4 Data transformation steps and their time. 50
5.5 Summary of data store in ontology and Neo4J. 50
5.6 General statistics for each dataset. 51
5.7 Solution annotated data and user annotated data comparison. 52

xv

xvi LIST OF TABLES

Chapter 1

Introduction

In today’s ever faster-growing Internet environment are e-commerce systems one of the
most used systems online. E-commerce can be anything from e-shops and on-line markets to
auction sites - anything where people can buy or sell products or services using an electronic
system and network. According to 2017 reports from [2] e-commerce is growing exponentially
in Europe. Furthermore from 2013 onwards is Czech Republic European country where e-
commerce delivers the biggest contribution to enterprises’ total revenue - almost quarter of
country’s total turnover is generated using e-commerce [19].

Since e-commerce is fast growing industry [2], as with every Internet service, shops and
e-commerce websites need to handle increasing amounts of data. Not only are there more
products and services to offer, but also more and more people rely on these systems to shop
and that is really important for marketing strategies and the overall profit of companies in
the business.

1.1 Problem definition and motivation

E-shops or any other systems are really easy to set-up nowadays and the e-commerce
industry is not only for big companies anymore. There are literally hundreds of systems
which can provide a company or an individual with online store and many of these systems
face the same issues. Further, we will discuss e-shops and products mainly, but the same
concepts and problems can be found in any e-commerce environment offering products or
services.

One of these issues is how to handle the amount of data generated by the users. This
problem has been addressed a lot in the past. But there are more issues - how to use data in
a specific way that can help the business thrive. Other problems are tightly coupled to the
systems themselves. How to insert, edit and describe product data in e-commerce system in
a way that is suitable for searches and other important activities like product categorization
or recommendation? A lot of e-commerce systems rely heavily on users to input data like
the connection of products with their accessories or product association with their variants
or other products.

1

CHAPTER 1. INTRODUCTION

1.1.1 Data meaning and problems

With Web 2.0 and further [27] the meaning of data and the ability to store and retrieve
it in a logical way is really important not only in the e-commerce environment. To offer
the right product or service, to enable sensible search and recommendation systems and to
ensure a better experience for both sides using the system, data need to be structured in
a logical way and have to carry some additional information. And this is an issue faced
by many businesses. Almost all of the e-shops offer recommendation systems and advanced
search engines based on user data (orders, page viewing,...) and product data. But what if
these data do not exist or there is not enough of it? What if there is no knowledge of the
data meaning in the e-shop?

A lot of systems use data feeds which is a shop, product and category and often stock
information in a structured format like XML (eXtensible Markup Language) or JSON
(JavaScript Object Notation). Data feeds can also be exported from e-shop systems for
example in a format for rating and comparing engines. These data feeds offer great flexibil-
ity for the systems as users do not have to input the data manually. But there are issues as
well. Mainly concerning the structures of the feeds which are not unified across the domain.
Feeds also do not usually contain all the information about the products and categories,
rather a condensation of main attributes such as name, category and price.

1.2 Goals of this project

The goal of this project is to analyze the current situation of data storage and represen-
tation in e-commerce systems and further to design and implement a system which would
create semantic data from existing data and structure them in clear and unified format in
the form of a data feed. This data feed can be used to automatically incorporate data into
the system and to enable searching, recommendation and product connection (as accessory
or alternative) on the system level without user’s need of input. The semantic data could be
created by a user, exported or scraped from existing systems or transformed from original
data feeds.

Macbook Pro
Notebook

name: Macbook Pro

manufacturer: Apple

price: $ 999

weight: 1.8 kg

Notebooks

Electronics

Figure 1.1: E-commerce data top level view

2

1.2. GOALS OF THIS PROJECT

Products often come with attributes or parameters like manufacturer, price or weight as
seen on diagram 1.1. These parameters and their values need to be interpreted correctly if
we want to unify the data structure and add meaning to the values. in order to solve this,
a system needs to be able to clean the data and transform them into the unified format.
Another requirement of the system is to filter any data or values which are not necessary.
This system should also be able to learn from data and enable for better and more correct
data transformation based on the dataset.

Other parts of the system must be able to process the semantic data and store them.
During this process of consolidation and storing, data can be clustered and divided into
logical groups which will enable better search and other operations.

Requirements of the system and goals of this thesis are summed in the list bellow.

• Data scraping from existing e-commerce sites

• Transformation of data to a unified format

• Consolidation of data, logical grouping and product association

• Storing of the data

• Searching over the stored data

1.2.1 Scenarios

In this section are listed and described basic scenarios which the system should support.
These operations should make use of the semantically enhanced data and the logical grouping
to retrieve specific results.

I. Product knowledge extraction System should be able to perform data analysis and
use predefined dictionaries or functions to extract meaning from the product descriptions.
Numeric values with units should be paired in order to enable unit conversion and unified
representation. Extracted data should be stored as knowledge.

II. Matching similar products We should be able to create product relationships based
on the attributes and meaning they have. We can simply match similar property values like
dimensions, price or even categories and retrieve similar products.

III. General search A system should have a querying abilities to retrieve stored semantic
data in a similar way a normal e-commerce search system would. Additionally it should use
the knowledge stored within the data to return more complex results.

V. Product accessory search Retrieving product and it’s accessories or related products
based on the attribute values of the products. The system should use the knowledge to find
and connect product as an item and accessory.

3

CHAPTER 1. INTRODUCTION

4

Chapter 2

Analysis of the problem

In this chapter, we will look into existing ways of storing and describing e-commerce data.
We will discuss the meaning of the data and how ontologies are used in today’s systems to
enhance search and other operations. We will analyze existing tools for data mining and
knowledge extraction as well as tools for building ontologies and storing semantic data.

2.1 Data in e commerce system

For data analysis we had multiple instances of data feeds in XML format as well as
access to databases of multiple e-commerce systems. Feeds are summed in table 2.1. Data
can be generally divided in two groups: structured and unstructured. Typical e-commerce
system usually consist of products (or services) and categories. We analyzed multiple domains
described in the list below.

Name Description Source
JCPenny product feed Over 10000 clothing products in CSV for-

mat
https://www.kaggle.com

4Camping product feed Over 17000 products of clothing and out-
door equipment in Google RSS 2.0[15] for-
mat

http://www.cj.com/

Alza.cz data 12000 products: notebooks, phones and
their accessories as HTML files

scraped (see section 2.5)

Kasa.cz data 6500 products: notebooks, phones and
their accessories as HTML files

scraped (see section 2.5)

Table 2.1: Data available for analysis

Analyzed domains

• Clothing

• Outdoor equipment (backpacks, camping equipment,...)

• Notebooks

5

CHAPTER 2. ANALYSIS OF THE PROBLEM

• Notebook accessories (keyboard, mouse,...)

• Phones

• Phone accessories (cases, charging cables,...)

Structured data Product and category information is a good example of structured data.
Categories are usually hierarchically organized in a multiple tree structure. In figure 2.1 can
be seen a classic e-shop top-level view on product and category relationship. Products can
be connected to multiple categories and to every category on the way to one of the root
categories. Products are represented usually as a set of features which we call attributes.
Some of these features may be present in e-shop data feeds.

Electronics

Phones Notebooks

Smartphones Normal phones Accessories

Categories

Products

iPhone 8

iPhone X

Samsung Galaxy 9 iPhone 8 Case

Lenovo T460

Lenovo T460

Figure 2.1: Basic category and product diagram

2.1.1 Data feeds

Data feeds from e-commerce systems are structured files which contain basic information
about products and their attributes. In most cases they are used for ranking systems and
contain only basic information: name, manufacturer, category and price for each product.
Bellow is a short example from XML data feed.

<?xml version="1.0" encoding="UTF-8"?>
<ITEM>

6

2.1. DATA IN E COMMERCE SYSTEM

<NAME>Luxury set with curtains Mamo Tato</NAME>
<ID>9082</ID>
<ID_MAIN>9080</ID_MAIN>
<CODE>11507903</CODE>
<EAN>11507903</EAN>

<URL>luxury-set-with-curtains</URL>
<PRICES>

<PRICE level="1">1586.40</PRICE>
</PRICES>
<PRICES_VAT>

<PRICE_VAT level="1">1919.54</PRICE_VAT>
</PRICES_VAT>
<DELIVERY_TIME>in 7 - 10 business days</DELIVERY_TIME>
<AVAILABLE>0</AVAILABLE>
<DUTIES />
<PRICE_BUY />
<PRICE_OLD>0.00</PRICE_OLD>
<VAT>21</VAT>
<QUANTITY>0.000</QUANTITY>
<LOCK>0.000</LOCK>
<UNIT>pieces</UNIT>
<WEIGHT>2200</WEIGHT>
<IMAGES>

<IMAGE description="Photo (18119)">https://www.shoply.cz/luxury-set-
with-curtains18119.jpg</IMAGE>
<IMAGE description="Photo (18120)">https://www.shoply.cz/luxury-set-
with-curtains18120.jpg</IMAGE>

</IMAGES>
<CATEGORIES>

<CATEGORY main="1" index="0005" id="352">Bed equipment</CATEGORY>
<CATEGORY index="0005000300010001" id="514">Luxury sets</CATEGORY>

</CATEGORIES>
<CATEGORY_SHORT>Bed equipment | Sets | Luxury sets</CATEGORY_SHORT>
<PARAMS>

<PARAM name="Sheet size" type="3">140x70</PARAM>
</PARAMS>
<PRODUCER>Mamo Tato</PRODUCER>
<SIGNS />
<DESCRIPTION>Luxury set with curtains Mamo Tato</DESCRIPTION>
<PRIORITY>5</PRIORITY>
<SYNCHRONISM>1</SYNCHRONISM>
<EXPORT>1</EXPORT>
<ACTIVE>1</ACTIVE>

</ITEM>

7

CHAPTER 2. ANALYSIS OF THE PROBLEM

2.1.1.1 Existing feed formats

The biggest problem of data feeds is that there is no unified format. Some services like
Heureka.cz [5] have a specific format which every system needs to implement. Creation of
such data feed is always manual and the feed contains only limited amount of information.
There are other formats used for affiliate programs like Google RSS 2.0 [15] which contains
also basic information, but the data in the format can be defined specifically to the system.

There has been a solution in the realm of feed unification, ShopAPI.cz [17] accumulates
feeds from different vendors and offers feed conversion to one of the existing feed - such as
the Heureka.cz [5] feed. But it is mostly used for ranking systems and affiliate programs.

2.1.2 E-commerce data

As we described in previous section products and categories are structured in the e-
commerce environment. In figure 2.2 is a basic diagram of the database and how products
and categories are usually linked together. From data feeds 2.1.1 and other e-commerce
data we analyzed product attribute keys. Some product features are common (almost every
product has this attribute key) and some are specific for given product or domain. In table
2.2 are listed all common product attribute keys and their raw type which were most frequent
in analyzed dataset. We will use these attribute keys during the scraping of data described
in section 2.5.

