
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Natural Language Generation From
Structured Data

Bc. Martin Matulík

Supervisor: Ing. Jan Šedivý
Field of study: Computer Science
Subfield: Data Science
May 2018

ctuthesis t1606152353 ii

Acknowledgements

I would like to thank Ing. Jan Šedivý
for supervising me and providing me with
advice on this thesis. I would also like to
thank my family for their support.

Declaration

I hereby declare that the presented thesis
is my own work and that I have cited
all sources of information in accordance
with the Guideline for adhering to ethical
principles when elaborating an academic
final thesis.
Prague, 23. May 2018

iii ctuthesis t1606152353

Abstract

Natural language generation is one of the
hardest tasks of machine learning. Usu-
ally, the task is to convey some informa-
tion stored in a structured form. In this
work, we implement and test a system
based on a neural language model which
attempts to generate natural language sen-
tences from data contained in a table.

Keywords: natural language generation,
language model, structured data

Supervisor: Ing. Jan Šedivý
Czech Institute for Informatics, Robotics
and Cybernetics,
Jugoslávských partyzánů 1580/3, 160 00
Dejvice

Abstrakt

Generování přirozeného jazyka je jedna
z nejtěžších úloh strojového učení. Jejím
cílem je obvykle prezentovat informaci pů-
vodně uloženou ve strukturované podobě.
V této práci implementuji a zkoumám sys-
tém založený na principu jazykového mo-
delu, který generuje věty v přirozeném
jazyce z dat uložených v tabulce.

Klíčová slova: generování přirozeného
jazyka, jazykový model, strukturovaná
data

Překlad názvu: Generování přirozeného
jazyka ze strukturovaných dat

ctuthesis t1606152353 iv

Contents

Project Specification 1

1 Introduction 3

1.1 Motivation . 4

1.2 Goals . 4

1.3 Structure . 4

2 Theoretical background 7

2.1 Language model 7

2.2 N-gram language model 9

2.3 Smoothing 10

2.4 Neural networks 11

2.5 Neural language model 14

2.6 Natural Language Generation . . 15

2.6.1 Content determination 15

2.6.2 Text structuring 16

2.6.3 Sentence aggregation 16

2.6.4 Lexicalization 17

2.6.5 Referring expression generation 18

2.6.6 Linguistic realization 19

3 Related work 21

3.1 Neural text generation 21

3.2 Order-planning with hybrid
attention . 23

3.3 Lexicalized and delexicalized data 24

4 Implementation 25

4.1 Preprocessing 25

4.1.1 Structured data 25

4.1.2 Natural language data 26

4.1.3 Processing 26

4.2 Neural language model 27

4.2.1 Architecture 27

4.2.2 Input . 28

4.2.3 Output 29

4.3 Decoding . 30

4.3.1 Beam search 30

v ctuthesis t1606152353

4.4 Code documentation 30

5 Experiments 31

5.1 Experiment description 31

5.1.1 Task . 31

5.1.2 Data . 31

5.1.3 Training environment 33

5.1.4 Experiment variables 33

5.1.5 Metrics 35

5.2 Experiment results 37

5.2.1 Results 37

5.2.2 Analysis 39

5.2.3 Human evaluation 40

5.3 Testing on subsets of information 42

6 Conclusion and future work 45

A Bibliography 47

B Code manual 51

C CD contents 53

ctuthesis t1606152353 vi

Figures

2.1 Examples of how a language model
can improve machine translation . . . 8

2.2 Ambiguity of part of speech
tagging . 8

2.3 A depiction of a neuron 12

2.4 A neural layer 12

2.5 Neural network with two layers . 13

4.1 Sentence based on the data shown
in table 4.3 . 26

4.2 Neural network architecture 27

5.1 Example candidate and reference
sentences. 35

5.2 Plot showing BLEU results on
Wikipedia dataset. Result of model
with default parameters is
represented by horizontal line. 38

5.3 Plot showing perplexity results on
Wikipedia dataset. Result of model
with default parameters is
represented by horizontal line. 38

5.4 Plot showing BLEU results on
restaurant dataset. Result of model
with default parameters is
represented by horizontal line. 39

5.5 Plot showing perplexity results on
restaurant dataset. Result of model
with default parameters is
represented by horizontal line. 39

vii ctuthesis t1606152353

Tables

2.1 Example slice of a table containing
probabilities. The value in each cell
is the probability of a word (to the
left) given two context words (above)
- this is a trigram model. 9

3.1 Example infobox structured the
same way it is in the source data,
taken from Albert Einstein
Wikipedia article. 22

4.1 Original table 26

4.2 Transformed table 26

4.3 Transformation of field-value pairs
to format acceptable by the system 26

4.4 Infobox . 28

4.5 Local conditioning with capped
index . 28

4.6 Example: from infobox (left), local
conditioning is obtained (right), index
is capped to L (in this case L = 10) 28

4.7 Infobox . 29

4.8 Local conditioning with end
indexes . 29

4.9 Example: from table (left), local
conditioning is obtained (right) . . . 29

5.1 Example table from Wikipedia
dataset. 32

5.2 Example table from the restaurant
dataset. 32

5.3 Hardware parameters of the first
instance . 33

5.4 Hardware parameters of the second
instance . 33

5.5 Boolean hyperparameters 34

5.6 Numerical hyperparameters 34

5.7 Fixed hyperparameters 35

5.8 Experimenting on Wikipedia
dataset, emboldened are the best
(meaningful) results. 37

5.9 Experimenting on restaurant
dataset, emboldened are the best
results. 37

5.10 A table from the testing split of
the Wikipedia dataset 40

5.11 Sentences generated by various
models on one of the tables from
Wikipedia dataset. 41

5.12 A table from the testing split of
the restaurant dataset 41

ctuthesis t1606152353 viii

5.13 Sentences generated by various
models on one of the tables from
restaurant dataset. 41

5.14 First table and sentence from the
restaurant dataset. 42

5.15 Second table and sentence from
the restaurant dataset. Note that the
name is incomplete 43

5.16 Third table and sentence from the
restaurant dataset. 43

5.17 Fourth table and sentence from
the restaurant dataset. 44

5.18 Fifth table and sentence from the
restaurant dataset. 44

6.1 First example of correct sentence
from the restaurant dataset. 45

6.2 Second example of correct sentence
from the restaurant dataset. 46

ix ctuthesis t1606152353

ctuthesis t1606152353

ctuthesis t1606152353 2

Chapter 1

Introduction

The amount of data worldwide grows fast every day. There are many problems
associated with this phenomenon, be it storage, processing or proper usage.
In this flood of information, it is hard to decide how to present it, pick relevant
or interesting pieces, or summarize it. Often, there is a need to convert the
data stored in a structured format such as tables or knowledge graphs into
a form which allows easy interpretation and provides comfort to the user.
The fields which deal with this problem are for example data visualization
or natural language generation. It is the last field mentioned that we will
explore in this thesis. The goal of natural language generation is creating
a sentence in natural (’human’) language based on information stored in a
structured form. For instance, the personal assistants (such as Amazon Alexa,
Microsoft Cortana or Google Assistant) which have recently been becoming
more and more popular have to convert information which the user desires
into a single utterance. One solution is hand-crafted responses where the
information is inserted as a substitution for delexicalized tokens, but with
great volume and variety in the data, it is laborious at best and impossible
at worst to cover all possible cases. Therefore, data-driven approaches to
natural language generation are on the rise (with the popular neural networks
in the lead), eliminating the need for human interventions as well as utilizing
the ever-growing heaps of data.

3 ctuthesis t1606152353

1. Introduction
1.1 Motivation

The work on this thesis was conducted as part of Alquist, a conversa-
tional socialbot participating in the Alexa Prize competition organized by
Amazon[RPK+18]. The competition is intended for university teams and
its goal is building a socialbot on the Amazon Alexa platform which will
converse with a user coherently and engagingly about different popular topics
such as sports, movies or music. The conversation should go on for as long as
possible (Amazon set a duration of 20 minutes as the main milestone to be
overcome). To keep the conversation going, the socialbot needs to present a
piece of information to the user from time to time (for example to find a new
subject to talk about, provide details about the current subject or simply
answer the user’s questions). This task is best suited for a natural language
generating system, so the goal of this thesis was to explore the current state
of this task and test if a certain system could improve the socialbot.

1.2 Goals

The first goal of this thesis is to research the topic and compile available
approaches to it. The next goal is to implement a natural language generation
system based on machine learning. The experiments consist of measuring
BLEU and perplexity over multiple datasets and also observing how the
system reacts to various subsets of information contained in the structured
data (for example, if we train the system on data which include name, birth
date and an occupation of a person, we want to know how it would perform
and what sentences it would generate on data which include just a name and
an occupation).

