
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of computers

Facial Attribute Prediction

Matej Marčišin

Supervisor: Ing. Vojtech Franc, PhD.
May 2018

ii

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

406775Osobní číslo:MatejJméno:MarčišinPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Otevřená informatikaStudijní program:

Datové vědyStudijní obor:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Odhad atributů z tváře

Název diplomové práce anglicky:

Facial Attribute Prediction

Pokyny pro vypracování:
The human face carries lot of information about the person's age, gender, race, emotions etc. The task will be to design
and train a convolutional neural network (CNN) that simultaneously estimates heterogeneous face attributes from images
captured by ordinary cameras. The training algorithm has to be able to learn the CNN from examples with missing labels
that are common in this scenario. The developed system will be evaluted on standard benchmarks and compared to
baseline predictors. The additional output will be a demo running in real-time on a standard PC.

Seznam doporučené literatury:
[1] Liu et at. Deep Learning Face Attributes in the Wild. ICCV 2015.
[2] Jang et al. Facial Attribute Recognition by Recurrent Learning With Visual Fixation. IEEE Trans. On Cybernetics 2018.
[3] Han et al. Heterogeneous Face Attribute Estimation: A Deep Multi-Task Learning Approach. Arxiv 2017.

Jméno a pracoviště vedoucí(ho) diplomové práce:

Ing. Vojtěch Franc, Ph.D., Strojové učení FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Termín odevzdání diplomové práce: 25.05.2018Datum zadání diplomové práce: 20.02.2018

Platnost zadání diplomové práce: 30.09.2019

prof. Ing. Pavel Ripka, CSc.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Vojtěch Franc, Ph.D.

podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

iv

Acknowledgements
I would like to thank my parents and
my girlfriend for their support during my
whole studies, their patience and help
with basically everything. Last but not
least I would like to express my gratitude
to supervisor Ing. Vojtěch Franc phD. for
his help, guidance and contributions to
this work.

I owe you one.

Declaration
I declare that this work is all my own work
and I have cited all sources I have used in
the bibliography.

Prague, May 25, 2018

Prohlašuji, že jsem předloženou práci
vypracoval samostatně, a že jsem uvedl
veškerou použitou literaturu.

V Praze, 25 května 2018

v

Abstract
In this thesis we propose a method for
learning single CNN model performing
multiple prediction tasks simultaneously.
We formulate learning of the model param-
eters in the Maximum-Likelihood frame-
work which allows to learn from both fully
annotated and partially annotated exam-
ples. The proposed method is evaluated
on the problem of prediction of attributes
from an image of human face. We exper-
imentally show that the proposed multi-
task prediction model has the same per-
formance as an ensemble of independent
CNN models each trained to perform a sin-
gle prediction task. The proposed multi-
task model achieves super-human perfor-
mance and it is comparable to the current
state-of-the-art methods. In addition we
verified that the proposed method can
learn from multiple datasets with hetero-
geneous annotation of the attributes being
the scenario often encountered in practice.

Keywords: convolutional neural
networks, multi-task learning, partial
labeling, attribute prediction from faces

Supervisor: Ing. Vojtech Franc, PhD.
Department of Cybernetics

Abstrakt
V tejto práci navrhujeme postup na tré-
novavnie konvolučnej neurónovej siete
(CNN). Na rozdiel od bežnej konvolučnej
siete, navrhujeme jeden model schopný si-
multánnej predikcie viacerých atribútov z
tváre človeka. Proces trénovania paramet-
rov pre CNN formulujeme metódou maxi-
malizácie vierohodnosti. Takto definované
učenie nám umožňuje sa učiť z plne ano-
tovaných príkladov, ako aj z neúplnej ano-
tácie. Tento postup experimentálne ove-
rujeme a porovnávame jeho kvalitu voči
štandardnému prístupu, kde jeden model
konvolučnej siete produkuje jeden odhad.
Nami navrhnutý model model dosahuje
v predikciách atributov z tváre lepšie vý-
sledky ako skupina ľudí a porovnateľné vý-
sledky s najpokročilejšími algoritmami v
našej doméne. Na záver sme overili schop-
nosť navrhnutého modelu učiť sa z neúpl-
nej heterogénnej anotácie, ktorá sa bežne
vyskytuje v praxi.

Klíčová slova: konvolučné neurónové
siete, simultánna predikcia viacerých
atribútov, učenie z čiastočnej anotácie,
predikcia atribútov tváre

Překlad názvu: Odhad atributů z tváře

vi

Contents
1 Introduction 1
2 Related work 3
3 Model description 5
3.1 Prediction model and its learning 5
3.2 Convolution neural network 6
3.3 CNN architecture description . . . 12
4 Data description 15
4.1 CelebA dataset 15
4.2 Questionnaire 18
5 Implementation 21
5.1 Software . 21
5.2 Hardware . 21
5.3 Developed framework 22
5.4 Live demo 26
6 Experiments 29
6.1 Evaluation protocol 29
6.2 Single task model 30
6.3 Multiple task model 32
6.4 Training with partial annotations 36
7 Conclusion 43
Bibliography 45
A Additional experiments 49
B Comparison of STM and MTM
confusion matrices 51
C Contents of the Attached
medium 53

vii

Figures
3.1 Example kernel computation [18] 8
3.2 Example of max pooling layer [?] 10
3.3 Batch normalization algorithm
[18] . 12

3.4 The figure shows architecture of
the CNN which we used for
prediction of attributes from facial
images. The figure shows a variant of
the CNN predicting 5 attributes. . 14

4.1 Examples of CelebA images [32] 16

5.1 Behavior of learning rate
values[29] . 23

5.2 Images examples 25
5.3 Example of prediction with MTM
model introduce in the Chapter 6 . 27

6.1 The convergence curves for MTM
model of accuracy of prediction
during training and validation on the
left. In the right are cross entropy
values for training and validation. 34

6.2 Confusion matrices for the MTM
from testing data 35

6.3 Comparison of multi output model
and single output models per
attribute on test split CelebA 36

6.4 Confusion matrices for the MTM
model trained on the Partial-A . . . 39

6.5 Confusion matrices for the MTM
model trained on the Partial-B. . . . 40

B.1 Comparison of confusion matrices
for STM on left and MTM on right
for testing data part 1/2 51

B.2 Comparison of confusion matrices
for STM on left and MTM on right
for testing data part 2/2 52

Tables
3.1 CNN model description 13

4.1 CelebA dataset overview. 15
4.2 Attractiveness vs. gender in
percentage (Rounded) 19

4.3 Percentage category distribution
per datasets (rounded) 19

4.4 Questionnaire results with 18
evaluators for 100 examples 19

5.1 Virtualization parameters 26

6.1 The summary of classification
errors obtained in the development
stage of the STM model. The table
reports the training, validation and
the test errors for each predicted
attribute. The last column contains
the number of training epochs needed
to get the model with the smallest
validation error. 31

6.2 Comparison of the STM model
against the random guess and the
human performance. The Human-avg
stands for the average human error
while Human-cv refers to the
prediction based on majority vote of
a crowd of humans. 31

6.3 Comparison of the proposed STM
model against state-of-the-art
methods PANDA [41],
Facetracer [40], LNets+ANet [39]
and DMTL [35]. The comparison is
carried out on selected binary
attributes of the CelebA database. 32

6.4 The summary of classification
errors obtained in the development
stage of the MTM model. The table
reports the training, validation and
the test errors for each predicted
attribute. The evaluated model was
obtained after 37 training epochs. 33

6.5 Comparison of the MTM model
with the STM model, the random
guess and the human performance. 33

6.6 Partial-A description 37

viii

6.7 Partial-B description, each
category had 32 554 examples 37

6.8 Prediction errors obtained in the
development stage of the MTM
model trained on the Partial-A. The
best model, selected according to the
minimal validation error, was
obtained after 31 epochs. The results
are compared with the performance
of the STM trained on Full 160K
data. 38

6.9 Prediction errors obtained in the
development stage of the MTM
model trained on the Partial-B. The
best model, selected according to the
minimal validation error, was
obtained after 20 epochs. The results
are compared with the performance
of the STM trained on Full 160K
data. 38

6.10 Summary of partial labeling
learning on different datasets 41

A.1 Percentage error rate per attribute
class with virtualization 49

A.2 Percentage error rate per attribute
class with batch normalization . . . 49

ix

Chapter 1
Introduction

Recently, interest in the artificial intelligence is rapidly growing in all areas
ranging from academic researches to possibilities how to incorporate it to
every day usage. Simultaneously the deep learning is emerging as one of the
most interesting components of the artificial intelligence. The main reason
for the interest in deep learning has been its ability to improve solution of
many long standing problems, in particular in the field of visual recognition,
speech recognition and natural language processing.

Since 2012 when Krizhevsky et al. [2] managed to beat all previous
computer vision methods in the ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC) [1] the applications of deep learning, and specifically
those of convolution neural networks (CNN), boomed. Currently, the majority
of the state of the art methods in the visual, speech or natural language
recognition are utilizing the CNN models like for example in [3], [2], [43], [39]
and many more applications.

This thesis is centered around recognition of attributes from images of
human faces. In particular, the task is to design and train CNN-based
prediction model which for a given input facial image outputs attributes of the
depicted person like his/her age, gender, emotions, hair type and so on. Our
goal is to design a single CNN model predicting all attributes simultaneously.
The main advantage of a single CNN model solving multiple prediction tasks
simultaneously is a shorter prediction time in contrast to having multiple
CNNs each specialized for prediction of one attribute. Training CNN model
with state-of-the-art performance requires a large training sets of annotated
images. In case of the multi-task CNN, each training images needs to be
annotated by all attributes to be predicted. Acquiring large datasets of images
annotated with all attributes is however expensive. In contrast, the existing
public datasets are of limited size and their annotation is heterogeneous in the
sense that the set of annotated attributes differs from one dataset to another.
For example, there are datasets of facial images annotated by age and gender,
datasets with annotation of wearing accessories or another datasets with
annotation of emotions. Our task is to develop a method that can train the
multi-task CNN from a collection of many heterogeneous datasets. Note that
in case of training single-task CNN the problem is much easier as it is enough
to collect the training set from images having the annotation of the particular

1

1. Introduction
attribute to be predicted.

In this thesis, we tackle the mentioned problems. Firstly, we compare
performance of multi-task CNN prediction models with the single-task CNN
models being currently the dominant approach. Second, we evaluate perfor-
mance of multi-task CNN model trained from a collection of datasets with
heterogeneous datasets. The advantage of the trained compact CNN model
is demonstrated by a simple application simultaneously predicting multiple
attributes in real-time that runs on a common computed without GPU. The
developed framework is versatile and it can be readily used for training new
multi-task CNNs from a collection of heterogeneous datasets.