Product

+ id: integer

+ name: varchar

+ manufacturer: varchar

+ description: text

+ price: decimal

+ ean: varchar

Category

+ id: integer

+ name: varchar

Attribute

+ id: integer

+ name: varchar

+ value: text

0 .. *0 .. * has category >

< contains product

1

0 .. *has attribute >

< is attribute of

0 .. 1

0 .. *

< has parent

has child >

Figure 2.2: E-shop: Basic Entity Relation diagram

8

2.2. ONTOLOGY AND SEMANTIC WEB

Property key Value type Description
Name string name of the product
Category string product category
Price double price of the product
Manufacturer string product manufacturer
Description string product description
Short description string product short description
Currency string price currency
Weight string product weight with unit
Image string url of product image(s)
Color string product color(s)
Material string product material(s)
Depth string product dimensions - depth with unit
Width string product dimensions - width with unit
Height string product dimensions - height with unit
Size string product size(s)

Table 2.2: Common Attribute keys table

2.1.2.1 Product representation

Most important for searching or any other activities are the specific attributes. We can
assume that products with similar or same specific property keys are also very similar to
each other - probably are in the same category. Even then category can be considered as a
property of a product. This view allows us to abstract product as a collection of properties
(fig. 2.3) some of which are common with other products.

Property weight Even though a product is made from properties, not all have the same
informational value. For basic querying, we can assume same weight among parameters
because we are searching for specific results, but if we want to cluster the data into logical
groups using these parameters not all of them can have the same weight.

2.2 Ontology and Semantic web

According to [25] ontology is specification of conceptualization. In other words, it is a
description of things that exist and how they are related. Essentially when we talk about
ontology it is a problem of knowledge management and data meaning. It is a way we can share
meaning with each other, between user and computer and between computers themselves.
It offers modeling and interface for different data structures. Ontology can be modeled by
OWL (Web Ontology Language).

2.2.1 What is Data?

In figure 2.4 we can see the DIKW pyramid of the data and knowledge. It describes a
relationship between data, information, knowledge and wisdom. Information is defined from

9

CHAPTER 2. ANALYSIS OF THE PROBLEM

Properties

id: 100

name: iPhone 8

manufacturer: Apple

description: "..."

price: $ 699.00

category: Smartphones

category: Phones

. . .

iPhone 8 Phone

Electronics

Phones

Smartphones

Category tree

Figure 2.3: E-shop: Product represented as collection of properties

data and wisdom is defined from knowledge [28].

Data as Fact or Symbol [28] Data are discrete facts or observations without a context.
Or can be viewed as symbols describing a property of an object, event or their environment.

Information In pyramid defined as knowledge by description. Information is data and
meaning together.

Knowledge DIKW pyramid defines knowledge with reference to information - processed
information.

Wisdom In paper [32] wisdom is described as integrated knowledge - information which is
used usefully.

2.2.2 Semantic web

The semantic web is a traditional web, enhanced in a way that the data has specific
meaning [30]. It is a concept which is used wildly by search engines and many websites
like Google or Amazon. Many data types like dates and times are given the meaning of
being a Date or Time which can help software and users to understand what the displayed

10

2.2. ONTOLOGY AND SEMANTIC WEB

Figure 2.4: DIKW Pyramid - ROWLEY, Jennifer.
The wisdom hierarchy: representations of the DIKW hierarchy [29].

values mean. Ontology is an important part of the whole concept because it is a formal
representation of the domain and the meaning.

Principles of semantic web are simple. Data are modeled by RDF ((Resource Description
Framework) andOWL. Each resource has IRI - unique identifier for addressing web resources.

2.2.2.1 RDF and RDF Schema

RDF is a meta-data model in form of triple Subject-Predicate-Object (figure 2.5).
This triple then describes relationship between resources [13]. In figure 2.6 is displayed RDF
representation. RDF store is an atomic decomposition of a graph between resources. RDF
schema is a vocabulary which describes classes and properties with constrains used in RDF
data.

Subject of the RDF is a resource defined by IRI 1 (Internationalized Resource Identifier)
or a blank node2. The predicate is a relationship between subject and object and it is
identified by URI which indicates resource representing a relationship. The object can be
defined by resource IRI, blank node or string literal.

Subject Predicate Object

Figure 2.5: RDF - Resource Description Framework triple

1IRI is a generalization of URI (Uniform Resource Identifier)[19]
2Also called bnode or anonymous resource. It is a resource without IRI. Can be used only as subject or

object.

11

CHAPTER 2. ANALYSIS OF THE PROBLEM

IRI#Electronics IRI#Category
isA

IRI#Smartphones

isChildOf

IRI#Phones

isChildOf

isA

isA

Electronics
name

Smartphones
name

Phones
name

Figure 2.6: Example of data in RDF format

2.2.2.2 OWL

Web ontology language is a markup language designed for ontology description. It ex-
pands properties of classes in RDF and RDF Schema [23]. OWL ontology is described using
basic structures listed below. Ontologies are also defined by IRI.

• Class

• Object property

• Data property

Since OWL is extending RDF, classes, object properties and data properties are repre-
sented as resources and are defined by IRI. Instances of classes are called individuals. Each
individual is defined by IRI has a predicate rdf:type connection to a class resource. OWL is
making use of other properties such as rdf:subClassOf and rdf:subPropertyOf which enables
hierarchical structures in the ontology [23]. Figure 2.7 shows RDF graph data defined using
OWL.

Classes Every class is sub-class of owl:Thing and is a type of rdf:Class. Classes can be
equal or disjoint with each other as well as form a hierarchical structure using the subClassOf
object property. Every class can have additional description (annotations).

Object properties Each object property is sub-property of owl:topObjectProperty and of
type rdf:ObjectProperty. Object properties can have characteristics which define more rules.
These characteristics are summed in table 2.3. Individuals A and B being connected by

12

2.2. ONTOLOGY AND SEMANTIC WEB

IRI#Electronics IRI#Category

rdf:type

IRI#Smartphones

rdfs:subClassOf

IRI#Phones
op:isChildOf

Smartphones

dp:name

Phones

dp:name

IRI#Product

IRI:IPhone8

iPhone 8

dp:name

op:hasCategory

Figure 2.7: Example of data in RDF format

Name Description
Functional For individual input there is only one output

Inverse functional The individual output can be linked to only one input
Transitive Transitive property - A→p B ∧B →p C =⇒ A→p C

Symmetric Property and it’s inverse coincide
Asymmetric If A→p B then B →p A cannot exist
Reflexive Property relates everything to itself
Irreflexive No individual can be related to itself

Table 2.3: Object property characteristics

property is denoted as A→p B. Object property can also be an inverse of another property.
For example property hasParent has inverse hasChild [23].

Object properties also can have domain and range definition. Domain and range are
defined from the set of classes - it can be individual class, class intersection or union.

Data properties Every data property is sub-property of owl:topDataProperty and of type
rdf:DatatypeProperty. Same as object properties domain and range can be defined. Since
data properties are literal value, domain is from set of classes and range can be a string value
of defined type such as xsd:string or xsd:double [23].

Serialization format OWL ontology with individuals can be serialized into multiple for-
mats. Most used formats are RDF/XML, Turtle or JSON-LD. Listing 2.1 shows example of
OWL class, data and object property definition in turtle format.

Object property example

13

CHAPTER 2. ANALYSIS OF THE PROBLEM

https :// dev . novotmike . com/ oes#hasAttr ibute
: hasAtt r ibute rd f : type owl : ObjectProperty ;

owl : inve r s eOf : i sAt t r i bu t eOf ;
r d f s : domain : Product ;
r d f s : range : Att r ibute .

Data property example
https : // dev . novotmike . com/ oes#name
: name rd f : type owl : DatatypeProperty ;

r d f s : domain [rd f : type owl : Class ;
owl : unionOf (: Category

: Product
)

] ;
r d f s : range xsd : s t r i n g .

Clas s e s example
https : // dev . novotmike . com/ oes#Attr ibute
: Att r ibute rd f : type owl : Class .

https : // dev . novotmike . com/ oes#Product
: Product rd f : type owl : Class .

Listing 2.1: OWL structure examples in Turtle format

2.2.2.3 OWL: Resoning

Individuals and ontology definition is stored in one RDF graph. This enables reasoning
over the data. Reasoner is a program which can infer new properties to an individual
based on the OWL defined or user-defined rules. Reasoner can also check consistency of the
ontology, meaning that when we add new individual it’s properties fit the defined ontology.
In semantic data we recognize two concepts which answer to missing data meaning [30]:

OWA: Open World Assumption Everything that cannot be proven is unknown.

CWA: Close World Assumption Everything that cannot be proven is false.

The OWA and CWA concepts can tell the system how to react when something is un-
known. OWA answer is undefined - which means Not known. The CWA answer is no -
answers that the assumption is false.

SWRL - Semantic Web Rule Language SWRL is a language which enables defining
of additional rules. Example of such rule can be a hasCategory property of a product. When
product belongs to a category which is a child of another category, then it belongs to the
parent category as well. This can be expressed by the rule 2.1. Using this rule when product

14

2.2. ONTOLOGY AND SEMANTIC WEB

p has category individual c1 and that individual is child of some other category c2 then
product p has a category c2. Application of this rule can be seen in figure 2.8.

hasCategory(?p, ?c1) ∧ isChildOf(?c1, ?c2)→ hasCategory(?p, ?c2) (2.1)

IRI#Electronics IRI#Category

rdf:type

IRI#Smartphones

rdfs:subClassOf

IRI#Phones
op:isChildOf

IRI#Product

IRI:IPhone8
op:hasCategory

inferred: op:hasCategory

Figure 2.8: OWL reasoner inferred object property diagram

SWRL rules can be more complex than example 2.1, but do not allow for negations.
Furthermore OR relationship is represented by two or more rules based on the number of
branches. Rules can also imply the class defined in owl, in this case, rule 2.1 would be
enhanced to class representation 2.2

Product(?p) ∧ Category(?c1) ∧ Category(?c2)∧
hasCategory(?p, ?c1) ∧ isChildOf(?c1, ?c2)→ hasCategory(?p, ?c2) (2.2)

Reasoners There are multiple implementations of semantic reasoner many of which are
free and open source. Table 2.4 lists some of the reasoners which were considered during the
analysis. All reasoners are compatible with OWL API [9] which is a Java API for building,
managing and serializing OWL ontologies.

Name Description License
FaCT++ reasoner[3] OWL and OWL 2, Consistency checking LGPL license

Pellet[10] OWL 2, Java based, SPARQL, Consistency checking AGPL 3.0 license
Hermit[4] OWL and OWL 2, Consistency checking LGPL license

Table 2.4: Semantic reasoners

2.2.3 Defining ontology

Ontology can be defined from scratch or by modifying existing ontology. A process for
modeling an ontology is called ontology engineering [26]. As we described in previous section
2.2.2, ontology is defined using OWL and to define new ontology we need to define classes,

15

CHAPTER 2. ANALYSIS OF THE PROBLEM

object properties, data properties and their hierarchy. We followed the process described in
[26]. Steps are described in following paragraphs.

1. Ontology domain and scope Ontology domain and scope need to be defined first.
We can use existing ontologies from similar or related domains. The scope is important
because it defines the granularity of the classes. Next, we enumerate all important terms in
the domain - from this set of terms, we will create classes and properties.

