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Abstract

The dialogue management is a task of conversational artificial intelligence. The goal of the
dialogue manager is to select the appropriate response to the conversational partner condi-
tioned by the input message and recent dialogue state. The thesis aims to apply recurrent
neural networks for dialog management task with as little hard-coded rules as possible. We
will perform experiments on the Dialogue bAbI Task datasets and the dataset of dialogues
collected from interactions between users and socialbot Alquist. We will measure the turn
and dialogue accuracy of several architectures of dialogue manager. We will use Bayesian
hyperparameter optimization to improve the accuracy of proposed architectures.

Keywords: Conversational AI, dialogue manager, hybrid code networks, recurrent neural
networks, convolutional neural networks, word embeddings, bayesian hyperparameter opti-
mization, dialogue bAbI Tasks

Abstrakt

Dialogový management je úkol konverzačńı umělé inteligence. Ćılem dialogového manageru
je zvolit vhodnou reakci pro dialogového partnera závislou na vstupńı zprávě a aktuálńım
stavu dialogu. Ćılem této práce je aplikovat rekurentńı neuronové śıtě na úkol dialogového
managementu s použit́ım co nejmenš́ıho počtu předpřipravených pravidel. Provedeme exper-
imenty na souboru dialogových bAbI dat a na souboru dat dialog̊u źıskaných z interakćı mezi
uživateli a socialbotem Alquistem. Změř́ıme přesnost zvoleńı odpovědi a zvoleńı odpověd́ı v
celém dialogu několika architektur dialogových manažer̊u. Použijeme Bayesovskou optimal-
izaci hyperparametr̊u pro zvýšeńı přesnosti navrhovaných architektur.

Kĺıčová slova: Konverzačńı umělá inteligence, dialogový manager, hybrid code networks,
rekurentńı neuronové śıtě, konvolučńı neuronové śıtě, slovńı embeddingy, bayesovská opti-
malizace hyperparametr̊u, dialogový bAbI dataset
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Chapter 1

Introduction

Personal voice assistants and text chatbots are newly emerging types of user interface. Their

increasing popularity drives the need for better dialogue managers. This need will be accel-

erated even more by the industry automatization, in which voice-based user interface backed

by conversational artificial intelligence will play the important role.

Dialogue management is an essential task in the domain of conversational artificial intel-

ligence. The dialogue manager is the main part of the dialogue system, which communicates

with users in natural human language. The main goal of the dialogue manager is to select the

most appropriate response. The decision of dialogue manager is conditioned on the message

received from the conversational partner and the state of the dialogue.

In this thesis, we will explore the theoretical background of dialogue managers, and we

will describe the recent approaches of dialogue management. We will use three datasets for

measuring the performance of dialogue managers. The first two will be dialogue bAbI Tasks

5 and 6. The third dataset will be Alquist conversational dataset, which consists of dialogues

collected during one year from interactions between users and socialbot Alquist.

We will propose new architectures of dialogue managers inspired by the Hybrid code

networks[1], using word2vec and fastText word embedding vectors, and convolutional and

recurrent neural networks as inputs to the dialogue system. We will use hyperparameter op-

timization to find the optimal set of hyperparameters and demonstrate, that hyperparameter

optimization can lead to improved performance. We will measure the turn and dialogue accu-

racy on the dialogue bAbI Tasks 5 and 6 and the Alquist conversational dataset. Afterward,

we will compare the results with our baseline of Hybrid code networks.

Motivation

My motivation to work on this thesis is socialbot Alquist, which was the second place winner

of Alexa Prize 2017 competition and is competing in the Alexa Prize 2018 again. The goal

of the competition is to create conversational agent able to hold a coherent and engaging

conversation with the user for 20 minutes about popular topics [2].

We face the problem of lack of appropriate learning data for the domain of popular topics

1



2 CHAPTER 1. INTRODUCTION

such as movies, sports, news, books or fashion in this competition. We used rule-based dialog

manager for Alexa Prize 2017, but it became evident that this approach is not sustainable

for growing requirements of users on the quality and depth of conversations. It leads us to

use machine learning-based dialogue manager in Alexa Prize 2018 which uses data collected

from the previous rule-based system.

Thesis structure

The first part of this thesis (chapters 2 and 3) focuses on the theory behind dialogue managers.

The second part (chapter 4) describes the implemented architectures of dialogue managers.

The third part (chapter 5) describes used datasets. The fourth part (chapter 6) explains the

experiments and presents the results. The fifth part (chapter 7) evaluates the results of the

thesis.



Chapter 2

Theoretical Background

2.1 Dialogue manager

Dialogue manager is the crucial part of the dialogue system. The task of dialogue manager

is to decide the next action of dialogue system according to the current context[3]. The

context can include the current and previous messages, recognized entities, detected intent

or sentiment of the message.

We can divide the dialogue managers according to how they produce the response to

Retrieval-based dialogue managers and Generative-based dialogue managers[4]. We can also

divide them according to their system to decide the next action to Rule-based dialogue

managers, End-to-end dialogue manages and Hybrid dialogue managers.

2.1.1 Context

The context is the important part of the dialogue managers. The dialogue manager can

be stateful thanks to the context. It is required because human conversation relies on its

context[3]. The context contain all the messages and responses of the dialogue, recognized

entities, intents of all previous messages or results of the API calls. It can also contain

information about the user, like his preferences, location or age.

2.1.2 Retrieval-based dialogue managers

The retrieval-based dialogue managers use the set of predefined responses. They use rules or

ranking mechanisms to select the next response[3]. These systems are not able to generate

novel responses. Thanks to the set of predefined responses, the system designer has complete

control over the result. The retrieval-based dialogue manager cannot in theory produce

grammatically incorrect responses.

2.1.3 Generative-based dialogue managers

The generative-based dialogue managers do not rely on the set of predefined responses. They

instead generate the whole response[5]. It allows them to produce novel responses. These

3



4 CHAPTER 2. THEORETICAL BACKGROUND

dialogue manager usually relies on machine learning, mainly on the models similar to models

of machine translation. These models are usually hard to train, and they require a large

amount of data. The lack of control over generated responses can be problematic, as these

models tend to produce grammatically incorrect, short and generic responses[4].

2.1.4 Rule-based dialogue managers

The core of rule-based dialogue managers is the set of rules producing the response based on

the state of the dialogue. Systems of this type are more easily tunable. They can also be

very robust in the narrow domains. However, it is very complicated to find the right set of

rules for more complicated domains[1]. Notable rule-based dialogue manager is ELIZA[6].

2.1.5 End-to-end dialogue managers

The end-to-end dialogue managers use the machine learning to learn the policy to select or

generate the response. The main advantage is that these dialogue manager can be learned

without any domain-specific knowledge[7]. The disadvantage is that this method requires

many training data. The generic, short and non-diverse responses like “I don’t know” or

“That is interesting” learned by these systems can also be problematic[8]. External knowledge

is hard to insert into them too. These reasons make end-to-end dialogue systems more suited

for non-goal oriented tasks than for goal-oriented tasks[9].

2.1.6 Hybrid-based dialogue managers

The hybrid-based dialogue managers combine the rule-based dialogue managers and end-to-

end dialogue managers. It applies rules to the input and output processing[1]. It can be

masking of the entities or transformation of context for the input, and making API calls or

retrieving information from knowledge bases and inserting their results into the response for

the output. The dialogue policy is learned from the data. These dialogue managers allow

external knowledge to be inserted in the dialogue, and they can be more robust without the

need to create significant sets of rules[1].

2.2 Word embeddings

The word embeddings is a technique of NLP, in which words or phrases from the input

dictionary are mapped to a vector of real numbers. The words are mapped from space

with one dimension per word into space with lower dimension. The advantage of the word

embeddings is the fact that it removes the sparsity of input data. The word embeddings

also allow the words with similar meaning to have a similar vector representation. This

representation is useful for capturing syntactic and semantic regularities. Relation-specific

vector offset characterizes each relationship. It allows us to perform vector-oriented reasoning

based on the offsets between words [10]. The example of relationships between word vectors
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is demonstrated in the figure 2.11. The notable word embeddings are the Word2Vec[11],

GloVe[12] and fastText[13].

Figure 2.1: Relationships between word embedding vectors [14]

2.2.1 Word2vec

Word2vec is a group of models used to create word embedding vectors which were invented

by Tomas Mikolov. Two models of Word2vec are continuous bag-of-words and skip-gram.

Figure 2.2: Continuous bag-of-words and skip-gram models [15]

The task of the continuous bag-of-words model is to predict the word out of context

of surrounding words. The order of context words does not play any role in this model.

The skip-gram model predicts the surrounding context words based on the given the word.

Closer context words are weighted more than distant context words[11]. Both models achieve
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comparable results. Continuous bag-of-words model is faster and more suitable for larger

datasets. Skip-gram model performs better in case of infrequent words and is suitable for

small datasets[16]. The models can be trained using hierarchical softmax or negative sam-

pling[11].

