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Abstrakt

Ćılem této práce je vytvořit algoritmus pro minimalizaci konvexńıch po
částech afinńıch funkćı zadaných jako součet maxim afinńıch funkćı, při-
čemž se zaměřujeme na ř́ıdké instance velkého rozsahu. K dosáhnut́ı to-
hoto ćıle zobecňujeme algoritmus Augmenting DAG, který minimalizuje
horńı mez max-plus problému, a použ́ıváme podmı́nku lokálńı konzis-
tence, která je relaxaćı podmı́nky pro globálńı optimalitu. V této práci
představujeme minimalizačńı algoritmus a teorii s ńım spojenou, dokazu-
jeme správnost tohoto algoritmu a navrhujeme jeho verzi pro celoč́ıselnou
aritmetiku, kterou jsme implementovali v C++. Poté při testováńı na
velkých ř́ıdkých instanćıch experimentálně ukazujeme, že náš algoritmus
je schopen dosáhnout výsledk̊u, které jsou bĺızko optima.

Kĺıčová slova: optimalizace nediferencovatelných funkćı, konvexńı po částech
afinńı funkce, lokálńı konzistence, binárńı max-plus problém

Abstract

The aim of this work is to develop an algorithm minimizing convex
piecewise-affine functions given in the form of a sum of pointwise maxima
of affine functions. To make this possible for very large sparse instances,
we generalize the Augmenting DAG algorithm (previously proposed to
minimize an upper bound on the max-sum problem) and use the notion
of local consistency, which relaxes the global optimality condition. We de-
velop the algorithm, the related theory, prove its correctness, and propose
a version using integer arithmetic which we implement in C++. We then
experimentally show that the algorithm can provide near-optimal results,
when tested on sparse large instances.

Keywords: non-differentiable optimization, convex piecewise-affine func-
tion, local consistency, binary max-sum problem
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Introduction

Motivation and Related Work

We consider the problem of minimizing a convex piecewise-affine function, given

either as the point-wise maximum of affine function (which we abbreviate as MAF)

or as the sum of point-wise maxima of affine functions (SMAF). This problem can be

formulated as a linear program (LP), therefore it can be solved in polynomial time.

However, for very large sparse instances, on which we focus, solving this LP is in prac-

tice impossible because the space and time complexity of general LP solvers is highly

superlinear and thus prohibitive. It does not help that the problem is sparse because

these methods do not maintain sparsity during their run, therefore large enough in-

stances simply do not fit in the computer memory. Alternatively, minimizing MAF or

SMAF can be seen as an instance of convex non-differentiable minimization and thus

one could apply subgradient methods which have linear space complexity – however,

these methods have been experimentally observed to be very slow.

A special example of sparse large-scale convex piecewise-affine minimization is

the minimization of an upper bound on the max-sum labelling problem. In the binary

form of this problem, we aim to minimize a sum of unary and binary functions of

discrete variables. One powerful approach to this NP-hard combinatorial optimiza-

tion problem is LP relaxation. The dual of this LP relaxation leads to minimizing

an upper bound on the true optimum by equivalent transformations of the problem,

which in fact means minimizing a special form of MAF or SMAF.

A number of algorithms to minimize the above mentioned upper bound have

been proposed. These algorithms could be divided into two groups – exact (resp.

global) algorithms and approximate (resp. local) algorithms. The exact algorithms

always find the true optimum. Those are for example the LP solving methods, sub-

gradient methods or smoothing methods. The approximate algorithms do not find

a global minimum of the upper bound, but only a local minimum, where ”locality”

is not meant as usually with respect to the Euclidean metric, but has a different

meaning. Max-sum diffusion, which is described in Kovalevsky and Koval (approx.

1975) and listed in Werner (2007), is an example of a simple approximate algorithm.

There are multiple algorithms based on it, e.g. TRW-S from Kolmogorov (2006).

The approximate minimization is also performed in the Augmenting DAG algorithm
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that was introduced in Koval’ and Schlesinger (1976) or in Virtual Arc Consistency

algorithm from Cooper et al. (2010).

These approximate algorithms were observed by Kappes et al. (2013) to be

significantly faster than the global methods and be able to find local minima not far

from the global ones for sparse instances. This is not surprising because it has been

proved in Pr̊uša and Werner (2015) and Pr̊uša and Werner (2017) that finding a

global minimum of the upper bound for a binary max-sum problems with 3 or more

labels is not easier than solving a general linear program.

The local minima found by the local methods are of the same nature – they

are local with respect to separately changing the individual variables or blocks of

variables. The fact that these algorithms may not find a global minimum corre-

sponds with the well-known fact that coordinate-wise minimization may not find a

global minimum of a convex non-differentiable function. However, naively applying

coordinate-wise minimization to the upper bound leads to very poor local minima,

whereas the algorithms above are its clever modifications that usually yield good

local minima.

The local minima found by the approximate algorithms are closely related to

local consistencies or constraint propagation in CSP, in particular to arc consistency.

These terms are explained for example in Bessiere (2006).

One can naturally ask whether the above local methods can be generalized from

minimizing the upper bound (i.e. a special form of MAF or SMAF) to minimizing

arbitrary MAF or SMAF. This has been outlined in Werner (2017) for max-sum

diffusion. Here, the concept of arc consistency in the CSP was modified to a suitable

local consistency in MAF. This in fact corresponds to the sign relaxation of the global

optimality condition for MAF, which says that the subdifferential at the considered

point must contain the zero vector. Then, max-sum diffusion was generalized to a

simple algorithm that finds a local minimum of an arbitrary MAF.

Contribution

Our aim in this thesis is to generalize the Augmenting DAG algorithm for

arbitrary convex-piecewise affine function in the form of MAF or SMAF. To do that,

we first focus on the MAF form – we show that if a point is not locally consistent

in the sense of Werner (2017), we can efficiently (faster than by solving a linear

program) find an improving direction in which the function decreases. Then, we can

perform a step in this direction and repeat this process iteratively until a locally

consistent point is reached.

In more detail, we focus on the more general form, SMAF. We use a similar

notion of local consistency and propose an algorithm that finds a decreasing direction

2



of the function at any point that is not locally consistent and also provide a fast

method of line search.

To provide better results in terms of both the final function value and runtime,

we introduce a relaxed notion of local consistency, called local ε-consistency. This

relaxation improves the results and also allows us to prove the correctness of the

algorithm.

Additionally, we introduce a version of the algorithm that uses only integer

arithmetic and present theorems concerning the optimality of its results. The im-

plementation of this version in C++ is enclosed and tested on instances generated

using two-dimensional grammars, experimentally showing the capability to reach

near-optimal results. Furthermore, the runtime of our algorithm was significantly

lower than the runtime of the chosen LP solver on each tested instance.

Structure

In Chapter 1, we define the binary max-sum problem and the related theory,

namely what is the upper bound on quality of such problem, how it can be minimized

and in what way is the upper bound connected to arc consistency. We also survey

existing algorithms that minimize the upper bound of such problem.

Chapter 2 presents the convex piecewise-affine functions and the forms with

which we will deal. We show that the upper bound of a binary max-sum problem

can be viewed as a convex piecewise-affine function and we also show multiple trans-

formation algorithms. This chapter also introduces the notion of local consistency

and in what way it can be used to minimize convex piecewise-affine functions given

as either maximum of affine functions or sum of maxima.

Then, Chapter 3 presents our minimization algorithm – we use the previously

defined local consistency, which is its core idea and follow with a detailed description

of the algorithm. After the algorithm is presented, we also introduce the generalised

version with local ε-consistency and prove its correctness for real numbers and also

show how to deal with issues caused by limited precision of numbers in our computers.

We also present theorems concerning the optimality of the results.

In Chapter 4, we discuss how the algorithm can be implemented efficiently

along with simple speed-ups, mainly based on pre-calculation and aggregation of

values. After the implementation is described, we calculate the asymptotic space

complexity of the whole algorithm and asymptotic time complexity of one iteration.

We also present the implementation details of the interface – namely the format of

the input and output file and the usage of the enclosed implementation.

Chapter 5 introduces two-dimensional grammars and describes how the max-

sum problem of finding the nearest image from the grammar can be used to produce

large sparse instances of convex piecewise-affine functions. We created such instances

3



and run our algorithm on them. The results of the algorithm are compared to the

results of an LP solver in the sense of both optimality and runtime. It is also shown

how the algorithm can recalculate its result after a small change in the input data

and we analyse the runtime of the algorithm in detail.

The thesis is concluded in Chapter 6, where we also summarise the possible

areas of further research that were encountered during the work.
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Chapter 1

Max-sum Problem

This chapter defines the binary max-sum problem and presents the basic terms

that are related to it followed by the description of algorithms solving it – this first

section is primarily based on Werner (2007) and Werner (2005), which summarize

the previous work based on Schlesinger (1976). The term max-sum problem is also

known as Weighted CSP or Valued CSP and it is used so e.g. in Cooper et al. (2010).

Definition 1.1. The binary max-sum labelling problem is defined by a tuple (G,X, g),

where

• G = (T,E) is an undirected graph with objects T and object pairs1 E ⊆
(
T
2

)
,

• X is a finite set of labels,

• g is a vector consisting of elements gt(x) ∈ R−∞ for each t ∈ T and x ∈ X and

elements gt,t′(x, x
′) ∈ R−∞ for each pair {t, t′} ∈ E and labels x, x′ ∈ X. For

all pairs, it holds that gt,t′(x, x
′) = gt′,t(x

′, x).

The task of a max-sum labelling problem is to assign each object t ∈ T a label

xt ∈ X while maximizing the criterion function

F (x|g) =
∑
t∈T

gt(xt) +
∑
{t,t′}∈E

gt,t′(xt, xt′) (1.1)

whose value is called the quality of a labelling x ∈ XT . In other words, we want to

maximize

max
x∈XT

F (x|g). (1.2)

1The terms node and edge are reserved for different concepts, therefore the constituents of the
graph G are called differently to avoid ambiguity.
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Figure 1.1: Example of a binary max-sum problem.

Definition 1.2. This setting allows us to define another undirected graph H =

(T ×X,EX), where EX = {{(t, x), (t′, x′)} | {t, t′} ∈ E, x, x′ ∈ X }. The elements of

T ×X will be called nodes and the elements of EX edges.

Definition 1.3. For a pair of objects t, t′ ∈ T such that {t, t′} ∈ E and a label

x ∈ X, the pencil (t, t′, x) is defined as the set of edges that connect the node (t, x)

with nodes (t′, x′), where x′ ∈ X, i.e.

P (t, t′, x) = {{(t, x), (t′, x′)} | x′ ∈ X }. (1.3)

Using the constituents of graph H, we can observe that the length of the vector

g equals |I|, where I = (T×X)∪EX , i.e. the vector has |E|·|X|2+|T |·|X| components.

Example 1.1. In the Figure 1.1, there is a small instance of a binary max-sum

problem with X = {A,B}, T = {1, 2, 3} and E = {{1, 2}, {2, 3}}. The values of

the g vector are written in the figure, for example g1(A) = 4, g2,3(A,B) = −1. The

quality of labelling x = (B,B,A) equals

g1(B) + g2(B) + g3(A) + g1,2(B,B) + g2,3(B,A) = 14. (1.4)

�

1.1 Linear Programming Relaxation

The above maximization problem 1.2 can be formulated as an ILP whose vari-

ables are values µt(x) and µt,t′(x, x
′) that are binary. It is a straightforward idea to

relax this condition and create an LP with the same variables that create a fractional

labelling.

Definition 1.4. The conditions for vector µ, which consists of variables µt(x) and

µt,t′(x, x
′), to be a fractional labelling are
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∑
x′

µt,t′(x, x
′) = µt(x), ∀{t, t′} ∈ E, ∀x ∈ X (1.5a)∑

x

µt(x) = 1, ∀t ∈ T (1.5b)

µ ≥ 0, (1.5c)

where µt,t′(x, x
′) = µt′,t(x

′, x). The set of all µ satisfying these conditions will be

denoted as ΛG,X .

If the vector µ contains only values 0 or 1, then it is a ”decided” labelling

because there is a corresponding labelling where xt = x holds if and only if µt(x) = 1.

It can be easily seen that the µt,t′(x, x
′) values are also binary in this case.

The relaxed max-sum problem is the linear program

max
µ∈ΛG,X

∑
t∈T
x∈X

gt(x)µt(x) +
∑
{t,t′}∈E
x,x′∈X

gt,t′(xt, xt′)µt,t′(xt, xt′)

 , (1.6)

where the objective function is in fact the scalar product of vectors µ and g, therefore

it can be rewritten into a simpler form

max
µ∈ΛG,X

gTµ. (1.7)

1.2 Equivalent Max-sum Problems

Definition 1.5. Two max-sum problems (G,X, g) and (G,X, g′) are called equiv-

alent (denoted as g ∼ g′) if the corresponding quality functions are identical, that

is

F (x|g) = F (x|g′), ∀x ∈ XT . (1.8)

Observe that if we assign a value ϕt,t′(x) to each pencil (t, t′, x) of a given binary

max-sum problem (G,X, g) and create a new vector gϕ in the following way:

gϕt (x) = gt(x) +
∑
{t,t′}∈E

ϕt,t′(x) (1.9a)

gϕt,t′(x, x
′) = gt,t′(x, x

′)− ϕt,t′(x)− ϕt′,t(x′) (1.9b)

then, (G,X, g) and (G,X, gϕ) are equivalent. This can be proven by expressing

F (x|gϕ) using g and ϕt,t′(x) because the ϕt,t′(x) terms cancel out.
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Figure 1.2: Equivalent problem to the previous example.

However, not all problems that are in one equivalence class are necessarily tied

to each other by the shown transformation. It holds in general for connected graphs

G and vectors g with finite values.

Notice that when we defined the g values, writing either gt,t′(x, x
′) or gt′,t(x

′, x)

was the same, because both were just simpler notations of g({(t, x), (t′, x′)}), i.e. the

assigned value to the given edge. On the other hand, ϕt,t′(x) and ϕt′,t(x
′) are different

variables and can generally have different values.

Example 1.2. The problem shown in Figure 1.2 is equivalent to the one in Fig-

ure 1.1. It was obtained using a transformation vector ϕ which contains only zeros,

except for ϕ2,1(B) = 3. Because of this, the value of the corresponding node and the

values of the edges in pencil P (2, 1, B) change, i.e.

gϕ2 (B) = g2(B) + ϕ2,1(B) + ϕ2,3(B) = 2 + 3 + 0 = 5 (1.10a)

gϕ2,1(B,A) = g2,1(B,A)− ϕ2,1(B)− ϕ1,2(A) = 5− 3− 0 = 2 (1.10b)

gϕ2,1(B,B) = g2,1(B,B)− ϕ2,1(B)− ϕ1,2(B) = 4− 3− 0 = 1. (1.10c)

�

1.3 Upper Bound

It is easy to formulate an upper bound on the maximum quality of a solution.

This upper bound was introduced by Schlesinger (1976) and is therefore sometimes

called Schlesinger’s upper bound or the height.

Definition 1.6. The height of a binary max-sum problem (G,X, g) is defined as

U(g) =
∑
t∈T

ut +
∑
{t,t′}∈E

ut,t′ , (1.11)

where

ut = max
x∈X

gt(x), ut,t′ = max
{x,x′}∈X

gt,t′(x, x
′). (1.12)
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The term ut is called the height of object t and ut,t′ is the height of pair {t, t′}.

Proposition 1.1. The height of a max-sum problem is an upper bound on its quality,

F (x|g) ≤ U(g). (1.13)

Proof. It is truly an upper bound because ut ≥ gt(x) for all t ∈ T , x ∈ X and

ut,t′ ≥ gt,t′(x, x
′) for all {t, t′} ∈ E, x, x′ ∈ X and exactly one node from each object

and exactly one edge from each pair is used in any labelling. �

As opposed to the optimal quality of a binary max-sum problem, the height of

a problem is not invariant to equivalent transformations and it is therefore possible

to minimize the height by transforming the problem. This can be formulated as the

linear program

min
u,ϕ

∑
t∈T

ut +
∑
{t,t′}∈E

ut,t′ (1.14a)

ϕt′t(x) ∈ R (1.14b)

ut ∈ R (1.14c)

ut,t′ ∈ R (1.14d)

ut ≥ gt(x) +
∑
{t,t′}∈E

ϕt,t′(x) (1.14e)

ut,t′ ≥ gt,t′(x, x
′)− ϕt,t′(x)− ϕt′,t(x′) (1.14f)

which is actually the dual to the LP relaxation (1.7).

To find the minimum height of a problem, we can formulate the criterion of

the previous LP also differently, for example

(|T |+ |E|) min
ϕ

max
{

max
t∈T

ut(x), max
{t,t′}∈E

ut,t′(x, x
′)
}
, (1.15)

where the constant (|T | + |E|) can be removed from the criterion function during

optimization. The criterion can be also written in the form

min
ϕ | gϕ

t,t′ (x,x
′)≤0

∑
t∈T

ut(x), (1.16)

which requires an additional constraint on gϕt,t′(x, x
′) values.
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1.4 Tightness of the Bound

Definition 1.7. Given a binary max-sum problem (G,X, g), node (t, x) is a maximal

node if ut = gt(x). Likewise, edge {(t, x), (t′, x′)} is a maximal edge if ut,t′ = gt,t′(x, x
′).

Whether a node is maximal or not can be encoded into a binary vector ḡ by

setting

ḡt(x) = Jgt(x) = utK (1.17a)

ḡt,t′(x, x
′) = Jgt,t′(x, x′) = ut,t′K. (1.17b)

The binary max-sum problem (G,X, ḡ) is essentially a constraint satisfaction

problem, in which we search for a labelling (or fractional labelling) that uses only

those edges and nodes that correspond to ones in the vector ḡ.

Theorem 1.1. The CSP (G,X, ḡ) corresponding to a binary max-sum problem

(G,X, g) is satisfiable iff

max
x∈XT

F (x|g) = U(g). (1.18)

Proof. To show that the previous claim holds is easy because the satisfiability of

the CSP implies that there is a labelling x that uses only the maximal nodes and

edges. And for this labelling, it holds that the g value of each used node (resp. edge)

corresponds to the maximum in the corresponding object t (resp. pair {t, t′}) that

equals ut (resp. ut,t′), therefore F (x|g) = U(g) and the quality of this labelling is

the highest because it uses only the maximal edges and maximal nodes.

For the inverse implication, we can choose the labelling x∗ that maximizes

F (x∗|g), which equals U(g). So it must necessarily hold that this labelling uses only

the maximal nodes and edges (otherwise, its quality would be lower than U(g)),

therefore the corresponding CSP is satisfiable. �

Proposition 1.2. If condition (1.18) is satisfied, then the upper bound is minimal.

Example 1.3. The CSP corresponding to the problem shown in Figure 1.1 is de-

picted in Figure 1.3. The maximal nodes in the figure are filled and the non-maximal

nodes are white. The maximal edges are drawn with full lines, whereas the non-

maximal edges are dotted. Because the CSP is satisfiable, it means that there is a

labelling that uses only the maximal nodes and edges, therefore the original problem

has minimum height. The CSP thus revealed the optimal labelling of the original

problem as x = (A,B,B).

On the other hand, the problem shown in Figure 1.2 does not have minimum

height, because the corresponding CSP, which is shown in Figure 1.4, is not satisfi-

able. �
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Figure 1.3: The CSP corresponding to Figure 1.1.
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label A:

label B:

Figure 1.4: The CSP corresponding to Figure 1.2.

1.5 Minimality of the Upper Bound

Due to duality of the corresponding linear programs (1.7) and (1.14), gTµ ≤ U(g).

Knowing this and using the complementary slackness condition, it can be seen that

gTµ = U(g) iff

µt(x) (ut − gt(x)) = 0, ∀t ∈ T, x ∈ X (1.19a)

µt,t′(x, x
′) (ut,t′ − gt,t′(x, x′)) = 0, ∀{t, t′} ∈ E, x, x′ ∈ X. (1.19b)

The constraints (1.19) can be reformulated using the ḡ vector from (1.17) as

µt(x) (1− ḡt(x)) = 0 (1.20a)

µt,t′(x, x
′) (1− ḡt,t′(x, x′)) = 0. (1.20b)

Theorem 1.2. For a max-sum problem (G,X, g) and a fractional labelling µ ∈ ΛG,X ,

the following statements are equivalent:

(a) (G,X, g) has the minimal height of all its equivalents and µ has the highest

quality.

(b) gTµ = U(g)
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(c) µ is zero on non-maximal nodes and edges.

The relation between (a) and (b) in Theorem 1.2 follows from strong dual-

ity, whereas the relation between (b) and (c) is given by complementary slackness

conditions (1.20).

The set of vectors α satisfying conditions (1.5) and (1.20) will be denoted as

Λ̄G,X(ḡ) = {µ ∈ ΛG,X | (1− ḡ)Tµ = 0}. (1.21)

Such µ does not necessarily need to always exist, i.e. the set Λ̄G,X(ḡ) could be empty.

Definition 1.8. We are given a CSP (G,X, ḡ). This instance is called relaxed-

satisfiable if Λ̄G,X(ḡ) 6= ∅.

Theorem 1.3. The height of (G,X, g) is minimal of all its equivalents if and only

if (G,X, ḡ) is relaxed-satisfiable.

1.6 Arc Consistency and its Closure

Definition 1.9. We say that a CSP (G,X, ḡ) is arc consistent if∨
x′∈X

ḡt,t′(x, x
′) = ḡt(x), ∀{t, t′} ∈ E, x ∈ X, (1.22)

where ḡt,t′(x, x
′) is viewed as true iff it equals 1 (likewise with ḡt(x)).

The main idea of arc consistency in this case is that if a node (or an edge) has

value 1 in the ḡ vector, then it can be viewed as allowed to be used in a solution.