2. Class and hierarchy definition We apply top-down, bottom-up or combination of
both approaches to get all classes and their hierarchy. Top-down approach starts from most
general terms, while bottom-up approach starts from most specific.

3. Class properties Classes are described by the properties. We need to find all the
properties from the terms and decide which classes are defined by them. In addition, we
need to assign the range of the property (a property value domain). We also need to think
about the cardinality of the properties. If a class should have more than one property of one
type, maybe we should abstract it as a class.

4. Class relationship definition In the last step, we need to define how classes relate
to each other. Some relationships come up from class properties other from the definition of
the domain.

2.2.3.1 Modeling tools

There are lots of tools for ontology modeling. For purposes of this project, we will use
Protégé [12]. Protégé website offers documentation and manuals on how to build ontologies.
Main functions of ontology modeling tools are summed in the following list.

• Tools for ontology modeling

• Individual creation

• Reasoning over ontology

• Consistency checking using a reasoner

• SPARQL support for querying

• Ontology serialization and deserialization

2.3 Methods for product similarity and relation

In this section, we will describe several methods which can be used to infer product
similarity and enable product grouping based on the properties of the products.

16

2.3. METHODS FOR PRODUCT SIMILARITY AND RELATION

2.3.1 Product similarity methods

Product similarity can be inferred in different ways. We have stated that product can
be represented as a set of attribute key-value pairs. We are going to analyze methods which
would exploit this representation for similarity factor calculation.

We can represent a product as a set of only attribute keys and create a product vector
with dimension equal to the size of the collection of all analyzed attribute keys. A product
would be then represented by a vector which for each attribute key i contains value based
on equation 2.3.

v(i) =

{
1 if product contains key
0 otherwise

(2.3)

Euclidean distance Simplest algorithm for similarity calculation is Euclidean distance.
Distance of two products p and q using our product vector representation pv and qv is
calculated using Euclidean distance equation 2.4. We assume that n is the size of the set of
all attribute keys.

d(pv, qv) =

√√√√ n∑
i=0

(qv(i)− pv(i))2 (2.4)

Weighed euclidean distance We can enhance simple Euclidean distance calculation by
introducing weights for each attribute key. The product is represented in the same way as
in classic euclidean distance algorithm. We only add new vector of weights w(i) based on
the attribute key informational value (as described in section 2.1.2.1). Equation 2.5 shows
weighed Euclidean distance calculation of two products p and q.

It depends on the way weights are assigned for each attribute key. We will discuss this
further in section 3.2.2.1.

d(pv, qv) =

√√√√ n∑
i=0

wi(qv(i)− pv(i))2 (2.5)

Cosine similarity Cosine similarity is another method for distance calculation of two
non-zero vectors. It is independent of vector length [33]. Similarity between two vectors p
and q is calculated using equation 2.6. Resulting value is in interval: 〈−1, 1〉.

Sp,q = cosα =
pTv qv

||pv|| · ||pv||
(2.6)

Property based similarity We can also calculate specific attribute value similarity. For
string values such as categories and manufacturers we can use exact matching or Levenshtein
distance metric to express the similarity of two values. For numeric values we can use equality
or interval matching for similarity calculation. Additionally if we have information about
the value unit (weight or dimensions) we can convert units if necessary.

17

CHAPTER 2. ANALYSIS OF THE PROBLEM

Levenshtein distance Levenshtein distance between two strings a and b is calculated
using equation 2.7. Function 1(ai 6=bj) is 0 when ai = bj and 1 otherwise. The resulting
distance represents number character operations (insert, delete or substitute) required to
change one string to another.

leva,b(i, j) =


max(i, j) if min(i, j) = 0

min


leva,b(i− 1, j) + 1

leva,b(i1, j − 1) + 1

leva,b(i− 1, j − 1) + 1(ai 6=bj)

otherwise
(2.7)

2.3.2 Product clustering methods

Clustering is a technique of data grouping based on the nature of the data properties.
Generally, a clustering method is given data points (data represented as points in space) and
each point is assigned to specific group [33]. Each group represents a cluster of similar data.

K-Means clustering K-means clustering is a method which takes a set of data points as
input and groups the data points into k clusters based on the nearest mean which represents
a prototype of the cluster. The number of clusters is limited by the number of data points
(k ≤ n). Algorithm steps are described in the following list and in diagram 2.9.

1. Define k classes and create their representation in space. These points are called center
points.

2. Each data point is classified by computing distance from each center point. The Data
point is assigned to a group which is represented by the nearest center point.

3. Recompute center points for each group using the mean of all vectors assigned to the
group.

4. Repeat steps 1-3 until the center points position does not change or change is minimal.

Advantages Disadvantages
+ Simplicity - Upfront class number definition
+ Complexity [33] O(nkdi)1 - Different results depending on the

initial center points

1 n vectors of dimension d, k clusters and i iterations

Hierarchical clustering Hierarchical clustering can be divided into two categories: top-
down or bottom-up. Bottom-up algorithms treat each data point as individual cluster. Clus-
ter pairs are merged until all data is in one big cluster. Cluster hierarchy is represented as
a tree. Following list describes algorithm steps and diagram 2.10.

1. Each point is represented as a cluster

18

2.4. DATA STORAGE

0 5 10

10

5

iterations

0 5 10

10

5

0 5 10

10

5

0 5 10

10

5

0 5 10

10

5

Figure 2.9: K-Means algorithm diagram

2. We combine two clusters into one depending on the distance between clusters. This
distance is calculated as average distance between points in the first cluster and the
second cluster. In each step algorithm chooses clusters to merge based on the minimal
distance.

3. Repeat step 2 until data is clustered into one cluster.

Advantages Disadvantages
+ No upfront class number definition - Time complexity O(n3)
+ Not sensitive to distance metric se-

lection
+ Good for data hierarchy re-building

2.4 Data storage

E-commerce data such as product, category and order information is usually stored in a
structure with a well-defined schema. Other information such as user activity logs, images
and other can be often without structure. Every type of data needs to be stored in a way
to be simply retrieved in the system - usually using some database system. Storage can be
done in one of two types of database systems: SQL databases or NoSQL databases.

19

CHAPTER 2. ANALYSIS OF THE PROBLEM

0 1 2 3 4 5 6 7
data points

di
st

an
ce

1 cluster

2 clusters

4 clusters

0 1 2 3 4 5 6 7
data points

di
st

an
ce

123

iterations

Figure 2.10: Hierarchical agglomerative clustering diagram

2.4.1 SQL Databases

SQL (Structured Query Language) databases are a classic option for storing data. They
offer solid schema and structure for data and have been tested by the time. E-commerce
systems tend to use SQL databases for critical data - transactions, orders and other. This is
because of the nature of so so-called ACID - (Atomicity, Consistency, Isolation, Durability)
[31]. This means that the can be stored and manipulated safely and with exact results.

2.4.2 NoSQL Databases

NoSQL databases are a more modern approach to data storage. There are many NoSQL
systems spanning from simple key-value databases such as Redis [14] which are suitable
for storing things like shopping carts or temporary data, all the way to graph databases like
Neo4J [7]. NoSQL databases are generally used to store unstructured data since they usually
do no support or require schema definition. Their biggest advantage is horizontal scalability.

CAP Theorem CAP theorem mentions that there is a trade-off between Consistency,
Availability and Partition tolerance. NoSQL system can only really guarantee two of these
aspects [31].

• Consistency - data is consistent on every node of replication

• Availability - Data must always be accessible

• Partition tolerance - data is accessible despite the partitioning or communication failure

Database can be CA, CP or AP depending on which aspects of CAP theorem they guarantee.

20

2.5. DATA SCRAPING

2.4.3 SQL vs NoSQL Databases

In reality, most e-commerce solutions use a combination of SQL and NoSQL databases.
Advantages and disadvantages are summed in table 2.5. General SQL and NoSQL system
advantages and disadvantages are noted in paragraphs below. SQL systems are reliable, sta-
ble and allow for complex querying. Disadvantages of SQL are bad scalability with multiple
access points. The advantage of NoSQL is the ability to scale, to store unstructured data
and speed. A disadvantage is that NoSQL databases are still in development and do not
offer the kind of stability SQL system does.

2.4.4 Storing and retrieving semantic data

There are different options for storing semantic data. The usual way of storing ontologies
is a RDF triple store, but these stores are mainly for exchanging data and are not really
designed for efficient data storing [21]. But there is a relation between RDF stores and general
graph databases which represent labeled property graphs (LPG). We can also consider classic
SQL database such as PostgreSQL [11]. We have chosen two representatives - PostgreSQL
and Neo4J and compared them with regards to semantic data storing and our scenarios 1.2.
Advantages and disadvantages of each database type representative are summed in table 2.5.

Querying As far as querying of the data is concerned RDF stores, Neo4J and PostgreSQL
all have powerful querying languages. RDF stores have SPARQL [23], Neo4J has cypher [7]
and PostgreSQL has classic SQL. All enable complex querying. Neo4J, in addition, offers
traversal framework which enables path directed querying (specified movement in a graph).

Comparison SQL system does not allow for easy extensibility which is a nice feature of
ontologies in general. Because of that graph database is more suitable for storing semantic
data. We will talk about how to store RDF semantic data to a graph database in design
section 3.2.2.3.

Database system Type Advantages Disadvantages
PostgreSQL[11] SQL ACID, SQL querying, well de-

fined schema, transaction
Not easily extensible, only
vertically scalable

Neo4J[7] NoSQL CA, CYPHER querying,
transactions, simply extensi-
ble, horizontally scalable

no schema, data stored in one
graph

Table 2.5: Database systems and their advantages and disadvantages for storing semantic
data

2.5 Data scraping

Data feeds are not only way how to retrieve data from an e-commerce website. On
one hand, if you have an existing database with data, you can use basic queries to retrieve

21

CHAPTER 2. ANALYSIS OF THE PROBLEM

information and store them in the data feed. On the other hand, if you need to get data
from online shop, for example for learning purposes, you need some data scraping tool. Data
scraper, in this case, is usually a simple tool that crawls the website and stores the relevant
information. There are multiple tools like Scrapy [16] or Apify [1] which enable user to crawl
a website and retrieve the needed data.

A disadvantage of just using the tools is that they are not built for every website and you
have to specify a script which will retrieve the data. The best way would be to design and
create own crawler which is also able to use machine learning to find relevant information
and retrieve them.

2.5.1 Scraped data feeds

For purposes of this thesis we scraped data from on-line shops Alza.cz and Kasa.cz. We
focused on specific category of products: notebooks, phones and their accessories. We were
able to collect over 19000 products from both websites. Steps of the HTML scraping are
described in the following list.

1. Listing all products in a category on the web page (or go page, by page)

2. Getting product detail URLs and storing them in a file

3. Using wget command to download all the HTML files using URLs acquired in the
previous step

Data scraping was implemented using Beautiful Soup python library and python lan-
guage. We processed each data domain separately and stored the data in the unified feed
format (see section 3.1.2) to a YAML file.

22

Chapter 3

Design

As we described in sections 1.1 and 1.2 we need to design a system which will take data
from different streams (data feeds), transfers it to unified format and then filter and clean
the data in order to store them in a structure which will provide good querying capabilities.
In following sections, we will discuss the whole process of data transformation, knowledge
acquisition and storage. We also describe the architecture of the system.