2.2.2 GloVe

Figure 2.3: Example of GloVe word-word co-occurrence matrix [12]

GloVe stands for Global Vectors for Word Representation, and it is a model developed by

Jeffrey Pennington, Richard Socher and Christopher D. Manning from Stanford University.

The GloVe model is trained on the non-zero elements of word-word co-occurrence matrix.

This matrix tabulates, how frequently words co-occur with one another in the corpus. GloVe

is a log-bilinear model with a weighted least-squares objective. The training objective of

GloVe is to learn word vectors such that their dot product equals the logarithm of the words

probability of co-occurrence[12].

2.2.3 fastText

The fastText model is based on the skip-gram model, where each word is represented as a

bag of character n-grams. A vector representation is associated with each character n-gram

and words are being represented as the sum of these representations. By using only a distinct

vector representation for each word, the skip-gram model ignores the internal structure of

words, but fastText is suitable for morphologically rich languages thanks to the utilization of

character n-grams [13]. For n=3, the word “where” is represented by

<wh,whe, her, ere, re> and <where>

for example. We use all n-grams larger or equal to 3 and smaller or equal to 6 in practice.

FastText model is also capable of building word vectors for words that do not appear in

the training set. For such words, we average the vector representation of its n-grams [13].

FastText also significantly drops the time of training thanks to a hierarchical softmax based

on the Huffman coding tree [17]. The memory requirements of fastText embedding vectors

can be reduced by quantization and by pruning the vocabulary without significant loss of the

performance [18].
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2.3 Neural networks

Neural networks are a class of machine learning algorithms taking inspiration from biological

brain. It learns to solve the task using the examples without any prior knowledge. It consists

of a large number of interconnected elements called neurons. The single neuron is equivalent

to a perceptron[19].

Figure 2.4: Perceptron [20]

v =

m∑
i=

xiwi + b

Neurons are usually grouped into layers. The layers of neural networks form acyclic graph,

in which information travels in one way only. There is also a modification of neural network,

in which the output information can be fed to the input again. This modification is called

Recurrent neural networks. The processing of input by layer can be represented as a single

matrix multiplication between input vector xk and weight matrix W , and the sum of bias

vector b.

xk+ = xkW + b

The activation function is applied to the output of each layer of the neural network. There

are several possible activation functions to use. We will list examples.

Step activation function

The step activation function was used in the early perceptron[19]. However, it is not useful

for gradient-based learning methods such as backpropagation due to its non-continuation.

f(x) =

1, if x > 0

0, otherwise
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Figure 2.5: Deep neural network [20]

Logistic sigmoid activation function

Logistic sigmoid activation function is a function which is differentiable. This attribute makes

it useful for gradient-based learning methods. However, it suffers from vanishing gradient,

where the gradient of the function drops too close to zero for the extreme input values [21].

f(x) =
1

1 + e−x

Tanh activation function

Unlike the Logistic sigmoid activation function, the Tanh activation function is symmetric

around the origin. Its been shown that this property leads to faster convergence of the

training [22].

f(x) = tanh(x)

ReLU activation function

The Rectified Linear Unit[23] addresses the problem of the vanishing gradient because, for the

inputs bigger than 0, the derivative of the ReLU activation function equals 1. The problem

is the value of derivative for the inputs smaller than 0, which equals to zero. This can lead

to dying ReLU problem. The ReLU neurons can be pushed into states, in which they are

inactive for any possible input. The gradient does not flow in such state, and the neuron

is stuck in the inactive state. It is another form of vanishing gradient problem. Various

modifications of ReLU, such as Leaky ReLU[24], PReLU[25] or ELU[26] try to solve this

problem.
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f(x) =

x, if x > 0

0, otherwise

Softmax function

The Softmax function is function applied to the output layer. It transforms the vector of

arbitrary real values into a vector of a probability distribution. Softmax is commonly used

for multiclass classification[27].

f(x)j =
ezj∑K
k=1 e

zk
for j = 1...K

2.3.1 Training

The goal of neural network’s training process is to find the parameters of the neural network,

which minimize the value of loss function. Two examples of loss functions are mean squared

error and categorical cross entropy. The mean squared error is defined as

MSE =
1

n

i=1∑
n

(Yi − Ŷi)2

where Yi is the correct value and the Ŷi is prediction.

The categorical cross entropy is defined as

CE = −
n∑

i=1

YilogŶi

where Yi is the correct value and the Ŷi is prediction.

The most used technique to find the parameters minimizing the value of the loss function

is the gradient descent using backpropagation algorithm. The gradient descent is a method

to find the local minimum of the function. The finding takes place during multiple iterations.

The method calculates the derivation of the function with respect to the parameters. It uses

the derivation to update the weights accordingly.

wi+1 = wi + λi∇f(wi)

There is also approximation variant of gradient descent called stochastic gradient descent.

Stochastic gradient descent is useful when we work with large datasets. Instead of optimizing

using the whole dataset at once, we randomly select one example or a small batch of them.

The backpropagation algorithm[28] applies the chain rules of derivatives of composed

functions, representing each layer, to update the weights. The forward pass through the

neural network is performed at first. We compute the loss given the output of neural network

and the ground truth. The last step is to update the weights of layers from output to the
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input of the neural network.

2.3.2 Overfitting

Overfitting is a common problem of the neural networks. It is caused by their expressive

power. The neural network instead of learning the generalization of the given problem learns

to remember correct output for each training example. One of the ways how to detect the

overfitting is to use the validation dataset and measure the classification error and loss there.

There are several possibilities how to deal with overfitting. We can use early stopping,

regularization methods or dropout. When we use the early stopping, we stop the training

process if the error of the validation dataset stops to improve.

The most used regularization method is L2 regularization. It adds an extra term to the

loss function, which is the sum of the squares of all the weights in the network multiplied by

regularization parameter divided by the size of training parameter. This extra term forces the

neural network to prefer smaller values of parameters. This fact is helpful because network

learns to use all available features and it stops to rely on the single one, which leads to better

generalization[29].

Figure 2.6: Dropout [30]

Dropout[30] is a method of preventing overfitting, in which we keep the neuron turned

on with some predefined probability. It forces the neural network to not rely on the output

of a single neuron, thus making it more robust. The intuition behind the dropout is that we

average several networks trained in the ensemble.

2.3.3 Hyperparameters

Hyperparameters are the parameters of the machine learning algorithm, which have to be

set before the training process. The hyperparameters have an impact on the results of the
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training. We use the validation set to find set of hyperparameters which achieve the low-

est classification error[31]. For neural networks, these hyperparameters can include learning

rate, number of layers, number of neurons in a layer, activation functions, keep probability

of dropout or regularization parameter. There are several ways of finding the best hyperpa-

rameters.

Manual search

This approach allows us to use our prior knowledge of the problem. However, we have to

guess the correct set of hyperparameters, observe the results of the training and manually

make a new guess of better hyperparameters given previous results.

Grid search

Grid search is exhaustive search thought manually selected subset of the space of hyperpa-

rameters. The machine learning is performed on all cartesian products of hyperparameters

and set performing the best on the validation set is selected. The grid search suffers from the

curse of the dimensionality, but it can be paralyzed thanks to independence between runs of

the algorithms[32].

Random search

Random search replaces the exhaustive search of Grid search by testing randomly selected

samples. Random search is better suited to domains, in which only part of the hyperpa-

rameters has the impact on the result of the learning process[32]. Random search is easily

parallelizable and we can input the prior knowledge by specifying the distribution, from which

we will sample the hyperparameters.

Figure 2.7: Grid and random hyperparameter search [32]
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Bayesian optimization

Bayesian optimization method for hyperparameter search builds a probabilistic model of

function mapping the hyperparameters to the loss function of machine learning algorithm.

The method iteratively evaluates the sets of hyperparameters and updates its probabilistic

model. It aims to gather observations giving the most information about the optimization

function and location of its minimum. It has been shown that Bayesian optimization achieves

better results in fewer number of iterations then Grid and Random search thanks to its ability

to reason about the results of the training run before it is executed[33][34].

Gradient-based optimization

For the machine learning algorithms, for which we can compute the gradient with respect to

the hyperparameters, we can find the best hyperparameters using the gradient descent[35].

Evolutionary optimization

Evolutionary optimization is process for finding the hyperparameters inspired by the bio-

logical concept of evolution. We sample the initial population, evaluate the fitness of the

individuals, we remove the worst individuals from the population, we modify the individuals

by operations of mutation and crossover and repeat this process from the second step until

we find a satisfactory result or the performance is no longer improving. Evolutionary opti-

mization can be used to find hyperparameters[33], architecture of the network[36][37] or even

to find the weights of the network[38].

