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Abstrakt
Dynamický stochastický vehicle routing problém (DSVRP) si v posledních letech získal
mnoho pozornosti. Jedná se o klasické VRP, ve kterém však všichni zákazníci nejsou známi
předem, ale jsou postupně odhalováni během vykonávání plánu. Plánovač má také od
začátku k dispozici stochastické údaje o požadavcích jednotlivých zákazníků, které může
využít k předvídání budoucích událostí. Protože u mnoha problémů z reálného světa, jako
např. rozvoz potravin, je nutné zákazníkům dovážet určité zboží, zformulovali jsme no-
vou DSVRP variantu, ve které jsou všichni zákazníci zásobováni z některého z dostupných
skladů.

V této práci uvádíme matematickou definici statické a dynamické verze vehicle routing pro-
blému se sklady. K řešení tohoto problému navrhujeme dvě vyčkávací heuristiky a optima-
lizační strategii, která využívá soubor scénářů obsahujících jak známé, tak možné budoucí
požadavky zákazníků. Z výsledků testování našeho algoritmu na množině syntetických tes-
tovacích příkladů vyplývá, že náš postup ve většině případů dokáže překonat nejlepší známé
metody.

Klíčová slova: Dynamický stochastický vehicle routing problem, mnoho scénářů, vyčkávací
heuristika, VRP se sklady

Abstract
The Dynamic Stochastic Vehicle Routing Problem (DSVRP) has received increased attention
in recent years. It considers a routing problem where not all customers are known in advance
but are dynamically revealed during the execution of the plan. Stochastic knowledge about
the dynamic customer requests is available to the solver and can be used to anticipate
possible future events. Because many real-world scenarios, such as grocery delivery services,
need to bring some goods to their customers, we formulate a novel DSVRP variant where
each customer is supplied from one of the available warehouses.

In this work, we present a mathematical definition of the static and dynamic version of
the vehicle routing problem with warehouses. To solve this problem, we propose two novel
waiting heuristics together with optimization strategy utilizing a pool of scenarios including
both known and possible future requests. The computational results obtained on a set of
synthetic test scenarios show that our approach in most cases surpasses existing state-of-the-
art methods.

Keywords: Dynamic stochastic vehicle routing problem, multiple scenarios, waiting heuris-
tics, VRP with warehouses
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Chapter 1

Introduction

The vehicle routing problem (VRP) is one of the most popular and most challenging problems
in combinatorial optimization. The main objective is to visit a set of customers with a fleet
of vehicles while minimizing the overall travel costs. The problem was firstly formulated
by Dantzig and Ramser [1] in 1959 and since then, several variants have been proposed to
incorporate additional business constraints.
The traditional formulations expect that once the scheduling process is started, all its inputs
are fixed and will not change during the execution of the plan. This approach has become
insufficient in recent years when the development in positioning services and communication
technologies allowed logistics companies to track and manage their fleets in real time. Dyna-
mic stochastic VRP (DSVRP) introduces new opportunities to reduce operational costs and
improve customer service. It is able to adapt the solution dynamically by incorporating real-
time information and considering possible future events. The inherent difficulty and wide
applicability of these types of problems motivate the development of the scheduler presented
in this work.

1.1 Goals of the Thesis

The overall goal of this thesis is to produce a robust and efficient scheduler that could be
used to solve real-world DSVRP instances. To achieve this goal, we have to accomplish the
following sub-goals:
1. Study algorithms and modeling approaches for dynamic vehicle routing problems –
problems where the routing is computed dynamically based on the current operational
situation.

2. Construct a model capable of representing the dynamic routing problem and design an
algorithm which assigns a new order to the existing routes. The algorithm should use
stochastic knowledge about the domain to anticipate future orders.

3. Implement the algorithm designed in 2 using a suitable framework and evaluate the
performance of the algorithm on data from a synthetic data set.

1



CHAPTER 1. INTRODUCTION

1.2 Contribution

We propose and formally define a novel DSVRP variant which allows to model many real-
time logistical problems such as grocery delivery, food delivery or any other service where the
customers make orders. Our formulation ensures that the vehicles are regularly replenished
in some near warehouse before they are allowed to serve the customers. The selection of
warehouse is done automatically based on the current location of the vehicle and its customers
in a way that minimizes the overall travel costs.
To optimize this problem, we introduce the Stochastic Customer Satisfaction solver which
iteratively selects the most promising plan from a pool of solutions containing both existing
and stochastic future requests. The selection procedure chooses the most robust solution
which is applicable to the biggest number of possible future scenarios. We also present two
novel waiting strategies which distribute the idle time in a vehicle route. These heuristics
use stochastic knowledge about the problem to select the most promising waiting locations.
Implementation of our algorithm is tested on a collection of test cases and compared with
other state-of-the-art solvers. This comparison suggests that our approach is able to surpass
the other methods in most of the instances.

1.3 Thesis Organization

The rest of the thesis has the following structure:
• Chapter 2 describes the existing approaches used to solve non-deterministic vehicle
routing problems. Three problem categories are discussed: (i) dynamic VRP, (ii) sto-
chastic VRP and (iii) dynamic stochastic VRP. This chapter addresses the first goal
of the thesis.

• Chapter 3 provides a mathematical formalization of the static vehicle routing problem
with warehouses using integer linear program. It also presents a multistage stochastic
program used to formalize the dynamic stochastic variant of this problem.

• Chapter 4 introduces TASP framework which is used to solve the static version of
the VRP with warehouses.

• Chapter 5 presents our Stochastic Customer Satisfaction (SCS) solver. It explains
how the SCS solver exploits the stochastic information about the problem and how it
uses waiting heuristics to distribute the idle time. This chapter addresses the second
goal of the thesis.

• Chapter 6 describes a set of synthetic benchmark instances, provides a comparison
of our approach with other state-of-the-art methods and analyzes the obtained results.
This chapter addresses the last goal of the thesis.

• Chapter 7 summarizes our work and results. It also presents possible future extensions
of our algorithm.

2



Chapter 2

State of the Art

In this chapter, we describe existing approaches used to solve vehicle routing problems (VRP)
with delayed information availability or some level of uncertainty. In classical static and
deterministic VRP, all problem inputs are known before the scheduling starts and do not
change during the plan execution [2]. Unfortunately, real-world applications often contain
some level of uncertainty or have to deal with a dynamic environment where the initial plan
might become infeasible.
Section 2.1 is focused on approaches where not all information about the problem is known in
advance. When some new information is revealed, the initial plan is recalculated to address
the changes in the data. Typically, the update of the plan should be as small as possible, to
avoid communication overhead between the vehicles and the central dispatcher.
In stochastic VRP (see Section 2.2), one or more parameters are only known as random
variables with a known probability distribution. The final plan is created before the true
values are obtained and is not changed afterward. When a vehicle is not able to follow the
planned route (for example because its capacity is exceeded or it is unable to meet the next
time window), the vehicle uses one of the predefined backup actions such as return to depot
or omission of the next customer.
Finally, section 2.3 describes approaches which exploit the stochastic knowledge about the
revealed data to predict future changes and information updates. This means that the routes
are re-planned to not only satisfy the existing requests but also to allow easier handling of
expected future events.

2.1 Dynamic Vehicle Routing Problem

In dynamic VRP (DVRP), also known as real-time or online VRP, the information available
to the planner may change during the plan execution. These changes may involve arrival of
new customers [3], increased travel times caused by traffic jams [4] or changes in customer’s
requirements such as demand, opening hours or service time [5]. After each information
update, the planner recomputes the current plan with the new data set. Even though the

3



CHAPTER 2. STATE OF THE ART

reoptimization procedure can be based on algorithms developed for classical static VRP, it
often uses a different objective function. Attributes such as the number of changed routes,
response time, or ability to handle future changes are often considered [6].
Because the DVRP planner has no information about the future events, exact methods
provide a plan which is optimal only for the current state, with no guarantee about its
optimality once all the data are obtained. Therefore, the majority of DVRP algorithms
use heuristic methods which are able to quickly update a solution to reflect changes in the
environment [7].

2.1.1 Dynamic Programming

One of the first authors who tried to solve DVRP problem was Psarafis et al. [8] in 1980.
He demonstrated differences between the static and dynamic solution for dial-a-ride problem
with a single vehicle. The dynamic version was solved using dynamic programming approach
which recomputed the solution after every new customer request. Special priority rules were
developed to preclude indefinite waiting of customers. The main drawback of this approach is
its poor scaling for larger instances, where the problem very soon becomes intractable.
Ou and Sun [9] designed a dynamic programming algorithm based on chaos optimization
algorithm (COA) to solve DVRP with real traffic information. Their solution consists of two
modules. The first one is a route calculation module (RCM), which is used to search the
optimal schedule in the feasible solution space. It uses chaotic variables which are able to
non-repeatedly search all the states in a certain area. This module is called by the dynamic
programming module (DPM), which evaluates the real-time traffic information and uses the
RCM to adapt the plan when a critical value in the network is exceeded.

2.1.2 Biologically Inspired Metaheuristics

Many authors utilized biologically inspired algorithms which are able to adapt to unforeseen
changes in the task environment. Elhassania et al. [10] used a genetic algorithm (GA) to
iteratively schedule all customers which appeared in the last time step. Insertion heuristics
were used during generation of the initial population to improve the quality of the obtained
results. After that, a traditional GA approach was applied. The algorithm maintains a
population of solutions through a fixed number of iterations. At each iteration, a combination
of two genetic operators is used to produce the next generation. Crossover operator combines
properties of two or more parents and mutation operator randomly changes part of the
solution.
Benyahia and Potvin [11] used genetic programming (GP) to approximate the decision pro-
cess of a professional dispatcher for a courier service company. GP extends the GA paradigm
to nonlinear structures. Each program is represented as a tree structure constructed from
the predefined functions, variables, and constants. Mutation and crossover operators then
manipulate with the whole subtrees, instead of individual solution bits in the classical GA.

4



2.1. DYNAMIC VEHICLE ROUTING PROBLEM

The evaluation function compares decisions produced by the created program with decisions
from professional dispatchers to find a program which most accurately mimics the behavior
of a real dispatcher.

Another popular biologically inspired approach used to solve DVRP instances is ant colony
optimization (ACO), which uses simple agents interacting locally with each other. The ants
walk around the graph representing the problem instance, laying down a pheromone trail
which other ants follow. In each step, an ant probabilistically selects one edge to follow based
on its pheromone intensity. When an ant finds a new solution, the edges which belong to
this solution receive additional pheromone proportional to its quality. The final route then
consists of edges with the highest pheromone intensity.

One of the main advantages of the DVRP ACO algorithms is the possibility to transfer
pheromone traces after each information update. It allows to maintain characteristics of
good solutions, which leads to significant improvements in the response times. Gambar-
della et al. [5] described ACO algorithm AntRoute, which is able to take into account addi-
tional constraints such as vehicle accessibility restrictions or time windows. The presented
algorithm was used to schedule routes for the largest Swiss supermarket chain. A similar
approach was also used by Rizzoli et al. [12] for freight distribution and Montemanni et al. [3]
to serve customers of a fuel distribution company.

2.1.3 Tabu Search

Adaptive memory parallel tabu search was used for a courier service application by Gend-
reau at al. [13]. The algorithm maintains an adaptive memory which stores the routes of
the best solutions visited during the search. Each new solution is then constructed by com-
bining routes taken from this memory. The parallelized search is done by partitioning the
current solution into smaller subproblems which are optimized independently. When a new
customer request arrives, the algorithm tries to insert it into each solution in the memory
to decide whether it should be accepted or rejected. The same approach was also used by
Attanasio et al. [14] for dial-a-ride problem and Ichoua et al. [4] for vehicle dispatching with
time-dependent travel times.

Algorithm for patient transportation problem in large hospitals was presented by Beaudry
at. al [15]. The authors had to include many hospital-specific constraints, which complicated
the search for a feasible solution. They proposed a two-phased heuristic procedure to handle
all the necessary features and constraints. In the first phase, a simple feasible solution is
generated. This solution is then improved in the second phase with a tabu search algorithm.
The authors showed that this approach reduced both the waiting times for patients and the
number of used vehicles.

5
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2.2 Stochastic Vehicle Routing Problem

Stochastic VRP (SVRP) is used in many real-world scenarios, where not all data are known
with certainty before the scheduling starts. For example, real customer demands might
be revealed only when the vehicles are on their route. These changes might be resolved
dynamically (see section 2.1), which typically means that some central dispatcher manually
informs all the affected vehicles about the new route plan. Unfortunately, this approach is
not always possible due to missing infrastructure or human resources which would allow to
reschedule all the vehicles in the fleet after each information update.
In such a case, drivers are typically instructed to follow one or more simple rules of handling
situations where it is no longer possible to follow the original route plan. For example, detour
to the depot is used when the capacity of the vehicle is exceeded. Another possible action is
to skip the next customer if it is no longer possible to meet the opening hours. To minimize
the number of needed recourse actions, SVRP algorithms utilize stochastic information about
uncertain parameters to produce robust plans which do not deviate much from the actual
route execution.

2.2.1 Stochastic Parameter Estimation

The stochastic parameters either follow some known probabilistic distribution or are sampled
from historical data. Ehmke et al. [16] described data mining procedures used to obtain
time-dependent travel times and other planning constraints from a large set of individual
travels. The data are extracted from approximately 230 million records obtained in the
area of Stuttgart, Germany. To create a time-dependent travel matrix, the authors had to
firstly cluster the records into homogeneous groups according to their relative variation of
daily speeds. Each cluster is then represented by 24 speed reduction factors per weekday,
depicting urban traffic patterns such as traffic jams.
Ferrucci [17] used a sophisticated offline procedure to obtain stochastic knowledge about
expected future customers from historical data. This information is transformed into dummy
customers, which are then planned together with the real requests. The dummy customers
are mainly used to guide vehicles to request-likely areas and are replaced with real requests
during the plan execution. To derive reliable stochastic knowledge, the whole state space is
segmented into a spatiotemporal grid. Adjacent segments are then merged into clusters to
allow reliable forecasts about future requests. Special clustering rules are derived to obtain
clusters with desired properties. The potential customers are then sampled using Poisson
distribution with a different rate parameter 𝜆 for each cluster. During the scheduling, the
rate parameters are updated based on the real customer demands.

2.2.2 Mathematical Programming

The multi-compartment SVRP with stochastic demands is solved by Mendoza et al. [18]. In
this problem, customers require several products which have to be loaded in independent

6



2.2. STOCHASTIC VEHICLE ROUTING PROBLEM

vehicle depots. This problem was modeled as a stochastic program with recourse, which
minimizes the total travel cost together with expected costs caused by detours to the depot
when a capacity of some vehicle is exceeded. This program was solved with a memetic
algorithm. It works as a classical GA but uses local search procedure together with crossover
and mutation operators to find the next generation of solutions.

In the previous paragraph, we mentioned stochastic program with recourse as one possible
way how to mathematically model SVRP. Another approach often used in literature is a
chance-constrained program. It ensures that the probability of meeting each stochastic
constraint is above the given confidence level. As a result, the chance-constrained program
produces robust solutions with a low number of recourse actions. This formalization was
used for example by Beraldi et al. [19], Chen et al. [20] or Errico et al. [21]

Many authors tried to solve these mathematical programs using exact algorithms. Some of
the used approaches are a branch-and-cut algorithm (Beraldi et al. [19], Chen et al. [20]),
branch-and-price algorithm (Gauvin et al. [22], Christiansen et al. [23]) or integer L-shaped
method (Cote et al. [24], Chang [25]). Unfortunately, all these methods are poorly scalable
and cannot be used on bigger instances with more than 50-80 customers. For this reason,
the majority of the authors proposed also some kind of approximation or heuristic to be able
to solve bigger problems.

2.2.3 Local Search Metaheuristics

Simulated annealing (SA) is a popular probabilistic technique where a temperature variable
is used to control the search process. When the temperature is high, solutions with higher
cost are more likely to be accepted. As the temperature decreases, the acceptance criterion
becomes stricter and the optimizing procedure can focus solely on improving solutions.

Ahmadi-Javid and Seddighi [26] used SA to solve SVRP in a supply-chain network with
stochastic production capacity and randomly disrupted vehicles. Their algorithm starts
with a random initial solution which is then updated in two phases. In the location phase,
allocation of customers to individual producers is updated. Then, in the routing phase,
2-OPT algorithm is used to improve the routes with fixed allocation of customers. Both
phases use SA to find an improving solution.

Lei et al. [27] described how to use record-to-record travel heuristic to solve capacitated
VRP with stochastic demands and time windows (CVRPSDTW). The main optimization al-
gorithm accepts each solution which is at most 𝛿 percent worse than the best-found solution.
To intensify the search space exploration, adaptive large neighborhood search (ALNS) heu-
ristic [28] was used to produce new solutions. At each iteration, ALNS selects one of several
removal heuristics to remove 10%–20% of the customers from the current plan. After that,
an insertion heuristic is used to reinsert all the removed customers back into the plan.

7



CHAPTER 2. STATE OF THE ART

2.3 Dynamic Stochastic Vehicle Routing Problem

As the name suggests, dynamic stochastic VRP (DSVRP) combines approaches described
in section 2.1 and 2.2. The schedulers firstly generate a robust initial plan which serves
the customers known in advance and is also able to deal with anticipated changes caused
by the stochastic events. When a new information is revealed, the schedulers update their
stochastic model and recompute the current plan based on this new model. Because the
solvers use all available information for all the decisions, it allows to create more accurate
plans with lower overall costs.

2.3.1 Markov Decision Process

DSVRP with stochastic customers was modeled as a Markov decision process (MDP) by
Thomas [29], [30]. The goal was to maximize the expected number of customers served by a
single vehicle. For a given order of customers, this approach allowed to fully characterize the
optimal policy for route construction with one dynamic customer. Because the state space
grows exponentially with the number of customers, MDPs can be used to solve only very
small instances. To overcome this limitation, the author also proposed a set of real-time
heuristics which determine waiting positions for vehicles.
Kim et al. [31] proposed a Markov decision process to solve DSVRP with nonstationary
stochastic travel times under traffic congestion. To avoid the exponential growth of the
problem size, the authors also introduced dynamic programming approach which uses an
approximation of the travel cost function based on a Monte Carlo simulation with possible
scenarios. The performance of the proposed approach was verified on a delivery network
in Singapore. When compared with a static solution which ignores the effects of traffic
congestion, a 7% improvement in total travel time was achieved.