3.1 Data structure

After analyzing our data 2.1 we defined basic common attributes (listed in table 2.2).
We built our ontology based on these attributes.

3.1.1 Ontology

We used process defined in 2.2.3 to build the ontology. There were many iterations of
the ontology from more specific to more general. The final version of the ontology describes
products, categories, attributes and relations between them in a non-domain specific way.
Tables 3.1, 3.2 and 3.3 list all classes, object properties and data properties defined in the
ontology.

The ontology was designed based on the data which were available for this thesis. It may
not contain all available classes in e-commerce domain, but it can be easily expanded in the
future adding more classes, properties or using existing ontologies for more information.

23

CHAPTER 3. DESIGN

Class name Description
Product a product
Category product category
Attribute general attribute
Manufacturer a product manufacturer
Price price of the product
Currency currency unit of the price
Unit unit of a specific attribute
Dimensions product dimensions (width, height, depth)
DimensionUnit dimensions unit
Weight product weight
WeightUnit a unit of weight

Table 3.1: Ontology classes

Object property Inverse Domain Range
hasAttribute isAttributeOf Product Attribute
isInCategory isCategoryOf Product Category
hasChild isChildOf Category Category

hasCurrency isCurrencyOf Price Currency
hasDimensions isDimensionOf Product Dimensions
hasManufacturer isManufacturerOf Product Manufacturer

hasPrice isPriceOf Product Price
hasWeight isWeightOf Product Weight
hasUnit — Weight,Dimensions, Attribue WeightUnit, DimensionUnit, Unit

isCompatibleWith — Product Product
isSimilarTo — Product Product

Table 3.2: Ontology object properties

Data property Domain Range
name Category, Currency, Product, Manufacturer, Dimen-

sionUnit, WeightUnit
xsd:string

key Attribute xsd:string
val Attribute, Weight xsd:string, xsd:double

width Dimension xsd:string, xsd:double
height Dimension xsd:string, xsd:double
depth Dimension xsd:string, xsd:double
amount Price xsd:double

short_description Product xsd:string
description Product xsd:string

sign Currency xsd:string
code Currency xsd:string

Table 3.3: Ontology data properties

24

3.2. SOLUTION DESIGN

3.1.2 Unified format

With regards to our ontology described in the previous section, we need to prepare our
data in a way that will enable simple manipulation and knowledge extraction. In section
2.1.2 we described how data is structured usually in the e-commerce system. Then in 2.1.2.1
we talked about a product as a collection of properties. We propose a unified feed structure
which represents products simply as a collection of string key-value pairs. We chose YAML
(YAML Ain’t Markup Language [20]) as our serialization format because of it’s better human-
readability. Listing 3.1 shows an example of data in the unified format.

products :
− a t t r i b u t e s :
− key : "name"

value : "Al f r ed Dunner E s s en t i a l Pul l On Capri Pant"
− key : " d e s c r i p t i o n "

value : "You ' l l r e turn to our Al f r ed Dunner pu l l−on cap r i s again
and again when you want an updated , ca sua l look and a l l the
comfort you love . e l a s t i c waistband approx . 19−21.

inseam s l a sh pockets p o l y e s t e r washable imported"
− key : " p r i c e "

value : "41 .09"
− key : " currency "

value : "$"
− key : " category "

value : " a l f r e d dunner"
− key : " ca t e go ry t r e e "

value : " jcpenney |women | a l f r e d dunner"
− key : " r a t i ng "

value : "4 .7 out o f 5"
− key : " image"

value : " http :// s7d9 . scene7 . com/ i s / image/JCPenney/DP1228201517142050M
. t i f ? he i=380& ; wid=380&op_usm=.4 , .8 ,0 ,0& resmode=sharp2&op_usm=1.5
, .8 ,0 ,0& resmode=sharp "

− key : "brand"
value : "Al f r ed Dunner"

Listing 3.1: Unified feed YAML example

3.2 Solution design

With ontology defined in section 3.1.1 and data in unified format we propose a system
consisting of two main components: Feed component and Consolidation component. Both
components create a library which takes in data (3.1.2), performs knowledge extraction and
stores semantic data into a database.

25

CHAPTER 3. DESIGN

3.2.1 Feed component

Feed component of the library takes care of the initial data manipulation, filtering, and
annotation for knowledge extraction. Since none of our data (listed in table 2.1 originally
comes in the unified format first step of the process is conversion. Each step of the process
is described in following sections. Top level view of the feed component is shown in figure
3.1.

Some
Feed.xml

Feed converter unified feed
schema

Some
Feed.yml Feed Annotator ANNO_Some

Feed.yml

Ontology
Conversion

maps
Conversion

maps
Conversion

maps

Raw Data Feed

Data in Uniform Feed Format Annotated data in Annotated
Uniform Feed Format

Figure 3.1: Top level diagram of feed component

3.2.1.1 Converting data

Conversion of existing data feeds is a simple process. Because the files have a clear
structure it is easy to design a converter which takes feed as an input and outputs the same
data in the unified format.

As for the scraped data from 2.5 we need to design specific programs which will extract
the data from product detail HTML pages. Most e-shops have a name, description and price
in specific places. In addition they contain a table with all additional product properties.

3.2.1.2 Conversion maps and vocabularies

After the data conversion, we analyzed the attribute keys and values. We were able to
match keys which represent equal attribute type. This allowed us to create a conversion map
which can assign attribute type class based on the string value of the key.

26

3.2. SOLUTION DESIGN

We also defined conversion maps and vocabulary of known types for unit matching,
currency matching and unit value conversion. These maps are stored in separate files and
can be easily changed or extended.

3.2.1.3 Data annotation

Using the conversion maps we can defined multiple functions which take in attribute key-
value pair and return annotated key-value pair. We annotated common product attributes
listed in 2.2. Additionally we defined functions which extract units from dimension and
weight values and currency from price. Tables 3.4 and 3.5 list all units and currencies which
are considered during annotation process. Diagram 3.2 shows ho attribute key-value pair is
processed.

Match attribute key

Kown
type?

NO

YES

Parse Amount-Unit
pair

Unit
required?

Store data

NO

YES

Parsed?

NO

Assign unit

YES

Create annotated
type

Key-Value pair

Key-Value pair

Annotated type

Figure 3.2: Attribute annotation processing diagram

Annotation process For each attribute in a product in the unified format a key-value pair
is taken. The key is evaluated and annotated with corresponding class (classes are described
in table 2.2) according to conversion function. Some of the classes such as manufacturer
or category are just annotated, while other attributes such as price, weight or dimensions

27

CHAPTER 3. DESIGN

Description Annotation name
Czech crown, czk CCZK
US dollar, usd CUSD

British pound, gbp CGBP
Euro, eur CEUR

Table 3.4: List of currency types and their annotation

Description Unit type Annotation name
Tonne, t Weight UWT

Kilogram, kg Weight UWKG
Gram, g Weight UWGR

Milligram, mg Weight UWMG
Kilometer, km Dimension UDKM

Meter, m Dimension UDMTR
Decimeter, dm Dimension UDDMT
Centimeter, cm Dimension UDCMT
Millimeter, mm Dimension UDMMT

Inches, ¨ Dimension UDINCH
Gigabytes Digital information UCSGB
Megabytes Digital information UCSMB
Kilobytes Digital information UCSKB

Table 3.5: List of units, their annotation and domain

are also tested for their value and value format. These attribute are based on the ontology
defined in 3.1.1.

Attribute units Some of the most interesting attributes have a value containing numeric
amount and a unit. We use dedicated programs to parse the amount and unit from the
attribute value. These programs use currency and unit vocabularies to match known units
and annotate them accordingly.

The following list shows common attributes which should contain amount-unit pair in
their value.

• Price - contains currency unit

• Weight - contains unit of weight

• Dimensions: width, height, depth - contain unit of dimension

The dedicated programs will only annotate the attribute if the unit and amount are
parsed correctly and the unit exists in the vocabulary of known units.

28

3.2. SOLUTION DESIGN

Unit conversion All units of the common attributes during the annotation process should
be unified in order for the data to be consistent. Because we annotate the data with units
we can easily convert the values using a unit conversion map. Table 3.6 lists base unit for a
given unit type.

Unit type Base unit
Currency US Dollar
Weight Grams

Dimension Centimeters
Digital information Megabytes

Table 3.6: Unit types with basic unit for annotation

Price matching In order for the price to be matched data needs to contain currency
attribute or currency must be specified in price attribute value. Currency is parsed from
price value using a program which uses currency conversion map and vocabulary in order
to annotate the value. Processing diagram 3.3 shows input and output of the matching
program.

Price $ 1 999.99

Key Value

PRICE 1999.99

Type Amount

CUSD

Currency

Value-Unit Program

Figure 3.3: Price attribute processing diagram

Weight and Dimensions matching Weight and dimensions attributes are matched in
a similar way the price is using a dedicated program. Dimensions - width, height and depth
are clustered together and all have to have the same unit. If the units do not match, they
are converted using unit conversion map.

Specific attributes Rest of the domain or individual specific attributes are either matched
using our programs as amount-unit pair or are passed along without annotation.

Annotated unified format feed Annotated data is stored in annotated unified format
feed. A product is represented as a set of annotated common attributes with matched units,
set of specific attributes with matched units and set of unmatched specific attributes. This
feed is a base for consolidation component or further filtering or can be used for additional
attribute matching (new attributes or domain specific attributes). Listing 3.2 shows an
example of annotated feed created from the feed shown in listing 3.1.

products :
− a t t r i b u t e s :
− key : " ca t e go ry t r e e "

29

CHAPTER 3. DESIGN

value : " jcpenney |women | a l f r e d dunner"
− key : " r a t i ng "

value : "4 .7 out o f 5"
name :

name : "Al f r ed Dunner E s s en t i a l Pul l On Capri Pant"
c a t e g o r i e s :
− name : " a l f r e d dunner"
manufacturer :

name : "Al f r ed Dunner"
p r i c e :

p r i c e : 41 .09
currency : "CUSD"

de s c r i p t i o n :
sho r tDe s c r i p t i on : nu l l
d e s c r i p t i o n : "You ' l l r e turn to our Al f r ed Dunner pu l l−on cap r i s again
and again when you want an updated , ca sua l look and a l l the
comfort you love . e l a s t i c waistband approx . 19−21. inseam s l a sh pockets
p o l y e s t e r washable imported"

images :
− u r l : " http :// s7d9 . scene7 . com/ i s / image/JCPenney/DP1228201517142050M
. t i f ? he i=380& ; wid=380&op_usm=.4 , .8 ,0 ,0& resmode=sharp2&op_usm=1.5
, .8 ,0 ,0& resmode=sharp "

t i t l e : nu l l
d imensions : nu l l
weight : nu l l
mat e r i a l s : nu l l
c o l o r s : nu l l
s i z e s : nu l l

Listing 3.2: Annotated unified feed YAML example

3.2.1.4 Vocabularies

We used annotated data to create vocabularies for manufacturers, categories, units and
currencies. These vocabularies contain unique values and will be used during the consoli-
dation process in order to create individuals for each representative. This will allow us to
interconnect product witch same manufacturers or categories.