2.4 Recurrent neural networks

The conventional neural networks can work only with the inputs of fixed length for which

they produce fixed size outputs. They also work with presumption, that inputs are mutually

independent [39]. The recurrent neural network is a modification of neural networks, which

can work with arbitrary long sequences of inputs and the previous inputs [40] can influence

following inputs.

Recurrent neural network (RNN) produces output and state vector based on the combi-

nation of input and its previous state vector. The state vector works as network’s memory,

which depends on the all previous inputs. The network can remember previous computations

thanks to this memory. Thus it can work with mutually dependent inputs of arbitrarily

lengths[40].

The most basic Recurrent neural network can be expressed as:

st = f(xtU + st−1V )

yt = g(stW )



2.4. RECURRENT NEURAL NETWORKS 13

Figure 2.8: Modules of recurrent neural network [41]

where st, xt and yt are state, input and output vector at time t; U , V and W are weight

matrices; and f and g are activation functions.

RNN should be able to use a memory of arbitrarily long input sequences. However, they

struggle to work with long sequences in practice [42]. Long Short Term Memory (LSTM) is

a modification of RNN which addresses this problem.

2.4.1 Long Short Term Memory

Figure 2.9: Modules of Long Short Term Memory [41]

The LSTM [43] is version of RNN, which is designed to remember information over a big

number of steps. The reason for this is the introduction of the cell state, which flows through

all steps of computation. Each LSTM cell can work with the content of cell state through

forget gate, input gate, and the output gate.

The LSTM can be expressed as:

ft = σ(Wf [ht−1, xt] + bf )

it = σ(Wi[ht−1, xt] + bi)
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C̃t = tanh(WC [ht−1, xt] + bC)

Ct = ft ∗ Ct−1 + it ∗ C̃t

ot = σ(Wo[ht−1, xt] + bo)

ht = ot ∗ tanh(Ct)

where xt is input at state t, Ct−1 and ht−1 are cell state and output of state t− 1 and ∗
is elementwise multiplication.

There is also RNN cell called Gated recurrent unit[44] (GRU), which tries to solve the

same problems as LSTM with smaller number of parameters. It has been demonstrated,

that performance of GRU and LSTM is similar, only GRU achieving better performance on

smaller dataset[45].

2.5 Convolutional neural networks

Regular neural networks don’t scale well to big inputs as images for example. The number

of parameters grows quickly with the size of input. Also the full connectivity of the neurons

is not necessary and may lead to overfitting[40].

Figure 2.10: Convolutional neural network [46]

The convolutional layer consists of a set of learnable filters. These filters are spatially

small, but extends through full depth of input. We slide each filter across the width and

height of the input and we compute the dot product between entries of the filter and input

at any position. This will create a new activation map. The parameters of learnable filters

are shared across all possible spatial positions.

The convolutional layer is usually followed by pooling layer. The pooling layer is a form of

non-linear down-sampling. There are several possible variants of pooling layers like average

pooling, L2-norm pooling or the most common max pooling[47]. Max pooling divides the

input into non-overlapping rectangles. It forms new feature map formed from the maximum
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of each rectangle. The motivation behind max pooling is, that the exact location of the

feature is not important. Important is its rough location against other features. It has been

demonstrated, that max pooling performs better than average pooling in practise[48]. The

main advantage of the pooling operation is the fact, that it reduces the spatial size of processed

activation map and thus reduce the number of parameters and necessary computations.

Figure 2.11: Max pooling layer [49]

The convolutional neural networks are typically applied to analyze visual imagery. They

have been successfully applied to image classification[50][51][52][53][54], face recognition[55][56],

scene labeling[57][58], human pose estimation[59][60] or document analysis[61][62]. However

they can be also applied in non-visual domains like speech recognition[63][64] or text classi-

fication[65][66].
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Chapter 3

Related work

We will review the possible types of retrieval and generative dialogue managers, includ-

ing rule-based dialogue managers, End-to-end dialogue managers and hybrid-based dialogue

managers.

3.1 Rule-based systems

Rule-based systems[9] work with the hand-coded rules. The hand-coded rules decide the

appropriate answer by detecting patterns in the user’s messages and deciding based on the

presence of patterns in the message and actual state of the dialog. The rule-based systems

work well in the constrained domains like form-filling dialogues. However, rule-based sys-

tems become less straightforward and not so accurate with growing domain and real user

interactions.

3.2 TF-IDF match

The method of TF-IDF match[9] uses matching score between the input and response, or

between input and message from the training set to select the right response. We use TF-

IDF weighted cosine similarity between bag-of-words vectors. If we match the input and

responses, then the response with the maximal score is selected. If we match the input and

message from the training set than the response following the message from the training set

with the maximal score is selected.

3.3 Semantic similarity

The method of semantic similarity works similar to TF-IDF match. The difference is, that

we match average of word embedding vectors (Word2vec[11], GloVe[12], fastText[13]) by

cosine similarity. We can use pretrained word embedding vectors, or we can train the word

embedding vectors using our training set.

17



18 CHAPTER 3. RELATED WORK

3.4 Supervised models

Supervised models[9][67] predicts the next response given the previous conversation. The

candidate response y is scored against the input x in the following way:

f(x, y) = (Ax)TBy

where A and B are d×V word embedding matrices. Input and output are treated as summed

bag-of-embeddings. The embedding are trained with margin ranking loss l:

l =

N∑
y 6=y

max(0, f(x, y)− f(x, y) +m)

where m is the margin. We sample N negative responses y per example and train with

SGD. We can think about this method as information retrieval model with learned matching

function.

3.5 Seq2Seq

Seq2Seq[68] is a class of models able to learn the mapping between input and output sequence

of arbitrary lengths. The model consists of encoder Long Short-Term Memory (LSTM)[43]

and decoder LSTM. The encoder LSTM maps input sequence into a large fixed-dimensional

vector representation, and encoder LSTM converts the output sequence from the vector

representation.

The goal of the model is to estimate the conditional probability p(y, ..., yT ′ |x, ...xT ),

where x, ...xT is an input sequence and y, ..., yT ′ is an corresponding output sequence.

Sequence lengths T and T ′ may differ. The model computes the conditional probability by

obtaining the fixed-dimensional representation v of the input sequence x, ...xT , given by the

last hidden state of encoder LSTM. Model than computes the probability of y, ..., yT ′ by

decoder LSTM whose initial hidden state is set to v:

p(y, ..., yT ′ |x, ...xT ) =

T ′∏
t=

p(yt|v, y, ..., yt−)

Each p(y|v, y, ...yt− distribution is represented with a softmax over all the words in the

vocabulary. We require that each sequence ends with a special symbol “<EOS>” representing

end of sequence in practise. Model also achieves better results, if we reverse the order of input

sequence. Model is asked to map c, b, a to a′, b′, c′, d′ instead of a, b, c to a′, b′, c′, d′. This way

it is easier for Stochastic gradient descent to “establish communication” between input and

output, because a is in close proximity to a′ and b is fairly close to b′ and so on.

The seq2seq models were initially used for machine translation. However, we can use

them as generative dialogue managers[7]. The seq2seq model learns to produce response
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conditioned on the previous message. This model can generate simple and basic conversations.

Figure 3.1: Seq2Seq [69]

3.6 Memory networks

Memory networks[70] are class of models, combining inference components with the long-

term memory component. The memory network learns how to use these two components

jointly. The memory can be read and written to, and the model is taught how to operate it

efficiently and how to use it for inference. A memory network consists of four components I,

G, O and R:

• I (input feature map) component converts the incoming input into internal feature

representation.

• G (generalization) component updates old records stored in the memory given the new

input. We call this component Generalization component because it can be used by the

network to compress and generalize its records for later use.

• O (output feature map) produces a new output given the input and saved records in

the memory. The new output is in the feature representation space.
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• R (response) converts the output from feature representation space into desired response

format. This format can be textual representation for example.

Figure 3.2: Memory network [71]

Given the input x the flow of the model is as follows:

1. Component I (input feature map) coverts the input x into internal feature representa-

tion I(x).

2. The memories mi are updated by component G (generalization) given the new input

converted into internal feature representation I(x):

mi = G(mi, I(x),m), ∀i

3. Component O (output feature map) computes output features o given the new input

converted into internal feature representation and the updated memory:

o = O(I(x),m)

4. Component R (response) decodes output features o into final response:

r = R(o)

Components can be in any form, like rule-based or it can use any existing machine learning

algorithm like SVM or decision tree.

Interesting implementation of memory networks is End-To-End Memory Networks[72].

This implementation can be trained end-to-end, and hence requires less supervision during
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training. It makes them easier to use in the real world scenarios.

The End-To-End Memory Networks has the following flow:

1. We are given an input set x, ..., xi to be stored in the memory. The set is converted

into memory vectors mi by embedding matrix A and stored in the memory.

2. The query q is embedded by embedding matrix B with the same dimensions as embed-

ding matrix A. Embedded query q creates an internal state u.

3. We compute the match between internal state u and memory m by:

p = Softmax(uTm)

Vector p forms probability vector over the inputs.