1.3 Structure

The thesis is structured as follows: In chapter 1 we describe the task and
set goals for this thesis. Next, in chapter 2, we provide background for the
task. We talk about language models, neural networks, and natural language
generation. In chapter 3, we present currently utilized approaches to our
problem. In chapter 4 we describe our own solution: a language generation
system implemented in Python language. In the next chapter, 5, we discuss

ctuthesis t1606152353 4

...................................... 1.3. Structure

our experiments with this system. We sum up our findings in chapter 6. All
pictures are our own, created in the Inkscape editor1.

1https://www.inkscape.org

5 ctuthesis t1606152353

ctuthesis t1606152353 6

Chapter 2

Theoretical background

2.1 Language model

Language model is a probability distribution which assumes that any sequence
s = {w1, w2, ..., wm} of words in a given language (not necessarily a sentence)
that has length m can be assigned a probability P (s) = P (w1, w2, ..., wm).
Being able to assign probabilities to sequences of words and compare them is
useful since this way the computers can identify and distinguish "nonsensical"
sequences (those which have low probabilities) and sequences which "make
sense" (those with high probabilities). This method is applied in problems such
as machine translation[LOW12], natural language processing[KJ13], speech
recognition[JMRS91] or information retrieval[PC98]. In machine translation,
it is impossible to simply change words from one language to another since
the result will be garbled. With language model in use, the translation system
can determine the word order, choose more appropriate word translations or
correct shapes of words.

7 ctuthesis t1606152353

2. Theoretical background

Figure 2.1: Examples of how a language model can improve machine translation

Part-of-speech tagging is one of the tasks of natural language processing
where each word is assigned a tag from a predetermined set based on the
word’s role in a sentence. The language model can help determine the correct
tag in case a word can be interpreted in more ways. In figure 2.2, it can be
seen that the word ’watch’, while unchanged, performs a completely different
role in each of the two sentences.

Figure 2.2: Ambiguity of part of speech tagging

In speech recognition, the input is a sound recording and output is text.
Certain phonemes sound alike and different text sequences can be constructed
from the same recording. The language model can improve recognition
accuracy by determining which sequence is more likely to happen in the
recognized language. Finally, in information retrieval, we need to compare
documents to our query. The information about how likely the query belongs
to a given document’s language model can contribute to the score based on
which the documents are ranked.
We can obtain the best estimate of output Y of the language model by
maximizing the a posteriori probability of Y given input X which is, for fixed
X, equivalent to a joint probability

P (Y,X) = P (Y) · P (X|Y)

where P (X|Y) is a conditional probability and P (Y) is the a priori probability
of the output sequence Y occurring in the given language. The method of
obtaining P (Y) is discussed in the following section.

ctuthesis t1606152353 8

................................2.2. N-gram language model

2.2 N-gram language model

This type of model [BdM+92] deals with the task of obtaining P (Y), the a
priori probability of a word in a language. It represents the language model
by conditional probability of the next word P (wk) given words which precede
it in a sequence of words. The formula to obtain this probability is a product
of conditional probabilities

P (wk) = P (w1) · P (w2|w1) · P (w3|w2, w1)... · P (wk|wk−1, ..., w1)

The words w1, ..., wk−1 are called history or context. This approach takes
advantage of word order and assumes that the words appearing close together
are statistically dependent. Since more conditions in a conditional probability
give more accurate results, we would ideally want to compute a probability
of the word given arbitrarily long context, but there are several problems
with that. First of all, the probabilities need to be computed (trained) on
a corpus of text written in the language we want to model (Exact training
method is described below). We would need a very large dataset to obtain a
reliable representation of a language. Next problem is with model storage.
All probabilities are stored in a table, e.g.

Context this old my little
house 0.8 0.7
man 0.6 0.1

Table 2.1: Example slice of a table containing probabilities. The value in each
cell is the probability of a word (to the left) given two context words (above) -
this is a trigram model.

Size of such table is V k which means it grows exponentially with regard
to vocabulary size V given increasing context length k, which becomes
computationally infeasible for large k. Another problem with very long
histories is that they might occur only a few times at best in the training set
and never occur during inference time.
The n-gram model attempts to approximate this conditional probability by
considering only the contexts of length n− 1. Commonly used values of n are
2 (the model is then called bigram) or 3 (trigram model). This simplification
eliminates the storage problem since the size of the table (or the number of
parameters) is only V 2 or V 3.
As mentioned before, the probabilities of n-grams are computed by examining
a text in the given language. For unigram (that is, n = 1), the maximum
likelihood estimate of the probability P (wn) is simply

P (wn) = C(wn)
T

9 ctuthesis t1606152353

2. Theoretical background
where C(wn) is the number of occurrences of the word in the training text
and T is the length of the training text. To obtain the estimate for an n-gram,
we need to count all occurrences of the n-gram as well as all occurrences
of the (n − 1)-gram which appears as the context for the last word in the
sequence and divide both numbers. For example, if we wanted an estimate of
the conditional probability of the trigram phrase this old house, we would
need to count how many times this three-word phrase appears in the training
text and then how many times the two-word (bigram) phrase this old appears.
The resulting estimate would be the quotient of these two numbers. To put
it into a formula

P (wn) = C(w1, w2, ..., wn−1, wn)
C(w1, w2, ..., wn−1) ' C(wn−1, wn)

C(wn−1)

We will use this representation for n-gram counts from now on.

2.3 Smoothing

Although shortening the length of the context helps with the problem of
sequences not occurring often enough or at all, it does not solve it altogether.
Certain n-grams might not be seen during training anyway and therefore the
model does not assign them a probability - or rather, it assigns them a zero
probability. We want to assign each possible n-gram a probability, even if it is
a very small one, which is where smoothing (or discounting) comes in. One of
the approaches to smoothing is adding a constant to all n-gram counts. The
method which consists of adding 1 to every count is called Laplace smoothing
[Lid20]. This changes the nominator of the formula but not the denominator,
which we need to increase as well. We "observed" each n-gram once more, so
value by which the denominator is increased is the size of the vocabulary V .

P (wn) = C(wn−1, wn) + 1
C(wn−1) + V

General constant-adding method is called the add-k smoothing (based on
that, the Laplace smoothing can be called add-one smoothing). The constant
k is usually a real number greater than 0 and lower than 1. The denominator
needs to be adjusted again.

P (wn) = C(wn−1, wn) + k

C(wn−1) + kV

The disadvantage of this approach is that we need a way to determine the
best value of k. Generally, the add-k methods do not work well when applied
to language modeling tasks.
A different way of smoothing is reverting to a lower order, that is, utilizing an

ctuthesis t1606152353 10

................................... 2.4. Neural networks

n-gram model with lower n on the same text. There are two main approaches:
Backoff and interpolation [PH08]. When using backoff smoothing, we always
revert exclusively to a lower n-gram in case of zero probability. For example,
if we are unable to find a trigram (wn−2, wn−1, wn) in the training text corpus,
we substitute in the count of bigram (wn−1, wn) instead. If that count is also
zero, we lower n further and further until we find an n-gram whose count is
non-zero. If necessary, we go as far as unigram which has always non-zero
count else the word would not appear in the vocabulary at all and we would
not need to compute its probability. The other approach, interpolation[JM80],
also utilizes the lower order n-grams, but instead of using only one it bases the
probability on all n-grams with n having a value from the originally intended
n-gram model up to possibly the unigram. The formula (here for trigram) is
a linear combination

P (wn|wn−1, wn−2) = λ1P (wn|wn−1, wn−2) + λ1P (wn|wn−1) + λ1P (wn)

The linear coefficients λi need to be computed. For that, we can use EM
algorithm which fixes the n-gram counts and finds hyperparameters λi that
maximize the probabilities over a validation dataset.

2.4 Neural networks

Artificial neural networks[Hay98] are machine learning systems based on phe-
nomena observed in nature, specifically on animal and human brains. They
can learn on their own (i.e. without any specific programming, hand-crafted
rules or prior knowledge) approximate solutions to various tasks. Nowadays,
they are widely applied in fields such as pattern recognition, sequence recog-
nition, data mining or machine translation. The neural networks manage to
grasp the underlying logic quite well but they have several disadvantages.
They require a lot of training data (usually including labels) to learn the
parameters reliably, the learned models are hard to interpret and they have
high computational requirements. On top of that, the architecture and hy-
perparameters of a neural network need to be determined empirically.
The most basic building block of an artificial neural network is a neuron.
Same as its biological counterpart, it has several inputs, processing core, and
an output. The inputs are real numbers (they can be understood as one
vector). The processing core contains a function which is applied to the inputs
whose result becomes the output of the neuron. The function is usually a
dot product of the input vector and weights (that is, a real number-valued
vector) stored also in the neuron as a stand-in for a memory.

f(x) = f(x1, x2, ..., xm) = 〈x;w〉 = x1 · w1 + x2 · w2 + ...+ xm · wm

11 ctuthesis t1606152353

2. Theoretical background
In this formula and in the following ones, wi stands for a weight value. The
weights are randomly initialized and periodically updated during training to
learn the task - details about that come below. In that case, the neuron is
basically equivalent to standard perceptron[Ros58].

