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Abstract

The term haplotype refers to a group of alleles in an organism that is inherited together
from a single parent. Although the majority of genetic studies requires knowledge of hap-
lotypes, available DNA sequencing technologies do not produce the information explicitly.
For that reason, various computational methods for haplotype estimation (also known as
phasing) have been actively developed.

Some of the currently available sequencing platforms produce fragments spanning long
regions of original DNA. As soon as a fragment spans more that one heterozygous variant,
this information can be efficiently utilized during phasing. However, phasing based only on
reads does not achieve sufficient accuracy due to the high sequencing error rate longer reads
suffer from. At the same time, population-based phasing methods which are highly accurate
and constitute current state-of-the-art are often computationally too expensive.

Recently, Eagle2 population-based phasing algorithm significantly outperformed available
phasing software in terms of run time requirements without loss in accuracy. In this work
we present a new phasing algorithm which adopts main features of the Eagle2 algorithm
and extends the method by read-based phasing. This allows to increase phasing accuracy
without increasing time complexity. It also allows to perform phasing on a smaller reference
panel.

Keywords: Haplotype estimation, Phasing, Read-based phasing
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Abstrakt

Haplotypem rozumíme skupinu alel, které jsou přenášeny společně. Přestože většina genet-
ického výzkumu vyžaduje znalost haplotypů, v současnosti dostupné technologie sekvenování
DNA tuto informaci explicitně neposkytují. Z tohoto důvodu probíha aktivně vývoj výpočet-
ních metod pro odhad haplotypů (neboli fázování).

Některé z aktuálně používaných platforem pro sekvenování produkují fragmenty pokrý-
vající dlouhé úseky původní DNA. Kdykoli fragment pokrývá více než jednu heterozygotní
variantu, lze tuto informaci efektivně využít během fázování. Fázování pracující pouze s
fragmenty DNA nicméně nedosahuje požadované přesnosti kvůli vysoké chybovosti těchto
platforem. Na druhou stranu, metody populačního genotypového fázování, které dosahují
vysoké přesnosti, jsou často výpočetně příliš náročné.

V nedávné době Eagle2 (algoritmus populačního genotypoveho fázování) v rychlosti výrazně
překonal dosud dostupné fázovací algoritmy bez ztráty přesnosti. V této práci představujeme
nový algoritmus fázování, který kombinuje vlastnosti Eagle2 se schopnostmi fragmentového
fázování. Tímto je umožněno zvýšení přesnosti bez nárůstu časové složitosti a zároveň do-
voluje operovat na menším referenčním panelu.

Klíčová slova: Odhad haplotypů, Fázování, Fragmentové fázování
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Chapter 1

Background

With recent technological advances, enormous amounts of genotype data are being gen-
erated. However, the majority of information in these data is best exploited through phased
haplotypes, which identify the alleles that were inherited together from a single parent.

The wide range of application of inferred haplotype phase information includes, among
other, characterizing the relationship between variants and disease susceptibility [TBT+],
imputing low frequency variants [MHM+], [BBd], modeling a population separation history
[SSEK] and inferring recombination models [Kea]. This comprehensive list makes haplotype
phasing an important preliminary step in majority of genetic studies.

The necessity of phasing is apparent as the currently available technologies do not read
the genome as a whole, but break it into many short fragments, which discards desired phase
information. The difficulty of the problem also stems from the diversity and complexity of
life, described by the laws of genetics and inheritance. This chapter is aimed at introducing
the problem essentials from biological, technological and computational points of view.

1.1 Biological background

1.1.1 Genetic variation

There are no two humans, except for identical twins, who are genetically identical. How-
ever, on average, each human is 99.9% similar to any other human [Chi]. A common scenario
of how the difference occurs is by propagating of a harmless mutation, which may be a silent
or even a positive mutation, to the following generations. Harmful mutations are propagated
in the same way but are less likely to survive natural selection.

Specific locations of differences between individuals are classified are generally referred to
as variants. In its simplest form, a variation has several different spellings, referred to as al-
leles [FGC]. Genetic variants are classified based on whether DNA material was substituted,
gained (duplicated or inserted), lost or rearranged (inverted, translocated) [HS]. The most
important for us will be single-nucleotide polymorphisms or SNPs. Those include variations
in a single nucleotide and small insertions and deletions (also called indels) ranging from 1
to 10000 base pairs (bp) [MMPD]. Fig. 1.1 illustrates variants classified as SNPs. Impor-
tantly, a variant is classified as SNP when it is present to some appreciable degree within a
population (e.g. over 0.1%).

3



CHAPTER 1. BACKGROUND

Figure 1.1: Example of variations which could be classified as SNPs. The SNP on the left
side represents a substitution of nucleotide C to A; the SNP on the right side is an example
of INDEL, which is an insertion of two nucleotides AA. Note that we illustrate two single 3’
to 5’ strands instead of double strands for simplicity.

Presence of variations along with the extensive size of genomic data forced scientists to
construct so-called reference genome, which is an idealized assembly derived from the DNA
of a number of people. In order to address a variation, scientific community compares it to
the reference and announces matching with the reference or matching with an alternative of
the gene in the locus.

1.1.2 Haplotype

Humans are called diploid organism because they have two alleles at each genetic locus,
with one allele inherited from each parent. Each pair of alleles represents the genotype of a
specific gene. A genotype is homozygous at a particular gene locus if both alleles are identical
and is heterozygous if the alleles differ.

The set of alleles inherited from a single parent is referred to as haplotype [CML16],
[Boa12]. Therefore, one might think of haplotype estimation (or phasing) to be splitting
alleles observed in an organism to several groups. The number of the groups is given by the
organism ploidy, which is defined as a number of complete sets of chromosomes in a cell. In
case of humans, the number is two.

1.1.3 Genetic recombination

Each haplotype is a novel and unique combination of alleles, produced before being passed
from a parent to its offspring during the process called genetic recombination. In eukaryotic
cells, this process takes place during meiosis and involves genetic information exchange be-
tween homologous chromosomes. One of the possible results of a recombination event is laid
out in Fig. 1.2. Four daughter cells are produced during one meiosis (each is haploid and
has a unique combination of the parental cells genome) and only one of those will be passed
to the offspring. Consequently, genetic recombination is the primary process contributing to
genetic variance and describing how genetic information is passed between generations.

Therefore, we expect that related individuals share common segments of DNA. In genetic
genealogy, those segments are called to be identical by descent (IBD). Their length depends
on the number of generations since the most common ancestor at the locus of segment [Tho],

4



1.1. BIOLOGICAL BACKGROUND

Figure 1.2: Illustration of a recombination event between two homologous chromosomes (one
coming from mother, another from father) happening during meiosis.

due to the essence of the recombination event. Many studies conducted on population rely
upon presence of the IBD patterns.

1.1.4 Genome sequencing

An organism genome sequencing is performed to access its genetic information. Formally,
DNA sequencing is a process of determining the precise order of nucleotides within a DNA
molecule. Currently available technologies generate a set of reads (fragments of original
DNA), instead of reading a complete genome as a whole.

Sequencing techniques are commonly divided into generations as follows [HC]:

• First-generation methods enabled sequencing of clonal DNA populations.

• Second-generation methods massively increased throughput by parallelizing many chem-
ical reactions.

• Third-generation methods attempting direct DNA sequencing at the single molecule
level.

The first generation mainly refers to the Sanger method, which in mass production form
was the technology which produced the first human genome in 2001. However, the cost and
time was a major stumbling block. The short span of years starting in 2005 has marked the
emergence of a new generation of sequencers to break the limitations of the first generation
[KGE]. Nowadays, first-generation sequencing is almost completely substituted with the
second and the third-generations sequencing technologies.

5



CHAPTER 1. BACKGROUND

Platform Read length (bp)* Error rate (%)* Advantages Disadvantages

First
Generation Low error rate Cost, speed

ABI Sanger 400-900 0.3

Second
Generation

Cost, speed
(massively parallel) Short reads

454 100-700 1

Illumina 150-300 0.1-1

SOLiD 75 0.1

Ion Torrent 200-400 1

Third Generation
Cost, speed,
availability,
long reads

High error rate

PacBio 1.3k-15k 12-15

Oxford Nanopore 10k 12

Table 1.1: Main characteristics of available platforms for genomic data sequencing reported
in [KGE].
(∗) An interval represents range of average values producing by different instruments of the
platform; a single value represents average for the platform.

