
CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering

MASTER’S THESIS

Jan Bouček

Tracking vehicles across multiple non-overlapping fisheye
cameras in a city environment

Department of Computer science

Thesis supervisor: Ing. Michal Reinštein, Ph.D.

Author statement for undergraduate thesis:

I declare that the presented work was developed independently and I have listed all
sources of information used within in the accordance with the methodical instructions for
observing the ethical principles in the preparation of university thesis.

Prague, date............................. ...

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

425059Osobní číslo:JanJméno:BoučekPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Otevřená informatikaStudijní program:

Umělá inteligenceStudijní obor:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Sledování vozidel přes více nepřekrývajících se fisheye kamer v městském prostředí

Název diplomové práce anglicky:

Tracking vehicles across multiple non-overlapping fisheye cameras in a city environment

Pokyny pro vypracování:
The task is to design, implement and experimentally evaluate a deep neural network based solution for tracking vehicles
across multiple non-overlapping fisheye cameras in a city environment. The proposed solution should include creation of
training, validation, and testing datasets, and thorough experimental evaluation of the proposed architecture with respect
to the state-of-the-art methods. Instructions are as follows:
1. Explore the current state-of-the-art solutions of video detection and tracking vehicles from multiple cameras.
2. Design a new approach for vehicle detection and tracking with known location of the cameras with fisheye lenses and
non-overlapping views.
3. Using data provided by GoodVision s.r.o., implement the proposed approach in TensorFlow deep learning framework.
4. Evaluate the solution and compare it to the state-of-the-art methods on real world scenarios.

Seznam doporučené literatury:
[1] Goodfellow, Ian, et al. ?Deep Learning?, MIT Press, 2016
[2] Liu, Wei, et al. "SSD: Single shot multibox detector." European conference on computer vision. Springer, Cham, 2016.
[3] Schroff, Florian, Dmitry Kalenichenko, and James Philbin. "Facenet: A unified embedding for face recognition and
clustering." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015.
[4] Szegedy, Christian, et al. "Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning." AAAI.
2017. APA
[5] He, Kaiming, et al. "Mask R-CNN" arXiv preprint arXiv:1703.06870 (2017).
[6] Noh, Hyeonwoo, Seunghoon Hong, and Bohyung Han. "Learning deconvolution network for semantic segmentation."
Proceedings of the IEEE International Conference on Computer Vision. 2015.
[7] Abadi, Mart?n, et al. "TensorFlow: Large-scale machine learning on heterogeneous systems, 2015." Software available
from tensorflow. org.

Jméno a pracoviště vedoucí(ho) diplomové práce:

Ing. Michal Reinštein, Ph.D., vidění pro roboty a autonomní systémy FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Termín odevzdání diplomové práce: _____________Datum zadání diplomové práce: 17.01.2018

Platnost zadání diplomové práce: 30.09.2019

prof. Ing. Pavel Ripka, CSc.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Michal Reinštein, Ph.D.

podpis vedoucí(ho) práce

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 1 z 2CVUT-CZ-ZDP-2015.1

III. PŘEVZETÍ ZADÁNÍ
Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 2 z 2CVUT-CZ-ZDP-2015.1

Acknowledgements

I would like to thank my thesis supervisor Ing. Michal Reinštein Ph.D for his great
support, leadership and expertise that helped greatly during this thesis. I would also like to
thank the Good Vision company for great cooperation. Finally, I thank my friends and family
for their support during my whole studies.

Abstract

This thesis deals with tracking vehicles over multiple non-overlapping
cameras. The goal is to design and implement a system able to detect
vehicles in a city environment and track their position. The cameras
have a fish-eye view and are mounted to street lamps. We present a deep
neural network for vehicle detection utilizing the video information, a
single camera vehicle tracking algorithm based on optical flow, a deep
neural network trained to compute similarities between vehicles and a
probabilistic graph representation of a city. The conducted real world
experiments verified the capability of the whole system.

Keywords: Object detection, Multi camera tracking, fisheye cameras.

Abstrakt

Tato práce se zabývá sledováńım vozidel pomoćı v́ıce nepřekrývaj́ıćıch se
kamer. Ćılem je návrh a realizace systému, který je schopný rozpoznat
vozidla v městském prostřed́ı a sledovat jejich polohu. Kamery maj́ı ob-
jektiv typu ryb́ı oko a jsou umı́stěny v pouličńıch lampách. Představujeme
hlubokou neuronovou śı̌t pro detekci vozidel využ́ıvaj́ıćı informace z videa,
algoritmus pro sledováńı vozidel na jedné kameře založený na optical
flow, hlubokou neuronovou śı̌t pro poč́ıtáńı podobnost́ı mezi vozidly a
pravděpodobnostńı grafovou reprezentaci města. Provedené experimenty
reálného světa ověřily schopnosti celého systému.

Kĺıčová slova: Detekce objekt̊u, sledováńı přes v́ıce kamer, objek-
tiv ryb́ı oko

CONTENTS

Contents

1 Introduction 1

1.1 Problem statement . 2

1.2 Overview of methodology . 2

1.3 Contribution . 3

2 Related work 5

2.1 Classification . 5

2.2 Object Detection . 6

2.2.1 Vehicle detection . 6

2.2.2 Object detection in computer vision 7

2.3 Object tracking . 8

2.4 Reidentification . 9

3 Fisheye camera model 11

3.1 Scene localization . 11

3.2 Camera model . 12

3.2.1 Linear model . 14

3.2.2 Tangent model . 15

3.3 The city coordinate system . 15

4 Dataset generation 17

4.1 Need for a custom dataset . 17

4.2 Distributed system . 17

4.3 Background subtraction detection . 18

4.4 Optical Flow tracking . 22

4.5 Classification . 23

4.6 Semi-supervised dataset generation . 23

5 Convolutional Neural Networks 25

5.1 Inspiration by biology . 25

5.2 Layers . 25

5.2.1 Convolutional layer . 26

5.2.2 Pooling layer . 26

5.2.3 Fully connected layer . 27

5.2.4 Overfitting and dropout layer . 27

i

CONTENTS

5.3 Backpropagation . 27

5.4 Transfer learning . 28

5.5 Frameworks . 28

6 Classification, Detection and Reidentification networks 29

6.0.1 VGG . 29

6.1 Inception . 29

6.2 SSD network for detection . 31

6.2.1 Architecture . 31

6.2.2 Default boxes and aspect ratios . 32

6.3 Loss . 33

6.3.1 Training . 33

6.4 Non-maxima suppression . 33

6.5 Facenet for reidentification . 34

6.5.1 Architecture . 34

6.5.2 Training . 35

6.6 Multi camera tracking . 36

7 Implementation 37

7.1 Mask R-CNN segmentation . 37

7.2 SSD detector . 38

7.2.1 Temporal difference . 39

7.2.2 Architecture . 40

7.2.3 Dataset . 40

7.2.4 Data augmentation . 41

7.2.5 Training . 41

7.3 Single camera tracking . 42

7.3.1 Seeding . 43

7.3.2 Displacement . 43

7.3.3 Matching . 43

7.4 Similarity . 43

7.4.1 Dataset . 44

7.4.2 Problems with the dataset . 45

7.4.3 Improving the dataset . 45

7.4.4 Training . 45

7.4.5 T-SNE visualization . 47

ii

CONTENTS

7.5 City representation . 47

7.5.1 Reidentification . 49

7.5.2 Decreasing computational demands . 50

7.6 Multi camera tracking . 50

8 Evaluation 51

8.1 Mean average precision. 51

8.2 SSD object detection . 53

8.3 Facenet similarity . 54

8.3.1 Evaluation metrics . 54

8.3.2 Results . 54

8.3.3 Comparison to state of the art . 55

8.4 Multi camera tracking experiment . 55

8.4.1 Evaluation measurement . 55

8.4.2 Results . 56

8.4.3 Comparison to state of the art . 56

9 Discussion 57

10 Conclusion 58

10.1 Future work . 59

References 61

iii

CONTENTS

iv

LIST OF FIGURES

List of Figures

1.1 The fisheye camera is mounted in a lamp, therefore the view is directly from
above. 2

3.1 Frame of the provided video. 11

3.2 The spherical coordinates of the world. 13

3.3 The provided calibration data. 14

3.4 Approximation of the calibration data by a linear and tangent model of the lens. 15

4.1 The car class examples in ImageNet [33] and COCO [90]. 17

4.2 Background model created by the mean and the median approach. 19

4.3 The difference between the frame and a background shown in a gray-scale. . . 19

4.4 The histogram of a particular pixel over 100 images with computed medians
from the scene in figure 4.2. 20

4.5 The background subtraction detection algorithm. 21

4.6 The dialog from the annotation tool. 24

5.1 Examples of neural networks concepts from [69]. 26

5.2 Examples of pooling concepts from [69]. 26

6.1 The different VGG architectures. The ReLU function is not shown for simplic-
ity. [128] . 30

6.2 Inception module [132] with dimension reductions. 31

6.3 Comparison of the SSD[91](300x300) and YOLO[117](448x448) architectures. 32

6.4 The SSD [91] predictions. 32

6.5 Non maxima suppression[34] keeps a single prediction. 34

6.6 The Facenet [124]. 34

7.1 Examples of Mask R-CNN network [53]. 37

7.2 Temporal difference helps to detect moving objects. 38

7.3 The process of training the 4 channel input SSD network. The training was
performed on the NVIDIA GeForce GTX 1080 for 4 days. 42

7.4 Comparison of various facenet[132] base networks evaluated on Labeled faces
in the wild[60] and YouTube faces[147] datasets. 44

7.5 An example of a one object in a training set. 44

7.6 Accuracy during the facenet training. 46

7.7 Additional information about the Facenet training. The training was performed
on the NVIDIA GeForce GTX 1080 for 12 hours. 46

7.8 Visualization of facenet embeddings using the T-SNE dimensionality reduction. 47

7.9 An example of a part of city representation with transition probabilities. . . . 48

8.1 Example of arbitrary precision-recall curve. 52

v

LIST OF FIGURES

8.2 The process of training the introduced 4 channel SSD (orange) and the 3 chan-
nel SSD (blue) networks. The training was performed on the NVIDIA GeForce
GTX 1080 for 1 day. The graph shows, that the presented solution performs
much better than the state of the art SSD. 53

vi

1 INTRODUCTION

1 Introduction

Estimated 80% of the world data is in form of images or videos [44] and the percentage
will likely increase. There is a lot of useful information hidden in videos, but it is very hard
to extract it. The vast majority of the videos is processed manually by people, who make
mistakes and are expensive. There is an incredible need for automated video processing in
many branches of the industry for decreasing cost and for increasing speed and accuracy. Being
able to accurately detect and track vehicles can provide valuable data about transportation to
governments. Reidentification and tracking objects over multiple cameras in real time can help
reinforcement agencies to effectively fight crime or surveillance agencies to prevent intrusion.

The computer vision field has been experiencing an incredible advancement in the last
couple of years thanks to the introduction of convolutional neural networks. They are success-
ful on many problems from image classification to object detection and tracking. The state
of the art in deep learning in computer vision was explored in this thesis.

This thesis was developed in cooperation with the company Good Vision s.r.o [1] for a
law enforcement company from Brazil, to develop and deploy smart city solutions in South
America. Good Vision provides a smart video analysis from street cameras , while the Brazilian
partner provides the infrastructure. This thesis developed a multi-camera tracking of a vehicle
in a city, that will be used by the police in many South American cities.

When a crime is committed and a suspect drives away, there is a need for an automatic
tracking of the vehicle. This is a difficult task and can easily fail when performed by people.
This thesis introduces an automatic approach based on artificial intelligence and deep learning
allowing fast and reliable tracking of a vehicle in a city.

The difference from standard setups is that the cameras are fisheye and they are
mounted directly into street lamps above the vehicles as shown in the figure 1.1. There are
no public datasets for these kinds of images or videos and custom datasets had to be created
from videos provided by the Brazilian partner.

For the final algorithm to be accurate, different subproblems had to be solved separately.
That involves object detection, tracking, similarity, and reidentification as well as two datasets
generation.

A deep learning object detector was introduced. It is based on the SSD [91], but utilizes
the information from video by temporal difference and feeds it as an additional input layer.
Experiments show, that the introduced approach achieves 91.6% mAP on the presented do-
main, which is far better than the state of the art SSD network with just 63.2% mAP when
trained and tested on the same data.

Deep convolutional neural network Facenet [124] was successfully trained to recognize
similar vehicles, which was used for reidentification a vehicle on a different camera. The
overall algorithm was tested on a real-world scenario and can re-identify a vehicle with the
88 % probability.

1/72

1 INTRODUCTION

1.1 Problem statement

Figure 1.1: The fisheye camera is mounted in a lamp, therefore the view is directly from above.

The smart city project is in development and only several cameras have been mounted.
The cameras were built directly to street lamps and their streams are sent to a server. The
cameras have a 360 degrees view thanks to their very short focal lengths and their locations
in the city are known.

When there is a crime committed and the suspect is driving away in a vehicle, a camera
operator marks the car and the goal of the project is to detect the vehicle, track its position
in a single camera and be able to recognize it on different cameras.

The camera resolution and optics don’t allow using license plate recognition for reiden-
tification.

1.2 Overview of methodology

The whole thesis was divided to subproblems and solved more or less separately. These
solutions were connected into one for the final experiments.

• A thorough state of the art analysis was performed in the section 2 to be able to select

2/72

1 INTRODUCTION

the best approaches for different subproblems and to be able to compare developed
solution to other approaches.

• The camera parameters were not known and a mathematical model of the camera lens
had to be created in section 3 based on calibration data. This section also solves the
transformations between the real world coordinates and their projection in the frame,
which allows accurate localization of the vehicle.

• The possibility of distributed computing directly in the cameras was explored as de-
scribed in the section 4. That included fast set of algorithms for detection [109], tracking
[7] and classification [52] running on CPU. This approach could not be used directly
because of a bad performance on high traffic scenes. However, it was used for a semi-
supervised dataset generation and allowed training of a network for computing similarity
between vehicles.

• An annotation tool was used as described in the section 6.2 for creating training and
validation dataset for object detection.

• SSD [91] neural network architecture was selected for vehicle detection because of its
state of the art performance. It was extended for an additional input layer of temporal
difference and additional feature layer to better recognize small moving objects and
were trained on NVIDIA GeForce GTX 1080 for four days.

• The original and the improved SSD neural networks were trained on the same dataset
and their accuracies were compared in the section 8.2.

• Google Facenet [124] was selected for computing similarities between vehicles and re-
trained on a custom dataset from section 4.

• A city and vehicles representation was based on Markov chain and introduced in the
section 7.5. It utilized the object similarity and relations between cameras in reidentifi-
cation.

• A real-world experiments were performed on cameras from a city and the implemented
multi-camera tracking was tested and evaluated in the section 8.4.

1.3 Contribution

Problems of various types were solved in this thesis, such as:

• An improved version of SSD [91] was introduced and implemented, which achieved the
mAP 91.6% compared to the SSD from [91] with the 63.2% mAP on the wide-angle
domain.

• A dataset for vehicle detection on fisheye camera containing over 1600 images was
created by standard annotating methods. Another dataset for training the similarity
network was generated by an object detection and tracking algorithm containing over
9000 images.

3/72

1 INTRODUCTION

• The Facenet [124] network was retrained for vehicle similarity achieving the classification
accuracy of 81%.

• A mathematical probabilistic representation of the multi-camera tracking problem was
introduced based on Markov chains.

• Multi-camera tracking experiments on real-world scenario were performed achieving the
88% reidentification accuracy.