The thesis is organized into seven chapters. Chapter 2 briefly describes
related existing works. The proposed prediction model and the learning
algorithm is described in Chapter 3 . Chapter [ref] described the used dataset.
The implementation and the main features of the developed framework are
discussed in Chapter 4 and Chapter 5. Chapter 6 is devoted to the experiments.
Conclusions and the future work are given in Chapter 7.

2

Chapter 2
Related work

In this chapter we provide a brief overview of algorithms and approaches
for attribute estimation from faces. Detailed overview of this fast growing
research field is beyond the scope of this thesis. For relevant papers we point
out their drawbacks and major differences with our approach.

The recognition of facial attributes like age, gender, emotions, race, acces-
sories, etc. has been among popular topics in the computer vision and machine
learning communities over more than two last decades [3][4][5][11][10]. The
classical recognition pipeline is composed of three main stages: face detection,
feature description and attribute prediction.

The advent of the convolutional neural networks (CNN) has changed
approaches to many computer vision tasks including the face recognition
and attributes estimation from faces. The recent trend is to use end-to-end
approach based on a trainable CNN which accepts a weakly registered faced
and outputs the desired prediction. This approach has been applied to age
and gender recognition e.g. in [14][16][12][13][15].

Most existing works concentrate on prediction of a single attribute at time
by a specialized model trained only for that purpose. Recently, a different
approach has been proposed in [8][6][7]. They train a single CNN which
solves several prediction tasks simultaneously, e.g. pose estimation, identity
recognition, gender prediction, smile detection, age and prediction of other
facial attributes. The work of [8] uses a two stage approach based on transfer
learning. They first extract features by a general-purposed CNN pre-trained
on a different task and, subsequently, they train linear SVM classifiers on top
of the extracted features to predict the desired attributes. In contrast to [8]
we train all components of the CNN model simultaneously and, in addition,
we study learning from examples with a partial annotation of the attributes.

The paper [6] is closest to the work presented in this thesis, hence we
briefly describe similarities and differences. First layers of their CNN serve
as a feature extractor which is then followed by branches specialized for each
prediction task. In contrast, our CNN architecture uses a minimal number of
task specific parameters which define linear classifiers implemented by the
last layer of the network. Their objective function is a linear combination of
task specific loss functions. The combined losses include the soft-max loss for
the classification tasks together with the L2-loss and the exponential loss used

3

2. Related work.....................................
for the age regression. The loss weights are determined manually, moreover,
the weight values have been change in the course of training. In contrast, we
formulate learning as the ML estimation of the model parameters leaving no
space for heuristic design choices. Another closely related work is [7] who
learn a single CNN performing simultaneously face detection, pose estimation,
landmark detection and gender recognition. Besides, it concentrates rather
on face geometry (except the gender attribute), the work is in spirit similar
to [6].

4

Chapter 3
Model description

The main goal of this thesis is to develop a single CNN model with chain-like
architecture simultaneously predicting multiple facial attributes from images.
As described in the previous chapter, there exist numerous techniques for
this problem, but the deep learning has emerged as one of the most versatile
approach for this scenario and, moreover, it currently yields the state-of-the-
art results. Therefore we opted for network with single joint network model.
In Section 3.1 we described the proposed CNN based prediction model and
the method to learn its parameters from examples. The exact architecture of
the proposed CNN model is detailed in the Section 3.3 together with a brief
overview of used building blocks.

3.1 Prediction model and its learning

Let X be a set of all admissible images of human faces. In our implementation
we work with RGB images 100 × 100 pixel large, i.e. X = R100×100×3. We
assume that each facial image x ∈ X can be described by a vector of K
attributes y = (y1, y2, . . . , yK) ∈ Ȳ = Y1 × Y2 × · · · × YK , where Yi denotes
a finite set of admissible values of the i-th attribute. For example, the
first attribute can be the subject’s gender Y1 = {male, female}, the second
attribute can be his/her attractiveness Y2 = {attractive,unattractive}, the
third one the hair type Y3 = {black, blond, brown, . . .} and so on. In this
work we consider only categorical attributes, however, extension to deal with
ordinal or real-valued (regression problem) attributes is straightforward. Our
goal is to design a predictor h : X → Ȳ which for given image x ∈ X outputs
the sequence of attributes (y1, . . . , yK) ∈ Ȳ.

We model the relationship between attributes and images by a product of
conditional distribution for each attribute, i.e.,

p(y1, . . . , yK | x; θ) =
K∏

i=1
p(yi | x; θ)

p(yi | x; θ) ≈ exp〈wi
yi
, ψ(x)〉 , i ∈ {1, . . . ,K} ,

where ψ : X → Rn is a function extracting n real-valued features from an
input image and wi

yi
, ∀i, yi, are parameter vectors each associated with one

5

3. Model description...................................
attribute value. In our case, ψ is a CNN with a chain architecture extracting
n = 2048 features. A detailed description of the CNN architecture is a subject
of the next section. The vector θ encapsulates all model parameters, i.e., the
vectors wi

yi
, ∀i, yi, and all convolution filters of ψ. Our predictor computes

MAP estimate of the attributes, i.e.,

h(x) = argmax
(y1,...,yK)∈Ȳ

p(y1, . . . , yK | x; θ) .

Note besides the MAP attributes, the probabilistic output provides also a
confidence of the decision.

To obtain the model parameters we consider two learning scenarios: i)
supervised learning and ii) learning with partially annotated examples. In the
first case, the training set Tsup = {(xi, yi

1, . . . , y
i
K) ∈ X × Ȳ | i = 1, . . . ,m} is

composed of m images each annotated by full set of attributes. The model
parameters θ are obtained by maximizing the log-likelihood

Lsup(θ) =
m∑

i=1
log p(yi

1, . . . , y
i
K | xi; θ) =

M∑
i=1

K∑
j=1

log p(yi
j | xi; θ) .

In the second case, the training images are annotated only partially meaning
that values of some attributes can be missing. To this end, we define new
attribute value sets Ŷi = Yi ∪ {∅}, i = 1, . . . ,K, each being the original set
Yi extended by the element ∅ denoting missing attribute value. The training
set then reads Tpart = {(xi, yi

1, . . . , y
i
K) ∈ X × Ŷ1 × · · · × ŶK | i = 1, . . . ,m}.

The parameters are again learned by the ML principle. The log-likelihood
defined on the partially annotated set Tpart reads

Lpart(θ) =
m∑

i=1

K∑
j=1

[[yi
j 6= ∅[] log p(yi

j | xi; θ) ,

which is obtained by marginalizing out the values of the missing attributes.
We maximize both objectives Lsup(θ) and Lpart(θ) approximately by ADAM.

Note that both objectives are defined as a sum of soft-max losses (to see this
expand log p(yj

i | x; θ)) being implemented in most existing training CNN
libraries.

3.2 Convolution neural network

For the sake of completeness we present a brief overview of CNNs. The goal
of this section is to introduce the reader with main components of CNNs
which were used in our project. If the reader is familiar with convolution
layers, activation functions and optimizers, we recommend to just proceed to
next chapters.

CNNs can be seen as a variant of the multi layer Perceptron (MLP).
Their architectures share numerous similar characteristics, like linear layers,
activation functions, scoring functions and both CNN and MLP are learned

6

.............................. 3.2. Convolution neural network

with the help of variants of gradient descend approach. However, when
applying MLP on images only a small data can be processed due to a high
number of parameters. The CNN resolve the problem by sharing the same
weights over many locations, i.e. CNN is a special case of MLP with layers
restricted to have a special, "repetitive", structure.

For illustration, lets say that the input of our network is an image with
resolution 32x32 pixels in RGB color encoding. In this case, a single neuron
needs 32x32x3 = 3 072 parameters. Moreover, tasks on images require highly
complex models to capture intrinsic concepts encoded in the picture. Thus
you need high number of perceptrons organized in sophisticated multi layered
architecture. Adding that resolution 32x32 pixels is currently regarded as very
small resolution and that current HD standard has resolution of 1280x720
pixels we arrive at 2 764 800 parameters per perceptron. In case of 10 neurons
in single layer we get nearly 30 millions parameters just for the first layer
what creates significant computational problems.

CNNs were developed as a solution to this steep increase in the number of
parameter which occurs when neural networks are applied to images. The
first CNN was proposed by Lee et al. in 1990’s [20]. However the breaking
point came with AlexNet whose network architecture was able to significantly
reduce number of parameters and also to produce better results in image
recognition tasks than any of its predecessor [21]. This reduction is achieved
by exploiting local importance of features and also utilizing the depth of
image. In the CNN architecture we replace fully connected linear layers by
convolutional layers which utilize small sized filters (compared to input image
size) which slide over whole image and compute transformations. These
filters have usually sizes around 5x5xdepth. The standard input depth is 3
in case of RGB encoding. These filters are also called kernels as they have
similar functions as kernel transformation and we will use these two terms
interchangeably in the further text.

These filters in convolutional layers are further combined with multiple
types of layers which can be linear or non-linear function, and loss functions
residing at the end of the network.

3.2.1 Layers

In this section we more closely explore core building blocks which will be
used in our implementation of the model for CNN. We will mainly focus
on convolutional layer as it contains the essential idea behind whole CNN.
Other layers will be just briefly introduced for the sake of completeness and
introduction.

Convolution layer

The convolution layer is the main component. It is defined by four main
hyper parameters, size of kernel, number of kernels, padding and stride.

The kernel (or sliding filter) is containing the main idea of CNN. It is
a sliding filter which is extracting feature information from the underlying

7

3. Model description...................................
image. It is defined by its size/resolution. An important attribute of kernel is
that it is going into the whole depth of the input image/matrix and produces
single value as output. The filter is sequentially moving over the whole input
and at each step it computes product of the proportion of picture it sees
with the parameters in the kernel. The computation is the same as in fully
connected layer but with significantly less parameters, thus achieving shorter
learning time. It is important to note that the parameters in single filter are
fixed for whole image and they are changed only during back propagation
update.