3.2.2 Consolidating component

Consolidation component of the Feeder library loads in product data in annotated unified
data format. The main purpose of this component is to use the ontology and build individuals
in the ontology based on the data feed. It also performs multiple operations such as product
relation building and final storage of the data. Top-level diagram 3.4 shows how consolidation
component is designed.

30

3.2. SOLUTION DESIGN

Relationship building

ANNO_Some
Feed.yml

Annotated data in Annotated
Uniform Feed Format

Ontology

Ontology individuals building Reasoning

Graph database

Final
Ontology.owl

Serialized ontology with all the
individuals and relationships

Ontology transformation and
storage

Figure 3.4: Top level diagram of consolidation component

3.2.2.1 Product relation building

In section 2.3 we discussed few possible algorithms for product relationship building.
We are considering relationships isSimilarTo and isCompatibleWith which are based on the
ontology 3.1.1. We describe few possible product vector representation which enable creation
of relationships based on the similarity algorithms.

General similarity A vector representation of the product described in section 2.3 can be
used to calculate the general similarity between products. We use euclidean distance algo-
rithm and a threshold value t. If the distance is smaller than the threshold value d(pv, qv) < t
the product are considered generally similar. Vector is created from specific attribute keys
only - we create a set of all specific attributes and the resulting vector contains values based
on the presence of the attribute key in product attribute collection as shown in diagram 3.5.

31

CHAPTER 3. DESIGN

Product

K1

K3

K7

K8

Specific attribute
key-value pairs

V

V

V

V

Vector representing product

 K1 K2 K3 K4 K5 K6 K7 K8 K9 K10

1 1 1 10 0 0 0 0 0

Figure 3.5: Product to vector diagram

Property based similarity To calculate property based similarity we need to represent
product differently than just using attribute keys. We can base our product vector on
attribute values. For string values we use Levenshtein distance and express the distance in
interval 〈0.0, 1.0〉.

Numeric values are matched exactly. Error interval can be used, but it is difficult to
decide the size of the interval because the value depends on the domain, unit and scenario.

This attribute value based vector representation can be used for clustering or general
similarity calculation.

Categorization Clustering algorithms 2.3.2 can be used for category hierarchy building.
With the vocabulary of existing categories, we can represent product by its connection with
categories and then use the clustering algorithm to cluster products having similar categories.
Furthermore, we can simply create category representatives and use any of the product vector
representation to cluster similar products.

3.2.2.2 Data transformation and reasoning

Since data are annotated and connections are made as described in previous section,
we can integrate data and ontology together. Ontology individual creation can be bro-
ken down to multiple steps. These steps are described in following paragraphs. Individual
IRI is based on the ontology IRI and the class type with unique integer ID. For example IRI:
https://dev.novotmike.com/oes#Product0 represents ontology with IRI: https://dev.novotmike.com/oes,
class Product and id = 0. Diagram 3.6 shows processing diagram of the data transformation.

Step 1: Loading ontology Ontology OWL file as defined in 3.1.1 is loaded and classes,
object properties and data properties are extracted and loaded.

Step 2: Creating vocabulary individuals As described in section 3.2.1.4. For each
vocabulary entry, an individual is created and related class assigned. These individuals will
be mapped to products using object properties from the ontology.

32

3.2. SOLUTION DESIGN

Load ontology

Parse classes and
properties from the

ontology

Load dataAnnotated data feed

Ontology file

Create vocabulary
individualsOntology data

Vocabulary files

Create product
individual

Attribute type is
known?

YES Store product
attributes

Individual representation
exists?

NO

Serialize and store as
data property in

product individual

More
attributes?

YESConnect to product
using object property

Create individual

YES

NO

Reasoning

Perform
reasoning?

Ontology with
individuals

YES

Ontology with
inferred axioms

Check consistency
NO

Is ontology
consistent?

NO

Store ontology with
individuals

YES

Figure 3.6: Ontology individuals creation processing diagram

Step 3: Creating individuals for products Each product individual is created from
annotated data. Annotated common attributes are mostly represented in the ontology by
class (price, manufacturer,...). These attribute individuals are created and connected based
on the ontology.

Matched specific attributes with units are created as individuals and have a unit con-
nected to them.

Rest of the attributes (unannotated) is stored within the product as a data property.
Each property has IRI assigned based on the attribute type name and literal value is a CSV
serialization of original type name and value. These attributes are stored within the product
to make the reasoning fast and will be later extracted and stored as instances of Attribute
class and connected to the product via hasAttribute relationship (see section 3.2.2.3).

Diagram 3.7 shows how resulting individual is represented in the ontology.

Step 4: Product relation building Using methods described in 3.2.2.1 we calculate the
similarity between products. Similar products are connected using isSimilarTo object prop-
erty. Additional relationships can be added to the ontology based on the specific attributes.

Step 5: Consistency checking and reasoning After all individuals have been created
a reasoner is used to check whether the ontology is still consistent. If it is consistent, then
reasoner runs over the ontology and infers new connection based on the property and SWRL

33

CHAPTER 3. DESIGN

IRI#Product0 "Warranty":"24 months"
warranty

"OS":"iOS"
os

iPhone 8
name

IRI#Manufacturer0

hasManufacturer

Apple
name

Annotated product

iPhone 8

Apple

amount: 699.00
currency: CUSD

Smartphones
Phones

Warranty: 24 months
OS: iOS

. . .

Name

Manufacturer

IRI#Product0Price
hasPrice

699.00

amount

IRI#CurrencyUSD

hasCurrency

Price

Categories

Attributes

IRI#Category0 IRI#Category1

isInCategory

Smartphones

isInCategory

name

Phones

name

isChildOf

Figure 3.7: Diagram of ontology individuals created from annotated product data.

rules. Finalized ontology is stored into RDF/XML format and is ready to be transferred into
the database storage.

3.2.2.3 Storing data

Before the storage step data is in RDF/XML format stored along with the ontology. For
data storage, we will be using a graph database. A major difference between RDF triple
store and labeled property graph (LPG) is that LPG supports additional properties inside
the relationships and also multiple connections between same nodes. The semantic data will
be stored in the database in a way inspired by article [22].

We will use Neo4J [7] as our graph database. Each node is defined by a label which is a
class in the graph database and is an equivalent of a class in our ontology.

The steps of the mapping process are described in the following list.

1. Graph labels are defined from classes

2. Class individuals from RDF are created as nodes

For each individual in the ontology, we create a node with a label based on the rdf:type
connection within the ontology. Each node is also defined by UUID (universally unique
identifier) and the original IRI of the resource.

3. Attribute individuals are clustered to create single node As described in section
3.2.1.3 specific attributes with the matched unit are stored within the ontology as
individuals. We create a node with Attribute label representing each unique specific

34

3.2. SOLUTION DESIGN

attribute and connect the unit to it. The product is connected to the attribute and
the value is stored as a property of the relationship hasAttribute.

The same process applies for unmatched attributes contained as data properties within
the individuals. The attribute is deserialized and a unique node is created for each
attribute type. Value is stored in the relationship.

4. Common attributes are stored as node properties Basic common attributes of
a product like name or description are stored as node properties.

5. Predicates are stored as relationships

Remaining predicated - object properties - are stored as relationships between nodes
which already exist in the database.

Ontology

Neo4J

IRI#IPhone8"Warranty":"24 months"
warranty

"OS":"iOS"
os

IRI#IPhone8

Product
warranty

Attribute

os

Attribute

hasAttribute

value: 24 months

hasAttribute

value: iOS

Figure 3.8: Specific attribute representation transformation.

3.2.3 Data querying

In previous sections we talked about Feed library and it’s process, In section 3.2.2.3 we
described how exactly data is stored, but now we have to define how queries going to be built.
Since our data is semantic we know what exactly is stored and we can use this information
for query building. We propose a simple system where the queries are built from ontology
(3.1.1).

35

CHAPTER 3. DESIGN

3.2.3.1 Building the query

We will build queries in "triple-like" fashion: Subject → Relation → Object → Value.
This means we are going to query specific class or property of the class and use already
defined relationship types from the ontology (object properties).

A subject of the query is an ontology class associated with given node. It is what we
want as a result. A relation is a object property from the ontology. An object of the
query is a string representing data property of a node. Value is a string value of the node’s
data property. This simple pseudo-query language enables us to use ontology to query data
in logical way. Further, we define an operator and allow for multiple relationships to be
combined with and logic. This allows for more complex queries. Listing 3.3 shows how text
queries can be translated into our pseudo-query. For purposes of this thesis, we will query the
data using our defined pseudo-query language. Graphics representation of the pseudo-query
is displayed in figure 3.9.

Subject Relation Object QueryOperator

AND

Figure 3.9: Pseudo-query graphical definition.

Q1 : "Get a l l products s im i l a r to Macbook Pro"
Subject : Product
Re lat ion : i sS im i l a rTo
Object : name
Operator : =
Query : Macbook Pro

Q2 : "Get a l l headphones under 500 CZK."
Subject : Product
Re lat ion : i s InCategory
Object : name
Operator =
Query : headphones
−AND Relat ion : hasPr i ce
− Object : amount
− Operator <
− Query : 500

Listing 3.3: Example pseudo-query representation

36

Chapter 4

Implementation

In the previous chapter we analyzed e-commerce data, discussed how to acquire knowl-
edge from the data and what are the possibilities of storage. In addition, we designed an
ontology 3.1.1 and a system which uses the ontology to transform e-commerce data and en-
hances it with knowledge. In this chapter, we will talk about how the designed solution was
incorporated into a working system which allows users to query the stored semantic data.

4.1 System infrastructure

We already described Feed library (section 3.2) and how data is going to be stored and
queries built. But this is just a part of the whole system. We need to be able to retrieve
and visualize the data stored in the database in order to test the system. For purposes of
this theses, we designed and implemented a REST (Representational State Transfer) [24]
service which handles communication with the database and serves data to the client in a
structured way. In addition, we created a simple client which allows user to input query and
retrieve a list of results. All components of the system are noted in the following list.

• Feeder library

• API service

• Graph database

• Client

The whole system is deployed on the server as described in diagram 4.1 and 4.2. We
used a Forpsi Cloud VPS 1 as our server. Parameters of the server are listed in table 4.1.
Communication with the components is secured over HTTPS using certificates from Let’s
Encrypt service [6] and the server is available from a domain. In addition NGINX [8] server
is used as reverse-proxy to manage communication with multiple components running on the
same machine.

1https://www.forpsicloud.cz

37

CHAPTER 4. IMPLEMENTATION

CPU 1x Intel Xeon 1.80GHz
RAM 2 GB

Disk space 40 GB SSD
Operating system Ubuntu Server 16.04 LTS 64bit

Table 4.1: Server parameters.

Browser

Angular framwork

Cloud VPS

Ubuntu Server 16.04

Java 8 JRE

Tomcat 9.0.7 Application server
Client application

api-service.war

Neo4J 3.3.5 Server

Neo4J Store

NGINX Server

Reverse proxy server

Figure 4.1: Deployment diagram of the system.