4/72

2 RELATED WORK

2 Related work

The computer vision field has made an incredible leap forward in the last couple of years.
Thanks to the increasing computational capabilities of computers and recent advancements
in deep learning, we are able to do tasks, that we could not imagine. Image classification,
location, and detection are tasks, that have gone through an incredible evolution in the last
5 years. The face recognition, autonomous driving, surveillance and many more fields have
been the driving force for computer vision. The tracking of objects over multiple cameras is
valuable in retail, traffic monitoring, and surveillance.

2.1 Classification

Image classification is a task, where given an image, one class has to be assigned to the
previously known set of classes. This is a hard task because of the variance in lighting, pose,
rotation, scale, as well as intraclass variation. The detection task described in the section 2.2 is
linked to the classification problem, where the deep learning detectors use image classification
networks.

Accuracy is measured as the proportion of correctly classified images in the test set.
Two metrics are used. In top 1 accuracy, only one prediction is made. In top 5 accuracy, 5
predictions are made and an image is considered to be correctly classified if the correct class
is among them.

To properly train, evaluate and compare models, several datasets, such as Mnist [85],
ImageNet [33], or PASCAL VOC [38] were created.

Before the invention of convolutional neural networks, other classifiers were used. Clas-
sifiers, in general, can be divided into parametric and nonparametric methods. The non-
parametric ones require no training phase and the decision is based directly on the data.
Most common method is the Nearest Neighbor approach [14, 156]. The parametric methods,
on the other hand, require a training phase to find the parameters of the model, which can be
in form of decision tree [15], AdaBoost [107], or the most common Support Vector Machine
(SVM).

The classification pipeline of SVM is such that a set of features is extracted into a
vector and a SVM is applied. These features can have many different forms and can also be
combined. A histogram [21], Bag of features [82, 106], SIFT features [151, 12] or Haar features
[101] can be used.

Convolutional neural networks (CNN) are the state of the art in image classification.
They were introduced in 1990’s [83], but only only since 2012 had a great success.

In 2012 AlexNet [77] won the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) with the top-5 error being just a 15.4%. This was a huge success compared to
the second best with 26.2% top-5 error rate and this is considered to be the beginning of deep
learning in computer vision.

5/72

2 RELATED WORK

The ZFNet [155] in 2103 introduced insides to how CNNs work by introducing de-
convolutional network, that could show various feature activations. It also outperformed the
AlexNet on ImageNet by the top-5 error rate being 14.8% and winning the ILSVRC in 2013.

GoogLeNet/Inception won the ILSVRC 2014 with the incredible top-5 error rate of
6.67%. The architecture was based on LeNet [84] but introduced an inception module. This
module eliminates all full-connected layers, greatly reducing the number of parameters. It is
used as a backbone in many object detection networks and was used in this thesis as a base
network for Facenet [124] described in the section 6.5

The second best network in ILSVRC 2014 was the VGG Net [128]. The depth of the
network was increased, but the number of parameters was kept low thanks to very small
3x3 filters. The architecture is simpler than of Inception and it is widely used as a detection
network backbone. This network was used in this thesis as a backbone for the SSD [91]
described in the section 6.2.

The Microsoft’s ResNet [54] introduced a deeper architecture. They were able to train
the network thanks to the introduction of the residual connections. Part of the information
passes through each layer unchanged. This helps to solve the vanishing gradient problem [57].
With the top-5 error rate 3.57%, they surpassed the human accuracy winning the ILSVRC
2015.

The ResNet idea was further developed. Wide ResNet [154] reduced the number of layers
while widened the network. ResNeXt [150] is furthermore highly modularized and introducing
new dimension called cardinality, which is more effective, than simply increasing the number
of layers or their width.

DenseNet [59] connects each layer to all previous layers. This furthermore helps with the
vanishing gradient problem and reducing the number of parameters. It outperforms ResNet
while requiring less memory and computation.

The task of image classification is considered to be solved, but more research is being
done. These image classification networks can be used as a backbone for other tasks, such as
image detection, localization or segmentation.

2.2 Object Detection

To be able to track vehicles, they need to be first detected. The most common methods
use object detection from cameras. This section introduces a general vehicle detection as well
as general object detection in images.

2.2.1 Vehicle detection

There are many ways how to detect vehicles, not just with cameras. One can detect
changes in magnetic fields [32, 20] or use a laser scanner [43].

6/72

2 RELATED WORK

Cameras are the most common sensor, but they can be also combined with a laser
scanner [144, 112] or a sonar [73, 142]. Sometimes a stereo vision [11, 137] can be used to gain
a better model of the environment.

A lot of research was done for detection of vehicles and pedestrians thanks to the recent
advancements in autonomous driving. Many datasets were created [62, 97, 96, 18] for detecting
vehicles, pedestrians and other objects from the vehicle point of view. There is even a research
for detecting vehicles by their shadow [138]. The state of the art in vehicle detection using
cameras is detecting each image independently using techniques described in the section 2.3.

2.2.2 Object detection in computer vision

In computer vision, the object detection is a specified task. The goal is to draw a
rectangle (bounding box) around each object and classify it. The accuracy is measured in
mean Average Precision described in the section 8.1.

Before the introduction of neural networks, various methods were used for object detec-
tion. Haar features were used for detecting faces [52, 88, 140] and vehicles [130]. For general
object detection, the background subtraction [109, 58] or optical flow [103, 114, 23] described
in the sections 4.3 and 4.4. SIFT [93] HOG [46, 143, 159, 39, 31] were also used.

The big advancements came with the introduction of region proposal networks [47].
R-CNN [46] was the first to introduce this concept. It consists of two neural networks, one
to propose the regions of interests and the second one to classify them. Their performance
was mAP of 53.3% on PASCAL VOC 2012 dataset. This was a huge success compared to the
mAP of 43.3 %[19] the year before. However, R-CNN was very slow (47 seconds to detect an
image on GPU with the VGG16 [128] network), thus were far from real-time video analysis.
It requires a full convolutional network forward pass for each of the around 2000 proposals.

Improved and faster version Fast R-CNN [45] achieved 68.4% on PASCAL VOC 2012
with the VGG16 network while significantly increasing speed over 200 times compared to
R-CNN. This was due to sharing computations over proposals and using a single network
for the feature extractor, classifier and the regressor in one network. However, the selective
search for the region proposals was found to be the bottleneck for the detection process.

The Faster R-CNN focused on exactly that. The feature extractor was also used for
the region proposal network making the region proposal almost cost-free. They also increased
the learning speed, because only one CNN needed to be trained. Faster R-CNN with VGG16
achieved 75.9% mAP on PASCAL VOC 2012 dataset with just 7 fps on GPU. This is much
closer to processing a real-time video.

The YOLO [117] performs 45 fps while achieving 63.4 mAP on VOC 2007. It splits the
image in a grid and predicts only two bounding boxes and class probabilities for a square.
However, it struggles with detecting more small objects close to each other and would not be
a good detector for vehicles from the street camera. However, there were some improvements
to this network [118, 119].

7/72

2 RELATED WORK

Faster R-CNN Fast YOLO YOLO SSD300 SSD512

fps 7 155 21 59 22

mAP 73.2 52.7 66.4 74.3 76.8

Table 1: Results on PASCAL VOC2007 test.

Region convolutional neural network, which create proposals and then classify them,
are still too slow. The Single shot multibox detector (SSD) [91] based on [37] leaves out the
region proposals completely and has a fixed number of regions. It was introduced in November
2016 and had an incredible 74.3% mAP at 59 fps on VOC 2007. This network was chosen for
object detection in this thesis and was described more in detail the section 6.2.

There were lately many more architectures introduced, such as [89, 87, 30] and many
more are coming.

These networks process images, but are used also for detecting video. Most common
schema of detection objects in a video is, that the video is decomposed to different frames
and each frame is detected independently [129]. This loses a lot of the information encoded
in the video. Background subtraction [49] or optical flow [103] as described in the section 4
can be used for extracting more information from the video context.

Optical flow can be connected with a neural network [104], but the optical flow is
expensive to compute, even though there is a convolutional network for optical flow estimation
[127]. [70] preserves the video information by taking as an input multiple frames from the
video, but this makes the model large.

A good trade-off between the network’s size and preserving video information was in-
troduced in this thesis by combining the RGB input image with the 4th channel of temporal
difference between frames and feeding it to a neural network. There is a research [6, 75] using
the temporal difference for detection and segmentation, but to my knowledge was not com-
bined with deep learning. To our best knowledge, there was no published result of designing
a detector capable of processing fisheye distorted images.

2.3 Object tracking

The previously described tasks process single images. Now the problem expands to a
new discrete-time dimension when processing video, but for now, keeping just one video feed.
The goal is to create a trajectory or a sequence of bounding boxes of an object. This task
is difficult because of the changes in illumination, partial and full object occlusions and the
real-time processing requirements [153]. Almost all trackers assume, that the frame rate of
the video is high enough, that the movements of the objects are smooth. The approach can
be divided into a dense and a sparse method.

The sparse method scans only pixels nearby the tracked objects and tries to estimate
their movement. The input is a position of the object and it is tracked over upcoming frames.
This is especially good for tracking one object. This method has not been chosen, since there

8/72

2 RELATED WORK

is a need for continuous detection of incoming vehicles and the dense method has been used.
The object can be represented as a single point [67], a bounding box [27, 111, 152, 36], or a
silhouette [63]. Only the changes can be registered [67] or a robust reidentification [139] can be
used, which performs better with occlusions, than standard methods. A statistical representa-
tion can be connected with a Kalman filter [4] or a particle filter [158]. The movement is often
estimated using sparse optical flow [67, 98]. With the recent deep learning advancements,
tasks as tracking are also being solved with deep neural networks [10, 55, 48, 42, 86].

The dense methods for tracking receives a video and detections for each frame. This has
the advantage, that the tracks can be created without explicitly manually selecting each object
we want to track. This method has been chosen, since the vehicle must be detected from each
camera. However, these approaches are more computationally complex, since they require
object detection. The tracker clusters the bounding boxes into tracks. The main methods
use Jaccard overlap [136, 8] and optical flow [23]. This task can be complex because of the
crossing tracks as well as false positive and false negative detections [66, 36].

2.4 Reidentification

When an object leaves one camera and appears in another camera, the task is to rec-
ognize it. When positions and orientations of the cameras are not known, the location and
speed of the detected objects can be used for obtaining the spatial relationships among the
cameras [99]. The key to reliable reidentification is to correctly model the relationships among
the cameras, as well as to find a similarity metrics of the detected objects. When the cameras
overlap, the key is to accurately estimate the position of the tracked object and match them
[72, 78, 157]. The detected objects can look very differently on different scenes because of the
different scaling, rotations and lighting conditions. The brightness transfer function can be
estimated and compensated [64, 110].

When the camera fields of view don’t overlap, the task becomes much more challenging.
The camera positions can be either known [115] or unknown [99]. For reidentification, mean
a posteriori (MAP) is estimated, giving the probability of the detected object being the same
[64, 61]. [71] used a probabilistic Bayesian model formulation with previously known transition
functions. [68] explored this system for controllable movable cameras.

The state of the art multi-camera vehicle tracking approaches are very domain spe-
cific. They are either set for highways with hard-coded lanes [26, 79], rely on license plate
recognition [3, 35], have very narrow field of view [100] or even use magnetic sensors [80].

The methods rely on the same schema: object detection and tracking on cameras and
matching these tracks using similarity and a prior knowledge about relations between the
cameras. The similarity of vehicles is usually decided by the license plate recognition as
mentioned before. The cameras used in the thesis are not good enough to recognize a license
plate. There is a classification network for identifying a car’s model, but they require a good
quality image of the front of the car [102]. Since similarity between vehicles was not otherwise
explored, a similarity of faces was.

The network Facenet [124] by Google is the state of the art for deciding similarity of

9/72

2 RELATED WORK

faces. It is built on powerful Google inception [134] network. It achieved 99.63% accuracy
on the Labeled Faces in the Wild [60] dataset and 95.12% accuracy on YouTube Faces [147]
dataset. This network was selected and retrained in this thesis for vehicle similarity.

10/72

3 FISHEYE CAMERA MODEL

3 Fisheye camera model

Figure 3.1: Frame of the provided video.

For correct estimation of position of detected objects, it is crucial to find the relation-
ships between the camera pixel position and the real world positions.

The cameras were provided by the Brazilian party and no technical parameters were
available. The model of the camera and its parameters had to be computed. A set of improvised
requested calibration images were provided shown in the 3.3.

3.1 Scene localization

Before selecting the model of the cameras, another hardware error of the camera had
to be compensated for. As can be seen in the image 3.1, the scene is shifted in the frame
to the left down. It is not even circle, but rather an ellipse. This is due to manufacturing
uncertainty of sensor placement and this error is different in each camera. Since this project
has to be easily scalable when adding new cameras, and it is not convenient to measure and
set the parameters manually, an universal algorithm for detecting ellipse was developed in
this thesis.

The algorithm, which was designed in this thesis, is based on an iterative optimization.
It takes an image as an input and produces parameters of the ellipse. From observation, the
ellipse can only be either the horizontal major axis or the vertical major axis ellipse. The
equation 1 of the ellipse is rather unusual, but this formulation allows faster cost function
evaluation.

11/72

3 FISHEYE CAMERA MODEL

(x− sx)2

a
+

(y − sy)2

1
= r2 (1)

Now we need to find the parameters sx, sy, a, r.

The original image I of the size H,W , and channels I1, I2, I3 is transformed to a mask
M of the same size by thresholding the total sum of channels on the 8-bit scale is greater or
equal to 1.

Mx,y =

{
1 if

∑3
i=1 Ii,x,y ≥ 1

0 otherwise
(2)

The mask M represents the scene by the pixels with the value 1 and the background
by the pixels with the value 0.

We create a predicted mask E(sx, sy, a, r) of the ellipse as

Ex,y(sx, sy, a, r) =

{
1 if (x−sx)2

a +
(y−sy)2

1 ≤ r2

0 otherwise
(3)

The cost function C(M,E(sx, sy, a, r)) penalizes the pixels that were masked as the
scene and lie outside the ellipse and the pixels, that were masked as background and lie inside
the ellipse.

C(M, sx, sy, a, r) =
W−1∑
x=0

H−1∑
y=0

Ex,y(sx, sy, a, r) · (1−Mx,y) + (1− Ex,y(sx, sy, a, r)) ·Mx,y (4)

The algorithm could evaluate all combinations of parameters, but the number of searched
parameters can be greatly reduced by searching in a coarse to fine manner.

In each step, a baseline is set and for each parameter, a higher and a lower value by a
constant is evaluated. The best value is selected and set as a new baseline for the next step
and the constant is divided by two. The main idea is based on a binary search.

The cost function evaluations can be run in parallel, which can speed up the process
on multi-core CPU.

3.2 Camera model

To correctly localize object from the camera, we need to know the transformations
between real-world coordinates xw, yw, zw and the projection on the captured frame xf , yf .
After applying the algorithm from 3.1, we know, where in the frame the scene is projected.

12/72

3 FISHEYE CAMERA MODEL

First, we will consider the circle model and at the end, we will apply the transformation to
the ellipse.

Computing in the cartesian coordinates is not very useful for optics, because the view
of a camera is inside a cone. Instead, the world coordinates are chosen to be spherical and
the frame coordinates are chosen to be polar. The world coordinates are with respect to
the camera. The transformations between the world cartesian coordinates xw, yw, xw and the
world spherical coordinates rw, θw, φw are standard transformation equations for spherical
coordinates:

Figure 3.2: The spherical coordinates of the world.

xw = rw · cos(θw) · cos(ϕw)

yw = rw · cos(θw) · sin(ϕw)

zw = rw · sin(θw)

,

rw =
√

(xw)2 + (yw)2 + (zw)2

θw = arcsin
(zw
rw

)
ϕw = arctan

(yw
xw

) (5)

The detected scene circle has the radius of R pixels and the center at pixels sx, sy. The
transformations between cartesian frame coordinates xf , yf and the polar frame coordinates
rf , θf are:

xf = sx +R · rf · cos(ϕf)

yf = sy +R · rf · sin(ϕf)
,

rf =
√

(xf − sx)2 + (yf − sy)2

ϕf = arctan
(yf − sy
xf − sx

) (6)

The transformations between the world spherical coordinates rw, θw, φw and the frame
polar coordinates rf , θf need to be found. However, there are some nice properties:

• The ϕ are the same, i.e. ϕw = ϕf . That results from aligning both coordinate systems.