2.3.2 Waiting Heuristics

Waiting heuristics can be used in DSVRP instances where the vehicles have some idle time
between requests. Each vehicle can either wait at the location of the last customer, head
toward the next position, or select a strategic location with a higher probability of future
requests. The selected waiting strategy influences position of the vehicles when a new request
arrives, which can significantly increase the acceptance probability of this request.
The importance of a proper waiting strategy was demonstrated by Ichoua et. al.[32]. They
proposed a threshold-based vehicle waiting heuristic that exploits probabilistic knowledge
about future customer requests. The authors divided the service area into zones defined by
geographic location and time period. For each zone, the probability of customer arrival is
calculated. The vehicle waits at its current location if its next destination is far enough,
there are not too many other vehicles in the neighborhood and the current area has a high
probability of new request arrival. The presented heuristic was compared with a simple

8



2.3. DYNAMIC STOCHASTIC VEHICLE ROUTING PROBLEM

deterministic strategy where the vehicle always waits at its current location until the next
customer can be served. The experiments show that the proposed approach reduces overall
travel time by 2%–10%.
Vonolfen and Affenzeller [33] analyzed waiting strategies for pickup and delivery problem with
time windows. The authors compared heuristics which utilize historical data with general
heuristics which do not incorporate any knowledge about the problem structure. Based on a
set of test instances, heuristic using intensity measure provided the most robust performance
over the whole benchmark set. This heuristic works similarly as the one developed by
Ichoua et. al.[32] but needs only historical request data instead of a stochastic model. The
intensity of some location is calculated as a normalized average transition time to all requests
in the historical request set. Positions with higher intensity are then preferred as waiting
locations.

2.3.3 Multi Scenario Approach

Bent and Hentenryck [34] developed Multiple Scenario Approach (MSA) which continuously
generates a pool of routing plans from known and potential future requests. The selection
function is used to choose one plan in each decision step (vehicle departure, request arrival).
After that, the plan pool is updated to ensure that all the solutions are coherent with the
selected plan. Consensus selection strategy chooses a plan most similar to other plans in
the pool. This strategy produces significantly better results than the selection of the plan
with the smallest travel cost (greedy strategy), especially on instances with many dynamic
requests.
Because the selection strategy is crucial for algorithms based on MSA, Hentenryck et al. [35]
compared three selection algorithms differing in the way of selecting the next customer.
Expectation algorithm evaluates all available requests against all sampled scenarios at each
decision step and selects the customer with the lowest overall cost. The main drawback of
this approach is its time complexity because for 𝑛 customers and 𝑚 scenarios it is necessary
to solve 𝑛 ⋅ 𝑚 VRP instances. Consensus algorithm solves each sampled scenario only once
with all available requests together. The request which is selected as the next customer
receives all the credit for the given scenario and all the other requests receive no credit. The
main limitation of this algorithm is its elitism. It ignores requests which are never the best
for any scenario but are most robust overall.
Regret algorithm is designed to overcome this issue. It solves the same problem as the
consensus algorithm but uses a fast heuristic to approximate how much worse are the other
available requests. To be more precise, let’s say that customer 𝑐 was selected as the first
customer on the route of vehicle 𝑣. The regret function tries to swap another available request
𝑟 with customer 𝑐 on 𝑣 and awards request 𝑟 based on the quality of the newly obtained
result. When the scenario becomes infeasible, the request 𝑟 receives no credit. Note that this
is only an approximation of the real insertion cost because the order of all the other customers
is fixed. Computational experiments show that the regret and consensus algorithms produce
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comparable results for problem instances with a low degree of dynamism. However, the
regret algorithm obtains much better results on highly dynamic instances where the number
of missed customers is reduced by 20%–50%.
This approach was further improved in Guillain et al [36]. The authors introduced a new
decision rule called Global Stochastic Assessment (GSA) and described a heuristic approach
which efficiently approximates this rule. Given a set of scenarios, GSA produces only one
plan that best suits all the scenarios from the pool. This solution is designed to be as
flexible as possible. On the contrary, MSA solves each scenario separately and then uses
some selection strategy to choose one plan which is specialized for its associated scenario.
Several versions of this algorithm were tested with different waiting and relocation strategies.
The computational results suggest that this approach is very well suited for highly dynamic
problems with many late customer requests, where GSA outperforms MSA.
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Chapter 3

Problem Definition

We define a special variant of the classical dynamic stochastic VRP – dynamic stochastic
vehicle routing problem with warehouses (DSVRPW). It is a generalization of pickup and
delivery problem (PDP), where each request is characterized by a pickup and delivery loca-
tion. Each load has to be then transported between these two locations by a single vehicle
without any transshipment at other location. In our formulation, it is not necessary to spe-
cify the pickup location for each request in advance. The most suitable supply warehouse is
then selected automatically from a set of existing warehouses. This formulation much better
matches many real-world scenarios such as grocery delivery services, where the vehicle must
firstly pick up the ordered groceries in one of the available warehouses before it is delivered
to the customer.
In Section 3.1, we define a static version of the DSVRPW. In this variant, all the customers
and their demands are known in advance. The main task is to assign the customers to vehicles
and find which supply warehouse should be selected for each customer to minimize the total
cost. In Section 3.2, we describe how the static version of the problem must be changed
when some of the customers are not known in advance but are introduced dynamically
during the search. This means that we are no longer minimizing the total cost for known
customers, but the total expected cost including potential customers with known stochastic
properties.

3.1 Static Problem

In the static version of the DSVRPW (VRPW), all the problem entities together with all
their properties are known to the scheduler before the scheduling starts. This means that no
additional information about the given problem is revealed during the plan execution. We
firstly define all the entities occurring in the VRPW in Subsection 3.1.1. For each entity,
a brief description of its properties is presented. In the next part (see Subsection 3.1.2), a
proper mathematical model of the VRPW is presented, describing both the objectives and
constraints of this problem.
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3.1.1 Problem Notation

Customers
Each problem contains a set of customers C. This set consists of two disjoint sets, CW and
CD, that satisfy C = CW∪CD, CW∩CD = ∅. Customers from the set CW need to have their
goods firstly picked up in a warehouse before they can be served. On the other hand, the
set CD contains customers which do not accept goods from warehouses and their needs must
be satisfied directly from the vehicle depot. Each customer 𝑐 ∈ C has also defined penalty
𝑢𝑐 when the corresponding request is not served and set V𝑐 containing vehicles which are
allowed to visit the customer.
While it might seem that the difference between these two types of customers is quite neg-
ligible, they produce significantly different results in practice. If we work with customers
supplied from the depot, the vehicle must load goods for all the served customers before it
starts its route. This means that its capacity strongly limits the maximal number of served
customers. Conversely, one vehicle is able to visit a virtually unlimited number of customers
supplied from the warehouse because it is possible to periodically replenish the goods in
warehouses.

Warehouses
The set W contains locations of all existing warehouses in the problem. Each warehouse
has an unlimited amount of goods and can be visited repeatedly. The number of visits is
not known in advance. This makes the VRPW problem more complicated than classical
VRP instances because the scheduling algorithm has to simultaneously assign customers to
vehicles and plan how often and which warehouses to visit.
To be able to create a mathematical model of VRPW, we need to distinguish individual
warehouse visits (for example to track arrival times). Because the number of warehouse
assignments is unknown, it is impossible to create decision variables for each assignment.
To overcome this issue, we propose to construct set W containing all relevant potential
warehouse assignments (RPWA). The number of RPWA for each warehouse location 𝑤 ∈W
is equal to the number of adjacent customers and vehicle depots. Because each customer
and depot can be visited only once, we can uniquely identify each RPWA by looking at its
predecessor in vehicle plan. The transformation process from the original problem into a
problem with RPWA is depicted in Figure 3.1.
Note that the RPWA does not contain all possible warehouse assignments because their
number is unlimited. It excludes plans with two or more consecutive warehouse visits. The
transformation process from the original plan into a plan with RPWA is depicted in Fi-
gure 3.2. Fortunately, these scenarios can be easily neglected because consecutive warehouse
visits only increase plan cost without any benefits. This means that the optimal solution
with RPWA will have always the same cost as the optimal solution of the original problem.
For this reason, whenever we will talk about warehouses, we will assume the RPWA from
the setW, not the original warehouse locations from the setW.
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Original problem Problem with RPWA

𝑤1
𝑤2

𝑤4

𝑐3

𝑑5

𝑐3

𝑑5

𝑤3
1

𝑤5
1

𝑤3
2

𝑤5
2

𝑤3
4

𝑤5
4

Figure 3.1: Transformation process from the original problem into a problem with RPWA. In the original
problem, we have one customer 𝑐3, one depot 𝑑5, and three warehouses 𝑤1, 𝑤2 and 𝑤4. As we can see,
all the nodes are connected with oriented edges. In the transformed problem, each customer and depot has
its own set of warehouses which can be visited from the given node. This relation is illustrated with the
superscript number referring to the associated node. In our case, a vehicle starting from the position of
the customer 𝑐3 can visit warehouses 𝑤3

1, 𝑤3
2, and 𝑤3

4 and from the depot 𝑑5 can visit warehouses 𝑤5
1, 𝑤5

2,
and 𝑤5

4. Notice that the newly created warehouses are no longer connected with edges, which means that
it is not possible to directly travel between warehouses.

Original plan Plan with RPWA

a)

b)

𝑐1 𝑤2 𝑐3 𝑤4

𝑐1 𝑤2 𝑤3 𝑤4 𝑐5

𝑐1 𝑤1
2 𝑐3 𝑤3

4

𝑐1 𝑤2 𝑤3 𝑤1
4 𝑐5

Figure 3.2: Transformation process from the original plan into a plan with RPWA. In scenario a), the
transformed plan is almost identical with its predecessor. The only difference is that the original warehouses
are replaced with the RPWA. Scenario b) illustrates the case with three consecutive warehouse visits.
Because with RPWA it is no longer possible to directly travel between warehouses, the first two assignments
are removed from the plan and the vehicle travels from the customer 𝑐1 straight to the warehouse 𝑤1

4.

Waypoints
The set of waypoints, defined as P = C ∪W, consists of customers and warehouses. Each
waypoint has defined its opening time 𝑜𝑝, closing time 𝑐𝑝 and visit duration 𝑣𝑝. All the
vehicles must arrive before the closing time 𝑐𝑝, otherwise the visit cannot be done. When
a vehicle arrives before the opening time 𝑜𝑝, it is required to wait until 𝑜𝑝 to start the
service.

Vehicles
Let V be a set of vehicles. Each vehicle 𝑣 ∈ V starts its route in its start depot 𝑦𝑣 and
cannot depart before the earliest start time 𝑒𝑣. The route then ends in its end depot 𝑧𝑣
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and the vehicle must arrive before the latest end time 𝑙𝑣. Fixed cost 𝑓𝑣 is charged for
each used vehicle. All the vehicles have also defined maximal capacity 𝑤𝑣 which cannot be
exceeded.

Nodes and Edges

VRPW instance is defined on a complete directed graph G(N,E). Each node 𝑛 ∈ N
represents either a customer, warehouse or vehicle depot, N = C ∪W ∪D. All the nodes
are connected with oriented edges E = N ×N. For each edge (𝑖, 𝑗) ∈ E, we define travel
time 𝑟𝑖,𝑗 and road distance 𝑛𝑖,𝑗. When a pair of nodes is not directly connected in the real
world, we set 𝑟𝑖,𝑗 = 𝑛𝑖,𝑗 = ∞.

We summarized all the entities used in the problem definition in Table 3.1 and all the
properties for each entity in Table 3.2. Note that the proposed notation is based on the
notation introduced in Eichler [37].

Set Content
C All customers
CW All customers which need a supply warehouse
CD All customers which are supplied from a depot
W All warehouse locations
W All relevant potential warehouse assignments
P All waypoints (customers and warehouses)
D All vehicle depots
N All nodes (waypoints and vehicle depots)
V All vehicles
V𝑐 All allowed vehicles for customer 𝑐
E All edges

Table 3.1: Summary of all the entities used in the problem definition

Name Meaning Name Meaning
𝑜𝑝 Opening time of waypoint 𝑝 𝑒𝑣 Earliest start time of vehicle 𝑣
𝑐𝑝 Closing time of waypoint 𝑝 𝑙𝑣 Latest end time of vehicle 𝑣
𝑣𝑝 Visit duration of waypoint 𝑝 𝑤𝑣 Capacity of vehicle 𝑣
𝑑𝑐 Demand of customer 𝑐 𝑦𝑣 Start depot of vehicle 𝑣
𝑢𝑐 Penalty for unassigned customer 𝑐 𝑧𝑣 End depot of vehicle 𝑣
𝑟𝑖,𝑗 Drive time between nodes 𝑖 and 𝑗 𝑓𝑣 Fixed cost for using vehicle 𝑣
𝑛𝑖,𝑗 Distance between nodes 𝑖 and 𝑗 𝑥 Large scalar

Table 3.2: Summary of all the properties for each entity used in the problem definition
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3.1.2 Mathematical Model

The decision variables of the model are specified in Table 3.3.

Name Meaning
𝛼𝑖,𝑗,𝑣 1, if vehicle 𝑣 visits node 𝑗 immediately after node 𝑖;

0, otherwise
𝛽𝑖,𝑗,𝑣 The amount of depot goods in vehicle 𝑣 between nodes 𝑖 and 𝑗
𝛾𝑖,𝑗,𝑣 The amount of warehouse goods in vehicle 𝑣 between nodes 𝑖 and 𝑗
𝜔𝑖 The arrival time to node 𝑖

Table 3.3: Decision variables used in the mathematical model of the problem

The objectives and constraints of the VRPW can be formulated as follows:

min ∑
𝑣∈V

∑
𝑖∈N

(𝛼𝑦𝑣,𝑖,𝑣 ⋅ 𝑓𝑣 + ∑
𝑗∈N

𝑛𝑖,𝑗 ⋅ 𝛼𝑖,𝑗,𝑣) + ∑
𝑐∈C

𝑢𝑐 ⋅ (1 − ∑
𝑣∈V

∑
𝑖∈N

𝛼𝑐,𝑖,𝑣) (3.1)

The first sum counts the penalties for used vehicles and the cost for a total traveled distance,
the second sum adds penalties for unassigned customers.

s.t. 𝛼𝑖,𝑗,𝑣 ∈ {0, 1} ∀𝑖, 𝑗 ∈N, ∀𝑣 ∈ V (3.2)
𝛽𝑖,𝑗,𝑣 ≥ 0 ∀𝑖, 𝑗 ∈N, ∀𝑣 ∈ V (3.3)
𝛾𝑖,𝑗,𝑣 ≥ 0 ∀𝑖, 𝑗 ∈N, ∀𝑣 ∈ V (3.4)
𝜔𝑖 ≥ 0 ∀𝑖 ∈N (3.5)

The first four constraints are the integrality constraints. They specify allowed value ranges
for all the decision variables.

∑
𝑣∈V

∑
𝑗∈N

𝛼𝑖,𝑗,𝑣 ≤ 1 ∀𝑖 ∈N (3.6)

∑
𝑗∈N

𝛼𝑐,𝑗,𝑣 = 0 ∀𝑐 ∈ C, ∀𝑣 ∈ V \V𝑐 (3.7)

∑
𝑖∈N

𝛼𝑖,𝑝,𝑣 − ∑
𝑗∈N

𝛼𝑝,𝑗,𝑣 = 0 ∀𝑝 ∈ P, ∀𝑣 ∈ V (3.8)

Constraints 3.6–3.8 are known as degree constraints. They ensure that each node is visited at
most once (Constraint 3.6), each customer is visited only by allowed vehicles (Constraint 3.7)
and that each vehicle always leaves all visited waypoints (Constraint 3.8).

∑
𝑖∈N

𝛼𝑦𝑣,𝑖,𝑣 ≤ 1 ∀𝑣 ∈ V (3.9)

∑
𝑖∈N

𝛼𝑖,𝑧𝑣,𝑣 − ∑
𝑗∈N

𝛼𝑦𝑣,𝑗,𝑣 = 0 ∀𝑣 ∈ V (3.10)
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∑
𝑖∈N

𝛼𝑧𝑣,𝑖,𝑣 + ∑
𝑗∈N

𝛼𝑗,𝑦𝑣,𝑣 = 0 ∀𝑣 ∈ V (3.11)

Constraint 3.9 determines that each vehicle is used at most once. Constraints 3.10 and 3.11
together ensure that each vehicle starts in start depot 𝑦𝑣 and ends in end depot 𝑧𝑣.

𝜔𝑖 + 𝑣𝑖 + 𝑟𝑖,𝑗 − 𝑥 ⋅ (1 − 𝛼𝑖,𝑗,𝑣) ≤ 𝜔𝑗 ∀𝑖, 𝑗 ∈N, ∀𝑣 ∈ V (3.12)

Constraint 3.12 sets the earliest arrival time to node 𝑗 with respect to the previous visits.
The large scalar 𝑥 ensures that this constraint is always satisfied when 𝛼𝑖,𝑗,𝑣 is 0. Note that
for depots, the visit duration 𝑣𝑖 is set to 0.

𝜔𝑦𝑣
≥ 𝑒𝑣 ∀𝑣 ∈ V (3.13)

𝜔𝑧𝑣
≤ 𝑙𝑣 ∀𝑣 ∈ V (3.14)

𝑜𝑝 ≤ 𝜔𝑝 ≤ 𝑐𝑝 ∀𝑝 ∈ P (3.15)

The next three constraints imply that each vehicle respects its earliest start time, its latest
end time and that all waypoints are visited within their time window.

𝛽𝑖,𝑗,𝑣 ≤ 𝑥 ⋅ 𝛼𝑖,𝑗,𝑣 ∀𝑖, 𝑗 ∈N, ∀𝑣 ∈ V (3.16)
𝛾𝑖,𝑗,𝑣 ≤ 𝑥 ⋅ 𝛼𝑖,𝑗,𝑣 ∀𝑖, 𝑗 ∈N, ∀𝑣 ∈ V (3.17)
𝛽𝑖,𝑗,𝑣 + 𝛾𝑖,𝑗,𝑣 ≤ 𝑤𝑣 ∀𝑖, 𝑗 ∈N, ∀𝑣 ∈ V (3.18)

These three constraints ensure that the vehicles may transport goods only on routes in their
plan (Constraints 3.16 and 3.17) and that the amount of goods in a vehicle must not exceed
its capacity (Constraint 3.18).

∑
𝑗∈N

𝛽𝑦𝑣,𝑗,𝑣 = ∑
𝑐∈CD

∑
𝑗∈N

𝛼𝑐,𝑗,𝑣 ⋅ 𝑑𝑐 ∀𝑣 ∈ V (3.19)

∑
𝑗∈N

𝛾𝑦𝑣,𝑗,𝑣 = 0 ∀𝑣 ∈ V (3.20)

Constraints 3.19 and 3.20 state that each vehicle at the start of its route contains only goods
for customers who do not need supply warehouse.

∑
𝑣∈V

∑
𝑖∈N

𝛽𝑖,𝑐,𝑣 − ∑
𝑣∈V

∑
𝑗∈N

𝛽𝑐,𝑗,𝑣 = 𝑑𝑐 ⋅ ∑
𝑣∈V

∑
𝑖∈N

𝛼𝑐,𝑖,𝑣 ∀𝑐 ∈ CD (3.21)

∑
𝑣∈V

∑
𝑖∈N

𝛾𝑖,𝑐,𝑣 − ∑
𝑣∈V

∑
𝑗∈N

𝛾𝑐,𝑗,𝑣 = 𝑑𝑐 ⋅ ∑
𝑣∈V

∑
𝑖∈N

𝛼𝑐,𝑖,𝑣 ∀𝑐 ∈ CW, ∀𝑣 ∈ V (3.22)
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These two constraints are known as flow conservation constraints. They ensure that all
the customers will receive their goods either from the depot (Constraint 3.21) or from the
warehouse (Constraint 3.22). Note that the demand 𝑑𝑐 is multiplied by a sum of 𝛼 to exclude
unassigned customers. When some customer is unassigned, the sum is zero which means that
no goods are delivered to the customer. Otherwise, the sum is 1 (see Constraint 3.6).