Figure 2.3: A depiction of a neuron

The neurons are gathered into neural layers. The layer is an array of
neurons, in this context also called units or ’hidden units’. The units share all
layer inputs, but each of them has its own weight vector. From mathematical
point of view, instead of multiplying the input vector by another vector, we
multiply it by a matrix of size m× u, where m is the length of an input and
u is number of units in a layer. Often a bias vector b is additionally used.

f(x) = 〈x;W 〉+ b =

x1 · w11 + x2 · w12 + ...+ xm · w1m + b1
x1 · w21 + x2 · w22 + ...+ xm · w2m + b2

...
xu · wu1 + x2 · wu2 + ...+ xm · wum + bu

Figure 2.4: A neural layer

ctuthesis t1606152353 12

................................... 2.4. Neural networks

In networks with multiple layers, the layers are connected so that one
layer’s output becomes the next layer’s input.

Figure 2.5: Neural network with two layers

If we want to modify the output of a neuron, an activation function can
be applied to it. Activation functions’ purpose ranges from normalizing the
output - e.g. softmax

σ(x)j = ezj∑K
k=1 e

zk

to thresholding it - e.g. rectified linear unit (ReLU)

f(x) = max(0, x)

where x is the unit output.
Above, we mentioned that the artificial neural networks are able to "learn".
By that, we mean that the network is able to minimize a given error function
(also called loss function) over a training dataset by updating the weights
of neural layers using an optimization algorithm, usually a gradient descent.
The training dataset is a set of example inputs and outputs. When we
apply the neural network to an input, we want to obtain the output value
associated with that input. By computing the error function we know how
much the neural network deviates from this value and we can update the
weights accordingly. The value by which the weights are updated is found by
multiplying the input with the difference between the predicted value and the
true value. A hyperparameter which is utilized here is the learning rate. It is
a coefficient by which is the update multiplied so that optimum can be found.
The update is performed in all neural layers in the network. The mechanism
which is used to compute the updates in all layers is called backpropagation
[WJPJ74].

13 ctuthesis t1606152353

2. Theoretical background
2.5 Neural language model

When we are attempting to model a language, we are effectively searching
for a joint probability between words, that is, discrete random variables.
However, the size of vocabulary V for various tasks can easily reach tens or
even hundreds of thousands of words. This means the model has a great
number of parameters to learn. As was already mentioned in section 2.2,
the number of parameters of n-gram model is V n − 1 which, for example, in
trigram model with a relatively small vocabulary of 10,000 words reaches
astonishing 1012 − 1 parameters. This problem is referred to as "curse of
dimensionality" and language modeling is not the only learning task which
suffers from it.
Another problem of statistical language models is that they do not consider
the semantic similarity between words which, if utilized, could help with
generalization and improve performance. For example, if the training corpus
contains the sentence A woman was walking on a street, the model should be
able to generate sentence A man was running on a road since there are pairs
of words that have similar semantical meaning and even similar grammatical
roles in a sentence - e.g. man and woman, walking and running or street and
road.
A neural language model proposed by [BDVJ03] attempts to solve both of
these problems by utilizing a neural network. The joint probability function

P (wt|wt−1
1) = f(wt, ..., wt−n+1)

is split into two parts. The first part which counters the curse of dimensionality
is distributed word feature vectors. Each word w is mapped using a function
C(wi) to a real-valued vector with a fixed length which associates the word
with a point in a vector space. The advantage of the distributed feature
vector which should bring the desired improvement to the language model is
that semantically similar words should map to points close to each other, that
is, their feature vectors should be similar as well. Another improvement is
that the length of feature vector can be several orders smaller than a usually
used one-hot encoding (which has a length equal to the size of the vocabulary
V) and we can tune it to obtain better results. The second part of the neural
language model is a function g which maps the distributed word feature
vectors C(wi) to a probability distribution. This function is implemented by
feed-forward or recurrent neural network. Both parts put together form the
function f :

f(wt, ..., wt−n+1) = g(wt, C(wt−1), ..., C(wt−n+1))
The authors state that it is best to train both the word feature vectors and
probability function parameters at the same time. The training is performed
by finding parameters θ which minimizes the log-likelihood

L = 1
T

∑
t

logf(wt, ..., wt−n+1; θ)

ctuthesis t1606152353 14

............................. 2.6. Natural Language Generation

over all samples from the training dataset.

2.6 Natural Language Generation

The task of generating natural language [GK18] can be defined as transforming
input data (structured or unstructured) into output sentence written in natural
language. It is often split into six subtasks:..1. content determination..2. text structuring..3. sentence aggregation..4. lexicalization..5. referring expression generation..6. linguistic realization

The tasks are usually performed roughly in the order they were listed here,
especially in systems with pipeline structure. One thing to note is that further
down the list, the subtasks are less and less connected to the domain they
are applied to, i.e. the content determination is closely interlinked with the
application while lexicalization or linguistic realization can be researched
independently on a task and the methods for them can be applied to various
problems. It can be generally said about all of the steps that historically, they
were initially performed using hand-crafted rules and the preferred methods
later moved towards data-driven approaches.

2.6.1 Content determination

The content determination is the subtask of choosing which pieces of in-
formation we want to include in the output sentence and which should we
drop. Typically, the data from which we plan to generate a natural text from
contains much more information than what we desire to convey in a text,
or it is too detailed (which would result in the sentence being convoluted).

15 ctuthesis t1606152353

2. Theoretical background
The selection of data is based on several factors. One factor is the possible
audience of the generated text. If a piece of information requires expert
knowledge (for instance in medical data), but the target audience is composed
of novices or laymen, we may want not to include it. Another factor is the
purpose of the text: chosen content will be different in a text whose goal is
just to inform the reader about certain facts and in a text which aims to
convince the audience about something. An obvious factor is the relevance
and importance of the information. For example, if we collect medical data
from continuously running sensors about patient’s physical parameters such
as heart rate, temperature or blood pressure, the data will have a lot of the
details but most of it would be of no interest to us. What we are interested in
are sudden changes or abnormal values. Therefore, the data must be filtered
as a part of the selection process.

2.6.2 Text structuring

Text structuring is the subtask of deciding the order of information in which
it is presented to the reader, that is, constructing a temporal sequence. Again,
there are multiple approaches to ordering the information. One of them is
starting with general information and going into finer and finer details further
into the text. For example, in a text about an ice hockey match, we would
like the result to be generated first and then who scored the goals and other
highlights of the match. If we have data which contain information about
the chronological order of events (like the goals in the previous example), we
obviously want to retell the events in chronological order as well. Another
method is ordering the information by importance, beginning with the most
important bits and only later introducing the less interesting pieces of infor-
mation. As certain relations between pieces of data may arise during their
processing, we also need to regard them when solving the text structuring.

2.6.3 Sentence aggregation

If we want the text to be coherent and not just a collection of sentences,
we may need to observe the sentences whether it is not possible to cluster
multiple pieces of the same kind of information together into a single sentence
instead of several ones which are almost the same. For example, the sentences

ctuthesis t1606152353 16

............................. 2.6. Natural Language Generation..1. David Pastrnak scored for Boston Bruins in a match against Toronto
Maple Leafs at 5:26...2. David Pastrnak scored for Boston Bruins in a match against Toronto
Maple Leafs at 12:34...3. David Pastrnak scored for Boston Bruins in a match against Toronto
Maple Leafs at 18:24.

can be merged into one sentence David Pastrnak scored three goals for Boston
Bruins in a match against Toronto Maple Leafs. This subtask is called
sentence aggregation. It is one of the most difficult subtasks of natural
language generation because of several complications. It is very application-
dependent and in some cases, it is debatable whether it should be performed.
Another problem is that what is referred to as text aggregation can be
interpreted in different ways: eliminating redundant words or even sentences,
combining the underlying linguistic structure of a sentence, etc.

2.6.4 Lexicalization

When the choice of content is finalized by the previous steps, it is time to
choose proper words and phrases to transform the data into natural language
text. This is solved in lexicalization subtask. Main hurdle to overcome is
that same concepts can be expressed in different ways in natural language
and it is up to our system to decide which way is the best one. For example,
when we want to generate a sentence about a player scoring a goal, it could
be expressed by phrases to score a goal, to score or to have a goal noted.
The more possibilities there are for the language model to generate, the
more complex the lexicalization process becomes. Also, when implementing
a lexicalization system we need to decide if we prefer the sentences to be
more varied or to be homogeneous. This is again application-dependent, for
instance, readers of a report from a sports match would prefer the text to have
variety while the summary of medical data should be concise and direct. One
way to create a lexicalization model is mapping the data domain concepts
directly to phrases. This seems straightforward but in fact is rather difficult
even on well-defined domains. One problem is vagueness which arises for
instance in gradable adjectives where we need some sort of point of reference
- can the system say that a house is small when it is still likely taller than a
tall human?