Figure 3.1: Example kernel computation [18]

After a single pass of filter over the input we get on the output 1D matrix
with smaller resolution than the input image (only in case of 1x1 filter the
input resolution is preserved, but the depth is still reduced to 1). In the
single convolutional layer we can stack multiple kernels which results in higher
volume depth output than the input. Example of this kernel computation
can be seen on Figure 3.1 with 1D input. In the example we use padding of 1
with stride 1 and kernel size 3x3x1. The final resolution of the output can be
computed with following formula:

(IW −KW + 2P)/S + 1 (3.1)

where IW is width of input, KW is width of kernel P is padding size and S is
stride. By this formula we get the width of output dependent on input width.
In case of symmetric input we are done, in the other case we just apply the
same logic for height.

This formula introduced us to next important hyper parameters of convo-
lutional layer which are stride and padding. The padding is used to expand
original input size. The procedure is straightforward as we just expand the
input image columns and rows by some specific value. The standard is to
use 0 as padding value, but there are no reasons why we could not use other
values like 255 or mean pixel value of image. In our example Figure 3.1 we
used padding of size 1 and as padding values we used 0. By this we can
achieve the preservation of the resolution of input image with the output
image of convolutional layer. Another merit of padding is that by applying
it on original image we can more precisely extract important features from
the borders of the image and help the model to propagate those features into
following layers.

8

.............................. 3.2. Convolution neural network

The stride is the size of step for kernel slide over image. It can be at least 1.
The maximal stride value is the width or length of kernel filter. If we set the
stride to the width of kernel we get zero overlap in output features extraction
and maximal retraction of the original image resolution.

Last hyper parameter of convolutional layer is number of kernels in single
layer. We can have just one filter to reduce the depth of input image or more
commonly we use multiple filters in single layer. Usually there are powers of
2 filters in single layer ranging from 2 to 2048 or even more.

To recapitulate, in convolutional layer, there are four principal parame-
ters whose values are solely dependent on type of task and specific domain
knowledge of architecture of the whole model. These parameters are filter
dimensions, number of filters, type of padding and stride. The reduction of
parameters compared to fully connected layer is achieved by using sliding
small sized kernel with same principle as fully connected layer.

Activation layer

Activation functions are usually coupled with convolutional layer. The original
idea of activation functions was inspired by biological neuron which activates
at some specific strength of signal and bring an element of non-linearity to
our network. Similarly the activation function filters feature values depending
on activation function. Basic example of the activation function is sigmoid
function.

f(x) = 1
1 + e−x

(3.2)

This function transforms input into value from interval between 0 and +1.
However, using this function limits possible depth of our network as it is
pushing the values quite aggressively towards 0 which limits variability of
possible results. Consequently there were developed multiple variants of such
function. Currently, the most used is the rectifier linear unit (ReLU) with
following definition:

f(x) = max(0, x) (3.3)
It has been empirically proved that usage of this function speeds up the

learning phase in deep network [19]. This function was further developed
creating multiple ReLU variants like leaky ReLU where instead of setting
negative values to zero, negative input is scaled by some fractious factor,
which is usually smaller than 0,1.

Max pooling layer

Max pooling layer is sample size discretization process which down samples
the input. The goal of this layer is to reduce the input size while maintaining
features information from subregions to output of this layer.

This is done by sliding fixed size window filter over input and outputting
the maximum value to output. This is illustrated on the Figure 3.2. These

9

3. Model description...................................

Figure 3.2: Example of max pooling layer [?]

subregions in input are usually not overlapping, but there are numerous
architectures which use max pooling with overlapping regions, for example
well known GoogleNet [22].

To conclude, the pooling layers are mainly used to help over-fitting by
providing an abstracted form of the representation. Moreover, this layer
significantly reduces the computational cost by reducing the number of
parameters to learn and provides basic translation invariance to the internal
representation. As in case of the activation function, there are numerous
different variants of max pooling, for instance average pooling or median
pooling.

Loss functions

Loss function is a core part of every supervised learning algorithm. This
function measures the compatibility between prediction and the true label.
The aggregate loss value is usually expressed as an average over the data
losses for every individual example. That is, Agg.Loss = ∑n

i Lossi , where
n is the number of training examples. The choice of loss function depends
mainly on type of problem to solve. Depending if we solve classification or
regression problem, we can use different loss function. In our case we will
focus mainly on classification problems.

Currently, the most frequently used loss functions for classification problems
are soft max and categorical cross entropy. We will use categorical cross
entropy with following formula:

Lossi = −
∑

j

ti,jlog(pi,j) (3.4)

, where p are the predictions, t are the targets, i denotes the data point and

10

.............................. 3.2. Convolution neural network

j denotes the class[24].
Another useful property is that it can be easily modified to apply weighting

of input. Hence we can achieve that for each category with different sig-
nificance factor the parameters are adequately updated during propagation
during learning.

3.2.2 Optimizers

Optimizers or optimization functions are, like loss functions, another crucial
part of every learning algorithm. Each kind of neural network is a highly
complex optimization problem for specific set of high number of parameters
commonly counting in millions. As a result, we have numerous optimization
approaches in this field, but due to enormous number of parameters we are
left basically with single option which is the stochastic gradient descend (in
short SGD) algorithm.

SGD approach consists in iteratively searching for the best set of parameters
by making proportional steps in opposite direction of current gradient to the
loss function. By this, one should arrive at local (ideally global) minimum
of the loss function. However, the loss function is very complex hyperplane
with numerous plateaus. Therefore different approaches were developed how
to overcome this problem. Each solution has its advantages and drawbacks.

There is no universal optimizer which can be used for all use-cases. However,
Adam optimizer is currently considered as one of the best and most universal,
as it incorporates best parts of two predecessors AdaGrad and RMSProp.
Advantage of AdaGrad compared to previous existing optimizers is that it
is able to deal with sparse gradients. The second inspiration came from
RMSProp which is well suited to deal with non-stationary objectives[25].
Adam algorithm is basically computing two momentums which helps to
overcome plateaus in the objective function space plus adjusting bias to speed
up initial learning. Moreover, it has features of simulated annealing which
takes bigger steps in the start of learning and progressively decreases step size
as it is approaching local (ideally global) minimum. To completely explain
this algorithm is beyond scope of this work, therefore in case of further interest
we recommend original paper by Diederik P. Kingma and Jimmy Lei Ba [25].

3.2.3 Batch normalization

Batch normalization is a process of normalizing output of layers to have
zero mean and unit variance. With this technique we can significantly speed
up learning of neural networks with use of higher learning rates. Moreover,
it is assumed that with batch normalization, one can be less careful with
parameter initialization, and it helps to solve saturating nonlinearities, or so
called vanishing gradient problem, during learning[26].

Core advantage of batch normalization is that it may result in better
performance on unseen but similar examples for the network [26]. Also, the
batch normalization allows each layer of a network to learn by itself slightly
more independently of other layers.

11

3. Model description...................................

Figure 3.3: Batch normalization algorithm [18]

In most cases, implementation of this algorithm results in increased stability
of a neural network. Batch normalization normalizes the output of a layer by
subtracting the batch mean and dividing by the batch standard deviation.
This leads to a reduction in covariance shift in the output of this layer. How-
ever, after this shift/scale of activation outputs by some randomly initialized
parameters, the weights in the next layer are no longer optimal. That may
result in optimizer shifting the parameters to approximately pre-normalized
values if it assumes that it will decrease loss. Consequently, to prevent this
behavior, batch normalization adds two trainable parameters to each layer,
so the normalized output is multiplied by a “standard deviation” parameter
(gamma) and add a “mean” parameter (beta) [23].

3.3 CNN architecture description

In this section we introduce the architecture of the CNN model which is used
as a feature extractor in our proposal. As mentioned before, the inputs for
this model were gray-scale images with size 100 pixels. As the output, the
CNN model extracts a feature vector with 2048 real-valued components.

The final architecture with multiple outputs can be seen in the Figure 3.4.
For better readability we also provide description of the network in Table 3.1.
Including architecture of model we had to settle on numerous specific hyper
parameters of each layer, like padding, kernel sizes and kernel counts in
convolution layer, pooling layer filter sizes and strides and type of activation
function. We opted for rectified linear unit layer as activation function. Also
in our model description in figure 3.4 and table 3.1 we do not mention batch
normalization layer as we use it as part of convolutional layer and it resides
between CNN layer and following activation layer.

From the table 3.1 we can see that the model had in total 11 153 696
trainable parameters without output variables. The output is fully connected

12

..............................3.3. CNN architecture description

Layer Filter
size Stride Filter

count
Number of

learnable params

Input layer 100 x 100 x 3 - - -
CNN + ReLU 3 x 3 1 32 896
CNN + ReLU 3 x 3 1 32 9 248
Max Pool 2 x 2 2 - -
CNN + ReLU 3 x 3 1 64 18 496
Max Pool 2 x 2 2 - -
CNN + ReLU 3 x 3 1 64 36 928
Max Pool 2 x 2 2 - -
CNN + ReLU 3 x 3 1 128 73 856
CNN + ReLU 4 x 4 1 128 262 272
CNN + ReLU 5 x 5 1 2048 6 555 648
CNN + ReLU 1 x 1 1 2048 4 196 352
Output variable - - # of cat. val x 2048

Table 3.1: CNN model description

layer followed by categorical cross entropy layer. In the fully connected layer
we had 2048 parameters times number of categories, so for example for binary
attribute like gender we had 4096 parameters. Each convolutional layer had
zero padding therefore the these layers also decreased the output resolution
compared to the input. We intentionally exploited this property to decrease
the number of parameters and speed up processing time.

13

3. Model description...................................

Figure 3.4: The figure shows architecture of the CNN which we used for
prediction of attributes from facial images. The figure shows a variant of the
CNN predicting 5 attributes.

14

Chapter 4
Data description

In this chapter we introduce dataset used during testing and development of
the model for this thesis.

Our dataset was extracted from CelebA dataset [32] by selecting subset
of original categories. Namely gender, glasses, attractiveness, smile and hair
color. The first four are binary categories and the the last one have five
different classes which are result of merging originally multiple binary labels.
The locations of faces in images was extracted by EM-CNN algorithm [42].

Furthermore we examined distributions in our classes and focused on the
most ambiguous category which is attractiveness category. Consequently we
discovered non negligible bias toward attractive women subcategory in the
labeling.

Finally we describe questionnaire created on examples from our CelebA
dataset. This questionnaire was used to compare ability to predict labels
between our algorithm and humans.

Data split Number of examples Category name Number of categories
Train 162 770 Attractiveness 2
Test 19 962 Glasses 2
Valid. 19 867 Gender 2
Total 202 599 Hair 5

Table 4.1: CelebA dataset overview.