4.1.1 Tools and technologies

In this section, we will list all technologies used in the implementation of the system
together with licenses. These technologies are summed in table 4.2.

Name Version Description License
Java JDK and JRE 1.8 Runtime environment GNU GPL
Apache Tomcat 9.0.8 Application server Apache License 2.0

NGINX 1.10.3 Reverse proxy server 2-clause BSD
Neo4J 3.3.5 Graph database GNU GPL v3
Angular 5.2.9 Javascript client framework MIT License

Git 2.16 Versioning system GNU GPL
Apache Maven 3.3.9 Java project management tool Apache License 2.0

Python 3.6.5 Programming language PSF License
Beautiful Soup 4.4.0 HTML data extraction python library MIT License

Hermit 1.3.8.510 An ontology reasoner GNU GPL v3
OWLAPI 5.1.0 Java library for ontology manipulation Apache License 2.0
Swagger 2.0 Tool for API documentation Apache License 2.0

Table 4.2: Main component technologies used for implementation.

38

4.1. SYSTEM INFRASTRUCTURE

Graph
DatabaseN

G
IN

X

API Service

Client application

Neo4J Browser

User
Browser

/api

/

/neo4j

Feeder Library

https://domain/....

Application server

Figure 4.2: System architecture diagram.

4.1.2 Feeder library

We implemented Feeder library as it was described in section 3.2. We used Java language
and Maven is used for project management. The library provides an interface for converting
and annotating the data and for storing the data in the database.

4.1.2.1 Library components

Main components and their classes are shown in diagram 4.3. As we described in previous
chapter library can be divided into two main components Feed component and Consolidation
component. Feed component is represented by FeedDataService class which loads key and
value conversion maps, unit conversion map and manufacture vocabularies. It provides an
interface for data feed management. Consolidation component is represented by OWLService
and GraphService classes where OWLService is responsible for annotated data manipulation
and ontology management. GraphService class provides interfaces for ontology storing into
the graph database.

Both components are accessible over FeederLib class which acts as a facade of the library
and provides base methods for data feed management, annotation, ontology creation and
ontology storing. Feeder library further provides interface for Neo4JSession factory and
FeedStatistics which are used from the API Service.

4.1.2.2 Data meaning extraction

Using our conversion maps and vocabularies as described in design section 3.2.1.3 we
annotated our data feeds listed in table 2.1. We extracted known attributes if they were
present in the data. Some data did not contain all of the ontology defined classes.

Namely Alza.cz data did not contain data about Manufacturers, because the manufac-
turer was contained in the name of the product. Since the list of Manufacturers is one of our

39

CHAPTER 4. IMPLEMENTATION

«Class»
FeederLib

«Class»
FeedDataService

«Class»
OWLService

«Class»
GraphService

Feeder Library

«Class»
FeedStatistics

«Class»
Neo4JSessionFactory

Attribute Key Conversion Map

Attribute Unit Conversion Map

Unit Conversion Map

Manufacturer vocabulary

Ontology

Consolidation component

Feed component

Figure 4.3: Feeder Library component and interface architecture diagram.

vocabularies we wanted to connect the product correctly. We used existing manufacturer
vocabulary from the Kasa.cz feed and tried to infer manufacturers from the names of the
products.

Unit parsing programs We defined interface for a unit parsing program and created
a simple implementation for amount-unit pair extraction for price, weight, and dimension
attribute types. Furthermore general implementation of this program was used to extract
amount-unit pair from other attributes.

Diagram 4.4 displays amount-unit parser implementations and the factory class which
loads parser implementation based on the attribute type. We implemented parsers for price-
currency pair and general amount-unit parser. Both parsers are based on regular expressions.

• Price-currency regex pattern: ([$L€])?([]*)([0-9.,]+)([]*)([a-zA-Zè$L€]+)?

• Amount-unit regex pattern (ˆ[0-9.,]+)([]*)([a-zA-Z]+)

4.1.2.3 Ontology building and data storage

Annotated data are loaded using Feeder library and the ontology is loaded and parsed
using OWL API Java library. Loaded classes, object and data properties are used to map
annotated product into an ontology individual as described in section 3.2.2.2.

40

4.1. SYSTEM INFRASTRUCTURE

<<Class>>
AUParserFactory

+ getParser(AttributeKeyEnum): IAUParser
+ getParser(): IAUParser

<<Interface>>
IAUParser

+ parse(String): Pair<String,String>

<<Class>>
PriceCurrencyParser

+ pattern: Pattern

+ parse(String): Pair<String,String>

<<Class>>
AmountUnitParser

+ pattern: Pattern

+ parse(String): Pair<String,String>

Figure 4.4: Amount unit parsing factory class diagram.

Relationship building After all products have been transformed into ontology individu-
als, relation specific programs calculate relationships between products and categories. We
defined relationship builder interface and implemented classes for product similarity and
compatibility calculation. Further more relationship builder was also defined for category
hierarchy building. Figure 4.5 shows class diagram of product relationship builder factory a
and implementations.

<<Class>>
ProductRelationshipBuilderFactory

+ getRelationshipBuilder(String): IProductRelationshipBuilder

<<Class>>
ProductSimilarityBuilder

+ productVectors: Map<int, int[]>
+ attributeIndexMapping: Map<String, int>
+ init: boolean
+ threshold: double

+ init(List<Product>): void
+ relatedProducts(Product, List<Product>): List<Product>
+ getProductAsVector(Product): int[]
+ getProductEuclideanDistance(int[], int[]): double

<<Class>>
ProductValueSimilarityBuilder

+ relatedProducts(Product, List<Product>): List<Product>
+ productVector(Product, Product): double[]
+ stringSimilarity(String, String): double
+ numberSimilarity(double, double, double): double
+ getProductCosineSimilarity(double[], double[]): double

<<Interface>>
IProductRelationshipBuilder

+ relatedProducts(Product, List<Product>): List<Product>

<<Class>>
ProductCompatibilityBuilder

+ relatedProducts(Product, List<Product>): List<Product>

Figure 4.5: Product relationship builder class diagram.

Relationship builders are based on methods discussed in 3.2.2.1. ProductSimilarityBuilder
and ProductValuesSimilarityBuilder are used to create isSimilarTo connection. ProductCom-

41

CHAPTER 4. IMPLEMENTATION

patibilityBuilder creates isCompatibleWith relationship between products.

Reasoning and consistency checking Next we used Hermit reasoner to check consis-
tency of the final ontology and for inferring new relationships. The reasoner infers mainly
SWRL rule for category containing product (rule 2.2) and inverse object property connec-
tions. Finalized ontology of the annotated data sample is stored in the RDF/XML format.
This data was then stored into Neo4J database (as described in 3.2.2.3).

Neo4J browser Neo4J database comes with Neo4J browser application which allows us
to test CYPHER queries. It also provides graph visualization tools. Figure 4.6 shows graph
visualization of product, price and currency connection.

Figure 4.6: Product, price and currency connection in Neo4J database.

42

4.1. SYSTEM INFRASTRUCTURE

4.1.3 API service

We implemented a service which is responsible for handling data queries over the stored
semantic data. Endpoints of the service are defined in table 4.3 and their documentation in
Swagger 2.0 [18] format can be found attached in the appendix B.

We used Java programming language together with Maven and other libraries to build
our API service. We chose Java because it is a standard technology for web application and
in addition the Neo4J database system is also implemented using Java which enables good
integration.

Path Description
/query Endpoint for search queries in format defined in 3.2.3.1

/query/options Endpoint for getting all the class and relationship types
based on the ontology and stored data

Table 4.3: Application service endpoints

API service uses Feeder library interface for obtaining database connection and data from
the ontology for query building.

4.1.3.1 Cypher query building

In order to query the data, we need to translate our defined pseudo-query (see section
3.2.3.1) into Neo4J query language Cypher. Since our pseudo-query is defined from ontology
and stored data also copy ontology structure we can directly interpret cypher query from
our pseudo-query. Query building relies on unified units in the stored data.

Attribute values query Only exception for straightforward query generation are At-
tribute labeled nodes with values stored in their hasAttribute relationship. For this reason
we treat attribute relationship differently and allow for two types of properties: class prop-
erties and relationship properties.

Listing 4.1 shows examples pseudo-query to cypher translation. One of the example
contains the hasAttribute connection and one is normal.

Q1 : "Get a l l products s im i l a r to Macbook Pro"
Subject : Product
Re lat ion : i sS im i l a rTo
Object : name
Operator : =
Query : Macbook Pro

Cypher : MATCH (p : Product)− [: i sS im i l a rTo]−(o)
WHERE o . name = 'Macbook Pro '
RETURN p

43

CHAPTER 4. IMPLEMENTATION

Q2: "Get a l l products which have more than 4000 MB RAM"
Subject : Product
Re lat ion : hasAttr ibute
Object : RAM
Operator >
Query : 4000

Cypher : MATCH (p : Product)−[r : hasAttr ibute]−(o)
WHERE r . va l > 4000 AND o . name='RAM'
RETURN p

Listing 4.1: Example pseudo-query representation

4.1.4 Client application

Client application was implemented using Angular javascript framework. We chose An-
gular because it is a standard technology for the creation of web clients for RESTful applica-
tions. The client is a single-page MVC (Model View Controller) application which displays
query results and contains a form for creation of the pseudo-queries.

Client serves as a tool to test the pseudo-query definition and for visualizing the data.
Even though Neo4J offers browser application for visualization we implemented the client to
complete the system and test the API service.

API communication Classes and relationships for the query building are requested from
the API service. Communication between client and API service is documented in a API
documentation in appendix section B. Figure 4.8 shows implemented client user interface.
It enabled user to build a pseudo-query using the options from the API Service.

44

4.1. SYSTEM INFRASTRUCTURE

Figure 4.7: Client application query building screenshot

Figure 4.8: Client application screenshot

45

CHAPTER 4. IMPLEMENTATION

46

Chapter 5

Evaluation

In this chapter, we will talk about how we evaluated the solution design and the final
implementation. We created a raw data sample of various products which we are going to
use for the testing. We also created a set of products which we annotated in a way that will
enable us to test the search and similarity matching.

5.1 Data evaluation

We used our implemented Feeder library to annotate the data feeds (listed in table 2.1).
As a first step, we created general statistics from the annotated data feeds. Results are
shown in table 5.1.

Number of products 46613

Number of attribute keys 705

Number of manufacturers 1129

Number of categories 1772

Average number of attributes 15.41

Average percentage of matched attributes 52%

Name attribute percentage 100%

Price attribute percentage 100%

Manufacturer attribute percentage 72%

Category attribute percentage 97%

Description attribute percentage 36%

Dimensions attribute percentage 15%

Weight attribute percentage 13%

Table 5.1: General statistics generated from all annotated data feeds.

The table 5.1 describes basic statistics of all data feeds combined. Average number of
attributes states how many attributes has a product on average. Average percentage of
matched attributes states the percentage amount of how many attributes from all attributes
were matched and annotated with meaning. Additional percentages state how each common
attribute is matched within the data. We can see that name and price attributes were

47

CHAPTER 5. EVALUATION

matched on all of our products. Other attributes such as dimensions or weight are not as
common. This is due to the fact that the non-scraped data feeds do not contain these values.