4. Each input xi has its output vector ci. We create vector ci by embedding it by embed-

ding matrix C. The response vector o from the memory is a sum of transformed inputs

ci weighted by the probability vector p:

o =
∑
i

pici

5. The sum of response vector o and internal state u is passed through matrix W and

softmax to produce the probabilities of response labels:

â = Softmax(W (o+ u))

We can train the whole model by modifying matrices A, B, C and W by back-propagation

thanks to the fact, that function from input to output is smooth. We teach the model by

minimizing a standard cross-entropy loss between predicted response â and true label a.

Training is performed using stochastic gradient descent.

There is also multiple layers variant of End-To-End Memory Networks. The changes are

following:

• The input to layers above the first is the sum of ok and uk from layer k:

uk+1 = ok + uk

• Each layer has its own embedding matrices Ak and Ck.

• The output of network uses output of final layer K + 1:

â = Softmax(W (uK+1)) = Softmax(W (ok + uk))
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Figure 3.3: Single and three-layer end-to-end memory network [72]

3.7 Hybrid code networks

Hybrid code networks[1] is model created by Jason D. Williams, Kavosh Asadi and Geoffrey

Zweig from Microsoft Research and Brown University. Hybrid code networks combine the

recurrent neural network and domain-specific knowledge in the form of software and system

action templates. The main benefit of this model is the ability to work with the considerably

reduced amount of training examples.

The Hybrid code networks consists of four components:

• Recurrent neural network

• Domain-specific software

• Domain-specific action templates

• Entity extraction module

Recurrent neural network and developer code maintain state of the dialog. Domain-specific

action can be a textual communicative action or call to API. Entity extraction module is a

conventional entity extraction module.

The message send to Hybrid code network is processed in the following way:

1. We create the bag of words of the message.

2. We calculate the average of the world embedding vectors (Word2vec[11], GloVe[12],

fastText[13]). We can use pretrained word embedding vectors, or we can train the word

embedding vectors using our training set.

3. The entity extraction module finds the entities and masks them by their types in the

message. For example, extraction module finds entity “Seattle” of type “city” in the

message “I would like to know a weather forecast for Seattle.” The message is masked

to “I would like to know a weather forecast for <city>”
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4. The founded entities are passed to the entity tracking code provided by the developer.

5. The code can also provide the action mask in the form of the bit mask. The action

mask indicates actions which are permitted in the current timestamp. For example,

the action to weather API is prohibited if the user has not yet provided the place and

the date of the forecast.

6. The code can also provide other context features which will be helpful for distinguishing

among actions, such as currently presented entities.

7. Bag of words, message embedding, and context features are concatenated and passed

as an input to the recurrent layer, such as LSTM[43] or GRU[44]. Additional features

of the recurrent layer can optionally be previously predicted action and result of the

API call.

8. The recurrent neural network computes the hidden state, which is used in the next

timestamp for the new message and passed to the dense layer with a softmax activation

function. The dimension of dense layer is the same as the number of distinct system

action templates. Thus the result of softmax is the distribution of action templates.

9. We apply the action mask to the result of softmax as an element-wise multiplication,

and we normalize the result back to the probability distribution. The non-permitted

actions obtain zero probability thanks to this operation.

10. We select the action template from the probability distribution.

11. The selected action is passed to developer code, which substitutes in entities. For

example template “<city> right?” to “Seattle right?”.

12. The next step depends on the type of action. If the action is API call, we call the

corresponding API by invoking developer code. If the action is text, we render text to

the user.

13. The cycle repeats for the next message.
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Figure 3.4: Hybrid code networks [1]



Chapter 4

Implementations

We perform the experiments using the following implemented architectures of neural net-

works. We derived the architectures from Hybrid code networks[1].

4.1 Hybrid code networks

Figure 4.1: Hybrid code networks with bag-of-words and average of word embeddings input

The model is shown in Figure 4.1. The inputs to the model are Action mask, Input

features, Utterance embedding and Bag of words vectors. We create Utterance embedding

vector by averaging word vectors of the input message. The Input features vector can contain

arbitrary features useful for the selecting the correct response. Utterance embedding, Bag

of words and Input features vectors are passed to LSTM, dense layer and Softmax function.

The inner state of LSTM is used for the next input message. The output of Softmax function

is element-vise multiplied by the vector of Action mask. The resulting vector is normalized

to the probability distribution. The normalized vector describes the probability of responses.

25
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We select the response with the highest probability and use it as a feature for the next

message.

4.2 Hybrid code networks with recurrent neural network

Figure 4.2: Hybrid code networks with recurrent input layer

The model is shown in Figure 4.2. The inputs to the model are Action mask, Input

features, and Message word embeddings. The Message word embeddings are passed to LSTM

layer, which creates the vector representation of the user’s message. The representation of the

user’s message, together with Input features are passed to LSTM, dense layer and Softmax

function. The inner state of LSTM is used for the next message. We element-vise multiply

the output of Softmax function by the vector of Action mask and normalize the product to

the probability distribution. We select the response with the highest probability and use it

as the feature for the next message.

4.3 Hybrid code networks with convolutional neural network

Figure 4.3: Hybrid code networks with convolutional input layer

The model is shown in Figure 4.3. The inputs to the model are Action Mask, Input

Features, and Message word embeddings. The Message world embeddings are passed to the
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convolutional neural network, which creates the vector representation of the message.

The convolutional neural network is inspired by Convolutional Neural Networks for Sen-

tence Classification[65] created by Yoon Kim from New York University. Schema of the

model is shown in the Figure 4.4. The input to this model is message represented by word

embeddings. The message is padded to the length of the longest messages. We apply the

convolutional filters of size 2, 3, 4, and 5 to the message. We apply the max-pooling over

vectors resulting from the convolutional filter and concatenate the results of max-pooling.

The vector of concatenated results of max-pooling is vector representation of input message.

We don’t use the fully connected layer at the end of the model and multiple word embeddings

as demonstrated in [65] in our model.

Figure 4.4: Convolutional neural networks for sentence classification [65]

The rest of the model remains the same as a model which we described in Section 4.2.



28 CHAPTER 4. IMPLEMENTATIONS



Chapter 5

Datasets

We perform the experiments on the Dialog bAbI Task Data and Alquist conversational

dataset. Each of these datasets is described in the following section.

5.1 Dialog bAbI Tasks Data

The Dialog bAbI Task Data [9] is dataset created by Antoine Bordes, Y-Lan Boureau and

Jason Weston from Facebook AI Research. The goal of this dataset is to propose an open

resource to test end-to-end dialog systems in a way that favors reproducibility and compar-

isons, and is lightweight and easy to use. The dataset is divided into six tasks with increasing

difficulty in the domain of restaurant reservation. The tasks are following: Issuing API calls,

Updating API calls, Displaying options, Providing extra information, Conducting full dialogs

and DSTC2. We don’t use the Tasks 1 to 4, because task 5 combines them all. We describe

the last two tasks (Task 5 and 6) in the following sections.

5.1.1 Dialog bAbI Task 5

The Dialog bAbI Task 5 consists of a combination of Dialog bAbI Tasks 1 to 4. The language

used in this task is synthetically generated. There are 43 patterns for the user’s messages

and 20 for the bot responses. The dialogues are underlined by the knowledge base, which

contains information about restaurants. Each restaurant is defined by a type of cuisine (10

types), location (10 types), price range (3 types), rating (1 to 8) and availability for party

size (2, 4, 6 or 8 people). There is also phone number and address in the knowledge base for

each restaurant. The dataset is divided into training, validation and two testing sets. Each

set consists of 1,000 dialogues. The first testing set uses the vocabulary of the training set.

The second testing set contains out-of-vocabulary words. The example of the dialog included

in the dataset is in the Appendix A.

We mask the values in the messages and responses in the following way. We replace each

value token (French) by its type (r cuisine). We transform the input “I would like some

French restaurant which is cheap” to “I would like some r cuisine restaurant which is r price”

29
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Table 5.1: List of predicted actions from Dialog bAbI task 5
any preference on a type of cuisine

api call r cuisine r location r number r price

great let me do the reservation

hello what can i help you with today

here it is r address

here it is r phone

how many people would be in your party

i’m on it

is there anything i can help you with

ok let me look into some options for you

sure is there anything else to update

sure let me find an other option for you

what do you think of this option: r name

where should it be

which price range are looking for

you’re welcome

for example. We perform the masking because entity recognition and extraction is not the

main focus of this work. This also reduces the number of distinct inputs, which helps dialog

manager to select the right response. We reduce the number of responses from 20 to 16 by

masking.

5.1.2 Dialog bAbI Task 6

The Dialog bAbI Task 6 consists of real human-bot dialogues. It consists of data from DSTC2

[73], which was originally used to learn dialog state tracking. The creators of the Dialog bAbI

Task 6 used dialog transcripts to create a user and bot utterances and to create underlining

knowledge base. The dialogues are noisier and harder to learn due to speech recognition

errors, and users don’t have a deterministic behavior. The example of the dialog included in

the dataset is in the Appendix B.