4.1 CelebA dataset

The CelebA dataset was composed of 202 599 pictures. The pictures contained
various photographies with face. Each sample was provided with the location
of face. The location was defined by bounding box containing four pixel
positions in picture. The labeling and bounding boxes were extracted from
large scale database[32] with originally just binary labels. For our use case
we picked a subset of attributes and the hair category was produced as
combination of various original binary labels. The full annotation for our
specified version of CelebA dataset contained 5 attribute labels with following
categories:

15

4. Data description

Figure 4.1: Examples of CelebA images [32]

. Attractiveness: Attractive / Unattractive. Accessory: With glasses /Without glasses.Gender: Male / Female. Smile: Smiling / Not smiling. Hair color: Black / Blond / Brown / Gray / Other

The labels for each sample were provided in separate configuration file.
Single line in attributes configuration file contained name of picture followed by
encoded values for each attribute in order specified by another configuration
file with attribute values. In the attributes values file were at each line
category code followed by semantic meaning of label separated by double
colon.

Each picture contained picture of face from different angles and in different
partition of picture. As locating a face in picture was not our main goal, we
were also provided with location parameters of face for each sample so we
could crop each sample just to face picture. The location of face in picture was
specified in separate configuration file where single line started with name of
picture followed by space separated four integer values specifying rectangular
frame position of face in picture. Examples of images of before cropping and
after can be seen in the section about data augmentation further in text.

After cropping and resizing the original dataset, samples were split into
three subsets containing data for training, validating and testing. 80% of

16

....................................4.1. CelebA dataset

the whole dataset was used for training. The remaining 20% of data was
equally split between testing and validating subsets. In single epoch data from
training sample were used for training and then we evaluated the performance
of newly trained parameters on validation data. This evaluation is crucial to
be able to spot overfitting of our model. The testing partition was used only
once in the final evaluation of network on model from epoch where model
achieved the lowest average aggregate validation loss.

4.1.1 Subsets and categories

The training dataset contained 162 770 examples, the validation subset
contained 19 962 and the test subset contained 19 867. The distribution of
categories in each attribute can be seen on the following graphs and table
summarizing all categories. Each category has quite expectable distribution
and each data split has approximately same categories distributions.

The first category is attractiveness. This class can be one of the most
complicated category in dataset as it is very ambiguous category. Specifi-
cally there isn’t any well established definition of attractiveness. Moreover
attractiveness is highly subjective which is also highly influenced by cultural,
personal preferences, geographical location, gender and many more factors
concerning the evaluator. Furthermore, it is very unlikely that in creation
of this dataset a single evaluator has been used. This introduces another
challenge in this class, as it is expected that the values will not have consistent
values and it will be even harder to determine intrinsic features responsible
for category evaluation. Regarding internal distribution we can observe from
the graph a) that we have equal split in attractiveness. However after review
of attractiveness class we discovered, that we have non negligible bias toward
attractive women. Disparity in the distributions can be detected from the
following Table 4.2. As mentioned before it can be due to personal prefer-
ences of evaluators of this photographs or that we were able to gather more
examples of attractive women celebrities.

Then we have attribute with glasses, where the minority of our population
has glasses. In this class, it is important to observe percentage of false negative
and false positive errors due to their minor representation. In other words
we should oversee the learning process so the classifier would not overfit on
examples without glasses and so it would be able to identify occurrence of
glasses in examples.

The next attribute category is gender. In this category there are more
women than men, which corresponds to natural population and equal split in
smile attribute. The last binary category is smile where we have similarly
equal split in it values.

From the graph e) we observe unequal distribution of attribute values in
hair category. The major value in this attribute is unspecified class with
nearly 40%. After reviewing examples from the unspecified class we conclude,
that majority of this examples are mixed hair colors which are very equivocal.
Specifically there is high number of mixed blond and brown, or some part
of color hair was getting gray, yet the gray color was not dominant enough

17

4. Data description

(a) : Distribution in attractiveness class (b) : Distribution in glasses class

(c) : Distribution in gender class (d) : Distribution in smiling class

(e) : Distribution in hair color class

to be marked as gray hair color. Also there were multiple examples with
woman who had just partially colored hair as the original color of their hair
had already grown out. At last the minority of unspecified color were an
extravagant colors like green, purple, etc.

4.2 Questionnaire

For purposes of our thesis we also created small survey with CelebA dataset.
This survey contained 100 images from training set. The task for participants
was to label each picture with all five categories. We used it to asses the
original labeling as the CelebA dataset contained highly subjective category

18

.................................... 4.2. Questionnaire

Training Validation Test
Attractive

& Male 23 19 25

Attractive
& Female 77 81 75

Unattract.
& Male 62 58 61

Unattract.
& Female 38 42 39

Table 4.2: Attractiveness vs. gender in percentage (Rounded)

Split Samples
in split

Attractive Glasses Gender Smile Hair color
Yes No Yes No M. F. Yes No Black Blond Brown Gray Other

Train 162 770 51 49 6 94 42 58 48 52 23 14 19 5 39
Valid 19 962 50 50 6 94 39 61 50 50 27 13 17 3 40
Test 19 867 52 48 7 93 43 57 48 52 20 14 23 5 38

Table 4.3: Percentage category distribution per datasets (rounded)

of attractiveness which can be highly specific to cultural preferences. We
have to note, that we cannot vouch for statistical correctness of these results
as we did not had possibility to randomly approach participants and also we
had to made it of considerable size to get at least some answers.

We managed to get 18 respondents to fill out our questionnaire. We firstly
compute aggregate human error for each attribute separately. Lets define the
true label for the i-th example as li and j-th human evaluation for the i-th
example as evi

j . We use anat as number of present annotations for attribute
at ∈ {Attractivenes,Glasses, ...} . Consequently the aggregate human error
for single attribute is defined as 1

anat

∑p
i

∑n
j [[liat 6= evi

j [] where n = 100 is
number of examples and p = 18 is number of participants. Similarly we
define crowd vote error where the evaluated label for i-th example mvi was
chosen as majority vote from the human evaluation. The crowd vote error
was computed as 1

n

∑n
i [[li 6= mvi[]. Results for the survey are presented in

the following Table 4.4. We will use these results as one of the baseline error
rates for our models and we will abbreviate the metrics as AHC error or just
"Human error" for aggregate human correspondent error and CV error for
crowd vote error.

Number of
annotations

Aggregate
(AHC) error[%]

Crowd vote
(CV) error [%]

Attractiveness 1795 29.8 28.1
Glasses 1786 1.1 1.0
Gender 1790 1.1 0.9
Smile 1784 15.2 12.9
Hair 1783 50.7 48.3

Table 4.4: Questionnaire results with 18 evaluators for 100 examples

19

4. Data description
Surprisingly, from this small experiment we can see that our evaluators

had struggled the most with hair attribute and secondly with attractiveness
attribute. We assume that this is due to ambivalently defined "other" value
in the hair attribute. Without proper definition of this value could pose
significant challenge for evaluators to distinct between other value and the rest.
Moreover after revision of chosen examples it could be also due to similarity
of black and brown hair color. On the other hand the higher error rate in
attractiveness category was quite expected as the definition of attractiveness
can be very distinctive for each human. Given that every evaluator expressed
this attribute in his own subjective definition of attractiveness we consider
this error reasonable.

20

Chapter 5
Implementation

In this chapter we describe software and hardware used during implementation.
Later we introduce a process of final implementation, training and evaluation
of the CNN model. Lastly we introduce additional functionality of our project,
such as application of the learned model on video.

5.1 Software

For the implementation we used Python programming language. We have
chosen this language as it provides multiple frameworks and libraries to
working with neural networks with strong online community support. In
python there are many specialized libraries like Caffe, Keras, Tensorflow,
Theano, Pythorch and many more. We opted for Keras as it is one of the
most frequently used libraries within scientific community[30]. Moreover,
as it is a higher level API library, it enables us to use different back-end
frameworks and we are not locked in single ecosystem. We used tensorflow as
the backend support for Keras. Another advantage of Keras is its simplicity
and yet it enables deeper manipulations on back-end level in case of need for
further specific functionalities. Also, Keras enables CPU and GPU supported
computing. This feature of Keras framework allowed us to easily switch
between server sided GPU computing and local CPU debugging without need
of complicated configurations.

5.2 Hardware

Main hardware used for learning the network was computing server with CPU
E5 2400 and Nvidia GTX Titan Black 6GB graphic card. This GPU has
bandwith of 336GB/s which is an important parameter as it caps data inflow
for computation. Bigger flow can significantly speed up whole computation.
Furthermore, in machine learning, it is crucial to parallelize computation
with matrices. GPUs are mainly designed for this kind of computation. The
secondary machine for local development and debugging was ultrabook with
Intel i5 5200.

21

5. Implementation....................................
For example CPU backed computation on local machine takes 512 mili-

seconds for single image forward and backward pass. Comparatively it takes
957 nano-seconds on previously mentioned GPU server.

5.3 Developed framework

In this section we are introducing developed framework for running ex-
periments with CNN model. The framework is mainly used for train-
ing, testing and evaluation of CNN model which is later utilized in real
time multiple face attributes estimation. Basically we will provide the
reader with overview of our project which is available at this address https:
//gitlab.fel.cvut.cz/marcimat/CNN.git . The project was developed
with goal to support multiple data sources with multiple configuration there-
fore majority of its functionality can be influenced with configuration files
and its designated readers.

5.3.1 Configuration

The configuration of each database is a bit different, therefore we developed
configuration for each database separately with unified output which connects
in data generating process. Using object injecting we just use specified loader
for data generator and than generator utilizes it to correctly feed data into
the model.

Regarding configuration of model architecture everything took place in
cnn.py script. Here we specified architecture of our model mentioned in
previous chapter. The model was defined through functional KERAS API
and was designed to be able to have configurable number of outputs and input
resolution of images. In addition this script provided means for serializing
and loading of model and its configuration setting, histories produced by
training and evaluation of model.

5.3.2 Model development

The development of final model for estimation of multiple attributes went
through multiple phases. Disregarding initial steps as choice of framework
and choice of programming language the first phase was to create single
output CNN architecture.

The reason why we implemented at first just single output architecture
was not only to get familiar with framework but also to have some bench
mark results. This is crucial as we will have initial values with single output
architecture specialized per attribute. Thus it will be easier to compare
expressiveness of ensemble of CNN to single network with multiple outputs.
We used the same architecture for multiple outputs architecture as in single
output scenario with just adjusting the last layer, where in stead of single
prediction we will produce multiple.