The second-generation methods require breaking long strands of DNA into small seg-
ments. After the breaking, those fragments are amplified and synthesized [Ill]. The process
of synthesis is carefully monitored, for instance with a usage of fluorescent molecules, and
the original DNA fragment is thereby read. Massive parallelization of the processes make the
technology much faster and less costly in comparison with the first-generation technologies.

Instead of breaking DNA on fragments, the third-generation sequencing works by reading
the nucleotide sequences at the single molecule level. This results in substantially longer
reads than methods of the previous generations were capable to produce. The difference also
influences time requirements of the methods, cost, and amount of sequencing errors.

An overview of the main features of the popular sequencing platforms of the first, second
and third generations are presented in the Tab. 1.1.

While being still under active development, the third-generation technologies suffer from
high error rate, as it can be observed from Tab. 1.1. However, the methods have a great
potential and are expected to bring an essential impact in the near future.

1.2 Data formats

An organism genome sequencing results in one or multiple .fastq files, containing so-called
raw sequencing data. It includes multiple sequences of the four nucleotides A, C, T, G (in
case of DNA sequencing) along with estimated sequencing qualities for each base encoded
as single byte ASCII codes (see Tab. 1.2 for details).

In order to operate with the information, one is required to align the obtained reads

6



1.2. DATA FORMATS

to a reference sequence, which is commonly stored in .fasta format (see Tab. 1.2). The
alignment results in a file in .sam format, which contains estimated positions of the reads in
the original genome and the alignment qualities for each read’s base. Commonly, the next
step in genetics studies is variant calling, which result in a .vcf file. This allows to identify
SNPs and other larger polymorphisms, that the sequenced genome possesses.

Among other, a .vcf file contains information specifying weather observed genotype is
equal to the reference allele (denoted as zero) or to the alternative allele (denoted as one),
or both, for each listed position for each present sample. Genotype containing both zero and
one in a marker would mean that the sample is heterozygous in the variant. It might also
happen that more than two alleles would be observed in a population at a specific marker.
In this case, .vcf would contain a list of the alternatives listed in ALT column (see Tab.
1.2 for details). In the case of a multialelic site integers are used to refer to one of the
alleles (corresponding to the allele position in the list), analogically to one, used to denote
an alternative in case of a bialelic site.

There are plenty of other bioinformatics data formats, e.g. CRAM, ORC, Avro etc. The
mentioned ones are those considered the most common and those which we primary access
during the study. In further text, we describe one more data format which we designed in
order to optimally utilize haplotype information preserved in reads which span more than
one variant. Details of the format are present in Sec. 5.1.1.

7
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Format Content

.fasta

• header starting with ’>’, containing a sequence name
• >reference_chr20

• sequence
• ATAGACATAGA..

.fastq

For each read contains:
• name
• @read1

• sequence
• ATAGACATAGA..

• base qualities (encoded as single byte ASCII codes)
• ! ∗ ((((∗ ∗ ∗+)..

.sam/.bam

• header lines starting with ’@’
• format version
• sort order of alignments etc.

For each read contains:
• information about the alignment
• read’ position
• mapping quality
• FLAG - set of additional information describing the alignment
• TAGs - additional optional information

• mate pair/paired end reads information
• mate position
• inner size etc.

• quality and alignemnt denoted by mapping/pairing
• cigar - reference to read subsequence and associated mapping operation (matched, clipped etc.)

• read’s information
• name
• sequence
• bases’ qualities as Phred Quality Scores

.vcf/.bcf

• meta-information in a form ##key=value, where
• key is e.g. INFO, FILTER, FORMAT or other

• header naming 8 mandatory columns: #CHROM, POS, ID, REF, ALT, QUAL, FILTER, INFO
For each called variant contains:
• variant describing fields, which correspond to mandatory header columns
• 20, 14370, rs6054257, G, A, 29, PASS, NS=3; DP=14; AF=0.5

• genotype fields for each present samples, which correspond to header optional field FORMAT. When
FORMAT is not specified, the field contains genetic information only
• 0|1 - in case of phased variant
• 0/1 - in case of unphased variant

Table 1.2: A brief description to the most common bioinformatics file formats.

8
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Chapter 2

Problem statement

2.1 Phasing problem

We define phasing as a process of haplotype estimation from genomic data. Currently
available sequencing technologies do not allow to gain haplotype information directly from
a biological experiment with desirable efficiency, as it was discussed in the previous sec-
tion. For the reason various computational methods are applied to estimate haplotypes (e.g.
[SSD], [SS], [LDPea], [BBc] etc.).

Generally, the input of a phasing software is a .vcf file, with contains information about
alleles the phasing sample has at each polymorphic position along the genome. However,
mutual information about the markers’ states is lost. Therefore, a phasing software aims
at determining which alleles appear together on the same chromosome, i.e. estimating hap-
lotype information. Henceforth we consider a human diploid genome and refer to the two
haplotypes as maternal haplotype and paternal haplotype, we denote as hα and hβ respec-
tively.

2.1.1 The importance of phase information

The importance of phase information for human genomics might not be obvious. How-
ever, many findings — both from recent studies and in the more established medical genetics
literature — indicate that relationships between genotype and phenotype, including genetic
disease, can be better understood with phase information [TBT+].

For instance, there are clinical conditions and disorders influenced by compound heterozy-
gosity within a single genes, e.g. Cerebral Palsy, Hemachromatosis, Mediterranean Fever and
many others [TBT+]. Since most of mutations are inherited from parents, sequencing of the
parental genomes might be performed to estimate phase information. However, it is never
guaranteed that phase information inferred from parental genomes will be univocal. For
instance, in case when both parents are heterozygous in markers of interest, it is not clear
which alleles were inherited together. Meanwhile, computationally methods for haplotype
estimation allow diagnosing the conditions with no need to sequence parental genomes.

Phase information is also important in the population studies. For instance, it was demon-
strated in [NLS] that greater differentiation of human populations can be obtained by ex-

9



CHAPTER 2. PROBLEM STATEMENT

Figure 2.1: Toy example illustrating phasing problem input and output.
(∗) Note that we do not actually know which hapotype came from the father and which from
the mother, but we know that each came from a different parents. That is why alleles of the
first ambiguous variant is randomly assigned to one of the haplotypes.

ploring within- and across-population haplotype diversity than by focusing on multilocus
genotype diversity.

Finally, phase information is greatly used in order to model recombination points and
identify variants linkage and interactions among multiple genes and alleles.

2.1.2 Ambiguity and Data sources

To understand the problem, let us consider a toy .vcf illustrated in Fig. 2.1. It contains
five variants only, three of which are heterozygous (those are highlighted in red). Phase
information in those is uncertain and the rest is identical for both estimated haplotypes.

The tree illustrated in Fig. 2.1 represents phasing problem solution space. Here, each
path from the tree root to a leaf represent a consistent with the observed genotype solution.
Considering a general task of haplotype estimation for n heterogeneous markers, there are
2n−1 consistent possibilities. Even so, naturally, only one of the pairs corresponds to the
true haplotypes.

There are two additional information sources, allowing to estimate a diplotype correctly
and to avoid ambiguity. We refer to the sources as Reference Panel and Read panel.

Reference panel

Reference panel is an extensive high-quality source of genomic data for multiple samples
stored in .vcf format. Construction of the reference panel is often made on near-close pop-
ulation, i.e. of European ancestry. This ensures presence of IBD patterns (see Sec. 1.1.3)
and increases the patterns’ length.

The largest currently available reference panel contains haplotypes of 64,976 humans at
39,235,157 SNPs [Conb]. A very complex and expensive pipeline was followed to obtain the
desired high-quality data for so many individuals [Conb]. The results provide a foundation
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Figure 2.2: Toy example illustrating how phase information is preserved in reads.

for population-based cohort studies such as estimation of distribution, risk factor analysis,
recombination model estimation etc. [Szk].

Read panel

Read panel is an abstract term used to refer to the set of reads produced by an individual’s
genome sequencing and alignment. It is significant that a read panel comprises information
about the individual genotype, as well as information about nearby alleles’ relation.

Available sequencing techniques, presented in Sec. 1.1.4, ensure that each produced read
was entirely sampled from a single haplotype. Therefore, variants which a read covers also
have the property.

For instance, let us consider an example introduced previously, but enhanced with aligned
reads. Fig. 2.2 illustrates the example. We observe that reads which cover more than one
variant allow to partially or completely resolve the ambiguity and to restore the original
haplotypes.