17 ctuthesis t1606152353

2. Theoretical background
2.6.5 Referring expression generation

A subtask of natural text generation which has been given probably the most
attention in the recent years is referring expression generation. One of the
reasons for that is the fact that it could be researched as a separate topic.
Referring expression generation is defined as the task of "communicating
enough information to distinguish one domain entity from other domain
entities". The expressions which the system will use to describe an entity are
dependent on several factors. If the entity has been previously mentioned, a
pronoun might suffice to refer to it. If there are other entities of the same
category as the described entities in the examined domain, "our" entity needs
to be told apart from them and therefore the system has to find features
of the entity which characterize it and make it stand out. When referring
to entities, the system needs to decide on two parts: referential form and
referential content. The choice of referential form means the system selects
whether to refer to the entity using a proper name, pronoun or (in)definite
description. The choice of referential content is usually carried out if the
chosen referential form is a description, definite or indefinite. It requires
the system to find the combination of properties of the entity which it does
not share with other entities (which are put into a role of "distractors") so
the audience of the generated text is able to recognize which entity it is
about. The algorithms which solve referential content choice are based on
finding the "best" combination of properties. This combination should contain
neither too few (as the distinguishing information about the entity can be
lost) or too many properties (as too many details describing an entity could
appear artificial and even boring). There are several approaches to solving
this problem:

. Building a set of all possible combinations of properties, then performing
an exhaustive search which finds the smallest possible set which will
reliably identify the target entity[Dal89]. Building the combination of properties incrementally by adding a prop-
erty which eliminates the most distractors in each step. [CFDGBT09]. Similar to the algorithm in the previous point, but instead of most
distinguishing property, the selection is based on knowledge about the
domain.[DR95]

All of these algorithms prioritize minimizing the number of properties. How-
ever, in some cases, it is desirable to actually include redundant information
[JW05]. Another method which aims to expand the expressive possibilities of
a text generation system considers plurals and relations between objects (e.g.
their relative position).

ctuthesis t1606152353 18

............................. 2.6. Natural Language Generation

2.6.6 Linguistic realization

The final task of the imagined pipeline is linguistic realization. In this step, all
of the selected and processed input is transformed into a natural language text.
This consists not only of mapping the entities to correct words and choosing
the right morphological forms but also of inserting punctuation, functional
words (such as prepositions and auxiliary words) and other elements required
for the text to be fluid and coherent - elements often not included in the
input data at all. The main approaches to this problem are human-crafted
templates, grammar-based systems and statistical methods. Human-crafted
templates are suitable to be used in closed domains. Returning to the ice
hockey example

.David Pastrnak scored for Boston Bruins in a match against Toronto
Maple Leafs at 5:26.

could be the result of applying the template

.<player> scored for <own_team> in a match against <other_team>
at <minutes>:<seconds>.

which uses mapping player :David Pastrnak, own_team:Boston Bruins, etc.
The advantage of this approach is that it offers complete control over the
linguistic realization and the resulting sentences are very convincing. However,
if we want to cover as many cases as possible, the templates need to be
laboriously created by hand and as mentioned above, are not suitable for
domains which require linguistic variety. Grammar-based are more advanced,
but still require human-created grammar rules to generate sentences. The
rules are based on the grammar of the given language. Statistical methods are
those with the most variety and least control offered. They rely on large text
corpora to determine the parameters of statistical models and also on human
labor, but not as extensively as templates and grammars. One approach
is generating all possible realizations using hand-crafted grammar, then
choosing the best realization based on a statistical model. This is, however,
computationally expensive. The other approach utilizes the information
from the statistical model already during the generation step, aiding the
human-created generator with its choices.

19 ctuthesis t1606152353

ctuthesis t1606152353 20

Chapter 3

Related work

3.1 Neural text generation

The method described in [LGA16] is applied to the problem of generating a
first sentence of a Wikipedia article. The task is constrained to biography
articles about people since the first sentences of them are often very similar.
The authors create a neural language model to solve this task. The language
model is based on standard n-gram language model, that is, the next word
of the sentence is generated based on previous (context) words. In a simple
model, the probability (score) of the next word would be

P (wi|ci) =
i−1∏

t=i−n

P (wt|ct)

where wi is the words being generated and ci represents the context words.
However, in this article the authors add several layers of conditioning (derived
from the field-value pairs from the infobox for such article) added on top.
The probabilities are obtained from a neural network instead of a text corpus.
The model looks like this

P (wi|ci, zcigf , gw) =
i−1∏

t=i−n

P (wt|ct, zct , gf , gw)

The meaning of ci, zci , gf and gw is explained in the following paragraphs.

21 ctuthesis t1606152353

3. Related work.....................................
Field Value
name_1 Albert
name_2 Einstein
birth_date_1 14
birth_date_2 March
birth_date_3 1879
known_for_1 General
known_for_2 relativity
known_for_3 ,
known_for_4 Special
known_for_5 relativity

Table 3.1: Example infobox structured the same way it is in the source data,
taken from Albert Einstein Wikipedia article.

Same as the standard n-gram language model, ci stands for context words
preceding the generated word. These words are embedded into fixed-length
vectors. As the corpus for training these vectors, the set of first sentences
of the articles is used. Only W most common words are used, the rest is
removed from the sentences or, where possible, replaced with keys from the
tables. All sentences are prepended with n tokens representing the beginning
of the sentence so that the first word of the actual sentence also has context.
The embeddings are trained as part of the training of the whole network.
They can be initialized randomly or with pre-trained vectors(such as the
word2vec).
The local conditioning (zct)is computed from occurrences of a context word
in the table. For each context word, list of fields where it occurs as well as the
indexes is formed. The indexes are counted not only from the beginning but
also from the end and they are capped to given length for fields with too many
words. For example in the infobox depicted in table 3.1, the word relativity
occurs in field known_for on indexes 2 and 5 counted from the beginning and
on indexes 9 and 5 counted from the end (the actual field on the Wikipedia
page contains much more entries which were omitted for brevity’s sake). The
end-indexes help to capture the information that the field terminates the
sentence. Symbols such as comma are also included. The tables undergo
preprocessing - only fields occurring more than a certain number of times in
the dataset are used, the rest is disregarded. Pairs formed from field name
and index are embedded into a vector. The embeddings are stored in two
matrices, one for beginning indexes and another for end indexes.
The global conditioning does not depend on the context words but on all of
the fields (gf) and content words (gw) available in the infobox. The intention
behind including table fields is that people with different occupations will
have different fields in their infoboxes, for example, politicians will have a
field for their political affiliation while athletes will have a field for the sports
team they are playing for.
As mentioned above, infrequent words are dropped from the vocabulary, which

ctuthesis t1606152353 22

.......................... 3.2. Order-planning with hybrid attention

means it will be impossible for the model to generate them. The copy actions
are used to deal with these out-of-vocabulary words. Field names are added
to words as additional classes so instead of the actual word, delexicalized field
name (for example name_2 instead of Einstein) is generated by the model.
The authors also offer the dataset they used for experiments. It consists of
about 730,000 Wikipedia biography articles.

3.2 Order-planning with hybrid attention

This method [SML+17] also attempts to solve the problem from the previous
section. It is based on encoder-decoder architecture. The key component is a
dispatcher which based on computed attention decides what will be generated
next.
The input to the encoder is the Wikipedia infobox. Field-content pairs are
split based on content words (for example Occupation: writer, politician turns
into occupation_1: writer, occupation_2: politician). Both field and content
are then embedded into vectors f, c. The embedding matrix is different for
field and for content. The two vectors for each row are concatenated, forming
the i-th row’s representation.

xi = [fi, ci]

The embedding is then encoded using standard LSTM recurrent neural
network.
The dispatcher uses what the authors describe as "hybrid attention", a linear
combination of content-based attention and link-based attention. The content-
based attention is dependent not only on content embeddings but also on
table field embeddings. It is computed as

αcontent
t,i =

exp(α(f)
t,i α

(c)
t,i)∑C

j=1 exp(α
(f)
t,j α

(c)
t,j)

where α(f)
t,i and α(c)

t,i are attentions of a field and a content word, respectively.
These "marginal" attentions are based on words generated in a previous step.
The function is basically a softmax over the rows of the table. The idea
behind the link-based attention is that the generated words should be in
some kind of a preferred order, for example, the name of a person should
come before their birth date or the nationality should be generated before
occupation. The links are represented as a matrix where each element ai,j

contains a probability that the i-th field comes before the j-th field. The
link-based attention is obtained by multiplying this matrix with the hybrid
attention computed in the previous step, then softmaxing the result again.
The matrix is similar to a Markov chain but due to multiple occurrences of a

23 ctuthesis t1606152353

3. Related work.....................................
field is not a probability distribution. The hybrid attention is obtained by
linear combination of content-based and link-based attention:

αhybrid
t = ztα

content
t + (1− zt)αlink

t

where zt is a coefficient based on the previous state of decoder RNN, previously
generated word and a sum of field embeddings.
The input to the decoder module is

xt = tanh(Wd[at; yt−1 + bd])

where Wd and bd are weights, at is dot product of table encoding ht and
attention vector αt and yt−1 is the word generated in the previous step. The
neural network then transforms this input xt into output ht which is then used
in a standard linear layer to compute the score. The score is tweaked by copy
mechanism which helps with dealing with unseen words. This mechanism is
basically an additional scoring function which computes the likelihood that
the content word will be a part of the target output. The score from the
linear layer and from the copy mechanism are added and softmaxed, resulting
in a probability vector of each word. The objective function used in training
is negative log likelihood of a sentence based on this probability.