∑
𝑖∈N

𝛽𝑖,𝑝,𝑣 = ∑
𝑗∈N

𝛽𝑝,𝑗,𝑣 ∀𝑝 ∈ P \CD, ∀𝑣 ∈ V (3.23)

∑
𝑖∈N

𝛾𝑖,𝑐,𝑣 = ∑
𝑗∈N

𝛾𝑐,𝑗,𝑣 ∀𝑐 ∈ CD, ∀𝑣 ∈ V (3.24)

Constraint 3.23 states that only customers supplied from depot are allowed to change the
amount of depot goods in a vehicle. This means that the amount of depot goods in a vehicle
cannot be replenished in a warehouse. Constraint 3.24 then specifies that customers supplied
from depot cannot be served with goods loaded in a warehouse. Note that we do not need
to introduce constraints describing how are vehicles replenished in warehouses because this
is done automatically in the optimal solution.

3.2 Dynamic Problem

In the dynamic formulation, some of the customers are not known in advance but are gra-
dually revealed during the plan execution. For this reason, the solution must be periodically
recomputed to include the newly revealed customers into the plan. We assume that the
distribution of incoming requests is known in advance. If no such distribution exists, it can
be approximated from historical data. For more information about stochastic parameter
approximation in DSVRP context, see for example Ehmke et al. [16] or Ferruci [17].
In DSVRPW, we define a set of all customer requests R ⊆ C × [0, 𝑇 ], where the planning
horizon [0, 𝑇 ], 𝑇 ∈ N contains all integer values 𝑖 such that 0 ≤ 𝑖 ≤ 𝑇 . The deterministic
customers 𝑐𝑡 are known in time 𝑡 = 0, whereas the dynamic customer requests are revealed
in time 𝑡 ∈ [1, 𝑇 ]. For each time 𝑡 ∈ [1, 𝑇 ] and customer 𝑐, we have a random variable 𝑋𝑡,𝑐
which is defined as

𝑋𝑡,𝑐 = {1, if customer 𝑐 is revealed in time 𝑡,
0, otherwise.

(3.25)

The realization of the random variable 𝑋𝑡,𝑐 is noted as 𝑥𝑡,𝑐. The probability that customer
𝑐 is revealed in time 𝑡 is then denoted as 𝑝(𝑋𝑡,𝑐 = 1). The vector of random variables for all
customers in time 𝑡 is defined as 𝑋𝑡 and its realization is 𝑥𝑡.
Because the solution is continuously updated, we define 𝑠𝑡 as a currently valid solution in
time 𝑡. This solution must satisfy all the VRPW constraints defined in Subsection 3.1.2.
Whenever a new customer request arrives, the currently valid solution 𝑠𝑡 is updated to serve
the new customer. Because the scheduling is done in real-time, all the vehicle movements
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and decisions made before the time 𝑡 must remain unchanged after the update.
Special attention must be paid to the warehouse assignments. Whenever a warehouse is
visited at time 𝑡1 < 𝑡, all the goods loaded into the vehicle must be delivered to customers
selected in time 𝑡1. The customer selection cannot be changed in the future because all the
packages are unique (e.g. different food). This means that all the customers served from
this warehouse cannot be serviced by another vehicle, even when the visit occurs in the
future. Because the list of served customers must be known in time 𝑡1, it is also forbidden
to load some additional goods for potential customers which might materialize in the future.
Therefore, when a new customer request is revealed, the vehicle must firstly visit a warehouse
to load goods for this customer.
When dealing with dynamic problems, it is no longer enough to represent the solution as an
ordered sequence of visited locations with corresponding arrival times. The problem occurs
when there is an idle time between two visits. In static problems, it does not matter where
the vehicle waits because the total travel time and distance are always the same. But in
the dynamic context, we need to know the exact position of each vehicle in time 𝑡. For this
reason, each assignment must contain two values - arrival time 𝜔𝑖 and departure time 𝜓𝑖.
After the departure, the vehicle travels directly to the next location where it waits before
the next assignment can start.
We can now formulate the multistage stochastic program describing how to derive a new
currently valid solution 𝑠𝑡 from 𝑠𝑡−1 in time 𝑡:

𝑠𝑡 = argmin
𝑠𝑡∈S(𝑥𝑡)

𝔼𝑋𝑡+1
( min

𝑠𝑡+1∈S(𝑥𝑡+1)
𝔼𝑋𝑡+2

(… min
𝑠𝑇−1∈S(𝑥𝑇−1)

𝔼𝑋𝑇
( min

𝑠𝑇 ∈S(𝑥𝑇 )
f(𝑠𝑇 )))) (3.26)

The function f calculates the solution cost using the mathematical model presented in Sub-
section 3.1.2. We are looking for a sequence of solutions 𝑠𝑖, 𝑖 ∈ [𝑡, 𝑇 ] which minimizes the
total expected cost at the end of the planning horizon. The sets S(𝑥𝑖), 𝑖 ∈ [𝑡, 𝑇 ] represent
all possible solutions for the realization of the random vector 𝑥𝑖.

s.t. 𝑠𝑖[0..𝑖 − 1] = 𝑠𝑖−1[0..𝑖 − 1] ∀𝑖 ∈ [𝑡, 𝑇 ] (3.27)

Constraint 3.27 ensures that each solution created in time 𝑖 is identical with its predecessor
up to time 𝑖 − 1. This ensures that all the vehicle movements made in the past remain
unchanged.
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Chapter 4

Technical Background – TASP

In this chapter, we describe the key building blocks of the Task and Asset Scheduling Platform
(TASP). This framework, developed by Blindspot Solutions [38], is designed to solve a large
variety of NP-complete scheduling problems. It is a modular, efficient planning engine written
in Kotlin. The scheduling module uses optimization heuristics derived from the algorithms
presented in Eichler [37]. It is based on the Adaptive Large Neighborhood Search principle
proposed by Pisinger and Ropke [28].
Firstly, the overall architecture of the TASP framework is presented in Section 4.1. In this
part, we introduce individual components and explain how they interact with each other. In
Section 4.2, we describe the properties of the most important entity in TASP – Plan. It is
an immutable collection of assignments which allows fast querying and ensures consistency
of the stored data. Then, we discuss Evaluator module responsible for efficient constraint
evaluation in Section 4.3. The Evaluator is able to decide which parts of the Plan were
changed and evaluate only those parts. This technique leads to significantly lower calculation
times. In the last part (see Section 4.4), we present the main optimization heuristics used
to solve the scheduling problems.

4.1 Overall Architecture

TASP consists of three main components – Plan, Evaluator and Scheduler. All these modules
are designed to be highly flexible and allow the user to easily extend their functionality. They
communicate through a defined API and can be freely replaced with a different implemen-
tation that is more suitable for the given task. The overall design of the TASP framework
showing the interaction between the individual modules can be seen in Figure 4.1.
Before the TASP can be used to solve some planning problem, it is necessary to firstly specify
the Data Model. It describes which classes are planning entities and how they are mapped
to the real-world problem. Its correct definition is crucial in TASP because it can heavily
influence the performance of the whole framework. It might be also very difficult to adapt
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Figure 4.1: The overall architecture of the TASP framework.

the code base to future changes in the business requirements if the Data Model is selected
inappropriately.

At the beginning of the scheduling process, Data Provider is used to submit the problem
definition to TASP. It consists of domains for individual entities from the Data Model and
constraints describing the real-world business rules. The domains are used to create an ini-
tial instance of Plan which will be then iteratively improved in Scheduler. The constraints
are stored in Evaluator where they are used to evaluate the quality of the produced soluti-
ons.

The Scheduler then uses an iterative optimization strategy controlled by simulated annealing
metaheuristic to optimize the initial Plan. In each iteration, part of the current solution is
disrupted by Remover and optimized by Inserter. At the end of each iteration, Evaluator is
used to determine whether the newly obtained Plan is good enough for further exploration
or whether it should be discarded. After a predefined number of iterations, the best-found
solution is returned as a result of the given problem.
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4.2 Plan

The Plan is the most important entity in TASP. It is a collection of assignments with advan-
ced querying capabilities which allow to perform most of the operations in constant time. In
TASP, the assignment can be an arbitrary immutable object which groups planning entities
from the Data Model together. Each assignment is also associated with some time or other
comparable property to allow ordering of the stored data. In VRP, assignment consists of
the vehicle, customer, and arrival time. These three entities fully describe one vehicle visit
on its route.
Majority of the methods in other modules accept Plan as one of its input arguments and
work with its content. For this reason, it is important to understand its basic properties and
functionality. In the following paragraphs, we explain how Plan works internally and present
some usage examples from the VRP domain.

4.2.1 Immutability

Whole TASP framework is inspired by the functional programming paradigm and tries to
minimize undesirable side effects as much as possible. For this reason, Plan is implemented
as an immutable data structure. It supports two basic operations allowing changes in the
stored data – insertion and removal of assignments. Each time one of these functions is
invoked, a new instance of Plan is created and returned as a result.
Internally, all the data are stored in immutable persistent collections with constant modifi-
cation time. When updated, the new collection shares unchanged sub-structures with the
original instead of making a full clone. In TASP, we use a type-safe version of Clojure’s
persistent collections named Paguro [39]. As a result, Plan has a very similar performance
as its mutable variant with all the advantages resulting from its immutability.
To have Plan as a truly immutable object, it is necessary to ensure that all the entities
from the domain model will be immutable as well. This is usually easily accomplished
because the problem definition is known in advance and isn’t changed during the scheduling.
Because the assignment object is also immutable, it is forbidden to change its properties
once created. This means that to modify for example arrival time, one must firstly remove
the old assignment and replace it with a new one.

4.2.2 Data Consistency

When a new, empty instance of Plan is created, it is possible to specify rules which keep
the stored data consistent. Firstly, the domain for each entity is provided. In VRP, this
means that all the existing customers and vehicles from the problem definition are submitted.
Plan then automatically controls each inserted assignment and rejects those which contain
unknown entities. This helps in situations when the problem definition is gradually updated
and not all parts of the codebase have the newest data.
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Plan also tracks a level of allocation for specified entities. In a classical VRP, a vehicle is
fully allocated when its remaining capacity is lower than the lowest demand and a customer
is usually fully allocated when it is visited by some vehicle. Plan then rejects those assign-
ments which contain some fully allocated items (e.g. customer which is already visited by
some other vehicle). This functionality not only helps to keep the stored data consistent
but also improves the performance of the scheduler by excluding non-perspective potential
assignments.

4.2.3 Plan Views

Plan provides many functions through which the stored data are accessible in constant time.
It applies to all the data described in previous paragraphs, such as stored assignments,
the domain for each entity, or a level of allocation for some specified item. For entities
which are marked as indexed, some additional queries which further simplifies data access
are available. In VRP with indexed vehicles, it is possible to request a route plan for one
vehicle, arrival times to all its assigned customers, or query which customer is visited in the
specified time. Because all these additional queries are also done in constant time, it can
significantly improve the performance of the scheduler.
Internally, the inserted assignments and other data are stored in a special multidimensional
data structure backed by persistent collections. It behaves as a multi-key map (sometimes
known as a table) which allows to have more than one value for each combination of keys.
The first key (row key) is typically some item such as vehicle or customer. The next key
(column key) then represents time. Each pair of keys is then associated with corresponding
assignments.

4.3 Evaluator

Evaluator is used to calculate the cost of a given Plan. Individual Plans are compared by
their cost and the scheduler aims to find the Plan with the lowest possible cost. Plan cost
is calculated as a sum of penalties for violated business rules and other solution fees such as
travel fares. Evaluator is responsible for correct evaluation of the stored constraints. It is
also able to decide which parts of the Plan were changed and evaluate only those parts.

4.3.1 Constraint and Rule

In the real-world problems, business constraints are very often changed and added during
the development phase and after the first releases. For this reason, TASP is designed to
make working with constraints as easy as possible for the developer. Each TASP constraint
accepts Plan and up to two additional entities for which the cost should be calculated.
For example, checking that delivery happens within customer’s time window accepts an
assignment as an additional entity and checks whether its arrival time is allowed. Another
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constraint enforcing the maximal number of night shifts per month (for problems with multi-
day planning horizons) accepts driver and current month. The constraint then extracts
schedule for the given driver and month from the Plan and calculates the number of night
shifts.
As we can see from the second example, the additional entities do not have to be part of
the assignment. In our case, assignment consists of customer, vehicle and arrival time which
means that there is no field for driver nor current month. In such cases, the user must create
converter which returns the corresponding entity from the given assignment. In our example,
the information about the month would be extracted from arrival time and the name of the
driver would be probably available as one of the fields in the vehicle object. Constraint and
corresponding converters together form one Evaluator rule.

4.3.2 Plan Evaluation

The main idea of constraint evaluation is that each constraint will be invoked for each entity
pair only once. Let us say we have assignments which contain the following driver and day:
(Mark - January 6), (Mark - January 9), (Mark - February 12), (Lisa - February 7). Then
the constraint enforcing maximal monthly working hours will be evaluated for pairs (Mark -
January), (Mark - February), (Lisa - February). We can see that the evaluation is done only
once for Mark in January, even though Mark has two assignments in this month. There is
also no evaluation for Lisa in January because she worked only in February.

Input: Plan 𝑃 , Evaluator rules R
Output: Plan cost 𝐶
begin
1: A← 𝑃 .assignments
2: 𝐶 ← 0
3: for all 𝑅 ∈ R do
4: E← {}
5: for all 𝐴 ∈A do
6: E← E ∪ 𝑅.convertAssignment(A)
7: end for
8: for all (𝐸1, 𝐸2) ∈ E do
9: 𝐶 ← 𝐶 + 𝑅.evaluateConstraint(𝑃 , 𝐸1, 𝐸2)
10: if 𝐶.isInfeasible() then
11: terminate
12: end for
13: end for
end

Algorithm 4.1: Plan cost calculation in TASP

Plan cost calculation is described in Algorithm 4.1. Evaluator firstly transforms all the
assignments in the Plan 𝑃 into a set of unique entity pairs (line 6). Note that when some
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constraint needs less than two entities (e.g. uses only customer), the redundant entity is
replaced with a placeholder object with no specific meaning. In line 9, the rule 𝑅 is invoked
for each unique entity pair. The total cost of the Plan is calculated as a sum of costs over
all rules evaluated over all entity pairs. Line 11 then ensures premature termination when
the evaluated Plan 𝑃 is infeasible.

4.3.3 Plan Comparison

So far, it might be unclear what is the benefit of additional entities in constraints. After all,
each constraint could accept only Plan and the user would check individual items manually.
This approach would require two additional for-loops and a few lines of code to extract
existing entities from the Plan. On the other hand, the user would not have to create
converters, so the total effort for the user would be almost the same.
The real benefit of additional entities in constraints is apparent when two Plans are compared
with each other. In TASP, Plan comparison is used much more often than the Plan cost
calculation presented in Subsection 4.3.2. Whenever we want to add a new assignment,
we compare all possible variants with each other to select the most promising option. To
optimize a medium-sized problem, we typically need to compare millions of Plans while the
exact cost is calculated only for hundreds of them.
For this reason, it is critical to compare Plans as fast as possible. Evaluator is able to deter-
mine which entities must be evaluated and can omit those which would not change the cost
difference between the Plans. Without additional entities in constraints, Evaluator would
have to calculate the total cost for both Plans and compare them at the end. Because the
Plans most often differ only in one assignment, the time complexity of constraint evaluation
is usually reduced from linear to constant time when the identical parts of the Plans are
ignored. The selection of entities which must be evaluated is resolved completely by the
Evaluator and the user only submits individual rules without any additional work.
Algorithm 4.2 describes how two Plans 𝑃1 and 𝑃2 are compared by the Evaluator. At
the beginning, all the assignments from both Plans are split into three sets A𝑐,A1,A2
in lines 1-3. The set A𝑐 contains assignments occurring in both Plans, while the sets A1
and A2 contain those assignments which are only in 𝑃1 and 𝑃2, respectively.
In line 4, sets with assignments created in the previous step are converted into corresponding
entity pairs. This process is the same as the one described in lines 3-7 in Algorithm 4.1. After
that, final sets E1 and E2 containing entity pairs which must be evaluated in constraints
are created (see lines 5 and 6). Obviously, set E1 contains entity pairs E1 created from
assignments A1 which are only in the first Plan. It also contains entity pairs from the set
E2 ∩ E𝑐, which consists of common pairs derived from sets A2 and A𝑐.
The reason why the pairs from the set E2 ∩ E𝑐 must be included in the final set of pairs
E1 is best illustrated with an example. We will again work with constraint enforcing a
maximal number of night shifts per month which accepts driver and current month. For
simplicity, the driver is allowed to have only one night shift per month and each additional
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Input: Plan 𝑃1, Plan 𝑃2, Evaluator rules R
Output: Plan cost difference
begin
1: A𝑐 ← findCommonAssignments(𝑃1.assignments, 𝑃2.assignments)
2: A1 ← 𝑃1.assignments \ A𝑐
3: A2 ← 𝑃2.assignments \ A𝑐

4: (E𝑐,E1,E2) ← convertAssignmentsToEntityPairs(R,A𝑐,A1,A2)
5: E1 ← E1 ∪ (E2 ∩ E𝑐)
6: E2 ← E2 ∪ (E1 ∩ E𝑐)
7: 𝐶1 ← calculateCost(R, 𝑃1,E1)
8: 𝐶2 ← calculateCost(R, 𝑃2,E2)
9: return 𝐶1 − 𝐶2
end

Algorithm 4.2: Plan comparison in TASP

night shift is penalized with penalty 100. In both Plans, Mark has night shifts on January 6
and January 12, which means that both Plans are penalized with penalty 100. In the second
Plan, Mark has also morning shift on January 9. The morning shift does not change the
number of night shifts, so the penalty for both Plans remains 100.
Because the first Plan does not have any unique assignments for Mark in January, we can see
that the set E1 derived from such assignments is empty. If the final set E1 would contain only
pairs from the set E1, our constraint would not be evaluated for the first Plan. This means
that the penalty for the first Plan would be 0. On the other hand, the second Plan contains
a unique morning shift on January 9. This assignment is then converted into pair (Mark,
January) and evaluated in our constraint with penalty 100 caused by the two additional
night shifts. Because this constraint is evaluated only for the second Plan, it seems that the
Plan cost difference is 0 − 100 = −100, which is incorrect.
As we know, both Plans should obtain penalty 100 caused by the common assignments and
the unique morning shift in the first Plan should not cause any additional costs. For this
reason, if some pair exists for unique assignments in the second Plan and also for common
assignments, we have to evaluate this pair also for the first Plan and vice versa. This
evaluation ensures that the common violations are counted for both Plans and does not
influence the cost difference. Contrariwise, if some pair exists only for common assignments,
it can be ignored because both Plans would obtain the same cost for this pair.
Finally, cost caused by the selected entity pairs is calculated for both Plans in lines 7 and 8.
The resulting cost difference is then returned in line 9.