Imagine an extreme example, where two reads are present and their lengths are equal to
genotype size. Original haplotypes would simply correspond to the reads and phasing would
be done in one step.

It was mentioned in Sec. 1.1.4 that no reliable technology able to do molecular sequencing
is currently available. Nevertheless, latest sequencing technologies, in particular technologies
of the third generation, produce reads of extensive length, covering many consecutive vari-
ants. In fact, any read covering more than one variant might be beneficially utilized during
phasing.

Genetic map

Another source of information, which might be utilized during phasing, is a genetic map.
It contains statistics about propensities towards crossover between chromosome positions
measured in centimorgans. Formally, a centimorgan is defined as the distance between chro-
mosome positions for which the expected average number of crossovers in a single generation
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is 1%. Roughly speaking, one centimorgan corresponds to about one million base pairs in
humans on average. However, the relationship varies from place to place in the genome, and
also between men and women.

In particular, population-based phasing methods use a genetic map to model recombina-
tion event probability distribution.

2.2 Related works

There are plenty of haplotype estimation algorithms, differing in initial assumptions
about the input data. Haplotype phasing becomes straightforward if the family genetic
information is available or if molecular sequencing is made. However, generally, we do not
assume that is the case and rely on other available data sources such as reference panel or
read panel, introduced earlier. In general, we also assume that the individual is not directly
related to samples in reference panel.

Considering the assumptions listed above, we distinguish between three families of phasing
methods, namely population-based phasing, read based-phasing and a hybrid of the two
approaches.

2.2.1 Population based phasing

Haplotypes can be inferred from genotype information of large cohorts based on the
presence of IBD patterns, which holds for related as well as unrelated individuals as is re-
viewed in [BBb]. This family of methods is referred to as population-based phasing and is
based on phased genetic information of a big enough number of individuals, i.e. reference
panel. The fact that an unknown haplotype is derived from known haplotypes by mutation
and recombination processes is incorporated in many population-based methods, including
PHASE [SSD], [SS], its faster implementation SHAPE-IT [DCZ], FastPHASE [SS], Beagle
[BBc], Eagle and Eagle2 [LDPea], achieving greater accuracy in comparison with Eagle when
reference panel size decreases.

Each of the listed algorithms uses hidden Markov model (HMM) whose parameters are
estimated with the use of iterative algorithms such as the stochastic EM algorithm [BBb].
Nevertheless, Eagle2 is capable of achieving high accuracy as well as essential speed-up
[LDPea] in comparison with other algorithms even for small reference panels. There are two
key ideas distinguishing Eagle2 from existing population-based methods: a new data struc-
ture based on the positional Burrows-Wheeler transform [Dur] and a rapid search algorithm
that explores only the most relevant phase paths through the HMM [LDPea]. This difference
made Eagle2 the state-of-art algorithm for population-based phasing.

Currently available methods for population-based phasing allow to perform haplotype
estimation accurately and in acceptable time. However, information present in read panel,
which is naturally available after genome sequencing, is not used up by the methods.
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2.2.2 Read-based phasing

Recent achievements in sequencing technologies, associated especially with the third gen-
eration sequencing (see Sec. 1.1.4), allow reconstructing haplotype from reads’ information.
As it was discussed in Sec. 2.1.2, read panel provides information that can be incorporated
into computational phasing [BBb]. The longer the sequenced fragment, the greater amount
of useful information it carries. Building upon the assumptions, read-based phasing tech-
niques are being actively developed.

While in 2011 only few methods were available, nowadays there is plenty of algorithms
including HapCUT (2008) [BBa], RefHap (2010) [DHM+], Read-backed phasing (2012), H-
BOP (2012) [XWJ], ProbHap (2014) [Kul], What’sHap (2015) [PMea] and HapCol (2016)
[PZD+]. While being different in methodology, the algorithms also differ in assumptions
about the input data, e.g. reads length, sequencing coverage and error rate.

Earlier methods, such as HapCUT, are designed for reads generated with first generation
sequencing, mainly Sanger sequencing (low error rate, relatively long reads, > 700bp [HFB]).
This method does not outperform currently available methods in terms of accuracy and is
slower in general settings [PMea]. Moreover, first generation sequencing is too expensive for
whole-genome sequencing on a large scale and is gradually being substituted with the second
and the third generations techniques, as it was described in Sec. 1.1.4.

Majority of methods listed above formalize read-based phasing (also called haplotype
assembly) as Minimum Error Correction problem (MEC) or its variation weighted MEC
(wMEC), where given a set of fragments, the goal is to reconstruct two haplotypes by ap-
plying the minimum number of base corrections [BDK+]. The problem is NP-hard [BDK+],
but the methods use approximation (RefHap, HapCUT, H-BOP) as well as fix-parameter
approaches (What’sHap, HapCol, ProbHap), where the parameter is sequencing depth. Ap-
parently, approximations are faster in general but do not give guarantees on solution quality,
while fix-parameter approaches are exact but their time requirements grow exponentially
with the growth of the input parameter value.

The latest ones What’sHap and HapCol are mainly designed for the third generation se-
quencing data. The methods are appropriate for the datasets since What’sHap complexity
is not affected by reads’ length, while HapCol run time grows only linearly with the length.
Although the algorithms run time increases exponentially with increasing read set coverage,
authors of What’sHap claim that coverage greater than 20 nearly does not influence result
quality, assuming reasonable filtering of input fragments.

All listed methods require some guarantees on input parameters, i.e. sequencing depth,
reads’ length, error rate, and are not capable to generalize on the input. While third gener-
ation sequencing technologies allow retrieving majority of haplotype solely based on reads,
they still suffer from high error rate (see Tab. 1.1). Importantly, the performance of the
algorithm, primarily designed for the technology, decreases rapidly with increase sequenc-
ing error rate [PMea], [PZD+], which makes the methods inefficient for datasets currently
produced by the third generation platforms.

2.2.3 Hybrid phasing

Hybrid phasing utilizes availability of both a reference panel and a read panel. The
hybridization often allows reaching better algorithm performance in comparing with solo
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approaches.
There are several available hybrid algorithms, including SHAPEIT2 (2013) [DHCea], Hap-

seq (2013) [HHE] and PhASER (2016) [CMC+]. Hap-seq represents an exact phasing algo-
rithm which is exponential in the number of variants a read covers. Authors fix the number
to avoid the exponential complexity, which leads to suboptimal usage of information a read
panel supplies. The algorithm is similar to SHAPEIT2, but instead of Markov chain Monte
Carlo (MCMC) sampling it uses the exact Viterbi algorithm.

SHAPEIT2 algorithm extends population-based phasing algorithm SHAPEIT by likeli-
hoods computed under the read panel. This extension, among other, allows phasing variants,
that are singletons and not present in reference panel [DHCea]. The algorithm, similarly to
Hap-seq, iterates by segments of fixed size (from 0.1Mbp to 5Mbp). Differently from the
Hap-seq algorithm, the model counts with reads which span the segments’ boundaries. The
algorithm outperforms SHAPEIT as well as Beagle [BBc] population-based phasing algo-
rithm in terms of phasing accuracy [DHCea]. Accuracy of SHAPEIT2 algorithm increases
with increasing reads’ length. This property makes the algorithm more suitable for the third
generation sequencing technologies. However, it is reported in [DHCea] that when paired-
end short reads were supplied (similar to the output of the second generation sequencing
platform Illumina), increase in the accuracy was observed as well. In particular, for vari-
ants that are not in the reference panel, the switch error dropped from 49.3% to 37.1% and
at sites with a minor allele count of eight the switch error dropped from 2.2% to 1.7%. This
underlines the ability of the short reads to increase phasing accuracy.

The newest algorithm, PhASER, is primarily designed for RNA-seq. The algorithm, sim-
ilarly to other presented hybrid approaches, iterates over blocks (up to 15 variants) and
extensively searches the solution space. PhASER constructs a solution space basing on a
read panel and utilizes reference panel to compute haplotypes likelihoods. Run time and
accuracy of the algorithm for WGS datasets are similar to performance of the HapCUT
population-based phasing algorithm [BBa], introduced earlier [CMC+].

To best of authors knowledge, there is only one hybrid algorithm SHAPEIT2, which com-
bines both read panel and reference panel into a single probabilistic model, while fully utiliz-
ing phase information contained in reads. It achieves better performance than it’s population
based phasing counterpart, underlining ability of read panel to improve population-based
phasing. Its time complexity is similar to SHAPEIT population-based phasing algorithm.