5.1.1 Testing data

For our testing scenarios, we created few datasets to test and evaluate how data annota-
tion and ontology building works. Each dataset was created from the scraped data or existing
data feeds. Products were chosen randomly and in some cases domain specific. Testing data
is represented in unified feed format (3.1.2). Table 5.2 describes created datasets and their
sources.

Name Domain Source
1. TEST1000 Phones, Phone accessories Alza.cz feed
2. TEST2000 Notebooks, Notebook accessories Alza.cz and Kasa.cz feeds
3. TEST5000 Clothing and outdoor equipment 4Camping data feed
4. TEST100x100 Notebooks, Notebook accessories Alza.cz data feed

Table 5.2: Testing data overview

5.1.1.1 User annotated data

In addition to our testing data, we also created a user annotated feed which will be used
as a ground truth to evaluate how well the annotation process and searching works. The
user annotated data feed was created from the TEST100x100 data. It contains 100 products
from notebook categories and 100 notebook accessories.

Users annotated basic properties with regards to our defined ontology. The following list
sums all properties which were annotated.

• Name

• Manufacturer

• Categories

• Price with currency

• Weight with unit

• Dimensions with unit (width, height, depth)

Furthermore, products relationships were annotated as well. Users annotated the isSim-
ilarTo property and isCompatibleWith. Using this annotated data we can evaluate how well
relationship building algorithms work as well as how good the automatic annotation process
is.

48

5.1. DATA EVALUATION

5.1.2 Testing scenarios

To evaluate our solution we defined three different testing scenarios for our data. Each
scenario is described in following subsections. We used user annotated data set as well as
the data sets we discussed before.

Testing setup As we described in section 4.1 our solution is designed to run on a server
with parameters stated in table 4.1. Our database system and API service together with
client run on the described server.

5.1.2.1 I. Data annotation, ontology building and storing

In this scenario, we will evaluate how well the data annotation process works. We will
list statistics for each dataset. We will also evaluate how fast each step of the transformation
is with regards to each data set, the number of attributes and the ontology.

Data statistics For each dataset, after annotation, we created a statistics file containing
some basic information. These statistics can be seen in table 5.3. We can see that that
name, price and category are attributes which are contained within almost every product.
Furthermore we can see that in datasets TEST1000 and TEST2000 more than half of the
products contain dimension and weight values. Further, we can see that additional attribute
keys with units were found in both datasets.

The TEST5000 dataset of clothing and outdoor equipment does not contain dimension
or weight attributes but the average percentage of matched attributes is high. This is because
the data contains almost exclusively common attributes (see table 2.2).

TEST1000 TEST2000 TEST5000
Number of products 1000 2000 5000
Number of attributes 34311 78815 71450
Distinct attribute keys 139 348 11
Number of attribute keys with units 24 40 0
Number of manufacturers 67 103 166
Number of categories 110 160 178
Average number of attributes 28.9 32.4 11.0
Average percentage of matched attributes 32% 32% 74%
Name attribute percentage 100% 100% 100%
Price attribute percentage 100% 100% 100%
Manufacturer attribute percentage 84% 95% 99%
Category attribute percentage 100% 100% 94%
Description attribute percentage 0% 50% 0%
Dimensions attribute percentage 54% 63% 0%
Weight attribute percentage 53% 54% 0%

Table 5.3: General statistics for each dataset.

49

CHAPTER 5. EVALUATION

Data transformation For each data set we performed the whole transformation from raw
data in the unified data feed to the stored data in the database. We performed this test 10
times for each dataset and in the table 5.4 are listed average time values of each step from
all the test runs.

TEST1000 TEST2000 TEST5000
Data annotation 0.67 s 1.15 s 0.34 s
Ontology building 5.29 s 5.78 s 14.13 s
Reasoning 277.4 s 1077.1 s 833.8 s
Ontology storage 4.63 s 4.98 s 3.34 s
Database storage 2260.2 s 3807.9 s 1795.0 s

Table 5.4: Data transformation steps and their time.

From our time results we can see that the biggest bottleneck of the data to ontology
transformation is reasoning. Reasoners infer new connections within the ontology and apply
SWRL rules. The property axiom generation (inferring new properties) is the most time-
consuming task. We can improve the reasoning calculation time by removing some inverse
object properties and stripping relationships such as isSimilarTo of its symmetry property.
This is due to the fact, that Neo4J does not care about the relationship direction and we
do not need the inverse properties. In case of RDF storage though, we would loose some
important relationships.

In the end the database storage is most time-consuming operation of all listed in table
5.4. It is that way due to the implementation and heavy use of transactions. In table 5.5
are shown node and relationship amounts. Data storage efficiency was not primary focus of
this thesis and there is a room for improvement. A possibility is to use stored procedures in
Neo4J or Neo4J Java library to make the storage into the database more efficient.

5.1.2.2 II: Ontology evaluation

In this evaluation scenario we look into the generated ontology and how it looks and how
it was extended during the data transformation. Having data individuals along the ontology
definition allows us to perform consistency checking and reasoning. Base ontology has 11
classes, 18 object properties and 11 data properties defined. Table 5.5 shows quantification
of each dataset ontology and the graph representation.

TEST1000 TEST2000 TEST5000
Classes 12 12 12
Object properties 18 18 18
Data properties 150 358 13
Individuals 6143 14445 10345
Neo4j Nodes 3432 7005 10347
Neo4j Relationships 99722 167868 71426

Table 5.5: Summary of data store in ontology and Neo4J.

50

5.1. DATA EVALUATION

We can see that during the ontology creation new data properties were defined. We
described this in section 3.2.2.2. These data properties are later transformed into Attribute
nodes in the database. We can also see that the number of nodes in the database is lower
than number of individuals. This is due to the fact, that some Attribute individuals get
merged together in the database to interconnect products with same attributes as describe
in section 3.2.2.3.

Stored data scheme In figure 5.1 is displayed database scheme from the stored data.
Although Neo4j database does not have a schema definition, the schema is generated from
the stored data. We can clearly see how the schema copies our defined ontology.

Figure 5.1: Neo4J stored data scheme

5.1.2.3 III: Relationship building evaluation

For further evaluation we will use our user annotated dataset. We were able to test
isSimilarTo and isCompatibleWith relationship building. Results of the evaluation are stated
in table 5.6.

Precision Recall
Similarity relation matching 39 % 37%

Compatibility relation matching 25% 31%

Table 5.6: General statistics for each dataset.

In the table 5.6 we can see that the precision of the similarity and compatibility relation-
ships is not very high. This is due to the domain specificity of the data. Our ontology and
the whole system is built non-domain specific. While it is an advantage when the overall
performance is important, some specific data connection will be missed using our defined
system.

51

CHAPTER 5. EVALUATION

5.1.2.4 IV. Stored data evaluation

For evaluation of search queries, we used our client and API service. We stored the
unannotated version of our user annotated data in order to be able to evaluate the results.
In previous section, we evaluated how well relationships were mapped.

TEST100x100 Match score
Name attribute percentage 100% 100%
Manufacturer attribute percentage 90% 75%
Price attribute percentage 100% 100%
Dimensions with unit attribute percentage 84% 92%
Weight with unit attribute percentage 65% 98%

Table 5.7: Solution annotated data and user annotated data comparison.

Since our search results rely heavily on the data meaning extracted from the data, we
compared the data extraction against the user annotated data. Table 5.7 contain statistic
information of how the Feeder library match the data and then how accurate are the re-
sults compared to the ground truth. The TEST100x100 column describes the percentage
of extracted attributes by the Feeder library. The Match score describes the percentage of
correctly extracted data.

We can use our client and API service implementation to retrieve stored results. The
resulting data precision is based on the matched attributes and precision of the relationships
described in previous paragraphs and sections.

52

Chapter 6

Conclusion

This chapter discusses achieved results during the project and further steps which could
be made to improve the system.

6.1 Summary

We were able to analyze current trends, method and tools for storing and representing
e-commerce data. We talked about different ways how we can look at the data and proposed
a simplified view of the products as a collection of properties. Next, we analyzed methods for
data meaning extraction and knowledge representation using ontologies. We described tools
and methods for ontology definition and why ontologies are a key component of semantic data
and their storage. With ontology in mind, we analyzed existing data feeds and scraped data
from existing e-commerce websites. We proposed a unified feed structure taking advantage
of the simplified product representation.

We then analyzed data feeds and scraped data to design a simple ontology which we would
use to store and represent semantic e-commerce data. We design a system which takes in
data in the unified format and annotates them using various methods and programs using
our designed ontology. We defined which attributes of the product are common and should
be contained within the product data. We also analyzed methods for product similarity
factor calculation.

Next, we designed a system which takes the annotated data and creates their repre-
sentation inside our designed ontology. We then performed reasoning over the ontology to
infer additional properties. Then a process of storing the data inside a graph database was
designed. We implemented the defined system which finalized the data transformation from
raw feed data into the semantically annotated data stored inside a graph database.

Furthermore, an API service and client together with simple query language were de-
signed and implemented to simulate complete solution and to enable testing of the stored
data and meaning extraction.

We evaluated the annotation process and resulting ontology and stored data. We were
able to conclude that the annotation process relies on the analysis of the data and the data
domain.

53

CHAPTER 6. CONCLUSION

6.2 Further steps

In future, we would like to focus on expanding the ontology dynamically based on the
domain. We would like to make use of the clustering algorithms to better infer product
relationships. We would also want to use the system as a part of an existing e-commerce
solution.

Other possible steps are pseudo-query building from user-defined text queries. This would
enable the system to be used as a search engine and make use of the additional product and
relationship information.

54

Bibliography

[1] Apify website. Available from: <https://www.apify.com/>.

[2] Ecommerce Foundation Report webpage. Available from: <http://www.
ecommercefoundation.org/reports>.

[3] FaCT++ website. Available from: <http://owl.cs.manchester.ac.uk/tools/
fact/>.

[4] Hermit website. Available from: <http://www.hermit-reasoner.com/>.

[5] Heureka website. Available from: <https://www.heureka.cz>.

[6] Let’s Encrypt website. Available from: <https://letsencrypt.org>.

[7] Neo4J website. Available from: <https://neo4j.com/>.

[8] NGINX wiki. Available from: <https://www.nginx.com/resources/wiki>.

[9] OWL API website. Available from: <http://owlcs.github.io/owlapi/>.

[10] Pellet website. Available from: <https://github.com/stardog-union/pellet>.

[11] PostgreSQL website. Available from: <https://www.postgresql.org/>.

[12] Protégé website. Available from: <https://protege.stanford.edu/>.

[13] Wiki: RDF - Resource Description Framework. Available from: <https://en.
wikipedia.org/wiki/Resource_Description_Framework>.

[14] Redis website. Available from: <https://redis.io/>.

[15] Google RSS 2.0 documentation. Available from: <https://cyber.harvard.edu/rss/
rss.html>.

[16] Scrapy website. Available from: <https://scrapy.org/>.

[17] ShopAPI website. Available from: <https://shopapi.cz/>.

[18] Swagger website and documentation. Available from: <https://swagger.io/>.