13/72

3 FISHEYE CAMERA MODEL

Figure 3.3: The provided calibration data.

• The transformations do not depend on rw. The projection depends only on the direction,
not on the distance from the camera.

With this knowledge, only the he transformation of θw and rf needed to be found by
representation of function f , such that

θw = f(rf)

rf = f−1(θw).
(7)

There are many models for finding f [28].

• The linear model: f(rf) = FOV · rf

• The tangent model: f(rf) = FOV · tan(rf)

• The sinus model: f(rf) = FOV · sin(rf)

With each model, the only parameter, that had to be found was FOV , which is the
field of view of the camera.

There was no access to the cameras, so the standard calibration using mesh could not
be used. Instead, a set of marks was provided as shown in the figure 3.3. These marks are
exactly 2 meters apart and are enough to estimate the function f(rf).

3.2.1 Linear model

This is the simplest model. The real world angle is proportional to the distance from
the center on the image.

14/72

3 FISHEYE CAMERA MODEL

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75
normalized sensor position[rad]

−1.0

−0.5

0.0

0.5

1.0

re
co

ns
tru

ct
ed

 a
ng

le
[ra

d]

linear fish-eye lense model
reconstructed angle by the linear model
measured angle

(a) The linear model of the lens.

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75
normalized sensor position[rad]

−1.5

−1.0

−0.5

0.0

0.5

1.0

re
co

ns
tru

ct
ed

 a
ng

le
[ra

d]

tan fish-eye lense model
reconstructed angle by the tan model
measured angle

(b) The tangent model of the lens.

Figure 3.4: Approximation of the calibration data by a linear and tangent model of the lens.

θw = f(rf) = FOV · rf (8)

Fitting of the model is shown in the fig.3.4a

As seen in the figure 3.4a, the linear model estimates the real one well only for small
angles.

3.2.2 Tangent model

This is a more complicated model, which is based on the pinhole camera model.

θw = f(rf) = θw · FOV, (9)

Fitting of the model is shown in the fig.3.4a. This model represents the camera optics
much and was chosen to be the final one.

3.3 The city coordinate system

There are many ways how to represent a vehicle in a city. The most obvious one would
represent the position by longitude, latitude, and elevation. This would be correct, but not
very practical. Since the distances between same circles of latitude and longitude are different,
this would need more complicated transformations and there is a simpler model.

Since we care only about only one city, we will use a city cartesian coordinate system
(xc, yc). We can choose any position and rotation of the coordinate system. All we need
to know is the relative translations and rotations of each camera (∆x,∆y,∆φ) to the city

15/72

3 FISHEYE CAMERA MODEL

coordinate system. For simple transformations, we will use homogeneous coordinates [121],
which are in form of (x, y, 1)T . Any transformation of coordinate systems can be represented
as a matrix multiplication.

A point from a camera coordinate system (xw, yw) is transformed to the city coordinate
system (xc, yc) by a standard 2D rotation and translation matrix [121] asxcyc

1

 =

cos∆φ −sin∆φ ∆x
sin∆φ cos∆φ ∆y

0 0 1

 ·
xwyw

1

16/72

4 DATASET GENERATION

4 Dataset generation

A detection and tracking of vehicles without using deep learning was explored. For
several reasons described in this section, it was not used for the final product, but allowed a
much faster video annotating, than standard methods and was used to create the dataset for
training similarity between vehicles described in the section 7.4

4.1 Need for a custom dataset

There are publicly available datasets for image classification and object detection, such
as ImageNet [33], COCO [90]. They also contain images of cars, people, trucks, and other
classes. However, The section 7.1 shows, that these datasets cannot be used on their own
because of the angle, lens type, and other factors, that differ from our cameras.

(a) Example of COCO photo for object detection.
(b) Example of ImageNet photo for image classifi-
cation.

Figure 4.1: The car class examples in ImageNet [33] and COCO [90].

In our domain vehicles viewed from directly above or are very distorted. Creating dataset
from provided videos is the only way to train object detection network.

4.2 Distributed system

This section, apart from dataset generation, introduces a computationally fast solution
capable of running inside lamps, if they were equipped with CPU.

The final system needs to be easily scalable with additional cameras and a particular
system architecture was explored. If the detections and tracking were computed on-board
of the cameras, that would help greatly. There would be much less communication needed.
Instead of transferring whole video streams, only some meta-data would be sent. That would
include:

• Time stamps of frames.

17/72

4 DATASET GENERATION

• Locations of objects and their classes.

• Some description vector of the detections.

• Detections clustered to tracks.

This system could be greatly distributed sending packets of information among only
the cameras that the information is relevant to.

However, this has some downfalls, mainly in the computational manner. Each camera
would have to be equipped either with a capable computational unit. The detections, tracking,
and similarities would all have to be computed onboard. Since it is not possible to have a GPU
in every lamp for many reasons, for example, it is a very wet environment, usage of neural
networks would not be possible. This section introduces approach for detection, tracking and
classification, that could run on CPU inside lamp.

4.3 Background subtraction detection

Probably the best classical detection methods from static videos, that can be computed
in real-time on limited hardware, are based on the background subtraction algorithm [109].
The main idea is creating a model of the scene without the objects that we want to detect
and then subtracting the current frame and by thresholding determine, where the vehicles
are. This simple approach showed many false positives and some improvements need to be
made.

For the background subtraction procedure, a model of the background had to be found.
For our purposes, an model needs to be known of how the road looks like without any vehicles
and people. This can not be done by simply waiting for such a case, but the traffic is usually
high. Instead, the background needs to be acquired from multiple images.

The algorithm was implemented in OpenCV [16]. The background is usually created by
the mean over several images called running gaussian average [148]. The idea is to estimate
a Gaussian to each pixel independently. Each pixel is updated with each new frame as a
weighted sum. The background looks like a photo with a long exposition. In places, where
vehicles drive, are colored lines as shown in the figure 4.2a. When computed the difference
from a video frame to such a background model, as shown in the figure 4.3a, the places, where
usually cars drive, can have high values. This can be bad for creating a mask by thresholding
because a higher thresholding constant has to be set.

The background model changes with every new frame. In the first iteration, the back-
ground B0 is the first frame F0. The background in next iteration is the weighted sum of the
current frame and the background model in the previous iteration.

Bn = α · Fn + (1− α) ·Bn−1 (10)

This algorithm is simple, fast and can be highly parallelized. The picture having N
pixels, the complexity of this standard background subtraction algorithm is O(N).

18/72

4 DATASET GENERATION

(a) Mean model. (b) Median model.

Figure 4.2: Background model created by the mean and the median approach.

(a) Mean. (b) Median.

Figure 4.3: The difference between the frame and a background shown in a gray-scale.

An improved way of acquiring background model was introduced, which greatly im-
proves the quality of current background subtraction methods. A simple change of taking
the median instead of the mean at each pixel position gives a much better estimation of the
background [92, 29]. The algorithm keeps a queue of K images in a memory and with each
incoming frame it puts it in the database and for each pixel, it computes a median from the
queue. This algorithm can be implemented with the complexity O(N · log(K)) if we insert
each pixel from an incoming frame to a sorted structure. In reality, for small K this would
slow the algorithm because in OpenCV and numpy there is a great support for working with
the whole images. This approach simply computes the median over all the images from the
queue. The complexity is O(N ·K ·log(K)). The K was set to 35. The histogram of a particular
pixel position over the queue is shown in the figure 4.4.

This turns out to work much better, but still has its limits. If the traffic is very high
and vehicles occupy on average more than half of the ground, the background model will fail,
but mean approach would fail as well.

Some more complicated models based on unsupervised learning, such as clustering or
taking the most frequent bin from histogram for each pixel position could be used, but they
would be computationally too complex and would not be practical for real-time video.

The difference between background model and the current frame is very noisy and some
filtration had to be made. Before subtraction, the background and the frame were filtrated
with a Gaussian filter with the size 3x3 for smoothing. This compensates for the camera

19/72

4 DATASET GENERATION

0 50 100 150 200 250
pixel value

0.0

0.1

0.2

0.3

0.4

0.5

fre
qu

en
cy

Histogram of pixel values over multiple images and medians
red channel
green channel
blue channel
red median
green median
blue median

Figure 4.4: The histogram of a particular pixel over 100 images with computed medians from
the scene in figure 4.2.

vibrations. Then smoothed again with the filter 11x11. This serves as an apriori probability.
The idea is, that if there are big differences in the neighboring area, it is a higher probability
of the pixel belonging to the car. This also helps to detect gray and black cars, which have a
similar color to the road. Another advantage is, that this greatly reduces noise and helps to
detect vehicles as a whole.

This differential image is thresholded and a mask is obtained as shown in the figure
4.5b. Each blob is presented with a contour and they are thresholded once more by the area.
The resulted blobs become detections and a bounding box is created.

The background must be continuously adapting to the scene, but the rate of adapting is
crucial. If the background is changing too slowly, it will create false positives with changes of
lightning from coming clouds, etc. If the background adapts too fast, it will start to contain
cars, that stop at the cross section and when the cars leave, this will become a new false
detection. From experiments, there is no optimal adapting rate and it depends on the scene,
weather and even then these problems will not completely disappear. One small advantage is
filtering detections while adapting background.

Background subtraction is a computationally fast detection algorithm and when hav-

20/72

4 DATASET GENERATION

(a) A frame for detection. (b) The detections and areas of contours.

Figure 4.5: The background subtraction detection algorithm.

ing perfect conditions, generated bounding boxes are accurate. Unfortunately, it has many
downsides:

• Moving trees and their shadows create false positives.

• Overlapping vehicles are detected as only one.

• It works badly in high traffic because it can’t create a correct background model.

• It is very sensitive to changes of lightning, such as moving clouds.

• It is very sensitive to setting of hyper-parameters.

Most of these points relate to changing the background. Especially if the scene is partly
cloudy and the lighting changes a lot, the background model needs to adapt quickly. On the
other hand, if in the scene is a traffic light, cars spend a lot of time on one spot and could
be incorporated to the background model. Not only the car will not be detected, but a false
positive will be detected when the car leaves.

For these problems, background subtraction alone can’t be used as a good detector,
but on perfect scenes, it can be very useful for collecting high-quality training data for neural
networks detectors, as described in the section 7.2.

21/72

4 DATASET GENERATION

4.4 Optical Flow tracking

The detections were described in section 4.3. Having only the detections for each frame
does not give us that much information. We need to connect these detections to a track.

A custom set of algorithms was implemented in opencv[16] for extending the background
subtraction algorithm to track. Optical flow [7] is used for a motion estimation in a video. It
pairs pixels in two subsequent frames. In other words, it is a discrete 2D vector field, where
each vector is a displacement vector showing the movement of points from the first frame to
second.

The computation of optical flow over the whole image is usually a very expensive pro-
cedure. The method used is Lucas-Kanede method [94].

This computation is not used on the whole image. That would be computationally too
expensive and would not be feasible for limited computational resources and real-time system.
Instead, each detection is extended for a one optical flow point. In the next frame, this point
will move with the object. Each detection is characterized by this point.

This extends the detector for object tracking and partially solves the problem of two
overlapping vehicles. If two vehicles drive close to each other, background subtraction would
start to treat them as one object. This improved model will detect this situation and try to
keep the bounding boxes on the different vehicles.

In first experiments, when a new detection appeared, the position of the optical flow
point was selected with the Shi-Tomasi [126] algorithm, which is an improved version of the
Harris corner and edge detector [51]. It tries to find some features, that have a high gradient
and will be easier to track, rather than selecting just the middle of the bounding box.

In a perfect scenario, the algorithm could be used without further improvements. How-
ever, in real-world scenario, false positives, as well as false negatives detections must be dealt
with. Furthermore, trees and lamps also complicate the situation greatly. When a vehicle
drives behind some sort of a pillar, the optical flow point cannot be matched with a next
frame and stays in the same place in the frame. When the vehicle completely passes, the
tracking is lost. A feature had to be added, which is an additional centering of the optical
flow point to the middle of the bounding box. With each new frame, the optical flow point
moves with the vehicle, but is also moved towards the middle of the bounding box. This solves
the issues of the pillar obstacles but excludes using the Shi-Tomasi and Harris features.

The tracking algorithm is described by a set of rules. The main ones are:

• If an optical flow point is outside the background subtraction mask, it becomes a ’zom-
bie’.

• If a background subtraction detection is without an optical flow point and there is no
’zombie’ in the detection, optical flow point is created in the middle of the bounding
box.

• If a zombie is not recovered in 10 frames, it disappears.

22/72

4 DATASET GENERATION

• If there are more optical flow points in one background subtraction detection, the bound-
ing boxes continue moving with a low pass filter.

• The optical flow points are forced to the middle of the bounding box. This solves the
problem of the optical flow points being created on the front of an incoming vehicle.
When the vehicle is seen from a side, the point is on the edge of bounding box and due
to noise can move outside.

These improvements work surprisingly well and solve the tracking problem to some
extent. If vehicles overlap completely, this approach will fail, but so will most of the other
ones.

4.5 Classification

There are many objects detected in a frame and need to be classified. The most impor-
tant classes are a person and a vehicle. If a classification was accurate, simple scenes could
be annotated 100% automatically. That would mean gaining labeled data almost for free and
creating huge amounts of datasets for object detection networks.

A simple classifier was introduced using Haar features [52] and the SVM classifier. Each
Haar feature is a difference of average brightness level in two rectangular areas in the image.
87 distinct haar features were extracted and a vector of real numbers was created representing
the image. This vector was the input into an SVM classifier.

The SVM classifier was trained on 8144 images of cars and 10567 images of people.
This dataset was extracted from the fisheye traffic videos provided to us, using the methods
described in the section 4.6. The test set split ratio was 0.2.

Accuracy on the test set was 0.842. That is quite a good score without using neural
networks, but still too far from deploying on the final project or dataset creation and it was
not used.

4.6 Semi-supervised dataset generation

Standard annotation approaches for image detection training need the annotator to
draw a rectangle and assign it a class for every detection. This is very time consuming and
therefore costly. A video is usually around 25 frames per second, so to annotate a minute of
video means annotate 1500 images. This process can be made easier by skipping some frames
and moving the bounding boxes around. For the skipped frames linearly approximate the
movement of the objects. This can speed up the process, but it still takes a very long time.

The algorithms introduced in this section cannot be used for the final product, mainly
because of the problems described in the section 4.3. However, that does not mean, that this
can not be used for other purposes. As mentioned before, it works very well on easy scenes.
The bounding boxes are precise and this can help the annotator to annotate scenes faster and
more precisely, than standard approaches. the annotator is presented with a dialog as shown

23/72

4 DATASET GENERATION

Figure 4.6: The dialog from the annotation tool.

in the figure 4.6. That includes the whole track, which is annotated by a user through one
click.

Because of the not perfect classifier, classification is done by the user. The annotator
manually selects the class of the detected track.

24/72

5 CONVOLUTIONAL NEURAL NETWORKS

5 Convolutional Neural Networks

Deep learning is used for artificial intelligence models, which use more non-linear layers
of computation. Most common are the artificial neural networks. They are a computational
model inspired by a brain, that can be thought various tasks from image classification [132]
to speech processing [50]. In this section, we will focus on convolutional neural networks for
image processing.