2.3 Objectives

While currently available read-based phasing algorithms utilize the ability of long reads
to span more variants, they are inefficient for short reads produced by the first and the
second sequencing technologies, as was reported in e.g. [PMea]. However, high sequencing
error rate the long reads suffer from makes the algorithms inefficient for low coverage data.
For instance, What’s Hap algorithm for PacBio datasets achieves switch error around 10%
while phasing both substitutions and INDELs for simulated data and error rate around 15%
on real PacBio dataset with coverage 5, as is reported in [PMea]. Increasing the coverage to
60 reduces the errors to 3.8% for simulated dataset and to 8.3% for real dataset. However, in
general datasets does not have such depth due to cost of such sequencing and time demands.
Moreover, the most efficient read-based phasers (e.g. [PMea], [PZD+], [Kul]) are exponential
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in read dataset coverage.
Meanwhile, population-based phasing algorithm are very expensive in term of run time,

except Eagle2 algorithm. For instance, in [LDPea] it is reported that Eagle2 achieves 12–38x
speedups over SHAPEIT in performance on a reference panels of size 15, 000–100, 000.

Therefore, the goal of our research is to extend Eagle2 phasing algorithm [LDPea], current
the state-of-art population-based phasing algorithm, with information preserved in reads.
The information is nearly always available since genome sequencing is the first step per-
formed in any genome analysis pipeline. The presented algorithm aimed at being efficient in
term of run time and phasing accuracy for reads obtained with variant available sequencing
technologies.

2.4 Student contribution

The student contribution was reviewing the existing phasing methods and design of the
Eagle2 algorithm extension with read-based phasing. This includes proposal of the proba-
bilistic model, implementation of the read-based phasing part of the algorithm (including
implementation of the tool for reads preprocessing and conversion into the desired format),
data simulation and testing of the hybrid algorithm.

2.5 Outline

The thesis is structured as follows. In the previous two chapters, we introduced basic
terms, the phasing problem itself and listed currently available phasing algorithms. The
following chapter introduces the proposed hybrid phasing algorithm. In the chapter, we
formally describe the proposed probabilistic model and its approximation with HMM. In
chapter 5 we describe implementation details of the algorithm. The last chapter contains
testing results and a discussion about them.
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Chapter 3

Eagle2 phasing algorithm

The proposed phasing algorithm performs diplotype inference under the proposed HMM
model. The core idea of the method corresponds to Eagle2, which is currently the state-of-
art population-based phasing algorithm. The proposed algorithm extends the probabilistic
model of Eagle2 by posteriori probabilities computed under a read panel.

In this chapter we briefly describe the Eagle2 algorithm and scope of the proposed ex-
tensions. The formal description of the proposed probabilistic model and the haplotype
inference procedure, performed under the model, is introduced in the following chapter.

3.1 Algorithm overview

A statistical model of the Eagle2 algorithm is a haplotype copying model similar to
the one introduced by Li N. and Stephens M. in 2003 [LS]. The Li and Stephens framework
accounts for the biological processes of recombination and mutation to estimate an individual
diplotype from known haplotypes of other individuals [BBb], i.e. reference panel. The model
forms a base of probabilistic models of the majority of population-based phasing algorithms,
e.g. PHASE [SSD], SHEPEIT [DCZ], Beagle [BBc].

However, Eagle2 differs from the dynamic programming or sampling methods employed
by previous phasing software. Before haplotype space exploration, the algorithm creates
a HapHedge structure, allowing efficiently representing haplotypes from reference panel.
Furthermore, Eagle2 selectively explores the diplotype space. We give a brief description of
the main algorithm steps.

3.1.1 Step 1: HapHedge data structure construction

A HapHedge structure encodes a sequence of haplotype prefix trees rooted at a sequence
of starting positions along the chromosome. This enables a near constant-time retrieval of
haplotype frequencies at any position along the chromosome. The property makes phasing
algorithm speed nearly independent on reference panel size. Moreover, the structure con-
struction has linear-time complexity and near constant-time querying.

The HapHedge structure is generated using the positional Burrows-Wheeler transform
[Dur]. In its simplest form, the PBWT iteratively creates sorted lists of haplotype prefixes,
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moving the prefix start point from right to left [LDPea]. Eagle algorithm extends this pro-
cedure to convert the lists of sorted prefixes into prefix trees [LDPea]. The procedure takes
O(M ∗ K) time, where K is the number of individuals in reference panel, M is the num-
ber of variants to phase. After the structure is created, the algorithm starts to explore the
diplotype space.

3.1.2 Step 2: Exploration of diplotype space

The algorithm performs a solution space exploration moving from left to right along the
chromosome. At each target marker, the algorithm considers two possible extensions of the
haplotype pair as well as possible recombination on maternal, paternal or both haplotypes.
State likelihoods are then computed under the reference panel (by querying the HapHedge
structure constructed in the previous step) and under the given unphased genotype of the
sample.

States merging

Apparently, the number of haplotypes in the reference panel which are consistent with
the haplotype will continually decrease when moving from left to right along the chromo-
some. This reduces the ability of the algorithm to overcome local maxima. The behavior is
prevented so that states, for which haplotypes agree in the last 64 heterozygous positions,
are merged into a single state and the new state likelihood is approximated by a weighted
combination of the merged states likelihoods (for more details see [LDPea] Sec. 2.3.2). The
step also reduces the number of states, resulting in a more tractable HMM.

Space pruning

To prevent the exponential explosion of the solution space, along with states merging,
space pruning is performed. The solution space is pruned to the P most likely solutions in
each step. The hope is that P is set to be big enough to be robust to local maxima [LDPea].

Therefore, the algorithm performs beam search of a small subset of the solution space,
which is advantageous when most of the space is probabilistically unfavorable but difficult
to discard a priori [LDPea].

3.2 Proposed extension

Newly, we add read set posteriori probabilities to the Eagle2 probabilistic model. In the
proposed algorithm, we construct an efficient reference panel representation (different from
HapHedge structure) using PBWT at first. Then, we precompute a posteriori probability
of each read alignment contained in a supplied .bam file, given alleles from a supplied .vcf
file. Further, the probabilities are incorporated into the probabilistic model, which takes
into account both sources of information: the created read panel and the supplied reference
panel. Then we, similarly to Eagle2, approximate the proposed model with HMM and
iterate over it using Viterbi Algorithm, performing states merging and pruning at each step
of the inference. The proposed probabilistic model and the inference procedure are formally
described in detail in the following chapter.
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Hybrid phasing algorithm

The following chapter contains a formal description of the proposed probabilistic model
as well as a diplotype inference performed under the model.

4.1 Preliminaries

The following hybrid algorithm is based on two sources of information, read panel R and
reference panel H. Let N be the total number of variants (or markers) in a considered region
of a genome. We further refer to reads, covering a position p as Rp, where p ∈< 1, N >.

We represent a diplotype as a pair of maternal and paternal haplotypes denoted as hα and
hβ respectively. We refer to the value of a haplotype at a specific position p ∈< 1, N > as hp.
We consider both heterozygous and homozygous variants since homozygous are important
for inference under H.

4.2 Diplotype probability model

Our goal is to model a distribution of all possible diplotypes, given the available informa-
tion from reads and taking into account population haplotype structure, i.e. p(hα, hβ|R,H).
We also take into account recombinations and a possibility of discrepancies between the
sources.

Assuming independence of R and H given a pair of haplotypes hα, hβ (similarly to
[DHCea]) we rewrite the probability p(hα, hβ|R,H) as follows

p(hα, hβ|R,H) ∝ p(hα, hβ, R,H) =

p(H,hα, hβ) · p(R|hα, hβ, H) ∝
p(hα, hβ|H) · p(R|hα, hβ)

(4.1)

This allows us to divide our model into two independent parts, referred to as the haplotype
model and the read model.
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4.2.1 Haplotype probability model

We first approximate conditional diplotype distribution given H by making independence
assumption on maternal and paternal haplotypes given H (similarly to [LDPea]), where the
haplotypes are coming from the same distribution on h1:N , i.e.

p(hα1:N , h
β
1:N |H) ≈ p(hα1:N |H)p(hβ1:N |H) (4.2)

Next, we model each haplotype as a mosaic of recombined haplotype segments from
h1:a, ha+1:b, . . . hl+1:N , copied from haplotypes from H. Here, we denote a set of recombi-
nation breakpoints for a haplotype as a, b, . . . l, and it holds that 1 < a < b < c . . . l < N .
We can thus decompose a probability of haplotype as a sum over the possible recombination
breakpoints as

p(h1:M |H) =
∑
a,b,...l

f(h1:a|H)prec(a)

f(ha+1:b|H)prec(b) . . . f(hl+1:M |H)prec(M),

(4.3)

where prec(p), p ∈< 1, N >models the probability of a breakpoint in position p and f(ha:b|H)
denotes the frequency of a haplotype segment ha:b in H, i.e.

f(ha:b|H) =
{k : hka:b == ha:b}

K
, (4.4)

where K denotes the reference panel size, i.e. K = |H|.