However, if a node (resp. an edge) has value 1 and all its outgoing edges that are in

one pencil have value 0 (resp. one of the nodes that it connects has value 0), then

there is no solution that would use this node (resp. edge), so it is actually forbidden

to use it even though its corresponding value in the ḡ vector is 1. Arc consistent

CSPs do not have this issue.

For the following definition, we need to define what is a subproblem of a CSP.

Given a CSP (G,X, ḡ), we say that the CSP (G,X, ḡ′) is its subproblem iff it holds

that ḡ′ ≤ ḡ, where the inequality is evaluated element-wise. It is obvious that a CSP

could have multiple subproblems.
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Given multiple subproblems (G,X, ḡ1), · · · , (G,X, ḡn) of the same CSP, then

the union of these subproblems is the CSP (G,X, ḡU), where ḡU satisfies

ḡUt (x) =
n∨
i=1

ḡit(x) ∀t ∈ T, x ∈ X (1.23a)

ḡUt,t′(x, x
′) =

n∨
i=1

ḡit,t′(x, x
′) ∀{t, t′} ∈ E, x, x′ ∈ X. (1.23b)

Definition 1.10. The AC closure of a CSP is the union of all its arc consistent

subproblems.

Example 1.4. Neither the CSP shown in Figure 1.3 nor the one in Figure 1.4 is arc

consistent, but the CSP corresponding to Figure 1.3 has a non-empty AC closure,

as opposed to the other CSP, whose AC closure is empty. �

Now, we observed that the AC closure of a CSP can be empty – we say that

the AC closure is empty iff for some object (or pair), there is no node (or edge) with

its ḡ value equal to 12. In this case, it can be easily seen that a vector µ satisfying

conditions (1.5) and (1.20) cannot exist, i.e. Λ̄G,X(ḡ) = ∅. This observation allows to

formulate Theorem 1.4 whose proof is in Werner (2007).

Theorem 1.4. If a CSP is relaxed-satisfiable, then its AC closure is non-empty.

Finding out whether the AC closure of a CSP is empty can be done in poly-

nomial time by an arc consistency algorithm. This procedure is derived from the

condition on arc consistency (1.22). Initially, we are given a CSP (G,X, ḡ). Now, we

will be changing the vector ḡ until the corresponding CSP is arc consistent.

The arc consistency procedure looks for values {t, t′} ∈ E, x ∈ X such that the

condition (1.22) is violated. There are only two ways in which it could be violated.

The first one is when the disjunction on the LHS evaluates to true and ḡt(x) is

false. In this case, the elements of the disjunction on the LHS will be set to zero, so

that the condition is satisfied for this particular pencil. The second case is when the

LHS evaluates to false but ḡt(x) is true – then, we need to set ḡt(x) to zero. This

procedure will always surely terminate after a finite amount of steps because the

number of non-zero components of ḡ vector always decreases after each step and it

is a finite non-negative value.

The Proposition 1.2 along with Theorems 1.1, 1.3 and 1.4 together give the

following chain of implications and equivalences.

2For connected graphs G, this means ḡ = 0.
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(G,X, ḡ) is satisfiable⇔

Equality (1.18) holds⇒

(G,X, g) has minimal height⇔

(G,X, ḡ) is relaxed-satisfiable⇒

(G,X, ḡ) has non-empty AC closure

1.7 Upper Bound Minimization Algorithms

Algorithms for upper bound minimization can be divided into two categories

– algorithms that find the true minimum of the upper bound (1.14) and algorithms

that do not guarantee to find its minimum, but instead find an equivalent transfor-

mation such that the corresponding CSP (G,X, ḡϕ) has a non-empty AC closure.

By Theorems 1.3 and 1.4, having a non-empty AC closure is a necessary condition

for having minimum height.

1.7.1 Exact Algorithms

The exact algorithms guarantee to find the optimum in all cases, however the

price for the optimality is their longer runtime. Kappes et al. (2013) experimentally

shows that exact methods are significantly slower than approximate algorithms in

typical practical applications.

Linear Programming

Of course, the problem of height minimization can be optimally solved by gen-

eral LP solvers because it is directly given as an LP. Thus, we could for example use

the simplex method or interior point methods. However, solving large-scale problems

using these methods may need huge memory and could be time-demanding.

Subgradient Methods

Subgradient method of convex function minimization is described e.g. in Boyd

et al. (2003). Its core idea is the same as with gradient descent but we do not use

the gradient to find a decreasing direction. Instead, we use a subgradient and the

subgradient method converges to a global optimum of a convex function that can

be non-differentiable. Subgradient methods for minimization of the height of a max-

sum problem are used for example by Komodakis et al. (2007) or Schlesinger and

Giginjak (2007).
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Smoothing Methods

It is also possible to replace the original minimized function by its smooth

approximation, this was done for example in Weiss et al. (2012), Johnson et al. (2007)

or Ravikumar et al. (2008). The replacement results in a differentiable function which

can be minimized by any method of convex differentiable minimization.

1.7.2 Approximate Algorithms

As indicated above, the exact algorithms are more time-demanding and that

is the reason why algorithms that enforce only the weaker condition of arc consis-

tency are used. These algorithms can be seen as a special version of coordinate-wise

minimization. It is known that the coordinate-wise minimization is guaranteed to

converge to a global minimum only if the objective function is convex and differen-

tiable. If it is convex but non-differentiable, it may converge to a local3 minimum.

Max-sum diffusion and Augmenting DAG algorithms contradict the common

wisdom in optimization that coordinate-wise minimization applied to convex non-

differentiable functions typically converges to very poor local minima.

Max-sum Diffusion

The procedure of max-sum diffusion was introduced in Kovalevsky and Koval

(approx. 1975) and its pseudocode is shown in Algorithm 1. In one step of the

algorithm, the ϕt,t′(x) value is chosen such that the transformed values gϕt (x) and

uϕt,t′(x) are equal4. This step is performed for each pencil of the problem until the

values converge.

Algorithm 1: Max-sum diffusion

1 while did not converge do

2 for (t, t′, x) ∈ P do

3 ϕt,t′(x)← ϕt,t′(x) + 1
2

(
gϕt (x) + maxx′∈X g

ϕ
t,t′(x, x

′)
)
;

There is no proof of convergence of this algorithm, but it was at least experi-

mentally shown to converge. Max-sum diffusion can be viewed as a form of coordinate

descent method because the upper bound is lowered to its minimum with respect to

each updated ϕt,t′(x) at a time. This fact can be easily seen from the form (1.14).

3Local is meant not as a topological neighbourhood, but only with respect to movements along
the individual coordinates.

4Note that uϕt,t′(x) = maxx′∈X gϕt,t′(x, x
′).
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Augmenting DAG Algorithm

This algorithm uses the graph presented in Definition 1.2, in which each node

and edge is assigned an auxiliary variable that initially stores whether the given node

or edge is maximal. Then, the arc consistency algorithm is applied to this graph. If a

maximal edge has a non-maximal node on its end, then the edge is marked as dead

(i.e. it was killed by the non-maximal node). Likewise, if all edges in a pencil from a

given maximal node are non-maximal, then the node is marked as dead (i.e. it was

killed by the pencil). Whenever a node or an edge is killed, the pointer to the cause

is stored, i.e. a dead edge points at one of its end points and a dead node points

at the edges that are in the pencil that caused its death. For next iterations of the

algorithm, dead nodes and edges are viewed as non-maximal and can cause further

deletions. If it happens that in a given object t∗ ∈ T , all nodes (t, x), x ∈ X are

either non-maximal or dead, then the arc consistency procedure can be stopped.

Next, the algorithm searches for a direction ∆ϕ and step size λ so that the

equivalent transformation by λ∆ϕ would decrease the height of the object t∗ and

would not increase the height of any other object while satisfying constraints for

edges gϕt,t′(x, x
′) ≤ 05.

The procedure explained in the previous paragraphs is then iteratively repeated

and after each iteration, the value of λ∆ϕ is accumulated in a vector ϕ, i.e.

ϕ← ϕ+ λ∆ϕ. (1.24)

In this way, the Augmenting DAG algorithm gradually decreases the upper

bound by equivalent transformations and ends when the arc consistency algorithm

cannot mark any edge or node as killed and every object t ∈ T still has at least one

maximal node.

It holds for both Augmenting DAG and max-sum diffusion that after the algo-

rithm ends, if the maxima of gϕt (x) over x are unique for each t ∈ T and the same

holds for the gϕt,t′(x, x
′) values for all x, x′ ∈ X and {t, t′} ∈ E, then the optimal

labelling can be simply obtained as the maximizing labels of gϕt (x). In such case, we

are sure that the found upper bound is minimal.

However, if the maxima are not unique, the result of both algorithms is at least

arc consistent, which is a necessary condition for optimality, but not a sufficient one.

5This algorithm uses the criterion function in the form (1.16).
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Chapter 2

Convex Piecewise-Affine Functions

and Local Consistency

In this chapter, two forms of convex piecewise-affine functions are defined,

which is followed by algorithms that transform the upper bound minimization of

a max-sum problem to the shown forms of functions. After that, we introduce the

notion of local consistency, which is first shown in the simpler form and then also

for the other form.

2.1 Convex Piecewise-Affine Functions

A convex piecewise-affine function can be given in various forms, one of them

is the pointwise maximum of affine functions (MAF), i.e.

f(x) =
m

max
i=1

(aTi x + bi) =
m

max
i=1

fi(x), (2.1)

where m ∈ N, b1, ..., bm ∈ R, a1, ..., am ∈ Rn, and x ∈ Rn. The affine functions fi
are called the subfunctions of f . It can be shown that any convex piecewise-affine

function can be defined as a MAF.

Another form of convex piecewise affine function that we will use is the sum of

pointwise maxima of affine functions (SMAF), i.e.

f(x) =
l∑

i=1

mi
max
j=1

(aTi,jx + bi,j) =
l∑

i=1

mi
max
j=1

fi,j(x), (2.2)

where m ∈ Nl and for each i ∈ [l], we are given scalars bi,1, ..., bi,mi
∈ R and vec-

tors ai,1, ..., ai,mi
∈ Rn. The affine functions fi,j are called the subfunctions of f .

Additionally, we say that the subfunction fi,j belongs to cluster i.
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2.1.1 Transformation from a Binary Max-sum Problem

If a binary max-sum problem (G,X,g) is given, we can transform its height

minimization problem to minimization of a MAF or a SMAF. It can be easily seen

from the form (1.9) that gϕt,t′(x, x
′) and gϕt (x) are affine functions of ϕ, because all

gt(x) and gt,t′(x, x
′) are constants.

Viewing height minimization as a general MAF or SMAF allows us to simplify

the problem structure. It means that we can for example index the variables in x

just using one number instead of the ϕ variables that are indexed by label, edge and

its direction. The structure of the graph G is basically encoded in the vectors a and

the values from g are transformed to b.

Algorithm 2: Transformation algorithm of a binary max-sum problem to

MAF

1 Function transformToMAF(G,X,g) is

2 a← 0;

3 b← 0;

4 i← 0;

5 for (t, x) ∈ T ×X do

6 if gt(x) > −∞ then

7 i← i+ 1;

8 bi ← gt(x);

9 for {t, t′} ∈ E do

10 ai,Φ(ϕt,t′ (x)) ← 1;

11 for {t, t′} ∈ E do

12 for (x, x′) ∈ X2 do

13 if gt,t′(x, x
′) > −∞ then

14 i← i+ 1;

15 bi ← gt,t′(x, x
′);

16 ai,Φ(ϕt,t′ (x)) ← −1;

17 ai,Φ(ϕt,′t(x
′)) ← −1;

18 m← i;

19 return m, a, b;

As it was already mentioned in Section 1.3, the problem of height minimization

of a binary max-sum problem can be expressed in many forms. The form (1.15) is

clearly a MAF minimization.

In the previously mentioned formulation, we minimize the maximum of at most

|T | · |X|+ |E| · |X|2 elements that correspond to functions. Notice that the functions

with corresponding g value equal to −∞ can be disregarded and not added among
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the resulting functions. The amount of variables is 2|E| · |X|.

Algorithm 2 shows how the height is transformed into a MAF. It is assumed

that there is a bijection Φ that maps each variable ϕt,t′(x
′) for {t, t′} ∈ E, x ∈ X to

a number from the set [2|E| · |X|].

Similarly, the original form of the dual LP (1.14) is obviously a SMAF mini-

mization. We minimize the sum of l = |T | + |E| maxima. Again as in the previous

case, the functions with corresponding g value equal to −∞ can be disregarded and

not added into the set of functions. The amount of variables is again 2|E| · |X|.

Algorithm 3: Transformation algorithm of a binary max-sum problem to

SMAF

1 Function transformToSMAF(G,X,g) is

2 a← 0;

3 b← 0;

4 m← 0;

5 l← |T |+ |E|;
6 i← 0;

7 for t ∈ T do

8 i← i+ 1;

9 j ← 0;

10 for x ∈ X do

11 if gt(x) > −∞ then

12 j ← j + 1;

13 bi,j ← gt(x);

14 for {t, t′} ∈ E do

15 ai,j,Φ(ϕt,t′ (x)) ← 1;

16 mi ← j;

17 for {t, t′} ∈ E do

18 i← i+ 1;

19 j ← 0;

20 for (x, x′) ∈ X2 do

21 if gt,t′(x, x
′) > −∞ then

22 j ← j + 1;

23 bi,j ← gt,t′(x, x
′);

24 ai,j,Φ(ϕt,t′ (x)) ← −1;

25 ai,j,Φ(ϕt′,t(x
′)) ← −1;

26 mi ← j;

27 return l, m, a, b;

Algorithm 3 shows how the upper bound is transformed into a SMAF. It is
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again assumed that there is a function Φ with the same characteristics as in the

MAF case.

2.2 Local Consistency

Before we introduce the notion of local consistency, we recall the definitions

of subgradient and subdifferential. Similarly as gradient can be utilized to identify

local extremes of differentiable functions, subdifferential provides the corresponding

condition for non-differentiable functions.

Definition 2.1. Vector v ∈ Rn is a subgradient of a convex function f : Rn → R at

point x ∈ Rn if

f(x′) ≥ f(x) + vT (x′ − x) (2.3)

holds for all x′ ∈ Rn.

Definition 2.2. The subdifferential of a convex function f : Rn → R at point x ∈ Rn

is the set of all its subgradients at x.

The subgradient can be viewed as a generalized gradient, because if f is actually

differentiable at some point x, then it has only one subgradient at x, which is the

function’s gradient at x.

Example 2.1. Let f(x) = |x|, then ∂f(2) = {1} and ∂f(0) = [−1, 1]. �

Example 2.2. Let f(x1, x2) = |x1|+ |x2|, then ∂f(0, 0) = [−1, 1]× [−1, 1]. �

It can be easily seen that a point x ∈ Rn is a minimizer of a convex function

f : Rn → R if and only if 0 ∈ ∂f(x). That can be checked by substituting v = 0

into the definition of subdifferential, which yields

f(x′) ≥ f(x), ∀x′ ∈ Rn, (2.4)

thus x is a minimum of f .

2.2.1 Local Consistency for Minimizing MAF

Definition 2.3. Given a MAF f : Rn → R, we say that a subfunction fi, i ∈ [m] of

f is active at point x ∈ Rn if fi(x) = f(x). Using the notion of active subfunctions,

we can define the set of indices of active subfunctions at x as

I(x) = {i ∈ [m] | fi(x) = f(x)}. (2.5)
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Proposition 2.1. The subdifferential of a MAF f : Rn → R at point x ∈ Rn is

∂f(x) = conv{ai | i ∈ I(x)}. (2.6)

Now, to find out if a point x ∈ Rn is a minimizer of a MAF f , it is enough

to determine whether 0 ∈ conv{ai | i ∈ I(x)}. That is equivalent to the decision

whether the LP ∑
i∈I(x)

λi = 1 (2.7a)

λi ≥ 0, ∀i ∈ I(x) (2.7b)∑
i∈I(x)

λiai,j = 0, ∀j ∈ [n] (2.7c)

is satisfiable. The variables λi ∈ R, i ∈ I(x) represent the coefficients of the convex

combination. However, calculating this LP could be demanding for large problems,

so we will use the sign relaxation introduced in Werner (2017).

The relaxation defines a new variable σi ∈ {0, 1} to each λi as σi = sign(λi).

Then, the condition (2.7a) in the previous LP implies that at least one σi should be

1. Condition (2.7c) implies that for all j ∈ [n], if there is i ∈ I(x) such that σi = 1

and ai,j > 0, then there must be i′ ∈ I(x) such that σi′ = 1 and ai′,j < 0 (and vice

versa). These conditions are formally given as

∃i ∈ I(x) : σi = 1 (2.8a)

(∃i ∈ I(x) : σiai,j > 0)⇔ (∃i′ ∈ I(x) : σi′ai′,j < 0), ∀j ∈ [n] (2.8b)

and they are always satisfiable when the original LP (2.7) is satisfiable, but the

opposite does not hold, i.e. when the LP is not satisfiable, then the CSP could be

satisfiable.

We can solve the CSP defined by constraints (2.8) by generalized arc consis-

tency. Practically, it means that if for some j ∈ [n], all ai,j, i ∈ I(x), are non-negative

and at least one is positive, then the variables σi that correspond to ai,j > 0 must

be zero. Similar reasoning can be done with the inverse implication of (2.8b). Even-

tually, there will either be no σi that will be forced to zero and we could therefore

set at least one variable to 1 to satisfy condition (2.8a). On the other hand, if all σi
are forced to be zero, the CSP is not satisfiable.

This procedure can be written more formally as follows:

1. For all i ∈ I(x), set σi ← 1.

2. If ∃j ∈ [n] such that (∃i ∈ I(x) : σiai,j > 0) ∧ (@i′ ∈ I(x) : σi′ai′,j < 0), set

σi ← 0.
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3. If ∃j ∈ [n] such that (@i ∈ I(x) : σiai,j > 0) ∧ (∃i′ ∈ I(x) : σi′ai′,j < 0), set

σi′ ← 0.

4. If ∀j ∈ [n] holds that (∃i ∈ I(x) : σiai,j > 0) ⇔ (∃i′ ∈ I(x) : σi′ai′,j < 0),

terminate. Otherwise go to 2.

Observe that whenever some σi is set to zero, it is an assignment which is

enforced by the constraint (2.8b), so the previously described procedure will find

out whether the CSP is satisfiable – if σ 6= 0 after it terminates, then the CSP is

satisfiable. If σ = 0, it is not.

The procedure can be viewed as an arc consistency algorithm applied on the

CSP. It is known and it was proven in Apt (1999) that such algorithms end always

with the same result, which means that if there are multiple values j, i, i′ that satisfy

the condition in step 1 and 2, we can choose arbitrary one and perform the update

of σ. It was also shown for this particular case in Werner (2017).

Also observe that the procedure must terminate after a finite amount of steps,

because the value
∑

i∈I(x) σi can be viewed as its variant, i.e. a variable that monotonously

decreases during the run of the procedure. It has initial value |I(x)|, which is finite,

and in each step, the procedure either terminates or lowers the variant by 1. Even-

tually, the variant will either decrease to 0 and the procedure terminates, or it ends

beforehand.

Definition 2.4. Given a MAF f : Rn → R, a point x ∈ Rn is called locally consistent

with respect to f if the CSP (2.8) is satisfiable.

Decreasing Direction

If the corresponding CSP (2.8) is not satisfiable for given input values deter-

mined by a MAF f , then we can conclude that the point x is not a minimizer and it

is possible to find a direction ∆x, in which the function f decreases from this point.

If the CSP is satisfiable, we cannot be sure whether the point x was a minimizer just

from the CSP. But only locally consistent points can be minima of a MAF.

To give the reader some intuition and necessary insight for the next sections,

we will show a way of obtaining the direction ∆x which decreases a given MAF f

from a point x that is not locally consistent. To find such direction, we will store

additional information during the run of the previous procedure. Namely, we will

store a pointer p(i) that will be initialized to value ALIVE for each i ∈ I(x) and if

the corresponding σi is set to 0, then we set p(i) ← j, where j is the variable that

was inconsistent. Next, we will also store the order in which the σ values were set

to zero, i.e. create a sequence o that contains the indices i (resp. i′) of subfunctions.

So, o(l) = i iff
∑

i′∈I(x) σi′ = l holds right before σi is set to 0. This is a downwards
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counter – first subfunction whose σi is set to 0 satisfies o(|I(x)|) = i and the last

subfunction whose σi is set to 0 satisfies o(1) = i.

For convenience, we will also define an inverse structure o−1 such that o−1(i) = l

iff o(l) = i, which contains the reverse order in which the sigma values were set to

zero.

Observe that if the point was not locally consistent, all σi values were set to

0 and each σi was set to this value exactly once, therefore the p and o values are

defined unambiguously. But they might have different values if the procedure was

run with a different choice of indices j, i, i′.

Now, we will describe an algorithm that produces a vector ∆x such that all the

active subfunctions decrease in this direction, that means finding a ∆x ∈ Rn that

satisfies

aTi ∆x < 0, ∀i ∈ I(x). (2.9)

This could be again performed by an LP solver, but the time and space complexity

of the LP would be too high for large-scale problems, so we use a simpler algorithm.

The algorithm will use a directed graph whose nodes will be the active subfunctions

and there exists an edge from fi to fi′ iff ai,p(i)ai′,p(i) < 0.

Theorem 2.1. The graph is acyclic and the sequence o stores a topological order of

its nodes.

Proof. Only acyclic graphs have a topological order, therefore it is enough to prove

that o stores a topological order. We will do so by contradiction.