5.1 Inspiration by biology

Brains are incredibly capable of processing images. Half of a human brain is either
directly or indirectly devoted to vision [131]. Vision can also be a very parallelized process,
which is how a brain is structured.

The basic computational unit in a brain is a neuron. A neuron in a brain has an input
and an output. The input is a dendritic tree, which is connected to outputs(axons) of other
neurons. Neurons are only unidirectional and their output is binary. They either fire, if the
input is strong enough or they don’t. Their connections to other neurons can vary from very
weak to a very strong one and their size can change by learning.

The basic element of artificial neural networks is also a neuron. It also has several inputs
and one output. The most common neuron can be also called a perceptron[122], which is a
well-known classifier. The basic function of a neuron can be described as f(ω ·x+ b), where x
is the input of the neuron, ω is the output and f is the activation function and b is the bias.
The weights and the biases are the only thing, that changes during the training, where the
goal is to find such weights and biases, that the neural networks perform the required task
well.

When an architecture is created, the neural network needs to learn how to perform the
required task. It figures that out in a training phase from showing the network many input
data with labels, for example, many pictures and classes of the objects in the images. This is
called a supervised learning. After the training phase, the weights are frozen and the network
can perform the task, that is was trained to do.

While the structure of the neural network is inspired by the brain, the training is not.
The way it is performed is explained more in detail in the section 5.3.

5.2 Layers

Neurons in artificial neural networks, similarly like in a brain, are organized in layers.
These layers are usually connected to each other in a serial way. Neurons in one layer per-
form the same function. There are more types of layers depending on the neuron function
and the way they are connected. The information describing this defines the neural network
architecture.

25/72

5 CONVOLUTIONAL NEURAL NETWORKS

5.2.1 Convolutional layer

(a) An example of a convolutional layer. (b) Model of a neuron.

Figure 5.1: Examples of neural networks concepts from [69].

The convolutional layer is a set of neurons placed in a grid of size m × n × k. Each
neuron is connected to a local region in the previous layer. Each neuron performs the function
f(ω ·x+b) shown in the figure 5.2b. Thanks to their regular structure and sharing parameters
they perform a convolution function, where they look for different features in the previous
layer. The neurons in lower layers can detect edges or lines, while neurons in higher layers
can detect eyes or wheels. The neurons can be in a sparser grid relative to the previous layer
with gaps called stride, downsampling the previous layer.

A better insight into this phenomena was described in [155].

5.2.2 Pooling layer

(a) Pooling downsamples the previous layer. (b) Max pooling operation.

Figure 5.2: Examples of pooling concepts from [69].

The image has usually high resolution, but the information gained can be described in
the much smaller information. Because at the lower levels we care about the relative positions
of different features, such as lines or colors a lot, with the higher level, where the generalization
is bigger, the dimension of the network usually becomes smaller. Pooling neuron takes a set
of inputs and returns only one output as the highest input(max pool) or the average of the
inputs(average pool). The pooling layer[123] is an important part of almost all convolutional
neural networks and it can not be trained since it does not have any parameters.

26/72

5 CONVOLUTIONAL NEURAL NETWORKS

5.2.3 Fully connected layer

In the fully connected layer, each of the neurons is connected to every neuron in the
previous layer. Since the layers can have many neurons, this is a very expensive layer and is
usually performed in the last layers of the network, where the layers are smaller.

5.2.4 Overfitting and dropout layer

Neural networks have many parameters and high Vapnik-Chervonenkis dimension [13],
therefore it is more prone to overfitting on small datasets. The network should figure out
from the training set of examples some basic understanding of the problem and use this
knowledge to process a sample, that it has never seen before. Overfitting means, that the
network performs well on the training set by learning it by heart, but fails on the test set.
This is a general phenomenon in machine learning. Usually, the way is to select a simpler
classifier, that can still handle the problem, regularization(penalizing high weights) or increase
the training data. Neural networks have come up with a solution called dropout, which does
not solve the problem completely, but greatly helps.

A neuron in a dropout layer has only one input and during training randomly copies its
value to the output or returns a zero. This forces the network to build more robust connections.
This layer is active only during training.

5.3 Backpropagation

As mentioned before, the learning of artificial neural networks is very different from
learning of a real brain. With each input example, the network performs a forward pass.
The information flows from one layer to next layer and the operations are performed until
the information reaches the output layer. Information is compared with the ground truth
embedding and a backpropagation is performed, that changes the parameters of the network
in a way, that next time the output is closer to the required embedding. The difference is
called loss and there are different ways to compute it.

The simplest square loss is computed as

L(y) = −
N∑
i=1

(yi − ŷi)2. (11)

After each forward pass, backpropagation finds a gradient for each weight and bias ω,
that minimizes the loss and changes it in the direction.

ωt+1 = ωt +
∂L(yt)

∂ω
(12)

27/72

5 CONVOLUTIONAL NEURAL NETWORKS

This general process is called a gradient descent. Backpropagation is an efficient way
how to compute these partial derivatives from back to the front of the network based on the
chain rule.

5.4 Transfer learning

Since filters in lower layers detect just very simple features, in comparison to higher
layers, they are not too domain specific. If a network was trained on images of animals and
we wanted to retrain it to detect vehicles, the higher level filters for detecting eyes or legs could
not be used. In contrast, the low-level features detecting edges or lines could stay unchanged.
This is the high-level idea of transfer learning. Training the network on a different domain
and retraining it for a different one.

This has many advantages. Training of the lower layers is more difficult because of the
vanishing gradient problem [57]. Training of these layers also requires a huge amount of data
and computational time. There are many different trained networks available online. Using
such a network and only fine tuning it [56] to a specific task requires also less training data.
However, this is possible only for the exact same architectures of the networks.

5.5 Frameworks

Artificial neural networks require sometimes billions of very simple operations. Although
they have been known for many years[145], only recently they have had a great success. That is
due to increased computational power, parallelizing the computations on GPU, which perform
these operations much faster than CPU and access to a big amount of data.

There are also some frameworks, that offer very fast computations on GPU such as
Google’s TensorFlow [2], Theano [9] or CNTK[125] by Microsoft, from which the TensorFlow
is the most common and the reidentification part of the thesis described in the section 7.4
was implemented in this framework.

There are also some libraries such as Keras [24] and Caffe [65] that make implementing
deep learning in C++ or python much easier. The SSD object detection network described
in the section 7.2 was implemented in Keras.

28/72

6 CLASSIFICATION, DETECTION AND REIDENTIFICATION NETWORKS

6 Classification, Detection and Reidentification networks

The Neural networks are the state of the art for all kinds of image processing. The
easier task is image classification, for which the driving force has been the ILSVRC [33]
competition. This task is considered to be solved, but networks for classification are being
used as a backbone (base network) for object detection networks. VGG [128] described in the
section 6.0.1 was used in this thesis as a base network for SSD [87] described in the section
6.2. The Google Inception [132] described in the section 6.1 was used as a base network for
the Facenet [40] described in the section 6.5.

6.0.1 VGG

The VGG[128] architecture from Oxford is one of the simplest ones but is very accurate.
It is often used as a base network in object detection networks such as YOLO[117], ARTOS[5],
SSD [91] or Faster R-CNN [120]. In this thesis, the VGG network was used as the SSD
backbone and was adjusted for this specific domain in the section 7.2.

The VGG is an image classification network. It takes an input image and produces
probabilities for each predefined class. It was inspired by [25] and [77].

The input resolution of the network is fixed to 224 × 224. The idea of the network is
to use very small filters 3 × 3 (which is the smallest size to capture the notion of left/right,
up/down, center)[128]. Two of these filters stacked on top of each other create a receptive
field of 5 × 5 and three have the receptive field of 7 × 7. With sharing parameters, the three
layers have almost half the parameters, then the layer with 7 × 7 filters. This is different from
[77] with 11 × 11 filter in the first layer and [155] with 7 × 7.

To bring more non-linearity, the VGG16 uses filters with 1 × 1 filters. This was used
also in [83] as a network in a network.

Thanks to padding and the stride 1 of convolutional layers, the layers are down-sampled
only by 2 × 2 max-pool layers with stride 2. The number of channels increases for better
processing of higher level features.

Different VGG architectures were designed in [128] and their architectures are shown
in the figure 6.1.

6.1 Inception

The Google Inception network [132] was used as the base network for Facenet [124]
described in the section 6.5, that was used for computing vehicle similarity. Inception was
the winner of the 2014 ILSVRC [33] with the 6.67% top-5 error rate. It has only 4 million
parameters compared to AlexNet [77] with 60 million and VGG16 [128] with 138 million
parameters. A network with a low number of parameters is easier to deploy on less powerful
machines and is less prone to overfitting.

29/72

6 CLASSIFICATION, DETECTION AND REIDENTIFICATION NETWORKS

Figure 6.1: The different VGG architectures. The ReLU function is not shown for simplicity.
[128]

They achieved this by introducing an inception module shown in the figure 6.2. These
are basically small models inside a bigger model. The idea is, that when adding a layer, one
must decide which layer to use. The Inception module combines all these possibilities together
and performs a 1×1 convolution, 3×3 convolution, 5×5 convolution and 3×3 pooling layer.

Apart from classification training, Inception network was used for face identification
[40] and object detection [105, 133].

30/72

6 CLASSIFICATION, DETECTION AND REIDENTIFICATION NETWORKS

Figure 6.2: Inception module [132] with dimension reductions.

6.2 SSD network for detection

The state of the art in detection is at the time the Single Shot MultiBox detector [91].
This network provides accurate real-time object detections (74.3% mAP at 59fps on VOC2007
on GPU). They achieve much faster speed, compared to previous Faster R-CNN (7 fps on
GPU) thanks to eliminating the bounding box proposals. Since the SSD architecture is much
simpler and compact than R-CNN architectures, the training is performed end to end on
a single model, instead of training multiple networks for region proposal, classification and
bounding box regression.

6.2.1 Architecture

The SSD network uses one feed forward flow to produce a fixed number of bounding
boxes and their probability for each class. The early layers are sometimes called a base network
or a backbone. They are a classical architecture for image classification.

Some additional layers were added on top of the base network shown in fig. 6.3. Multi-
scale feature maps for detection are convolutional layers that progressively decrease their size
and allow cheap detections of multiple scales. Convolutional predictors for detection can from
feature maps of size m × n with p channels can predict scores for categories or the offsets
for each 3 × 3 element using small kernels of 3 × 3 × p. With decreasing feature maps, the
predictions relate to different object scales. The bounding box offsets are measured relative
to each feature map location.

31/72

6 CLASSIFICATION, DETECTION AND REIDENTIFICATION NETWORKS

Figure 6.3: Comparison of the SSD[91](300x300) and YOLO[117](448x448) architectures.

(a) SSD prediction. (b) 8 × 8 feature map. (c) The predicted offsets.

Figure 6.4: The SSD [91] predictions.

6.2.2 Default boxes and aspect ratios

Each feature map cell, from the feature maps at the end of the network, is associated
with a set of bounding boxes. They differ in shape and scale as shown in the figure 6.4c. Since
the feature maps are computed from convolutions and max pool layers, the bounding boxes
regularly tile the input image as shown in the figure 6.4c with fixed positions.

A prediction of a probability of each class and predicted offset of the bounding box is
computed. The offsets are given relative to the associated fixed position of the bounding box
as shown in the figure 6.4b. For predicting k shapes and c classes with 4 numbers representing
the translations ∆(cx, cy, w, h), we need k(c+ 4) filters for each feature map cell and for one
m× n feature map layer we need mnk(c+ 4) filters. The default boxes are similar to anchor
boxes in Faster R-CNN with the difference, that SSD uses multiple feature maps for different
object scales.

32/72

6 CLASSIFICATION, DETECTION AND REIDENTIFICATION NETWORKS

6.3 Loss

The network is trained with two training objectives. The first one is the classification
loss Lconf and the second one is the localization Lloc loss. These two losses are added to a
unified loss L and propagate together. The loss according to [87] is:

L(x, c, lg) =
1

N
Lconf (x, c) + αLloc(x, l, g) (13)

where N is the number of matched boxes, x = {0, 1} is indicator for matching default
boxes to ground truth boxes, c is the confidence of each predicted class, l is the predicted
bounding box and g is the ground truth box and α is a weighting constant. The Lconf is
the cross-entropy maximizing the ground truth class confidence and minimizing other classes.
Lloc maximizes the Jaccard overlap of good predictions using the Smooth L1 loss [45]. Both
of these losses are easily differentiable and can be backpropagated.

6.3.1 Training

With each training image, the ground truth boxes need to be assigned to a default
bounding box. The ground truth box is matched to all default boxes, which have the Jaccard
overlap higher than 0.5. This is more robust than picking only the one box with the highest
overlap as in MultiBox [37]. After that, the training is performed end to end by a standard
backpropagation.

The training phase also includes a positive and a hard negative mining. Not all pre-
dicted boxes participate in training. Most of the predicted boxes are usually negatives. The
backpropagation is on all the boxes matched with ground truth box as well as the negatives
with the lowest score for the background. This is called hard negative mining and it speeds
up the convergence. The negatives are picked with the ratio 3:1 to the positives.

6.4 Non-maxima suppression

Detectors usually create many predictions around an object as shown in the figure 6.5a.
The goal of non-maxima suppression is to keep only a single bounding box.

Each prediction has a confidence. Non-maxima suppression sorts all predictions by their
confidence. It takes a prediction with the higher confidence and finds all predictions with a
Jaccard overlap[136] higher than some constant, removes them and moves to next prediction.
This is a naive approach and use of k-d trees can speed up the process.

The constant is the only parameter of the algorithm and setting it is a very important
thing. If set too high, objects will have multiple detections. If set too small, objects, that are
close together, will be detected as one. The rule of thumb is to set the constant between 0.3
and 0.5.

33/72

6 CLASSIFICATION, DETECTION AND REIDENTIFICATION NETWORKS

(a) Predictions before applying nms. (b) Predictions after applying nms.

Figure 6.5: Non maxima suppression[34] keeps a single prediction.

(a) The model structure. (b) The learning objective.

Figure 6.6: The Facenet [124].

6.5 Facenet for reidentification

Google Facenet [124] is a deep neural network for computing similarities between faces
but can be retrained for computing similarities between objects from any domain, such as
vehicles. This network receives an input image in RGB with the size of 220× 220 and returns
an embedding vector with the length of 128. The Euclidean distance between samples directly
corresponds to the similarity of objects. Faces of the same person are mapped to the similar
place in the Euclidean space. Once we have these metrics, recognition becomes a K-NN and
verification is a simple thresholding of the distance. The goal is, that the embeddings will be
invariant to pose, illumination and other factors. For computing, the similarity of an image
with more images representing the same identity, a mean of the distances is taken.

6.5.1 Architecture

The facenet architecture is mostly an image classification network for 128 categories
and a normalization layer. Google has tried various architectures, such as Zeiler&Fergus [155]
(with the input resolution 220 × 220), Google Inception [132] (224 × 224, 160 × 160, 96 ×
96) and mini Inception (165 × 165) and tiny Inception(140 × 140).

34/72

6 CLASSIFICATION, DETECTION AND REIDENTIFICATION NETWORKS

The [132] shows, that the embedding space dimensionality of 128 is enough for recog-
nizing faces.

6.5.2 Training

The training and evaluation data are sets of images of different people. The goal of the
network is to project images of the same person close to each other and different people far
from each other as shown in the figure 7.4b. This is a different problem, the classification,
where a finite number of categories is previously known. There have been attempts [149, 135]
at training network for classification and then removing the last classification layers, but with
less success.