Recombination probability model

We use Li-Stephens model [LS] to describe probability prec(p), p ∈< 1,M > that a
recombination event occurs at the marker p. Under this model the probability is computed
as

prec(p) = 1− e−λx = 1− e−λ(G(p)−G(pprev)), (4.5)

where λ is the expected IBD length and G(p) denotes the genetic distance of marker p from
the beginning of the chromosome, which can be found in genetic map (see Sec. 2.1.2 for
details). The parameter λ corresponds to theoretical distance of a phased sample to samples
from the reference panel H. And as it was shown in [LDPea], phasing accuracy appears to
be insensitive to λ from the range 0.5cM − 4cM .

4.2.2 Read model

Similarly to SHAPEIT2 [DHCea], we compute the posteriori probability of R given a
pair of haplotypes as follows

p(R|hα, hβ) =
∏
r∈R

p(r|hα, hβ) (4.6)
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Assuming that prior probabilities of the haplotypes being sequenced are equal, we rewrite
the equation as follows ∏

r∈R
p(r|hα, hβ) =

∏
r∈R

p(r|hα) + p(r|hβ)
2

(4.7)

Assuming independence of bases within a read, we utilize read base qualities, available after
sequencing to rewrite posteriori of a read as follows

p(r|h) =
|r|∏
i=1

p(ri|h) =

{
q(ri) ri = hp(ri)

1− q(ri) ri 6= hp(ri)
(4.8)

where q(ri) is a probability of the base ri being sequenced correctly and p(ri) is position of
the base.

4.3 Haplotype inference

It turns out that each multiplier in the haplotype model (4.3) can be computed in O(1)
time. For the recombination model introduced earlier, the complexity is straightforward.
Using the PBWT algorithm [Dur], we efficiently represent H as a structure which supports
lookup of the fraction value (4.4) in constant time. Therefore, it remains to compute the
exponential sum over all possible recombination breakpoints and over possible diplotypes.
We approximate the sum by the following Hidden Markov model (HMM).

4.3.1 Hidden Markov model

We denote a state of HMM as S, while S−1 denotes an antecedent state of S. A step
further is always made upon a single marker p, i.e. hα(S) = hα(S−1)+hαp , where hαp ∈ {0, 1}.
Here zero denotes consensus with the reference, while one denotes a consensus with the
alternative allele (see Sec. 2.1 for details). Thus, a state S represents

• a position p ∈< 1, N > along the chromosome.

• eα and eβ , denoting positions where the latest recombination event occurs for maternal
and paternal haplotype respectively, thus eα ∈< 1, p > as well as eβ ∈< 1, p >.

• hα and hβ , denoting maternal and paternal haplotype sequences up to the current
position p, i.e. the sequences begin in the first position and continue up the current
position p.

4.3.2 State space exploration

We move from left to right along the chromosome. Being in position p, we consider both
possible diplotypes, i.e. hαp+1 = 1, while hβp+1 = 0 and hαp+1 = 0, while hβp+1 = 1 for each
heterozygous variant. For homozygous variants, we consider a single case where haplotypes
are equal. We also consider the possibility of a recombination in p on maternal, paternal, or
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both haplotypes.
Probability of the state S given S−1 is computed as follows

p(S|H,R, S−1) = p(S|H,S−1)p(S|R,S−1), (4.9)

which follows from (4.1). Then, p(S|H,S−1) is computed as

p(S|H,S−1) = p(S,H, S−1)
p(H,S−1)

=
p(S, S−1|H)p(H)

p(S−1|H)p(H)
=

p(S, S−1|H)

p(S−1|H)
(4.10)

The second part of the (4.9), p(S|R,S−1), is computed as

p(S|R,S−1) = p(S, S−1, R)
p(S−1, R)

=
p(S, S−1|R)p(R)
p(S−1|R)p(R)

=
p(S, S−1|R)
p(S−1|R)

(4.11)

Further, we decompose R into R:p(S−1), Rp(S): and R:p(S): i.e. reads, which end in posi-
tions p(S−1), which start at position p(S) and which span both respectively. Reads which
do not belong to any of the sets do not influence (4.6) according to (4.8). This allows as to
rewrite the equation above as

p(S, S−1|R)
p(S−1|R)

∝ p(R|S, S−1)
p(R|S−1)

=

p(R:p(S−1), Rp(S):, R:p(S):|S, S−1)
p(R:p(S−1), Rp(S):, R:p(S):|S−1)

=

p(R:p(S):|S, S−1)p(R:p(S−1)|S−1)p(Rp(S):|S)
p(R:p(S−1)|S−1)p(R:p(S):|S−1)

=

p(R:p(S):|S, S−1)p(Rp(S):|S)
p(R:p(S):|S−1)

(4.12)

In case of a recombination for state S on haplotype h the so called states merging oc-
cur. The step is necessary to preserve beam diversities, as it was already mentioned in Sec.
3.1.2. In this case we merge states which correspond to the previous position and which
agree in a considered haplotype h from the previous recombination point e to the current
position p(S). More formally, states from the state set SM = {Sm|p(Sm) = p(S−1) and
∀Sm1 , Sm2 ∈ SM : he:(S

m
1 ) = he:(S

m
2 )} are merged into a single state which we refer to as S′.

Therefore, the likelihood of S′ becomes conditioned on likelihoods of the states from SM .
We approximate the probability as follows

p(S′|H,R, SM ) =
∑

Sm∈SM
p(Sm|H,R) (4.13)

In the case of states merging, we also approximate the posteriori p(r|h(S′)) for haplotype h
by the weighted sum of the read r posteriors over states from SM as follows

p(r|h(S′)) =
∑

Sm∈SM p(r|h(Sm))p(Sm|H,R)∑
Sm∈SM p(Sm|H,R)

(4.14)
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Implementation

While the high-level implementation of the proposed method is similar to the Eagle2,
the algorithms differ in several ways. First of all, we use a different representation of known
haplotypes from H we refer to as PBWT Index. Next, we incorporate probabilities of reads
from R into the model. A diplotype inference under the proposed HMM remains the same
for both algorithms.

Therefore, the proposed algorithm could be divided into three steps

• Step 1: Construct a read panel.

• Step 2: Build Index using the PBWT algorithm.

• Step 3: Infer the most likely diplotype under the model introduced in Sec. 4.

We had implemented a new bioinformatics tool which creates a read panel structure in
a desired format. Since the structure might be efficiently utilized for other application, the
step 1 is implemented separately from the entire phasing algorithm.

In this chapter we first describe implementation details of the algorithm performing a
read panel construction. Then we describe implementation of the hybrid phasing algorithm
and discuss those algorithms’ time complexity. Also, we list the algorithms’ requirements,
input arguments, and present examples of execution commands in the chapter.

5.1 Tool for Read Panel Construction

The implemented tool for read panel creation produces a .var file, given .vcf and .bam
files. The newly proposed file .var format is designed in a way allowing to iterate over vari-
ants listed in a .vcf while preserving information about consecutive variants being spanned
by a single read.

Briefly, the tool main cycle iterates over reads in the given sorted .bam file and as soon
as a read covers a variant from the given .vcf, it accesses the read alignment to the variant
and calculates the aligned bases probability for each allele of the variant according to (4.8).
While iterating over the read set, the algorithm simultaneously moves along the sorted vari-
ant set. To reduce the memory overhead, results are frequently stored into a file during the
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algorithm runtime.
The algorithm is capable of processing all types of reads (including paired-end reads

produced by the Illimina platform) of any length and base qualities. The algorithm time
complexity is O(|R| ∗ vmax), where |R| is number of aligned reads and vmax is the maximum
number of variants a read from R spans.

5.1.1 The .var format

Figure 5.1: Example of the .var format.