4.4 Scheduler

Because the TASP framework is designed to solve a wide range of large, NP-complete pro-
blems, it is practically impossible to create algorithms which would be able to solve these
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problems optimally. For this reason, scheduling module in TASP is designed to combine
many simple heuristics which compete to modify the current solution. An adaptive layer
based on a roulette wheel selection stochastically decides which heuristics to use. The sche-
duling progress is then controlled by a local search metaheuristic which decides whether to
accept some solution or not. Note that the algorithms presented in this section are derived
from the optimization heuristics introduced in Eichler [37].

4.4.1 Local Search Algorithm

Input: Initial Plan 𝑃 , Evaluator 𝐸, Remover 𝑅, Inserter 𝐼 , Set of Listeners L
Output: Best found Plan 𝑃 ∗

begin
1: schedulingStarted(L, 𝑃 )
2: 𝑃 ∗ ← 𝑃
3: while isEnoughTime() do
4: 𝑃 ′ ← 𝑅.removeAssignments(𝑃 , 𝐸)
5: 𝑃 ′ ← 𝐼.insertAssignments(𝑃 ′, 𝐸)
6: if acceptanceProbability(𝑃 ′, 𝑃 ) > random(0, 1) then
7: solutionAccepted(L, 𝑃 ′)
8: 𝑃 ← 𝑃 ′

9: else
10: solutionRejected(L, 𝑃 ′)
11: if 𝑃 ′.𝐶𝑜𝑠𝑡 < 𝑃 ∗.𝐶𝑜𝑠𝑡 then
12: bestSolutionFound(L, 𝑃 ′)
13: 𝑃 ∗ ← 𝑃 ′

14: end while
15: schedulingEnded(L, 𝑃 ∗)
end

Algorithm 4.3: Local search algorithm used for scheduling in TASP

The local search algorithm is described in Algorithm 4.3. It starts with the initial Plan,
which is then iteratively improved. In each iteration, some assignments are removed from
the Plan (see line 4) and reinserted afterward (see line 5). Because different parts of the
Plan are recalculated in each iteration, this approach is able to optimize complex problems
with many constraints.
In line 6, simulated annealing is used to decide whether to accept the newly created Plan or
keep the original one. This decision is influenced by the temperature variable 𝑇 , which is
calculated as

𝑇 = 𝑇0 ⋅ 𝑒 −𝑡
𝑛 ,

where 𝑡 ∈ (0, 1) is time progress, 𝑛 is a normalization constant and 𝑇0 is the initial tem-
perature. This value is calculated such that a solution that is 𝑥 percent worse than the
best-found Plan is accepted with probability 0.5.
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Given a solution with cost 𝑐, candidate Plan with cost 𝑐′ is accepted with probability

𝑝 = min(𝑒 𝑐−𝑐′
𝑇 , 1)

In the beginning, when the temperature is high, the candidate Plans are more likely to be
accepted even when they are worse than the current solution. This ensures that the schedu-
ling algorithm will be eventually able to jump out of a local optimum. As the temperature is
reduced, the acceptance criterion is stricter and the algorithm can focus solely on improving
solutions.
Listeners from the set L are regularly informed about important decisions of the scheduler.
Specifically, they are notified when the scheduling started (line 1), after the candidate Plan
is accepted or rejected (lines 7 and 10), when a new best solution is found (line 12), and
when the scheduling ended (line 15). The user can register an unlimited number of listeners
to monitor the decisions of the scheduler. By default, two listeners are used. One of them
is a logger which logs the progress of the scheduler and the second one updates score of
Removers and Inserters based on their performance (see Subsection 4.4.4).

4.4.2 Remover

Input: Plan 𝑃 , Metric 𝑀 , Set of entities to remove E
Output: Plan with removed assignments 𝑃 ′

begin
1: 𝑅 ← getRandomAssignment(𝑃 )
2: 𝑁 ← getAmountToRemove(𝑃 )
3: 𝑃 ′ ← 𝑃
4: while 𝑁 > 0 do
5: 𝐴 ← getNearestAssignment(𝑀, 𝑅, 𝑃 ′)
6: AE ← getSameEntityAssignments(𝑃 ′,E, 𝐴)
7: 𝑃 ′ ← 𝑃 ′. removeAssignments(AE)
8: 𝑁 ← 𝑁− size(AE)
9: end while
end

Algorithm 4.4: Default Remover in TASP

The default Remover in TASP, described in Algorithm 4.4, selects which assignments to
remove based on the given metric 𝑀 . More precisely, it selects one assignment randomly
(see line 1) and then iteratively finds the most similar assignment in the Plan (see line 5).
The metric 𝑀 specified by the user determines the similarity of assignments. It could be
based on arrival time, geographical distance, demand, etc.
In line 2, we select the number of assignments which should be removed from the Plan. It is
important to remember that simple insertion heuristics generally fail to produce satisfactory
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results when the number of removed assignments is too large. Therefore, the Remover
should not remove too many assignments from the Plan in order to keep the resulting set of
unassigned items small enough for the insertion method. On the other hand, if the number of
removed assignments is too small, the scheduler is unable to optimize bigger neighborhoods
which reduces the overall quality of the Plan. The optimal amount of removed assignments
is problem dependent and have to be selected by the user. Our computational results suggest
that it is reasonable to use values in range [10,75].
Sometimes, it is necessary to remove more than one assignment per iteration. For example,
we often want to remove all the assignments visited by one vehicle to reduce the number of
used vehicles. Our algorithm allows the user to specify which entities in other assignments
should be checked when some assignment is selected for removal. In line 6, all the assignments
with the same entity values are selected. Note that when the set E with entities is empty,
no other additional assignments are selected and the Remover removes only one assignment
in each iteration.
We demonstrate the functionality of our Remover on a special VRP variant where customers
can be visited repeatedly. In our case, the metric 𝑀 is a time difference, we want to remove 2
assignments, the selected entities for removal are customer and vehicle and the Plan contains
assignments defined in Table 4.1

Assignment name Customer Vehicle Arrival time
asg1 𝐶2 𝑉2 14:00
asg2 𝐶1 𝑉2 10:00
asg3 𝐶1 𝑉1 12:00
asg4 𝐶1 𝑉1 19:00

Table 4.1: Assignments in Plan used for demonstration of Remover functionality.

The first randomly selected assignment is asg2. In the first iteration, asg2 is also selected
as the most similar assignment with time difference equal to 0. Because there are no other
assignments with the same customer and vehicle, only this one assignment is removed from
the Plan. In the next iteration, asg3 with time difference equal to 2 hours is selected for
removal. Because both asg3 and asg4 contain the same customer 𝐶1 and vehicle 𝑉1, asg4
is also removed from the Plan, even though it has the highest time difference. After this
iteration, the number of removed assignments is 3, which means that no other iterations are
needed and we can return a Plan which contains only asg1.

4.4.3 Inserter

By default, TASP uses Inserter which combines eager and greedy insertion techniques. The
complete procedure is described in Algorithm 4.5. For eager entities, the Inserter repeatedly
selects the first randomly selected item which does not cause infeasible Plan. On the other
hand, all the items which exist for greedy entities are checked with the given eager items and
the Inserter selects the best combination.
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Input: Plan 𝑃 , Evaluator 𝐸, Plan generator 𝐺, Eager and greedy entities EE,EG
Output: Plan with inserted assignments 𝑃 ′

begin
1: 𝑃 ′ ← 𝑃
2: for all 𝐸𝐸 ∈ 𝑃 ′.getUnassignedItems(EE) do
3: I← {}
4: for all 𝐸𝐺 ∈ 𝑃 ′.getUnassignedItems(EG) do
5: 𝑆 ← createPartialAssignment(𝐸𝐸, 𝐸𝐺)
6: I← I ∪ 𝐺.findPossibleInsertions(𝑃 ′, 𝑆)
7: end for
8: 𝑃 ′ ← getCheapestInsertion(I, 𝐸)
9: end for
end

Algorithm 4.5: Default Inserter in TASP

For example in VRP, the customers might be inserted eagerly and the vehicles greedily. Our
Inserter then iteratively selects one customer at random and tries to assign it to all existing
routes. After that, the Plan with the cheapest assignment is selected and used in the next
iteration. When both the customers and vehicles are inserted greedily, all combinations of
these two entities are repeatedly tested to select the best existing pair in each iteration. When
both the customers and vehicles are inserted eagerly, first feasible assignment combining
randomly selected customer and vehicle is inserted into the Plan, until there are no other
feasible assignments (for example when all customers are assigned).

The partial assignment created in line 5 combines both the eager and greedy items into one
object. This object is similar to a classical assignment but it is missing some fields without
domain, such as arrival time. In line 6, Plan generator receives the partial assignment
and produces a new Plan containing the given items. Typically, this method creates a new
assignment with a proper arrival time but it is possible to modify the Plan more dramatically
when necessary.

4.4.4 Roulette Wheel Selection

It is often beneficial to use more than one Inserter and Remover with different optimization
strategies. This mix of approaches usually produces much better results than individual
strategies alone. On the other hand, not all the methods are equally useful during the
search. Because we want to prioritize the successful heuristics, we employ a roulette wheel
selection often used in genetic algorithms. In our implementation, Inserters and Removers
are selected independently, which means that we need two separate roulette wheels. Each
registered method has its own score based on its success in previous iterations. Candidates
with a higher score are then more likely to be selected, but there is always a non-zero chance
for all the registered methods.
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In each iteration, one Inserter and Remover is selected with probability

𝑝𝑖 = 𝑓𝑖
∑𝑁

𝑗=1 𝑓𝑗
,

where 𝑓𝑖 is the fitness of the given method and 𝑁 is the number of registered methods. At
the beginning, uniform weights 𝑓𝑖 = 1/𝑁 are used. At the end of each iteration, the selected
methods are rewarded based on the quality of the produced Plan. After𝑀 iterations (usually
100-500), new fitness values are calculated from the obtained score. Given a method 𝑖, its
score 𝑠𝑖 and fitness value 𝑓𝑖, the updated fitness value 𝑓 ′

𝑖 can be calculated as

𝑓 ′
𝑖 = 𝜌 𝑠𝑖

𝑛𝑖
+ (1 − 𝜌)𝑓𝑖,

where 𝑛𝑖 is the number of times the method has been invoked and 𝜌 is reaction factor which
controls how quickly the fitness value reacts to changes in score.
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Chapter 5

Algorithms

This chapter thoroughly describes our Stochastic Customer Satisfaction (SCS) solver which is
able to solve the DSVRPW instances defined in Chapter 3. The solver updates the current
Plan whenever a new customer request arrives. It works with a set of possible scenarios
which include both the existing and potential future requests sampled from the stochastic
information about the problem. The solution which is able to satisfy the biggest number of
sampled stochastic customers is then selected as a travel plan for the whole fleet.
This means that we are not selecting a solution with the smallest cost, but the one which is
able to cover the biggest number of possible future scenarios. Our strategy is inspired by the
Multiple Scenario Approach (MSA) introduced by Bent and Hentenryck [34]. When the best
solution is selected, the sampled future requests are removed and one of the implemented
waiting heuristics is used to distribute the idle time between the remaining customers.
The following text is divided into two parts. Firstly, algorithms used to solve the static
version of the problem are described in Section 5.1. In this part, we work with a solver
which receives some initial Plan with a fixed set of customers and vehicles and returns an
optimized solution after a given number of iterations. This means that the algorithm is
unaware of the stochastic and dynamic properties of the original problem. In the following
Section 5.2, we describe how the SCS solver must update the dynamic Plan to use it as an
input for the static scheduler. We also explain how to decide which of the optimized static
Plans to use as a solution for the original dynamic stochastic problem.

5.1 Static Algorithm

In this section, we describe how the general TASP framework (see Chapter 4) was adapted
to solve the VRPW problem instances. Firstly, Subsection 5.1.1 is dedicated to techniques
which efficiently enforce Plan consistency. The Removers used in our solver are then described
in Subsection 5.1.2. Each of them makes use of a different removal neighborhood, targeting
various properties of the VRPW Plans. Finally, Inserter whose responsibility is to insert the
unassigned customers into the Plan is described in Subsection 5.1.3.
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5.1.1 Plan Consistency

Plan in TASP is a collection of assignments with some additional capabilities. In our case,
assignment consists of the waypoint (customer or warehouse), vehicle, arrival time, and
departure time. As we already mentioned in Chapter 4, TASP has two options how to enforce
business rules and consistency of the stored data. In our implementation, we use both ways
to achieve the best possible performance. The vehicle capacity is enforced by the Plan itself,
while all the other rules are implemented as constraints registered in Evaluator.

Evaluator Constraints
We implemented 4 constraints which are enforcing most of the rules described in Chapter 3.
Constraint testing arrival time checks whether there is enough time to travel between two
consecutive locations, whether the opening hours are satisfied, and whether the vehicle can
be used to serve the given customer. Costs for unassigned customers and used vehicles
are calculated simply as a sum of individual costs over corresponding entities. The last
constraint calculating the cost for traveled distance iterates through all visited locations of
the given vehicle and counts the total traveled distance. All the implemented constraints are
summarized in Table 5.1.

Constraint Tested entity
Arrival time constraint Assignment
Cost for unassigned customers Whole Plan
Cost for used vehicles Vehicle
Cost for traveled distance Vehicle

Table 5.1: Constraints registered in the Evaluator used to enforce consistency of VRPW Plans.

Vehicle Capacity
In a classical vehicle routing problem, it is rather easy to test whether a vehicle has enough
remaining capacity to visit some additional customer. It is sufficient to subtract the demand
of each served customer from the initial vehicle capacity and we know precisely how much
space remains in the vehicle. Unfortunately, the situation is much more complicated in
VRPW, where the vehicles can be replenished in warehouses and where we have to deal with
two kinds of customers - those who must be supplied from a warehouse and those whose
needs must be satisfied directly from the vehicle depot.
On top of that, our Inserter (see Subsection 5.1.3) needs to know whether a customer can be
served in the specified time or whether it is necessary to firstly visit some nearby warehouse.
Because we need this information as quickly as possible, it is insufficient to use a classical
Evaluator constraint that would need time linearly proportional to the number of visited
waypoints.
For this reason, we implemented this constraint directly as a part of the Plan. More precisely,
we utilized one of the data consistency capabilities of the Plan (see Subsection 4.2.2) which
allows us to monitor a level of allocation for a specified entity. In our case, we registered our
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own callback function which is notified whenever some assignment is inserted or removed
from the Plan. We then store the remaining vehicle capacity after each warehouse visit and
which customers are visited between individual warehouses. This allows us to make decisions
about customer insertion in a constant time because it is sufficient to check only the previous
warehouse.

5.1.2 Removers

SCS uses 8 different Removers, all based on the universal Remover defined in Subsection 4.4.2.
They differ in the metric used for assignment selection and in the set of entities which should
be removed together in one iteration. Specifically, the random vehicle Remover and the most
expensive vehicle Remover remove all the assignments associated with the selected vehicle,
while the rest of the Removers remove only one assignment per iteration. Note that under
the word metric, we understand the choosing criterion, not the topological measure.

Random Assignment Remover

Each customer for removal is selected randomly. More precisely, this Remover uses a metric
which always returns a random value, ignoring the similarity between assignments. This
brings some uncertainty into the search process and helps scheduler to overcome local op-
tima.

Random Vehicle Remover

Remover which selects one vehicle randomly and removes all its customers and warehouses,
making the vehicle unused. This helps to decrease the total number of vehicles in the solution.
The metric returns random value for each assignment, which ensures randomized selection
of assignments for removal. When some assignment is selected, the Remover finds all the
assignments with the same vehicle and removes them from the Plan as well.

Distance-Oriented Remover

This Remover is used to remove entire geographical clusters of assignments. For some neig-
hborhoods, the Inserter is prone to insert the removed assignments back into the same route.
This Remover allows the Inserter to optimize the whole neighborhood in one step, making
it easier to find a new, unexplored solution. It selects the first assignment randomly and
measures the distance to all the other existing assignments. After that, the nearest ones are
selected and removed from the Plan.

Time-Oriented Remover

Works similarly as the previous Remover, but selects customers based on the arrival time,
not geographical distance. This ensures that all the vehicles will be available at the same
time and thus the removed customers can be easily interchanged between vehicles.
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Most Outlying Assignment Remover
Remover which is designed to remove the most remote visits in the Plan. These assignments
are very often misplaced and should be reinserted in another vehicle. For each assign-
ment 𝑖, the metric firstly finds preceding visit 𝑖 − 1 and following visit 𝑖 + 1 (either other
assignment or vehicle depot). After that, it counts the remoteness of the assignment 𝑖 as
𝑟𝑖 = 𝑑(𝑖 − 1, 𝑖) + 𝑑(𝑖, 𝑖 + 1), where the function 𝑑(𝑥, 𝑦) returns the distance between nodes 𝑥
and 𝑦.

Most Idle Assignment Remover
This Remover is focused on assignments with the longest idle time. While waiting, the
vehicle is stationary and does not do any useful work. For this reason, it is desirable to
minimize the idle time as much as possible. The metric calculates the waiting time caused
by assignment 𝑖 as 𝑤𝑖 = 𝜓𝑖 − 𝜔𝑖 − 𝑣𝑖, where 𝑣𝑖 is visit duration, 𝜔𝑖 is arrival time and 𝜓𝑖 is
departure time.

Most Expensive Vehicle Remover
With this Remover, the most expensive vehicles are completely removed from the Plan.
The expensiveness of vehicle 𝑣 is calculated as 𝑒𝑣 = 𝑑𝑣+𝑓𝑣

𝑛 , where 𝑛 is the number of served
customers, 𝑑𝑣 is traveled distance and 𝑓𝑣 is fixed cost for using this vehicle. After that, all the
assignments with the most expensive vehicles are iteratively removed from the Plan.

Least Used Warehouse Remover
Remover which tries to remove the least utilized warehouses together with all customers
served by them. This minimizes the number of redundant warehouse visits and shortens the
overall traveled distance. It uses a metric which counts how many customers is served by
each warehouse. Assignments associated with least used warehouses are then removed from
the Plan.

5.1.3 Inserter

Our Inserter works similarly as the general Inserter described in Subsection 4.4.3. It assigns
customers eagerly and vehicles greedily, but their order is not random. Firstly, the unassigned
customers are divided into two groups. The first group contains all the confirmed customers
and we try to assign them preferentially. The second group consists of potential future
customers which currently do not exist and thus should be assigned with lower priority. For
more information about the potential customers and why they are used see Subsection 5.2.2.
Note that this is the only place where the static version of the SCS solver has some knowledge
about the dynamic problem. We also tried a variant where the customers were not divided,
but the algorithm then converged slightly slower.
For each unassigned customer, we try to find an assignment with the smallest insertion cost.
Because each customer can be served only by a subset of available vehicles, we firstly exclude
all the forbidden ones. After that, we prefer the used vehicles to the ones with no served
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customers. When the customer can be assigned to some used vehicle, it is typically not
worth to check the unused ones because the additional penalty for a new vehicle is usually
much bigger than the travel costs. Only when all the used vehicles are fully loaded, we try
to assign the given customer to one of the unused vehicles.
For each vehicle, we try to assign the given customer to all positions in its route. When the
vehicle has an insufficient remaining capacity at the given position, we also try to add an
additional warehouse visit right before the customer is served. In this situation, the Inserter
selects warehouse with the smallest additional travel cost. Of course, it is not always possible
to find a suitable nearby warehouse or to satisfy the capacity requirements even when the
additional warehouse visit is added. In such cases, this position in the vehicle route is skipped
and we check the remaining ones.
Note that the warehouse visits are inserted into the Plan only when the vehicle capacity is
exceeded and the given customer can be supplied from a warehouse. This means that our
Inserter, without any additional changes, can be immediately used to solve a classical VRP.
All we need to do is to specify that all customers should be served from a depot and the SCS
solver will automatically produce solutions without warehouse visits.