Assume that there is an edge from node fs to ft and o−1(s) > o−1(t). It holds

that as,p(s)at,p(s) < 0 because there is an edge. And it also holds that σs ← 0 was

performed before σt ← 0, because o−1(s) > o−1(t), so at the time when σs was set to

zero, σt = 1. We will analyse the situation right before the coordinate p(s) = j was

found inconsistent.

If as,j > 0, then the condition in step 2 must have been satisfied. But it could

not have been, because there is i′ = t with at,j < 0 and σt = 1.

So, necessarily, the second condition must have caused σs to be set to zero,

i.e. i′ = s and as,j < 0. But there is i = t with at,j > 0, thus even the second

condition could not have set σs to zero. Therefore we conclude that if the sequence o

was created in accordance with the previously specified procedure, it is a topological

ordering of the graph. �

It is also important to see that for any j ∈ [n] it holds that all ai,j with p(i) = j

have the same sign. This fact can be proved by contradiction in a very similar manner

as the previous proof, where we would base our reasoning on the order of nullifying

the corresponding elements of the σ vector.
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This can be used to formulate the main idea of ∆x calculation – if for some

coordinate j, we have ai,p(i) > 0 for all i that satisfy p(i) = j, then we can decrease

xp(i) and the corresponding subfunctions with p(i) = j will decrease. Vice versa,

if the sign is always negative, we can increase xp(i). Notice that if such changes

are performed, only the successors1 of the subfunctions with the given p(i) value

can increase and no previous subfunction (w.r.t. the topological order) increases.

And because the graph is acyclic, we can thus arbitrarily decrease the value of any

subfunction. In Algorithm 4, we search for ∆x such that

aTi ∆x ≤ −1,∀i ∈ I(x), (2.10)

so that (2.9) is satisfied. The choice of the constant −1 is arbitrary and choosing a

different negative number would only scale the result.

Algorithm 4: Direction calculation for MAF

1 ∆x← 0;

2 for l = 1 to |I(x)| do

3 i← o(l);

4 if aTi ∆x > −1 then

5 ∆xp(i) ← ∆xp(i) − (1 + aTi x)/ai,p(i);

6 return ∆x;

Algorithm 4 iterates over the active subfunctions in the topological order and

if for some subfunction fi, the inequality is violated, we need to change ∆xp(i).

Eventually, the algorithm returns ∆x such that (2.10) is satisfied. To show that this

truly holds can be simply done by induction.

Proposition 2.2. After the l-th subfunction fo(l) is processed by Algorithm 4, it

holds that

aTo(l′)∆x ≤ −1, ∀l′ ∈ [l]. (2.11)

Proof. When the first subfunction fo(1) is processed, ∆x = 0 and thus aTo(1)∆x = 0,

so the condition in the loop on line 4 is satisfied and ∆xp(o(1)) is set to

− (1 + aTo(1)x)/ao(1),p(o(1)), (2.12)

and therefore,

aTo(1)∆x = ao(1),p(o(1))∆xp(1) = −ao(1),p(o(1)) · (1 + 0)/ao(1),p(o(1)) = −1 ≤ −1. (2.13)

After that, when the (l+ 1)-th subfunction is processed, l > 0, it could happen

that aTi ∆x ≤ −1, i = o(l + 1), and no update is necessary – then, the claim holds

1Successors are understood as the end nodes of the edges leading from a specified node.
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even for l + 1. But if the update is necessary, we are decreasing (resp. increasing)

∆xp(i) if ai,p(i) > 0 (resp. ai,p(i) < 0). Denoting ∆xprev as the previous value of ∆x

before the update, we obtain

aTi ∆x = aTi ∆xprev − ai,p(i)(1 + aTi xprev)/ai,p(i) = −1 ≤ −1, (2.14)

which means that the subfunction fi now satisfies (2.10). It is important to notice that

some values aTi′∆x, i′ ∈ I(x) change their value, i.e. those that satisfy ai′,p(i) 6= 0.

Observe that if the sign of ai′,p(i) is the same as the sign of ai,p(i), then the value

decreases and therefore, (2.10) definitely still holds for such i′ if o−1(i′) < o−1(i). On

the other hand, if the sign is the opposite, it must hold that o−1(i′) > o−1(i), so the

subfunction fi′ will be processed in future. �

Because Algorithm 4 processes all active subfunctions, condition (2.10) will

hold for all the active subfunctions after it terminates. The inactive subfunctions

may increase or decrease, but a small step with size t > 0 in the ∆x direction can

be performed so that no inactive subfunction becomes active, which means that the

function value will decrease by at least t.

Ways of calculating the step size will be discussed in detail in Section 3.1.4,

where we even deal with the more general case for SMAF.

But for now, it is enough to understand that the previously shown procedure

can be used to find a locally consistent point of a MAF if a line search method

was provided. We could iteratively repeat the following procedure until such point

is reached: first, determine whether a point is locally consistent, then (if it is not)

calculate the direction ∆x and perform a step in this direction.

Examples

These examples show how the constraints from the CSP (2.8), respectively from

the LP (2.7) are enforced and what are the possible outcomes of the arc consistency

procedure. These examples assume that there is a MAF f and a point x which is

tested for minimality.

Example 2.3. Let I(x) = [5], n = 3 and ai,j values form the matrix

A =


−1 2 0

1 0 1

−2 2 −1

0 0 −2

0 0 −1

 . (2.15)

Now, let us use the previously described procedure to find out whether the CSP (2.8)

is satisfiable. First, we can observe that for j = 2, there is i = 1 with a1,2σ1 > 0, but
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Iteration
Condition Assignments

in step j i i′ σ p o
1 2 2 1 – σ1 ← 0 p(1)← 2 o(5)← 1
2 2 2 3 – σ3 ← 0 p(3)← 2 o(4)← 3
3 2 1 2 – σ2 ← 0 p(2)← 1 o(3)← 2
4 3 3 – 4 σ4 ← 0 p(4)← 3 o(2)← 4
5 3 3 – 5 σ5 ← 0 p(5)← 3 o(1)← 5

Table 2.1: Assignments performed in Example 2.3.

there is no i′ with ai′,2σi′ < 0, which means that we set σ1 ← 0, p(1)← 2, o(5)← 1.

The same can be done with j = 2 and i = 3, so we set σ3 ← 0, p(3)← 2, o(4)← 3.

Next, we see that the coordinate j = 1 is inconsistent, because with i = 2, a2,1σ2 > 0,

but there is no i′ with ai′,2σi′ < 0, so σ2 ← 0, p(2) ← 1, o(3) ← 2. Doing this, the

coordinate j = 3 became inconsistent, because for i′ = 4, it holds that a4,3σ4 < 0,

but there is no i such that ai,3σi > 0, thus σ4 ← 0, p(4) ← 3, o(2) ← 4. Finally,

the same is done with i = 5 and j = 3. The assignments are more clearly shown in

Table 2.1.

In this setting, all σ were set to zero and the CSP is therefore unsatisfiable.

This also implies that the original LP (2.7) is unsatisfiable, so we conclude that the

point x is not a minimum and it is neither locally consistent.

Observe that similar reasoning as with setting σi to zero can be also performed

directly with the λi values, where we would distinguish possibly non-zero λi values

and λi values forced to zero. For example, we can observe from the matrix A that

necessarily λ1 = 0 and λ3 = 0 because otherwise the second element of the convex

combination would be positive (and it needs to be zero from the condition (2.7c)).

This reasoning can be followed in the same sense as before but we already know that

it would result in unsatisfiability – all λi values forced to zero, which violates the

condition (2.7a).

Because point x was not locally consistent, we can find the direction ∆x in

which all the active subfunctions decrease. We employ Algorithm 4. Initially, ∆x

is set to 0. When the first subfunction f5 from the topological order is processed,

aT5 ∆x = 0, so we set ∆xp(5) ← 1. Then, we process f4 and see that aT4 ∆x = −2 ≤ −1,

so we do not update ∆x. After that, f2 is processed and aT2 ∆x = 1 > −1, thus

∆xp(2) is decreased by 2. Then, we process f3 and because aT3 ∆x = 3 > −1, we

decrease ∆xp(3) by 2. The last processed subfunction is f1, which already satisfies

aT1 ∆x = −2 ≤ −1, so no update is needed and the algorithm terminates.

The iterative development of both ∆x and aTi ∆x values is in Table 2.2, where

we can see that all aTi ∆x are eventually lower than 0, so the corresponding subfunc-

tions decrease in the ∆x direction. The corresponding directed acyclic graph is shown

in Figure 2.1, where it can be obviously seen that (fo(1), ..., fo(5)) = (f5, f4, f2, f3, f1)
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f1

f3

f2

f4

f5

Figure 2.1: The DAG corresponding to the run of the CSP solving procedure in
Example 2.3.

∆x A∆x processed subfunctions
(0, 0, 0) (0, 0, 0, 0, 0) –
(0, 0, 1) (0, 1,−1,−2,−1) 5
(0, 0, 1) (0, 1,−1,−2,−1) 5, 4

(−2, 0, 1) (2,−1, 3,−2,−1) 5, 4, 2
(−2,−2, 1) (−2,−1,−1,−2,−1) 5, 4, 2, 3
(−2,−2, 1) (−2,−1,−1,−2,−1) 5, 4, 2, 3, 1

Table 2.2: Run of Algorithm 4 on Example 2.3.

is a topological ordering of its nodes.

�

Example 2.4. Let I(x) = [3], n = 3 and ai,j values form the matrix

A =

0 2 0

0 −1 0

1 0 0

 . (2.16)

We initially set σ ← 1 and observe that for j = 1 and i = 3, there is a3,1σ3 > 0,

but no i′ with ai′,1σi′ < 0, which forces σ3 ← 0. But after setting this value, no more

sigma values are changed and we can keep σ1 = 1 and σ2 = 1, so that the whole

CSP (2.8) is satisfied. At this moment, we cannot be sure whether the corresponding

LP is satisfiable and it is therefore not known whether the point x was a minimum.

Solving the LP would give the solution λ = (1/3, 2/3, 0), which means that x

was a minimum.

But if the matrix was a little different, namely

A =

0 2 2

0 −1 −2

1 0 0

 , (2.17)

then the corresponding CSP would be satisfiable, yet the LP would not be satisfiable

and thus x would not be a minimum. �
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2.2.2 Local Consistency for Minimizing SMAF

Now, we will focus on minimizing SMAF using local consistency. First, we will

find out what is the subdifferential of a SMAF, for which we need to define a few

terms.

If we are given a SMAF f : Rn → R, we say that a subfunction fi,j is active

in point x ∈ Rn if fi,j(x) = maxj′∈[mi] fi,j′(x). Then, we can define the set of active

subfunctions in cluster i as

Si(x) = {j ∈ [mi] | fi,j(x) = max
j′∈[mi]

fi,j′(x)} (2.18)

and the set of all active subfunctions as

I(x) = {(i, j) | i ∈ [l], j ∈ Si(x)}. (2.19)

Recall that the Minkowski sum of sets A1, ..., An ⊆ Rn is the set

∑
i∈[n]

Ai =

{∑
i∈[n]

ai | ai ∈ Ai
}
. (2.20)

It is known that the subdifferential of a function f : Rn → R defined as

f(x) =
∑

i∈[l] fi(x) is the Minkowski sum of the subdifferentials of the convex

functions fi, i.e.

∂f(x) =
∑
i∈[l]

∂fi(x). (2.21)

Next, we can use the Proposition 2.1 and express the subdifferential of a SMAF

f : Rn → R in point x ∈ Rn as

∂f(x) =
∑
i∈[l]

conv{ai,j | j ∈ Si(x)}. (2.22)

Finding out whether a given point x is a minimum of SMAF f would require

to determine the satisfiability of the LP∑
j∈Si(x)

λi,j = 1, ∀i ∈ [l] (2.23a)

λi,j ≥ 0, ∀i ∈ [l], j ∈ Si(x) (2.23b)∑
i∈[l]

∑
j∈Si(x)

λi,jai,j,k = 0, ∀k ∈ [n] (2.23c)

which just formalizes the condition 0 ∈ ∂f(x).

Observe that we could apply the same approach as in the MAF case and create
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a CSP relaxation of this LP with variables σi,j ∈ {0, 1}. This relaxation is formalized

as

∀i ∈ [l]∃j ∈ Si(x) : σi,j = 1 (2.24a)

(∃(i, j) ∈ I(x) : σi,jai,j,k > 0)⇔ (∃(i′, j′) ∈ I(x) : σi′,j′ai′,j′,k < 0), ∀k ∈ [n] (2.24b)

The second condition of the CSP is basically the same as in the MAF case,

we treat the subfunctions independently of their cluster and look for inconsistencies

in any variable. However, the first condition is different – we do not need to force

all σi,j to zero but it is enough to do that for a single cluster i to find out that the

CSP is not satisfiable. Similarly as with MAF, we can state a procedure that will

determine whether the CSP (2.24) is satisfiable:

1. For all (i, j) ∈ I(x), set σi,j ← 1.

2. If ∃k ∈ [n] such that (∃(i, j) ∈ I(x) : σi,jai,j,k > 0) ∧ (@(i′, j′) ∈ I(x) :

σi′,j′ai′,j′,k < 0), set σi,j ← 0.

3. If ∃k ∈ [n] such that (@(i, j) ∈ I(x) : σi,jai,j,k > 0) ∧ (∃(i′, j′) ∈ I(x) :

σi′,j′ai′,j′,k < 0), set σi′,j′ ← 0.

4. If ∀k ∈ [n] holds that (∃(i, j) ∈ I(x) : σi,jai,j,k > 0) ⇔ (∃(i′, j′) ∈ I(x) :

σi′,j′ai′,j′,k < 0), terminate.

5. If ∃i ∈ [l] such that ∀j ∈ Si(x) : σi,j = 0, terminate. Otherwise, go to 2.

Definition 2.5. Given a SMAF f : Rn → R, a point x ∈ Rn is called locally

consistent with respect to f if the CSP (2.24) is satisfiable.

It is clear that this procedure finds the solution to the CSP (2.24) whenever one

exists and if it does not, it will detect it too. It naturally leads from the definition

and the previous reasoning that if for some i∗ ∈ [l], all values σi∗,j are forced to

0, then we can terminate the algorithm and conclude that the point is not locally

consistent.

The choice of values i, j, k (resp. also i′, j′) during the procedure above could

influence the final values of σi,j, and therefore also the cluster i∗ which contains

only zero σi∗,j (if the corresponding CSP is not satisfiable). But similarly as the

corresponding procedure for MAF, this one also always terminates with the same

result in the sense of the CSP satisfiability regardless of the choice of the constants

in the existential quantifiers.

The relation of locally consistent points of a SMAF to its minima is the same

as in the MAF case. If a point x is not a locally consistent point of SMAF f , then

we can find a direction ∆x, in which the function f decreases from this point and it
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is therefore not a minimizer. On the other hand, if the point is a minimum, then it

is necessarily locally consistent. This property will be used and proven as a part of

the main minimization algorithm
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Chapter 3

Minimization Algorithm

In this chapter, we present the whole algorithm for SMAF minimization in de-

tail, show its generalization for ε-consistency and prove its correctness. We also show

its modified version for finite-precision arithmetic. Finally, we formulate conditions

that can in some cases decide whether the true optimum was reached.

3.1 Description

In this section, we will describe the algorithm based on the notion of local

consistency that was outlined in the previous chapter. The task of this algorithm is

to find a locally consistent point of a given SMAF f . In contrast to Chapter 2, here

we give all the details and a complete pseudocode of the algorithm.

The algorithm works iteratively. In each iteration, it finds out whether the

current point x is locally consistent. If it is, then the algorithm halts and returns

this value. If it is not, then we are able to find a direction in which the function

decreases and then update x by performing a step in this direction.

3.1.1 Inputs and Variables

The algorithm takes a SMAF f on its input, which is defined by the values

l ∈ N, m ∈ Nl and for each i ∈ [l], we have bi,1, ..., bi,mi
∈ R and vectors ai,1, ..., ai,mi

∈
Rn, as it was shown in formula (2.2). Next, the algorithm uses a few global variables,

whose meanings are in Table 3.1. All these mentioned inputs and listed variables

are viewed as global and can be accessed in any function. How these variables are

initialized can be seen in Algorithm 5.
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Variable Content
x current point

∆x decreasing direction from the current point
y current subfunction values, i.e. yi,j = aTi,jx + bi,j
c slopes of the subfunctions w.r.t. ∆x direction, i.e. ci,j = aTi,j∆x
d in-degree of a node in the augmenting DAG
r whether a node is in the augmenting DAG
p the statuses of subfunctions
Q queue of the coordinates that are suspected of being inconsistent
i∗ index of the cluster in which no subfunction is alive

Table 3.1: Global variables of the algorithm.

Algorithm 5: Initialization of the minimization algorithm

1 Function initialize() is

2 ∆x← 0;

3 x← 0;

4 y← b;

5 c← 0;

6 d← 0;

7 r← FALSE;

8 p← INACTIVE;

9 Q← empty queue;

10 for (i, j) ∈ I(x) do

11 p(i, j)← ALIVE;

12 for k ∈ N(fi,j) do

13 Q.push(k);

3.1.2 Local Consistency Algorithm

The local consistency algorithm calculates whether the current point is locally

consistent. Its core idea is the same as in the procedure shown in Section 2.2.2

but it is optimized in the sense that it can partially re-use the results from the

previous iteration. The output of the local consistency algorithm is a boolean value

(denotes whether the current point is locally consistent) and a structure that allows

us to calculate the decreasing direction (in case that the current point is not locally

consistent).

Instead of storing the order of subfunctions, pointers to coordinates, σ values

and whether the subfunction is active, we can simply keep only the status of each

subfunction in the variables p(i, j). The status value can be divided into three equiva-

lence classes. First, the subfunction fi,j can be inactive and thus p(i, j) = INACTIVE.
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Second, the subfunction can be active and not yet killed; this status is called ALIVE

and corresponds to having σi,j = 1 in the previous section. Note that ”killing” a

subfunction corresponds to setting σi,j ← 0 in previous procedure. The third equiv-

alence class are the statuses of subfunctions that are active, but already killed. In

this case, the status contains the index of the corresponding variable that caused the

subfunction to be killed (i.e. the variable that was inconsistent), similarly as before.

Definition 3.1. In Algorithm 6, a variable xk (resp. coordinate k) is called incon-

sistent iff there is at least one fi,j with p(i, j) = ALIVE and ai,j,k 6= 0 and there is no

fi′,j′ with p(i′, j′) = ALIVE and ai′,j′,k ai,j,k < 0.

Definition 3.2. For a given subfunction fi,j, the set N(fi,j) is defined as the set of

coordinates on which its value depends, i.e.

N(fi,j) = {k ∈ [n] | ai,j,k 6= 0}. (3.1)

Similarly, we can also define the corresponding set for a given variable xk as

N(xk) = {(i, j) | i ∈ [l], j ∈ [mi], ai,j,k 6= 0}. (3.2)

The previous definition can be viewed as the relation of adjacency on an undi-

rected bipartite graph whose nodes are all the subfunctions fi,j and all variables xk,

where an edge connects node fi,j with node xk iff ai,j,k 6= 0. Then, N(fi,j) are the

indices of neighbouring variables xk and vice versa.

Initially, before the calculations start, all the subfunctions are viewed as inactive

and before the first iteration, the ones that are active are marked so on line 11 in

Algorithm 5 and the queue Q is also filled with possibly inconsistent coordinates

on line 13 – in this case, this corresponds to the coordinates on which at least one

subfunction depends.

After the initialization is done, we employ Algorithm 6 to find out whether

the current point is locally consistent. The algorithm is in its core analogous to the

procedure which was in the Section 2.2.2 tailored to SMAF. It means that we are

looking for inconsistent coordinates and if one is found, then we mark the corre-

sponding subfunctions that caused the inconsistency with the variable but we can

kill multiple subfunctions at a time, as opposed to the previous procedure. Killing

subfunctions means that their p(i, j) value is set from ALIVE to the coordinate index.

As we said in Section 2.2.2, the algorithm can be terminated if at some point

there is a cluster i in which no subfunction has status ALIVE. In this case, the

algorithm returns FALSE, which means that the current point is not locally consistent.

For a locally consistent point, the algorithm returns TRUE.

The pseudocode of the algorithm is optimized in the sense that it does not

try all coordinates in each iteration of the main while loop, but instead stores the
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potentially inconsistent ones in the queue Q. This queue was originally initialized

in Algorithm 5 and it will be later periodically re-filled in Algorithm 10. When

an inconsistent coordinate is discovered, the queue is again updated so that it still

contains all the coordinates that might have become inconsistent.

Algorithm 6: The local consistency algorithm that calculates whether the

active functions are consistent.

1 Function calculateConsistency() is

2 if ∃i ∈ [l], @j ∈ [mi] : p(i, j) = ALIVE then

3 i∗ ← i;

4 return FALSE;

5 while Q is not empty do

6 k ← Q.pop();

7 if variable xk is inconsistent then

8 for (i, j) ∈ N(xk) do

9 if p(i, j) = ALIVE then

10 p(i, j)← k;

11 for k′ ∈ N(fi,j) do

12 Q.push(k′);

13 if ∃i ∈ [l], @j ∈ [mi] : p(i, j) = ALIVE then

14 i∗ ← i;

15 return FALSE;

16 return TRUE;

3.1.3 Finding Decreasing Direction

In this section, we will present an algorithm that finds a direction in which the

function f decreases. Throughout this section, it is assumed that Algorithm 6 decided

that the current point is not locally consistent. In the opposite case, the consistent

point was already reached and we do not need to find a decreasing direction.