3.3 Lexicalized and delexicalized data

As the title suggests, this system [SHS+16] takes into consideration both the
lexicalized (values) and delexicalized (fields) parts of structured data. It is
based on encoder-decoder architecture as well. The authors call their model
"lexicalized delexicalized semantically controlled LSTM". They applied it to
the task of generating dialogue for making a reservation in a restaurant.
The field-value pairs are transformed into a vector in the following way: the
field is encoded into a one-hot vector. The value is translated into pre-trained
word embeddings. If the field contains multiple words, mean of the embedding
is used. The vectors for field and value are then concatenated and the result
is used as an input for the encoder, which is a bi-directional LSTM neural
layer.
The decoder is based on sc-LSTM which contains a "dialogue act vector".
Here, this vector acts as a memory of which dialogue acts need to be included
in the output sentence. The encoder output serves as an initialization for the
decoder hidden state and memory cell. On the input of the decoder is the
embedding of the word generated in the previous timestep. The output of
the decoder is either a word or a delexicalized field name. The final sentence
is produced using beam search.

ctuthesis t1606152353 24

Chapter 4

Implementation

We based our system on the system proposed by [LGA16]. The system is
composed of three parts: data preprocessor, neural network and decoder.
The task of the neural network is to generate a word based on n previous
words and the structured table. This way, it learns the probabilities of the
language model. The decoder can then use this model to generate natural
language sentences word-by-word. The shape and processing of data required
by the system is described in the section 4.1. The neural network architecture
is shown in section 4.2.1. In sections 4.2.2 and 4.2.3 we explain how this
data is processed into a neural network input and output. Finally, in section
4.3 we describe how the sentences are inferred and section 4.4 contains brief
documentation of implementation code.

4.1 Preprocessing

4.1.1 Structured data

The system accepts the structured data in the shape of a table of field-value
pairs. If a field contains more than one word, the field is split into as many
fields as there are words in it and these new fields are numbered with indexes
of the words. Fields that contain only one word are numbered with 1.

25 ctuthesis t1606152353

4. Implementation....................................
Field Value
address Main Street 16
food pizza

Field Value
address_1 Main
address_2 Street
address_3 16
food_1 pizza

Table 4.3: Transformation of field-value pairs to format acceptable by the system

4.1.2 Natural language data

For training, the system requires a set of sentences in natural language which
are based on the structured data. From them it learns the parameters of the
neural language model.

Figure 4.1: Sentence based on the data shown in table 4.3

4.1.3 Processing

All words are lowercased and sentences split into space-separated lists of
words and punctuation. All numbers are replaced with a special token and
the same thing is done with years, but with a different token. To make the
number of possible outputs of the model smaller, we limit the vocabulary to
V words which are most frequent in the training set. This means that certain
words are replaced with an ’unknown’ token. If an out-of-vocabulary word
appears in the table, it is replaced with a name of the field where it occurs
instead.
We are not interested in rare fields so we drop all those that do not occur at
least f times.

ctuthesis t1606152353 26

................................ 4.2. Neural language model

4.2 Neural language model

4.2.1 Architecture

The neural network has a standard feed-forward architecture used usually for
classification with one hidden layer and an output layer. The hidden layer’s
activation function is hyperbolic tangent and the output layer’s activation
function is softmax, which is commonly used for classification.

Figure 4.2: Neural network architecture

The function which is optimized during the training phase is negative log

27 ctuthesis t1606152353

4. Implementation....................................
likelihood of a sentence.

min−
∑

t

logP (wt|ct, ls, le, gf , gw)

Therefore, one training batch consists of one sentence. Each batch has a
different length from the others due to this.

4.2.2 Input

There are three types of input to the neural network: context words, local
conditioning, and global conditioning.
The context words are n previous words in a sentence. On the input, they are
represented as fixed length vectors of dimension d. The vectors are trained
simultaneously to the main model. They can be initialized randomly or with
pre-trained vectors. We experimented with random initialization and with
using vectors trained with FastText[JGBM16].
The local conditioning is based on the context words as well as on the
structured table. First, considering all the tables from training dataset, fields
that appear at least f times are chosen and encoded, obtaining F unique
fields. Then, for each of the context words, all its occurrences in the table are
listed - in which fields and on what index they appear. The index is capped
at L - words with higher indexes are not discarded but their index is lowered.
Combining the field encoding and the index, we obtain a number representing

Field Value
known_for_1 General
known_for_2 relativity
... ...
known_for_16 Brownian
known_for_17 motion

Value Field Start
General known_for 1
relativity known_for 2
...
Brownian known_for 10
motion known_for 10

Table 4.6: Example: from infobox (left), local conditioning is obtained (right),
index is capped to L (in this case L = 10)

’position’ of the context word in the table. As a word can appear in multiple
fields, each of the context words is assigned a list of these numbers which has
length at most W (based on the word which appears in the most fields in
a certain table from the training dataset). This serves as the address into
an embedding matrix, which has F · L ×W × d elements. Note that if we
obtain an embedding for a context word using this matrix, it would be a
2-dimensional vector (of dimension W × d) while we need a 1-dimensional
one (which is also of size d, same as context word embeddings) for the input.
The reshaping is done by choosing maximal values of features over W . So far,
when discussing indexes in fields, we’ve been considering only indexes from

ctuthesis t1606152353 28

................................ 4.2. Neural language model

the beginning of the field. Another tweak to the model is considering also the
indexes from the end of the field. The idea behind this modification is that
low "end-index" indicates that the word ends with one piece of information
and another one should come next.

Field Value
birth_date_1 12
birth_date_2 May
birth_date_3 1967

Value Field Start End
12 birth_date 1 3
May birth_date 2 2
1967 birth_date 3 1

Table 4.9: Example: from table (left), local conditioning is obtained (right)

The global conditioning disregards the context words completely and is
based solely on the table. This means that all words in one sentence share
this information. There are two possibilities: Field conditioning and word
conditioning. Both simply take a set of fields or a set of words from field
values and encode each member of these sets into embeddings. For words,
different embedding matrix is used. Therefore, the dimension of these global
embeddings can differ from d and is noted as g.
To sum it up, from the context words we obtain n embedding vectors of
dimension d, from local conditioning 2n vectors having also dimension d
and from global conditioning two vectors of dimension g. All of these are
concatenated to form a vector x

x ∈ R3·n·d+2·g

which serves as the input to the neural network.

4.2.3 Output

As the system approaches the task basically as a classification problem, on
the output we want one word to be chosen from the vocabulary as the next
one in the sentence. However, as our vocabulary is limited and it is possible
that certain words will not be seen during the training phase at all, we need
to find a way to include them. The solution lies in the structured data, that
is, the table. In section 4.2.2, we describe that we keep F fields that occur at
least f times. We append those common fields to the vocabulary so that they
are included in the output. For example, even if the model does not know the
word Einstein, it can still generate the field name name_2, which is during
inference substituted with the correct value from the table. This mechanism
is called copy action by [LGA16] and was inspired by work of [LPM15].

29 ctuthesis t1606152353

4. Implementation....................................
4.3 Decoding

Decoder is used after the training ends to generate the natural language
sentences. The input to the decoder is just the structured data table. The
sentence is initialized with a sequence of n starting tokens. An algorithm
called beam search is utilized to find the best sentence.

4.3.1 Beam search

If we want to find the most likely sentence, we cannot simply choose the
best word in each step, but searching the whole state space and keeping all
possible sentences could be inefficient. As a compromise, we use a heuristic
known as beam search [DLP16]. This method is based on breadth-first search.
Using a state space search analogy, it expands all current nodes but keeps
only b most likely candidates (where b is the beam size). In our system, we
compute a score for all words in each step for every unfinished sentence, then
choose b sentences with highest scores.

4.4 Code documentation

The implementation was done in Python 3. For constructing and training
the neural network, Keras library[C+15] with Tensorflow[AAB+15] backend
was used. The system is split into several scripts:

. config.py - stores all parameters for other scripts, mainly for model
training.. data_loader.py - contains methods for loading both structured data
and natural language sentences. data_process.py - processes the data as described in section 4.1.3 and
stores the output.main.py - creates training dataset based on the data created in the
previous step, then constructs and trains the neural network. testing.py - serves for testing the trained model using beam search

ctuthesis t1606152353 30

Chapter 5

Experiments

5.1 Experiment description

5.1.1 Task

The task on which we perform the experiments is generating a sentence given
a set of key-value pairs. We have two datasets and the exact goal slightly
differs between them; details are explained in the respective sections.