5.2 Dynamic Algorithm

This section explains how the SCS solver exploits the stochastic knowledge about the custo-
mers to anticipate future events and thereby maximize the total number of served customers.
Subsection 5.2.1 is dedicated to the overall planning algorithm which handles new customer
request arrivals. This method transforms the global dynamic Plan into a static version which
can be then used as an input for the static solver covered in Section 5.1. In the next part
(see Subsection 5.2.2), we describe how is the new Plan selected from a pool of scenarios
which include both known and anticipated future requests. Finally, waiting strategies which
distribute the idle time between individual assignments in a vehicle route are described in
Subsection 5.2.3. Unlike in a static case, in dynamic problems, the choice of a waiting
strategy has a significant impact on the obtained results.

5.2.1 Global Planner

The properties of the global planner are described in Algorithm 5.6. Its main task is to con-
tinuously adapt the Plan to accommodate newly arrived customers. Because the algorithm
which adapts the Plan uses results obtained from the static solver, it is necessary to firstly
modify the global dynamic Plan into a more suitable form. The main problem with the
global Plan is that it contains both past and future events. Since the static solver always
reshuffles all the given data, the results obtained directly from the global Plan would contain
changes in historical actions, which are by its nature immutable. The whole transformation
process from the global Plan into its static form is illustrated in Figure 5.1.
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Input: Current Plan 𝑃 , Customer request 𝑅, Time 𝑇
Output: Updated Plan 𝑃 ∗

begin
1: V← {}, A← {}
2: for all 𝑉 ∈ 𝑃 .vehicles do
3: 𝐷𝑉 ← findCurrentLocation(𝑉 , 𝑃 , 𝑇 )
4: 𝐸𝑉 ← findEarliestStartTime(𝑉 , 𝑃 , 𝑇 )
5: V← V ∪ updateVehicle(𝑉 , 𝐷𝑉 , 𝐸𝑉 )
6: end for
7: for all 𝐴 ∈ 𝑃 .assignments do
8: if isFinished(𝐴, 𝑇 ) then continue
9: if isCustomer(𝐴.waypoint) and isSupplyLoaded(𝐴, 𝑃 , 𝑇 ) then
10: restrictAllowedVehicles(𝐴.customer)
11: setSupplyTypeToDepot(𝐴.customer)
12: A←A ∪ 𝐴
13: end for
14: 𝑃𝑆 ← createStaticPlan(V,A, 𝑅)
15: 𝑃 ∗

𝑆 ← optimizeStaticPlan(𝑃𝑆, 𝑇 )
16: 𝑃 ∗ ← updateChangedAssignments(𝑃 , 𝑃 ∗

𝑆)
end

Algorithm 5.6: Handling of a new customer request arrival in SCS

Vehicle Modification
Lines 2-6 show how the global planner updates the individual vehicles for the static version
of the Plan. The main goal is to change the properties of the vehicles in such a way that
they would no longer accept assignments placed in the past. In line 3, the vehicle depot (its
start position) is updated to its current location. Note that when the vehicle travels between
two nodes, the algorithm selects the location of the target node because we do not allow the
vehicles to stop while they are traveling between locations.

The start time of the vehicle is then changed in line 4. There are three possible options
based on the current state of the vehicle. Firstly, when the vehicle travels between two
locations, we specify its earliest start time to be equal to its arrival time. Secondly, when the
vehicle has some work at the given time (i.e. serving some customer or loading goods from
a warehouse), the vehicle can start after the job is finished. Lastly, the start time is changed
to the current time when the vehicle is waiting at some location. In line 5, we create a new
vehicle with updated depot and earliest start time.

Assignment Modification
In the next part of the algorithm (lines 7-13), we specify which assignments the global planner
keeps in the static Plan and how they are updated. In line 8, we omit the assignments that
already started. Note that this also excludes the assignments which are currently in progress
because once some assignment started, it cannot be stopped. The next step is applicable
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Figure 5.1: Transformation process from the original, global dynamic Plan into a version which can be used
as an input for the static solver. The transformation is shown on a route schedule for three vehicles 𝑉1, 𝑉2
and 𝑉3. Diamond (or hexagonal) nodes correspond with depots, circular (or rounded) nodes are customers
and rectangular nodes act as warehouses. Parts of the nodes filled with the dotted pattern represent waiting,
while the white areas stand for the actual job. The arrows connecting the nodes can be interpreted as travel
between two locations. The lower index numbers occurring at node labels define individual locations and
the upper indices associated with customers identify node from which is the customer supplied. The red
dotted line represents the current time 𝑇 = 70.
As we can see, all three vehicles have different start depot in the static version. Vehicle 𝑉1 starts from the
location of the next visited customer 𝑐5 and the earliest start time is changed to 𝑇 = 90. The other two
vehicles have their depot moved to their current location. Because in the original Plan, the vehicle 𝑉2 is
waiting, its earliest start time is equal to the current time. The other vehicle 𝑉3 has to firstly finish serving
the customer, so its earliest start time is changed to 𝑇 = 75. We can also see that both customers served
by the vehicle 𝑉1 are now supplied from the depot 𝑑5 instead of the warehouse 𝑤4. Their set of allowed
vehicles is also restricted to a single vehicle 𝑉1. These two changes are necessary because the supplies
for both customers are already loaded in the vehicle, which means that they cannot be served by another
vehicle.
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only for customer assignments. If the assignment contains warehouse, it can be inserted into
the static Plan without any additional changes.
If the assignment contains customer, we check in line 9 whether the supplies requested by the
customer are already loaded in the vehicle or not. When the supplies are present, we must
ensure that the customer will be served only by this vehicle because otherwise the loaded
supplies would be unused and thrown out. We have to also somehow notify the solver that
the vehicle is not empty at the beginning of its route. Note that it is not sufficient to decrease
the capacity of the vehicle by the number of loaded goods because once these customers are
supplied, the vehicle will have again its original capacity.
The first requirement is addressed in line 10. The set of allowed vehicles for the given
customer is restricted to contain only the vehicle transporting the loaded supplies. This step
ensures that the customer will not be served by any other vehicle. In line 11, we specify that
the customer should be supplied directly from the depot. This effectively solves the second
requirement because whenever the customer is served by this vehicle, the solver ensures that
the goods are loaded in the depot, which is exactly what we want. Some problems might arise
when the Plan returned by the static solver would keep the customer unassigned. Fortunately,
this is not a problem in SCS because our algorithm ensures that once a customer request is
accepted, it will be always serviced.
When all the vehicles and assignments are updated, we can construct a new Plan that can
be used as an input for the static solver in line 14. This Plan is then optimized by methods
described in Subsection 5.2.2. Finally, the global Plan is updated based on the optimized
static solution in line 16. The whole fleet then follows this Plan until it is updated again for
some newly arrived customer request.

5.2.2 Optimization Strategy

Algorithm 5.7 describes how the SCS solver updates the given Plan to accommodate the
newly arrived customer. While the obvious option would be to directly use the static solver
and return a Plan with the lowest overall cost, this approach would not produce satisfactory
results. Because such strategy ignores potential future customer requests, the obtained
results tend to be tightly scheduled with very few options for possible future updates. For
this reason, our algorithm uses multiple scenarios containing both the real and sampled
stochastic customers to determine the most promising strategy for the fleet. This ensures
that the produced Plans are better prepared for expected future changes.

Plan Creation
Lines 2-9 describe how the SCS solver finds solutions for individual scenarios. In line 3,
we sample a set of potential future customers based on the stochastic knowledge about
the problem. The number of samples is calculated from the total expected problem size
with respect to the current time. Note that in our implementation, we assume that the
probability distribution for each customer is provided as part of the problem definition. If
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Input: Current Plan 𝑃 , Number of scenarios 𝑁 , Time 𝑇
Output: Selected Plan 𝑃 ∗

begin
1: 𝒮 ← {}, P← {}
2: for 𝑖 = 1 to 𝑁 do
3: 𝑆 ← sampleStochasticCustomers(𝑇 )
4: 𝒮 ← 𝒮 ∪ 𝑆
5: 𝑃 ′ ← scheduleScenario(𝑃 , 𝑆)
6: if size(𝑃 ′.unassignedCustomers) > 0 then continue
7: 𝑃 ′ ← removeSamples(𝑃 ′)
8: P← P ∪ 𝑃 ′

9: end for
10: if isEmpty(𝒮) then return 𝑃
11: 𝑃 ∗ ← {}, 𝑈 ∗ ← ∞
12: for all 𝑃 ′ ∈ P do
13: 𝑈 ← 0
14: for all 𝑆 ∈ 𝒮 do
15: 𝑃 ← insertSampledCustomers(𝑃 ′, 𝑆)
16: 𝑈 ← 𝑈+ size(𝑆) - size(𝑃 .samples)
17: end for
18: if 𝑈 < 𝑈 ∗ then
19: 𝑈∗ ← 𝑈
20: 𝑃 ∗ ← 𝑃 ′

21: end for
22: specifyWaitingLocations(𝑃 ∗)
end

Algorithm 5.7: Plan selection from multiple scenarios in SCS

no such information exists, it is always possible to approximate these distributions from
historical data.
The scenario is then scheduled in line 5. The scheduling is done by the static solver introduced
in Section 5.1. Because the SCS algorithm guarantees that all the accepted customer requests
will be always served, we reject those solutions that contain some unassigned real customers.
This means that only the sampled requests are allowed to be unassigned. If there is no
scenario where all the confirmed customers are served, the original Plan is returned in line 10.
In such a case, the customer request is rejected as unschedulable and we keep the current
Plan without changes.
If all the existing customers are successfully scheduled, the added samples are removed from
the obtained solution in line 7. This process also removes redundant warehouse visits which
were only needed to supply the sampled customers. The algorithm simply checks whether
the previous warehouse is able to accommodate all the customers supplied by the examined
warehouse and if so, the redundant warehouse is removed. The resulting Plan then consists
only from known customers with enough free space for possible future updates.
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Plan Selection

When we have solutions for all the sampled scenarios, we need to select one of them as a
result. This is done in lines 12-21. Our algorithm tries to select the most universal Plan that
is applicable to the biggest number of possible scenarios. This helps us to better respond
to future changes because the selected Plan is not too focused only on one scenario. The
applicability of a Plan for other scenarios is calculated in line 15. The Inserter described in
Subsection 5.1.3 is used to insert the individual samples into the Plan. This method does
not change the order of existing assignments, it only updates their arrival times. The whole
process is demonstrated in Figure 5.2.

Once all the samples from one scenario are inserted into the Plan, we count how many of
them remained unassigned in line 16. Note that because the Inserter inserts the customers
iteratively, the number of unassigned samples is affected by their order. Unfortunately, all
the deterministic variants of this algorithm would require much longer computational time.
On top of that, this issue becomes less significant with increasing number of scenarios where
the outliers are suppressed by the remaining results. For this reason, we think that our
Inserter ensures a good balance between efficiency and quality of the obtained results.

In line 20, the Plan with the lowest number of unassigned stochastic customers is selected.
Before this result can be returned, we have to specify waiting locations for all the vehicles in
the Plan. This is done in line 22, where one of the methods described in Subsection 5.2.3 is
used. They all change the arrival and departure times of individual assignments to distribute
the idle time between visits. This influences the current location of the vehicles when the
next dynamic customer request is introduced.

5.2.3 Waiting Heuristics

In static problems, solvers typically do not specify exact arrival and departure times but
only calculate when each assignment should start. Because the definition of a static problem
remains unchanged throughout the execution of the whole Plan, it does not matter where the
vehicle waits between assignments as long as it is able to start the next visit at the specified
time. Contrary, each vehicle in dynamic context has to know whether it should wait at the
current location or depart to another node because it influences its position when the Plan
is recomputed.

A good waiting strategy can significantly help at minimizing travel times needed to serve
future customers and hence decrease the overall number of declined requests. In the following
text, we present two existing heuristics, namely Drive first and Wait first, which follow a
simple deterministic rule. We also introduce two novel heuristics named Scenario waiting
and Relocation waiting. These new methods exploit information from scenarios introduced
in Subsection 5.2.2 to dynamically calculate where and for how long should each vehicle
wait.
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Figure 5.2: The adaptation of one Plan for other scenarios. Diamond nodes correspond with depots, circular
(or rounded) nodes are customers and rectangular nodes act as warehouses. White nodes represent real,
confirmed customers while the gray nodes symbolize samples or additional warehouse visits needed to serve
the samples. The arrows connecting the nodes can be interpreted as travel between two locations. The
lower index numbers occurring at node labels define individual locations.
We are presenting the adaptation of Plan 𝑆1 obtained by solving one scenario with a static solver. This
Plan is then transformed into Plan 𝑃1 by removing all the samples, keeping only the existing customers
and warehouses needed to serve them. In the next step, we try to insert the samples from other scenarios
into the given Plan while counting how many of them cannot be assigned. Note that the order of known
customers remains unchanged throughout the whole process. This results in Plans 𝑆2, 𝑆3 and 𝑆4. The
same procedure is then repeated with Plans for all the other scenarios and we select the one which is able
to serve the biggest number of sampled customers.

41



CHAPTER 5. ALGORITHMS

Drive First

Input: Current Plan 𝑃
Output: Plan with defined waiting times 𝑃 ∗

begin
1: 𝑃 ∗ ← {}
2: for all 𝑉 ∈ 𝑃 .vehicles do
3: for all 𝐴 ∈ 𝑃 .assignmentsForVehicle(𝑉 ) do
4: 𝑇 ← 𝑃.previousVisit(𝑉 , 𝐴)
5: 𝐴.arrival ← 𝑇 .departure + travelTime(𝑇 .location, 𝐴.location)
6: 𝑃 ∗.insert(𝐴)
7: end for
8: end for
end

Algorithm 5.8: Drive first heuristic

Algorithm 5.8 describes our implementation of Drive first heuristic. Its functionality is quite
straightforward – we simply iterate over all vehicles and all their assignments and specify that
the vehicle should always leave the current location when the job is finished. In line 4, we
find a previous visit (either some other assignment or vehicle depot) for the given assignment.
The arrival time is then calculated based on departure from the previous position and travel
time between those two nodes in line 5. Note that we do not change the time of the actual
job, only the time when the vehicle arrives at each location. Figure 5.3 demonstrates how
this heuristic works on a Plan for one vehicle.

Wait First

Input: Current Plan 𝑃
Output: Plan with defined waiting times 𝑃 ∗

begin
1: 𝑃 ∗ ← {}
2: for all 𝑉 ∈ 𝑃 .vehicles do
3: for all 𝐴 ∈ 𝑃 .assignmentsForVehicle(𝑉 ) do
4: 𝑇 ← 𝑃.nextVisit(𝑉 , 𝐴)
5: 𝐴.departure ← 𝑇 .arrival - travelTime(𝐴.location, 𝑇 .location)
6: 𝑃 ∗.insert(𝐴)
7: end for
8: end for
end

Algorithm 5.9: Wait first heuristic

Wait first heuristic works very similarly as the Drive first heuristic explained in the previous
paragraph. The only difference is that the vehicle should stay at the current location as long
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as possible. Its implementation is described in Algorithm 5.9. The main differences from the
Drive first heuristic can be seen in lines 4 and 5. Firstly, we select the following visit instead
of the previous. Departure time is then calculated as a difference between arrival time to
the next visit and travel time between the selected locations. All the other properties of
the Wait first heuristic are identical with the Drive first heuristic. Its functionality is again
illustrated in Figure 5.3.

Original Plan

Drive first and
Wait first heuristics

𝑃

0 30 60 90 120 150 180 Time

DF

WF

0 30 60 90 120 150 180 Time

𝑑1 𝑤2 𝑐3 𝑐4

𝑑1 𝑤2 𝑐3 𝑐4

𝑑1 𝑤2 𝑐3 𝑐4

Customer

Warehouse

Depot

Waiting

Travel

Figure 5.3: Representation of the Drive first (DF) and Wait first (WF) waiting heuristics. Diamond nodes
correspond with depots, circular (or rounded) nodes are customers and rectangular nodes act as warehouses.
Parts of the nodes filled with dotted pattern represent waiting, while the white areas stand for the actual
job. The arrows connecting the nodes can be interpreted as travel between two locations. The lower index
numbers occurring at node labels define individual locations.
Both the heuristics do not change the time when the actual job starts in the original Plan (𝑃 ), they only
specify locations where the vehicles will be waiting. In the DF Plan, the vehicle leaves each visited location
as soon as possible and waits at the next node before the actual job can start. Contrary, the WF Plan tries
to maximally delay the departures from the current location. This means that the vehicle arrives at the
next node right when the assignment should start, eliminating waiting after arrival.

Scenario Waiting
Both the heuristics described so far do not incorporate any knowledge about future customer
requests into their reasoning. They strictly apply the same rule over and over again, no
matter how promising individual locations are. The Scenario waiting heuristic is designed to
overcome this issue by utilizing information from scenarios created in Subsection 5.2.2. More
precisely, this heuristic works with adaptations of the selected Plan for all existing scenarios
(see line 15 in Algorithm 5.7).
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Input: Current Plan 𝑃 , Set of scenarios 𝒮 applied to Plan 𝑃
Output: Plan with defined waiting times 𝑃 ∗

begin
1: 𝑃 ∗ ← {}
2: for all 𝑉 ∈ 𝑃 .vehicles do
3: for all 𝐴 ∈ 𝑃 .assignmentsForVehicle(𝑉 ) do
4: 𝐷 ← {}
5: for all 𝑆 ∈ 𝒮 do
6: 𝐴′ ← findCorrespondingAssignment(𝑆, 𝐴)
7: 𝐷 ← 𝐷 ∪ 𝐴′.departure
8: end for
9: 𝐴.departure ← average(𝐷)
10: 𝑇 ← 𝑃 ∗.previousVisit(𝑉 , 𝐴)
11: 𝐴.arrival ← 𝑇 .departure + travelTime(𝑇 .location, 𝐴.location)
12: 𝑃 ∗.insert(𝐴)
13: end for
14: end for
end

Algorithm 5.10: Scenario waiting heuristic

The whole process is described in Algorithm 5.10. We again iterate over all vehicles and
their assignments to specify where and how long should the vehicles wait. In lines 5-8, we
calculate the departure time for the given assignment. This is done by finding an average
departure time over all scenarios. The arrival time is then calculated in line 11 as the
earliest arrival time from the previous updated visit. The whole procedure is demonstrated
in Figure 5.4
Because the order of confirmed customers is the same in all scenarios, the average departure
time for one assignment is certainly higher than the average departure time for the previous
visit and lower than for the next visit. The minimal time difference between two consecutive
assignments is in all scenarios always at least equal to the travel time between these two
locations. This means that the Plan created by this heuristic will be always feasible with
enough time to travel between assignments.
If some assignments are together in a cluster, it is very likely that in each scenario, they all
will be visited at a similar time. This does not mean that the departure times will be similar
in all the scenarios, in fact, the cluster can be easily visited at the beginning of a route in
one scenario and at the end of a route in another one. However, the time difference between
the first and the last assignment from one cluster will be small in all scenarios because it
would be inefficient to visit the same cluster more than once. This means that in the final
Plan returned by this heuristic, all the assignments from a cluster will be visited right after
each other without additional waiting and the vehicle will wait only when the whole cluster
is completely served.
On the other hand, if some cluster has only a few confirmed customers and a high probability
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that other requests will arrive in the future, the time difference between the confirmed
assignments will be higher. The reason is that the sampled potential customers will be
inserted between the confirmed requests because they are from the same cluster. This results
in a bigger average time difference between the first and the last assignment in a cluster,
which means that the vehicle will spend a longer time in areas with higher probability of
future customer requests.
Coincidentally, both these properties are identified as crucial by authors of a state-of-the-art
waiting heuristic presented in Vonolfen and Affenzeller [33]. We thoroughly describe their
approach in Subsection 2.3.2. Their algorithm must firstly discretize the service area into
spatiotemporal zones and then determine values of four meta-parameters which are problem-
dependent. This contrasts with our heuristic with very similar properties which does not
need any parameters and only uses scenarios created as a by-product of our optimization
strategy.