The .var file, produced by the tool, contains the posteriori of reads given variant alleles
as well as reads’ base qualities calculated according to (4.8). Example of a file in .var for-
mat is presented in Fig. 5.1. Each line of the file contains information about a single read
and is composed by the read name, the list of covered markers’ start positions separated
by semicolons, and the list of the variants posteriori separated by semicolons. Each variant
posteriori is in form of a list where each element is a comma separated list of posteriori of
the variant alleles.

The variant posteriori probability is presented in a format common for base quality rep-
resentation, known as Phred or Q score. A Q score value is an integer value representing the
estimated probability of an error, i.e. that the base is incorrect. The representation helps to
avoid manipulations with floating point numbers. If p is the error probability and q is a Q
score, then conversion between the formats is performed as:

p = 10−
q
10

q = −10log10(p)
(5.1)

The variant alleles posteriori probability are computed from sequencing qualities of the
aligned read bases, which are available in a .bam file in the Phread format. Therefore,
the probability for a read can be computed as long as the read cigar string (see Sec. 1.2),
containing information about the read alignment, is available in the .bam file.

5.1.2 Execution

Dependencies

The tool requires Python 3.x to be installed. Also, it requires numpy, pysam and biopy-
thon packages to be installed.
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Arguments

The script arguments are

• Positional arguments

bam_path - absolute path to the .bam file
vcf_path - absolute path to the .vcf file
out_prefix - prefix of the output .var file, including file location
sample_id - sample id, identical to the id in the .vcf file

• Optional arguments

--config - configuration/reference id specified in the .vcf file
--varmax - the position at which variant processing will end [All]
--homo - include variants in which the sample is homozygous [False]
--indels - include INDELs [True]
--v - verbose mode [False]

Note that --config argument is required to be specified in the case when the given .vcf
file contains data for multiple reference sequences. The program will set the reference id
automatically otherwise.

Examples

Example 1: To create hg00096_read_panel.var file for a sample HG00096 which would
contain all SNPs specified in variants.vcf (containing data for a single configuration) in
which the sample is heterozygous for reads in reads.bam, run

python3 createVar.py reads.bam
variants.vcf
hg00096_read_panel
HG00096

Example 2: To create hg00096_read_panel.var file for a sample HG00096 which would
contain substitutions listed in variants.vcf (containing data for a single configuration)
including variants in which the sample is homozygous, for reads in reads.bam run

python3 createVar.py reads.bam
variants.vcf
hg00096_read_panel
HG00096
--homo=True
--indels=False
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5.2 Phasing Algorithm

5.2.1 Step 1: Read panel construction

As the first step, we apply the tool, presented in the previous section, to access reads
posteriori probabilities. We call createVar.py for the given .bam and .vcf containing the
sample variants which we want to phase, for heterozygous variants only, for both substitutions
and INDELs. We exclude homozygous variants since for phasing under the read panel this
variants are invaluable. The phasing algorithm then takes the created .var as an input.

5.2.2 Step 2: PBWT Index construction

Next, we build the Index structure using the PBWT algorithm [Dur]. The algorithm takes
H, containing known haplotypes, and iteratively creates sorted lists of haplotype prefixes,
moving the prefix start point from right to left. Therefore, at each position p we poses
information about how many individuals have zero at positions p + 1 and how many have
one. The information is crucial for inference under the haplotype model (4.2.1).

The index construction takes O(N ∗ K) time where K is the number of individuals in
reference panel and N is total number of markers.

5.2.3 Step 3: Haplotype inference

After both Index and read panel structures are constructed, the inference procedure
starts. To find the most likely sequence of hidden states, we iterate over the solution space
consecutively moving from marker to marker extending each state by eight possible scenarios
in each heterozygous variant and by four scenarios in each other variant.

The branching factors are given by the fact that we consider four possible recombination
scenarios, which are no recombination, recombinations on maternal or paternal haplotype
only, or recombination on both haplotypes and possible extentions of the haplotype. Being in
position p, we consider both possible diplotypes, i.e. hαp+1 = 1, while hβp+1 = 0 and hαp+1 = 0,
while hβp+1 = 1 for each heterozygous variant and we consider a single case where haplotypes
are equal for each homozygous variant. We compute the likelihood of the extended state
according to model described in Sec. 4.3.1.

Once we have crossovered states, we merge those with the same history (haplotype till
the last recombination breakpoint) into a single state, as it is formalized in Sec. 4.3.2. The
likelihood of a state produced by the merging operation is then computed by (4.13), while
posteriori of each read is approximated according to (4.14). The merging is performed in
such a way that states are first sorted according to the 64 bit hashcode of the state history,
after which states with the same hashcodes are merged. After the merging, we extend each
state by possible combination(s) of alleles, as described above.

After that, we prune the set by selecting only the P most likely states in order to avoid the
exponential growth of the solution space. Therefore, we have a maximum of P states in each
step of the proposed HMM. Pseudocode of the complete inference procedure is formalized
in Alg. 1.

After this step, we obtain hαbest, h
β
best - the most likely haplotypes. The algorithm then

writes all variants in the original .vcf into a new phased .vcf .
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Data: H - Index, R - Read Panel, g - sample genotype, P
Result: hαbest, h

β
best

m = 1
S = {State(hα = ””, eα = 0, // init state space

hβ = ””, eβ = 0)}
while m < N do
S.update_references(H) // move along Index for ∀s ∈ S
Sm = S
Sm.crossover() // crossover each s in Sm
Sm.merge() // merge states with the same history
if g1m = g2m then
S = Sm.extend(g1m, g2m) // extend both hα and hβ by g1m = g2m for ∀s ∈ S

else
S = Sm.extend(g1m, g2m) ∪ // extend hα by g1m and hβ by g2m for ∀s ∈ S
Sm.extend(g2m, g1m) // extend hα by g1m and hβ by g2m for ∀s ∈ S

end
S.compute_likelihoods()
S = S.get_best_states(P ) // get P the most likely states
m += 1

end
Sbest = S.get_best_state() // get state with the highest likelihood
return hα(Sbest), hβ(Sbest) // return estimated diplotype

Algorithm 1: High level implementation of the hybrid phasing algorithm.

5.3 Computational cost

In this section we discuss complexity of each step of the algorithm described in the
previous section (see. Alg. 1). The algorithm time complexity is primarily determined by
the number of variants N , over which the algorithm iterates.

Crossover of a state (notated as crossover() in Alg.1) is considered at each variant. It
results in four possible scenarios, which are (1) no recombination, (2) recombination on
paternal haplotype, (3) recombination of paternal haplotype or (4) both. When we consider
crossover for a haplotype, we literally forget the state history and rewrite the last crossover
point for the haplotype. This operation has near constant time and is performed for each of
the P states obtained in the previous step of HMM. Hence, it takes O(P ) time. Evidently,
the step extends the state space by a factor of four. Since we consider only the most likely
P states at each step, the crossover operation results in 4P states.

Then we perform states merging (notated as merge() in Alg. 1), which requires first to
sort all haplotypes of the 4P states. The sorting, performed on maternal and on paternal
haplotypes histories, requires O(2 ∗ 4P ∗ log4P ) = O(P ∗ logP ). In case of merging, we
also perform summation of the merged states’ likelihoods together with reads posteriori
averaging. This takes O(4 ∗ P + 4 ∗ P ∗ Cmax) = O(P ∗ Cmax) in total.

It has to be mentioned that states merging reduces the number of states 4P , obtained
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during the crossover step.We discuss the reduction in the next section. Nevertheless, we
assume that the number of states is O(4P ), as was inferred above, for simplicity .

Next, we extend each state according to one (homozygous marker) or two (heterozygous
marker) possible scenarios, as was described in the previous section. Thus, we result in
O(8P ) states after the step. For each such state we compute its likelihood under model
described in Sec. 4.3.2. The first term in (4.1) requires O(1), due to the fact that querying
haplotype frequencies under PBWT Index structure takes near constant time. Computing
of (4.11) value requires to iterate over all reads that span the position, which takes O(Cmax)
time. Thus, the step requires O(8 ∗ P ∗ Cmax) in total.

Next, we select P the best states according to their likelihoods at each step in O(8 ∗ P ∗
log8P ) = O(P ∗ logP ) time, due to sorting of the states by their likelihoods. Those selected
states are then propagated to the next iteration of the HMM.

Overall, the phasing algorithm computational complexity is O(N ∗ P (LogP + Cmax)).