We will look for a decreasing direction ∆x ∈ Rn that satisfies

fi,j(x + ∆x) ≤ fi,j(x), ∀(i, j) ∈ I(x), (3.3a)

fi∗,j(x + ∆x) ≤ fi∗,j(x)− 1, ∀j ∈ Si∗(x), (3.3b)

where i∗ is the cluster for which there is no subfunction fi∗,j with p(i∗, j) = ALIVE.

In Algorithm 7, we will show how to find such ∆x.

The previously stated condition requires that no active subfunction should

increase in the direction and additionally, the subfunctions from cluster i∗ should
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decrease. The choice of constant −1 in the second inequality is arbitrary and choos-

ing any other negative constant would only scale the problem. Obviously, there are

infinitely many ∆x ∈ Rn that satisfy the conditions and we are interested in finding

one of them.

The previous local consistency algorithm fills in the status values p, which de-

fine a directed graph whose nodes are the subfunctions fi,j such that p(i, j) ∈ [n]

and there is an edge in the graph from subfunction fi,j to subfunction fi′,j′ iff

ai,j,p(i,j)ai′,j′,p(i,j) < 0. More formally, it is a directed graph G∆ = (N∆, E∆), where

N∆ = {fi,j | p(i, j) ∈ [n]}, (3.4a)

E∆ = {(fi,j, fi′,j′) | ai,j,p(i,j)ai′,j′,p(i,j) < 0}. (3.4b)

The meaning of the edges in the graph is based on the idea that all the corre-

sponding ai,j,p(i,j) are non-zero and changing the value of xp(i,j) in one direction can

lower the value of fi,j(x). More specifically, if ai,j,p(i,j) > 0, then we can decrease the

fi,j(x) value by lowering xp(i,j) and if ai,j,p(i,j) < 0, then we can do it by increasing

xp(i,j). If we change xp(i,j), the value of some other subfunctions fi′,j′ may increase

because their coefficient ai′,j′,p(i,j) has the opposite sign than ai,j,p(i,j), which is exactly

the definition of the edges in the graph.

It will be proven in the next sections that this graph is actually a DAG and

it is therefore possible to arbitrarily decrease the value of any fi,j that is its node –

we could change xp(i,j) to decrease it arbitrarily. If there are outgoing edges from the

corresponding node, then some other subfunctions increased their value and if we do

not want that, we can again lower them by their corresponding coordinates stored in

p. Eventually, we will decrease the subfunctions whose corresponding nodes in the

DAG do not have any outgoing edges, i.e. we will finish the procedure successfully.

Therefore, we can use the DAG to find the direction ∆x that satisfies the above

mentioned conditions. First, we will identify a subgraph of the DAG, the so-called

augmenting DAG. It is defined as all the nodes that are reachable from the nodes

that are in the cluster i∗ and are active. The edges between these nodes are kept

without changes. The formal definition follows.

Definition 3.3. The augmenting DAG is a node-induced subgraph GA of the graph

G∆ = (N∆, E∆) defined in (3.4). A node fi,j is in the augmenting DAG if and only

if there exists j′ ∈ Si∗(x) such that there is a directed path in the graph G∆ from

fi∗,j′ to fi,j.

Next, we can process the nodes of the augmenting DAG in a topological order

and for each corresponding subfunction check whether it satisfies the conditions for

∆x and if it does not, update the value of the corresponding status variable. This

procedure is shown in Algorithm 7.
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Algorithm 7 works exactly as described above. It first finds out which nodes are

reachable from the nodes fi∗,j, j ∈ Si∗(x) and if a node is reachable, its r value is set

to TRUE. In this way, we identify which nodes from N∆ are in the augmenting DAG.

Additionally, we calculate the in-degrees of the nodes in the augmenting DAG and

accumulate them in the structure d. The exploration of the graph in Algorithm 7 is

performed by a recursive function that is described in Algorithm 8.

Next, using these structures, we can simply identify all the nodes with zero

in-degree and put them into the queue Qf – notice that only the nodes from cluster

i∗ could have zero in-degree in the augmenting DAG. Finally, we traverse the nodes

of the augmenting DAG in a topological order and whenever a node is processed, we

decrease the in-degree of its successors. If the successor has in-degree equal to zero,

it is put into the queue Qf .

Algorithm 7: Direction calculation for SMAF

1 Function calculateDirection() is

2 for j ∈ Si∗(x) do

3 if r(fi∗,j) = FALSE then

4 r(fi∗,j)← TRUE;

5 explore(fi∗,j);

6 Qf ← empty queue of pairs;

7 for j ∈ Si∗(x) do

8 if d(fi∗,j) = 0 then

9 Qf.push(i∗, j);

10 while Qf is not empty do

11 (i, j)← Qf.pop();

12 r(fi,j)← FALSE;

13 k ← p(i, j);

14 prev ← ∆xk;

15 if ci,j > −Ji = i∗K then

16 ∆xk ← ∆xk − (Ji = i∗K + ci,j)/ai,j,k;

17 for (i′, j′) ∈ N(xk) do

18 ci′,j′ ← ci′,j′ + (∆xk − prev)ai′,j′,k;

19 if (p(i′, j′) 6= INACTIVE) ∧ ((fi,j, fi′,j′) ∈ E∆) then

20 d(fi′,j′)← d(fi′,j′)− 1;

21 if d(fi′,j′) = 0 then

22 Qf.push(i′, j′);

23 else if d(fi′,j′) < 0 then

24 d(fi′,j′) = 0;
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While processing a node (i.e. a subfunction), we ensure that the conditions

(3.3) are satisfied for it, these conditions are equivalent to

aTi,j∆x ≤ 0, ∀(i, j) ∈ I(x) (3.5a)

aTi∗,j∆x ≤ −1, ∀j ∈ Si∗(x). (3.5b)

And these can be rewritten as one condition

ci,j ≤ −Ji = i∗K, ∀(i, j) ∈ I(x), (3.6)

where ci,j = aTi,j∆x. Algorithm 7 stores these ci,j values pre-calculated in order not

to evaluate the scalar product every time.

If the condition (3.6) is violated for the currently processed subfunction fi,j,

then ∆xp(i,j) is changed in order to satisfy the condition. Then, the values of ci′,j′

that correspond to subfunctions fi′,j′ that depend on xp(i,j) need to be updated so

that they still contain the correct values aTi′,j′∆x. During this update, the in-degree

of successors of fi,j in the augmenting DAG is lowered, as mentioned above.

Notice that the algorithm does not enforce the inequality for subfunctions that

are ALIVE. These functions satisfy the conditions automatically, due to the way of

creating the p structure, as we will show later. However, the subfunctions that are

INACTIVE do not need to satisfy any conditions.

Algorithm 8: Recursive exploration of reachable nodes in the DAG

1 Function explore(fi,j) is

2 for (i′, j′) ∈ N(xp(fi,j)) do

3 if (p(i′, j′) 6= INACTIVE) ∧ ((fi,j, fi′,j′) ∈ E∆) then

4 d(fi′,j′)← d(fi′,j′) + 1;

5 if r(fi′,j′) = FALSE then

6 r(fi′,j′)← TRUE

7 explore(fi′,j′);

The algorithm assumes that on input, all the in-degrees stored in structure d

are zero and all the values in the r structure are FALSE. These are also the initial

values, which are changed during the runtime of the algorithm. When the calculations

are ended, the values in the structures are returned to their previous values. In case

of r, this is done while traversing the augmenting DAG, when the values of reached

nodes are set back to FALSE. The structure with in-degrees is gradually lowered down

to −1 for each visited node, which is then set back to 0 for the purposes of the next

iteration.

In a similar manner, it assumes that the initial values of all elements of ∆x

and c are zero. The values of these are set to zero after their values are used in the
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step size calculation, i.e. Algorithm 9. It is efficient to store the indices of potentially

non-zero values of ∆x in a stack for further efficient use.

3.1.4 Line Search

When the direction ∆x is calculated, we are interested in finding the length of

the step t that would decrease the value of the function f , i.e.

f(x + t∆x) < f(x) (3.7)

and also guarantee that the algorithm will converge with the chosen method of the

step size calculation.

This problem is actually only one-dimensional because

f(x + t∆x) =
l∑

i=1

mi
max
j=1

(aTi,j(x + t∆x) + bi,j) =
l∑

i=1

mi
max
j=1

(t · ci,j + yi,j) = g(t), (3.8)

where ci,j = aTi,j∆x and yi,j = aTi,jx + bi,j are scalars and g is a convex piecewise

affine function with one variable t. We could be interested in the optimal length of

the step t. That is the one that minimizes function g, i.e.

t∗ ∈ argmin
t

g(t). (3.9)

After this value would be obtained, we would not need to enforce other constraints

and directly use it. However, a linear-time algorithm for finding such t∗ is not known

and that is why we resort to heuristic methods.

More specifically, we will find a step size t so that in all clusters i ∈ [l], no

subfunction increases above the value of the previous maximum, i.e.

∀i ∈ [l], ∀j ∈ [mi] : fi,j(x + t∆x) ≤ mi
max
j′=1

fi,j′(x). (3.10)

We apply an additional constraint on the subfunctions in cluster i∗, where the max-

imum value of a subfunction should be strictly lower than the previous maximum.

There are multiple ways of choosing t > 0 that satisfy the above constraints. The

shown methods consist of two parts – first, use a strategy for initializing the step

size t such that the maximum in cluster i∗ decreases and then enforce the constraint

(3.10).

In all the initialization strategies, we first find the index jslowest
i∗ such that it

primarily has the maximal fi∗,j(x) value among Si∗(x) and if there are multiple

maxima, then the one with the largest ci∗,j is chosen1. After this index is found,

1If there are still multiple subfunctions that have the maximal ci∗,j , then they are identical from
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we call the corresponding subfunction in the cluster i∗ as the slowest decreasing.

The slope of this subfunction is at most −1, due to inequalities (3.3), therefore for

infinitesimally small t it will hold that

mi∗
max
j=1

fi∗,j(x + t∆x) ≤
mi∗

max
j=1

fi∗,j(x)− t, (3.11)

but if t is too large, other subfunctions may become active at the point x + t∆x.

This fact itself would not limit us in increasing t further if the newly active functions

are still decreasing. But if they were increasing, we should stop.

Yet, re-calculating active functions for each step size would be time-consuming,

therefore we introduce the heuristic methods.

First Non-decreasing Hit Strategy

In this initialization strategy, we will calculate the intersection points t′ of

the slowest decreasing subfunction with the non-decreasing subfunctions2 from the

cluster i∗ and then choose the smallest t′. This approach guarantees that no value of

a non-decreasing previously inactive subfunction will exceed the value of fi∗,jslowest
i∗

.

That is why we call this method first non-decreasing hit – because at the value of

the returned t, the slowest decreasing subfunction has the same value as the first

encountered non-decreasing subfunction (first in the sense that it corresponds to the

smallest such t).

This idea is illustrated in Figure 3.1, which shows the values fi∗,j(x + t∆x) of

the individual subfunctions based on the step size t and also the maximum value

maxmi∗
j=1 fi∗,j(x + t∆x) at each point. The slowest decreasing subfunction is shown

as the red one, whereas the other ones are blue. Observe that at point x (which

corresponds to t = 0), there was also another active subfunction, which decreases

faster. Then, there are the other subfunctions that were not active – from these,

the non-decreasing ones are filtered and their intersection points with the slowest

decreasing are calculated as t1, t2, t3. In this case, we would initialize the value of t

to t1 because it is the minimum value among {t1, t2, t3}.

The above initialization procedure of the line search formally corresponds to

tFND ← inf

{
fi∗,jslowest

i∗
(x)− fi∗,j(x)

ci∗,j − ci∗,jslowest
i∗

∣∣∣∣∣ j ∈ [mi∗ ], ci∗,j ≥ 0

}
. (3.12)

Notice that if there is no subfunction that is non-decreasing in the direction ∆x,

then we set t as infinity. This is why we use infimum in the initialization – if the set

the point of view of line search and the choice is arbitrary. Even though all fi∗,j(x) for j ∈ Si∗(x)
are equal, this general approach is necessary due to the ε generalizations that will come later.

2Notice that all the non-decreasing subfunctions in cluster i∗ are necessarily inactive.
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Figure 3.1: Example case of searching the initial value for t by first non-decreasing
hit strategy.

slowest
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t

Figure 3.2: Comparison of initialization methods of t.
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over which the infimum is taken is empty, the result is infinity, otherwise it is the

minimum among the values in the set.

First-hit Strategy

Analogously to the previously described method, we could also use the first-hit

strategy, which forbids any subfunction that was previously inactive to exceed the

value of the slowest decreasing function, i.e.

tFH ← inf

{
fi∗,jslowest

i∗
(x)− fi∗,j(x)

ci∗,j − ci∗,jslowest
i∗

∣∣∣∣∣ j ∈ [mi∗ ], p(fi∗,j) = INACTIVE

}
. (3.13)

First Increasing Hit Strategy

A slightly more complicated strategy of finding t is to initialize it to analogously

hit the first increasing (therefore inactive) subfunction, i.e. initialize

tFIH ← inf

{
fi∗,jslowest

i∗
(x)− fi∗,j(x)

ci∗,j − ci∗,jslowest
i∗

∣∣∣∣∣ j ∈ [mi∗ ], ci∗,j > 0

}
. (3.14)

However, this strategy is different from the above ones in the sense that if

tFNDH = ∞ or tFH = ∞, then we know that the value of maxmi∗
j=1 fi∗,j(x + t∆x) is

not bounded and with large-enough choice of t, it could be made arbitrarily small.

This does not necessarily hold whenever tFIH =∞, because there could be constant

subfunctions that would bound the cluster maximum from below. We will discuss

this in detail later.

Comparison of Strategies

It is easy to compare the t values of the heuristic methods, since

ci∗,j > 0 ⇒ ci∗,j ≥ 0 ⇒ p(i∗, j) = INACTIVE (3.15)

and knowing that inf A ≥ inf B for A ⊆ B, we can say that

tFIH ≥ tFNDH ≥ tFH. (3.16)

It is however not possible to compare the corresponding values g(tFIH), g(tFNDH)

and g(tFH) generally for l ≥ 2 because the sum of the maxima in other clusters will

influence the final function value. For each of the presented heuristic strategies, there

is a case in which it lowers the function g more than the others.
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i = i∗ = 2

i = 3

i = 1

i = 4

tinit0

t

maxmi
j=1 fi,j(x + t∆x)

tfinal

Figure 3.3: Example of enforcing that no cluster maximum increases with step size
t.

However, if we are processing a SMAF with l = 1 (which is actually a MAF),

then it holds that

g(t∗) ≤ g(tFIH) ≤ g(tFNDH) ≤ g(tFH). (3.17)

The reasoning is simple because the point tFIH is the smallest positive one, in which

an increasing subfunction could become active. Therefore, the function g is non-

increasing on the interval [0, tFIH]. However, the slowest decreasing function could

have become inactive at this point e.g. due to a previously inactive subfunction that

decreases slower and therefore the value tFIH is not necessarily optimal even in this

case. Figure 3.2 shows the value of maxmi∗
j=1 fi∗,j(x + t∆x) for various values of t with

black colour. The values of other subfunctions are shown in blue, except for the

slowest decreasing one, which is emphasised by red.

Assuring Non-increasing Cluster Maxima

After the value t was initialized by one of the previous strategies, we need

to assure that the condition (3.10) holds. So we go through the subfunctions fi,j
that have possibly non-zero value ci,j = aTi,j∆x and if the corresponding value ci,j
is positive, it means that the subfunction fi,j increases in the ∆x direction and we

need to make sure that the value of the maximum in cluster i would not increase

after the update. It could therefore lower the step size.

This is shown in Figure 3.3, where the maxima of l = 4 clusters are shown
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based on the value of t. Their original maxima for t = 0 are shown by dashed lines

in corresponding colour. For cluster i∗ = 2, it obviously by definition holds that the

value of the maximum is not higher in tinit, which was in this case calculated by

the first non-decreasing hit strategy. The maxima of clusters 3 and 4 are also not

increased at this point, but the maximum in cluster 1 has higher value in t = tinit

than in t = 0, therefore we lower the value of t to tfinal, which is the final value of the

step size in this case. If there were more clusters violating this condition, we would

need to check all of them and possibly decrease the value of t multiple times.

Algorithm 9: Line search algorithm for SMAF

1 Function calculateStepSize() is

2 jslowest
i∗ ← argmax

j

{
ci∗,j

∣∣∣ j ∈ argmax
j′∈Si∗ (x)

fi∗,j′(x)
}

;

3 t← inf

{
fi∗,jslowest

i∗
(x)− fi∗,j(x)

ci∗,j − ci∗,jslowest
i∗

∣∣∣∣∣ j ∈ [mi∗ ], ci∗,j ≥ 0

}
;

4 for i ∈ {i′ | (i′, j) ∈ N(xk),∆xk 6= 0} do

5 for j ∈ [mi] do

6 if ci,j > 0 then

7 t← min

{
t, 1
ci,j

(
mi

max
j′=1

fi,j′(x)− fi,j(x)

)}
;

8 return t ;

In Algorithm 9, the whole procedure is formalized. On line 2, we use the first

non-decreasing hit strategy to initialize the value of t. Then, we iterate over the

subfunctions that could be increasing and for the ones that are, we assert that the

cluster maximum does not increase. That is guaranteed by the update on line 7.

If the t returned by Algorithm 9 is infinite, it means that the function is un-

bounded and can be decreased arbitrarily in this direction. Note that even when a

finite value of t is returned by Algorithm 9, it does not guarantee that the function

f is bounded (even in the direction ∆x). This could happen if there are subfunc-

tions that would cause some maxima to increase, but other maxima decrease more

”steeply” so that the whole function decreases.

If we used the first-hit strategy in the algorithm, it would work in the same

fashion. But, for the first increasing hit strategy initialization, it would need an

additional modification to run correctly. Observe that if the value t = tFIH was

initialized to infinity and then was not updated in the subsequent for loops on lines

4–7, the algorithm could incorrectly mark the input function as unbounded. It would

happen in the case when there is no increasing subfunction in any cluster, but in each

of them, there is at least one constant subfunction. So, to guarantee the correctness

of the algorithm with FIH initialization, whenever it would like to return infinity, we
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need to do an additional assignment

t← inf

{
fi∗,jslowest

i∗
(x)− fi∗,j(x)

ci∗,j − ci∗,jslowest
i∗

∣∣∣∣∣ j ∈ [mi∗ ], ci∗,j = 0

}
(3.18)

that would lower the tFIH to a finite value if there exists a constant subfunction in

the i∗ cluster and thus ensure the correctness of the result.

We have chosen the first non-decreasing hit strategy in our implementation

because it does not require to iterate over the subfunctions in the cluster i∗ again in

cases of suspected unboundedness.

3.1.5 Update of x

By now, we have already introduced the local consistency algorithm which finds

out whether a point x is locally consistent. If it is not, we can use the output of the

local consistency algorithm and construct a decreasing direction vector and finally

calculate the step size. Using the decreasing direction vector and the step size, we

can perform the step that updates the x value and repeat this procedure iteratively

from scratch.

Unfortunately, this straightforward update would throw away all the previous

calculations which were performed in the local consistency algorithm and maybe

repeat some of them, which would lead to inefficiency and slowdown of the algorithm.

To improve the efficiency of the algorithm, we introduce inter-iteration warm-

starting, which is based on preserving some p values, so that they do not need to

be calculated again. We will include the warm-starting in the update procedure –

i.e. the procedure that performs the step and prepares the structures for the next

iteration. This procedure is formalized in Algorithm 10.

After both the direction ∆x and the step size t were found, we would like to

update the value of the current point x and the subfunction values y, namely

x← x + t∆x (3.19a)

y← y + tc. (3.19b)

But it would be highly inefficient to update the whole vectors, so we will update only

those elements of x that correspond to non-zero ∆x values. Similar procedure can

be done with y, where it is enough to only update those yi,j that are in a cluster

that contains a subfunction that depends on a non-zero variable in ∆x. Notice that

the maxima of only these clusters may change, the other maxima will stay the same

even after the update.

After the update of x, some active functions may become inactive and vice

versa. Algorithm 11 is called for those that become newly active (i.e. were inactive in
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the previous iteration and now are active) and Algorithm 12 is called for those that

become inactive (i.e. were active in the previous iteration and now are inactive). Both

these procedures also update the queue Q that contains the possibly inconsistent

variables. After this is done, the content of the queue Q and statuses stored in p are

ready to be processed by the local consistency algorithm.

Algorithm 10: Performs step of specified size

1 Function performStep(t) is

2 K ← {k | ∆xk 6= 0};
3 I ← {i | k ∈ K, (i, j) ∈ N(xk)};
4 for i ∈ I do

5 for j ∈ [mi] do

6 yi,j ← yi,j + ci,jt;

7 ci,j ← 0;

8 for j ∈ Si(x + t∆x)− Si(x) do

9 activate(fi,j);

10 for j ∈ Si(x)− Si(x + t∆x) do

11 deactivate(fi,j);

12 for k ∈ K do

13 xk ← xk + ∆xkt;

14 ∆xk ← 0;

Algorithm 11: Activate subfunction fi,j

1 Function activate(fi,j) is

2 p(i, j)← ALIVE;

3 for k ∈ N(fi,j) do

4 Q.push(k);

5 for (i′, j′) ∈ N(xk) do

6 if (p(i′, j′) = k) ∧ (ai,j,kai′,j′,k < 0) then

7 activate(fi′,j′);

Algorithm 12: Deactivate subfunction fi,j

1 Function deactivate(fi,j) is

2 p(i, j)← INACTIVE;

3 for k ∈ N(fi,j) do

4 Q.push(k);

In case of activating a previously inactive function, it could happen that a

previously inconsistent variable is now consistent, so it is necessary to set the ALIVE
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status to some subfunctions that were previously killed, which may again resurrect

other subfunctions etc. On the other hand, deactivating a subfunction cannot cause

other subfunctions to change their status.