The introduced approach is different from an image classification training and is called
triplet loss. With each training step, three examples are selected. Two of the same class and
one from a different one. One of the positives is called anchor, the one from the same class
is called a positive and the third one a negative sample. The goal is to change the network
parameters in a way, that the positive embedding is moved closer to the anchor and the
negative further from the anchor.

The triplet loss is represented as f(x) ∈ Rd, where x is the input image that is trans-
formed into an Euclidean d-dimensional space. The last normalization layer normalizes the
embedding to a hypersphere of the size 1, meaning ‖f(x)‖2 = 1

To ensure, that the model is consistent, meaning, that there exists a threshold, that
will correctly classify every pair of the images, we need to ensure, that for α = 0

‖f(xai)− f(xpi)‖
2
2 + α < ‖f(xai)− f(xni)‖22

∀(f(xai), f(xpi), f(xni)) ∈ T
(14)

The α is a constant, that can enforce a margin. T is a set of all possible combinations
of images in the training set.

The loss, that is being used for training according to [132] is

N∑
i

[‖f(xai)− f(xpi)‖
2
2 − ‖f(xai)− f(xni)‖22 + α]+. (15)

After a couple of steps of training, most of the images will be classified correctly and the
constraint will be met. For fast convergence, it is crucial to select those triplets, that violate
the condition. This is called hard positive and hard negative mining.

There were recently some improvements of triplet loss in form of quadruplet loss [22],
that enforces greater margins among classes.

35/72

6 CLASSIFICATION, DETECTION AND REIDENTIFICATION NETWORKS

6.6 Multi camera tracking

After solving the task of detection, single camera tracking, and similarity metrics, The
task needs to be extended to the whole city. It is important to note, that the city with built
cameras in lamps does not exist at the time of writing the thesis, therefore these ideas cannot
be tested on the whole city. Only a theoretical approach was explored. It is also important to
keep in mind the task of tracking one vehicle in a city, therefore not tracking all vehicles at
once, which can

36/72

7 IMPLEMENTATION

7 Implementation

The deep learning runs in TensorFlow [2] framework. Keras [24] was used for imple-
mentation and development of neural networks, opencv [16] for video and image operations
and numpy [141] for fast vector operations. The whole project was written in python.

7.1 Mask R-CNN segmentation

(a) Mask R-CNN on a standard street camera.

(b) Mask R-CNN on a fisheye camera has prob-
lems recognizing vehicles from the top.

Figure 7.1: Examples of Mask R-CNN network [53].

First, a couple of approaches were explored. One of them is Mask R-CNN[53]. This
network builds on detections and provides segmentation. This gives more information since
we know exactly what parts of objects belong to which entity, making the tracking simpler. As
shown in the figure 7.1a, Mask R-CNN can very well detect standard traffic scenes, however,
in the figure 7.1b one can see, that it has problems detecting vehicles from the top. This is
due to a very small number of vehicles viewed right from the top in the Microsoft COCO
dataset [90].

Since there are no datasets for training and evaluating segmentation from the top-places
fisheye street cameras the performance was not measured. Transfer learning could be applied,
but creating such a segmentation dataset is very expensive to create. Combining this fact
with the 5 fps of this network, it is not feasible for real-time application and this approach
was not explored further.

However, it is a valuable insight and when segmentation becomes faster, this is definitely
an approach worth looking into in the future work.

37/72

7 IMPLEMENTATION

(a) A frame from the street camera. (b) Temporal difference highlights moving ob-
jects.

Figure 7.2: Temporal difference helps to detect moving objects.

7.2 SSD detector

The most important part of the thesis is the vehicle detection. This is a very hard
problem given the conditions. First of all, since the camera is fisheye, it is not possible to
simply use an off the shelf network trained for example on ImageNet or on PASCAL VOC
and use it right away.

For the detector was chosen the SSD network [91] described in the section 6.2. It is the
state of the art real-time detector outperforming the R-CNN[120] and YOLO[117] in speed
and accuracy as described in the section 2.2.2.

The SSD used VGG16 for the base network, which is described in the section 6.0.1.
VGG networks are popular among detection networks for their performance and simplicity.

The SSD introduces two versions differing in the input resolution: SSD300 and SSD512
with the resolutions 300×300 and 512×512 respectively. Because the cameras are positioned
high and because of the fisheye view, objects, especially bicycles and motorcycles, can appear
very small. It is sometimes a problem for humans to detect them on 1024 × 1024 image,
therefore the version with higher resolution was chosen.

A working network implemented in keras[41] was used as a starting point, but some
modifications were made.

38/72

7 IMPLEMENTATION

7.2.1 Temporal difference

As described in the section 2.2.2, the standard pipeline for video detection is detecting
each frame independently. This loses much information, that can be gained from the video.
Cameras used in this thesis are static and the vehicles, that are to be detected are mostly
moving. A cheap segmentation of the scene is a temporal difference.

A difference between two subsequent frames is shown in the figure 7.2b. It is computed
as:

D(F T
i,j) = max(255,

3∑
c=1

|F t
i,j,c − F t−1

i,j,c |), (16)

where F t
i,j is a value of a frame at the time t, i-th row and j-th column. The image is

represented in 8-bit unsigned int, therefore to prevent overflow, the value is saturated on 255.
The difference between frames can be computed very fast in python using numpy[141] and
opencv[16] libraries.

There are more ways, how to use this information in the network. One could feed just this
layer and probably achieve good detections but would have problems with object classification
by losing the RGB information. The introduced approach keeps both the information by
feeding both to the network.

The SSD network was extended for an extra input channel in addition to RGB, that is
the temporal difference. The data have size H ×W × 4 instead of H ×W × 3 for standard
images. This version of the network was temporarily called RGBD network. The D stands for
the difference and should not be confused with commonly used distance.

In some cases, parked cars should not be detected. This is in a case of a road with a lot
of parked cars and where are no traffic lights. In this case, the tracking will perform better
with less bounding boxes and no occlusions with the parked cars. This can be easily done by
computing the average value in the difference channel and thresholding it.

39/72

7 IMPLEMENTATION

7.2.2 Architecture

The architecture is similar to the original SSD512 architecture, but some changes were
made. The input layer was extended to the differential channel as described before.

According to [17], SSD might have a problem with detecting small objects. Therefore
one more feature layers were added with a small scaling factor of 0.05, compared to the
original 0.1. This additional feature layer is able to detect roughly twice as smaller objects as
the original network, such as pedestrians, bicycles or motorcycles.

7.2.3 Dataset

A scene annotating was introduced in the section 4.6. However, this approach could not
be used for SSD training and was used only for similarity training described in the section
7.4. Even though it produces no false positives, sometimes it produces false negatives due to
the inability of correctly segmenting overlapping objects. It only detects such a situation and
does not label anything.

Despite over-all good scene annotation, the SSD’s hard negative mining strategy selects
the bounding, that the network predicted most likely as a presence of an object and was not
labeled and tweaks the weights in such a way, that next time it is predicted as a background.
In other words, if a vehicle is not labeled in the image, the network might detect it but will be
corrected, that it is a background. This would lead to a bad learning, overfitting and might
not even converge.

A standard online annotation tool was provided by the Good Vision company, that
allows annotators to draw bounding boxes and attach classes to images. Several annotators
have annotated 1764 images.

The Brazilian party provided 15 videos from different scenes, each about 1 hour long.
Each video was shot from a slope on a car, as shown in the figure 3.3. Only two cameras in
lamps were working and recording video at the time of writing this thesis since the whole
project is still in development.

The RGB images and the temporal difference was extracted from the total of 17 scenes
a second apart and the images without traffic were deleted. There is a need for many scenes
for the diversity of the roads, surroundings and lighting conditions. A detector can easily
overfit on a scene by learning its background, therefore the test data were chosen to be one
scene, where the detector did not learn.

The dataset contains 1654 training and 110 testing images. Because of the sparsity of
the data and not many hyperparameters, the validation set is equal to the test set. There are
7 classes in the data: [person, bicycle, car, bus, motorbike, truck, animal]. The classes person
and animal are not important for this project but might be used for adding new features in
the future.

40/72

7 IMPLEMENTATION

7.2.4 Data augmentation

For extending the dataset, many different methods of editing the images are being used.
They usually contain horizontal flip, selecting patches or editing brightness.

The nature of the 360-degree camera enables us to rotate the image in an arbitrary
angle, not only a horizontal flip, such as on standard datasets.

On a standard frame, not all vehicles are moving. Some are parked and some stay at a
traffic or on a red light. It is important to detect these also, therefore 4th layer is set to zero
with the probability of 0.1 to provide more data for the RGB part of the network.

Instead of creating a new augmented dataset, augmentation adjustments were applied
on each incoming sample during training. All the data augmentation techniques used are:

• Random rotation of the image.

• Random brightness change.

• Random image translation.

• Random scaling of the image.

• Random setting of the 4th channel to zero.

7.2.5 Training

It is not possible to use a pre-trained model on ImageNet[33] or COCO [90], because
of the changed architecture of the network. A pre-trained weights could not be used for
transfer learning. An attempt was made to pre-train the model on Youtube-bounding boxes
dataset[116], but only static videos would have to be selected because of the differential input
channel and the scenes are too different from the fisheye traffic camera.

The images were shuffled before each epoch. The minimum overlap between the anchor
and a label was set to 0.5, the maximum overlap between anchor and background label was
set to 0.2 and the threshold for moving labels from the ground truth during training was set
to 0.2. The training was performed on the NVIDIA GeForce GTX 1080 for 4 days.

A custom tensorboard callback and mAP computation had to be implemented for ob-
serving the training progress and evaluating the model. Other features were added, such as
tracking the detection ratio or computing the best threshold from the mAP curve.

The Adam optimizer [74] was used with parameters: The learning rate 10−3, β1 =
0.9, β2 = 0.999, ε = 10−8, decay = 0.0005. These parameters were selected by [41] and were
not changed. The training process is shown in the figure 8.2

The training converged after estimated 3000 training steps. The final training loss was
0.3035 ant validation loss 0.2201. The mAP on the test set was 91,6 %.

41/72

7 IMPLEMENTATION

(a) The mean average precision on validation set.

(b) The loss on the training set.

(c) The loss on the validation set.

Figure 7.3: The process of training the 4 channel input SSD network. The training was
performed on the NVIDIA GeForce GTX 1080 for 4 days.

7.3 Single camera tracking

Single camera tracking is the only thing, that was not implemented by the author of
the thesis. The company Good Vision provided their own state of the art tracker. It is similar
to the tracker explained in the section 4.4, but more advanced.

It requires the video and a sequence of detections and connects these detections to
tracks, which are sequences of these detections. This allows non-supervised clustering of track
in the scene without needing to mark the initial object.

The Good Vision tracker works in three steps called seeding, displacement, and match-

42/72

7 IMPLEMENTATION

ing.

7.3.1 Seeding

When a new detection appears, a set of features is initialized. These are a set of points
inside the bounding box that were selected by the Shi-Tomasi [126] feature detector. The
Shi-Tomasi chooses features by finding local maxima in differentiating the image in both axes
and choosing the smaller of the two. It usually finds corners or other distinguishing features,
that are easier to track by optical flow [7].

Because the detection is a bounding box, the features are initialized not only on the
tracked vehicle but also on the background. This is undesirable since we want to track only
the moving object. This could be solved by replacing object detection with segmentation but
would increase the computational time of the detector and make creating datasets harder.

7.3.2 Displacement

After features were initialized, displacement of each feature is computed with the in-
coming frame. The movement is estimated by optical flow using Lukas Kanede [94] method.
Optical flow is computed only for the sparse local features and not for the whole frame, mak-
ing it faster. Those features, that were initialized on moving vehicle move with it and those
on the background stay in the same place.

7.3.3 Matching

Each feature remembers, which object it originally belonged. After the features were
moved in the displacement step, they are matched to the new detection. The features outside
detections(those previously seeded on the background) are removed. The detections with
features, that belonged to the same previous detection, take its identity and are matched
together. This way a track is created.

7.4 Similarity

The neural network Facenet [124] was chosen as the metrics of similarity among vehicles.
As described in the section 6.5, it is designed to compute the similarity between faces and
is taught to be invariant to various poses and illumination conditions. The network can be
retrained for a different domain apart from faces, in our case vehicles. Given an image of a
car, the network will produce an embedding in a 128-d Euclidean space in such a way, that
the same objects should be close to each other. Google has tried many architectures, that
are compared in the figure 7.7d. The Inception network NN3 with the input resolution of
160 × 160 is a good trade-off between the speed and accuracy. Furthermore increasing input
resolution is not practical for our task, since the resolution of the cameras is only full HD and
the vehicles inhabit only very small area in the frame.

43/72

7 IMPLEMENTATION

(a) Mean VAL at 10−3 FAR.

(b) Comparison of different DNN architectures.

Figure 7.4: Comparison of various facenet[132] base networks evaluated on Labeled faces in
the wild[60] and YouTube faces[147] datasets.

As a starting point, TensorFlow implementation of the network [40] was used. The
network stayed unchanged, but the data handling, tensorboard callbacks, and evaluation had
to be implemented.

7.4.1 Dataset

Figure 7.5: An example of a one object in a training set.

The dataset needed for this task is in a form of a set of images of an object for many
objects. That means, that we need set of images of the same vehicle for many vehicles. Use
of other datasets, such as [76] is not possible, because their images look too different, from
those in the fisheye street camera.

44/72

7 IMPLEMENTATION

The main idea in creating a custom dataset was, that if we have a track - a set of
bounding boxes of the same car on one scene, we can use these detections as a set of images
of the same vehicle. That is exactly what the background subtraction and optical flow do. This
dataset was created by a semi-supervised annotation tool based on background subtraction
and optical flow described in the section 4.6.

Different scenes and different weather conditions were used for better diversity. The
created dataset contained over 9 000 images.

7.4.2 Problems with the dataset

When the facenet network was trained on this dataset, it did not work at all. There are
a couple of big problems that have to do with the way Facenet learns. In each training step,
it takes two images, that belong to different classes, but were classified as too similar. If each
class contained a different car, this would make no problem. However, vehicles, especially in
South America, are very similar. If there is a model of the same car in the database more
times, the facenet will be taught, that it is a different car and it needs to change. Especially
if the car is in the same scene, it looks almost identical and not even human can tell them
apart.

Another problem is, that if the same model of the car appears on a different scene,
there is no match with the original car. The network treats these cars as different. This is the
opposite of what we want to achieve.

The final problem considers low diversity among one track. The road is usually of the
same color and the lightning conditions barely change. The network can then overfit on these
features and will not generalize.

7.4.3 Improving the dataset

These problems had to be taken into account when creating a new version of the dataset.
It would be very hard for the annotator to remember, which types of vehicles have passed and
which did not. Instead, the original dataset had to be clustered. That means putting same
vehicles from different scenes into one class. This is a very time demanding process, but the
results are worth it.

7.4.4 Training

To extend the dataset, some augmentation techniques were used, such as rotation of
the vehicles by 90°. Transfer learning was used and the network pre-trained by Google on
faces was fine-tuned on vehicles. The training took 12 hours (150 000 steps) on the NVIDIA
GeForce GTX 1080. The training set contained 8800 images and the validation set 884 images
from the clustered dataset. These were models of a vehicle, that the network has not seen
before. The accuracy was computed by changing the task to a classification task described in

45/72

7 IMPLEMENTATION

Figure 7.6: Accuracy during the facenet training.

the section 8.3.1

(a) True positive rate. (b) True negative rate.

(c) False positive rate. (d) False negative rate.

Figure 7.7: Additional information about the Facenet training. The training was performed
on the NVIDIA GeForce GTX 1080 for 12 hours.

The final results are shown in the table 3.