The dataset is split into 3,249 training dialogues, 403 validation dialogues, and 402 testing

dialogues. The user can request only three fields: cuisine, location, and price. The values

were masked as in the case of Dialog bAbI Task 5. The responses which occur only rarely was

masked by ’UNK’ action. This leads to 56 possible responses. Testing set contains actions,

which are not present in the training set. Such actions were also masked by ’UNK’ action.

There are 40% of dialogues in the testing set, which contains ’UNK’ action, which significantly

limits the maximal possible dialogue accuracy of retrieval based dialogue managers.

Table 5.2: List of predicted actions from Dialog bAbI task 6

UNK

api call r cuisine r location r price

Can I help you with anything else?
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Did you say you are looking for a restaurant in the r location of town?

Hello , welcome to the Cambridge restaurant system . You can ask for restaurants by

area , price range or food type . How may I help you ?

I am sorry but there is no other r cuisine restaurant in the r location of town

I am sorry but there is no other r cuisine restaurant in the r price price range

I am sorry but there is no other r cuisine restaurant that matches your request

I am sorry but there is no r cuisine restaurant that matches your request

I’m sorry but there is no r cuisine restaurant in the r location of town

I’m sorry but there is no r cuisine restaurant in the r location of town and the r price

price range

I’m sorry but there is no restaurant serving r cuisine food

I’m sorry but there is no restaurant serving r price r cuisine food

Let me confirm , You are looking for a restaurant and you dont care about the price

range right?

Let me confirm , You are looking for a restaurant in the r price price range right?

Ok , a restaurant in any part of town is that right?

r name is a great restaurant

r name is a great restaurant serving r cuisine food and it is in the r price price range

r name is a great restaurant serving r price r cuisine food in the r location of town .

r name is a nice place in the r location of town

r name is a nice place in the r location of town and the prices are r price

r name is a nice place in the r location of town serving tasty r cuisine food

r name is a nice restaurant in the r location of town in the r price price range

r name is a nice restaurant in the r location of town serving r cuisine food

r name is in the r location part of town .

r name is in the r price price range

r name is on r address

r name serves r cuisine food

r name serves r cuisine food .

r name serves r cuisine food in the r price price range

Sorry but there is no other r cuisine restaurant in the r price price range and the

r location of town

Sorry but there is no other restaurant in the r price price range and the

r location of town

Sorry I am a bit confused ; please tell me again what you are looking for .

Sorry there is no r cuisine restaurant in the r location of town

Sorry there is no r cuisine restaurant in the r price price range

Sorry there is no r price restaurant in the r location of town serving r cuisine food
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Sorry would you like r cuisine food or you dont care

Sorry would you like r cuisine or r cuisine food?

Sorry would you like something in the r location or in the r location

Sorry would you like something in the r price price range or in the r price price range

Sorry would you like something in the r price price range or you dont care

Sorry would you like the r location of town or you dont care

Sorry, I can’t hear you

Sure , r name is on r address

The phone number of r name is r phone

The post code of r name is r post code

The price range at r name is r price .

There are restaurants . That area would you like?

There are restaurants in the r price price range and the r location of town . What

type of food would you like?

There are restaurants serving r cuisine food . What area do you want?

There are restaurants serving r cuisine in the r price price range . What area would

you like?

What kind of food would you like?

What part of town do you have in mind?

Would you like something in the r price , r price , or r price price range?

You are looking for a r cuisine restaurant right?

You are looking for a restaurant is that right?

You are looking for a restaurant serving any kind of food right?

you are welcome

5.2 Alquist conversational dataset

The Alquist conversational dataset was collected from the socialbot Alquist competing in

the Alexa Prize 2017 held by Amazon. The goal of the competition was to hold 20 minutes

long coherent and engaging conversation with the user about popular topics. The dataset

consists of 37805 dialogues between the user and the socialbot about books. There are 344464

message-response pairs in total. The average length of dialogues is 9.11 pairs, the median is

7 pairs, and there are 23633 unique responses. The dataset was collected on the live version

of the system running on the Amazon Echo devices used by customers living in the USA

between November 2017 and March 2018. The system was not significantly changed during

this period, so the structure of data does not change in time. The dataset is noisy and hard

to learn because it contains voice recognition errors and part of the messages come from

uncooperative users. Messages from uncooperative users are hard to interpret or out of the
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domain of books. The example of the dialog included in the dataset is in the Appendix C.

All of 23633 unique responses can be clustered into 30 semantically unique responses. This

reduction can be achieved thanks to the fact, that dialogues in socialbot Alquist are repre-

sented as state graph. Each node in state graph correspondences to one of 30 semantically

unique responses.

The huge number of unique responses is caused by the fact, that responses contain infor-

mation about authors, books and fun-facts about books and authors obtained from Today-

ILearned subreddit1. Another reason is randomization of phrases of responses. The social bot

Alquist chooses randomly between two formulations of the semantically same response like

“Tell me, what is your favorite book?” and “What is your favorite book?” for example. The

collected data contains the information about the current state of the dialog, which we used

to cluster the responses into 30 clusters of responses with the same meaning. Thus we don’t

have information about the class of response in the dataset. Instead, we have information

about the class of cluster of responses.

Table 5.3: List of clusters and examples of responses of

Alquist conversational dataset

- Oh, I understand. Do you like it?

- I understand. Do you like it?

- I can recommend you The Wings of the Dove. Its author is Henry James. Hmm, it

felt OK, but nothing to write home about! What other book would you recommend

me?

- I can recommend you Light in August. Its author is William Faulkner. A that one

was nice to read! Any other book, you would like to talk about?

- Oh, the The Name of the Wind by Patrick Rothfuss? Is it correct?

- Ahh, the The Bad Beginning by Lemony Snicket? Am I right?

- Can I recommend you some?

- Oh. Can you say the name of book again?

- Sorry, This is embarrassing. I still don’t get it. Tell me different book please.

- By the way, kate, here are a few topics we can chat about. I’ll be glad to tell you

the latest news or gossip, and I also like to talk about video games, books, or movies.

Fashion, music, or sports, are not bad either.

- Oh, I am sorry that you didn’t like it. A great book! I heard that, Suzanne Collins,

author of The Hunger Games, was a writer on Clarissa Explains It All Anyway, let’s

get back to it. How long is it?

- Oh, I am sorry that you didn’t like it. A great book! What’s your favourite

character?

1https://www.reddit.com/r/todayilearned/
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- Can you tell me more about it?

- Can you describe it for me?

- Oh, I am sorry that you didn’t like it. Hmm, it felt OK, but nothing to write home

about! I heard that, 50 Shades of Grey was originally a twilight fan-fiction Anyway,

let’s get back to it. What’s your favourite character?

- Oh, I am sorry that you didn’t like it. An that one was OK! What’s your favourite

part of the book?

- So which one?

- So, what’s your favourite book?

- I understand. Any other book, you would like to talk about?

- Oh, I see. Remember that you can say, let’s talk about movies or sports, if you

want to switch topic. Anyway, back to the books. Any other book, you would like to

talk about?

- Oh, I wish I could have an interesting conversation about this fascinating book, but

I still haven’t learned enough about it. Maybe next time!

- Oh, I wish I could have a thorough conversation about this fascinating book, but

I still haven’t learned enough about it. Maybe next time!

- By the way, joe, here are a few topics we can chat about. Do you wanna chat for

example about movies, sports, music, , or video games? I can also tell you some of

the latest news or gossip if you’re interested.

- Can you describe it for me?

- Oh, I wish I could have a thorough conversation about this fascinating book, but I

still haven’t learned enough about it. Maybe next time!

- Oh, I wish I could have a deep conversation about this fascinating book, but I

still haven’t learned enough about it. Maybe next time!

- I said, Oh, I see. How many times have you finished it?

- Oh, the A Game of Thrones from George R.R. Martin? Is it correct?

- Oh, the Off the Record by K.A. Linde? Is it correct?

- Can I recommend you some?

- My favorite book is The Lord of the Rings written by J. R. R. Tolkien. I like Sam

and Frodo. They are just such a good adventuring pair. Frodo is wise and distant,

but he would fail on his own. And Sam doesn’t want to be there but is too loyal to

leave. It’s nice to see an unlikely set of hero’s that isn’t almost perfect. It’s your

turn now. What’s your favorite book?
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- It seems that you rather liked it, that’s great. An that one was OK! I heard that,

that author Jack London, best known for his book ’Call of the Wild’ about Alaskan

adventures, also wrote a dystopian scifi novel. . . and he was a socialist Anyway, let’s

get back to it. What’s your favourite character?