3.1.6 The Whole Algorithm

Now we have all the building blocks of the whole minimization, which is shown

in Algorithm 13. First, the global variables are initialized and then the main mini-

mizing loop is started. If the current point x is locally consistent, it is returned as

a result. Otherwise, we continue with calculating the decreasing direction ∆x and

step size t. If the step size is infinite, then the input function is not bounded from

below and we terminate the calculation. If it is a finite value, we perform the step

and continue with the next iteration.

Algorithm 13: SMAF minimization algorithm

1 Function minimize(l ,m, a,b) is

2 initialize();

3 loop

4 if calculateConsistency() then

5 return x;

6 calculateDirection();

7 t← calculateStepSize();

8 if t =∞ then

9 return unbounded input;

10 performStep(t);

3.1.7 Using ε-consistency

It is possible to relax the notion of active subfunctions and introduce ε-active

subfunctions, so that the definition would result in searching for locally ε-consistent

points. This relaxation speeds up the convergence and helps the algorithm reach

points with lower function value. Additionally, we will later show that having ε > 0

is a necessary condition for proving the correctness of the algorithm in the above

version.

Definition 3.4. We say that a subfunction fi,j is ε-active for a given ε ≥ 0 in a point

x ∈ Rn iff fi,j(x) ≥ mi
max
j′=1

fi,j′(x) − ε. Next, we can define the set Sεi (x) of ε-active

functions for each i ∈ [l] as

Sεi (x) = {j ∈ [mi] | fi,j is ε-active in x} (3.20)

46



and similarly for the whole set

Iε(x) = {(i, j) | i ∈ [l], j ∈ Sεi (x)}. (3.21)

Now, we can replace the occurrences of Si with Sεi in the algorithm and look

for a locally ε-consistent point without any other alterations. Once such point is

found, we can lower ε to further optimize and possibly lower the function value. A

similar relaxation was presented in Koval’ and Schlesinger (1976), where it was used

to minimize the height of a max-sum problem.

Capacity Scaling

The previously shown relaxation could be viewed as a generalized capacity

scaling, which is an idea introduced by Edmonds and Karp (1972) as an improvement

of the well-known algorithm from Ford Jr and Fulkerson (1955). The basic Ford-

Fulkerson algorithm is used for finding maximum flow or minimum cut by iteratively

finding an arbitrary augmenting path from source to sink and increasing the flow

along this path.

Some improvements of Ford-Fulkerson algorithm were later introduced to im-

prove its pseudopolynomial runtime. One of them is capacity scaling, which first uses

only those edges along which the flow can be increased by at least some threshold

value ε and ignores the other ones. Once the flow cannot be increased, the threshold ε

is lowered, so it is allowed to also use the edges with lower capacity. Eventually, when

the threshold reaches zero, we can terminate the algorithm with optimal solution.

The capacity scaling offers applications in computer vision, e.g. Juan and

Boykov (2007) and can be used even in generalized setting of max-flow, e.g. Ahuja

and Orlin (1995).

3.2 Correctness

In this section, we show that if the minimized SMAF f has a minimum, then

the presented ε-version of the algorithm always finds the minimum or at least ends

at an locally ε-consistent point in a finite number of iterations. This proof will be

based mainly on showing the correctness of Algorithm 6 and finding a lower bound

of the value by which the function f decreases in each iteration.

3.2.1 Correctness of Local Consistency Algorithm

Proposition 3.1. The queue Q contains all the initially inconsistent variables right

before Algorithm 6 is executed for the first time.
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Proof. Before the first iteration, all the variables on which at least one active sub-

function depends are put to the queue Q using the initialize() function. The only

variables that are not in the queue do not depend on any of the active subfunctions,

therefore they cannot be inconsistent. �

Lemma 3.1. On line 5 in Algorithm 6, it never happens that Q fails to contain an

inconsistent variable.

Proof. Using Proposition 3.1, the queue contains them at the start of the first it-

eration. Then, the local consistency algorithm is run and whenever an inconsistent

variable is found, all the subfunctions that depend on it and are still alive are marked

as killed. The removal of these subfunctions from the alive ones might have made

some new variables inconsistent. But only those on which at least one of the killed

subfunctions depends – and exactly these variables are put back to the queue on line

12 of Algorithm 6. When the set of active subfunctions changes due to update of x,

all the variables on which the activated or deactivated functions depend are again

added to the queue. This happens in Algorithm 11 on line 4 and in Algorithm 12 on

line 4. The consistency of any other variables could not have changed. �

Proposition 3.2. After the local consistency algorithm terminates, for all variables

xk it holds that the sign of all {ai,j,k | p(i, j) = k} is the same.

Proof. Assume that the claim does not hold and there are two subfunctions fi,j,

fi′,j′ with p(i, j) = p(i′, j′) = k, but sign(ai,j,k) = − sign(ai′,j′,k) 6= 0. The p values

must have been set at some point during the run of the algorithm, because they are

initially INACTIVE. And setting the p value to a coordinate happens only when this

coordinate is inconsistent, i.e. on line 10 of Algorithm 6. But this could not have

happened during one execution of the block of code on lines 8–12 of the algorithm,

because if both fi,j and fi′,j′ were active and alive, xk would be consistent.

So, it must WLOG hold that p(i, j) ← k was assigned at some point before

p(i′, j′) was set to its current value and p(i, j) did not change since then. It must have

been when p(i′, j′) = INACTIVE or p(i′, j′) = k′ 6= k but then fi′,j′ must necessarily

became ALIVE using Algorithm 11 (otherwise, it would have kept its previous value).

But at this point, because both fi,j and fi′,j′ depend on xk, p(i, j) should have been

set to ALIVE by the function call on line 7 of Algorithm 11, so the claim holds. �

Theorem 3.1. If the queue Q initially contains all inconsistent variables, then Al-

gorithm 6 returns true if and only if the current point is locally ε-consistent.

Proof. The proof will be done by showing that the procedure shown in Section 2.2.2

returns vector σ that satisfies CSP (2.24) if and only if the Algorithm 6 returns true.

The correctness of the CSP solving procedure is obvious.
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It is important to notice that the inactive subfunctions are neither considered

by Algorithm 6 nor by the CSP solving procedure and can be therefore viewed as non-

existing for the functionality of the algorithms. Considering the other subfunctions,

if a subfunction fi,j has σi,j = 1, it corresponds to p(i, j) = ALIVE. Likewise, σi,j = 0

corresponds to p(i, j) ∈ [n].

Now that we know that if a coordinate xk is inconsistent, it means that either

the condition in step 2 or in step 3 in the CSP solving procedure is satisfied. Killing

the subfunctions with the non-zero coefficient ai,j,k would correspond to repetitive

usage of the same rule in the CSP solving procedure. After the subfunctions are

killed, we check whether there is at least one alive subfunction in each cluster, which

corresponds to having at least one non-zero σi,j in each cluster in the CSP solving

procedure. Thus, it is easy to see that whenever the CSP solving procedure ends with

vector σ that does not satisfy the CSP, Algorithm 6 would return FALSE because the

condition on the clusters is equivalent and is checked whenever it could have been

satisfied.

On the other hand, if the CSP solving procedure ends with σ that satisfies

the CSP, it means that the conditions in step 2 or 3 are not satisfiable with the

current σ, which corresponds to no inconsistent variables in Algorithm 6. And if

there are no inconsistent variables, the queue will be gradually emptied without any

additions into it. So eventually, the queue Q will become empty and Algorithm 6

returns TRUE. �

3.2.2 Correctness of Decreasing Direction

Theorem 3.2. The graph defined in (3.4) is acyclic.

Proof. This proof will be done by contradiction. Assume that there is a cycle fi1,j1 →
fi2,j2 → · · · → fiq ,jq → fi1,j1 , which is shortest in the sense that there is no sub-

set of these nodes so that these nodes make a cycle themselves. The requirement

on shortest cycle ensures along with Proposition 3.2 that the values p(is, js) for

all s ∈ [q] are unique. If they were not and there would be s′, s′′ ∈ [q], s′ < s′′,

such that p(is′ , js′) = p(is′′ , js′′), it would have to hold that sign(ais′ ,js′ ,p(is′ ,js′ )) =

sign(ais′′ ,js′′ ,p(is′′ ,js′′ )), which means that there would be an edge from fis′ ,js′ to fis∗ ,js∗ ,

where s∗ = (s′′ mod q) + 1, and this edge could shorten the cycle by s′′ − s′ > 0

nodes.

Therefore, the cycle is the shortest and the p(is, js) values are unique, so they

must have been assigned at different times when each of the variables was incon-

sistent and the subfunction fis,js was alive. Assume WLOG that the subfunction

fi1,j1 is the first one among those in the cycle that was assigned its current value

p(i1, j1), which did not change since then. But at this time, the subfunction fi2,j2
must have been either killed (with a different variable than it has now) or not active
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yet because otherwise the coordinate p(i1, j1) would be consistent. In both cases,

the value of p(i2, j2) must be changed to obtain the current cycle. To do that, it

must first become alive, which can happen only in the activating procedure on line

2 in Algorithm 11. But this procedure would set the value of p(i1, j1) to ALIVE,

because ai1,j1,p(i1,j1)ai2,j2,p(i1,j1) < 0 (otherwise, there would not be the edge from

fi1,j1 to fi2,j2). So the assignment to p(i1, j1) was not the final one, which leads to a

contradiction. �

Proposition 3.3. For a given subfunction fi′,j′ with p(i′, j′) ∈ [n], there is no sub-

function fi,j with p(i, j) = ALIVE that would increase its value if the value of variable

xp(i′,j′) changes so that fi′,j′ decreases.

Proof. Again, we will prove this by contradiction. Assume that there would be such

subfunction with ai,j,p(i′,j′)ai′,j′,p(i′,j′) < 0. The value p(i′, j′) must have been set at

some point when the coordinate p(i′, j′) was inconsistent and then the value of p(i′, j′)

did not change. So either p(i, j) ∈ [n] or p(i, j) = INACTIVE (otherwise the coordinate

p(i′, j′) would be consistent). The value of p(i, j) must have been set after that to

ALIVE using the activate function. But that would also activate the subfunction fi′,j′ ,

which is a contradiction.

Now look at the other case – p(i, j) was at some point set as ALIVE and since

then did not change its value, and after that, p(i′, j′) was set to some coordinate on

which fi,j also depends. The sign of ai,j,p(i′,j′) must be the opposite than the sign of

ai′,j′,p(i′,j′) because otherwise, fi,j would decrease when fi′,j′ decreases due to change

in xp(i′,j′). If the signs are opposite, then the variable xp(i′,j′) is consistent and we

could not have set is in such a way. �

Proposition 3.4. Algorithm 7 processes the subfunctions fi,j in a topological order

with respect to the augmenting DAG during the main while loop.

Proof. First of all, the algorithm starts in each active subfunction from the cluster i∗,

marks it as reached on line 4 and continues in the recursive exploration of the graph

from this subfunction on line 5. If an already visited node is reached, its in-degree is

increased by one on line 4 of Algorithm 8 and the recursive exploration halts. If it

was not yet visited, the exploration continues from it by the recursive call on line 7.

It is obvious that this procedure calculates the in-degree of each node in the graph

correctly.

After that, we iterate over the active subfunctions from the cluster i∗ and add

those with zero in-degree to the queue Qf – this is done on line 9 in Algorithm 7.

These are the first subfunctions in the topological order, because there are no edges

leading to them.

Then, the main while loop on lines 10–24 is entered. When a subfunction fi,j is

processed, we also look at to which subfunctions fi′,j′ there is an edge in the graph
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from fi,j. And if there is an edge, the in-degree of fi′,j′ is lowered by one by the

assignment on line 20. The in-degree d(fi′,j′) can now be viewed as a counter that

indicates how many subfunctions must be processed before fi′,j′ to ensure that the

ordering is topological. If d(fi′,j′) = 0, it means that all of the subfunctions that have

an edge to fi′,j′ were already processed, which means that fi′,j′ can be processed at

any time from now and the ordering is thus topological. �

Lemma 3.2. After Algorithm 7 processes the subfunction fis,js, then

ciw,jw ≤ −Jiw = i∗K, ∀w ∈ [s], (3.22)

where fi1,j1 , fi2,j2 , ..., fiq ,jq , s ≤ q is the topological order of processing.

Proof. This proof will be done by induction. First, we will show the basic step for

s = 1. Then, necessarily i1 = i∗ and because ci1,j1 = 0, we need to set

∆xp(i1,j1) ← 0− 1/ai1,j1,p(i1,j1), (3.23)

which results in ci1,j1 being assigned value −1, therefore the condition is satisfied.

Second, we will show the inductive step for s ≥ 2: assume that for all w < s,

the condition holds and we would like to show how the algorithm behaves when it

processes s-th subfunction. If the condition is satisfied initially, then no update is

needed. On the other hand, if it is violated, the cis,js has some higher value, let us

denote it as z = cis,js > −Jis = i∗K. This forces the update

∆xk ← ∆xk − (Jis = i∗K + z)/ais,js,p(is,js), (3.24)

which alters the value of cis,js to

z − ais,js,p(is,js)(Jis = i∗K + z)/ais,js,p(is,js) = z − Jis = i∗K− z = −Jis = i∗K, (3.25)

therefore the condition is now satisfied also for fis,js . The condition was not violated

for any of the previous w < s because there is no edge from fis,js to any of the

previous subfunctions in the augmenting DAG, so they could not increase by the

same reasoning as in the proof of Proposition 2.2. �

Theorem 3.3. If Algorithm 6 ends with the result that the current point x is incon-

sistent, Algorithm 7 finds a decreasing direction ∆x ∈ Rn that satisfies

fi,j(x + ∆x) ≤ fi,j(x), ∀(i, j) ∈ I(x) (3.26a)

fi∗,j(x + ∆x) ≤ fi∗,j(x)− 1, ∀j ∈ Si∗(x), (3.26b)

where i∗ is the cluster for which there is no subfunction fi∗,j with p(i∗, j) = ALIVE.
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Proof. First of all, we will use Lemma 3.2, which implies that after the algorithm

ends, all subfunctions that are nodes in the augmenting DAG satisfy the condition

(3.6).

Second, Proposition 3.3 can be used to show that if a subfunction fi,j has status

ALIVE, then ci,j ≤ 0 because in the direction algorithm, the corresponding variables

that are stored in p are changed always so that the corresponding subfunction de-

creases. Since i 6= i∗, having ci,j ≤ 0 satisfies the condition (3.6). See that i 6= i∗

because p(i, j) = ALIVE.

Finally, the subfunctions fi,j that are not in the augmenting DAG but satisfy

p(i, j) ∈ [n] also satisfy ci,j ≤ 0 because initially, ci,j = 0 and because no edge leads

to them, they could not have increased their value. This follows from the definition

of the DAG. No such subfunction satisfies i = i∗ because it would have been in the

augmenting DAG if i = i∗ held. Therefore, the condition (3.6) is again satisfied.

From the reasoning above, we can say that all active subfunctions satisfy the

condition

aTi,j∆x ≤ −Ji = i∗K, ∀(i, j) ∈ I(x), (3.27)

since it can be easily seen that aTi,j∆x = ci,j. This is equivalent to

aTi,j(∆x + x) + bi,j ≤ aTi,jx + bi,j − Ji = i∗K, ∀(i, j) ∈ I(x), (3.28)

where we can substitute fi,j(x) = aTi,jx + bi,j and obtain

fi,j(x + ∆x) ≤ fi,j(x), ∀(i, j) ∈ I(x) (3.29a)

fi∗,j(x + ∆x) ≤ fi∗,j(x)− 1, ∀j ∈ Si∗(x), (3.29b)

which was the originally required condition for ∆x to satisfy. �

3.2.3 Correctness of Line Search

Proposition 3.5. After the direction is calculated by Algorithm 7, for all subfunc-

tions fi,j it holds that if ci,j > 0, then

fi,j(x) <
mi

max
j′=1

fi,j′(x)− ε. (3.30)

Proof. It leads from Theorem 3.3 that all ε-active subfunctions must have ci′,j′ ≤ 0,

therefore if a subfunction does not satisfy that, it is necessarily not ε-active. �

Lemma 3.3. Given ε ≥ 0, the computation on line 3 of Algorithm 9 calculates t > 0

and any 0 < t′ ≤ t satisfies

fi∗,j(x + t′∆x) <
mi

max
j′=1

fi∗,j′(x), ∀j ∈ [mi∗ ]. (3.31)
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Proof. If there is at least one ci∗,j ≥ 0, then the corresponding fi∗,j satisfy

fi∗,jslowest
i∗

(x)− fi∗,j(x) > ε ≥ 0, (3.32)

because fi∗,jslowest
i∗

(x) =
mi

max
j′=1

fi∗,j′(x) due to the definition of jslowest
i∗ and Proposition

3.5. Next, ci∗,jslowest
i∗

≤ −1 and ci∗,j ≥ 0, so ci∗,j − ci∗,jslowest
i∗

≥ 1. The value of the

fraction in the brackets of the infimum is therefore always positive because both the

nominator and denominator are positive numbers. Thus t > 0.

To show the second part of the lemma, we will distinguish two separate cases.

First, if a subfunction fi∗,j decreases in the direction ∆x, then for any t′ > 0, the

inequality (3.31) is obviously satisfied. All the active subfunctions from the cluster

i∗ decrease, so they satisfy it as well.

Second, if a subfunction fi∗,j increases in the direction ∆x, then the initializa-

tion setting will not allow it to have a higher value than fi∗,jslowest
i∗

if t′ ≤ t because it

implies that

t′ ≤ t ≤
fi∗,jslowest

i∗
(x)− fi∗,j(x)

ci∗,j − ci∗,jslowest
i∗

, (3.33)

and since ci∗,j − ci∗,jslowest
i∗

≥ 1, we can rewrite that as

fi∗,j(x) + t′ ci∗,j ≤ fi∗,jslowest
i∗

(x) + t′ ci∗,jslowest
i∗

. (3.34)

or equivalently as

fi∗,j(x + t′∆x) ≤ fi∗,jslowest
i∗

(x + t′∆x). (3.35)

In this last inequality, we can see that the value of any subfunction that increases

in the ∆x direction will be lower or equal to the value of the slowest decreasing

subfunction for any 0 < t ≤ t′. Since the slowest decreasing subfunction actually

decreases for any t′ > 0, the other subfunctions must therefore have a strictly lower

value than the previous maximum. �

Lemma 3.4. Given ε ≥ 0, the step size t returned by Algorithm 9 satisfies t > 0

and

fi,j(x + t∆x) ≤ mi
max
j′=1

fi,j′(x), ∀i ∈ [l], ∀j ∈ [mi] (3.36)

Proof. The for-loops on lines 4 and 5 in Algorithm 9 go through all subfunctions

fi,j with a potentially non-zero ci,j (i.e. aTi,j∆x) because only those subfunctions that

depend on a non-zero ∆x component could have non-zero ci,j. If a subfunction fi,j
decreases or is constant in the ∆x direction, it could not violate the condition (3.36).

Therefore we are interested only in those that increase in the ∆x direction, i.e. have

ci,j > 0.
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For these subfunctions, the algorithm enforces that

t ≤ 1

ci,j

(
mi

max
j′=1

fi,j′(x)− fi,j(x)

)
, (3.37)

which can be rewritten as

fi,j(x) + ci,jt ≤
mi

max
j′=1

fi,j′(x), (3.38)

where the LHS equals fi,j(x + t∆x). Thus, they do not increase above the previous

value of the maximum.

Additionally, Proposition 3.5 gives us

mi
max
j′=1

fi,j′(x)− fi,j(x) > ε ≥ 0, (3.39)

therefore the value t satisfying the defined condition can be found anywhere between

0 ≤ t ≤ inf
i,j|ci,j>0

mi
max
j′=1

fi,j′(x)− fi,j(x)

ci,j
, (3.40)

which allows for t > 0 because both the nominator and denominator on the RHS are

positive numbers.

Furthermore, if ε > 0, we could restrict the possible range of values even to

0 ≤ t ≤ inf
i,j|ci,j>0

ε

ci,j
, (3.41)

which would also allow t > 0.

Observe that if there were no increasing subfunctions, the step size would not

be limited by the mentioned condition at all and the lemma would hold trivially. �

Theorem 3.4. The value t returned by Algorithm 9 satisfies

f(x + t∆x) < f(x). (3.42)

Proof. The algorithm initializes t as it is mentioned in Lemma 3.3, which satisfies

t > 0 and for any 0 < t′ ≤ t

fi∗,j(x + t′∆x) <
mi

max
j′=1

fi∗,j′(x), ∀j ∈ [mi∗ ] (3.43)

therefore also
mi∗

max
j=1

fi∗,j(x + t′∆x) <
mi

max
j′=1

fi∗,j′(x). (3.44)

Next, the value of t can be lowered to t′ during the subsequent loops so that it
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satisfies

fi,j(x + t′∆x) ≤ mi
max
j′=1

fi,j′(x), ∀i ∈ [l], ∀j ∈ [mi] (3.45)

while still being strictly greater than zero, as given by Lemma 3.4. Then, the value

t′ is returned. The previous inequality implies

mi
max
j=1

fi,j(x + t′∆x) ≤ mi
max
j′=1

fi,j′(x), ∀i ∈ [l]− {i∗}. (3.46)

Now, we can add the inequalities (3.44) and (3.46) and obtain

l∑
i=1

mi
max
j=1

fi,j(x + t′∆x) <
l∑

i=1

mi
max
j′=1

fi,j′(x), (3.47)

which is exactly the required formula. �

3.2.4 Finite Number of Iterations

In this section, we will show that for any ε > 0, there is a constant β > 0 such

that the function value after each iteration decreases at least by β, which depends

only on the inputs and not on the internal state of the algorithm. We require ε to

be positive because otherwise, the step size could be infinitesimally small and there

would be no bound.