46/72

7 IMPLEMENTATION

Figure 7.8: Visualization of facenet embeddings using the T-SNE dimensionality reduction.

7.4.5 T-SNE visualization

The facenet transforms the images into a 128-dimensional Euclidean space. It is very
hard to understand problems, such as the variance of rotation, lightning and so on. Simple
distances between images are not enough to understand better of the embeddings.

Some dimension reduction techniques can be used for the embedding visualization. The
most common techniques are PCA[146] and T-SNE[95]. PCA is better to understand the
overall relations, while T-SNE can better visualize the local relations. T-SNE was chosen
and a small batch of car images was selected. The T-SNE was computed in python using
sklearn[108] package.

The T-SNE algorithm The results are shown in the figure 7.8.

It can be seen, that it can distinguish different colors of cars. However being presented
two very similar white vehicles, it has some problems distinguishing them. Also, we can see,
that the network is not fully rotation invariant, even though it was trained to be. But we
need to keep in mind, that a lot of information was lost with the dimensionality reduction,
therefore the preview is not very reliable.

7.5 City representation

There is a couple of ways how to represent a city, its cameras, and vehicles. It does
not make much sense to represent the city as a 3D model since the city is mostly 2D and an
altitude of places would be complicated to precisely measure.

If we had cameras in every lamp, this would be a different task, since we could use

47/72

7 IMPLEMENTATION

Figure 7.9: An example of a part of city representation with transition probabilities.

techniques for overlapping camera tracking. However, this is not the case. The cameras are
only at some and the rest of the system is mostly unknown.

Since vehicles drive only on roads, it would be a good idea to include this knowledge
in the model, rather than not constraining the vehicles positions. The model should be also
easily scalable.

This leads to representing the city as a graph, rather than a 2D plane. All the cameras
will be representing a set of vertices and connections between them are edges. Each vertex
corresponds to a vehicle state. The edges don’t necessarily represent roads directly since the
cameras are not at every intersection.

The city is represented by a Markov chain, where the probabilities of all the outgoing
edges sum to 1.

When a vehicle is detected on one camera, the heading is an important piece of infor-
mation and can be detected from the track. Therefore we create a different state for each
vehicle direction as shown in the figure 7.9.

Each edge has a probability(transition function), that corresponds to the vehicle moving
in that direction. Some probabilities are deterministic, for example, a long road with multiple
cameras and no intersections. Some transitions are probabilistic, as shown in the figure 7.9
as Pi or 1 − Pi. When there is no camera at an intersection, only a probability can describe
the vehicle’s movement. In this case, each edge will have a constant probability assigned to it
based on observation. This can be a function of for example daytime, but will not be changed

48/72

7 IMPLEMENTATION

otherwise. In case of a camera at the intersection, the probability will be adjusted based on
the measurement of the camera, but still can deal with some uncertainty, especially when the
camera is not sure, where the vehicle actually went.

This probabilistic representation allows more advanced modeling of the city with some
uncertainty.

Each of the vertices has some more parameters, which are the mean and variance of
traveling between the vertices. This is obtained by observing the vehicles. This can also be a
function of daytime or the traffic.

7.5.1 Reidentification

When expecting a vehicle in a camera, not only similarity but also a time and the
estimated position of the target vehicle plays a role. An algorithm is presented, that takes
all the information and combines it with a simple yes/no answer if a detected vehicle is the
target one. If the target vehicle was at time t0 at a state s0 with the probability p0 and there
is a transition probability of P i

0 to a state si and the edge having a mean transition time
µi0 with variance σi0 and the detected similarity distance between the target vehicle and the
detected one is m, then the score function is

S(i,m, t) = m−1p0P
i
0

1

σi0
√

2π
e
−
(
t0+µ

i
0−t

2σi0

)2
(17)

The score function of the i-th state with the measured similarity distance m at time t
is thresholded and that gives us a robust yes or no answer if the detected vehicle is the target
one. If more tracks are thresholded, the track with the most matches is considered to be the
target vehicle.

This method describes a reidentification of one edge. If a vehicle is detected, the proba-
bility of the vehicle being at the time t at state i is 1, and the algorithm follows the vehicle on
another edge. The score function expects a normal probability of appearance of the vehicle
at another camera.

The µ can also be a function of velocity and position of the car. For this, a precise
calibration of the camera needed to be developed as described in the section 3

49/72

7 IMPLEMENTATION

7.5.2 Decreasing computational demands

Because the detection is a computationally very expensive process and only one vehicle
is being tracked, it does not make sense to run the detector on all cameras at once, especially
in a big city for cameras being far away. The equation 17 can be rewritten to

A(i, t) =
∑
j∈T

p0P
i
0

1

σij
√

2π
e
−
(tj+µij−t

2σi0

)2
(18)

where T is the set of all the states sj , that have an edge leading from sj to si. The score A(i, t)
is the probability of the target vehicle being at the camera. It can be thresholded and giving
us the information about whether the camera can be turned off or not. This is generally fast
to compute.

7.6 Multi camera tracking

All the different parts of the thesis were put together to be able to detect a vehicle,
detect it on another camera and recognize it based on the time of arrival, direction, similarity
and the prior knowledge about the cameras and their relations.

The tracking algorithm at one camera detects a track, from which many images of the
target vehicle are extracted. This serves as a model for the reidentification task.

Transition times and variances are computed prior to the program execution and remain
constant. After a vehicle is detected, another camera starts the detection and tracking. Each
detection is thresholded according to the equation 17 and if one detection is classified as being
the target identity, the whole track is declared to be the target vehicle and the model of the
vehicle is extended.

50/72

8 EVALUATION

8 Evaluation

Each of the modules was evaluated separately and the overall method was experimen-
tally evaluated in a real-world scenario.

8.1 Mean average precision.

Mean average precision (mAP) is the most used metrics for object detection problem.
The advantage is, that it does not depend on the selected confidence threshold, but only on
the IoU threshold. This metrics is not constrained only for object detection problems in vision
but can be used for all detection problems.

The algorithm for computing mAP runs for all thresholds. Given an arbitrary threshold,
the predicted bounding boxes are those, whose confidence exceeds it. If there is a high IoU of
a ground truth box and some predicted bounding boxes having the same class, the predicted
box with the highest confidence is matched and considered true positive(TP) and no other
box can be matched with the ground truth bounding box. If a predicted bounding box is
not matched with any ground truth bounding boxes, it is considered false positive(FP). If a
ground truth bounding box is not matched with any predicted bounding box, it is considered
a false negative(FN).

Precision(P) corresponds to what portion of ground truth boxes were matched. With
lowering the threshold, it can only increase, since more ground truth bounding boxes will be
matched.

P =
TP

TP + FP
(19)

Recall(R) corresponds to what portion of predicted bounding boxes were matched.

R =
TP

TP + FN
(20)

The precision-recall curve in the Fig.8.1 shows the dependency of precision and recall.
The higher the precision, the lower the recall. The area below the curve is called average
precision(AP) and the mean overall classes are called mean average precision(mAP).

mAP =
1

|C|
∑
c∈C

APc (21)

where C is the set of classes.

51/72

8 EVALUATION

Figure 8.1: Example of arbitrary precision-recall curve.

52/72

8 EVALUATION

8.2 SSD object detection

The implemented detector described in the section 7.2 was compared with the state of
the art SSD [91]. Because using pre-trained SSD on ImageNet would perform badly because
of the domain specifications, the models were trained with the same parameters on the same
dataset.

(a) The mean average precision on validation set.

(b) The loss on the training set.

(c) The loss on the validation set.

Figure 8.2: The process of training the introduced 4 channel SSD (orange) and the 3 channel
SSD (blue) networks. The training was performed on the NVIDIA GeForce GTX 1080 for 1
day. The graph shows, that the presented solution performs much better than the state of the
art SSD.

Because of the hardware limitations, the training of each network took one day. After

53/72

8 EVALUATION

models Training time Loss Validation Loss mAP

SSD512 (RGB) 1 day 1.127 1.055 63,2

SSD512 (RGBD) 1 day 0.4583 0.3349 90,0

SSD512 (RGBD) 4 days 0.3035 0.2201 91,6

Table 2: Results on the custom dataset from the section 7.2.3 show, that the introduced
RGBD architecture is more accurate, than the standard SSD.

deciding, that the difference layer greatly helps, the RGBD network was trained for 4 days.
The final comparison is shown in the table 2.

The computational overhead given the 4th channel was tested, but the speed of both
models are below recognition. That is mainly because the 4th channel is only in the input
layer, and increases the number of parameters only in the first hidden layer, the other layers
are unchanged.

8.3 Facenet similarity

The facenet was trained on NVIDIA GeForce GTX 1080 for 12 hours on 8800 training
images and was tested on different 884 images.

8.3.1 Evaluation metrics

Evaluating the similarity task was transformed to an evaluation a classification task.
The task is to classify if a pair is positive (belong to the same class), or negative(does not
belong to the same class). Given two images, compute the distance of their embeddings and
compare it to a threshold.

The threshold is found by cross-validation on the training set. The validation pairs are
selected randomly in the ratio 1:1 of being positive and negative.

8.3.2 Results

The final results are shown in the table 3

Accuracy 0.8105

True positive rate 0.811

True negative rate 0.791

False positive rate 0.209

False negative rate 0.189

Table 3: Final results of the facenet training after 12 hours on NVIDIA GeForce GTX 1080.

54/72

8 EVALUATION

The facenet performance with the accuracy 81% was not as good as we expected, but
we need to keep in mind, that the task is very hard. The pairs of cars are shown in different
lighting conditions and from different angles. It is not easy to say, if a vehicle from a front view
is the same, as a different from a back view. Also merging the dataset had a lot of decisions to
make, which vehicles are considered to be same and which are not. Since this is not the only
parameter to decide reidentification, this performance is enough, but it is definitely something
to improve in future work.

8.3.3 Comparison to state of the art

The state of the art methods compare vehicles by their license plates and therefore
there is almost no research into vehicle similarity. There is a vehicle model classification
[102, 113, 81], but they all require a good quality frontal view, which is not possible with high
mounted fisheye cameras.

The original Facenet achieved a much higher performance on a face domain, which is
a very loose comparison. Faces have more features than vehicles seen directly from above,
and therefore are easier to distinguish. Their dataset was also rotated and centered, while our
approach was trained to deal with this variance. All features of the face were therefore seen,
but vehicles were seen from different views and therefore some features remained hidden. The
last difference is, that even people are often not able to distinguish vehicles, especially with
very low resolution and similar models.

8.4 Multi camera tracking experiment

A city with the cameras built in lamps does not exist yet, since the project is still
in development. Therefore the representation for the whole city was not tested. However,
as was described in the section 7.5.1, from representing one edge, it is a very small step to
representing the whole city.

Only two videos of the same street at the same time from two different places was
provided by the Brazilian party, that the concept was tested on. The reidentification part
was described in the section 7.5.1. The detection and single camera tracking was described
in the section 7.2 The score function described in the equation 17 was thresholded with 0.01.
It should be stated, that because of the low fps, tracker sometimes created two tracks over
similar trajectory. In such a case, only one track was used.

8.4.1 Evaluation measurement

The videos, that were provided, showed estimated 70 vehicles driving on the street
during that time. The reidentification was tested each one of them. If the track was classified
as the target vehicle correctly, that was measured as a true positive. It was not recognized,
that was a false negative. If another track was falsely detected as the target one, that was

55/72

8 EVALUATION

considered to be a false positive. The total accuracy was computed as the ratio of true positives
to all tests.

8.4.2 Results

Out of 67 vehicles, that drove on the street, 59 were reidentified correctly. That cor-
responds to 88% accuracy. Out of the 8 badly reidentified vehicles, 6 were false negatives,
where the detector did not detect the cars and 2 were false positives, where a different car
was marked as the target one.

8.4.3 Comparison to state of the art

As mentioned before, most of the state of the art multi-camera vehicle tracking ap-
proaches are very domain specific. Since the problem solved in this thesis contains fisheye
cameras, no other method could be directly implemented and compared. They are either only
for highways [26, 79], rely on license plate recognition [3, 35] or have very narrow field of view
[100].

56/72

9 DISCUSSION

9 Discussion

Artificial intelligence is said to be 20% developing models and 80% data management.
Author of this thesis can only agree. Development of this thesis was very reliant on providing
the data by the Brazilian party. However, only small amount of data were provided and very
gradually. That is because the smart city project is still in development and only small amount
of demo cameras was actually mounted. Combining lack of data with not reliable streaming,
the process of development was sometimes frustrating.

The reidentification experiments could be performed only on the data available. The
only videos taken at the same time are the two views of the same street. Furthermore, the
videos had different lengths and missing frames, which made the process of synchronization
tedious.

Because of the lack of data, experiments for the whole city, or even modeling intersec-
tions could not be done. However, the author of this thesis is confident, that the introduced
models are accurate and robust enough to be able to reliably expand to a complicated graph
of a real city.

Methods, such as image unwrapping into several less distorted images and detecting
them separately, were explored and implemented but turned out to be a bad trade-off between
performance and accuracy. This and several other approaches were not described in this work
since they are too far from the assignment of the thesis.

57/72

10 CONCLUSION

10 Conclusion

This thesis combines solutions of several problems, such as object detection, single
camera tracking, similarity metrics of vehicles, city representation and multi-camera tracking.
Each of these tasks is very important and if solved poorly, could be a bottleneck of the whole
process.

During development, the emphasis was put on computational speed and easy scalability
of the project.

A thorough state of the art analysis of multiple fields of computer vision important for
multi-camera tracking was described in the section 2. This allowed educated selection of used
methods.

The wide angle lens model and it’s parameters were found using calibration data and
transformations between real-world coordinates, camera coordinates and pixel coordinates in
images were found.

An object detection and optical flow tracker were proposed and implemented for faster
dataset generation for similarity training. Another dataset was created using standard anno-
tation tools for object detection training.

For object detection was proposed and implemented improved architecture of the neural
network SSD [91] utilizing the video information and not just processing each frame indepen-
dently. With the original SSD have been trained on the presented dataset. Experiments on
fisheye camera domain show, that the proposed solution achieved 90.0% mAP compared to
63.2% state of the art SSD[91] after one-day training. After 4 days training the network
achieved 91.6% mAP.

Google Facenet [124] was retrained from finding similarities between faces to vehicles
achieving 80% classification accuracy. It was trained and tested on a custom dataset.

A single-camera tracker based on optical flow provided by the Good Vision company
was used for clustering detections over frames.

Vehicles in the city were represented by a probabilistic state space based on Markov
chain. This allows easy expansion of the city with new cameras being installed as well as
dealing with probability from not observed places and uncertainty. Reidentification of vehicles
was proposed and implemented based on the computed similarity and relationships between
cameras.

A real-world experiment was performed achieving the reidentification accuracy of 88%.

58/72

10 CONCLUSION

10.1 Future work

This thesis is part of a long-term project with the Good Vision company. Author of this
thesis will continue to develop and improve this project to the final state. With this being
said, there are still areas to be improved and new approaches and models to be tried. Thanks
to high modularization of this project, improved detectors, trackers and similarity metrics
can be easily evaluated. Areas for further development include:

• Increase the size of both datasets for detection and similarity.

• Deploy the system on a real city and make it accessible for the reinforcement agencies.

• Instead of triplet loss for similarity training, implement and evaluate the recently intro-
duced quadruplet loss [22].

• Train and evaluate newer neural networks for object detection, such as [89, 119].

• With increasing speed of segmentation networks create datasets and train segmentation
models, which will improve tracking accuracy.

With newer and better neural networks introduced every year, this project will be
gradually improved to keep up with state of the art methods in years to come.

59/72

10 CONCLUSION

60/72

REFERENCES

References

[1] Good vision s.r.o. https://www.goodvisionlive.com/.