Relocation Waiting

Input: Current Plan 𝑃 , Set of scenarios 𝒮 applied to Plan 𝑃
Output: Plan with defined waiting times 𝑃 ∗

begin
1: A← {}
2: for all 𝑉 ∈ 𝑃 .vehicles do
3: for all 𝐴 ∈ 𝑃 .assignmentsForVehicle(𝑉 ) do
4: N← nextAssignment(𝒮, 𝑉 , 𝐴)
5: 𝐴′ ← getMostFrequentAssignment(N)
6: if N.numberOfOccurences(𝐴′) < size(𝒮) / 2 then continue
7: 𝑇𝑁 ← 𝑃 .nextVisit(𝑉 , 𝐴)
8: if 𝐴′ == 𝑇𝑁 then continue
9: A.add(𝐴′)
10: end for
11: end for
12: 𝑃 .insertAssignments(A)
13: 𝑃 ∗ ← scenarioWaitingHeuristic(𝑃 , 𝒮)
end

Algorithm 5.11: Relocation waiting heuristic

Relocation waiting heuristic is based on the Insertion waiting but further extends the amount
of information obtained from the given scenarios. As the name suggests, it allows the vehicle
to relocate into a promising new location which is not present in the original Plan. This is
especially useful with warehouses, where the vehicle can wait next to a strategically placed
warehouse. This improves the time needed to serve a newly arrived customer because it is
not necessary to travel to the nearest warehouse for supplies. We illustrate how this heuristic
works in Figure 5.4.
Algorithm 5.11 describes the Relocation waiting heuristic in more detail. In line 4, the
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Scenarios
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Relocation waiting heuristics
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Figure 5.4: Representation of the Scenario waiting (SW) and Relocation waiting (RW) heuristics. Diamond
nodes correspond with depots, circular (or rounded) nodes are customers and rectangular nodes act as
warehouses. The white nodes, representing the real and confirmed entities, are divided into two parts -
the area filled with the dotted pattern illustrates waiting, while the white parts stand for the actual job.
The gray nodes symbolize samples or additional warehouse visits needed to serve the samples. The arrows
connecting the nodes can be interpreted as travel between two locations. The lower index numbers occurring
at node labels define individual locations.
Both the heuristics do not work directly with the original Plan, but with its adaptation to different scenarios
𝑆1–𝑆4. In the SW Plan, the departure times from each location are calculated as an average departure
time in all the scenarios. For warehouse 𝑤2, the departures are 𝑇 = 30, 75, 85, 30, which result in average
departure 𝑇 = 55. The arrival times are then easily calculated from the travel times between locations
and the actual jobs start immediately after the time window is opened.
The RW Plan is constructed very similarly as the SW Plan, but it is possible to add additional waiting
locations. More precisely, if some pair of nodes is visited in more than half of the scenarios, the sampled
assignment is kept in the resulting Plan. In our case, this happens with nodes 𝑐3 → 𝑤6 occurring in
scenarios 𝑆1, 𝑆2 and 𝑆4. The waiting times for nodes neighboring with the newly added assignment
then can be reduced to allow the additional visit. This can be seen in node 𝑐3, where the vehicle leaves
immediately after the customer is visited and in node 𝑐4, where the vehicle arrives later.
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algorithm finds assignments from all the scenarios which are visited right after the current
assignment. The assignment occurring in the biggest number of scenarios is then selected
in line 5. In lines 6-8, we test if it is worth to add the selected assignment as an additional
visit into our Plan. We firstly check whether it is visited in the majority of scenarios. This
condition should eliminate assignments which are useful only for a fraction of scenarios and
otherwise might be disadvantageous. The condition in line 8 then excludes assignments
which are already present in the original Plan.
All assignments that satisfy both conditions are then inserted into the Plan in line 12. This
insertion is different for customers and warehouses. Since all the warehouses are known
before the algorithm starts, it is possible to add the assignment directly as it is. On the
other hand, the sampled customers officially do not exist, so we cannot insert them into
the Plan. This issue is resolved by introducing dummy customers whose visit duration is
0, which effectively means that the vehicle only waits at the given location. Because these
waiting locations are only useful for the global planner to determine the location of each
vehicle (see Subsection 5.2.1), the dummy customers are removed from the Plan during the
transformation into its static form.
Finally, the arrival and departure times are calculated in line 13. This method works almost
identically as the Insertion waiting heuristic presented in the previous section. The only
difference is that it is no longer true that the time difference between two assignments will
be always at least equal to the travel time between them. Because the sampled assignments
do not occur in all scenarios, there might be not enough time to travel between the nodes
when the average departure times are followed. If it is possible, we try to reduce the waiting
times of the previous and next assignment. Only when there is still not enough time for the
visit, the additional waiting location is simply not inserted into the Plan.
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Chapter 6

Experiments

In this chapter, we explore how the SCS solvers with different waiting heuristics handle
various types of synthetic problem instances. In Section 6.1, we describe properties of the
DSVRP and DSVRPW benchmarks used in our experiments. All these instances were de-
rived from the classical static VRP test cases and adapted to the dynamic context. In
Section 6.2, we compare the performance of our algorithms with the state-of-the-art solvers
presented in Bent and Hentenryck [34] and Guillain et al [36] on the DSVRP benchmark
instances. We also present our results obtained on the DSVRPW test cases. In the last
section, we analyze the produced solutions and compare differences between the algorithms.
We examine which factors influence rejection of customer requests and how the warehouse
assignments affect the obtained schedules. For more information, see Section 6.3.

6.1 Testing Data

Throughout the whole chapter, we work with dynamic problems derived from the classical
Solomon’s static VRP benchmark instances [40]. All 56 problems consist of 100 customers
and one depot with 25 vehicles. The instances can be divided into 6 sets based on the
geographical distribution and vehicle capacity. Bent and Hentenryck [34] adapted these test
cases for the dynamic context by transforming each customer into a region from which the
dynamic requests are sampled. The expected number of customers for each instance is again
100, which means that the expected number of samples from each region is 1. This ensures
that the adapted instances will have a very similar structure as the original test cases.
Bent and Hentenryck [34] created in total 60 DSVRP instances [41]. The problems are
divided into 4 classes of 15 test cases characterized by the number of dynamic customers.
The differences between individual classes are explained in Subsection 6.1.2. Each class
then consists of 3 problem types with diverse time windows. We also created additional 60
DSVRPW benchmark instances by randomly adding 10 warehouses into the original Bent’s
test cases. The complete set of properties specifying the instances used in our experiments
is described in Subsection 6.1.1.
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6.1.1 Static Properties

The locations of customers are derived from Solomon’s RC1 class. These problems contain
both the randomly sampled and clustered customers and have low vehicle capacity allowing
to visit at most 5-10 customers. All the problem instances used in our experiments have the
same locations of customers, warehouses, and vehicle depots. Their placement can be seen
in Figure 6.1. Note that the warehouses are only available in the newly created DSVRPW
test cases, not in the original Bent’s benchmarks.
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Figure 6.1: Locations of customers, warehouses, and vehicle depots for all problem instances used in our
experiments. Note that the position (40, 50) is shared both by the vehicle depot and warehouse 𝑤0, which
allows the vehicle to supply customers near the depot without additional travel to some distant warehouse.
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(a) RC101 instances
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(b) RC102 instances
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(c) RC104 instances

Figure 6.2: (Left) Histograms of opening and closing times for different problem types. (Right) Histograms
of time window lengths for different problem types. This value is calculated as a difference between the
closing and opening time.
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Bent’s benchmarks consist of 3 problem types with diverse time windows. The RC101 instan-
ces have customers with the opening times regularly distributed throughout the scheduling
horizon. The length of each time window in this instance is equal to 30. The RC102 instances
have more than one-quarter of customers with the opening time equal to 0 and with a very
long time window. The remaining customers have similar opening hours as the customers in
the RC101. Finally, the RC104 instances have more than three-quarters of customers with
a very long time window and the opening time equal to 0. Even though it is technically
possible to specify time windows also for the warehouses, we decided that the warehouses
in the newly created DSVRPW test cases will be always open. Histograms showing the
distribution of time windows for all the problem types can be seen in Figure 6.2.
In the original Solomon’s problems, all the instances were defined with 25 vehicles. This
number was reduced in Bent’s test cases to ensure that the solver will be forced to reject
some of the dynamic customer requests. More precisely, the authors firstly solved the offline
instances (i.e. all dynamic requests are known in advance) with a state-of-the-art static
solver. Then the number of used vehicles was increased by 2 to compensate the higher
difficulty of the online problem. This reduced the number of available vehicles from 25 to
12–17.

6.1.2 Request Arrivals

Bent’s benchmarks are divided into 4 classes with different degree of dynamism (DOD),
which specifies the ratio of requests revealed at time 𝑡 > 0 over the total number of customers.
The classes also differ in time when the dynamic requests are introduced. The scheduling
horizon 𝐻 = 240 is divided into four periods. Period 0 represents the customers known
before the scheduling starts. All the dynamic customer requests are revealed during the first
period in time 𝑡 ∈ [1, 80] or during the second period in time 𝑡 ∈ [81, 160]. There are no
requests revealed during the last period in time 𝑡 ∈ [161, 240] to guarantee that the vehicle
is theoretically able to serve all customer requests and then return to its depot.
Class 1 instances have many known customers from period 0, many early requests from
period 1 and only a few late requests from period 2. Problems from class 2 have again many
known customers from period 0 and a similar number of requests from periods 1 and 2. Class
3 is a mix of classes 1 and 2. Finally, class 4 is similar to class 2 but the number of known
customers from period 0 is lower, which results in a higher number of dynamic customer
requests in periods 1 and 2. The average DOD of classes 1 and 2 is 39%, class 3 has 42%
and class 4 has 54%. Figure 6.3 summarizes the arrival times for all the classes.
For each class and problem type, 5 different instances were generated using probabilities
specified for each customer region and time period. If some customer request should appear
in time period 𝑖, then the exact arrival time of the request is drawn uniformly from time
interval [(𝑖 − 1) ⋅ 𝐻/3,min(𝑡𝑑,𝑐 + 𝑣𝑐 + 𝑡𝑐,𝑑, 𝑖 ⋅ 𝐻/3 − 1)], where 𝑡𝑑,𝑐 is a travel time from the
vehicle depot to the customer from the request, 𝑣𝑐 is a visit duration and 𝑡𝑐,𝑑 is a travel time
back to the depot. Note that all these probabilities are known to the scheduler.
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Figure 6.3: Histograms showing the distribution of arrival times of customer requests for different classes
of problems.

6.2 Computational Results

In this section, we examine how the proposed SCS solver with different waiting heuristics
performs on the DSVRP and DSVRPW benchmark instances. In the case of the DSVRP
test cases, the results obtained with the SCS solver are also compared with two state-of-the-
art methods introduced in Bent and Hentenryck [34] and Guillain et al [36]. The primary
objective of all the test cases is to minimize the number of rejected customer requests and
the secondary objective is to minimize the number of used vehicles.

6.2.1 Algorithms

All our algorithms were implemented in Kotlin 1.2 and compiled into Java 8 compatible
bytecode. All the solvers also used the same static scheduler defined in Section 5.1 whene-
ver they needed to optimize some Plan. The number of iterations for one run of the static
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scheduler was set to 1500. This value provides a good compromise between computational
time (2–3 seconds) and quality of the obtained results. All computations were performed
on the National Grid Infrastructure MetaCentrum which operates and manages distribu-
ted computing infrastructure within the Czech Republic. Average results over 5 runs are
reported.

Stochastic Customer Satisfaction
We consider 4 variants of the SCS solver with different waiting strategies. The SCS DF and
SCSWF represent simple variants with Drive first and Wait first heuristics. The SCS SW
stands for Scenario waiting strategy which utilizes information from the potential future
scenarios. Finally, the SCS RW symbolize Relocation waiting heuristic. It uses the same
strategy as the SCS SW but allows the vehicles to relocate into promising new locations. In
all variants, we generated and solved 32 potential future scenarios for each newly arrived
customer request. Because all the scenarios are independent, we used 8 threads to reduce
the overall computation time. On average, the whole insertion procedure for one customer
request then took less than 12 seconds (i.e. 96 seconds with one thread).

Greedy Algorithm
To the best of our knowledge, this is the first work which considers the DSVRPW problems.
For this reason, we use the Greedy algorithm as a baseline approach for this type of problems.
Whenever a new customer request is created, the Greedy algorithm recomputes the current
Plan and finds a solution with the lowest cost. This means that the stochastic information
about future requests is neglected and the next Plan is selected based on the number of
used vehicles and the total travel cost. Because we do not consider different scenarios, only
one run of the static scheduler is needed to insert the newly arrived customer request. This
means that the Greedy Algorithm needs only 2–3 seconds for one customer request.

Multiple Scenario Approach
The MSA solver was introduced in Bent and Hentenryck [34]. At the beginning, their
algorithm creates a pool of 50 plans for existing customers and possible future requests,
where each plan is optimized for 30 seconds. Every time unit, MSA adds one new solution
into the pool by using local search algorithm for 10 seconds and selects one distinguished
plan from the pool. This plan then determines the movement of vehicles to guarantee service
of accepted requests. After that, the plans incompatible with the selected one are removed
from the pool. The authors tested two ranking functions used to select the distinguished
plan. They showed that the MSA with Consensus function (MSAC) gives better results.
This function selects a plan most similar to other plans in the pool.

Global Stochastic Assessment
The GSA solver was introduced in Guillain et al [36]. Their algorithm works very similarly
as the MSA solver. The biggest difference is that the GSA does not select the distinguished
plan from a pool of solutions but directly creates only one solution that best suits a pool
of scenarios. This means that the GSA solver does not need any ranking function to select
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the distinguished plan. Several waiting strategies were proposed and it was shown that
the GSA with Relocation-only waiting (GSARO) produces the best results. This strategy
selects waiting locations (denoted as relocation requests) where the vehicle waits as long as
possible. For all the other locations, the Drive first heuristic is applied. The authors used
60 minutes of offline computation to find an initial solution and then allowed 4 seconds of
online computation per time unit.

Comparison of Computation Times
Because the MSA and GSA solvers use a different strategy than our SCS solver, it is not
possible to directly compare the computation time needed for each approach. While the SCS
solver changes the current Plan only when some new customer request is revealed, the MSA
and GSA solvers need long offline time to schedule the known customers and then generate
one new plan each time unit within the time horizon. For this reason, we are only able to
compare the average computation time needed to solve the whole test case. On average, one
instance has 44 dynamic customer requests and the planning horizon is 240 time units. The
overall computation times needed for each method are summarized in Table 6.1. We can see
that the Greedy algorithm is much faster than the other approaches which need almost the
same time for an average instance.

Method name Offline (s) Step (s) Steps Overall (s)
SCS 96 96 44 4320
Greedy 3 3 44 135
MSA 1500 10 240 3900
GSA 3600 4 240 4560

Table 6.1: Average time needed to solve one test case with different methods. Column offline represents
time in seconds needed to create an initial solution for known customers. The next two columns show how
many seconds are reserved for one step of the algorithm and how many steps the algorithm makes to solve
one average test case. The last column then presents the overall computation time in seconds needed for
one test case. This value is calculated as: overall time = offline time + step time ∗ steps.

6.2.2 Bent’s Benchmarks

Tables 6.2 and 6.3 summarize the obtained results on Bent’s DSVRP instances. We compare
average solution quality produced by the MSA solver with consensus function (MSAC), GSA
solver with Relocation-only waiting strategy (GSARO), SCS solvers with Drive first (SCS DF)
and Wait first (SCSWF) heuristics and SCS solver with Scenario waiting strategy (SCS SW).
The first number in each column shows how many customer requests were rejected and the
second one represents the number of used vehicles. Because Guillain et al [36] presented only
the average number of rejected customer requests, we cannot show how many vehicles were
used in their solutions.
Note that we do not present results from the SCS solver with Relocation waiting strategy be-
cause the additional waiting locations were almost never used. This means that the obtained
solutions were practically identical with the results produced by the SCS SW solver. This is
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Problem
instance

MSAC GSARO SCS DF SCSWF SCS SW
Uns. Veh. Uns. Veh. Uns. Veh. Uns. Veh. Uns. Veh.