Bound on Maximum Slope

Assume that we are performing an iteration of the algorithm and the current

point is not locally ε-consistent, then we run Algorithm 7 to find the direction ∆x.

We will find a bound on the absolute value of the elements of the c and ∆x vectors.

To do so, we will first find the lowest non-zero absolute value of an element from the

vectors a and the highest absolute value of an element, formally

a− = min
i,j,k

ai,j,k 6=0

|ai,j,k|, (3.48a)

a+ = max
i,j,k
|ai,j,k|. (3.48b)

Using these constants, we define their ratio as a value α,

α =
a+

a−
, (3.49)

which is greater or equal to 1 because a+ ≥ a−. It is assumed that there is at least

one non-zero value in the a vectors.
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Next, we will define an infinite sequence of vectors q1,q2,q3, ..., where qr ∈ Nr,

which means that the vectors do not have the same length. The first vector is a scalar

q1 = 1 ∈ N1 and the following vectors will be defined inductively, always based on

the previous one. If we are given qr, then the elements of qr+1 satisfy

qr+1
i =


qr1 + 1 if i = 1

qri−1 + qri if 2 ≤ i ≤ r

qrr if i = r + 1

(3.50)

Lemma 3.5. After the r-th subfunction (r ≥ 1) was processed in the main while

loop of Algorithm 7, then the vectors c and ∆x satisfy

∑
k∈[n]

|∆xk| ≤
1

a−

r∑
i=1

qri · αi−1 (3.51a)

max
i∈[l]

max
j∈[mi]

|ci,j| ≤
r∑
i=1

qri · αi. (3.51b)

Proof. The claim will be proven by induction. Initially, before any subfunction is

processed, the values are zero, i.e. c = 0 and ∆x = 0.

In the base case, we let r = 1 and process fi,j. As already said before, the first

processed subfunction is from the cluster i∗, so i = i∗ and the condition on ci,j is not

satisfied. Then, the value of ∆xp(i,j) is set from 0 to −1/ai,j,p(i,j), which in absolute

value satisfies ∑
k∈[n]

|∆xk| =
1

|ai,j,p(i,j)|
≤ 1

a−
=

1

a−

1∑
i=1

q1
i · αi−1. (3.52)

The fraction 1/|ai,j,p(i,j)| also corresponds to
∑

k∈[n]|∆xk| because the other compo-

nents of ∆x are zero. Next, some c values will be set to non-zero, but maximally to

a+ times the change in ∆xp(i,j), i.e.

max
i∈[l]

max
j∈[mi]

|ci,j| ≤ a+|∆xp(i,j)| =
a+

|ai,j,p(i,j)|
≤ a+

a−
= α =

1∑
i=1

q1
i · αi. (3.53)

So we can conclude that for r = 1, the inequalities hold.

Now, we will continue with the inductive step. We would like to show that

the inequalities hold for r + 1 (r ≥ 1) if we know that they hold for r. Before the

(r+1)-th subfunction fi′,j′ is processed, the largest possible |ci,j| value is
∑r

i=1 q
r
i ·αi.

Therefore the maximal possible change of ∆xp(i′,j′) is

(
1 +

r∑
i=1

qri · αi
)
/|ai′,j′,p(i′,j′)|, (3.54)
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which happens if i∗ = i′. So, the sum of absolute values of ∆x components also

increases at most by this value, i.e.

∑
k∈[n]

|∆xk| ≤
(

1 +
r∑
i=1

qri · αi
)
/|ai′,j′,p(i′,j′)|+

∑
k∈[n]

|∆xprev
k |, (3.55)

where ∆xprev is the value of ∆x before the update was performed in the (r + 1)-th

iteration. We can use the bound from the previous iteration and the fact that

|ai′,j′,p(i′,j′)| ≥ a− and see that the sum of absolute values of ∆x components af-

ter (r + 1)-th iteration is bounded by

∑
k∈[n]

|∆xk| ≤
1

a−

(
1 +

r∑
i=1

qri · αi
)

+
1

a−

r∑
i=1

qri · αi−1 (3.56a)

=
1

a−

(
1 +

r+1∑
i=2

qri−1 · αi−1 +
r∑
i=2

qri · αi−1 + qr1 · α0
)

(3.56b)

=
1

a−

(
(1 + qr1)α0 +

r∑
i=2

(qri−1 + qri ) · αi−1 + qrr · αr
)

(3.56c)

=
1

a−

r+1∑
i=1

qr+1
i · αi−1, (3.56d)

where the last term is the upper bound that was required by the lemma. Similarly

as in the base case, any ci,j value could change its value by at most

a+
(

1 +
r∑
i=1

qri · αi
)
/|ai′,j′,p(i′,j′)|, (3.57)

therefore after the update, it holds that

max
i∈[l]

max
j∈[mi]

|ci,j| ≤ a+
(

1 +
r∑
i=1

qri · αi
)
/|ai′,j′,p(i′,j′)|+ max

i∈[l]
max
j∈[mi]

|cprev
i,j | (3.58a)

≤ a+

a−

(
1 +

r∑
i=1

qri · αi
)

+
r∑
i=1

qri · αi (3.58b)

= α +
r+1∑
i=2

qri−1 · αi +
r∑
i=2

qri · αi + qr1 · α (3.58c)

= (qr1 + 1)α +
r∑
i=2

(qri + qri−1) · αi + qrr · αr (3.58d)

=
r+1∑
i=1

qr+1
i · αi, (3.58e)
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which was the bound required by the lemma. �

Observe that because the amount of processed subfunctions in the algorithm is

at most M =
∑

i∈[l] mi, which is the total amount of all subfunctions in the SMAF,

it will always hold that

∑
k∈[n]

|∆xk| ≤
1

a−

M∑
i=1

qMi · αi−1 (3.59a)

max
i∈[l]

max
j∈[mi]

|ci,j| ≤
M∑
i=1

qMi · αi. (3.59b)

Additionally, notice that if all M subfunctions are in the augmenting DAG, then

they are all active. But this means that the algorithm found a decreasing direction

for the whole function f . This means that if the function f is bounded, it is correct

to assume that there is at most M − 1 subfunctions in the augmenting DAG.

To give the reader a better insight into the bounds (3.59), we will discuss their

properties. It generally holds that α ≥ 1. If α > 1, then the values of the bound

obviously increase exponentially with M . But even for α = 1, the bound is still

exponential in M since
M∑
i=1

qMi = 2M − 1. (3.60)

Example 3.1. To demonstrate that the values of both ∆x and c could become

exponentially large, consider the following example with l = 1, m1 = 5, n = 4,

i∗ = 1:

a1,1 = (−1, 2, 2, 2) p(1, 1) = 1

a1,2 = (0,−1, 2, 2) p(1, 2) = 2

a1,3 = (0, 0,−1, 2) p(1, 3) = 3

a1,4 = (0, 0, 0,−1) p(1, 4) = 4

a1,5 = (2, 2, 2, 2) p(1, 5) = INACTIVE

The algorithm will in this case return ∆x = (27, 9, 3, 1) and c1 = (−1,−1,−1,−1, 80).

Because α = 2 and there were 4 subfunctions in the augmenting DAG, the bounds

in this case are

4∑
k=1

|∆xk| ≤
4∑
i=1

q4
i · 2i−1 = 40 (3.62a)

5
max
j=1
|c1,j| ≤

4∑
i=1

q4
i · 2i = 80. (3.62b)
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This example could be scaled arbitrarily. �

Minimal Decrease of the Objective Function

In this section, we will derive the minimal decrease in one iteration of the algo-

rithm using the bound on |ci,j| presented in the previous section. It was mentioned in

the proof of Lemma 3.3 that the initialization of t returns a value t > 0. Then, this

value can be lowered so that no maximum becomes higher than its previous value.

If the assignment on line 7 in Algorithm 9 does not lower t, then we can be

sure that the the maximum of cluster i∗ is lowered by at least3

ε

1 + maxj∈[mi∗ ] ci∗,j
, (3.63)

because of the minimum difference of active and inactive subfunction values, which

was showed in Proposition 3.5. The reasoning for this is that all the active subfunc-

tions decrease at least by aTi∗,jx ≤ −1, so none of them will be higher. Next, the

inactive subfunctions that decrease necessarily had their value lower than ε even in

the original point and their value will further decrease. The inactive non-decreasing

subfunctions also cannot have higher value because their value is not higher than the

value of the slowest decreasing subfunction, as it was shown in the proof of Lemma

3.3. Because the second condition for update of t was not violated, no maximum

increases by Lemma 3.4, therefore the function value of f decreases by the specified

value using the same reasoning as in the proof of Theorem 3.4.

On the other hand, if the assignment on line 7 in Algorithm 9 actually forces

the value of t to decrease below the specified value, then the function value in the

cluster i∗ decreases by at least

ε

1 + maxi,j ci,j
, (3.64)

which follows from the update in the algorithm.

To conclude this section, in one case, the function f decreases by at least (3.63),

and in the other case, the function decreases at least by (3.64). Using the bound on

ci,j values allows us to formulate Theorem 3.5.

Theorem 3.5. Given a SMAF f , the algorithm lowers the function value in each

iteration at least by

β =
ε

1 +
∑M

i=1 q
M
i · αi

, (3.65)

where M is the total amount of subfunctions in the problem. That means

f(x + t∆x) ≤ f(x)− β. (3.66)
3If maxj∈[mi∗ ] ci∗,j ≤ −1, then it is lowered by infinity, because the problem is unbounded.
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Maximum Amount of Iterations

Assume that the function f has a minimum in point x∗ with a finite value

f(x∗) and that our algorithm was initialized to start in x = 0 with function value

f(0) =
l∑

i=1

mi
max
j=1

bi,j, which is also finite.

Using the previously shown properties of the algorithm and assuming that the

function f has a minimum, we can easily see that after at most⌊
f(0)− f(x∗)

β

⌋
=

⌊
f(0)− f(x∗)

ε

(
1 +

M∑
i=1

qMi · αi
)⌋

(3.67)

steps, the algorithm reaches a locally ε-consistent point x.

The worst-case bounds derived in this section are of course very loose for typical

instances, for which the number of iterations is empirically observed to be much lower.

3.3 Integer Version of the Algorithm

The previous sections assume exact arithmetic, which is not the case of usual

floating point number representation in computers. It would be enough to use exact

rational arithmetic but it could be time-consuming and significantly prolong the

runtime of the algorithm.

For example, after assigning a← a+b for b 6= 0, the value of a might not change

when the floating point arithmetic with limited precision is used – this happens for

sufficiently large a and small |b|. The risk exists in this algorithm – for example the

step size t can be exponentially small w.r.t. the total amount of subfunctions, which is

large. Theoretically, it could happen that for a small step size t, some components of

x or y would not be updated and these errors would accumulate during the run of the

algorithm, leading to a wrong result. Or, after a corrupt update, some subfunctions

that should have become active would not.

In this section, we will present an altered version of the algorithm that can

overcome the issues of limited precision. Namely, we will view all the inputs and all

the variables of the algorithm as integers and therefore completely avoid issues with

precision. This approach can be also easily scaled to use fixed-point arithmetic.

More formally, we now assume that ai,j ∈ Zn and bi,j ∈ Z and we would like to

find a locally ε-consistent point x ∈ Zn. Observe that in the continuous case, such a

point always existed but now it no longer has to.

Example 3.2. Assume a one-dimensional case with f(x) = max{−2x+ 2, x− 3} =

max{f1,1(x), f1,2(x)}, then it has a minimum x = 5/3 ∈ Q, but there is no locally
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ε-consistent point x ∈ Z for any ε > 1, because |f1,1(1)− f1,2(1)| = 2 and |f1,1(2)−
f1,2(2)| = 1 and in other integer arguments, the difference is even larger. �

3.3.1 Changes in the Algorithm

Because we are using integers, we can assume that the multiplication, addition,

subtraction and comparison of numbers always returns the correct result4. The only

problem is division, where we should decide whether the result should be rounded

up, down or treated in a different manner.

It is easy to see that the local consistency algorithm along with the activate

and deactivate subfunction can work with integer values without any changes. The

first issue comes with the direction calculation algorithm. When ci,j is larger than

− Ji= i∗K, we update

∆xk ← ∆xk − (Ji = i∗K + ci,j)/ai,j,k (3.68)

on line 16 in Algorithm 7, which could result in a non-integer value of ∆xk. To avoid

this, we should choose an integer value for ∆xk that would ”fix” ci,j value to a correct

one. The solution to this is to round the value of |(Ji = i∗K + ci,j)/ai,j,k| up to the

closest higher integer (or keep it if it already is an integer) and then change the value

of ∆xk by either adding it (if ai,j,k < 0) or subtracting it (if ai,j,k > 0). This can be

written compactly as

∆xk ← ∆xk − sign(ai,j,k)

⌈
Ji = i∗K + ci,j

sign(ai,j,k) · ai,j,k

⌉
. (3.69)

It can be shown that if the vector ∆x is calculated in this manner, it still satisfies the

required properties and the proof is analogous to the one for the continuous version.

Another part that heavily uses division is the line search procedure. In the

presented algorithm, the step size t is initialized on line 3 in Algorithm 9. This

initialization has the important property that on the interval [0, t], the value of the

maximum in cluster i∗ is decreasing5 and no non-decreasing subfunction can become

0-active6 on the interval [0, t). We will replace the previous assignment with

t← inf

{⌊
fi∗,jslowest

i∗
(x)− fi∗,j(x)

ci∗,j − ci∗,jslowest
i∗

⌋ ∣∣∣∣∣ j ∈ [mi∗ ], ci∗,j ≥ 0

}
, (3.70)

4Overflow could happen in these operations, however, we never observed this. Yet, to achieve
complete correctness, we could check the results of such operations for overflow and if it happened,
it could be treated in the same manner as zero step size.

5This is more discussed in Section 3.1.4 that compares various line search methods.
6By 0-active, we understand that it would be active as defined in Section 2.2.2. But notice that

such subfunction could become ε-active on this interval given ε > 0.
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and then the previous claims still hold, but the value of t might become smaller,

even zero. If t = 0, it is an issue that we will solve later.

Similarly, we can replace the update on line 7 with

t← min

{
t,

⌊
1

ci,j

(
mi

max
j′=1

fi,j′(x)− fi,j(x)

)⌋}
, (3.71)

where the value of t still satisfies that after the step is performed, the value of the

maximum in any cluster does not increase but it could happen even here that the

returned value is zero.

3.3.2 Assuring Consistency and Dealing with Zero Step Size

In the integer setting of the algorithm, there arise two potential issues. First,

a locally ε-consistent point with integer coordinates may not exist for each ε > 0.

Second, calculated step size t may equal zero.

To deal with the first issue, we will treat ε as an output parameter of the

algorithm. It will be initialized at the start of the algorithm to a large value and

then, the algorithm is started with this ε. If it finds a locally ε-consistent point, we

lower the value of ε to e.g.
⌊
ε
2

⌋
and continue minimizing from the current point. The

same is done whenever t = 0 – we simply interrupt the current minimization and

continue with lowered ε. The whole procedure ends when ε = 0 and either a locally

consistent point was found or t = 0. This procedure is formalized in Algorithm 14.

The algorithm uses function modifiedMinimize(ε,x) that tries to minimize the

given SMAF with ε from the point x. It uses the integer modifications that we pre-

sented before. If it finds a locally ε-consistent point, then it returns it. If it calculates

t = 0, it stops the descent and returns the current point. Similarly as the original

continuous version, it may detect unbounded input.

Algorithm 14: Integer SMAF minimization algorithm

1 Function minimizeInteger(l ,m, a,b) is

2 x← 0;

3 ε← maxi,j bi,j −mini,j bi,j;

4 loop

5 result←modifiedMinimize(ε,x);

6 if result = unbounded then

7 return unbounded;

8 x← result;

9 if ε = 0 then

10 return x;

11 ε←
⌊
ε
2

⌋
;
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Observe that the function modifiedMinimize always terminates after a finite

number of iterations if the input is bounded, because if t 6= 0, then t ≥ 1 and the

same reasoning as in the proof of correctness can be done to show that there is

a bound on minimal decrease of the function. If t = 0, then the calculations are

stopped and ε decreased. Because the inner function always terminates, we can say

that Algorithm 14 also always terminates because the value of ε will in at most⌊
log2

(
max
i,j

bi,j −min
i,j

bi,j

)⌋
(3.72)

main loop iterations become zero.

But it is clear that the point x returned by Algorithm 14 is not necessarily

ε-consistent for ε = 0. It is only in the case when the last run of modifiedMinimize

was terminated because of the point being consistent. If it was terminated because

of t = 0, then it is not locally 0-consistent. Thus, we need to find an ε ≥ 0 such that

the returned point x is locally ε-consistent.

We will define a set

E =
{

mi
max
j′=1

fi,j′(x)− fi,j(x)
∣∣∣ i ∈ [l], j ∈ [mi]

}
, (3.73)

which contains all the ”differences” of all subfunctions to the maxima in their cor-

responding clusters. This set contains at most M − l + 1 elements (because all the

values corresponding to 0-active subfunctions are zeros). Observe that if the function

f is bounded, then there will be an ε ∈ E such that the returned point x is locally

ε-consistent – obviously, it would have to hold at least for ε = maxE, when all the

subfunctions would be ε-active. Otherwise, the function f would be unbounded. No-

tice that there are infinitely many ε for which the point x is locally ε-consistent and

we will be interested in finding the smallest one from them.

Deciding whether a point is locally ε-consistent depends only on which sub-

functions are ε-active, therefore it is enough to try all the values of ε that are in the

set E.

Proposition 3.6. For any ε′ ≥ 0, there is an ε ∈ E such that the set of ε′-active

subfunctions is the same as the set of ε-active subfunctions, i.e.

Iε
′
(x) = Iε(x). (3.74)

This proposition allows to formulate Algorithm 15 that first constructs the set

E, sorts the values that it contains and tries them in ascending order and for each, it

finds out whether the point is ε-consistent or not. If it is, then it returns the current

ε that is surely the minimal one. Otherwise, it activates subfunctions that become
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ε-active with the next one and continues.

Algorithm 15: Finding smallest ε

1 Function findSmallestEpsilon(l ,m, a,b,x) is

2 E ←
{

mi
max
j′=1

fi,j′(x)− fi,j(x)
∣∣∣ i ∈ [l], j ∈ [mi]

}
;

3 ε1, ..., εR ← sort(E);

4 p← INACTIVE;

5 for (i, j) ∈ Iε1(x) do

6 activate(fi,j);

7 for r = 1 to R do

8 consistent← calculateConsistency();

9 if consistent then

10 return εr;

11 for (i, j) ∈ Iεr+1(x)− Iεr(x) do

12 activate(fi,j);

3.3.3 Optimality Criteria

We have also looked into the properties of the integer version of the algorithm

that allowed us to formulate theorems that can in some cases determine whether the

returned point is the optimum or only a locally ε-consistent point.

Theorem 3.6. If the integer version of the algorithm ends with a point x and ε > 0,

then x is not a minimizer of function f .

Proof. If the algorithm ended with ε > 0, it means that the point x is not locally 0-

consistent, therefore there exists a decreasing direction which can lower the function

value – and this was not performed because the calculated step size was zero. The

point is therefore not the optimum. �

Next, we will define the vector ψ ∈ Rn that will contain the sum of coefficients

ai,j,k of all subfunctions fi,j with p(i, j) = ALIVE for each coordinate k ∈ [n]. Formally,

ψk =
∑
i∈[l]

∑
j∈[mi]

p(i,j)=ALIVE

ai,j,k. (3.75)

Theorem 3.7. Assume that the integer version of the algorithm ended with a point x

and ε = 0, and after the local consistency algorithm was run for the last time, it holds

that

� there is exactly one subfunction fi,j that is alive in each cluster,
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� ψk = 0 for all k ∈ [n]

then x is a minimizer of function f .

Proof. The previous theorem will be proven by contradiction. We will assume that

there is a direction ∆x such that the function f decreases in this direction.

Notice that the subfunctions that are active, but killed, can be made inactive by

finding a decreasing direction for them. This is possible because they define a DAG

and all of them could be decreased at least by an infinitesimally small amount to be-

come inactive with ε = 0 without any other subfunction becoming alive7. Therefore,

we can assume that we have done such step and only the subfunctions that remained

alive are active now. Notice that this step did not change the value of the function

because no maximum changed its value. If this point is shown to be optimal, then

the previous was surely too.

So, we have only one subfunction fi,j(i) in each cluster i that is alive and its

slope in the ∆x direction is aTi,j(i)∆x. Because the function f is decreasing in this

direction, it must hold that ∑
i∈[l]

aTi,j(i)∆x < 0, (3.76)

which means that the overall slope of the subfunctions should be negative for the

function f to decrease. Otherwise, it would be non-decreasing in this direction. But,

it holds that∑
i∈[l]

aTi,j(i)∆x =
∑
i∈[l]

∑
k∈[n]

ai,j(i),k∆xk =
∑
k∈[n]

∑
i∈[l]

ai,j(i),k∆xk (3.77a)

=
∑
k∈[n]

∑
i∈[l]

∑
j∈[mi]

p(i,j)=ALIVE

ai,j,k∆xk (3.77b)

=
∑
k∈[n]

∆xk
∑
i∈[l]

∑
j∈[mi]

p(i,j)=ALIVE

ai,j,k =
∑
k∈[n]

∆xkψk = 0 (3.77c)

which leads to a contradiction. There could be no direction ∆x in which the function

f decreases from the point, therefore it has the optimal value. �

Theorem 3.8. Assume that the integer version of the algorithm ended with a point x

and ε = 0, and after the local consistency algorithm was run for the last time, it holds

that

� there is exactly one subfunction fi,j that is alive in each cluster,

� there is k ∈ [n] with ψk 6= 0

7This is theoretically possible only with unlimited precision, but the used arithmetic does not
influence the optimality of a point x.
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then x is not a minimizer of f .