22

https://gitlab.fel.cvut.cz/marcimat/CNN.git
https://gitlab.fel.cvut.cz/marcimat/CNN.git

................................. 5.3. Developed framework

After we settled on initial architecture we had to optimize learning rate.
This part is particularly delicate as it is more of craft than straight forward
algorithm. The basic behavior of model in the first epochs even batches can
hint a lot about properties of chosen learning rate value.

The value of learning rate is too high if the error is increasing with each
iteration. Moreover in case the loss hits plateau just after few epochs it
indicates also a bit high learning rate. Another problem with very high
learning rates is that it can start to over fit quite quickly just after few epochs
(approximately 10 - 20). On the other hand if we chose too small values the
learning process is slow and the network could reach better results with higher
values of learning rate. This behavior of learning rate values is illustrated on
the following picture5.1.

Figure 5.1: Behavior of learning rate values[29]

Common practice is to randomly select multiple values from specific interval
and then narrow our searching interval based on results. In other words the
best learning rates can be found using simulated annealing rather than basic
grid search. The whole process of finding right learning rate is quite time
consuming process because to correctly asses all aspects of the specific values
we had to run at least 25 epochs. Ideally we should run the test with as much
epochs as possible. However, regarding that single epoch on our data with
lower load on the computation grid server took approximately 14 minutes one
test of single learning rate value was nearly six hours. In case of higher load on
the server the single epoch computation time could increase up to 20 or even
30 minutes resulting in more than 10 hours per tested value. Consequently
our search for optimal learning was strictly limited by the available time and
server availability. The optimizer used in our model was previously mentioned
Adam optimizer which is currently considered as one of the most versatile
and the most balanced optimizer for any neural network application.

23

5. Implementation....................................
Finally we could start training and evaluating our model. Due to limited

time we opted to develop as much functionality as possible so we can evaluate
our proposed learning model. At last we used our remaining time to tweak
our architecture and tried different parameters on previous results.

5.3.3 Mini-batch generation

For feeding data we developed DataGenerator class which responsibility is to
correctly load data from disk, pre-process data and sequentially feed model
with data for training and evaluation. Due to memory constraints of our
hardware we could not feed whole dataset at once into the model, therefore
the generator was feeding data in bulks of twelve thousands images.

Firstly the data were fed to KERAS framework as separate arrays for input
images and labels extracted from configuration files. Moreover as the CNN
model requires uniform picture resolution we had to preprocess each sample.
This preprocessing could be done in two manners, on-line or off-line.

The on-line preprocessing means, that each picture would be cropped and
resized to specified uniform resolution just in time. The other option, off-line,
we prepared our dataset in advance by cropping and resizing before running
the network. As training a CNN is highly resource demanding task for
computer we opted for the later option of preprocessing during early stages
of development and tuning some hyper parameters. Thus the network could
be directly fed data from disk without need of any further alteration before
inputing into the model. In later stages where we were trying different data
augmentation techniques and different input configurations of architecture
we switched to on-line data feeding, as it provides better flexibility.

Gradually by adding new functionalities to our framework the baseline
generator was used as super object for its descendants like on-line data
generator, data generator with ability to hide some label and and augmenting
original data and also two other dataset generators.

5.3.4 Data augmentation

Apart from plain data loading we also utilized data augmentation to broaden
our training samples. This is done mainly to avoid over fitting on the training
set and to increase the ability of the model to generalize. The virtualization
process consists of multiple affine transformation of input image. Such changes
can be for example mirroring of image or rotation, changing color spectrum
and many more. Consequently we can train more general classifier as we
provide it with unique images in each training iteration.

In our scenario we are limited to just few possible transformations and we
must be careful with parameters. For example we cannot tilt the image to
much, definitely not beyond 45 degrees, because identifying facial expression
like smile can be made significantly more difficult even for humans, not
speaking about algorithms.

Therefore we opted for image mirroring, slight rotation and expansion/retraction
of cropping coordinates in such a range that it would not hinder original

24

................................. 5.3. Developed framework

(a) : Original images (b) : Cropped images by provided
face location

(c) : Expanded images (d) : Augmented images

Figure 5.2: Images examples

information. The parameters of these augmentations can be seen in table
below5.1.

First we randomly expanded/reduce width and height of picture by param-
eter from interval <-5,+5>. After that we expanded cropping coordinates by
25% and applied mirroring. The mirroring was randomly assigned to 50%
of pictures. Following, we rotated the picture by 0-5 degrees to left of right.
At last we scaled the images to final resolution for network. Each parameter
value was pseudo randomly generated from mentioned intervals.

For scaling images we used bilinear transformation provided by pillow
package. It is important to realize, that mainly the expanding of crop frame
can significantly impact performance of the model, therefore we had to apply
the 25% expansion of bounding box also to examples used in evaluation and
testing phases. It can be seen from examples 5.2 that original bounding boxes
are focused on the facial location in images, disregarding hair of person in

25

5. Implementation....................................
the picture. In the set of pictures 5.2b we observe much lesser proportion of
hair in comparison to examples 5.2c.

Parameters
Rotation +5°, -5°
Mirroring 50 %
Expanding +5% , -5%

Table 5.1: Virtualization parameters

5.3.5 Final hyper-parameter setting

Training of CNN in its essence is likelihood maximization algorithm where
the current configuration is evaluated and updated after each forward pass.
The update phase is done by gradient descent which is calculated by back
propagation. In the case of partial labeling we have to marginalize over known
values before back prop.

However to maximize this update step we have to configure numerous non
trainable parameters. This non-trainable parameters are commonly named
ad hyper parameters. We used following hyper parameters with values in the
brackets:. Number of epochs for training: 100. Learning rate: 7.0e-07. Batch size: 124. Adams parameters: β1 = 0.9, β2 = 0.999, ε = 1e− 8

5.4 Live demo

As one of the expected results of this thesis is to use learned model for live
demo application. For this we used CV library detection with haar frontal face
cascade filter for face detection[31]. This small demo application processed
each frame at time. From the frame were identified faces with the haar filter
and processed by by our model to estimate attributes from the input image.

The identification of faces from the full frame with our detector is highly
resource demanding task. Therefore to speed up this process we used facial
detection on the full frame only to identify the locations of the faces. Once
identified we remembered the locations of those faces. Then we used our
detector only to the cropped part of the frame to validate if the face is still
present in that location. If the face was not recognized in the original location
we rerun the detector on the full frame. This technique significantly decreased
processing time for each frame, resulting in better overall performance.

Example of the resulting application of our trained model applied on
prediction of face into video is show in the Figure 5.3. However it is important

26

......................................5.4. Live demo

to note, that our model can under perform in predicting attributes from
the video as such task is significantly different from the original learning
scenario due to constantly changing conditions like luminance, angle of face,
resolution etc. Another problem can be in fact that the video frames are
creating completely different dataset compared to the training data.

Figure 5.3: Example of prediction with MTM model introduce in the Chapter 6

27

28

Chapter 6
Experiments

This section covers all experiments that were done using the CelebA dataset.
The experiments were conducted in the same order as presented here, as we
gradually moved from the single task CNN to multi task model and to learning
from partial annotations. The main goals of this chapter is i) to compare
single-task and the multi-task CNN prediction models and ii) to compare
performance of multi-task CNN models trained either from fully annotated
examples or from partially annotated examples. The goal was not to get
the state-of-the-art results, but rather to evaluate relative performance of
different models and learning scenarios. The main reason for not attempting
to beat the state-of-the-art was mainly the limited time we had at our disposal.
Nevertheless, as will be seen later the achieved performance is close to the
state-of-the-art methods.

6.1 Evaluation protocol

For the sake of comparability, all compared models used the same CNN
architecture, up to the output layer defining the predictors, and the learning
algorithm used the same hyper-parameters. In particular, for training the
CNN model we always used ADAM optimizer running 100 epochs with
learning rate 0.000007 and the number of images in the mini-batches was 124.

After finishing the training phase, we had the 100 prediction models each
saved at the end of the respective epoch. We selected the best model based
on the validation error. In case of training the multi-task CNN model the
validation error was computed as the arithmetic average of validation errors
of all predicted attributes. We opted for this method rather than taking the
last trained model (i.e. at epoch 100), as the neural networks tend to overfit
at the end of training stage. In other words, the models from the last epochs
often prove to be less general and less accurate on unseen data.

The best model (the one with the minimal validation error) was evaluated
on the test examples. As all the attributes are categorical (with small number
of values) we used the classification error as the evaluation metric. The
classification error was computed as a fraction of test examples on which the
value of the predicted and ground-truth attributes disagree.

In particular, the test set contained l = 19, 962 examples assumed to be

29

6. Experiments
drawn from statistically independent random variables. In turn we can use
the Hoeffding’s inequality [46] to compute the confidence interval for our error
estimates. Let R̂ be the test classification error computed from l examples.
By Hoeffding’s inequality, we can claim that the true classification error (i.e.
the expected value of the 0/1-loss) is in the interval (R̂ − ε, R̂ + ε) with
probability δ = 0.95, where

ε =
√

1
2 l
(

log(2)− log(1− δ)
)
.

In particular, for l = 19, 962 test examples the width of the confidence interval
is ε = 0.0096. This means that with probability 95% the true error deviates
from the reported test error by 1% at most.

In our experiments, we compare the multi-task CNN prediction model
against several baseline approaches. The main baseline is the single-task CNN
model which uses the same architecture as the multi-task CNN but it predicts
only a single attribute (there is a single linear classifier on top of the last
layer). The additional baseline is a trivial predictor based on random guess
of the attribute. The performance of the random predictor sets a pessimistic
upper bound on the Bayes error. To get a tight upper bound on the Bayes
error, we report the human performance on the same prediction tasks. See
Section 4.2 on how the human predictions were collected. Note that humans
have been trained during the evolution to recognize the attributes from human
faces. Hence, the human performance is often a good approximation of the
Bayes error. Last but not least, we also report prediction errors achieved by
some state-of-the-art methods on the CelebA dataset.

6.2 Single task model

In this section, we evaluate performance of single task models. For each
attribute we trained an independent CNN prediction model which will serve
as one of the baselines in the following experiments. In particular, we use
the CNN architecture described in Section 3.3, having a single predictor
implemented in the output layer. We trained five models, one for each of five
attributes, and evaluated the models. Further in text we will refer to this
experiment as the single task models (STM).