5.1.2 Data

The first dataset we used consists of about 730,000 articles from Wikipedia.
They are exclusively biography articles, that is, articles that describe lives
and deeds of famous or notable people. The dataset is divided into training
(80%), validation (10%) and testing (10%) splits. The information provided
is infobox contents in structured form, first several sentences of the article
and their count, URL, article IDs and a list of contributors, each of these in a
separate file. The key components to our system are the infobox and the first
sentence of each article, since the first serves as an input, be it for training or
testing, and the other as an example output for training which our system
will attempt to replicate. The infoboxes are stored as tab-separated pairs

31 ctuthesis t1606152353

5. Experiments
containing a key and a value, where the key is a field name with appended
index and value is a word or punctuation mark appearing in the field at the
index. There is one article infobox per line. For natural language sentences,
there is one sentence per line (as space-separated words), but there might
be several sentences extracted from the beginning of a Wikipedia biography
article. However, we are interested only in the very first sentence. The goal
is to generate this sentence based on the data contained in the article’s infobox.

Field Value
name_1 craig
name_2 starcevich
birth_date_1 16
birth_date_2 May
birth_date_3 1967
debut_date_1 round
debut_date_2 1
debut_date_3 :
debut_date_4 1987

Table 5.1: Example table from Wikipedia dataset.

The other dataset was compiled from a goal-based conversational system whose
task was to find and recommend a restaurant based on user’s requirements.
It was constructed by [WGM+16]. We filtered and transformed the original
dataset to match the format of the Wikipedia biography data. After this
processing, there are 3 307 sentences, divided into training (60%), validation
(20%) and testing (20%) splits. The goal is to generate an utterance based
on several pieces on information which are available to the system (example
in table5.2).

Field Value
name_1 alamo
name_2 square
name_3 seafood
name_4 grill
address_1 803
address_2 fillmore
address_3 street

Table 5.2: Example table from the restaurant dataset.

ctuthesis t1606152353 32

................................ 5.1. Experiment description

5.1.3 Training environment

The experiments were performed on two virtual machines provided by Amazon
Web Services (AWS)1. Both of them used Linux Ubuntu 16.04 from Deep
Learning template - this template comes with pre-installed commonly used
machine learning frameworks and libraries such as Tensorflow, Theano and
Torch. The hardware parameters are listed in tables 5.3 and 5.4. The
hardware is not the same but since the operating system and all software is
identical, the difference should have no impact on testing results.

Parameter Value
GPU name Nvidia Tesla K80
GPU memory (GB) 12
CPU name Intel Xeon E5-2686
number of CPU cores 4
CPU frequency (GHz) 2.30
RAM (GB) 64

Table 5.3: Hardware parameters of the first instance

Parameter Value
GPU name Nvidia Tesla K80
GPU memory (GB) 8
CPU name Intel Xeon E5-2686
number of CPU cores 16
CPU frequency (GHz) 2.30
RAM (GB) 122

Table 5.4: Hardware parameters of the second instance

5.1.4 Experiment variables

The experiment variables can be split into two groups: boolean and numerical.
The first group consists of certain components of the system which might
be used in data processing and model training but also can be skipped or
disregarded. Two of these are the global and local conditioning of the model,
which serve to augment the model with additional information. By testing a
model trained with these turned off, we can measure how great improvement
they bring, if any. In all experiments, at least one of them needs to be
included since otherwise the structured data would be disregarded and all

1https://aws.amazon.com/

33 ctuthesis t1606152353

5. Experiments
generated sentences would be the same. Another boolean parameter which
modifies the data processing is removing the punctuation from the natural
language sentences. As the punctuation is quite common, removing it might
help the model focus on the more rare words.
The first numerical variable is the size of the vocabulary. With lowering the
size, more words in sentences get replaced with field names and the sentences
might become more general. This might help the model to generalize. Another
hyperparameter is the size of the context n. The higher this value becomes, the
better should the model perform, but lower values might speed up the training
process. The variables which come from the neural network hyperparameters
are learning rate and number of epochs. The last variable is used during
inference, and it is the beam size in beam search. All of the hyperparameters
are summarized in tables 5.5 and 5.6 for boolean and numerical variables
respectively. The values which are experimented on are in the "Values" column.
Default values, which are fixed whenever we experiment on the others, are
highlighted in bold.

Name Values
Local, global cond. True/True, False/True, True/False
Remove punctuation True, False

Table 5.5: Boolean hyperparameters

Name Values
Vocabulary size 5 000, 10 000, 20 000
n 5, 10, 15
beam size 5,10,15,20

Table 5.6: Numerical hyperparameters

In table 5.7, we show hyper parameters that were fixed during training.
All of them were taken from the original paper [LGA16]. Most of them
are hyperparameters of the neural network. Hyperparameters d and g are
embedding sizes for local and global conditioning respectively, nhu is the
number of units in the hidden layer, α is the learning rate and f is the
minimum number of times a table key appears in a dataset to be included.

ctuthesis t1606152353 34

................................ 5.1. Experiment description

Name Value
d 64
g 128
nhu 256
iterations 20
α 0.025
f 100

Table 5.7: Fixed hyperparameters

A question which we would also like to answer is, how the system reacts
to differences in the structured data? For example, how will the generated
sentence be different if we include person’s birth date, name, and occupation
and if we include only their name and occupation? The expected result would
look like John Doe, born January 1, 1982, is a British actor, respective John
Doe is a British actor, but we have to experiment to find out if the system can
generalize that much. Also, what could happen if only a name was inputted
into the system?

5.1.5 Metrics

The first metric which we will measure is BLEU[PRWjZ02]. Originally
developed for evaluating machine translation models, it is intended to mimic
human judgment as close as possible. The key idea is replacing previously
used standard n-gram precision with modified n-gram precision. The standard
n-gram precision counts all n-grams in candidate sentence which occur at least
once in any reference sentence, then divides this count by the length of the
candidate sentence. In the modified n-gram precision, MCref ,the maximum
number of times each candidate n-gram occurs in any reference sentence is
computed first. Then, the count of each n-gram in the candidate sentence is
clipped to MCref . These clipped counts are added and divided by candidate
sentence length to obtain the result. The improvement is illustrated in the
following example.

Figure 5.1: Example candidate and reference sentences.

35 ctuthesis t1606152353

5. Experiments
The candidate translation seen in figure 5.1 is obviously not accurate at

all, it is just a very probable word generated over and over. However, due
to precision metric imperfection, it achieves score of 1 since all candidate
unigrams occur in both reference sentences. R(wi) is the function that returns
1 if wi occurs at least in one reference, 0 otherwise.

p = R(w1) + ...+R(w7)
len(sc)

= R(the) + ...+R(the)
7 = 7

7 = 1

This implies a perfect translation which is not the case as (apart from other
inconsistencies) many reference words are missing. The modified n-gram
precision achieves score of 2

7 :

MCref (the) = max(2, 1) = 2

p1 = min(MCref (the), Cc(the))
len(sc)

= min(2, 7)
7 = 2

7

To get more accurate values, BLEU combines modified n-gram precisions
for different values of n. It does so by computing geometric mean (standard
mean is a worse fit for this since the decay in values with increasing n is
exponential). Another problem BLEU needs to deal with is too long or
too short candidate sentences. By design, BLEU already penalizes overly
long sentences. For candidate sentences which are too short, the authors
introduce a brevity penalty, which is 1 if the reference and candidate have
the same number of words, and increases with decreasing candidate length.
The authors suggest computing the brevity penalty over the whole corpus
instead of sentence by sentence in order to allow the model some freedom.
The brevity penalty (BP) is

BP =
{

1, if c > r

e(1−r/c) otherwise

where c is candidate length and r is reference length. The final BLEU formula
is

BLEU = BP · exp(
N∑

n=1
wnlogpn)

where pn are the modified n-gram precisions and wn are weights. The reason
for using BLEU in our experiments is that our system outputs a candidate
sentence which we compare to a reference sentence, similarly to machine
translation. However, the resulting BLEU values might appear low since the
metric can improve with a higher number of reference sentences, but we have
only one. We examine modified n-gram precisions with n ranging from 1 to 4
as well as their combination (with uniform weights) - total BLEU.
The other metric which we use is perplexity. The perplexity of language
model q(X) over a sequence of length N is defined as

2− 1
N

∑N

i=1 log2q(Xi)

ctuthesis t1606152353 36

.................................. 5.2. Experiment results

Perplexity[JM00] is indirectly proportional to conditional probability and
therefore we desire to minimize it since that maximizes the probability.
Perplexity can be interpreted as a weighted average branching factor, that
is, the number of words which could come next in the sequence. The lowest
value of perplexity is therefore 1 and it has no upper bound.

5.2 Experiment results

5.2.1 Results

Variable BLEU Perplexity
default 15.1% 1.0
Local only 23.1% 1.13
Local + global 0.05% 1.0
Remove punctuation 16.1% 1.0
5k words 20.7% 1.25
10k words 21.9% 1.32
5-gram 19.2% 1.0
15-gram 15.1% 1.0
5 beam 22.6% 1.33
15 beam 22.3% 1.31
20 beam 22.3% 1.31

Table 5.8: Experimenting on Wikipedia dataset, emboldened are the best
(meaningful) results.