5.3.1 Discussion

It was shown in the previous section that the overall complexity of the algorithm is
linearly depend on number the of markers N as well as on the number of HMM states P we
remember in each iteration. Regarding the remaining summation, we could not say for sure
which of P and Cmax would be dominated. Those values depends on user preferences and
on input data. In general settings we assume that P ∈< 100, 1000 > and Cmax ∈< 5, 30 >.
However, it does not hold universally. For example, deep sequencing, which is used to identify
mutations within tumors or other rare clonal types, or microbes comprising as little as 1%
of the original sample [Ill], might have depth ranging from 80× up to thousands.

Hyperparameter P

The only hyperparameter of the algorithm is the number of states P we remember in each
step of HMM. While the time requirements of the algorithm would grow exponentially with
unbounded P , we expect that reasonable settings of P will be a good approximation. We
had also expected that accuracy of phasing would grow with increasing P , since unbounded
number of states would lead to an exact solution under the proposed model. However, we
had empirically estimated that the relation is not straightforward and results obtained for
smaller P values are comparable to those obtained with higher P values. We discuss setting
of the parameter in the following chapter.

States merging

As is was already mentioned in the previous section, the number of states in often essen-
tially reduced after states merging operation is performed. Unfortunately, the factor could
not be exactly inferred and has to be estimated empirically. This is because results of the
merging is highly influenced by data present in reference panel as well as by decisions made
in the previous steps of the inference procedure.
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5.4 Execution

The hybrid phasing algorithm is implemented in Rust programming language. To execute
the program user runs phase.exe located in target/release/ directory. Along with other
arguments listed below, the program takes a .vcf containing unphased genotype information
and outputs a .vcf with the phased genotype.

Arguments

The program arguments are

• Required arguments

-p, --panel - absolute path to the reference panel (.vcf/.bcf)
-i, --input - absolute path to variation sample (.vcf/.bcf)
-o, --output - prefix of the output .vcf file, including file location
-g, --gmap - absolute path to the genetic map file

• Optional arguments

-r, --reads - read panel file name (.var) [None]
-M, --markers - # markers to phase [All]
-N, --refs - # haplotypes from the reference panel which will be used [All]
-D, --drop-states - # HMM states [100]

Since the algorithm can phase also without reads panel, --reads argument is optional.
Also, if --input argument specifies a .vcf containing more than one sample, only the first
one will be phased.

Examples

To run the program with a read panel, a .var file has to be created first using the tool
introduced in Sec. 5.1. The file is then supplied to the program using --reads argument.

Example 1: To phase hg00096_unphased.vcf into hg00096_phased.vcf in a short time,
utilizing all haplotypes from the reference panel reference_panel.vcf and a read panel
hg00096_read_panel.var, run

phase -p reference_panel.vcf
-i hg00096_unphased.vcf
-o hg00096_phased
-r hg00096_read_panel.var
-g gmap.txt
-D 100
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This command produces a hg00096_phased-best.vcf.gz, containing the most likely
diplotype estimated for the sample. Note that --D parameter corresponding to number of
HMM states remembered at each iteration influences the algorithm’s computational time.

Example 2: To phase the first 1000 variants from hg00096_unphased.vcf into hg00096_phased.vcf
in a short time, utilizing 500 haplotypes from the reference panel reference_panel.vcf and
a read panel hg00096_read_panel.var, run

phase -p reference_panel.vcf
-i hg00096_unphased.vcf
-o hg00096_phased
-r hg00096_read_panel.var
-g gmap.txt
-D 100
-M 1000
-N 500
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Chapter 6

Testing design

6.1 Testing scenarios

We were interested in how different reads’ parameters influence the phasing algorithm
performance. In order to examine that, we proposed our testing pipeline as follows

• First of all, we simulated reads of lengths 1k, 5k, and 10k bp with uniform sequencing
errors of 1%, 5% and 10% (from which 10% are always INDELs) for 20 samples. In this
scenario, average sequencing depth was 15 and P , the number of HMM states, was 100.
We aimed at examining how reads’ parameters influence the algorithm performance.
We also compared the obtained results with those measured without a read panel.

• We tested the algorithm on the dataset described above for P = 1000. Our goal was to
compare the algorithm performance for number of HMM states P = 100 and P = 1000.

• We simulated a dataset containing reads of length 10k bp and sequencing error rate of
20%. We were interested in verifying the algorithm ability to improve phasing accuracy
even when given reads with extremely high sequencing error rate.

• We reduced average dataset coverage from 15 to 5 reads of length 10k and sequencing
error rates of 10% and 20% to test the algorithm performance on low coverage data
with high errors rates (such as reads produced with the third generation sequencing
platforms).

6.2 Data

All datasets were simulated and tested on the first 475k markers which constitute 1/4 of
the human chromosome 20. The chromosome in total contains approximatively 64 million
base pairs and 1.8 million markers.

6.2.1 Data sources

We used a phased .vcf containing approximately 2400 samples which were announced by
phase3 of the 1000 Genome project [Cona]. We phased the first 20 samples available in the
file and the rest was used as a reference panel.
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6.2.2 Dataset simulation

We applied our algorithm to reads created with the NEAT-genReads sequining simulator
[SHM+]. We learned a base qualities model on a real PacBio dataset first, then during the
simulation we rescaled the model to obtain the desired error rate and reads length.

In order to simulate reads for a sample, we first created a .fa file (see Sec. 1.2), contain-
ing genome sequence of the sample for each haplotype separately. This was accomplished
by altering variants from a phased .vcf, containing the sample information, into a reference
sequence. Then we applied the NEAT-genReads tool with the pretrained base error model
to each of the two altered reference sequences. Once both .fq files were created, we merge
them into a single file and apply bwa aligner tool [LD] in order to obtain the .bam file. This
file was then used to create a .var file, an input of the phasing algorithm.

6.3 Performance evaluation

To evaluate the phasing algorithm performance we used a common metric called Switch
Error, which is the percentage of possible switches in haplotype orientation, used to recover
the correct phase in an individual [LCC].

In order to get the error rate for two given .vcf files, the first one containing the ground
truth and the second containing the estimated phase information, we used gzdiff option of
vcftools software [DAAea].

6.3.1 Environment

Testing was conducted on a machine with 32 GB of RAM and the Intel Core i7− 4790
CPU (clocked at 3.6 GHz) with 8 logical cores. Nine threads were always executed in
parallel which might have influenced the tested algorithms’ runtime. All the files had been
stored on an external HDD.

6.4 Number of HMM states

We first tested the algorithm for a randomly selected sample to select a suitable P . We
measure the performance for a single sample for various reads parameters (on the dataset we
constructed for the first testing scenario). We varied P in the set {100, 200, 300, 500, 700, 1000}.

The switch error rate we measured for sample HG00100 for IBD length equal to 1cM is
illustrated in Fig. 6.1 via boxplots for each value of P . We had noticed that error rate is not
straightly proportional to P . No relation between P and the algorithm accuracy had been
observed in the results of the experiment. However, from the box plot on the right side of
Fig. 6.1, illustrating the phasing runtime, we observe a significant increase with growing P
(approximately linear, as was discussed in Sec. 5.3).

From the results of the experiment we concluded that for the selected IBD length ac-
curacy of the algorithm does not vary significantly for the tested P values. Therefore, we
decided to test the algorithm for P = 100 and P = 1000. The hope is that for P = 100 the
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Figure 6.1: Box plots of the relation between the number of HMM states and the switch
error rate and time, respectively.

algorithm will perform significantly faster, but for P = 1000 we expect phasing accuracy to
be slightly higher at the expense of computational efficiency.
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Chapter 7

Results and discussion

7.1 Results

7.1.1 Scenario 1: Impact of read panel

First of all, we tested algorithm performance for various read lengths and error rates for
average dataset of coverage 15 and P = 100. The obtained switch error rates are illustrated
in the left side plot in Fig. 7.1. A gray box represents results of phaser with no reads,
colorful box-plots represent results of phasing with reads of various parameters. We observe
that the algorithm performed better with presence of reads. Importantly, it holds also for
reads having sequencing error rate of 10%.

Specifically, the algorithm achieved 1.4% mean switch error over 20 phased samples for
phasing without reads, while for phasing with reads having 10% sequencing error rate, it
achieved error of 1.04%, 0.68% and 0.53% for reads of length 1k, 5k and 10k, respectively.
The lowest achieved mean switch error was 0.37% for reads of length 10k bp and sequencing
error rate of 1%, as was expected.