C1-RC101-1 0.6 16.0 1.2 - 0.2 15.8 0.8 16.0 0.0 16.0
C1-RC101-2 2.6 16.0 1.6 - 0.4 16.0 0.4 16.0 0.2 16.0
C1-RC101-3 1.0 15.0 1.6 - 0.0 15.0 0.4 15.0 0.0 15.0
C1-RC101-4 0.2 17.0 1.1 - 0.0 16.8 0.0 17.0 0.0 16.8
C1-RC101-5 1.0 17.0 2.2 - 0.0 17.0 0.0 17.0 0.0 17.0
C1-RC102-1 2.4 14.0 1.5 - 0.2 14.0 0.6 14.0 0.0 14.0
C1-RC102-2 0.8 13.0 0.8 - 0.0 13.0 0.0 13.0 0.0 13.0
C1-RC102-3 0.8 15.0 0.8 - 0.0 15.0 0.0 15.0 0.0 15.0
C1-RC102-4 1.4 14.0 0.5 - 0.0 14.0 0.0 14.0 0.0 14.0
C1-RC102-5 0.6 15.0 0.1 - 0.0 15.0 0.0 15.0 0.0 15.0
C1-RC104-1 0.2 11.0 0.4 - 0.0 11.0 0.2 11.0 0.0 11.0
C1-RC104-2 0.0 12.0 0.0 - 0.0 12.0 0.2 12.0 0.0 12.0
C1-RC104-3 0.0 13.0 0.0 - 0.0 13.0 0.0 13.0 0.0 13.0
C1-RC104-4 0.2 12.0 0.2 - 0.0 12.0 0.0 12.0 0.0 12.0
C1-RC104-5 0.0 11.0 0.0 - 0.0 11.0 0.0 11.0 0.0 11.0
Class 1 Avg 0.79 14.07 0.80 - 0.05 14.04 0.17 14.07 0.01 14.05

C2-RC101-1 0.2 13.0 1.5 - 0.0 13.0 1.6 13.0 0.0 13.0
C2-RC101-2 1.4 14.0 2.1 - 0.0 14.0 0.0 14.0 0.0 14.0
C2-RC101-3 0.0 17.0 2.3 - 0.0 17.0 0.4 17.0 0.0 17.0
C2-RC101-4 0.8 17.0 2.7 - 0.2 17.0 0.6 17.0 0.0 17.0
C2-RC101-5 1.4 16.0 2.1 - 0.0 16.0 0.4 16.0 0.0 16.0
C2-RC102-1 0.4 15.0 0.4 - 0.0 15.0 0.2 15.0 0.0 15.0
C2-RC102-2 1.2 14.0 0.8 - 0.0 14.0 0.2 14.0 0.0 14.0
C2-RC102-3 2.0 14.0 1.0 - 0.0 14.0 1.0 14.0 0.0 14.0
C2-RC102-4 0.4 15.0 0.8 - 0.0 15.0 0.2 15.0 0.0 15.0
C2-RC102-5 2.8 14.0 1.3 - 0.0 14.0 0.0 14.0 0.0 14.0
C2-RC104-1 3.0 12.0 0.1 - 0.0 12.0 0.4 12.0 0.2 12.0
C2-RC104-2 2.6 12.0 0.6 - 0.0 12.0 0.4 12.0 0.2 12.0
C2-RC104-3 0.8 12.0 0.0 - 0.0 12.0 0.0 12.0 0.0 12.0
C2-RC104-4 0.6 13.0 0.0 - 0.0 13.0 0.6 13.0 0.0 13.0
C2-RC104-5 0.2 12.0 0.1 - 0.0 12.0 1.6 12.0 0.0 12.0
Class 2 Avg 1.19 14.00 1.05 - 0.01 14.00 0.51 14.00 0.03 14.00

Table 6.2: Solutions on classes 1 and 2 from the Bent’s DSVRP benchmark instances [41]. Each column
contains two numbers. The first one represents the average number of unassigned customer requests and
the second one shows the average number of used vehicles. Bold results highlight the best result in each
line. The first two columns contain the best average results obtained by Bent and Hentenryck [34] and by
Guillain et al [36], respectively. The last three columns show average results obtained by our SCS solver
over 5 runs. Each column represents different waiting heuristic - Drive first (DF), Wait first (WF) and
Scenario waiting (SW).
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Problem
instance

MSAC GSARO SCS DF SCSWF SCS SW
Uns. Veh. Uns. Veh. Uns. Veh. Uns. Veh. Uns. Veh.

C3-RC101-1 0.8 15.0 1.8 - 0.0 15.0 0.6 15.0 0.0 15.0
C3-RC101-2 1.4 16.0 1.2 - 0.0 16.0 1.0 16.0 0.0 16.0
C3-RC101-3 0.8 14.0 1.5 - 0.0 13.8 0.0 14.0 0.0 14.0
C3-RC101-4 1.0 17.0 1.4 - 0.0 16.8 0.0 16.8 0.0 17.0
C3-RC101-5 0.8 16.0 0.7 - 0.0 16.0 0.0 16.0 0.0 16.0
C3-RC102-1 1.6 15.0 1.0 - 0.0 15.0 0.4 15.0 0.0 15.0
C3-RC102-2 1.8 14.0 0.8 - 0.0 14.0 0.4 14.0 0.0 14.0
C3-RC102-3 0.8 13.0 0.5 - 0.0 13.0 0.6 13.0 0.0 13.0
C3-RC102-4 1.8 15.0 0.4 - 0.2 15.0 0.0 15.0 0.0 15.0
C3-RC102-5 1.6 15.0 1.1 - 0.0 15.0 0.2 15.0 0.0 14.8
C3-RC104-1 2.4 12.0 0.3 - 1.0 12.0 0.8 12.0 0.2 12.0
C3-RC104-2 0.2 12.0 0.1 - 0.0 12.0 0.2 12.0 0.0 12.0
C3-RC104-3 0.4 12.0 0.0 - 0.0 12.0 0.2 12.0 0.0 12.0
C3-RC104-4 0.2 12.0 0.0 - 0.0 12.0 1.4 12.0 0.0 12.0
C3-RC104-5 0.6 12.0 0.0 - 0.0 12.0 1.6 12.0 0.0 12.0
Class 3 Avg 1.08 14.00 0.72 - 0.08 13.97 0.49 13.99 0.01 13.99

C4-RC101-1 1.0 16.0 1.2 - 0.0 16.0 0.0 16.0 0.0 16.0
C4-RC101-2 3.6 15.0 1.6 - 0.0 15.0 0.0 15.0 0.0 15.0
C4-RC101-3 1.6 16.0 0.2 - 0.0 16.0 0.6 16.0 0.0 16.0
C4-RC101-4 1.4 17.0 1.1 - 0.0 17.0 0.4 17.0 0.0 17.0
C4-RC101-5 2.2 16.0 3.5 - 0.0 16.0 1.4 16.0 0.0 16.0
C4-RC102-1 0.4 15.0 0.1 - 0.0 15.0 0.2 15.0 0.0 15.0
C4-RC102-2 1.4 15.0 0.2 - 0.0 15.0 1.2 15.0 0.0 15.0
C4-RC102-3 1.4 15.0 0.5 - 0.0 14.8 1.8 15.0 0.0 15.0
C4-RC102-4 0.0 14.0 0.1 - 0.0 14.0 0.0 14.0 0.0 14.0
C4-RC102-5 0.6 15.0 1.5 - 0.0 14.8 0.2 15.0 0.0 15.0
C4-RC104-1 3.2 13.0 0.7 - 2.2 13.0 2.8 13.0 1.6 13.0
C4-RC104-2 3.4 14.0 0.0 - 0.6 14.0 1.4 14.0 0.4 14.0
C4-RC104-3 5.6 13.0 0.5 - 1.6 13.0 1.6 13.0 1.0 13.0
C4-RC104-4 2.4 12.0 0.4 - 0.8 12.0 0.8 12.0 1.0 12.0
C4-RC104-5 2.0 11.0 0.7 - 2.0 11.0 1.0 11.0 1.0 11.0

Class 4 Avg 2.01 14.47 0.82 - 0.48 14.44 0.89 14.47 0.33 14.47

Table 6.3: Solutions on classes 3 and 4 from the Bent’s DSVRP benchmark instances [41]. Each column
contains two numbers. The first one represents the average number of unassigned customer requests and
the second one shows the average number of used vehicles. Bold results highlight the best result in each
line. The first two columns contain the best average results obtained by Bent and Hentenryck [34] and by
Guillain et al [36], respectively. The last three columns show average results obtained by our SCS solver
over 5 runs. Each column represents different waiting heuristic - Drive first (DF), Wait first (WF) and
Scenario waiting (SW).
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expected behavior because the Relocation waiting strategy was designed to allow the vehicles
to wait next to a strategically placed warehouse. Since there are no warehouses in DSVRP
problems and the sampled set of possible future customer requests is often very different in
each scenario, it is much more difficult to find an assignment which is visited in the majority
of scenarios.
Our algorithms were able to produce the best results in 55/60 cases. The SCS SW solver had
the lowest number of rejected customer requests on classes 1, 3, 4 and the SCS DF solver on
class 2. Also, both the SCS DF and SCS SW solvers were able to find at least one solution
without any rejected customer requests on all test cases. Overall, both algorithms produced
very similar results in almost all instances. The SCS SW has a slightly lower number of
rejected customer requests while the SCS DF was able to slightly better reduce the number of
used vehicles. But it is difficult to decide which of the algorithms is better when the majority
of results have no rejected requests.
The SCSWF solver is slightly worse than the SCS SW and SCS DF in all problem classes. This
corresponds with findings in Vonolfen and Affenzeller [33] where the Wait first heuristic
also produced worse results than the Drive first heuristic on their set of test instances.
Nevertheless, the average number of rejected customer requests is still lower than the number
of rejections from the best state-of-the-art solvers in 3 out of 4 test classes.
Authors of the GSARO solver stated that their approach is especially useful on instances
with a high number of late customer requests. Our results confirm this assertion. The
GSARO solver was able to find the best solution on all C4-RC104 instances which contain
the biggest number of dynamic requests. Finally, the MSAC solver never found a solution
with a lower number of rejected customer requests than our SCS SW and SCS DF solvers.
When compared with the SCSWF solver, the MSAC solver was able to find a better solution
only in 7 cases.

6.2.3 Benchmarks with Warehouses

Tables 6.4 and 6.5 summarize the obtained results on DSVRPW benchmark instances. We
compare average solution quality produced by the Greedy algorithm and the SCS solvers with
all types of waiting heuristics - Drive first (SCS DF), Wait first (SCSWF), Scenario waiting
(SCS SW) and Relocation waiting (SCS RW). The format of the tables is the same as for the
DSVRP instances. The first value in each column represents the average number of rejected
customer requests and the second one shows how many vehicles were used.
From the overall results, we can see that the number of rejected customer requests is much
higher when the customers must be supplied from warehouses. This results from an increased
number of assignments. Whenever a new customer request is revealed, the vehicle must firstly
load the required goods in some warehouse before the customer can be visited. Because the
requests are revealed gradually, the vehicles can load goods only for the currently known
customers. This leads to additional warehouse visits when some new customer is added to
vehicle’s route.
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Problem
instance

Greedy SCS DF SCSWF SCS SW SCS RW
Uns. Veh. Uns. Veh. Uns. Veh. Uns. Veh. Uns. Veh.

C1-RC101-1 5.8 16.0 2.8 16.0 3.4 16.0 2.4 16.0 2.4 16.0
C1-RC101-2 4.8 16.0 4.0 16.0 2.6 16.0 2.6 16.0 2.4 16.0
C1-RC101-3 5.8 15.0 3.0 15.0 4.6 15.0 4.2 15.0 3.2 15.0
C1-RC101-4 3.2 17.0 3.2 17.0 3.6 17.0 2.2 17.0 2.4 17.0
C1-RC101-5 6.4 17.0 4.4 17.0 4.4 17.0 4.0 17.0 4.0 17.0
C1-RC102-1 6.6 14.0 3.8 14.0 4.6 14.0 3.2 14.0 3.4 14.0
C1-RC102-2 4.4 13.0 2.8 13.0 3.2 13.0 1.8 13.0 1.6 13.0
C1-RC102-3 6.4 15.0 3.2 15.0 4.2 15.0 3.6 15.0 2.8 15.0
C1-RC102-4 4.8 14.0 2.2 14.0 2.4 14.0 1.4 14.0 1.2 14.0
C1-RC102-5 3.2 15.0 1.8 15.0 1.6 15.0 1.4 15.0 1.0 15.0
C1-RC104-1 4.4 11.0 3.0 11.0 3.2 11.0 2.6 11.0 2.4 11.0
C1-RC104-2 5.2 12.0 1.8 12.0 1.8 12.0 2.0 12.0 1.4 12.0
C1-RC104-3 6.6 13.0 1.8 13.0 1.8 13.0 0.8 13.0 1.0 13.0
C1-RC104-4 4.2 12.0 1.0 12.0 0.8 12.0 1.0 12.0 1.0 12.0
C1-RC104-5 2.4 11.0 1.8 11.0 2.0 11.0 1.6 11.0 1.8 11.0

Class 1 Avg 4.95 14.07 2.71 14.07 2.95 14.07 2.32 14.07 2.13 14.07

C2-RC101-1 3.2 13.0 4.0 13.0 4.0 13.0 4.0 13.0 4.2 13.0
C2-RC101-2 5.2 14.0 2.4 14.0 3.2 14.0 2.4 14.0 2.0 14.0
C2-RC101-3 6.6 17.0 4.2 17.0 6.0 17.0 3.4 17.0 3.8 17.0
C2-RC101-4 8.2 17.0 4.4 17.0 6.0 17.0 6.2 17.0 3.6 17.0
C2-RC101-5 5.8 16.0 4.4 16.0 5.0 16.0 4.6 16.0 4.4 16.0
C2-RC102-1 6.6 15.0 4.8 15.0 4.8 15.0 3.8 15.0 3.8 15.0
C2-RC102-2 4.2 14.0 2.8 14.0 2.6 14.0 2.8 14.0 2.4 14.0
C2-RC102-3 6.8 14.0 3.2 14.0 2.8 14.0 3.0 14.0 2.4 14.0
C2-RC102-4 4.8 15.0 3.2 15.0 3.8 15.0 3.6 15.0 3.2 15.0
C2-RC102-5 10.0 14.0 4.6 14.0 5.6 14.0 4.8 14.0 4.8 14.0
C2-RC104-1 12.4 12.0 9.2 12.0 10.4 12.0 8.8 12.0 8.6 12.0
C2-RC104-2 14.2 12.0 10.0 12.0 10.0 12.0 10.0 12.0 9.6 12.0
C2-RC104-3 14.4 12.0 9.8 12.0 9.6 12.0 10.2 12.0 9.0 12.0
C2-RC104-4 9.0 13.0 3.8 13.0 4.6 13.0 4.0 13.0 2.8 13.0
C2-RC104-5 9.8 12.0 8.4 12.0 8.4 12.0 7.8 12.0 7.6 12.0
Class 2 Avg 8.08 14.00 5.28 14.00 5.79 14.00 5.29 14.00 4.81 14.00

Table 6.4: Solutions on classes 1 and 2 from the DSVRPW benchmark instances. Each column contains
two numbers. The first one represents the average number of unassigned customer requests and the second
one shows the average number of used vehicles. Bold results highlight the best result in each line. The first
column contains average results obtained with the Greedy algorithm. The remaining columns show average
results obtained by our SCS solver. Each column represents different waiting heuristic - Drive first (DF),
Wait first (WF), Scenario waiting (SW) and Relocation waiting (RW).
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Problem
instance

Greedy SCS DF SCSWF SCS SW SCS RW
Uns. Veh. Uns. Veh. Uns. Veh. Uns. Veh. Uns. Veh.

C3-RC101-1 6.0 15.0 3.6 15.0 3.8 15.0 3.4 15.0 3.6 15.0
C3-RC101-2 6.8 16.0 3.8 16.0 5.0 16.0 4.8 16.0 4.0 16.0
C3-RC101-3 4.4 14.0 4.4 14.0 4.0 14.0 4.2 14.0 3.8 14.0
C3-RC101-4 6.0 17.0 5.0 17.0 4.6 17.0 4.0 17.0 4.0 17.0
C3-RC101-5 3.4 16.0 1.8 16.0 2.6 16.0 2.4 16.0 2.2 16.0
C3-RC102-1 4.6 15.0 3.2 15.0 2.6 15.0 3.2 15.0 2.4 15.0
C3-RC102-2 4.4 14.0 3.6 14.0 3.0 14.0 2.4 14.0 2.8 14.0
C3-RC102-3 6.4 13.0 4.2 13.0 4.6 13.0 4.8 13.0 3.8 13.0
C3-RC102-4 7.0 15.0 5.2 15.0 5.2 15.0 5.4 15.0 4.8 15.0
C3-RC102-5 5.4 15.0 3.0 15.0 3.2 15.0 2.2 15.0 2.4 15.0
C3-RC104-1 15.0 12.0 10.8 12.0 12.4 12.0 12.4 12.0 11.2 12.0
C3-RC104-2 5.6 12.0 3.0 12.0 2.4 12.0 2.0 12.0 2.4 12.0
C3-RC104-3 6.4 12.0 3.4 12.0 4.0 12.0 3.6 12.0 4.0 12.0
C3-RC104-4 9.4 12.0 7.0 12.0 7.6 12.0 7.0 12.0 7.4 12.0
C3-RC104-5 10.2 12.0 7.2 12.0 9.2 12.0 7.6 12.0 7.6 12.0

C3ass 1 Avg 6.73 14.00 4.61 14.00 4.95 14.00 4.63 14.00 4.43 14.00

C4-RC101-1 2.8 16.0 2.4 16.0 2.0 16.0 2.4 16.0 1.8 16.0
C4-RC101-2 6.0 15.0 4.8 15.0 5.6 15.0 4.8 15.0 4.6 15.0
C4-RC101-3 8.2 16.0 4.8 16.0 5.2 16.0 4.6 16.0 3.8 16.0
C4-RC101-4 7.0 17.0 4.2 17.0 5.2 17.0 4.6 17.0 3.8 17.0
C4-RC101-5 5.2 16.0 4.4 16.0 4.8 16.0 4.0 16.0 3.6 16.0
C4-RC102-1 1.6 15.0 2.6 15.0 2.4 15.0 2.2 15.0 2.4 15.0
C4-RC102-2 8.4 15.0 7.2 15.0 6.0 15.0 6.0 15.0 6.4 15.0
C4-RC102-3 7.8 15.0 5.4 15.0 3.6 15.0 3.6 15.0 3.8 15.0
C4-RC102-4 7.8 14.0 3.8 14.0 4.4 14.0 3.8 14.0 3.2 14.0
C4-RC102-5 8.2 15.0 5.2 15.0 4.4 15.0 4.8 15.0 4.4 15.0
C4-RC104-1 24.2 13.0 15.0 13.0 17.2 13.0 15.2 13.0 15.0 13.0
C4-RC104-2 26.0 14.0 15.6 14.0 17.8 14.0 15.0 14.0 15.6 14.0
C4-RC104-3 23.6 13.0 13.4 13.0 14.6 13.0 12.8 13.0 12.8 13.0
C4-RC104-4 18.8 12.0 12.0 12.0 13.0 12.0 12.6 12.0 11.6 12.0
C4-RC104-5 18.6 11.0 13.0 11.0 15.0 11.0 12.6 11.0 12.8 11.0

Class 2 Avg 11.61 14.47 7.59 14.47 8.08 14.47 7.27 14.47 7.04 14.47

Table 6.5: Solutions on classes 3 and 4 from the DSVRPW benchmark instances. Each column contains
two numbers. The first one represents the average number of unassigned customer requests and the second
one shows the average number of used vehicles. Bold results highlight the best result in each line. The first
column contains average results obtained with the Greedy algorithm. The remaining columns show average
results obtained by our SCS solver. Each column represents different waiting heuristic - Drive first (DF),
Wait first (WF), Scenario waiting (SW) and Relocation waiting (RW).
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The SCS RW solver had the lowest number of rejected customer requests on all test classes.
In 37/60 cases, the algorithm was able to find the best result among all the solvers. We
can clearly see that the relocation strategy allowed the solver to serve a higher number of
requests. It is because the vehicle more often waits next to a strategically placed warehouse
which means that new customer requests can be served faster.
The differences between the SCS DF, SCSWF, and SCS SW solvers are very similar as in the
DSVRP case. The best overall results are produced by the SCS SW solver with 19/60 best
solutions and with the second lowest number of rejected customer requests. The SCS DF
solver is close behind with 11/60 best solutions. Finally, the SCSWF solver is substantially
worse than the remaining two solvers. It was able to find just 4/60 best solutions and only
the Greedy algorithm had a higher number of rejected requests on each test class.
As we expected, the worst results were produced by the Greedy algorithm. Because it does
not utilize the stochastic information about the problem, the produced Plans has much less
options for possible future updates. This is best seen in C4-RC104 instances. As we already
mentioned, these test cases have the highest number of late dynamic customer requests.
While all the solvers have higher numbers of rejections for these instances, the Greedy algo-
rithm rejects almost twice as much requests as the SCS RW solver.