- It seems that you rather liked it, that’s great. An that one was OK! I know that,

The author of Holes, Louis Sachar, also wrote the Wayside School series Anyway,

let’s get back to it. What’s your favourite character?

- By the way, , here are a few topics we can chat about. I love chatting about sports,

movies, music, holidays, or video games. I can also tell you some of the latest news or

gossip if you’re interested.

- By the way, , here are a few topics we can chat about. We can chat for example

about the latest news, gossip, video games, books, fashion, sports, or movies. I can

also sing you a song.

- I can recommend you Light in August. Its author is William Faulkner. A that one

was nice to read! I read that, when Snopes creator David Mikkelson first began

posting on Internet newsgroups in the late 1980s, he created the username “snopes”

based on the surname of a family in a William Faulkner novel Over time, “snopes”

gained a reputation for his ability to thoroughly research and debunk false claims

Anyway, let’s get back to it. Any other book, you would like to talk about?

- I can recommend you The Catcher in the Rye. Its author is J.D. Salinger. A that

one was nice to read! I heard that, Author J.D Salinger served in the U.S Army’s

Counter Intelligence Corps (CIC) during World War II He could speak both French

and German and his work involved interviewing enemy prisoners and civilians

Anyway, let’s get back to it. Any other book, you would like to talk about?

- Wow, that’s great that you enjoyed it. A great book! I read that, that you can

listen to The Hitchhikers Guide to The Galaxy audio book, in it’s entirety, on

Grooveshark Anyway, let’s get back to it. How long is it?

- Wow, that’s great that you enjoyed it. An that one was OK! I read that, F Scott

Fitzgerald wrote to Will Cather explaining his fear that she might feel he plagiarized

her character Marian Forrester from Lost Lady in his book The Great Gatsby

Anyway, let’s get back to it. How long is it?

- I said, Would you recommend it to me?

- I understand. How long is it?

- I understand. What’s your favourite part of the book?

- What book do you like?

- I’m sorry, I don’t know it. What is it about?

- I’m sorry, I don’t know that one. Can you describe it for me?
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- Wow, that’s great that you enjoyed it. I liked this one a lot, it was great. I read

that, that Truman Capote and Harper Lee were childhood friends and that she

helped him interview residents and investigators for the book In Cold Blood Anyway,

let’s get back to it. How long is it?

- Wow, that’s great that you enjoyed it. I really enjoyed reading this one. It was very

nice. I know that, J.K Rowling was turned down by 26 publishers, when she finally

got a deal her publisher told her to also get a day job as she’ll not make a living from

childrens books Anyway, let’s get back to it. What’s your favourite part of the book?

- Remember that you can say, let’s talk about movies or sports, if you want to switch

topic. Anyway, back to the books. What other book would you recommend me?

- Remember that you can say, tell me joke or fun fact, if you want to switch topic.

Anyway, back to the books. Is there any other book you like?

- It seems that you rather liked it, that’s great. An that one was OK! I read that,

that George Orwell, author of “1984” and “Animal Farm,” gave the U.K government

a list he had written of people he suspected of being “crypto-communists” Anyway,

let’s get back to it. How long is it?

- It seems that you rather liked it, that’s great. Hmm, it felt OK, but nothing to

write home about! How long is it?



Chapter 6

Experiments

We did several experiments to evaluate the architectures described in the Chapter 4. We

evaluate each architecture using pretrained word2vec[11] embeddings and fastText[13] em-

beddings trained on the dataset. We used bAbI Task 6 dataset and Alquist conversational

dataset for testing. We also used bAbI Task 5 dataset to verify the replicability of the results

of baseline architecture as presented in the [1].

We evaluate the turn accuracy and dialogue accuracy of the models to be in line with

the papers on bAbI Task datasets [9]. The turn accuracy is the ratio of correctly predicted

dialogue turns to all dialogue turns in the dataset. The dialogue accuracy is the ration of

dialogues, in which all turns were predicted correctly, to all dialogues in the dataset.

We used the Bayesian Optimization of hyperparameters. We show that this technique

can find values of hyperparameters, which improve the performance of the system.

6.1 bAbI Task 5

We used the Hybrid code network architecture to verify the results measured on bAbI Task 5

dataset presented in [1]. We used the 128 hidden units and trained the model for 12 epochs.

We used pretrained word2vec embeddings, which were static and not updated during the

training.

The action mask consists of the following if-then rules:

• Don’t ask for the entity which is already known

• Do not make API call if all preconditions have not been satisfied yet

• Don’t present the results, if the results from the database have not been received yet

We didn’t use any additional input features.

We measured the testing set containing the out-of-vocabulary words. We achieved the

same results of 100% turn and dialogue accuracy on the testing set containing out-of-vocabulary

words. We didn’t test further models on this dataset because of achieved accuracies. The

results are presented in the table 6.1.

37



38 CHAPTER 6. EXPERIMENTS

Table 6.1: bAbI Task 5 results
Task5-OOV

Model Turn Acc. Dialog Acc.

Borders and Weston (2017) [9] 77.7% 0.0%
Liu and Perez (2016) [74] 79.4% 0.0%

Seo et al. (2016) [75] 96.0% -
Williams, Asadi and Zweig (2017) [1] 100% 100%

Replicated Hybrid code network model 100% 100%

6.2 bAbI Task 6

We measured the performance of all three models described in the chapter 4 using the bAbI

Task 6 dataset.

We evaluated each model using two types of embedding vectors. We used the pretrained

300-dimensional word2vec embedding vectors trained on News1. Word2vec embeddings were

static and not updated during training. The second set of embedding vectors which we used

were 300-dimensional fastText embedding vectors pretrained on the training set of bAbI Task

6 dataset. The embeddings were trained during 100 epochs. The fastText embeddings were

fixed and not updated during the training too.

The action mask consists of following if-then rules:

• Do not make API call if all preconditions have not been satisfied yet

• Don’t present the results, if the results from the database have not been received yet

We used the additional input features:

• Entities present in the current message

• Entities present in context

• Has been the database queried yet

• Is the result of database query empty

• Does the requested type of cuisine exist

• Has been any result of database query presented yet

• Have been all results of database query presented already

6.2.1 Bayesian hyperparameter optimization

We performed the hyperparameter optimization using Bayesian optimization2 on the valida-

tion set. We performed 30 rounds of training with a different set of hyperparameters for each

model. Each training was 30 epochs long. We evaluated the performance of model after each

1GoogleNews-vectors-negative300.bin
2We used the implementation from Scikit-Optimize library https://scikit-optimize.github.io/



6.2. BABI TASK 6 39

Table 6.2: Hyperparameter optimization bounds
Hyperparameter Min. value Max. value

LSTM size 10 512
Input LSTM size* 10 512

Convolutional filtersˆ 5 64
LSTM dropout 0.5 1

Input LSTM dropout* 0.5 1
Convolutional dropoutˆ 0.5 1
Fully connected dropout 0.5 1

Learning rate 1E-5 1
Activation function tanh; relu

Input activation function* tanh; relu
Adam epsilon 1E-8; 0.1; 1
Adam beta1 0.5; 0.9

ˆ are used in CNN input only, * are used in RNN input only

Table 6.3: Word2vec bAbI Task 6 hyperparameter optimization results
LSTM size 85 512 15 184 512 25 10 35 10
LSTM dropout 0.92 0.5 0.98 0.89 0.5 0.79 1.0 0.74 1.0
Fully connected dropout 0.59 0.89 0.87 0.55 0.5 0.97 0.5 0.5 0.78
Learning rate 0.001 0.0007 0.02 0.002 0.003 0.005 0.01 0.003 0.003
Activation function tanh relu tanh tanh relu relu tanh tanh tanh
Adam epsilon 1E-8 0.1 0.1 1.0 1.0 1E-8 1.0 1.0 1.0
Adam beta1 0.5 0.5 0.5 0.9 0.5 0.9 0.5 0.5 0.5

Turn accuracy 71.3% 69.2% 68.9% 64.4% 63.4% 61.3% 61.3% 59.7% 58.3%

epoch and saved the weights of model achieving the highest turn accuracy on the validation

set for each set of hyperparameters. The bounds of hyperparameters for each model are

presented in the table 6.2.