Firstly, in Table 6.1, we present result summarizing the development stage
of our STM model. The table shows training, validation and test error
achieved for individual attribute. In addition, we report the number of epochs
to get the best model, i.e. the models with the lowest validation error. We can
see a small difference between the training and the validation (and test) errors.
This relatively small difference hints us that we could increase performance
of our model by increasing its complexity, e.g. by increasing depth of the
network. Another notable point from the results in Table 6.1 is that the
best validation error for attributes with higher error was achieved rather in
later training stages as compared to attributes that can be recognized with
lower error. More specifically, the best model for the attributes "glasses",

30

.................................. 6.2. Single task model

"gender" and "smile" was obtained after around thirty training. In contrast,
for attributes "attractiveness" and "hair", the best model was achieved after
more than fifty epochs. This development can be attributed to intricacy
in predicting these attributes or to the inconsistencies in the ground-truth
labeling provided with the dataset.

Train
Error [%]

Test
Error [%]

Validate
Error [%]

Best
Epoch

Attractiveness 17.1 21.4 20.0 55
Glasses 0.6 1.4 1.2 31
Gender 2.5 3.8 4.5 37
Smile 6.5 8.8 9.1 41
Hair 26.4 33.4 33.4 57

Table 6.1: The summary of classification errors obtained in the development
stage of the STM model. The table reports the training, validation and the test
errors for each predicted attribute. The last column contains the number of
training epochs needed to get the model with the smallest validation error.

STM
Error [%]

Random
Error [%]

Human-avg
Error [%]

Human-cv
Error [%]

Attractiveness 21.4 48.0 29.8 28.1
Glasses 1.4 7.0 1.1 1.0
Gender 3.8 42.6 1.1 0.9
Smile 8.8 48.3 15.2 12.9
Hair 33.4 62.4 50.7 48.3

Table 6.2: Comparison of the STM model against the random guess and the
human performance. The Human-avg stands for the average human error while
Human-cv refers to the prediction based on majority vote of a crowd of humans.

In Table 6.2, we present comparison of the STM model against the random
predictor and the human performance. We can clearly observe that our
models are significantly better than random guess and furthermore it achieves
better results than humans. The STM model did significantly better in
prediction of "attractiveness" but also remarkably better in prediction of
"hair" color. The disparity in case of the "attractiveness" could be attributed
to the fact that the attractiveness is a highly subjective attribute. Hence
the humans creating the ground-truth annotation in CelebA database can
perceive the attractiveness differently than the humans taking part in our
survey. However, the large human error in case of the "hair" color prediction
is a bit surprising.

As the CelebA dataset is widely used for benchmarking of face classifica-
tion algorithms, we can compare prediction error of our model against the
state-of-the-art methods. In particular, we compared against PANDA [41],
Facetracer [40], LNets+ANet [39] and DMTL[36]. As our "hair" attribute was

31

6. Experiments
created by joining multiple values from the original database, the comparison
of this attribute could be misleading. Therefore we opted to omit it com-
pletely and show comparison on four binary attributes only. The results are
summarized in Table 6.3. It is seen that the three best performing approaches
are DMTL [35], LNet+Anet [39] and the proposed STM which are all based
on CNNs. Our method is slightly worst than the best performing method,
DMTL [35], but it is better than the LNet+Anet [39]. However, it is impor-
tant to note that the DMTL [35] is using more complex architecture which
composed of several common layers followed by attribute-specific branch [36].
Our STM model also outperforms the PANDA [41] algorithm and Facetracer
which slightly lagged behind the rest.

PANDA[41] Facetracer[40] LNets+ANet [39] DMTL [35] STM
Attractiveness 23 22 19 15 21
Glasses 2 2 1 2 1
Gender 3 9 2 1 4
Smile 8 11 8 6 9

Table 6.3: Comparison of the proposed STM model against state-of-the-art
methods PANDA [41], Facetracer [40], LNets+ANet [39] and DMTL [35]. The
comparison is carried out on selected binary attributes of the CelebA database.

To conclude, we showed that our STM models have performance similar to
the current state-of-the-art methods based on CNNs. In addition, the STM
models significantly outperform the human ability to predict the selected
attributes. The lower human performance is significant on the attributes
whose annotation is very subjective. Based on the results we also identified
some possibilities how to improve our model. Namely, the results suggest
that making the architecture more complex could further improve the results.
Unfortunately, due to lack of time we have not had time to implement these
improvements.

6.3 Multiple task model

In this section, we evaluate the multi-task CNN model which uses the archi-
tecture described in Section 3.3. Further in the text we will abbreviate this
model as MTM standing for multi-tasks model. The architecture of the MTM
model is nearly the same as the one used by STM model. The only difference
is in the last layer which is, in the case of MTM, composed of multiple linear
predictor, one for each attribute. The main goal of the experiment described
in this section is to compare performance of the MTM and the STM model.
To paraphrase, we wanted to test if the expressiveness of features extracted
by the used CNN architecture is sufficient to perform several prediction tasks
simultaneously.

A summary of classification errors obtained in the development stage is
given in Table 6.4 and in Figure 6.1. The best MTM model, decided based
on the validation error, was obtained after just 37 epochs. This is quite in
contrast to the STM where models for some attributes required much more

32

................................. 6.3. Multiple task model

Train
Error [%]

Test
Error [%]

Validate
Error [%]

Attractiveness 17.5 21.3 20.2
Glasses 1.0 1.5 1.3
Gender 2.9 3.5 4.1
Smile 7.6 9.2 9.2
Hair 28.6 34.7 33.4

Table 6.4: The summary of classification errors obtained in the development
stage of the MTM model. The table reports the training, validation and the test
errors for each predicted attribute. The evaluated model was obtained after 37
training epochs.

training epochs. Such behavior could be explained by the fact that our MTM
could leverage inter attribute correlations. For example, smiling women are
more likely to be attractive, or men in our dataset are more likely to have
black hair. This behavior could be also observed from Figure 6.1 showing
the convergence curves. We can see that MTM model started to overfit after
reaching 40-th epoch, as from that point the training loss is decreasing much
faster than our validation loss which hit a plateau. The overfitting could be
improved by using techniques increasing the model generalization, like e.g.
increasing the number of examples or by using drop out. Figure6.1 also shows
that our learning rate could be a bit high, but we did not consider reasonable
to search for better values given the time restrictions on the finishing the
thesis and how resource demanding the tuning process is.

STM
Error [%]

MTM
Error [%]

Random
Error [%]

Human-avg
Error [%]

Human-cv
error [%]

Attractiveness 21.4 21.3 48.0 29.8 28.1
Glasses 1.4 1.5 7.0 1.1 1.0
Gender 3.8 3.5 42.6 1.1 0.9
Smile 8.8 9.2 48.3 15.2 12.9
Hair 33.4 34.7 62.4 50.7 48.3

Table 6.5: Comparison of the MTM model with the STM model, the random
guess and the human performance.

Table 6.5 summarizes the comparison between the MTP model and the
STM model, and the other baselines. It is seen that the performance of
the STM model is almost exactly the same as the one of STM model. The
results of MTM are only marginally worse in case of "gender" and the "hair"
attribute, however, the difference is on the level of statistical error, recall that
the confidence interval is ±1% at probability 95%.

To get a finer evaluation of the MTM model, in Figure 6.2 we present the
confusion matrices for each predicted attribute. Satisfactory performance can
be best seen on the prediction of the "glasses" attribute. Despite the training
examples are highly imbalanced in this case (the "no-glasses" attribute is
much more frequent than "glasses on" attribute), the prediction error is still
low. Furthermore, in the case of "hair" attribute prediction the majority of

33

6. Experiments

Figure 6.1: The convergence curves for MTM model of accuracy of prediction
during training and validation on the left. In the right are cross entropy values
for training and validation.

errors are caused by confusing with the "other" category whose definition
is rather vague. Namely, our model had quite often predicted "other" class
when it should have been one of the remaining four "specific" classes. The
error occurs most frequently in case when the true category is "black" and
"brown". This behavior is quite understandable as the category "other" covers
many examples where hairs of the depicted person are of a mixed colors like
partially blond or partially brown. On the other hand, satisfactory behavior
can be seen in prediction of specific hair colors, namely, a minimal error is
made in distinguishing "black" and "brown" color which proved to be quite
problematic for our human evaluators. In addition, in appendix we provide
these confusion matrices for both models STM and MTM side by side in the
Figure B.1. The comparison shows that both models make a similar kind of
mistakes.

To conclude, in this experiment we have proven that the performance of
the MTM model simultaneously predicting multiple attributes is on par with
the ensemble of STM models which trained for prediction of a single attribute.

34

................................. 6.3. Multiple task model

Figure 6.2: Confusion matrices for the MTM from testing data

This shows that the feature descriptor extracted by the used CNN architecture
is expressive enough to perform several prediction tasks. Visual comparison
of the performance of MTM model is presented in the Figure 6.3. From this
figure we can clearly observe, that there was no significant decrease in the
prediction accuracy compared to our baseline model.The biggest benefit of the
MTM is the time saving both in the training and the testing (or evaluation)
stage. In particular, the MTM model was trained in one fifth of the time
required for training of the whole ensemble of STM models. The speedup
factor in the evaluation stage is also five.

35

6. Experiments

Figure 6.3: Comparison of multi output model and single output models per
attribute on test split CelebA

6.4 Training with partial annotations

In this section, we evaluate the ability of the method proposed in Section
3.1 to learn from datasets with heterogeneous annotations. In fact, we still
use the same CalebA dataset which is artificially split into several subsets
each having annotation of different set of attributes. The main goal of this
experiment was to compare the performance of the MTM model obtained
trained either from fully annotated examples or from partially annotated
example.

To create datasets which could simulate partial labeling we used masking
vectors. The mask vector is a boolean vector of the length of number of
labeled attributes. The true value in vector signaled that label at the same
position should not be annotated. By applying the masking vectors on the
original annotation we created multiple sets of partial annotation.

To enable learning in our framework we had to design custom loss function
which would be able to process missing labels as described in Section 3. As it
was shown, learning from partial annotation amounts to simple omitting the
losses corresponding to the missing labels. Consequently the gradient would
be computed only for attributes which were annotated. From implementation
point of view, the correct behavior was achieved by zeroing out the loss for
missing label before computing gradient. This enabled to compute loss for
available labels and correspondingly update parameters in back propagation

36

............................ 6.4. Training with partial annotations

step.
We used CelebA dataset to generated the following four training sets

simulating the four different real scenarios:

Full 160K This training set is composed of more than 160,000 images each
annotated with full set of attributes. This is the same training set we
used in the previous experiments.