[19] Wikipedia. Available from: <https://en.wikipedia.org>.

[20] YAML website and documentation. Available from: <http://yaml.org/>.

55

https://www.apify.com/
http://www.ecommercefoundation.org/reports
http://www.ecommercefoundation.org/reports
http://owl.cs.manchester.ac.uk/tools/fact/
http://owl.cs.manchester.ac.uk/tools/fact/
http://www.hermit-reasoner.com/
https://www.heureka.cz
https://letsencrypt.org
https://neo4j.com/
https://www.nginx.com/resources/wiki
http://owlcs.github.io/owlapi/
https://github.com/stardog-union/pellet
https://www.postgresql.org/
https://protege.stanford.edu/
https://en.wikipedia.org/wiki/Resource_Description_Framework
https://en.wikipedia.org/wiki/Resource_Description_Framework
https://redis.io/
https://cyber.harvard.edu/rss/rss.html
https://cyber.harvard.edu/rss/rss.html
https://scrapy.org/
https://shopapi.cz/
https://swagger.io/
https://en.wikipedia.org
http://yaml.org/

BIBLIOGRAPHY

[21] BARRASA, J. Neo4J Article, . Available from: <https://neo4j.com/blog/
rdf-triple-store-vs-labeled-property-graph-difference/>.

[22] BARRASA, J. Importing RDF data into Neo4J an Article, . Available from: <https:
//jbarrasa.com/2016/06/07/importing-rdf-data-into-neo4j/>.

[23] CONSORTIUM, W. W. W. Resource Description Framework. Available from: <:http:
//www.w3.org/2004/OWL>.

[24] FIELDING, R. T. Architectural Styles and the Design of Network-based Software Ar-
chitectures. PhD thesis, 2000. AAI9980887.

[25] GRUBER, T. What is an ontology? Available from: <http://www-ksl.stanford.
edu/kst/what-is-an-ontology.html>.

[26] NOY, N. F. – MCGUINNESS, D. L. Ontology Development 101: A Guide to Creating
Your First Ontology. Technical report, 2001.

[27] O’REILLY, T. What is Web 2.0? 2005.

[28] ROWLEY, J. The wisdom hierarchy: representations of the DIKW hierarchy. Informa-
tion and Communication Science. 2007, s. 163–180. doi: doi:10.1177/0165551506070706.

[29] ROWLEY, J. The wisdom hierarchy: representations of the DIKW hierarchy. Journal of
Information Science. 2007, 33, 2, s. 163–180. doi: 10.1177/0165551506070706. Available
from: <https://doi.org/10.1177/0165551506070706>.

[30] TIM BERNERS-LEE, J. H. – LASSILA, O. The Semantic Web. 2001.

[31] TUDORICA, B. G. – BUCUR, C. A comparison between several NoSQL databases with
comments and notes. IEEE, Jun 2011. doi: 10.1109/roedunet.2011.5993686. Available
from: <http://dx.doi.org/10.1109/RoEduNet.2011.5993686>.

[32] WALLACE, D. P. Knowledge Management: Historical and Cross-Disciplinary Themes.
Libraries Unlimited. 2007, s. 1–14.

[33] XU, R. – WUNSCH, D. Survey of clustering algorithms. IEEE Transactions on Neural
Networks. May 2005, 16, 3, s. 645–678. ISSN 1045-9227. doi: 10.1109/TNN.2005.845141.

56

https://neo4j.com/blog/rdf-triple-store-vs-labeled-property-graph-difference/
https://neo4j.com/blog/rdf-triple-store-vs-labeled-property-graph-difference/
https://jbarrasa.com/2016/06/07/importing-rdf-data-into-neo4j/
https://jbarrasa.com/2016/06/07/importing-rdf-data-into-neo4j/
: http://www.w3.org/2004/ OWL
: http://www.w3.org/2004/ OWL
http://www-ksl.stanford.edu/kst/what-is-an-ontology.html
http://www-ksl.stanford.edu/kst/what-is-an-ontology.html
https://doi.org/10.1177/0165551506070706
http://dx.doi.org/10.1109/RoEduNet.2011.5993686

Appendix A

Nomenclature

ACID Atomicity, Consistency, Isolation, Durability

API Application Programming Interface

CAP Consistency, Availability, Partition tolerance

CPU Central Processing Unit

CSV Comma-Separated Values

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IRI Internationalized Resource Identifier

JSON JavaScript Object Notation

LPG Labeled Property Graph

MVC Model View Controller

OWL Web Ontology Language

RAM Random-Access Memory

RDF Resource Description Framework

REST Representational State Transfer

RSS Rich Site Summary

SPARQL SPARQL Protocol and RDF Query Language

SQL Structured Query Language

SSD Solid-State Drive

57

APPENDIX A. NOMENCLATURE

SWRL Semantic Web Rule Language

URI Uniform Resource Identifier

UUID Universally unique identifier

VPS Virtual Private Server

XML Extensible Markup Language

YAML YAML Ain’t Markup Language

58

Appendix B

API service documentation

The following paragraph contains API service documentation in Swagger 2.0 format
(serialized in YAML).

Documentation

swagger: "2.0"
info:

description: This is a simple API
version: 1.0.0
title: Ontology enabled search API
license:

name: Apache 2.0
url: http://www.apache.org/licenses/LICENSE-2.0.html

host: virtserver.swaggerhub.com
basePath: /michal.novotny/OES_API/1.0.0
tags:
- name: user

description: System users
schemes:
- https
paths:

/query:
post:

tags:
- user
summary: Queries the data
description: Queries the stored data based on the specified OQuery
operationId: queryData
consumes:
- application/json
produces:

59

APPENDIX B. API SERVICE DOCUMENTATION

- application/json
parameters:
- in: body

name: query
description: Query to be used
required: true
schema:

$ref: '#/definitions/OQuery'
- name: X-Limit

in: header
description: Limit of the resulting data
required: false
type: integer

- name: X-Offset
in: header
description: Offset of the resulting data
required: false
type: integer

responses:
200:

description: Result of the search query
schema:

$ref: '#/definitions/GraphResultsDTO'
400:

description: Bad request - invalid query
schema:

$ref: '#/definitions/Message'
500:

description: Internal server error
schema:

$ref: '#/definitions/Message'
/query/options:

get:
tags:
- user
summary: Get query options from ontology
operationId: getQueryOptions
consumes:
- application/json
produces:
- application/json
parameters: []
responses:

200:
description: Query options
schema:

60

$ref: '#/definitions/QueryOptionsDTO'
404:

description: Ontology could not be loaded
schema:

$ref: '#/definitions/Message'
500:

description: Internal server error
schema:

$ref: '#/definitions/Message'
definitions:

PropertyDTO:
type: object
properties:

name:
type: string
example: RAM

unit:
type: string
example: Gigabyte

example:
unit: Gigabyte
name: RAM

RelationshipDTO:
type: object
properties:

name:
type: string
example: isSimilarTo

range:
type: array
items:

type: string
example:

name: isSimilarTo
range:
- range

ClassDTO:
type: object
properties:

name:
type: string
example: Product

relationships:
type: array
items:

$ref: '#/definitions/RelationshipDTO'

61

APPENDIX B. API SERVICE DOCUMENTATION

properties:
type: array
items:

$ref: '#/definitions/PropertyDTO'
example:

relationships:
- name: isSimilarTo

range:
- range
- range

name: Product
properties:
- unit: Gigabyte

name: RAM
QueryOptionsDTO:

type: object
properties:

classes:
type: array
items:

$ref: '#/definitions/ClassDTO'
example:

classes:
- relationships:

- name: isSimilarTo
range:
- range
- range

name: Product
properties:
- unit: Gigabyte

name: RAM
Message:

type: object
properties:

message:
type: string
example: Some API message

OQuery:
type: object
properties:

subject:
type: string
example: Product

relationships:
type: array

62

items:
$ref: '#/definitions/ORelationship'

example:
relationships:
- query:

value: Apple
operator: EQ

name: hasManufacturer
type: CLASS_PROP
object: name

subject: Product
ORelationship:

type: object
properties:

type:
type: string
example: CLASS_PROP

name:
type: string
example: hasManufacturer

object:
type: string
example: name

query:
$ref: '#/definitions/OQueryValue'

example:
query:

value: Apple
operator: EQ

name: hasManufacturer
type: CLASS_PROP
object: name

OQueryValue:
type: object
properties:

operator:
type: string
example: EQ

value:
type: string
example: Apple

example:
value: Apple
operator: EQ

GraphResultsDTO:
type: object

63

APPENDIX B. API SERVICE DOCUMENTATION

properties:
results:

type: array
items:

$ref: '#/definitions/GraphResultDTO'
example:

results:
- properties:

name: Apple iPhone
uuid: 0c76c148-919f-4337-a05c-9e608b4df184

labels:
- Product

GraphResultDTO:
type: object
properties:

labels:
type: array
items:

type: string
example: Product

properties:
type: object
example:

name: Apple iPhone
uuid: 0c76c148-919f-4337-a05c-9e608b4df184

additionalProperties:
type: string

example:
properties:

name: Apple iPhone
uuid: 0c76c148-919f-4337-a05c-9e608b4df184

labels:
- Product

64

Appendix C

Contents of attached CD

• Folder: text/

– NovotnyMichal_MT.pdf - PDF version of the Master’s thesis

• Folder: implementation/

– server/ - Folder containing server source code

– client/ - Folder containing client source code

– feeder/ - Folder containing feeder library source and ontology data

∗ ontology/ - Folder containing all ontology versions and generated ontologies
∗ input/ - Folder containing all input feeds and annotated data
∗ scraping/ - Folder containing scraping python programs

– README.txt - file containing compilation and other information

• File: Documentation.pdf - file containing basic information about implementation.

65

	Introduction
	Problem definition and motivation
	Data meaning and problems

	Goals of this project
	Scenarios

	Analysis of the problem
	Data in e commerce system
	Data feeds
	Existing feed formats

	E-commerce data
	Product representation

	Ontology and Semantic web
	What is Data?
	Semantic web
	RDF and RDF Schema
	OWL
	OWL: Resoning

	Defining ontology
	Modeling tools

	Methods for product similarity and relation
	Product similarity methods
	Product clustering methods

	Data storage
	SQL Databases
	NoSQL Databases
	SQL vs NoSQL Databases
	Storing and retrieving semantic data

	Data scraping
	Scraped data feeds

	Design
	Data structure
	Ontology
	Unified format

	Solution design
	Feed component
	Converting data
	Conversion maps and vocabularies
	Data annotation
	Vocabularies

	Consolidating component
	Product relation building
	Data transformation and reasoning
	Storing data

	Data querying
	Building the query

	Implementation
	System infrastructure
	Tools and technologies
	Feeder library
	Library components
	Data meaning extraction
	Ontology building and data storage

	API service
	Cypher query building

	Client application

	Evaluation
	Data evaluation
	Testing data
	User annotated data

	Testing scenarios
	I. Data annotation, ontology building and storing
	II: Ontology evaluation
	III: Relationship building evaluation
	IV. Stored data evaluation

	Conclusion
	Summary
	Further steps

	Nomenclature
	API service documentation
	Contents of attached CD