We show the nine hyperparameter settings achieving the highest validation turn accuracies

for each model and both sets of embedding vectors in the tables 6.3, 6.4, 6.5, 6.6, 6.7 and

6.8. The hyperparameter settings are sorted by the turn accuracy in the tables.

We trained each model with the hyperparameters, which achieved the highest validation

accuracy. We used the 12 epochs of training. We measured the turn accuracy on validation

set after each training epoch and saved the weights achieving highest validation turn accuracy,

which we used for testing. The graphs of progress of turn and dialogue accuracies for training

Table 6.4: Word2vec+CNN bAbI Task 6 hyperparameter optimization results
LSTM size 109 512 512 192 512 416 356 455 504
Convolutional filters 6 15 5 20 62 50 40 47 60
LSTM dropout 0.79 0.98 0.76 0.93 0.96 0.77 0.85 0.96 0.86
Convolutional dropout 0.84 0.91 1.0 0.74 0.65 0.64 0.5 0.65 0.88
Fully connected dropout 0.93 0.95 0.86 0.57 0.65 0.59 0.82 0.98 0.90
Learning rate 0.005 0.0006 0.0003 0.05 0.003 0.005 0.2 0.001 0.001
Activation function tanh tanh relu relu relu tanh tanh relu relu
Adam epsilon 0.1 0.1 1E-8 1.0 0.1 1.0 1.0 1.0 0.1
Adam beta1 0.5 0.9 0.9 0.5 0.5 0.5 0.5 0.9 0.9

Turn accuracy 70.4% 68.7% 68.7% 68.0% 67.7% 66.7% 62.8% 62.8% 62.5%
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Table 6.5: Word2vec+RNN bAbI Task 6 hyperparameter optimization results
LSTM size 219 345 493 109 76 137 473 265 134
Input LSTM size 312 507 15 403 11 77 371 216 255
LSTM dropout 0.74 0.99 0.88 0.65 0.66 0.74 0.51 0.94 0.55
Input LSTM dropout 0.91 0.77 0.74 0.51 1.0 0.66 0.86 0.69 0.78
Fully connected dropout 0.98 0.90 0.79 0.68 0.93 0.51 0.94 0.68 0.63
Learning rate 0.00005 0.04 0.02 0.0002 0.003 0.007 0.0004 0.004 0.0001
Activation function relu tanh tanh relu relu relu tanh tanh relu
Input activation function tanh relu tanh tanh relu tanh tanh relu relu
Adam epsilon 1E-8 0.1 0.1 1E-8 0.1 0.1 0.1 1.0 1E-8
Adam beta1 0.9 0.9 0.9 0.5 0.5 0.5 0.5 0.5 0.9

Turn accuracy 65.5% 64.9% 64.9% 63.5% 62.6% 62.5% 62.5% 62.4% 60.4%

Table 6.6: fastText bAbI Task 6 hyperparameter optimization results
LSTM size 55 366 512 438 254 203 512 10 190
LSTM dropout 0.85 0.57 0.95 0.65 0.65 0.56 1.0 1.0 0.5
Fully connected dropout 0.82 0.59 0.75 0.64 0.53 0.81 0.5 1.0 0.83
Learning rate 0.008 0.007 0.01 0.04 0.0001 0.00003 0.00001 0.01 0.009
Activation function relu tanh relu relu relu tanh tanh relu relu
Adam epsilon 1E-8 1.0 0.1 1.0 1E-8 1E-8 1E-8 1.0 0.1
Adam beta1 0.9 0.5 0.5 0.5 0.5 0.9 0.9 0.9 0.9

Turn accuracy 69.4% 68.9% 68.4% 68.3% 68.1% 67.2% 65.7% 65.5% 65.4%

Table 6.7: fastText+CNN bAbI Task 6 hyperparameter optimization results
LSTM size 245 444 255 50 465 264 469 469 37
Convolutional filters 21 50 31 7 5 46 10 62 63
LSTM dropout 0.80 0.70 0.61 0.97 0.50 0.81 0.90 0.92 0.98
Convolutional dropout 0.72 0.76 0.80 0.52 0.60 0.68 0.50 0.51 0.98
Fully connected dropout 0.79 0.96 0.88 0.95 0.50 0.82 0.51 0.99 0.65
Learning rate 0.0001 0.05 0.00003 0.01 0.004 0.001 0.00001 0.00001 0.00001
Activation function relu tanh tanh relu tanh tanh relu relu relu
Adam epsilon 1E-8 1.0 1E-8 1.0 0.1 1E-8 1E-8 1E-8 1E-8
Adam beta1 0.5 0.9 0.5 0.5 0.9 0.9 0.9 0.5 0.5

Turn accuracy 71.5% 69.8% 69.1% 68.6% 65.6% 65.6% 64.9% 60.9% 58.7%

Table 6.8: fastText+RNN bAbI Task 6 hyperparameter optimization results
LSTM size 505 313 504 290 498 510 139 21 229
Input LSTM size 199 400 18 470 488 485 399 64 149
LSTM dropout 0.94 0.61 0.98 0.70 0.54 0.98 0.88 0.99 0.51
Input LSTM dropout 0.97 0.62 0.78 0.72 0.58 0.98 0.69 0.88 0.75
Fully connected dropout 0.76 0.83 0.55 0.75 0.57 0.96 0.74 0.50 0.93
Learning rate 0.0003 0.004 0.006 0.00003 0.0001 0.7 0.0001 0.00001 0.00009
Activation function relu relu tanh tanh tanh tanh relu tanh relu
Input activation function tanh tanh relu tanh relu tanh tanh relu tanh
Adam epsilon 1E-8 0.1 0.1 1E-8 1E-8 1.0 0.1 1E-8 0.1
Adam beta1 0.5 0.5 0.9 0.5 0.9 0.9 0.5 0.9 0.9

Turn accuracy 68.0% 67.3% 67.3% 67.0% 66.8% 61.0% 60.4% 55.5% 54.9%
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and validation sets after each epoch for all models are in figures 6.1, 6.2, 6.3 and 6.4. The

final results on testing set and its comparison with other models are in the table 6.9.

Figure 6.1: bAbI Task 6 Training turn accuracy

Figure 6.2: bAbI Task 6 Training dialogue accuracy

6.3 Alquist conversational dataset

We measured the performance of all models on the Alquist conversational dataset. We

used the pretrained word2vec embedding vectors and fastText embedding vectors trained

for 100 epochs on the training set of Alquist conversational dataset. We didn’t perform

hyperparameter optimization due to a long time of training. We used hyperparameters

founded in the section 6.2.1 for each model instead.

We didn’t use the action mask, because it is not clear which rules would improve the

accuracy of models for Alquist conversational dataset.
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Figure 6.3: bAbI Task 6 Validation turn accuracy

Figure 6.4: bAbI Task 6 Validation dialogue accuracy

We used the additional input feature signalizing, whether the requested book was founded

in the database or not.

We trained the models for 12 epochs. We measured the turn accuracy after each epoch

and saved the weights which achieved the highest turn accuracy. We measured turn and

dialogue accuracies on the testing set using saved weights.

The graphs of progress of turn and dialogue accuracies for training and validation sets

after each epoch for all models are in figures 6.5, 6.6, 6.7 and 6.8. The drop of the line

recording progression of accuracy for word2vec+RNN model is affected by the error in the

training. We didn’t rerun the experiment, because there is no evidence, that the model would

achieve any significantly better results. The final results on testing set and its comparison

with other models are in the table 6.9.
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Figure 6.5: Alquist conversational dataset Training turn accuracy

Figure 6.6: Alquist conversational dataset Training dialogue accuracy

6.4 Results

We will evaluate the results of experiments in this section.

The best model regarding turn accuracy on bAbI Task 6 dataset is model using convolu-

tional input layer and fastText embedding vectors, which outperformed the baseline [1]. This

model achieved turn accuracy of 58.9%, which is better than 55.6% achieved by [1]. For the

dialogue accuracy on bAbI Task 6 dataset, the baseline [1] has not been outperformed. Our

best model using bag-of-words and average of fastText embedding vectors as input features

achieved dialogue accuracy of 0.8% which is less than 1.9% achieved by the baseline.

The best model regarding turn accuracy on Alquist conversational dataset is model using

convolutional input layer and word2vec embedding vectors, which achieved turn accuracy

of 92.6%. For the dialogue accuracy on Alquist conversational dataset, the best performing

model is model using bag-of-words and average of word2vec embedding vectors as input

features. It achieved the accuracy of 68.0%. The comparison with the baseline is not possible,
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Figure 6.7: Alquist conversational dataset Validation turn accuracy

Figure 6.8: Alquist conversational dataset Validation dialogue accuracy

because it has not been tested on Alquist conversational dataset.

The first thing we can notice, is that we outperformed our baseline (55.6%) described

in [1] by fastText (57.6%), fastText+CNN (58.9%), word2vec (57.4%) and word2vec+CNN

(56.3%) architectures in turn accuracy. Only the models containing recurrent input layer

perform worse than the baseline. Possible cause of this improvement is the hyperparameter

optimization, which founded the set of hyperparameters with the best performance. The

method of hyperparameter optimization is not reported in the paper describing the baseline

model. This is the reason, why we can’t confirm this hypothesis.

Our models underperformed the baseline model in dialogue accuracy on bAbI Task 6

dataset. One of the reason may be the action mask, which can differ in our model implemen-

tations. The action mask is described only vaguely in the paper describing baseline model[9].

Different rules forming the action mask may lead to worse results.

The best performing models are the models using convolutional input layer (fastText+CNN
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Table 6.9: Testing accuracy
bAbI6 Alquist

Model Turn Acc. Dialogue Acc. Turn Acc. Dialogue Acc.