Full 32K This training set contains 32,000 fully annotated examples which
were randomly selected from the original training split.

Partial A Here, we simulate training from 3 partially annotated datasets
with overlapping annotations. The datasets had the following number of
examples and annotation:

Dataset 1
(11110)

Dataset 2
(01001)

Dataset 3
11001

Total # of
annotations

Attractiveness Present Missing Present 108 513
Glasses Present Present Present 162 770
Gender Present Missing Missing 54 256
Smile Present Missing Missing 54 256
Hair Missing Present Present 108 513

Table 6.6: Partial-A description

Partial B This scenario simulates learning from 5 different databases each
containing annotation of just a single attribute. This experiment has been
done to simulate extreme situation where we have just single attribute
present per dataset. To make learning less complicated, we opted for
balanced dataset proportions. For masking we used these vectors 10000,
01000, 00100, 00010, 00001 which were proportionately assigned to 20%
of examples. Consequently each simulated dataset had 32 554 examples.

Dataset 1
(1000)

Dataset 2
(01000)

Dataset 3
(00100)

Dataset 4
(00010)

Dataset 5
(00001)

Attractiveness Present Missing Present Missing Missing
Glasses Missing Present Present Missing Missing
Gender Missing Missing Present Missing Missing
Smile Missing Missing Missing Present Missing
Hair Missing Missing Missing Missing Present

Table 6.7: Partial-B description, each category had 32 554 examples

Another important change in this experiment was to adjust evaluation of
training examples for our models accordingly to seen labels. Therefore, the
training performance was evaluated only on the seen labels. With this in mind
we stress out that results for the training examples could be a bit misleading.
The validation and the test set remains the same in all experiments, and
hence the test results are comparable.

37

6. Experiments
Train

Error [%]
Test

Error [%]
Validate

Error [%]
STM

error [%]
Attractiveness 16.8 22.8 22.3 21.4

Glasses 1.0 2.0 1.7 1.4
Gender 5.8 6.4 7.1 3.8
Smile 10.4 12.2 12.2 8.8
Hair 27.6 38.1 36.6 34.7

Table 6.8: Prediction errors obtained in the development stage of the MTM
model trained on the Partial-A. The best model, selected according to the minimal
validation error, was obtained after 31 epochs. The results are compared with
the performance of the STM trained on Full 160K data.

Train
Error [%]

Test
Error [%]

Validate
Error [%]

STM
error [%]

Attractiveness 16.7 21.9 21.9 21.4
Glasses 1.8 1.8 1.6 1.4
Gender 3.7 4.9 5.6 3.8
Smile 7.0 10.6 10.7 8.8
Hair 26.5 37.3 35.9 34.7

Table 6.9: Prediction errors obtained in the development stage of the MTM
model trained on the Partial-B. The best model, selected according to the minimal
validation error, was obtained after 20 epochs. The results are compared with
the performance of the STM trained on Full 160K data.

As it can be observed from the result in the Tables 6.8 and 6.9 to some
degree , we achieved impair result than on fully annotated data. The exception
is performance on the training data, but this is mainly due to partial labeling
as mentioned before. Nonetheless it could be stated that our architecture has
capacity to learn parameters for precise estimation of attributes from face,
even with missing labels with disparate category proportions.

To better asses the prediction errors obtained on Partial-A and Partial-B
datasets we provide confusion matrices in the Figure 6.4 and Figure 6.5,
respectively.

However, these considerable worse results were quite expected as we basi-
cally reduced our effective learning dataset size by 80%. Usually deep learning
models require huge number of learning examples and considered our quite
complex learning task this results are well in place. To validate this claim
we run experiment on the subset of the original dataset denoted as Full 32K.
The Full 32K has the same number of annotated attributes as the Partial-B,
however, its has much less training images.

38

............................ 6.4. Training with partial annotations

Figure 6.4: Confusion matrices for the MTM model trained on the Partial-A

39

6. Experiments

Figure 6.5: Confusion matrices for the MTM model trained on the Partial-B.

40

............................ 6.4. Training with partial annotations

Full 160K Full 32K Partial A Partial B
Size of

train. set
Test

Error[%]
Size of

train. set
Test

Error[%]
Size of

train. set
Test

Error[%]
Size of

train. set
Test

Error[%]
Attractive 162 770 21.4 32 522 23.4 108 513 22.8 32 554 21.9
Glasses 162 770 1.4 32 522 3.1 162 770 2.0 32 554 1.8
Gender 162 770 3.8 32 522 5.7 54 256 6.4 32 554 4.9
Smile 162 770 8.8 32 522 11.2 54 257 12.2 32 554 10.6
Hair 162 770 33.4 32 522 40.9 108 513 38.1 32 554 37.3

Table 6.10: Summary of partial labeling learning on different datasets

The results obtained when training from datasets with different number of
examples and different annotations are summarized in Table 6.10. We see only
a mild decrease of performance when training from the partially annotated
dataset Partial-A as compared to the training from all fully annotated example
in Full-160K dataset. The drop in the performance for a given attributed
is proportional to the drop in the number of annotated examples for that
attribute.

More importantly we would like to point to results which were achieved on
Partial-B compared to Full-32K. Even though the both datasets had the same
number of effective annotations for each attribute, we can see that Partial-B
had notably outperformed the Full-32K. This is due to fact that Partial-B
had seen much larger number of training images and hence it better captures
the variations of the distribution. This results shows that by applying our
proposed training method, we could further improve the performance of CNN
architectures by learning on merged dataset. Moreover, for the creation of
the merged dataset we can use multiple data sources with heterogeneous
annotation as we have proven that the MTM model can effectively learn also
from the partial labeling.

In addition, we can observe performance for the subjective "attractiveness"
attribute remains similar regardless which dataset was used. The biggest
absolute difference was measured in case of the "hair" attribute in which case
the performance varies by 6% depending on the used dataset. The biggest
relative difference can be observed in case of the "gender" attribute.

In conclusion, the experiments presented in this section show that our
method can efficiently learn the MTM model from examples with heteroge-
neous partial annotations. We observe that the performance of the models
learned from the fully annotated examples is similar to the those learned
from the partially annotated examples as far as the number of annotates for
given attribute is similar. Moreover the higher number of learning examples,
even with partial annotations, leads to better performance compared to same
number of annotations but with less training examples.

41

42

Chapter 7
Conclusion

In this work we proposed a CNN model which can simultaneously predict
multiple attributes from an image of human face. We term the proposed
architecture as the Multi Task prediction Model (MTM). In addition, we have
proposed a method that can learn parameters of the MTM from partially
annotated examples.

The proposed model is a chain like CNN architecture extracting low-
dimensional feature descriptor form an input image. The extracted feature
descriptor serves as an input of multiple independent linear predictors each
dedicated to one attribute. We learn the model parameters based on the
Maximum-Likelihood principle. The method can learn both from facial images
annotated with the complete set of attributes as well as from images for which
some labels are missing. Thanks to the simple probabilistic model we use, the
learning with missing annotation boils down to simple omitting of the loss
functions which correspond to the missing attributes. In turn, the method is
easy to implement using the existing libraries.

The proposed method has been implemented in the KERAS framework for
learning deep neural networks. Besides the MTM model, we also implemented
a baseline approach which is based on an ensemble of Single Task prediction
Models (STM). The STM is a CNN predicting just a single attribute. The
CNN architectures of the STM and the MTM models are the same up to the
last layer implementing the classifier(s).

We evaluated the proposed method on the CelebA database when we
considered a prediction of five attributes (attractiveness, gender, smile, glass,
hair color). The results have shown that the capacity of the used CNN
architecture is sufficient to perform all prediction tasks simultaneously, that
is, the MTM model and the ensemble of STM models perform similarly.
The advantage of the MTM model is however a shorter evaluation as well
as training time when the speedup factor is proportional to the number of
predicted attributes. In addition, a comparison against several state-of-the-art
methods shows that the proposed model achieves only slightly higher errors
than the currently best performing approach. We have also evaluated the
human performance based on predictions on a sample of 100 CelebA images
that we had annotated by 18 volunteers. The results show that accuracy of
the MTM model significantly surpasses the measured human performance.

43

7. Conclusion......................................
We also experimentally verified the ability of the proposed method to

learn the MTM predictor from partially annotated examples. This allows to
learn from multiple datasets having heterogeneous annotations rather than
from one big fully annotated dataset. The results were also compared to the
MTM model learned on the fully annotated examples. The most satisfactory
observation is that spreading the annotation afford over a higher number
of partially annotated images improves the performance. In other words,
given a fixed budged on the annotation time, it is more beneficial to partially
annotated higher number of images than to fully annotate a smaller set.

Future work. In this last section we briefly a mention list of possible
enhancements which we consider interesting or beneficial given our results..Due to the lack of time, we did not spend much time on tuning the

hyper-parameters of the learning algorithm. Hence, fine tuning of the
hyper parameters would likely lead to further performance improvement.. The framework is prepared for learning from multiple datasets. However,
it has been so far tested on a single dataset, the CelebA. The next
step is to apply the method on several merged datasets, for example,
CelebA [32] and IMDB [33] databases..We experimented only with categorical attributes. A straightforward
extension is to extended the model for other types of attributes like, for
example, real numbers or ordinal numbers..We have experimented with a single and relatively simple CNN architec-
ture. It would worth trying deeper architectures like, for example, the
currently popularized GoogleNet with its inception modules [44].. The learn MTM model can be used not only for prediction but also as
embedding of images to low-dimensional space. The embedding could
be used e.g. for clustering or visualization.

To wrap it up, improving deep learning models can be a never ending
process and the same applies to our scenario. Our results hints at many
new possible applications and we would like to return to this topic in not so
distant future.

44

Bibliography

[1] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
"Imagenet: A large-scale hierarchical image database". In Computer Vision
and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages
248–255. IEEE, 2009.

[2] Alex Krizhevsky, Ilya Sutskever, and Georey Hinton. "Imagenet classifi-
cation with deep convolutional neural networks". In Advances in neural
information processing systems, pages 1097–1105, 2012.

[3] Golomb, Beatrice A., David T. Lawrence, and Terrence J. Sejnowski.
"Sexnet: A neural network identifies sex from human faces." NIPS. Vol.
1. 1990.

[4] Moghaddam, Baback, and Ming-Hsuan Yang. "Sex with support vector
machines." Advances in neural information processing systems. 2001.