Variable BLEU Perplexity
default 27.9% 1.16
Local only 26.9% 1.30
Local + global 26.5% 1.26
Remove punctuation 28.2% 1.19
5-gram 27.3% 1.20
15-gram 27.9% 1.16
5 beam 27.8% 1.19
15 beam 27.8% 1.19
20 beam 27.8% 1.19

Table 5.9: Experimenting on restaurant dataset, emboldened are the best results.

37 ctuthesis t1606152353

5. Experiments

Figure 5.2: Plot showing BLEU results on Wikipedia dataset. Result of model
with default parameters is represented by horizontal line.

Figure 5.3: Plot showing perplexity results on Wikipedia dataset. Result of
model with default parameters is represented by horizontal line.

ctuthesis t1606152353 38

.................................. 5.2. Experiment results

Figure 5.4: Plot showing BLEU results on restaurant dataset. Result of model
with default parameters is represented by horizontal line.

Figure 5.5: Plot showing perplexity results on restaurant dataset. Result of
model with default parameters is represented by horizontal line.

5.2.2 Analysis

Judging from the low BLEU and perplexity scores, the system was unable to
learn the model of the Wikipedia sentences in most training settings. Only the
model containing just the local conditioning produced a little better results
than the rest. It appears that some sort of error occurred during training
and the network overfit the model.
Experiments with vocabulary were not performed on the restaurant dataset

39 ctuthesis t1606152353

5. Experiments
due to its small size which resulted in the vocabulary containing around only
700 words. The best result was achieved by the model which disregarded
punctuation in the original training sentences. Since punctuation appears
often in the sentences, removing it likely caused the probability to be dis-
tributed more evenly over words and improving performance. The perplexity
is quite low in all cases, which hints at training set overfitting. Modifying the
beam size had no effect on the result.

5.2.3 Human evaluation

In this section, we compare sentences generated by various models from the
same table.

Field Value
name_1 miroslav
name_2 popov
nationality_1 cze
nationality_2 czech
birth_date_1 14
birth_date_2 june
birth_date_3 1995
birth_place_1 dvur
birth_place_2 kralove
birth_place_3 nad
birth_place_4 labem
birth_place_5 ,
birth_place_6 czech
birth_place_7 republic
article_title_1 miroslav
article_title_2 popov

Table 5.10: A table from the testing split of the Wikipedia dataset

ctuthesis t1606152353 40

.................................. 5.2. Experiment results

Sentence
of of of of of of of of of of of of of of of of of of of of
is is is is is is is is is is is is is is is is is is is is
popov “ “ ” ” ” , <UNK> -rrb- , and , <UNK> , <UNK> , , and
argentinian <UNK>
14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
-lrb- -lrb- -lrb- -lrb- -lrb- -lrb- -lrb- -lrb- -lrb- -lrb- -lrb- -lrb-
is is is is is is is is is is is is is is is is is is is is
miroslav fullname_2 is an american film actor , who is currently
playing for the <UNK> <UNK> of the university
bernhard popov name_3 -lrb- born june 14 , <UNK> -rrb- is an
american singer and film actor , best known

Table 5.11: Sentences generated by various models on one of the tables from
Wikipedia dataset.

Field Value
name_1 red
name_2 door
name_3 cafe
phone_1 4152828283
match_1 yes

Table 5.12: A table from the testing split of the restaurant dataset

Sentence
red door cafe is a nice restaurant that allows kid -s and are good
for breakfast and is located at
red door cafe is a good place for dinner and their phone number is
4152828283
colibri mexican bistro is moderate -ly priced restaurant that allows kid
-s in the hayes valley area
red door cafe phone number is 4152828283 and allows child -s and is
good for breakfast and allows child -s
red door cafe is a nice restaurant that is between price_2 and price_4
phone number of red door cafe is 4152828283
red door cafe is a nice restaurant that is good for breakfast cafe ’s
phone number is 4152828283

Table 5.13: Sentences generated by various models on one of the tables from
restaurant dataset.

The table 5.11 confirms that the models were not trained successfully. In
most of the cases, the sentence consists only of the most probable word which

41 ctuthesis t1606152353

5. Experiments
is repeatedly generated. Here, an increase of the beam size slightly improves
the results, but there is still no coherent sentence.
In table 5.13 we see sentences generated by different models based on a table
5.12 from restaurant dataset. The order of the models is the same as in
the result table (the beam sizes are excluded). The generated sentences are
basically grammatically correct, which means that the core n-gram language
model learned its parameters quite well. However, it can be observed that
there are discrepancies between the sentences and the structured data. On
the other hand, the generated sentences are not the same and therefore the
features extracted from the structured data must have some influence on
the output (if they had not, all sentences would be the same since they are
initialized in the same way). The low perplexity again hints at overfitting
the model on the training data. The name is correctly included in all of
them except the third one which is wrong altogether. That model works only
with local conditioning and context (no global conditioning) but this resulted
in all sentences in the testing set being almost the same. The key piece of
information, the phone number, is included in four sentences. However, all
the sentences contain redundant information (in some cases even repeated),
which is undesired as it might be incorrect. In the fifth sentence, delexicalized
tokens price_2 and price_4 appear because they were not in the source table
and could not be swapped with words.

5.3 Testing on subsets of information

Since the system failed to produce a model with any meaningful results over
the Wikipedia dataset, we will include only the restaurant data in this section.
As the input to be experimented on we chose a table containing information
about a "Red Door Cafe", one over which all models performed rather well.

Field Value
name_1 red
name_2 door
name_3 cafe
address_1 1608
address_2 bush
address_3 street
match_1 yes
sentence the address of red door cafe

is 1608 bush street

Table 5.14: First table and sentence from the restaurant dataset.

ctuthesis t1606152353 42

............................5.3. Testing on subsets of information

The first example is just a name and address, which the system handles
without fail. The sentence is grammatically correct and contains all provided
information. It is shown that the system learned to provide the construct The
address of X is to the beginning of the sentence when an address is provided
in the table.

Field Value
name_1 red
name_2 cafe
address_1 1608
address_2 bush
address_3 street
phone_1 4152828283
match_1 yes
sentence the address of red door cafe

is 1608 bush street
and the phone number is 4152828283

Table 5.15: Second table and sentence from the restaurant dataset. Note that
the name is incomplete

In the second example, we removed a part of the establishment’s name.
Despite that, the system generated the name in full. This was likely due to
the language model overruling the structured data conditioning. The added
piece of information (phone number) was appended successfully to the end of
the sentence.

Field Value
name_1 red
name_2 door
name_3 cafe
kidsallowed_1 no
goodformeal_1 brunch
match_1 yes
sentence red door cafe is good for brunch

and does not allow kid -s

Table 5.16: Third table and sentence from the restaurant dataset.

The -s token here is a modifier which indicates that the previous word should
be transformed to plural form. Again the system performs well, correctly
stating the meal and adding a negative form.

43 ctuthesis t1606152353

5. Experiments
Field Value
name_1 red
name_2 door
name_3 cafe
goodformeal_1 brunch
pricerange_1 cheap
match_1 yes
sentence red door cafe is cheap good

and does not allow kid -s

Table 5.17: Fourth table and sentence from the restaurant dataset.

In the next example, the system runs into a bit of trouble. The expression
cheap good might look wrong but this might be just missing a comma as this
dataset does not contain punctuation. However, the information about the
meal is not included in the sentence and the restaurant is only described as
"good". On top of that, information about children which does not appear in
the table is generated. Only correct parts are the name and the information
about price.

Field Value
name_1 red
name_2 door
name_3 cafe
near_1 lower
near_2 pacific
near_3 heights
match_1 yes
sentence red door cafe is near the lower

pacific heights is
moderate -ly priced

Table 5.18: Fifth table and sentence from the restaurant dataset.

The name and location are provided correctly but there is redundant, gram-
matically wrong and possibly incorrect mention of price. The reason this
happened is probably the way of generating the sentences - the beam search
is terminated when the candidates reach a fixed length, which sometimes
results in sentences longer than needed.

ctuthesis t1606152353 44

Chapter 6

Conclusion and future work

We researched currently used approaches for natural language generation.
We chose one of the methods and implemented a natural language generation
system based on it. We experimented with the system over two datasets,
Wikipedia biography articles and dialogues focused on restaurant reservation.
The system, when using the best model, reached 23.1 average BLEU on the
first dataset and average 28.2 BLEU on the second dataset. We failed to
reproduce the BLEU of 34.7 from the original paper but in many cases the
output is correct, as illustrated by the following examples.

Field Value
name_1 red
name_2 door
name_3 cafe
address_1 1608
address_2 bush
address_3 street
match_1 yes
sentence the address of red door cafe

is 1608 bush street

Table 6.1: First example of correct sentence from the restaurant dataset.