Bordes and Weston (2017) [9] 41.1% 0.0% - -
Liu and Perez (2016) [74] 48.7% 1.4% - -

Eric and Manning (2017) [76] 48.0% 1.5% - -
Seo et al. (2016) [75] 51.1% - - -

Williams, Asadi and Zweig (2017) [1] 55.6% 1.9% - -

fastText 57.6% 0.8% 86.9% 51.7%
fastText+CNN 58.9% 0.5% 90.6% 63.0%
fastText+RNN 54.9% 0.3% 80.6% 40.5%

word2vec 57.4% 0.4% 92.2% 68.0%
word2vec+CNN 56.3% 0.1% 92.6% 67.8%
word2vec+RNN 54.6% 0.1% 83.9% 45.2%

and word2vec+CNN). It holds true for bAbI Task 6 dataset and also for Alquist conversational

dataset. The second best models are models using bag-of-words and average of embedding

vectors as input features (fastText and word2vec). The worst models use recurrent input

layer (fastText+RNN and word2vec+RNN). These models don’t perform better than the

baseline model.

Models using fastText embedding vectors performs better than corresponding models

using word2vec embedding vectors in case of the smaller bAbI Task 6 dataset. On the

other hand, models using word2vec embedding vectors achieve higher turn accuracy than

corresponding models using fastText word embeddings in the case of the bigger Alquist

conversational dataset.
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Chapter 7

Conclusion

The goal of this thesis was to research the current methods of dialogue management for

conversational artificial intelligence, implement the dialogue manager and apply it to the

data of interactions between humans and socialbot Alquist collected during Alex Prize 2017

[2].

We first introduced the dialogue manager and described methods how they select the

responses. We divided the dialogue managers into retrieval-based and generative-based, and

rule-based, machinelearning-based and hybrid-based dialogue managers. We also described

the context and its importance for conducting the dialogues in natural language. We then

described the representation of words by word embedding vectors and introduced word2vec,

GloVe and fastText word embeddings, which we used later in experiments. We also described

the neural networks, recurrent neural networks and convolutional neural networks, which

are used in our proposed dialogue manager. We described the methods of hyperparameter

optimization, which we decided to use to find the best set of hyperparameters for our dialogue

manager.

We explored the recent dialogue managers. We started from rule-based dialogue man-

agers, and continued through dialogue managers using TF-IDF vectors with cosine similarity

function, word embedding vectors with cosine similarity and supervised models. We described

the functioning of the seq2seq models, memory networks and hybrid code networks in detail.

We described the dialogue bAbI Task 5 and 6 datasets and how we preprocessed them

for the experiments. We also presented the Alquist conversational dataset, and we described

how we extracted data containing dialogues about books from the dataset of all conversations

between humans and mostly rule-based socialbot Alquist.

We proposed three architectures of our dialogue manager inspired by the Hybrid code

networks. The baseline architecture uses the same inputs as the Hybrid code networks,

which are bag-of-words and average of word embeddings. The next two architectures use the

recurrent neural network and convolutional neural networks respectively.

We measured the dialogue and turn accuracy of the baseline architecture on the dialogue

bAbI Task 5 dataset. We replicated results of [1] by achieving 100% of both turn and dialogue
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accuracy. We measured the dialogue and turn accuracy of all three proposed architectures

on dialogue bAbI Task 6 dataset. We measured each architecture with two sets of word

embedding vectors. The first set was pretrained word2vec vectors trained on the news. The

second test was trained directly on the dialogue bAbI Task 6 dataset. We used Bayesian hy-

perparameter optimization to find the optimal set of hyperparameter for each architecture.

We demonstrated that hyperparameter optimization leads to better turn accuracy. We mea-

sured the turn and dialogue accuracy with the best-found set of hyperparameters on Alquist

conversational dataset.

We achieved better performance in the turn accuracy than our baseline [1]. Our model

containing convolutional neural network as input layer and fastText word embeddings achieved

turn accuracy of 58.9% versus the 55.6% of the baseline reported in [1]. The model with the

convolutional neural network as input layer and word2vec word embeddings achieved only a

slightly worse accuracy of 57.4% than our the best architecture. We were not able to out-

perform the baseline model in case of dialogue accuracy. We compared the turn accuracy of

models with bag-of-words input and average of word embeddings and convolutional network

and recurrent network inputs. The best performance gave the model with the convolutional

neural network as the input layer, followed by the bag of words and average of word embed-

dings, and recurrent neural network as the input layer, for both datasets and sets of word

embeddings. We also tested the influence of the word embedding vectors. The fastText

word embeddings, which we trained directly on the training dataset, performed better on

the smaller dataset dialogue bAbI Task 6. The word2vec word embedding vectors, which

were pretrained on the news dataset, performed better on the bigger Alquist conversational

dataset.

To conclude, we showed that our proposed architecture with the convolutional neural

network as an input layer can outperform the baseline model of Hybrid code networks [1].

We also confirmed that it is possible to apply it to the data collected from the rule-based

dialogue system and achieve reasonable turn accuracy.

We would like to explore simpler architectures as our future work. We would like to focus

on architectures not so complicated as Hybrid code networks relying on the stateful LSTM.
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Appendix A

Dialog bAbI task 5 example

good morning

hello what can i help you with today

i’d like to book a table with italian food

i’m on it

[silence]

where should it be

in paris

how many people would be in your party

for six people please

which price range are looking for

in a cheap price range please

ok let me look into some options for you

[silence]

api call italian paris six cheap

[database results returned]

[silence]

what do you think of this option:

resto madrid cheap spanish 8stars

no this does not work for me

sure let me find an other option for you

[silence]

what do you think of this option:

resto madrid cheap spanish 6stars

do you have something else

sure let me find an other option for you

[silence]

what do you think of this option:

resto madrid cheap spanish 1stars
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it’s perfect

great let me do the reservation

may i have the phone number of the restaurant

here it is resto madrid cheap spanish 1stars phone

thanks

is there anything i can help you with

no thank you

you’re welcome



Appendix B

Dialog bAbI task 6 example

Hello , welcome to the Cambridge restaurant system . You can ask for restaurants by area ,

price range or food type . How may I help you ?

im looking for canapes food in any price range

I am sorry but there is no canapes restaurant that matches your request

how about european

api call european R location R price

[database results returned]

[silence]

michaelhouse cafe is a great restaurant serving european food and it is in the expensive price

range

food an

What part of town do you have in mind?

any any part of town

michaelhouse cafe serves european food .

may i have the address and phone number please

The phone number of michaelhouse cafe is michaelhouse cafe phone

thank you good bye

you are welcome
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Appendix C

Alquist Conversational Dataset

examples

What book do you like?
13 reasons why
Ahh, the Thirteen Reasons Why by Jay Asher? Am I right?
yes
Would you recommend it to me?
yes
Oh, I see. Do you like it?
yes
Wow, that’s great that you enjoyed it. I really enjoyed reading this one. It was very nice.
How was it, isn’t it too long?
no
Oh, I understand. Remember that you can say, tell me joke or fun fact, if you want to switch
topics. Anyway, back to the books. Is there any other book you like?
yes
So which one?
fault in our stars
I’m sorry, I don’t know this book. What is it about?
the fault in our stars
Oh, I see. How was it, isn’t it too long?
yes
I understand. What other book would you recommend me?
paper towns
Oh, the Paper Towns from John Green? Is it correct?
yes
Would you recommend it to me?
yes
I understand. Do you like it?
yes
Wow, that’s great that you enjoyed it. A that one was nice to read! How was it, isn’t it too
long?
no
I see. Is there any other book you like?
yes
So which one?
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abundance of Catherines
Oh, the An Abundance of Katherines by John Green? Is it correct?
yes
Should I read it?
yes
I understand. Do you like it?
yes
Wow, that’s great that you enjoyed it. An that one was OK! What’s your favourite character?

What book do you like?
the war that saved my life
I’m sorry, I don’t know that one. Can you describe it for me?
it’s about this girl who lives in England and there were bombs so he had to move to someone
in London he now she’s living her life there
Oh, I see. How long is it?
oh it’s about 300 pages
I understand. Remember that you can say, let’s talk about movies or sports, if you want to
switch topics. Anyway, back to the books. What other book would you recommend me?
I would recommend reading a series of unfortunate events
Oh, the The Bad Beginning from Lemony Snicket? Is it correct?
yes
How many times have you finished it?
1:57 times
I understand. Do you like it?
yes do you
Wow, that’s great that you enjoyed it. It was fine, but nothing exceptional. I know that,
author Daniel Handler (Lemony Snicket) made racist comments towards Jacqueline Woodson
at an award ceremony. Anyway, let’s get back to it. What’s your favourite part of the book?
and then change your and go to another person Taos an cow Olaf finds them anyway
Oh, I see. Any other book, you would like to talk about?
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