[5] Busso, Carlos, et al. "Analysis of emotion recognition using facial ex-
pressions, speech and multimodal information." Proceedings of the 6th
international conference on Multimodal interfaces. ACM, 2004.

[6] Ranjan, Rajeev, et al. "An all-in-one convolutional neural network for
face analysis." Automatic Face & Gesture Recognition (FG 2017), 2017
12th IEEE International Conference on. IEEE, 2017.

[7] Ranjan, Rajeev, Vishal M. Patel, and Rama Chellappa. "Hyperface: A
deep multi-task learning framework for face detection, landmark localiza-
tion, pose estimation, and gender recognition." IEEE Transactions on
Pattern Analysis and Machine Intelligence (2017).

[8] Zhong, Yang, Josephine Sullivan, and Haibo Li. "Face attribute prediction
using off-the-shelf cnn features." Biometrics (ICB), 2016 International
Conference on. IEEE, 2016.

[9] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang, "Deep Learning
Face Attributes in the Wild,Proceedings of International Conference on
Computer Vision (ICCV),December 2015.

45

Bibliography
[10] Hu Han and Charles Otto and Anil K. Jain, "Age Estimation from Face

Images: Human vs. Machine Performance, International Conference on
Biometrics (ICB), 2013.

[11] , Guodong Guo and Guowang Mu and Yun Fu and Thomas S. Huang,
"Human age estimation using bio-inspired features,Computer Vision and
Pattern Recognition, pages: 121-119, 2009.

[12] Lapuschkin, S. and Binder, A. and Muller, K.-R., "Understanding and
Comparing Deep Neural Networks for Age and Gender Classification,
Proceedings of the ICCV’17 Workshop on Analysis and Modeling of Faces
and Gestures (AMFG),2017.

[13] S.Chen and C.Zhang and M. Dong and J. Le and M. Rao, "Using
Ranking-CNN for Age Estimation, In proc. of CVPR, 2017.

[14] G. Antipov and M. Baccouche and S.A. Berrani and J.L. Duglay, "Appar-
ent Age Estimation from Face Images Combining General and Children-
specialized Deep Learning Models, IEEE Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW), 2016.

[15] G. Antipov and S.A.Berrani and J.L.Dugelay, "Minimalistic CNN-based
ensemble model for gender prediction from face images, Pattern Recogni-
tion Letters vol.70, pages: 59-65, 2016.

[16] R. Rother and R.Timofte and L.V. Gool "DEX: Deep EXpectation of
apparent age from a single image, Proceedings of ICCV, 2015.

[17] "A Beginner’s Guide to Multilayer Perceptrons". Retrieved from https:
//deeplearning4j.org/multilayerperceptron, on: 27.03.2018.

[18] Karn, Ujjwal. "An intuitive explanation of convolutional neural networks."
ujjwalkarn, August (2016).

[19] Glorot, Xavier, Antoine Bordes, and Yoshua Bengio. "Deep sparse recti-
fier neural networks." Proceedings of the Fourteenth International Con-
ference on Artificial Intelligence and Statistics. 2011.

[20] Alex Krizhevsky and Sutskever, Ilya and Hinton, Geoffrey E, "Ima-
geNet Classification with Deep Convolutional Neural Networks". Curran
Associates, Inc(2012).

[21] "LeNet". LeCun et al., "LeNet-5, convolutional neural networks". Pro-
ceedings of the IEEE(1998).

[22] Christian Szegedy1 et,al. "Going Deeper with Convolutions in CVPR2015.

[23] Ioffe, Sergey, and Christian Szegedy. "Batch normalization: Accelerating
deep network training by reducing internal covariate shift". arXiv preprint
arXiv:1502.03167 (2015).

46

https://deeplearning4j.org/multilayerperceptron
https://deeplearning4j.org/multilayerperceptron

.......................................Bibliography

[24] "Theano documentation". Retrieved from http://deeplearning.net/
software/theano/library/tensor/nnet/nnet.html#theano.tensor.
nnet.nnet.categorical_crossentropy, on: 03.04.2018.

[25] Kingma, Diederik P., and Jimmy Ba. "Adam: A method for stochastic
optimization". arXiv preprint arXiv:1412.6980 (2014).

[26] Schilling, Fabian. "The Effect of Batch Normalization on Deep Convolu-
tional Neural Networks." (2016).

[27] Rahib H. Abiyev, "FACIAL FEATURE EXTRACTION TECHNIQUES
FOR FACE RECOGNITION (2014).

[28] Ahonen, Timo, Abdenour Hadid, and Matti Pietikainen. "Face descrip-
tion with local binary patterns: Application to face recognition". IEEE
transactions on pattern analysis and machine intelligence 28.12 (2006):
2037-2041.

[29] Karpathy, Andrej. "Cs231n convolutional neural networks for visual
recognition." Neural networks 1 (2016).

[30] Arnold, T. "kerasR: R interface to the keras deep learning library."
Computer software manual](R package version 0.6. 1). Retrieved from
https://CRAN. R-project. org/package= kerasR (2017).

[31] Rainer, Lienhart. "Haarcascade_frontalface_default. xml." Intel License
Agreement For Open Source Computer Vision Library (2000).

[32] Guo, Yandong, et al. "Ms-celeb-1m: A dataset and benchmark for
large-scale face recognition." European Conference on Computer Vision.
Springer, Cham, 2016.

[33] Rasmus Rothe, Radu Timofte, Luc Van Gool, "Deep expectation
of real and apparent age from a single image without facial land-
marks,International Journal of Computer Vision (IJCV) (2016).

[34] Han, Hu, et al. "Heterogeneous face attribute estimation: A deep multi-
task learning approach". IEEE transactions on pattern analysis and ma-
chine intelligence (2017).

[35] Wang, Jingya, et al. "Attribute recognition by joint recurrent learning
of context and correlation". IEEE International Conference on Computer
Vision. Vol. 2. 2017.

[36] Chen, Shixing, et al. "Using ranking-cnn for age estimation". The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2017.

[37] "Model class API".Retrieved from https://keras.io/models/model/,
on: 9.05.2018.

[38] Zhang, Ning, et al. "Part-based R-CNNs for fine-grained category detec-
tion". European conference on computer vision. Springer, Cham, 2014.

47

http://deeplearning.net/software/theano/library/tensor/nnet/nnet.html#theano.tensor.nnet.nnet.categorical_crossentropy
http://deeplearning.net/software/theano/library/tensor/nnet/nnet.html#theano.tensor.nnet.nnet.categorical_crossentropy
http://deeplearning.net/software/theano/library/tensor/nnet/nnet.html#theano.tensor.nnet.nnet.categorical_crossentropy
https://keras.io/models/model/

Bibliography
[39] Liu, Ziwei, et al. "Deep learning face attributes in the wild". Proceedings

of the IEEE International Conference on Computer Vision. 2015.

[40] Kumar, Neeraj, Peter Belhumeur, and Shree Nayar. "Facetracer: A search
engine for large collections of images with faces". European conference on
computer vision. Springer, Berlin, Heidelberg, 2008.

[41] Zhang, Ning, et al. "Panda: Pose aligned networks for deep attribute
modeling". Proceedings of the IEEE conference on computer vision and
pattern recognition. 2014.

[42] Franc, Vojtech, and Jan Cech. "Learning CNNs for face recognition from
weakly annotated images." Automatic Face & Gesture Recognition (FG
2017), 2017 12th IEEE International Conference on. IEEE, 2017.

[43] Franc, Vojtěch and Čech, Jan, "Face attribute learning from weakly
annotated examples". IEEE Computer Society pages 933-940,2017.

[44] Szegedy, Christian, et al. "Going deeper with convolutions." Cvpr, 2015.

[45] Qawaqneh, Zakariya, Arafat Abu Mallouh, and Buket D. Barkana. "Deep
Convolutional Neural Network for Age Estimation based on VGG-Face
Model." arXiv preprint arXiv:1709.01664 (2017).

[46] Boris Flach, Vojtech Franc and Jan Drchal, "Statistical Machine Learning
(BE4M33SSU) Lecture 2: Empirical Risk Minimization I".

48

Appendix A
Additional experiments

During development of our model we made numerous note worthy experiments
mainly with regularization techniques like using data augmentation and
utilizing batch normalization in the architecture of the network. Here we
briefly present the results with short overview.

Train
Error [%]

Test
Error [%]

Validate
Error [%]

Random test
class. err. [%]

Attractiveness 16 20 21 48
Glasses 0 1 1 7
Gender 2 3 2 43
Smile 7 9 9 48
Hair 25 31 32 62

Table A.1: Percentage error rate per attribute class with virtualization

Train
Error [%]

Test
Error [%]

Validate
Error [%]

Random test
class. err. [%]

Attractiveness 11 23 22 48
Glasses 1 3 2 7
Gender 2 5 6 43
Smile 5 11 11 48
Hair 19 39 36 62

Table A.2: Percentage error rate per attribute class with batch normalization

From the table we see that using augmentation produce model with slightly
better results at cost of addition computation. Also in the case of batch
normalization we must note that it enabled us to use higher learning rate 7.0e-
5. With this higher learning rate we were not able to produce significantly
better results but compared to architecture without batch normalization
the model was enabled to overfit the data more. This resulted in lower
performance on testing and validation data.

49

50

Appendix B
Comparison of STM and MTM confusion
matrices

Here we present confusion matrices of the SOPCM and STM models side by
side with the MTM on the left. We can clearly see that both models made
nearly identical kind of errors on our testing dataset.

Figure B.1: Comparison of confusion matrices for STM on left and MTM on
right for testing data part 1/2

51

B. Comparison of STM and MTM confusion matrices

Figure B.2: Comparison of confusion matrices for STM on left and MTM on
right for testing data part 2/2

52

Appendix C
Contents of the Attached medium

. thesis.pdf. source_thesis: LATEXsource code of the text. sorce_code: developed scripts. results: directories with result models for specific experiments and serial-
ized dictionaries with evaluation results of experiment

53

	Introduction
	Related work
	Model description
	Prediction model and its learning
	Convolution neural network
	CNN architecture description

	Data description
	CelebA dataset
	Questionnaire

	Implementation
	Software
	Hardware
	Developed framework
	Live demo

	Experiments
	Evaluation protocol
	Single task model
	Multiple task model
	Training with partial annotations

	Conclusion
	Bibliography
	Additional experiments
	Comparison of STM and MTM confusion matrices
	Contents of the Attached medium