45 ctuthesis t1606152353

6. Conclusion and future work
Field Value
name_1 red
name_2 door
name_3 cafe
kidsallowed_1 no
goodformeal_1 brunch
match_1 yes
sentence red door cafe is good for brunch

and does not allow kid -s

Table 6.2: Second example of correct sentence from the restaurant dataset.

The evaluation by hand showed that while the system is able to learn the
language model and generate coherent sentences, there is usually erroneous
or redundant information included. Further experimentation and changes to
the implementation are probably required. Once these issues are solved and
the performance improves, the next step is integrating the system into the
socialbot Alquist, possibly trained on data collected from its previous chat
sessions with its users.

ctuthesis t1606152353 46

Appendix A

Bibliography

[AAB+15] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,
Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jef-
frey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow,
Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia,
Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Lev-
enberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit
Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng, TensorFlow: Large-scale machine learn-
ing on heterogeneous systems, 2015, Software available from
tensorflow.org.

[BdM+92] Peter F. Brown, Peter V. deSouza, Robert L. Mercer, Vincent
J. Della Pietra, and Jenifer C. Lai, Class-based n-gram models
of natural language, Comput. Linguist. 18 (1992), no. 4, 467–
479.

[BDVJ03] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Chris-
tian Janvin, A neural probabilistic language model, J. Mach.
Learn. Res. 3 (2003), 1137–1155.

[C+15] François Chollet et al., Keras, https://keras.io, 2015.

[CFDGBT09] Michael C Frank, Noah D Goodman, and Joshua B Tenenbaum,
Using speakers’ referential intentions to model early cross-
situational word learning, 578–85.

47 ctuthesis t1606152353

https://keras.io

A. Bibliography.....................................
[Dal89] Robert Dale, Cooking up referring expressions, Proceedings of

the 27th Annual Meeting on Association for Computational
Linguistics (Stroudsburg, PA, USA), ACL ’89, Association for
Computational Linguistics, 1989, pp. 68–75.

[DLP16] Suranjan De and Anita Lee-Post, Performance analysis of beam
search with look ahead, Journal of computing and information
technology 5(4) (2016), 136 – 140.

[DR95] Robert Dale and Ehud Reiter, Computational interpretations
of the gricean maxims in the generation of referring expressions,
CoRR cmp-lg/9504020 (1995).

[GK18] Albert Gatt and Emiel Krahmer, Survey of the state of the
art in natural language generation: Core tasks, applications
and evaluation, J. Artif. Intell. Res. 61 (2018), 65–170.

[Hay98] Simon Haykin, Neural networks: A comprehensive foundation,
2nd ed., Prentice Hall PTR, Upper Saddle River, NJ, USA,
1998.

[JGBM16] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas
Mikolov, Bag of tricks for efficient text classification, CoRR
abs/1607.01759 (2016).

[JM80] F Jelinek and Robert Mercer, Interpolated estimation of
markov source parameters from sparse data., 381–397, 401.

[JM00] Daniel Jurafsky and James H. Martin, Speech and language
processing: An introduction to natural language processing,
computational linguistics, and speech recognition, 1st ed., Pren-
tice Hall PTR, Upper Saddle River, NJ, USA, 2000.

[JMRS91] F. Jelinek, B. Merialdo, S. Roukos, and M. Strauss, A dy-
namic language model for speech recognition, Proceedings of
the Workshop on Speech and Natural Language (Stroudsburg,
PA, USA), HLT ’91, Association for Computational Linguistics,
1991, pp. 293–295.

[JW05] Pamela W. Jordan and Marilyn A. Walker, Learning content
selection rules for generating object descriptions in dialogue, J.
Artif. Intell. Res. 24 (2005), 157–194.

[KJ13] Dinesh Kumar Kashyap and Gurpreet Singh Josan, A trigram
language model to predict part of speech tags using neural
network, Intelligent Data Engineering and Automated Learning
– IDEAL 2013 (Berlin, Heidelberg) (Hujun Yin, Ke Tang, Yang
Gao, Frank Klawonn, Minho Lee, Thomas Weise, Bin Li, and
Xin Yao, eds.), Springer Berlin Heidelberg, 2013, pp. 513–520.

ctuthesis t1606152353 48

..................................... A. Bibliography

[LGA16] Rémi Lebret, David Grangier, and Michael Auli, Neural text
generation from structured data with application to the biogra-
phy domain, Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, Association for
Computational Linguistics, 2016, pp. 1203–1213.

[Lid20] G. Lidstone, Note on the general case of the Bayes–Laplace
formula for inductive or a posteriori probabilities., Transactions
of the Faculty of Actuaries 8 (1920), 182–192.

[LOW12] Gennadi Lembersky, Noam Ordan, and Shuly Wintner, Lan-
guage models for machine translation: Original vs. translated
texts, Comput. Linguist. 38 (2012), no. 4, 799–825.

[LPM15] Minh-Thang Luong, Hieu Pham, and Christopher D. Man-
ning, Effective approaches to attention-based neural machine
translation, CoRR abs/1508.04025 (2015).

[PC98] Jay M. Ponte and W. Bruce Croft, A language modeling ap-
proach to information retrieval, Proceedings of the 21st Annual
International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval (New York, NY, USA),
SIGIR ’98, ACM, 1998, pp. 275–281.

[PH08] Bo-June Paul) Hsu, Generalized linear interpolation of lan-
guage models, 136 – 140.

[PRWjZ02] Kishore Papineni, Salim Roukos, Todd Ward, and Wei jing
Zhu, Bleu: a method for automatic evaluation of machine
translation, 2002, pp. 311–318.

[Ros58] F. Rosenblatt, The perceptron: A probabilistic model for in-
formation storage and organization in the brain, Psychological
Review (1958), 65–386.

[RPK+18] Ashwin Ram, Rohit Prasad, Chandra Khatri, Anu Venkatesh,
Raefer Gabriel, Qing Liu, Jeff Nunn, Behnam Hedayatnia,
Ming Cheng, Ashish Nagar, Eric King, Kate Bland, Amanda
Wartick, Yi Pan, Han Song, Sk Jayadevan, Gene Hwang, and
Art Pettigrue, Conversational AI: the science behind the alexa
prize, CoRR abs/1801.03604 (2018).

[SHS+16] Shikhar Sharma, Jing He, Kaheer Suleman, Hannes Schulz, and
Philip Bachman, Natural language generation in dialogue us-
ing lexicalized and delexicalized data, CoRR abs/1606.03632
(2016).

[SML+17] Lei Sha, Lili Mou, Tianyu Liu, Pascal Poupart, Sujian Li,
Baobao Chang, and Zhifang Sui, Order-planning neural text
generation from structured data, CoRR abs/1709.00155
(2017).

49 ctuthesis t1606152353

A. Bibliography.....................................
[WGM+16] Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić, Lina M. Rojas-

Barahona, Pei-Hao Su, David Vandyke, and Steve Young,
Multi-domain neural network language generation for spoken
dialogue systems, Proceedings of the 2016 Conference on North
American Chapter of the Association for Computational Lin-
guistics (NAACL), Association for Computational Linguistics,
June 2016.

[WJPJ74] Paul Werbos and Paul J. (Paul John, Beyond regression : new
tools for prediction and analysis in the behavioral sciences /.

ctuthesis t1606152353 50

Appendix B

Code manual

This section describes the usage of the system implementation. The imple-
mentation is done in Python 3 and requires the following libraries: Numpy,
Tensorflow, Keras, and NLTK. First, parameters need to be specified in the
script config.py. To process the input and generate intermediate data, run
data_process.py. This creates a folder labeled with hash encoding selected
parameters. The hash needs to be specified on the input of the next script,
main.py. In it, the model is trained and saved with an extended hash (addi-
tional parameters are included). Finally, you can test the model by running
testing.py with the model name as a parameter, which saves the generated
sentences to a file and outputs the resulting BLEU and perplexity values.

51 ctuthesis t1606152353

ctuthesis t1606152353 52

Appendix C

CD contents

. natural_language_generation_from_structured_data.pdf - text of this
thesis. natural_language_generation_from_structured_data.zip - source code
of this thesis in LATEX. StructuredDataNLG.zip - source code of implementation in Python and
data from the restaurant dataset

53 ctuthesis t1606152353

	Project Specification
	Introduction
	Motivation
	Goals
	Structure

	Theoretical background
	Language model
	N-gram language model
	Smoothing
	Neural networks
	Neural language model
	Natural Language Generation
	Content determination
	Text structuring
	Sentence aggregation
	Lexicalization
	Referring expression generation
	Linguistic realization

	Related work
	Neural text generation
	Order-planning with hybrid attention
	Lexicalized and delexicalized data

	Implementation
	Preprocessing
	Structured data
	Natural language data
	Processing

	Neural language model
	Architecture
	Input
	Output

	Decoding
	Beam search

	Code documentation

	Experiments
	Experiment description
	Task
	Data
	Training environment
	Experiment variables
	Metrics

	Experiment results
	Results
	Analysis
	Human evaluation

	Testing on subsets of information

	Conclusion and future work
	Bibliography
	Code manual
	CD contents