[2] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow:
A system for large-scale machine learning. In OSDI, volume 16, pages 265–283, 2016.

[3] Clemens Arth, Florian Limberger, and Horst Bischof. Real-time license plate recognition
on an embedded dsp-platform. In Computer Vision and Pattern Recognition, 2007.
CVPR’07. IEEE Conference on, pages 1–8. IEEE, 2007.

[4] Salil P Banerjee and Kris Pallipuram. Multi person tracking using kalman filter, 2008.

[5] Björn Barz, Erik Rodner, Christoph Käding, and Joachim Denzler. Fast learning
and prediction for object detection using whitened cnn features. arXiv preprint
arXiv:1704.02930, 2017.

[6] Álvaro Bayona, Juan C SanMiguel, and José M Mart́ınez. Stationary foreground de-
tection using background subtraction and temporal difference in video surveillance. In
Image Processing (ICIP), 2010 17th IEEE International Conference on, pages 4657–
4660. IEEE, 2010.

[7] S. S. Beauchemin and J. L. Barron. The computation of optical flow. ACM Comput.
Surv., 27(3):433–466, September 1995.

[8] Ben Benfold and Ian Reid. Stable multi-target tracking in real-time surveillance video.
In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pages
3457–3464. IEEE, 2011.

[9] James Bergstra, Frédéric Bastien, Olivier Breuleux, Pascal Lamblin, Razvan Pascanu,
Olivier Delalleau, Guillaume Desjardins, David Warde-Farley, Ian Goodfellow, Arnaud
Bergeron, et al. Theano: Deep learning on gpus with python. In NIPS 2011, BigLearning
Workshop, Granada, Spain, volume 3. Citeseer, 2011.

[10] Luca Bertinetto, Jack Valmadre, Joao F Henriques, Andrea Vedaldi, and Philip HS
Torr. Fully-convolutional siamese networks for object tracking. In European conference
on computer vision, pages 850–865. Springer, 2016.

[11] Massimo Bertozzi, Alberto Broggi, Alessandra Fascioli, and Stefano Nichele. Stereo
vision-based vehicle detection. In Intelligent Vehicles Symposium, 2000. IV 2000. Pro-
ceedings of the IEEE, pages 39–44. IEEE, 2000.

[12] Manuele Bicego, Andrea Lagorio, Enrico Grosso, and Massimo Tistarelli. On the use
of sift features for face authentication. In Computer Vision and Pattern Recognition
Workshop, 2006. CVPRW’06. Conference on, pages 35–35. IEEE, 2006.

[13] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K Warmuth.
Learnability and the vapnik-chervonenkis dimension. Journal of the ACM (JACM),
36(4):929–965, 1989.

61/72

https://www.goodvisionlive.com/

REFERENCES

[14] Oren Boiman, Eli Shechtman, and Michal Irani. In defense of nearest-neighbor based
image classification. In Computer Vision and Pattern Recognition, 2008. CVPR 2008.
IEEE Conference on, pages 1–8. IEEE, 2008.

[15] Anna Bosch, Andrew Zisserman, and Xavier Munoz. Image classification using random
forests and ferns. In Computer Vision, 2007. ICCV 2007. IEEE 11th International
Conference on, pages 1–8. IEEE, 2007.

[16] Gary Bradski and Adrian Kaehler. Opencv. Dr. Dobb’s journal of software tools, 3,
2000.

[17] Guimei Cao, Xuemei Xie, Wenzhe Yang, Quan Liao, Guangming Shi, and Jinjian Wu.
Feature-fused ssd: fast detection for small objects. In Ninth International Conference
on Graphic and Image Processing (ICGIP 2017), volume 10615, page 106151E. Inter-
national Society for Optics and Photonics, 2018.

[18] Nicholas Carlevaris-Bianco, Arash K. Ushani, and Ryan M. Eustice. University of
Michigan North Campus long-term vision and lidar dataset. International Journal of
Robotics Research, 35(9):1023–1035, 2015.

[19] Joao Carreira and Cristian Sminchisescu. Cpmc: Automatic object segmentation using
constrained parametric min-cuts. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 34(7):1312–1328, 2012.

[20] Michael J Caruso and Lucky S Withanawasam. Vehicle detection and compass appli-
cations using amr magnetic sensors. In Sensors Expo Proceedings, volume 477, page 39,
1999.

[21] Olivier Chapelle, Patrick Haffner, and Vladimir N Vapnik. Support vector machines
for histogram-based image classification. IEEE transactions on Neural Networks,
10(5):1055–1064, 1999.

[22] Weihua Chen, Xiaotang Chen, Jianguo Zhang, and Kaiqi Huang. Beyond triplet loss: a
deep quadruplet network for person re-identification. In Proc. CVPR, volume 2, 2017.

[23] Zhiwen Chen, Jianzhong Cao, Yao Tang, and Linao Tang. Tracking of moving object
based on optical flow detection. In Computer Science and Network Technology (ICC-
SNT), 2011 International Conference on, volume 2, pages 1096–1099. IEEE, 2011.

[24] François Chollet et al. Keras, 2015.

[25] Dan C Ciresan, Ueli Meier, Jonathan Masci, Luca Maria Gambardella, and Jürgen
Schmidhuber. Flexible, high performance convolutional neural networks for image clas-
sification. In IJCAI Proceedings-International Joint Conference on Artificial Intelli-
gence, volume 22, page 1237. Barcelona, Spain, 2011.

[26] Benjamin Coifman and Sivaraman Krishnamurthy. Vehicle reidentification and travel
time measurement across freeway junctions using the existing detector infrastructure.
Transportation Research Part C: Emerging Technologies, 15(3):135–153, 2007.

[27] Dorin Comaniciu, Visvanathan Ramesh, and Peter Meer. Kernel-based object tracking.
IEEE Transactions on pattern analysis and machine intelligence, 25(5):564–577, 2003.

62/72

REFERENCES

[28] Jonathan Courbon, Youcef Mezouar, Laurent Eckt, and Philippe Martinet. A generic
fisheye camera model for robotic applications. In Intelligent Robots and Systems, 2007.
IROS 2007. IEEE/RSJ International Conference on, pages 1683–1688. IEEE, 2007.

[29] Rita Cucchiara, Costantino Grana, Massimo Piccardi, and Andrea Prati. Detecting
moving objects, ghosts, and shadows in video streams. IEEE transactions on pattern
analysis and machine intelligence, 25(10):1337–1342, 2003.

[30] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-fcn: Object detection via region-based
fully convolutional networks. In Advances in neural information processing systems,
pages 379–387, 2016.

[31] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection. In
Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society
Conference on, volume 1, pages 886–893. IEEE, 2005.

[32] A Daubaras and M Zilys. Vehicle detection based on magneto-resistive magnetic field
sensor. Elektronika ir Elektrotechnika, 118(2):27–32, 2012.

[33] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on, pages 248–255. IEEE, 2009.

[34] Mikel Diez Buil. Non-maxima supression. 2011.

[35] Shan Du, Mahmoud Ibrahim, Mohamed Shehata, and Wael Badawy. Automatic license
plate recognition (alpr): A state-of-the-art review. IEEE Transactions on circuits and
systems for video technology, 23(2):311–325, 2013.

[36] Ahmed Elgammal, Ramani Duraiswami, David Harwood, and Larry S Davis. Back-
ground and foreground modeling using nonparametric kernel density estimation for
visual surveillance. Proceedings of the IEEE, 90(7):1151–1163, 2002.

[37] Dumitru Erhan, Christian Szegedy, Alexander Toshev, and Dragomir Anguelov. Scal-
able object detection using deep neural networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 2147–2154, 2014.

[38] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The
pascal visual object classes (voc) challenge. International Journal of Computer Vision,
88(2):303–338, June 2010.

[39] Pedro F Felzenszwalb, Ross B Girshick, David McAllester, and Deva Ramanan. Ob-
ject detection with discriminatively trained part-based models. IEEE transactions on
pattern analysis and machine intelligence, 32(9):1627–1645, 2010.

[40] Pierluigi Ferrari. Face recognition using tensorflow. https://github.com/

davidsandberg/facenet, 2015.

[41] Pierluigi Ferrari. A keras port of single shot multibox detector. https://github.com/
pierluigiferrari/ssd_keras, 2017.

63/72

https://github.com/davidsandberg/facenet
https://github.com/davidsandberg/facenet
https://github.com/pierluigiferrari/ssd_keras
https://github.com/pierluigiferrari/ssd_keras

REFERENCES

[42] Adrien Gaidon, Qiao Wang, Yohann Cabon, and Eleonora Vig. Virtual worlds as proxy
for multi-object tracking analysis. arXiv preprint arXiv:1605.06457, 2016.

[43] Gwennael Gate and Fawzi Nashashibi. Fast algorithm for pedestrian and group of
pedestrians detection using a laser scanner. In Intelligent Vehicles Symposium, 2009
IEEE, pages 1322–1327. IEEE, 2009.

[44] Global Cloud Index (GCI). 7th annual gci forecast. explore global data center and cloud
computing trends (2016 – 2021)., 2016.

[45] Ross Girshick. Fast r-cnn. arXiv preprint arXiv:1504.08083, 2015.

[46] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierar-
chies for accurate object detection and semantic segmentation. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 580–587, 2014.

[47] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Region-based convo-
lutional networks for accurate object detection and segmentation. IEEE transactions
on pattern analysis and machine intelligence, 38(1):142–158, 2016.

[48] Susanna Gladh, Martin Danelljan, Fahad Shahbaz Khan, and Michael Felsberg. Deep
motion features for visual tracking. In Pattern Recognition (ICPR), 2016 23rd Inter-
national Conference on, pages 1243–1248. IEEE, 2016.

[49] Rafael C Gonzalez and Richard E Woods. Digital image processing, 2012.

[50] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition with
deep recurrent neural networks. In Acoustics, speech and signal processing (icassp),
2013 ieee international conference on, pages 6645–6649. IEEE, 2013.

[51] Chris Harris and Mike Stephens. A combined corner and edge detector. In Alvey vision
conference, volume 15, pages 10–5244. Citeseer, 1988.

[52] Anselm Haselhoff and Anton Kummert. A vehicle detection system based on haar and
triangle features. In Intelligent Vehicles Symposium, 2009 IEEE, pages 261–266. IEEE,
2009.

[53] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Com-
puter Vision (ICCV), 2017 IEEE International Conference on, pages 2980–2988. IEEE,
2017.

[54] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[55] David Held, Sebastian Thrun, and Silvio Savarese. Learning to track at 100 fps with
deep regression networks. In European Conference on Computer Vision, pages 749–765.
Springer, 2016.

[56] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data
with neural networks. science, 313(5786):504–507, 2006.

64/72

REFERENCES

[57] Sepp Hochreiter. The vanishing gradient problem during learning recurrent neural nets
and problem solutions. International Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems, 6(02):107–116, 1998.

[58] Thanarat Horprasert, David Harwood, and Larry S Davis. A statistical approach for
real-time robust background subtraction and shadow detection. In Ieee iccv, volume 99,
pages 1–19. Citeseer, 1999.

[59] Gao Huang, Zhuang Liu, Kilian Q Weinberger, and Laurens van der Maaten. Densely
connected convolutional networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, volume 1, page 3, 2017.

[60] Gary B Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller. Labeled faces
in the wild: A database for studying face recognition in unconstrained environments.
Technical report, Technical Report 07-49, University of Massachusetts, Amherst, 2007.

[61] Timothy Huang and Stuart Russell. Object identification in a bayesian context. In
IJCAI, volume 97, pages 1276–1282, 1997.

[62] Xinyu Huang, Xinjing Cheng, Qichuan Geng, Binbin Cao, Dingfu Zhou, Peng Wang,
Yuanqing Lin, and Ruigang Yang. The apolloscape dataset for autonomous driving.
arXiv preprint arXiv:1803.06184, 2018.

[63] Michael Isard and John MacCormick. Bramble: A bayesian multiple-blob tracker. In
Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International Confer-
ence on, volume 2, pages 34–41. IEEE, 2001.

[64] Omar Javed, Khurram Shafique, and Mubarak Shah. Appearance modeling for tracking
in multiple non-overlapping cameras. In Computer Vision and Pattern Recognition,
2005. CVPR 2005. IEEE Computer Society Conference on, volume 2, pages 26–33.
IEEE, 2005.

[65] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross
Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for
fast feature embedding. In Proceedings of the 22nd ACM international conference on
Multimedia, pages 675–678. ACM, 2014.

[66] Kinjal A Joshi and Darshak G Thakore. A survey on moving object detection and
tracking in video surveillance system. International Journal of Soft Computing and
Engineering, 2(3):44–48, 2012.

[67] Kiran Kale, Sushant Pawar, and Pravin Dhulekar. Moving object tracking using optical
flow and motion vector estimation. In Reliability, Infocom Technologies and Optimiza-
tion (ICRITO)(Trends and Future Directions), 2015 4th International Conference on,
pages 1–6. IEEE, 2015.

[68] Jinman Kang, Isaac Cohen, and Gerard Medioni. Continuous tracking within and across
camera streams. In Computer Vision and Pattern Recognition, 2003. Proceedings. 2003
IEEE Computer Society Conference on, volume 1, pages I–I. IEEE, 2003.

[69] Andrej Karpathy. Cs231n convolutional neural networks for visual recognition. Neural
networks, 1, 2016.

65/72

REFERENCES

[70] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Sukthankar,
and Li Fei-Fei. Large-scale video classification with convolutional neural networks. In
Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pages
1725–1732, 2014.

[71] Vera Kettnaker and Ramin Zabih. Bayesian multi-camera surveillance. In Computer Vi-
sion and Pattern Recognition, 1999. IEEE Computer Society Conference on., volume 2,
pages 253–259. IEEE, 1999.

[72] Sohaib Khan and Mubarak Shah. Consistent labeling of tracked objects in multiple
cameras with overlapping fields of view. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 25(10):1355–1360, 2003.

[73] SamYong Kim, Se-Young Oh, JeongKwan Kang, YoungWoo Ryu, Kwangsoo Kim, Sang-
Cheol Park, and KyongHa Park. Front and rear vehicle detection and tracking in the
day and night times using vision and sonar sensor fusion. In Intelligent Robots and
Systems, 2005.(IROS 2005). 2005 IEEE/RSJ International Conference on, pages 2173–
2178. IEEE, 2005.

[74] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[75] Irena Koprinska and Sergio Carrato. Temporal video segmentation: A survey. Signal
processing: Image communication, 16(5):477–500, 2001.

[76] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for
fine-grained categorization. In 4th International IEEE Workshop on 3D Representation
and Recognition (3dRR-13), Sydney, Australia, 2013.

[77] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing sys-
tems, pages 1097–1105, 2012.

[78] John Krumm, Steve Harris, Brian Meyers, Barry Brumitt, Michael Hale, and Steve
Shafer. Multi-camera multi-person tracking for easyliving. In Visual Surveillance, 2000.
Proceedings. Third IEEE International Workshop on, pages 3–10. IEEE, 2000.

[79] Reinhart D Kuhne. Freeway control using a dynamic traffic flow model and vehicle
reidentification techniques. Number 1320. 1991.

[80] Karric Kwong, Robert Kavaler, Ram Rajagopal, and Pravin Varaiya. Arterial travel
time estimation based on vehicle re-identification using wireless magnetic sensors. Trans-
portation Research Part C: Emerging Technologies, 17(6):586–606, 2009.

[81] Andrew HS Lai, George SK Fung, and Nelson HC Yung. Vehicle type classification
from visual-based dimension estimation. In Intelligent Transportation Systems, 2001.
Proceedings. 2001 IEEE, pages 201–206. IEEE, 2001.