From the right side plot of the Fig. 7.1, illustrating CPU time, we observe that time
requirements of the algorithm for phasing with reads was slightly higher. It averaged at 6.4
minutes for phasing without a read panel, and 6.6, 7.5 and 7.7 minutes for phasing with reads
having 1% sequencing error rate and length equal to 1k, 5k and 10k, respectively. The figure
underlines that the run time is independent on sequencing error rate and near-independent
on reads length.

7.1.2 Scenario 2: Number of HMM states

We increased P to 1000 and applied the phasing algorithm to the data used in the
previous scenario. Fig. 7.2 illustrates the achieved error rates for P = 100 and P = 1000.
We can see that the accuracy achieved for various reads length and sequencing error rates
is practically independent on P , which is consistent with the results reported earlier in Sec.
6.4 measured for a single sample.

The presented results were obtained for IBD length equal to 1cM and could vary for
different values of the parameter.
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Figure 7.1: Box plots of the relation between the read set parameters (length and sequencing
error rate) and the switch error rate and time, respectively, for the dataset with depth 15
and for P = 100.

7.1.3 Scenario 3: Low coverage

Next, we tested how well the algorithm performs on a read set containing long reads
with a low coverage. In particular, we set the dataset coverage to 5 for reads of length 10k.
These values better correspond to standard datasets produced by third generation sequencing
platforms. We used the same read panels as for the previous scenarios, only down-sampled
to the desired coverage. We compared results obtained for sequencing error rates of 1%, 5%
and 10% with results obtained for down-sampled dataset with the same parameters. The
results of the experiment are illustrated in Fig. 7.3.

We can see from the left side plot in Fig. 7.3 that phasing performed on the dataset
with coverage 5 results in a switch error rate higher on average than phasing on the dataset
with coverage of 15. In particular, the algorithm achieved mean switch error of 0.37%,
0.43%, 0.53% for the dataset with coverage 15 and switch error of 0.43%, 0.52%, 0.67%
for the dataset with coverage 5 for sequencing error of 1%, 5% and 10%, respectively and
read length of 10k bp. Nevertheless, accuracy of the algorithm for the dataset with the low
coverage was higher than accuracy of the algorithm when no read panel was supplied (the
gray box on the left side plot), for all settings of the sequencing error rate. Importantly, this
also holds for read set with high sequencing error rate of 10%, for which the algorithm still
performs more than twice as better (1.4% vs 0.67%).
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Figure 7.2: Box plots of the relation between the read set parameters (length and sequencing
error rate) and the switch error rate and time, respectively, for the dataset with depth 15
and for P = 100 and P = 1000.

Although the performance of the algorithm had slightly decreased, the run time had
dropped, as it might be seen from the right side plot in Fig. 7.3. For the the low coverage
dataset, the run time of phasing without a read panel (the gray box of the right side plot)
is nearly identical to run time of the algorithm with low-coverage read panel, regardless of
the sequencing error rate. In particular, it took 6.36 minutes for phasing with no read panel
and 6.9, 6.9, 6.95 minutes for phasing with a read panel, for sequencing error of 1%, 5% and
10%, respectively.

7.1.4 Scenario 4: High sequencing error rate

Additionally, we simulated one more dataset, containing long reads (10k bp) with se-
quencing error rate of 20%. Achieved switch error rate for the dataset with coverage of
15 and 5 is illustrated in Fig. 7.3. We can see from the figure that accuracy is higher for
phasing with a read set with 20% error rate than accuracy obtained achieved by the phasing
without a read panel. However, we can see that the resulting switch error rate dropped in
comparison with the result achieved for the lower error rates.

7.1.5 Read panel construction

CPU time of the hybrid phasing algorithm reported earlier in this section does not include
time required to create a .var file. The reason is that the tool is independent and separate
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Figure 7.3: Box plots of the relation between the read set parameters (length and sequencing
error rate) and the switch error rate and time, respectively, for the dataset with depth 5 and
15 and for P = 100.

from the main algorithm cycle. Moreover, construction of a read panel for a single sample
takes less than a minute and is almost independent on the reads’ parameters. The time is
also influenced by choice of the programming language.

CPU time required for constructing datasets described in the first scenario with coverage
of 15 and 5 are illustrated in Fig. 7.4. Note that the time was measured when 9 threads
were running in parallel.

7.2 Discussion

The results presented in the previous section underline the ability of the hybrid algorithm
to achieve lower switch error rate when a read panel is utilized. From the results of the
experiments we conclude that a decrease in the switch error rate was achieved for all examined
reads’ parameters. Namely, for datasets of coverage 5 and 15 containing reads of length 1k,
5k and 10k bp and sequencing error rates up to 20%.

We concluded that reads length is the primary factor increasing the algorithm accuracy.
We observed that given a dataset with low sequences error rate, the algorithm was successful
at regions where variant density was higher. Specifically, it was able to increase accuracy
where distance between variants was less or equal to the reads length. We illustrate the
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Figure 7.4: Box plots of the relation between the read set parameters (length and sequencing
error rate) and .var creation time for the dataset with depth 15 and 5, respectively.

distance between start and end positions of the switch errors the algorithm made given
reads of length 1k, 5k and 10k for sample with id HG00099 in Fig. 7.5.

Surprisingly, errors the algorithm made when a read panel was supplied had a small
intersection with the set of errors made by the algorithm when no read panel was given than
we had expected. We observed a pattern where a group of shorter errors made by the phaser
when no read panel was given was followed by a single or a smaller group of errors made
when a read panel was supplied, independently on the reads’ length. This underlines the
different nature of errors the algorithm tends to make in those two settings.

We also noticed that the algorithm had a tendency to fail in variants which are INDELs.
For instance, the proportion of misphased INDELs was 35% over all errors for dataset with
sequencing error rate of 1% and 50% for dataset with sequencing error rate of 20% for read
length of 10k for the sample HG00096. That might seem odd as INDELs constitute less
then 10% of all variants in the human genome. We assume it might be caused by ambiguous
alignment of reads near the variants.

We observe from the experiments that the algorithm does not gain a substantial increase
in run time in comparing with run time it requires when no read panel is supplied. Moreover,
gain in the CPU time constituted only around 6.5% in average of the total algorithm runtime
when phasing with a read panel of coverage 5 was performed.
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Figure 7.5: Histogram of distances between the start and end of switch error coordinates
in the genome of sample HG00099 made by the phasing algorithm when no read panel was
given and when a dataset with reads of length 1k, 5k and 10k and 1% sequencing error rate
was given.

We had also examined how number the of HMM states influences the algorithm perfor-
mance and observed that there was no gain in accuracy for number of states P = 100 and
P = 1000. On the other hand, run time of the algorithm depends linearly on P (as it was
reported in Sec. 5.3). However, the result might be influenced by the value of the expected
IBD length (not tested in this work).

7.3 Conclusion

To conclude, the hybrid phasing algorithm had demonstrated capability to gain higher
phasing accuracy when a read panel is utilized in various settings. This makes the algorithm
suitable for use in any pipeline where reads are available and a reference panel is present. We
had demonstrated that the algorithm is highly accurate for relatively small reference panel
which might be beneficent for instance for other species than humans for which there is no
extensive reference panel.

The proposed read model is similar to SHAPEIT2 read model, except that our HMM
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iterates between positions, while SHAPEIT2 HMM iterates over blocks of the fixed length.
This makes us assume that the accuracy of the presented algorithm is comparable or even
higher than the accuracy of the SHAPEIT2 algorithm.

Also, since the implemented algorithm shares main features with the Eagle2 algorithm, we
expect the algorithms perform similarly in terms of both accuracy and CPU time when read
panel is not given. The time complexity of the presented algorithm is only linearly dependent
on the read set coverage and, as it was established, the algorithm remains extremely efficient
in terms of CPU time when a read panel is supplied.

7.4 Future work

The proposed read model allowed to increase the algorithm accuracy by combining in-
formation about read alignment and read base qualities. We suppose that extension of the
model by alignment qualities and prior expectations on sequencing error rate might increase
the model accuracy especially when reads with high error rates are supplied.

We also plan to test the algorithm on real datasets produced by the second and third gen-
eration sequencing platforms and compare the results with other hybrid phasing algorithms.
Additionally, we suggest examining the tendency of the algorithm to misphase variants which
are INDELs and proposing methods to avoid the behavior.
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