6.3 Search Analysis

In this section, we study the differences between individual algorithms and analyze which
factors influence the quality of the produced solutions. In Subsection 6.3.1, we try to deter-
mine which customer requests are more likely to be rejected by each algorithm. We compare
arrival times, geographical locations and the overall number of dynamic requests. In the
next part, we examine how the warehouse assignments affect the solution quality (see Sub-
section 6.3.2). We compare which warehouses cause the biggest vehicle detour and how the
number of warehouse visits corresponds with the quality of the obtained results.

6.3.1 Rejected Customer Requests

When we analyzed the solutions with the biggest number of rejected customer requests,
we discovered that these instances have some common features. All algorithms had bigger
problems on test cases with a higher degree of dynamism (DOD) and with many late customer
requests. Both observations are not very surprising. With increasing DOD, the Plans contain
less confirmed customers which means that the solvers have to deal with a higher level of
uncertainty. With late customers, the algorithms have less options because there is often
not enough time to reroute the vehicles and still visit all the confirmed customers. We also
discovered that some remote regions have a very low number of rejections even though they
are very far away from the vehicle depot. This means that the geographical distance is not
a very reliable predictor of the probability of rejection.
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(a) Bent’s DSVRP benchmarks
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(b) DSVRPW benchmarks

0.3 0.4 0.5 0.6 0.7 0.8

Ratio of Unknown Customers

0

5

10

15

20

R
ej

ec
te

d 
re

qu
es

ts

SCSSW

SCSRW

0 0.1 0.2 0.3 0.4 0.5 0.6

Ratio of Late Customers

0

5

10

15

20

R
ej

ec
te

d 
re

qu
es

ts

SCSSW

SCSRW

(c) DSVRPW benchmarks

Figure 6.4: Quality of solutions produced by different algorithms on both the DSVRP and DSVRPW
benchmark instances. The points represent individual results and the lines are created by locally weighted
scatterplot smoothing (LOWESS) method which uses weighted linear least squares model. (Left) The
number of rejected customer requests with respect to the percentage of unknown dynamic customers (degree
of dynamism). (Right) The number of rejected customer requests with respect to the percentage of late
dynamic customers (appearance time is bigger than 80).
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Analysis of Dynamism
On the left side of Figure 6.4, we compare the quality of the solutions as a function of the
percentage of unknown customers. Each point represents the number of rejected customer
requests (vertical axis) for one solution with the given DOD (horizontal axis). On the
right side, we show how the number of rejections corresponds with the percentage of late
dynamic customer requests. This means that we consider only the requests from period 2
(see Subsection 6.1.2) with arrival time 𝑡 ∈ [81, 160], not all dynamic customers as in the
first case.
Subfigure 6.4a compares results obtained by the SCS solvers with Drive first, Wait first and
Scenario waiting heuristics on DSVRP test cases. As we can see, both the SCS DF and SCS SW
solvers have almost no problem in situations with a low number of dynamic requests. On the
other hand, the SCS SW solver is able to find significantly better solutions on highly dynamic
instances with many late customer requests. We can also see that the SCSWF solver lacks
behind the SCS DF and SCS SW solvers mainly on instances with a low number of dynamic
requests. As the DOD increases, the gap between these three solvers becomes smaller.
For clarity, we divided the solvers used on the DSVRPW instances into two groups. Subfi-
gure 6.4b compares the Greedy algorithm with the SCS solvers using simple Drive first and
Wait first heuristics. We can see that the Greedy algorithm is not much worse than the
SCS DF and SCSWF solvers on instances with low DOD and a small number of late requests.
In highly dynamic test cases, the benefits of stochastic information are more visible and
the Greedy algorithm produces significantly less competitive results. When we compare the
SCS DF and SCSWF solvers, we can see that the SCSWF solver lacks in instances with many
late customer requests. This is the exact opposite of the results we obtained on the DSVRP
instances, where the SCSWF solver struggled mainly on the test cases with low DOD.
Finally, Subfigure 6.4c compares the two best-performing solvers on the DSVRPW instances
- the SCS with Scenario waiting heuristic and the SCS with Relocation waiting heuristic.
Both algorithms produced almost identical results on all test cases. The SCS RW solver is con-
sistently slightly better than the SCS SW solver but the difference is always really small. This
result is not surprising because the Relocation waiting heuristic uses the Scenario waiting
heuristic to calculate the final arrival and departure times. The additional waiting locations
are inserted only rarely which explains why the produced solutions are so similar.

Analysis of Rejections
Figures 6.5 and 6.6 illustrate spatiotemporal properties of rejected customer requests. Each
subfigure represents summary for one algorithm over all the DSVRP or DSVRPW test cases.
On the left side, we present locations with the highest number of rejections in form of a
heat-map (darker color represents a higher number of rejections). Histograms showing the
probability of customer rejection in time can be seen on the right side. These figures help
us to identify regions with weak accessibility and time periods where the vehicles are unable
to serve additional customers.
Figure 6.5 compares spatiotemporal properties of customer requests rejected by the SCS
solvers with Drive first, Wait first and Scenario waiting heuristics on the DSVRP test cases.
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(a) SCS with Drive first heuristic
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(b) SCS with Wait first heuristic
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(c) SCS with Scenario waiting heuristic

Figure 6.5: Results obtained on the Bent’s DSVRP benchmark instances. (Left) Heat-map showing areas
with the biggest number of rejected customer requests for different algorithms (darker color represents a
higher number of rejections). (Right) Histogram showing the probability of customer request rejection in
time for different algorithms.

64



6.3. SEARCH ANALYSIS

0 50 100 150

Time

0

0.1

0.2

0.3

0.4

0.5

P
ro

ba
bi

lit
y 

of
 R

ej
ec

tio
n

(a) Greedy algorithm

0 50 100 150

Time

0

0.1

0.2

0.3

0.4

0.5
P

ro
ba

bi
lit

y 
of

 R
ej

ec
tio

n

(b) SCS with Wait first heuristic
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(c) SCS with Relocation waiting heuristic on benchmarks with warehouses

Figure 6.6: Results obtained on the DSVRPW benchmark instances. (Left) Heat-map showing areas with
the biggest number of rejected customer requests for different algorithms (darker color represents higher
number of rejections). (Right) Histogram showing the probability of customer request rejection in time for
different algorithms.

65



CHAPTER 6. EXPERIMENTS

The SCS DF solver had the biggest problems with the north-east and south regions and with
very late customer requests. The SCSWF solver rejected the biggest number of customers
from the south and west regions. Quite surprisingly, it had also problems with customers
near the vehicle depot, where other algorithms had almost no rejections. This algorithm
also rejected much more early customer requests from the first period. Finally, the SCS SW
solver was able to serve customers from almost all regions and time periods. It had minor
problems in the north-west area and with very late customer requests but the overall results
do not show any signs of serious problems.
Figure 6.6 shows locations and time distributions of customer requests rejected by selected
algorithms on the DSVRPW test cases. For conciseness, we do not show subfigures for the
SCS DF and SCS SW solvers because they looked almost the same as the ones presented for the
SCSWF and SCS RW solvers, respectively. As expected, the biggest number of problematic
locations had the Greedy algorithm. Almost all peripheral regions have an increased amount
of rejections. These customers were also rejected consistently throughout the whole planning
horizon with peaks in time intervals [50, 80] and [110, 150]. The SCSWF and SCS RW solvers
produced very similar results. They both had the biggest problems with the north-east
and west regions and with very late requests. We can also see that the SCS RW solver
rejected slightly less customer requests near the vehicle depot and in the south-east region
in comparison with the SCSWF solver.

6.3.2 Warehouse Assignments

Because the introduction of warehouses strongly increased the number of rejected customer
requests, we decided to analyze how often each warehouse was visited, how these visits
prolonged the vehicle routes and whether there are some differences in warehouse visits
between the algorithms. Note that the exact warehouse locations are depicted in Figure 6.1.
Obviously, we studied only the results obtained on the DSVRPW test cases because the
DSVRP instances do not allow warehouse visits. For clarity and conciseness, we also decided
to omit results obtained for the SCS DF and SCS SW solvers because they are very similar as
the ones presented for the SCSWF and SCS RW solvers, respectively.

Analysis of Warehouse Locations
On the left side of Figure 6.7, we show the popularity of each warehouse. Unsurprisingly, the
most popular warehouse is 𝑤0 which has the same location as the vehicle depot. Almost all
vehicles visit this warehouse before they supply their first customers because this visit does
not prolong the route. Interestingly, the popularity of this warehouse is different for each
algorithm. It is the most popular in solutions produced by the Greedy algorithm with 50.2 %
of all warehouse visits (i.e. every second warehouse assignment contains the warehouse 𝑤0).
The SCSWF solver used this warehouse in 39.6 % of visits and the SCS RW solver only in
36.3 % of visits.
The warehouses 𝑤2, 𝑤5, 𝑤6 and 𝑤9 are also very often visited because they supply the
north-west, south, west and east clusters, respectively. We are quite surprised that the
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Figure 6.7: (Left) The number of visits of each warehouse for different algorithms. (Right) The average
detour caused by each warehouse for different algorithms. Detour symbolizes additional distance traveled
by the vehicle to visit the warehouse.
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warehouse 𝑤8 has only a few visits even though it is the nearest warehouse to the north-east
cluster. This region is probably supplied from the warehouse 𝑤4 which is not too far away.
The relative popularity of these warehouses is very similar for all the algorithms. On the
other hand, they differ in the absolute number of visits. The Greedy algorithm needed the
least number of warehouse assignments with 8940 visits over all solutions. The SCSWF solver
visited 11514 warehouses and the SCS RW solver needed 11958 visits.
On the right side of Figure 6.7, we show the average detour caused by each warehouse.
Detour is calculated from vehicle route as 𝑠 = 𝑑𝑖−1,𝑖 + 𝑑𝑖,𝑖+1 − 𝑑𝑖−1,𝑖+1, where 𝑑𝑖−1,𝑖 is the
distance from the previous node to the warehouse, 𝑑𝑖,𝑖+1 is the distance from the warehouse
to the next node and 𝑑𝑖−1,𝑖+1 is the direct distance from the previous node to the next node.
For each algorithm, the biggest detour is caused by the warehouse 𝑤8. This warehouse is
placed next to the north-east cluster which means that the vehicle must always abandon the
region with customers, visit the warehouse and then travel back. The second longest detour
is caused by the warehouse 𝑤7. Interestingly, this distance is very different for each solver.
The Greedy algorithm was able to order the customers in such a way that the detour is much
smaller than for the SCS RW solver. On the other hand, this warehouse is visited so rarely
that the caused detour is not very significant in the overall results.

Analysis of Warehouse Visits
Figure 6.8 (left) shows an average number of visited warehouses over time on different pro-
blem types. It is clearly visible that the Greedy algorithm needed much less warehouse visits
than the two remaining solvers. This difference is caused by two factors. Firstly, the other
solvers rejected much less customer requests which means that they had to supply more
customers and thus load the supplies more often. Secondly, the Greedy algorithm always
created Plan only for the existing and confirmed customers. This allowed the static solver
to create a more optimized Plan with a higher number of customers supplied from one wa-
rehouse. On the other hand, this also made the Plan less extensible when a new customer
request arrived because the vehicle was not prepared for any additional assignments.
We can also see that the SCS RW solver visited less warehouses in time interval 𝑡 ∈ [0, 40] than
the other two solvers. All these visits are made at the beginning of the scheduling horizon
in the warehouse 𝑤0 which has the same location as the vehicle depot. This difference is
caused by the Relocation waiting heuristic which inserts promising new waiting locations
into the Plan. The heuristic typically selects some warehouse location because then it is
easier and faster to load supplies for a newly arrived customer. When this waiting location is
the first visit in the vehicle route, it is not necessary to load supplies from the warehouse 𝑤0
in time 𝑡 = 0 because all customers can be served from the next waiting location with a
warehouse.
On the right side of Figure 6.8, we can see an average vehicle load over time. Because the
solutions produced by the Greedy algorithm contain less warehouse visits, it is obvious that
the vehicles must load higher amount of goods in these warehouses to be able to serve all the
subsequent customers. We can also see that the average vehicle load in solutions produced
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Figure 6.8: (Left) Number of visited warehouses over time on different types of problems. (Right) Vehicle
load over time on different types of problems. Each line represents an average over all classes. The lightly
colored boundary around each line illustrates the 99% confidence interval.
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by the SCS RW solver is very low in time interval 𝑡 ∈ [0, 40]. As we already stated, some
vehicles skip the warehouse 𝑤0 which means that they are empty in the first part of their
route.
It is also interesting to compare the RC101 and RC102 problem types shown in Subfigu-
res 6.8a and 6.8b with the type RC104 depicted in Subfigure 6.8c. The RC101 and RC102
problems are on average less dynamic than the RC104 instances. We can see that the dif-
ference between the Greedy algorithm and the remaining two SCS solvers is much smaller
on the RC101 and RC102 test cases. The average vehicle load in solutions produced by the
Greedy algorithm is higher on the RC104 problems than on the other types. On the other
hand, both the SCSWF and SCS RW solvers produced solutions with a lower average vehicle
load on the RC104 instances.
This probably explains why the Greedy algorithm had so many rejected requests on instances
with high DOD. Each new customer can be served only after the selected vehicle loads the
ordered goods in some warehouse. When the vehicle is already fully loaded and it has only a
few warehouse visits planned in its route, it is very difficult to do such thing. The vehicle has
to firstly visit at least some existing customers to deliver their order and make enough space
for the new customer. In the next step, it is necessary to make an unplanned warehouse
visit with a potentially high detour to load the ordered goods. Only then it is possible to
visit the new customer. On the other hand, if the vehicle is half empty and it has many
warehouse visits planned in its route plan, the solver can just insert the new customer at
the best position in the route and the vehicle will simply load more goods during the next
planned warehouse visit.
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Chapter 7

Conclusion

All goals of the thesis were fulfilled. We reviewed the existing approaches used to solve
different non-deterministic variants of the VRP in Chapter 2. Three types of the problem
were discussed in more detail. In dynamic VRP, the whole instance is not known in advance
and the scheduler must regularly recalculate the solution to address the changes in data.
In stochastic VRP, some of the data are only available as random variables. The scheduler
should utilize these data to produce a robust solution which will not deviate too much from
the actual route execution. Finally, the dynamic stochastic VRP combines both techniques
to produce more accurate solutions with lower overall costs.
Unfortunately, none of the examined approaches was applicable for problems where the
customers make orders which must be firstly picked up in some warehouse before they are
delivered. Because this is a crucial aspect of many real-world problems such as food delivery,
we defined a novel DSVRP variant which considers warehouse visits in Chapter 3. The
definition ensures that each order will be loaded in the most suitable warehouse before it is
delivered to the customer. We defined the static version of this problem by an integer linear
program and the dynamic version by a multistage stochastic program.
The main contribution of this thesis was presented in Chapter 5. We firstly explained how
the TASP framework (described in Chapter 4) was adapted to solve the static version of the
DSVRPW. In the next part, we introduced our SCS solver which is able to solve the original
DSVRPW instances. It combines two approaches to produce very robust solutions applicable
to many future scenarios. In the first step, the most universal plan is selected from a pool of
solutions containing both existing and possible future customer requests. After that, we use
one of the two novel waiting heuristics to distribute the idle time in a vehicle route. Both
the heuristics utilize information about the possible future customer requests mentioned in
the previous step to select the most promising waiting locations.
Finally, we tested our implementation of the SCS solver written in Kotlin in Chapter 6.
We used a collection of DSVRP benchmark instances to compare our implementation with
other state-of-the-art methods. In this comparison, the SCS solver found the best average
solution in 55/60 test cases. We were also able to find at least one solution with no rejected
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customer requests for all the test cases. As for the newly defined DSVRPW variant, there are
obviously no published benchmarks available. For this reason, we created our own DSVRPW
test cases and compared the SCS solver with a Greedy algorithm. The results achieved by
our solver are better in 58/60 test cases. The difference is most noticeable in highly dynamic
instances where the Greedy algorithm rejected almost twice as much customer requests. We
also showed that the novel waiting heuristics produced better solutions when compared with
the existing waiting strategies.

7.1 Future Work

Since our primary goal is to develop a scheduling framework which would be applicable for a
wide spectrum of real-world dynamic routing problems, we identified many opportunities how
to extend its scope. Firstly, our sampling procedure expects that the stochastic information
about the problem is known in advance. Unfortunately, this is not the case in most of the
real-world scenarios, where the behavior of customers is not easily predictable. For this
reason, it would be useful to extend the sampling procedure with a new module which would
be able to approximate the behavior of customers from historical data. This procedure would
have to consider many factors such as a history of each customer, geographical location, time
and day of the week, weather, season, etc., making it quite a difficult task.
It would be also possible to incorporate additional sources of dynamism in the planning.
One of the options would be to consider fluctuations in traffic density. Especially in large
cities, rush hours and traffic jams can dramatically influence the feasibility of the produced
solutions. The solver should adapt the travel times based on the daytime and re-route the
vehicles in case of unexpected car accidents or other temporary traffic restrictions. Similarly,
it could be useful to include other possible sources of dynamism such as vehicle breakdowns,
prolonged visit durations or canceled customer requests.
Finally, it might be useful to restrict the number of changes in the schedule when a new
customer request is introduced. Currently, the solver is allowed to change the schedule
arbitrarily as long as it does not affect the historical actions. This means that whenever a
new customer request is accepted, all the vehicles in the fleet must update their route plans
to reflect the changes in the plan. Without a proper control system, this might substantially
increase the communication overhead between the central dispatcher and the vehicles and
cause general dissatisfaction with the scheduling process. For this reason, the objective
function might take into account the difference between the current and updated solution.
This would force the solver to prefer solutions with less changes, making the plans more
stable in time.
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Appendix A

Attached Files

The attached files contain the source code of the SCS solver, electronic version of the thesis,
Bent’s DSVRP and our DSVRPW benchmark instances, source files of this text, and our
solutions on all test cases. Table A.1 describes the structure and content of the attached
files.

File or folder name Content
Benchmarks Folder which contains DSVRP and DSVRPW benchmark instances
Solutions Folder which contains our solutions on all test cases
SourceCode Folder which contains the complete source code of the SCS solver
LatexCode Folder which contains the LATEX source files of the thesis
Thesis.pdf Electronic version of the thesis
SCS_Solver.jar Compiled code of the SCS solver

Table A.1: Structure and content of the attached files.

The SCS solver can be executed from the command line using command
java -jar SCS_Solver.jar -b BENCHMARKS -o OUTPUT

where BENCHMARKS specifies the input folder with benchmark instances and OUTPUT specifies
the output folder. All the available options can be displayed with command

java -jar SCS_Solver.jar --help
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