[82] Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. Beyond bags of features: Spatial
pyramid matching for recognizing natural scene categories. In Computer vision and
pattern recognition, 2006 IEEE computer society conference on, volume 2, pages 2169–
2178. IEEE, 2006.

66/72

REFERENCES

[83] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard,
Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip
code recognition. Neural computation, 1(4):541–551, 1989.

[84] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learn-
ing applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[85] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.

[86] Jinho Lee, Brian Kenji Iwana, Shouta Ide, and Seiichi Uchida. Globally optimal object
tracking with fully convolutional networks. arXiv preprint arXiv:1612.08274, 2016.

[87] Zuoxin Li and Fuqiang Zhou. Fssd: Feature fusion single shot multibox detector. arXiv
preprint arXiv:1712.00960, 2017.

[88] Rainer Lienhart and Jochen Maydt. An extended set of haar-like features for rapid
object detection. In Image Processing. 2002. Proceedings. 2002 International Conference
on, volume 1, pages I–I. IEEE, 2002.

[89] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for
dense object detection. arXiv preprint arXiv:1708.02002, 2017.

[90] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ra-
manan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in
context. In European conference on computer vision, pages 740–755. Springer, 2014.

[91] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-
Yang Fu, and Alexander C Berg. Ssd: Single shot multibox detector. In European
conference on computer vision, pages 21–37. Springer, 2016.

[92] BPL Lo and SA Velastin. Automatic congestion detection system for underground
platforms. In Intelligent Multimedia, Video and Speech Processing, 2001. Proceedings
of 2001 International Symposium on, pages 158–161. IEEE, 2001.

[93] David G Lowe. Distinctive image features from scale-invariant keypoints. International
journal of computer vision, 60(2):91–110, 2004.

[94] Bruce D Lucas, Takeo Kanade, et al. An iterative image registration technique with an
application to stereo vision. 1981.

[95] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of
machine learning research, 9(Nov):2579–2605, 2008.

[96] Will Maddern, Geoff Pascoe, Chris Linegar, and Paul Newman. 1 Year, 1000km: The
Oxford RobotCar Dataset. The International Journal of Robotics Research (IJRR),
36(1):3–15, 2017.

[97] Vashisht Madhavan and Trevor Darrell. The bdd-nexar collective: A large-scale, crow-
sourced, dataset of driving scenes. 2017.

67/72

REFERENCES

[98] Yasushi Mae, Yoshiaki Shirai, Jun Miura, and Yoshinori Kuno. Object tracking in
cluttered background based on optical flow and edges. In Pattern Recognition, 1996.,
Proceedings of the 13th International Conference on, volume 1, pages 196–200. IEEE,
1996.

[99] Dimitrios Makris, Tim Ellis, and James Black. Bridging the gaps between cameras. In
Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004
IEEE Computer Society Conference on, volume 2, pages II–II. IEEE, 2004.

[100] Bogdan C Matei, Harpreet S Sawhney, and Supun Samarasekera. Vehicle tracking across
nonoverlapping cameras using joint kinematic and appearance features. In Computer
Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pages 3465–3472.
IEEE, 2011.

[101] Stefan Munder and Dariu M Gavrila. An experimental study on pedestrian classifica-
tion. IEEE transactions on pattern analysis and machine intelligence, 28(11):1863–1868,
2006.

[102] Daniel T Munroe and Michael G Madden. Multi-class and single-class classification ap-
proaches to vehicle model recognition from images. Proceedings of IEEE AICS, page 50,
2005.

[103] OHTA Naoya. Optical flow detection by color images. NEC Research and Development,
97:78–84, 1990.

[104] Joe Yue-Hei Ng, Matthew Hausknecht, Sudheendra Vijayanarasimhan, Oriol Vinyals,
Rajat Monga, and George Toderici. Beyond short snippets: Deep networks for video
classification. In Computer Vision and Pattern Recognition (CVPR), 2015 IEEE Con-
ference on, pages 4694–4702. IEEE, 2015.

[105] Chengcheng Ning, Huajun Zhou, Yan Song, and Jinhui Tang. Inception single shot
multibox detector for object detection. In Multimedia & Expo Workshops (ICMEW),
2017 IEEE International Conference on, pages 549–554. IEEE, 2017.

[106] Eric Nowak, Frédéric Jurie, and Bill Triggs. Sampling strategies for bag-of-features im-
age classification. In European conference on computer vision, pages 490–503. Springer,
2006.

[107] Andreas Opelt, Michael Fussenegger, Axel Pinz, and Peter Auer. Weak hypotheses
and boosting for generic object detection and recognition. In European conference on
computer vision, pages 71–84. Springer, 2004.

[108] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, et al. Scikit-learn: Machine learning in python. Journal of machine learning
research, 12(Oct):2825–2830, 2011.

[109] Massimo Piccardi. Background subtraction techniques: a review. In Systems, man and
cybernetics, 2004 IEEE international conference on, volume 4, pages 3099–3104. IEEE,
2004.

68/72

REFERENCES

[110] Fatih Porikli. Inter-camera color calibration by correlation model function. In Image
Processing, 2003. ICIP 2003. Proceedings. 2003 International Conference on, volume 2,
pages II–133. IEEE, 2003.

[111] Fatih Porikli and Oncel Tuzel. Multi-kernel object tracking. In Multimedia and Expo,
2005. ICME 2005. IEEE International Conference on, pages 1234–1237. IEEE, 2005.

[112] Cristiano Premebida, Gonçalo Monteiro, Urbano Nunes, and Paulo Peixoto. A lidar and
vision-based approach for pedestrian and vehicle detection and tracking. In Intelligent
Transportation Systems Conference, 2007. ITSC 2007. IEEE, pages 1044–1049. IEEE,
2007.

[113] A Psyllos, Christos-Nikolaos Anagnostopoulos, and Eleftherios Kayafas. Vehicle model
recognition from frontal view image measurements. Computer Standards & Interfaces,
33(2):142–151, 2011.

[114] Georges M Quénot. The’orthogonal algorithm’for optical flow detection using dynamic
programming. In Acoustics, Speech, and Signal Processing, 1992. ICASSP-92., 1992
IEEE International Conference on, volume 3, pages 249–252. IEEE, 1992.

[115] Ali Rahimi, Brian Dunagan, and Trevor Darrell. Simultaneous calibration and tracking
with a network of non-overlapping sensors. In Computer Vision and Pattern Recogni-
tion, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference
on, volume 1, pages I–I. IEEE, 2004.

[116] Esteban Real, Jonathon Shlens, Stefano Mazzocchi, Xin Pan, and Vincent Vanhoucke.
Youtube-boundingboxes: A large high-precision human-annotated data set for object
detection in video. In 2017 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 7464–7473. IEEE, 2017.

[117] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once:
Unified, real-time object detection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 779–788, 2016.

[118] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger. arXiv preprint,
2017.

[119] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767, 2018.

[120] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-
time object detection with region proposal networks. In Advances in neural information
processing systems, pages 91–99, 2015.

[121] Richard F Riesenfeld. Homogeneous coordinates and projective planes in computer
graphics. IEEE Computer Graphics and Applications, (1):50–55, 1981.

[122] Frank Rosenblatt. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review, 65(6):386, 1958.

69/72

REFERENCES

[123] Dominik Scherer, Andreas Müller, and Sven Behnke. Evaluation of pooling operations
in convolutional architectures for object recognition. In International conference on
artificial neural networks, pages 92–101. Springer, 2010.

[124] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding
for face recognition and clustering. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 815–823, 2015.

[125] Frank Seide and Amit Agarwal. Cntk: Microsoft’s open-source deep-learning toolkit. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pages 2135–2135. ACM, 2016.

[126] Jianbo Shi et al. Good features to track. In Computer Vision and Pattern Recognition,
1994. Proceedings CVPR’94., 1994 IEEE Computer Society Conference on, pages 593–
600. IEEE, 1994.

[127] Karen Simonyan and Andrew Zisserman. Two-stream convolutional networks for action
recognition in videos. In Advances in neural information processing systems, pages 568–
576, 2014.

[128] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[129] Patrick Sudowe and Bastian Leibe. Efficient use of geometric constraints for sliding-
window object detection in video. In International Conference on Computer Vision
Systems, pages 11–20. Springer, 2011.

[130] Zehang Sun, Ronald Miller, George Bebis, and David DiMeo. A real-time precrash
vehicle detection system. In Applications of Computer Vision, 2002.(WACV 2002).
Proceedings. Sixth IEEE Workshop on, pages 171–176. IEEE, 2002.

[131] Mriganka Sur. Brain processing of visual information. http://news.mit.edu/1996/

visualprocessing, 1996.

[132] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich, et al. Going deeper
with convolutions. Cvpr, 2015.

[133] Christian Szegedy, Scott Reed, Dumitru Erhan, Dragomir Anguelov, and Sergey Ioffe.
Scalable, high-quality object detection. arXiv preprint arXiv:1412.1441, 2014.

[134] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna.
Rethinking the inception architecture for computer vision. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 2818–2826, 2016.

[135] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. Deepface: Closing
the gap to human-level performance in face verification. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1701–1708, 2014.

[136] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to data mining.
1st, 2005.

70/72

http://news.mit.edu/1996/visualprocessing
http://news.mit.edu/1996/visualprocessing

REFERENCES

[137] Gwenaëlle Toulminet, Massimo Bertozzi, Stéphane Mousset, Abdelaziz Bensrhair, and
Alberto Broggi. Vehicle detection by means of stereo vision-based obstacles features
extraction and monocular pattern analysis. IEEE transactions on Image Processing,
15(8):2364–2375, 2006.

[138] Christos Tzomakas and Werner von Seelen. Vehicle detection in traffic scenes using
shadows. In Ir-Ini, Institut fur Nueroinformatik, Ruhr-Universitat. Citeseer, 1998.

[139] Cor J Veenman, Emile A Hendriks, and Marcel JT Reinders. A fast and robust point
tracking algorithm. In Image Processing, 1998. ICIP 98. Proceedings. 1998 International
Conference on, pages 653–657. IEEE, 1998.

[140] Paul Viola and Michael J Jones. Robust real-time face detection. International journal
of computer vision, 57(2):137–154, 2004.

[141] Stéfan van der Walt, S Chris Colbert, and Gael Varoquaux. The numpy array: a
structure for efficient numerical computation. Computing in Science & Engineering,
13(2):22–30, 2011.

[142] Chieh-Chih Wang, Charles Thorpe, and Sebastian Thrun. Online simultaneous local-
ization and mapping with detection and tracking of moving objects: Theory and results
from a ground vehicle in crowded urban areas. In Robotics and Automation, 2003. Pro-
ceedings. ICRA’03. IEEE International Conference on, volume 1, pages 842–849. IEEE,
2003.

[143] Xiaoyu Wang, Tony X Han, and Shuicheng Yan. An hog-lbp human detector with partial
occlusion handling. In Computer Vision, 2009 IEEE 12th International Conference on,
pages 32–39. IEEE, 2009.

[144] Stefan Wender and Klaus Dietmayer. 3d vehicle detection using a laser scanner and a
video camera. IET Intelligent Transport Systems, 2(2):105–112, 2008.

[145] Bernard Widrow and Michael A Lehr. 30 years of adaptive neural networks: perceptron,
madaline, and backpropagation. Proceedings of the IEEE, 78(9):1415–1442, 1990.

[146] Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis. Chemo-
metrics and intelligent laboratory systems, 2(1-3):37–52, 1987.

[147] Lior Wolf, Tal Hassner, and Itay Maoz. Face recognition in unconstrained videos with
matched background similarity. In Computer Vision and Pattern Recognition (CVPR),
2011 IEEE Conference on, pages 529–534. IEEE, 2011.

[148] Christopher Richard Wren, Ali Azarbayejani, Trevor Darrell, and Alex Paul Pentland.
Pfinder: Real-time tracking of the human body. IEEE Transactions on pattern analysis
and machine intelligence, 19(7):780–785, 1997.

[149] Web-Scale Training WST. Deeply learned face representations are sparse, selective, and
robust. perception, 31:411–438, 2008.

[150] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated
residual transformations for deep neural networks. In Computer Vision and Pattern
Recognition (CVPR), 2017 IEEE Conference on, pages 5987–5995. IEEE, 2017.

71/72

REFERENCES

[151] Jianchao Yang, Kai Yu, Yihong Gong, and Thomas Huang. Linear spatial pyramid
matching using sparse coding for image classification. In Computer Vision and Pattern
Recognition, 2009. CVPR 2009. IEEE Conference on, pages 1794–1801. IEEE, 2009.

[152] Alper Yilmaz. Object tracking by asymmetric kernel mean shift with automatic
scale and orientation selection. In Computer Vision and Pattern Recognition, 2007.
CVPR’07. IEEE Conference on, pages 1–6. IEEE, 2007.

[153] Alper Yilmaz, Omar Javed, and Mubarak Shah. Object tracking: A survey. Acm
computing surveys (CSUR), 38(4):13, 2006.

[154] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

[155] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional net-
works. In European conference on computer vision, pages 818–833. Springer, 2014.

[156] Hao Zhang, Alexander C Berg, Michael Maire, and Jitendra Malik. Svm-knn: Dis-
criminative nearest neighbor classification for visual category recognition. In Computer
Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, volume 2,
pages 2126–2136. IEEE, 2006.

[157] Tao Zhao, Manoj Aggarwal, Rakesh Kumar, and Harpreet Sawhney. Real-time wide
area multi-camera stereo tracking. In Computer Vision and Pattern Recognition, 2005.
CVPR 2005. IEEE Computer Society Conference on, volume 1, pages 976–983. IEEE,
2005.

[158] Qu Zhong, Zhang Qingqing, and Gao Tengfei. Moving object tracking based on code-
book and particle filter. Procedia Engineering, 29:174–178, 2012.

[159] Qiang Zhu, Mei-Chen Yeh, Kwang-Ting Cheng, and Shai Avidan. Fast human detection
using a cascade of histograms of oriented gradients. In Computer Vision and Pattern
Recognition, 2006 IEEE Computer Society Conference on, volume 2, pages 1491–1498.
IEEE, 2006.

72/72

	Introduction
	Problem statement
	Overview of methodology
	Contribution

	Related work
	Classification
	Object Detection
	Vehicle detection
	Object detection in computer vision

	Object tracking
	Reidentification

	Fisheye camera model
	Scene localization
	Camera model
	Linear model
	Tangent model

	The city coordinate system

	Dataset generation
	Need for a custom dataset
	Distributed system
	Background subtraction detection
	Optical Flow tracking
	Classification
	Semi-supervised dataset generation

	Convolutional Neural Networks
	Inspiration by biology
	Layers
	Convolutional layer
	Pooling layer
	Fully connected layer
	Overfitting and dropout layer

	Backpropagation
	Transfer learning
	Frameworks

	Classification, Detection and Reidentification networks
	VGG
	Inception
	SSD network for detection
	Architecture
	Default boxes and aspect ratios

	Loss
	Training

	Non-maxima suppression
	Facenet for reidentification
	Architecture
	Training

	Multi camera tracking

	Implementation
	Mask R-CNN segmentation
	SSD detector
	Temporal difference
	Architecture
	Dataset
	Data augmentation
	Training

	Single camera tracking
	Seeding
	Displacement
	Matching

	Similarity
	Dataset
	Problems with the dataset
	Improving the dataset
	Training
	T-SNE visualization

	City representation
	Reidentification
	Decreasing computational demands

	Multi camera tracking

	Evaluation
	Mean average precision.
	SSD object detection
	Facenet similarity
	Evaluation metrics
	Results
	Comparison to state of the art

	Multi camera tracking experiment
	Evaluation measurement
	Results
	Comparison to state of the art

	Discussion
	Conclusion
	Future work

	References