Proof. Following the same reasoning as in the previous proof, we can show that such

point x is not an optimum by finding a direction ∆x for which it holds that the value

of the function f decreases.

Let us define the direction as ∆x = −ψ, then it holds that∑
i∈[l]

aTi,j(i)∆x =
∑
k∈[n]

∆xk
∑
i∈[l]

ai,j(i),k =
∑
k∈[n]

−ψ2
k < 0, (3.78)

where the last inequality is strict because there is ψk 6= 0. Therefore, we have found

the decreasing direction and the current point is therefore not optimal. �

The above theorems are summarised in Figure 3.4, where it can be seen that the

case when ε = 0 and there is a cluster with multiple alive subfunctions is not covered.

But we will see later that even the first two theorems are enough to determine the

optimality of most instances we will deal with.

suboptimal

undecided

suboptimal optimal

ε = 0ε > 0

unique maxima multiple maxima

ψ = 0ψ 6= 0

Figure 3.4: Flowchart on deciding optimality.
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Chapter 4

Implementation and Complexity

In this chapter, we will first describe how the input data should be stored

and accessed along with practical improvements of the formal pseudocode that will

improve its efficiency. Next, we will calculate the space complexity of the presented

implementation and time complexity of one iteration. Finally, we present the actual

interface of the implemented minimization algorithm in C++ and the structure of

the input and output data files.

4.1 Implementation Details

Here, we give the implementation details of the previously presented pseu-

docode and used data structures.

4.1.1 Storing Input Data

Concerning the input data, it is straightforward how to store the vectors m

and b but it is necessary to deal with efficiently storing the vectors a. As it was

presented in Algorithm 3, the vectors are likely to be sparse. Therefore, we should

store each one as a list of non-zero ai,j,k values along with the coordinates k that

these values correspond to. Observe that this kind of storage automatically allows

efficient querying of N(fi,j) elements and the corresponding coefficients a, which is

frequently done.

Similarly, we could store for each coordinate k the non-zero coefficients ai,j,k in

a list along with the (i, j) indices. This structure will be used for querying N(xk).

Later in this section, we will show that it is never necessary to access the values

ai,j,k randomly, but always in the scope of iterating over N(xk) or N(fi,j).
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4.1.2 Efficiency Improvements

First of all, it is important to note that on each place in the algorithm where

the value of a subfunction is queried in the current point, we should not calculate it

every time but use the pre-defined vector y that satisfies yi,j = fi,j(x) and is updated

after each iteration. In addition, we keep a vector τ ∈ Rl such that

τi =
mi

max
j=1

fi,j(x), (4.1)

so that we can also replace the occurrences of cluster maxima and not evaluate them

each time.

Local Consistency Algorithm

In the local consistency algorithm, we introduce some auxiliary variables for

efficiency. One of these vectors, % ∈ Nl, contains in each %i the amount of remaining

subfunctions that are alive in cluster i,

%i =

mi∑
j=1

Jp(i, j) = ALIVEK. (4.2)

The initial values of this vector are zeros but whenever a subfunction fi,j becomes

alive, we need to increase the corresponding component and do the opposite when it

becomes inactive or killed. The same condition that is checked on lines 2 and 13 in

Algorithm 6 is equivalent to checking whether some %i = 0, where i are the clusters

of the subfunctions that were just killed. Updating the vector does not create any

overhead in the sense of asymptotic time complexity because in each assignment to

the vector p, we will update at most one value in %.

Next, to see whether a coordinate is consistent, we do not need to iterate over

all the subfunctions but instead, we can use vectors γ+,γ− ∈ Nn, where γ+
k (resp. γ−k )

is the amount of subfunctions fi,j that are alive and their corresponding coefficient

ai,j,k is positive (resp. negative). Formally,

γ+
k =

l∑
i=1

mi∑
j=1

J(ai,j,k > 0) ∧ (p(i, j) = ALIVE)K (4.3a)

γ−k =
l∑

i=1

mi∑
j=1

J(ai,j,k < 0) ∧ (p(i, j) = ALIVE)K. (4.3b)

Testing for local consistency of a single variable xk is then equivalent to checking

(γ+
k = 0) ⇐⇒ (γ−k = 0). (4.4)
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Similarly as with %, the values of γ+ and γ− need to be updated whenever a sub-

function becomes alive, i.e. evaluate

γ+
k ← γ+

k + 1, ∀k ∈ N(fi,j), ai,j,k > 0 (4.5a)

γ−k ← γ+
k + 1, ∀k ∈ N(fi,j), ai,j,k < 0 (4.5b)

and whenever a subfunction is killed or becomes inactive, it is necessary to subtract

1 from the corresponding values.

It is also important to mention that the queue Q that is used in the local

consistency algorithm should be implemented so that it stores each value k at most

once – i.e. if the function Q.push(k) is called and the queue already contains k, then

no action should be executed.

The final remark to the local consistency algorithm is that we should have a

vector ā with values āi,j ∈ R ∪ {UNDEFINED} for each subfunction fi,j. Initially, all

āi,j = UNDEFINED, but whenever some p(i, j) value is set to a coordinate from [n],

then we set āi,j ← ai,j,p(i,j). The benefit of this approach is that we can eliminate

all randomly accessed values ai,j,k from the algorithm. In the pseudocode, all these

values are used only while iterating through the corresponding sets N(xk) or N(fi,j),

except for some occurrences of ai,j,p(i,j), which can be replaced by āi,j. Therefore, we

do not require anywhere to access a random ai,j,k value but only obtain these values

while querying the sets N .

Decreasing Direction, Line Search, and Update

When Algorithm 7 calculates the direction ∆x, the DAG or the augmenting

DAG should not be explicitly created, except for storing which subfunctions are in

the augmenting DAG (which is stored in r) and their in-degrees (which are stored in

d). The existence of particular edges is then determined implicitly by their definition.

During the creation of ∆x vector, whenever a value is assigned to some ∆xk,

we push the coordinate k into a queue Qx, which is initially empty. And after that,

when the set N(xk) is traversed, we put all the clusters i′ into a queue Qi, which was

also empty at the start of direction calculation algorithm. These queues should be

implemented in the same manner as the queue in the local consistency algorithm, i.e.

they will contain each value at most once. Eventually, the queue Qx will contain all

the non-zero coordinates of ∆x and Qi will contain all the clusters i such that this

cluster contains at least one subfunction fi,j that depends on a non-zero coordinate

of ∆x.

Now, when the step size is calculated, we can replace the occurrences of fi,j(x)

with yi,j and do the same with the cluster maxima, which can be replaced by τ .

Additionally, we can read the cluster indices i from the queue Qi to find all potentially
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increasing subfunctions, as it is done in the for-loops of the line search defined in

Algorithm 9.

After that, in the update procedure, we iterate over the clusters stored in Qi

again to update the corresponding values in y and τ and during that, we empty the

queue. Finally, the current point x is updated but we only need to recalculate the

coordinates that are stored in the queue Qx, which is emptied during this process.

4.2 Time and Space Complexity

In this section, we will discuss the asymptotic space complexity of the algorithm

and the asymptotic time complexity of one iteration. We will assume that the vectors

ai,j are sparse, which formally means that the size of sets N(fi,j), respectively N(xk)

does not exceed a small constant K, i.e.

K ≥ max

(
l

max
i=1

mi
max
j=1
|N(fi,j)|,

n
max
k=1
|N(xk)|

)
, (4.6)

thus |N(fi,j)| ∈ O(1) for all subfunctions fi,j and |N(xk)| ∈ O(1) for all k ∈ [n].

We will come to the result that the asymptotic time complexity of each iteration

is O(n + M), which is also the asymptotic space complexity of the algorithm. We

denote the total number of subfunctions in the SMAF as M .

4.2.1 Space Complexity

Among all the variables that the algorithm uses, there are some whose size is

proportional to the total number of subfunctions. These are for example y, c, d,

r, p and Qf . There are also structures whose size is proportional to the amount

of variables n, e.g. x, ∆x and Q. There are no structures whose size would be

asymptotically larger than n or M .

The input is also stored as a sparse matrix, so the total space complexity of it

is not higher than O(nK + MK) = O(n + M). Thus, the overall asymptotic space

complexity is O(n+M).

4.2.2 Time Complexity

Local Consistency Algorithm

As mentioned previously in this chapter, the first condition in Algorithm 6 can

be checked in O(l) using the precalculated values %.
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Q: initial content

killed v1 subfcns

added by v1

killed v2 subfcns

added by v2

killed v3 subfcns

...

...

Figure 4.1: Processing coordinates in queue.

Next, we would like to estimate an upper bound on the number of loops driven

by the queue Q. Assume that the queue is initialized with a non-zero amount of

variables, then it could happen that even before all these variables are processed,

the termination condition is satisfied in less than n loops. However, if all the initial

elements of the queue are processed and the algorithm did not end yet, we can say

that we have killed v1 subfunctions until now. That means that there is at most

some K · v1 variables that were added while the subfunctions were being killed.

Then, we can use the same reasoning and see whether the algorithm ends before

all these variables are processed. If it does not, we can denote v2 as the number of

subfunctions that were killed due to the previously added variables.

This idea is shown visually in Figure 4.1. In the figure, there is some initial con-

tent of the queue during which v1 subfunctions are killed. Because these subfunctions

are killed, they add at most K · v1 variables to the queue that kill v2 subfunctions

etc. But it is important that the algorithm ends at some point. Necessarily, the to-

tal amount of killed subfunctions until this point is lower than the total amount of

subfunctions, i.e. ∑
i

vi ≤M. (4.7)

Because each killed subfunction added at most constant amount of variables into

the queue, the total amount of added variables during the run of the algorithm is

O(KM). Assuming that there could have initially been at most n variables in the

queue, there are at most O(KM + n) = O(M + n) iterations of the while loop.

Each iteration of the while loop takes constant time because checking consis-

tency is easy after introducing vectors γ+ and γ−, there is only constant amount of

subfunctions that depend on the inconsistent variable and each of these subfunctions

depends on constant amount of variables. The checking of the terminating condition

can be done for the clusters of the subfunctions that are just being killed.

Therefore, the local consistency algorithm has asymptotic time complexity

O(n+M).
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Decreasing Direction Calculation

In the calculation of ∆x direction, the augmenting DAG is traversed in order

to find the degrees of its nodes. Obviously, there can be at most M nodes in the

DAG, therefore the maximum number of edges is O(KM) = O(M), which means

that the first traversal is at most linear w.r.t. the number of subfunctions.

Then, we go through the augmenting DAG again to calculate the direction.

Because the size of augmenting DAG is at most O(M) and each subfunction is pro-

cessed in O(K) = O(1) time, we can conclude that the whole process of calculating

∆x has time complexity O(M).

Line Search and Update

During the line search, we iterate over the subfunctions in the cluster i∗ at most

twice and then over all clusters that may contain a subfunction with non-zero slope.

This procedure can be performed in O(M) time because in the worst case, we would

iterate over all the subfunctions.

The same can be said about the update – we might have to update all the

subfunctions (and also all the values of the maxima) and all components of x and

then iterate over the updated values to find out which subfunctions are active for the

next iteration. This can be done in O(2M + n) = O(M + n) time. It is important to

note that the deactivate function runs in constant time O(K) and the accumulated

runtime of activate function will not exceed O(M) because each subfunction’s status

could be set to ALIVE at most once and recursive resurrecting will not run more than

once for each subfunction.

To conclude this section, we have estimated the time complexity of one iteration

of the algorithm to be O(n + M), where n is the number of variables and M is the

total number of subfunctions in the SMAF.

Complexity of the Whole Algorithm

In Section 3.2.4, we introduced an upper bound that showed that the maximum

number of the iterations could theoretically be exponential in the size of the input. It

was out of scope of this thesis to find a better bound on its convergence rate and we

do not know whether a better bound exists. However, as said above, the number of

iterations was experimentally shown to be much lower than the exponential bound.
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Figure 4.2: Input file format.

4.3 Interface

In this section, we describe the input format of the file that defines a SMAF

and also the output format of the file that returns the result of the algorithm. We

also briefly comment on our implementation in C++, namely its division into classes

and description of their functionalities.

4.3.1 Input and Output File Formats

This section describes the way the input and output files are structured to allow

the user to interpret them in own custom applications.

Input Format

The input format was designed so that it would be easy and efficient to load the

data to an internal representation. The input file is a text file with content according

to Figure 4.2.

On the first line, there should be the number of clusters l, number of variables

n and a constant K that is an upper bound on the number of non-zero elements in

any ai,j and also the number of subfunctions that depend on a variable xk.

The second line contains the sizes of clusters, i.e. how many subfunctions there

are in each cluster.

Next, there are M =
∑

i∈[l] mi lines which define the individual subfunctions.

The order of the lines is straightforward – we first define the m1 subfunctions of the

first cluster, then the m2 subfunctions of the second one etc.
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l n ε
x1 x2 · · · xn
h1 h2 · · · hl

Figure 4.3: Output file format.

When defining a subfunction fi,j, the first number on the corresponding line

is ei,j, which equals to |N(fi,j)|, i.e. the number of variables that this subfunction

depends on. This number is followed by exactly ei,j pairs of values, where the first

number of the pair is a coordinate k and the second number is the corresponding

ai,j,k value. Obviously, only coordinates with non-zero ai,j,k values are listed and after

all of them are indexed, the line is ended with the value of bi,j. Notice that in the

input files, coordinates are not numbered from 1 to n but instead from 0 to n− 1.

Output Format

The output format is much simpler when compared to the input format. On

the first line, it contains the input number of clusters l, number of variables n, and ε

such that the returned point x is locally ε-consistent. On the second line, the values

of x are listed. On the third line, there are l numbers h1, ..., hl that contain the index

j of the subfunction in the corresponding cluster which has status ALIVE. The values

of p are taken from the result of the local consistency algorithm which was run on

ε-active subfunctions. If there are multiple alive subfunctions in a cluster, hi = −1.

Formally, we define

hi =


∑

j∈[mi]

j · Jp(fi,j) = ALIVEK if there is only one j with p(fi,j) = ALIVE

−1 otherwise
.

(4.8)

Similarly as with the variable indices in the input, the subfunctions are num-

bered from 0 to mi − 1 instead of 1 to mi in the actual input.

4.3.2 The Code and its Usage

The implementation is divided into 3 classes. Class Instance stores the input

instance of SMAF and provides the data to the minimization algorithm, this class is

initialized using a path to a source file in the format shown in Figure 4.2.

The minimization algorithm is implemented in class Solver, which is initialized

by an object of class Instance. The minimization process then can be started by

invoking the solve() function, which accepts the initial ε as its optional parameter –

if it is not specified, then it uses the initialization shown on line 3 in Algorithm 14. By
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default, the program writes the information concerning every iteration on standard

output but this can be turned off by setting the verbose flag to false.

After the solve() function terminates, the user can call the result() function

that reports the reached function value and the minimum ε value for which the cur-

rent point is locally ε-consistent. It also uses the theorems presented in Section 3.3.3

to decide the optimality of the result (if it is possible). The function result() also

accepts a path to a text file as its optional parameter. If the path is specified, then

the output file in the form shown in Figure 4.3 is created and the reached point x

is stored there. It is also possible to change the values of vector b by invoking the

function changeB(i, j, d) that sets bi,j ← bi,j +d. After this change is done, the result

can be re-optimized by the solve() function that would start from the previously

found point.

The third class is Queue, which is an implementation of the queue that contains

only unique elements and is used in multiple places throughout the algorithm. Except

for the classes, we also attach an example code main.cpp that shows the usage of our

implementation.
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Chapter 5

Experiments

In this chapter, we introduce two-dimensional grammars and show how they

can be used to create large instances of SMAF that correspond to Schlesinger’s upper

bound of a binary max-sum problem. After we describe how the instances are created,

we use our algorithm to minimize the given function and compare our result with the

optimal value. We also present meaningful modifications of the presented instances,

where the recalculation of optimum after a small change is used. Finally, we analyse

the initial setting of ε and the minimization process.

5.1 Two-dimensional Grammars

To create large instances of convex piecewise-affine functions, we will use the

notion of two-dimensional grammars. Notice that the notion has changed its meaning

recently – it is nowadays viewed as a generalisation of the ”classical” grammars, which

is a set of production rules for creation of string of characters. This is described in

detail in Pr̊uša (2004), however we will use the ”older” meaning defined in Schlesinger

(1976).

In this notion, the pixels of images are assigned labels and there are rules on

which labels could be in adjacent pixels. Formally, we will consider only grey-scale

images, which will be viewed as matrices of size h×w with values from the interval

[0, 1].

Definition 5.1. A two-dimensional grammar is a binary max-sum problem (G,X, g)

and a function c : X → {0, 1}, where

� G = (T,E) is a grid graph, i.e.

T = [h]× [w], (5.1a)

E = {{(i, j), (i′, j′)} | i, i′ ∈ [h], j, j′ ∈ [w], |i− i′|+ |j − j′| = 1}, (5.1b)
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� gt(x) = 0 for all t ∈ T and x ∈ X,

� gt,t′(x, x
′) ∈ {0,−∞} for all {t, t′} ∈ E and x, x′ ∈ X.

The function c in the definition above can be interpreted as a function that

assigns each label either black or white colour. For the purposes of the next sections,

assume that black pixels have value 1 and white ones have value 0.

Notice that for the above mentioned binary max-sum problem, it holds for all

labellings x ∈ XT that F (x|g) ∈ {0,−∞}.

We say that a black and white image O ∈ {0, 1}[h]×[w] is generated by a given

grammar if there exists a labelling x ∈ XT such that oi,j = c(x(i,j)) for all (i, j) ∈ T
and F (x|g) = 0.

Nearest Image Generated by Given Grammar

If we are given an arbitrary grey-scale image O ∈ [0, 1][h]×[w] and a two-

dimensional grammar, then we can formulate the task of looking for the nearest

image O∗ of the same size such that O∗ is generated by the given grammar and it is

the ”closest” one to O in means of minimizing∑
i∈[h]

∑
j∈[w]

|o∗i,j − oi,j|. (5.2)

As already shown in Werner (2007), it is possible to express this problem as a

binary max-sum problem. The corresponding graph G and the binary functions gt,t′

will be the same as in the grammar but the unary functions are given as

g(i,j)(x) = 1− |c(x)− oi,j| (5.3)

for all (i, j) ∈ T .

5.1.1 Examples of Two-dimensional Grammars

In this section, we introduce four grammars – lines, rectangles, pi and curves.

On the lines grammar, we show in detail how to define the problem of nearest image

generated by the grammar.

Lines Grammar

We define a grammar called lines for images whose matrix contains only vertical

and horizontal lines that stretch from top to bottom or from the left border to the
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(a) (b) (c) (d)

Figure 5.1: Examples of images, first two are generated by the lines grammar.

right border. More formally, we would like to say that an image O with size h × w
is generated by the grammar if there exist sets U ⊆ [h] and V ⊆ [w] such that

oi,j = Ji ∈ U ∨ j ∈ V K, ∀(i, j) ∈ [h]× [w]. (5.4)

The set U (resp. V ) in the previous definition can be viewed as the indices of rows

(resp. columns) that contain the line. For example, the images shown in Figures 5.1a

and 5.1b are generated by this grammar, whereas the images in the Figures 5.1c and

5.1d are not.

There will be four labels, X = {H,V, P, I} and we should find a labelling

x ∈ X [h]×[w] that assigns each pixel a label from the set X. The meaning of the

labels is as follows. If a vertical and a horizontal line pass through a pixel, then

it should have the label I (intersect). If only horizontal (resp. vertical) line passes

through a pixel, then it should have label H (resp. V ). If no line passes through it,

then it is marked with P (empty). The labelled pixels of an image generated by the

grammar are shown in Figure 5.2a.

The colour assigned to label P is white and the colours of the other labels

will be black, i.e. c(x) = Jx 6= P K. The values of the unary functions are given by

equation (5.3).

Now, we only need to properly define the binary functions gt,t′ between the

neighbouring pixels so that the result is generated by the lines grammar. That can

be done by easy reasoning based on which labels could be neighbours – for example,

above label V , there could be label I or another label V , but there cannot be label

H or P . The allowed neighbouring relations are in Tables 5.1 and 5.2. Using these

tables, we can simply forbid certain pairs of labels to neighbour in a certain direction

by setting the gt,t′ values to either 0 (if the pair is allowed) or −∞ (if the pair is not

allowed), formally

gt,t′(xt, xt′) =

{
0 if the pair xt, xt′ is allowed in the direction given by t, t′

−∞ otherwise
.

Finally, we managed to transform the problem of searching the ”closest” image
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Upper label x(i,j)

P H V I

Lower label x(i+1,j)

P X X
H X X
V X X
I X X

Table 5.1: Vertical relations between labels in lines grammar.

Right label x(i,j+1)

P H V I

Left label x(i,j)

P X X
H X X
V X X
I X X

Table 5.2: Horizontal relations between labels in lines grammar.

generated by the lines grammar into an equivalent problem formalized as a binary

max-sum problem. We can similarly define also other problems, resp. grammars.

Rectangles Grammar

In the rectangles grammar, we allow black shapes of rectangular form which

are not allowed to overlap or touch each other. This grammar is formalized using 10

labels – empty space (P), left upper corner of a rectangle (LeUp), left lower corner

(LeLo), right upper (RiUp), right lower (RiLo), upper line boundary of the rectangle

(UpB), lower boundary (LoB), left boundary (LeB), right boundary (RiB) and the

inside (I) of the rectangle.

An example of a rectangle with labelled pixels is in Figure 5.2b. We do not

explicitly write the colouring function c or all the allowed options for vertical or

horizontal neighbouring because all of the allowed options are in Figure 5.2b, where

also the colours of labels can be seen. An example of an image generated by this

grammar is in Figure 5.3a.

Pi Grammar

The pi grammar is similar as rectangles, except that the colours corresponding

to the inner pixels of a rectangle (label I) and the lower boundary (label LoB) are

white. This defines a grammar that contains images in which there are symbols that

resemble the shape of letter Π. Figure 5.3b is an example of an image generated by

this grammar.

79



P

P

P

H

H

P

P

P

P

H

H

P

P

P

P

H

H

P

P

P

P

H

H

P

V

V

V

I

I

V

V

V

V

I

I

V

V

V

V

I

I

V

(a) Example of an image generated by lines grammar.
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(b) Example of an image generated by rectangles grammar.
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(c) Example of an image generated by curve grammar.

Figure 5.2: Examples of labelled images generated by various grammars.
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(a) Image generated by
rectangles grammar

(b) Image generated by pi
grammar

(c) Image generated by
curve grammar

Figure 5.3: Examples of images generated by various grammars.

Curve Grammar

The last grammar that will be introduced is the curve grammar, consisting of

non-intersecting curves, where a curve is a sequence of pixels so that the next one is

in the 4-neighbourhood of the first one. A line can also begin or end at the boundary

of the image and an example of an image generated by this grammar is in Figure

5.3c. Additionally, in the 4-neighbourhood of a pixel that is black, there can be at

most 2 other black pixels – one that is ”previous” in the curve sequence and one

that is its ”successor” in the line sequence. If the line begins at the boundary, there

is only one neighbouring black pixel.

To define this grammar, we used 6 labels – horizontal part of line (label H),

vertical part of line (label V), bend from lower vertical to right horizontal (label

A), bend from lower vertical to left horizontal (label B), bend from upper vertical

to right horizontal (label C), bend from upper vertical to left horizontal (label D).

All the allowed options are shown in Figure 5.2c. Notice that label combination AD

is allowed in both horizontally and vertically neighbouring pixels to allow zig-zag

shape. Similarly, BC (vertically) and CB (horizontally) combinations are allowed for

the other direction of zig-zag.

5.2 Tested Instances

To obtain large instances of SMAF, we first generated baseline images that were

generated by one of the previously defined grammars, then independent Gaussian

noise was added to the pixels in the images to obtain the input image O. After

that, we transformed the problem of searching the ”closest” image generated by the

grammar to the binary max-sum problem, basically in the same way as stated in

the beginning of Section 5.1. Finally, we created the SMAF that corresponds to the

height minimization of the binary max-sum problem defined by the image, which is
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Instance
LP parameters SMAF parameters

variables constraints clusters subfunctions dimension
lines200 756400 796800 119600 796800 636800
lines100 188200 198400 29800 198400 158400
lines50diamond 46600 49200 7400 49200 39200
rect100round 425800 416800 29800 416800 396000
rect100sharp 425800 416800 29800 416800 396000
pi50prec 105400 103400 7400 103400 98000
pi50rough 105400 103400 7400 103400 98000
curve500 7735000 8736000 749000 8736000 6986000

Table 5.3: Sizes of the individual tested instances.

the process defined in Algorithm 3. To also create ”harder” inputs, we sometimes

used baseline images that are not generated by the given grammar.

The Gaussian noise had zero mean and we tried three settings concerning the

standard deviation of the noise – we used low noise with σ = 0.12, medium noise

with σ = 0.4 and high noise with σ = 1.2. If any value of a pixel got out of the [0, 1]

interval, its value was trimmed to the nearer border.

We used 8 different baseline images, to which different amounts of noise were

added, which resulted in 24 instances of SMAF in total. Table 5.3 contains the pa-

rameters of the instances which define their size, i.e. both the parameters of the

corresponding upper bound minimizing LP in the form of equation (1.14) and the

parameters corresponding to the SMAF that is minimized. Note that these parame-

ters do not depend on the amount of noise in the image but only on the used grammar

(i.e. the amount of labels and the rules on neighbouring labels) and the image size.

The first part of the name of an instance consists of the name of the grammar

by which the resulting image should be generated (i.e. lines, rect for rectangles,

pi and curve). This is followed by the size of the corresponding image – the images

are square, so it is enough to mention only one number. The name of the instance

may also contain an additional keyword for better identification. Finally, the actual

input instances are extended by the keywords low, med and high that define how

much noise was added.

The algorithm is run on these instances and after it finishes the minimization

and finds a locally ε-consistent point, we look on the returned values hi, as defined in

Section 4.3.1. If each cluster corresponding to a pixel has a unique maximum, we can

reconstruct the solution by setting the corresponding maximum labels. On the other

hand, if there are more maxima in a cluster, then we mark the object as undecided,

which will be denoted by red pixels in the following section.

To find the optimal solutions to these instances, we calculated a continuous LP

in form (1.14) using Gurobi Optimizer version 7.5.2. We also compared the runtime
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of our implementation with the Gurobi Optimizer1. As described in Gurobi Opti-

mization (2016), the LP solver by default uses a concurrent solver which runs various

optimization algorithms on more processor cores at the same time in parallel and

returns the solution when the fastest algorithm terminates. Therefore, the runtime

of Gurobi could be higher if it comitted to a single algorithm and used only one

processor core at time.

It is necessary to mention that in order to be able to find integer solutions, we

multiplied the values in the resulting b (resp. g) vector by a large integer.

5.3 Results

5.3.1 Lines Grammar

In the Figure 5.4, there are the results of the experiments with the lines gram-

mar. In Figure 5.4j, there is the baseline image to which the noise was added, which

created the input images in Figures 5.4a, 5.4d and 5.4g. After the minimization al-

gorithm was applied, it found a solution, where each cluster contained exactly one

subfunction that was alive (after the local consistency algorithm was run), which al-

lowed to reconstruct the solution in Figure 5.4j. This solution is exactly the baseline

image to which the noise was added and the result was the same in all the input

images, the only difference is that with higher noise, more iterations were needed.

The same experiment was performed also with different image sizes, the input

images in Figures 5.4c, 5.4f and 5.4i have the size 100 × 100 and used baseline image

shown in Figure 5.4l. As in the previous case, the algorithm always found the solution

that corresponds exactly to the baseline image.

In the previous cases, the image to which the noise was added was always in the

grammar that we were searching, so we also tried to use a baseline image that was

also used in Werner (2007) which contains an inaccurately drawn square. This input

image is in the original source called ”diamond”. To this image, we added all levels

of noise, producing Figures 5.4b, 5.4e and 5.4h and searched for the nearest image

generated by the lines grammar. In the case of low and medium noise, the algorithm

surprisingly found solutions in which all the maxima were unique. The result to the

input with medium noise is in Figure 5.4k. The result corresponding to the low noise

was not the same, but very similar – the ”cross” was a little bit thinner. In the case

of high noise, no maximum of any cluster was unique, which prevented us from any

reconstruction.

Table 5.4 shows the comparison between the optimal (minimal) values of the

upper bound of various SMAF instances and the minimized values returned by the

1The experiments were done on a computer with Intel Core i7 7500U CPU and 8 GB RAM.
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(a) Input image with low
noise, size 200 × 200

(b) Input with baseline di-
amond image, low noise

(c) Input image with low
noise, size 100 × 100

(d) Input image with med.
noise, size 200 × 200

(e) Input with baseline di-
amond image, med. noise

(f) Input image with med.
noise, size 100 × 100

(g) Input image with high
noise, size 200 × 200

(h) Input with baseline di-
amond image, high noise

(i) Input image with high
noise, size 100 × 100

(j) Both result and baseline
image, size 200 × 200

(k) Result corresponding to
the diamond input 5.4e

(l) Both result and baseline
image, size 100 × 100

Figure 5.4: Input images and solutions for the lines grammar.
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algorithm. The table also contains values that denote in which cases the height was

truly optimal – we express the difference between the optimal value f(x∗) and the

found function value f(x) as a value

R =
f(x)− f(x∗)

f(x∗)
, (5.5)

which calculates the difference as a multiple of the optimal value. The table also

contains the returned value of ε and the corresponding runtimes.

Our algorithm was significantly faster on the tested lines instances compared

to the LP solver. On instances that are ”obvious” to human perception, it produced

the solution immediately. The other instances took more time.

5.3.2 Rectangles Grammar

Similar experiments to the previous ones were also performed with the rect-

angles grammar – we created a baseline image that is generated by the grammar

(rect100sharp) and another one that is not (rect100round) and then added noise

with various variance to create the individual instances.

The generated images and the corresponding results are in Figure 5.5. The

red pixels in the solutions mean that the cluster corresponding to the red pixel had

multiple maxima alive, therefore it was not possible to determine the label.

The qualitative results are again in Table 5.4 – this time, there were fewer

optima reached and the non-optimal values were also more distant from the opti-

mum than in the case of lines grammar. Similarly as last time, the runtimes of our

algorithm are significantly smaller than the runtimes of the LP solver.

5.3.3 Pi Grammar

In case of the pi grammar, an image which is not generated by the grammar

(called pi50rough) and also an image that originally is generated by the grammar

(called pi50prec) were used. The input and output images are shown in Figure 5.6.

In the cases of low and medium noise, there are few undecided points, which

are interestingly located only in the upper part of the image. The reason for this

can be easily discovered after finding out which labels correspond to the clusters’

maxima. In case of Figures 5.6d and 5.6j, the lowest undecided line has two maxima

– it could be an empty space P or the lower boundary LoB of a pi sign. The upper

lines have three maxima – it could be empty space P (if the pixel below was empty),

lower boundary LoB (if the pixel below was empty) or interior point I (if the pixel

below was a lower boundary or also an interior point). So, it can be basically viewed

as that it is known that the red points in these images should be white, but it is
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(a) Input
rect100prec low

(b) Input
rect100prec med

(c) Input
rect100prec high

(d) Result of
rect100sharp low

(e) Result of
rect100sharp med

(f) Result of
rect100sharp high

(g) Input
rect100round low

(h) Input
rect100round med

(i) Input
rect100round high

(j) Result of
rect100round low

(k) Result of
rect100round med

(l) Result of
rect100round high

Figure 5.5: Input images and solutions for the rectangles grammar.
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not known if they should be empty or if there could be a large pi sign whose black

pixels are out of the picture and therefore the upper part of the image could be inside

such sign. This does not happen in the lower part of the image because the upper

boundary of the pi sign would be visible there.

On the other hand, in the case of the images with medium noise, i.e. the results

that are in Figures 5.6e and 5.6k, few pixels in the uppermost row are so dark due to

the noise that they should be black and maxima of their clusters correspond to the

LeLo and RiLo labels, i.e. the end of either the left or the right vertical line of the pi

symbol. The pixels between them are either empty (label P) or the lower boundary

(LoB) of a pi symbol – this would be based on the choice of the left/right direction

of the other labels. So, we found multiple labelings with the highest quality.

In the results corresponding to the input with high noise, the undecided pixels

are not so structured, likely because the input does not resemble an image from the

pi grammar at all.

The numerical results on these instances are listed in Table 5.4, where it can

be seen that the runtime of our algorithm was again significantly lower than the

runtime of the LP solver and in 4 of the 6 cases, we reached the optimum.

5.3.4 Curve Grammar

In the curve grammar, we generated the largest instance, which was made up

from an image with size 500 × 500 that is originally generated by the grammar.

Again, we added various amounts of noise to the image and tried to minimize the

height of the corresponding binary max-sum problem. The input images and the

results are shown in Figure 5.7.

Similarly as in the previous cases, the comparison of runtimes along with the

optimality of results is shown in Table 5.4. This time, Gurobi could not run the

concurrent solver because it required too much memory. Neither dual simplex method

nor the barrier method could be used even individually because of the same reason.

That is why the runtimes in this case are calculated by the primal simplex method. In

case of curve500 high, the calculations ran more than 2 weeks before out of memory

error occurred. That is why the optimum of this instance was not calculated.

On the other hand, our algorithm terminated with a much slower runtime on

these instances and reached the optimal value in the case with medium and low

noise. By Theorem 3.6, we know that on the instance with high noise, suboptimal

value was reached even without knowing the optimal value of the problem.

The runtimes in Table 5.4 are measured only for the iterative minimization

procedure, we did not measure the runtime of loading the input file or saving the

result. Similarly for the LP solver, we did not measure the time required for the

set-up of the LP, but only the minimization process itself.
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(a) Input pi50rough with
low noise

(b) Input pi50rough with
medium noise

(c) Input pi50rough with
high noise

(d) Result of pi50rough

with low noise
(e) Result of pi50rough

with medium noise
(f) Result of pi50rough

with high noise

(g) Input pi50prec with
low noise

(h) Input pi50prec with
medium noise

(i) Input pi50prec with
high noise

(j) Result of pi50prec with
low noise

(k) Result of pi50prec

with medium noise
(l) Result of pi50prec with
high noise

Figure 5.6: Input images and solutions for the pi grammar.
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(a) Input curve500 with low noise (b) Result of curve500 with low noise

(c) Input curve500 with medium
noise

(d) Result of curve500 with medium
noise

(e) Input curve500 with high noise (f) Result of curve500 with high noise

Figure 5.7: Input images and solutions for the curve grammar.
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Instance of SMAF Optimum Minimized to LP runtime Our runtime ε R
lines200 high 14194617352192 14194617352192 14815.0 s 220.4 s 0 0
lines200 med 18093229211648 18093229211648 1983.0 s 1.1 s 0 0
lines200 low 20396852117504 20396852117504 1539.5 s < 1 s 0 0
lines100 high 3553387085824 3553387085824 925.7 s 24.1 s 0 0
lines100 med 4519050084352 4519050084352 826.4 s < 1 s 0 0
lines100 low 5098038099968 5098038099968 849.8 s < 1 s 0 0
lines50diamond high 918061842432 918061842662 44.6 s < 1 s 3 2.5 · 10−10

lines50diamond med 939794628608 939794628608 23.6 s 1.9 s 0 0
lines50diamond low 1025186463744 1025186463744 22.5 s 1.5 s 0 0
rect100sharp high 3862483641786.583 3862948035702 485.6 s 5.4 s 82 1.2 · 10−4

rect100sharp med 4522357293056 4522357293056 6585.6 s < 1 s 0 0
rect100sharp low 5098293952512 5098293952512 4338.2 s < 1 s 0 0
rect100round high 3858045642353.665 3858719475728 5427.7 s 17.3 s 2453 1.7 · 10−4

rect100round med 4469794039592.592 4470672873012 7427.2 s 61.4 s 9191 2.0 · 10−4

rect100round low 5019918069332.757 5020900572035 5314.2 s 72.5 s 40231 2.0 · 10−4

pi50rough high 1001347577719.467 1001419353514 170.6 s < 1 s 3 7.2 · 10−5

pi50rough med 1113698861056 1113698861056 168.7 s < 1 s 0 0
pi50rough low 1233886642176 1233886642176 188.4 s < 1 s 0 0
pi50prec high 1006988427264 1007074368367 105.6 s < 1 s 3 8.5 · 10−5

pi50prec med 1139051331584 1139051331584 183.5 s < 1 s 0 0
pi50prec low 1276033105920 1276033105920 180.5 s < 1 s 0 0
curve500 high n/a 104703708253010 > 1.5 · 106 s 220.9 s 32 > 0
curve500 med 112950824140800 112950824140800 32524.1 s 26.3 s 0 0
curve500 low 127430662553600 127430662553600 39570.3 s 4.1 s 0 0

Table 5.4: Overview of all the numerical results and runtimes on all instances.
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Except for a few instances, we are able to determine the optimality of the

solutions just by applying Theorems 3.6 and 3.7 and we would not even have to

know the optimal values from the LP. In the instances pi50rough and pi50prec

with medium and low noise, no previously shown theorem can decide the optimality

of the result, but it could be deduced from the reasoning in Section 5.3.3 because

we know that these instances of SMAF correspond to the upper bound of a binary

max-sum problem. Therefore, the only case that would remain unresolved if we did

not know the true optimum would be the curve500 med instance.

5.3.5 Small Changes

We have also experimented with changing the values in the b vector to re-

optimize the problem for a slightly different setting.

Pi Grammar Instances

In this case, the possibility to do small changes of the problem become useful –

we can help the solver to decide which solution to take. For example, in the case of

pi50prec low or pi50rough low, we can change e.g. the value bi,j corresponding to

the empty label of the pixel in the upper left corner and increase it by 1. After that,

the algorithm does not need to change the current value of x in this case because

it still is locally consistent but the ambiguous labels disappear because in the upper

left corner, there is only one maximum – the empty label. Therefore the I or LoB

labels become inconsistent and are killed, which means that the previously red areas

in Figures 5.6d and 5.6j now become white because the only remaining subfunctions

that are alive correspond to empty label. The result corresponding to the modified

instance pi50prec low is in Figure 5.8a.

The same thing can be done also for the instances with medium noise, which

would result in an image exactly like Figures 5.6e, resp. 5.6k, but in the uppermost

row, there would be few separated black pixels. The result corresponding to the

modified instance pi50prec med is in Figure 5.8b.

Rectangles Grammar Instances

In the results of the rectangles grammar instances with high noise, there was

a lot of small rectangles, i.e. in Figures 5.5f and 5.5l. In order to try to improve the

result, we tried to introduce a regularizer on the amount of rectangles.

The regularizer is the decrease of the bi,j values corresponding to the corner

labels of the rectangles by a value ω. In this way, the optimization criterion (5.2)
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becomes

4ω · rectangles(O∗) +
∑
i∈[h]

∑
j∈[w]

|o∗i,j − oi,j|, (5.6)

where rectangles(O∗) is the amount of rectangles in the image O∗.

We tried to set ω = 1 or ω = 10 and decrease the corresponding bi,j values by

this value2.

In the case of rect100prec high, the smaller ω resulted in Figure 5.8c, which

contains fewer rectangles than the original result without regularization. The larger

value of ω returned the result in Figure 5.8d, which almost exactly corresponds to

the baseline image, except that the upper left rectangle is narrower by 1 pixel from

each side and the left long rectangle is wider by 2 pixels on the left side.

The same worked also for the instance rect100round high, whose correspond-

ing result for ω = 1 is in Figure 5.8e, which again contains fewer rectangles. Figure

5.8f shows the result for ω = 10 – notice that the result contains four rectangles in

the places that can be recognized e.g. in Figure 5.5g.

The recalculation of the problem from the previously locally consistent point

is beneficial in the means of runtime. In all these cases, the runtime of the algo-

rithm after the small change was performed was smaller than if the algorithm was

completely restarted. This could be also beneficial in cases where the regularization

constant is searched and results for multiple regularizations are compared.

5.4 Further Analysis

Here, we first analyse the dependence of the number of iterations and the final

function value on the initial value of ε. Then, we look into one iteration and its

progress during a single run.

5.4.1 Dependence on Initial Value of ε

As we said above, we introduce ε-consistency in order to make the calculations

faster. Now, we will show how it is sped up based on the initial value of ε. We analysed

the speed-up by the number of iterations required for the algorithm to terminate.

We observed that the number of iterations does not always increase when initial

ε is lowered and that the instances can be roughly divided into two groups. In the first

one, the number of iterations is initially almost constant with increasing value of ini-

tial ε but after a region of values of the initializer is crossed, the number of iterations

decreases rapidly. Examples of such instances are for example rect100sharp med or

2Recall that the values bi,j were multiplied by a large integer, these ω values are therefore also
actually multiplied by the same value.
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lines200 med, for whose the required amount of iterations for various initial values

of ε is shown in Figures 5.9a and 5.9b. For these instances, the reached function value

was the same for all initialization values or at least very similar. This case usually

happened in the ”easier” instances.

In the other group, which basically contains the ”harder” instances, the amount

of iterations first increases with increasing initial ε but then starts to decrease. Ex-

amples of such progress are shown in Figures 5.9c and 5.9d that corresponds to

instances rect100round high and lines100 high. It might seem that having small

initial value of ε could be also beneficial in this cases but the contrary holds because

the low amount of iterations for small initial values is caused by worse results of the

algorithm. It means that even though the algorithm terminates faster, it ends with

a larger function value. Figures 5.9e and 5.9f show the function value with that the

algorithm terminates on these instances based on the initial value of ε. The function

value for small initializers is higher than for the higher ones.

In all the figures, the maximum value of initial ε is

ε̄ = max
i,j

bi,j −min
i,j

bi,j, (5.7)

which is the initialization proposed in Algorithm 14, where it was also justified why

larger values would not change the outcome. From the previous experimental obser-

vations, it follows that this initializer lowers the required amount of iteration and

also provides lower function values when compared to the other ones.

5.4.2 Typical Progress of Objective Value

Here, we look into a single run of the algorithm – we will show the results for

instances lines200 high and rect100sharp med, for the other instances, the results

would be similar3.

First of all, we show how the current function value decreases during the min-

imization process. This is shown in Figures 5.10a and 5.11a. These figures contain

multiple plots, each for a different initial ε value. Since we already know from the

previous section that the convergence is basically the fastest with ε = ε̄, the result

of comparison of the initial ε values is not surprising. The shapes of the curves in

these figures could be denoted as ”typical” results of optimization methods in the

sense that it initially decreases steeply but as the value approaches the optimum, the

decrease slows down.

The decrease of the function in a single iteration is connected to the current

value of ε. In Figures 5.10b and 5.11b, we can see by what value the function decreased

3Except for those that are locally consistent already at x = 0. These finish immediately without
any iterations and are therefore uninteresting.

93



in each iteration and what was the current value of ε at that time. This is the run,

where ε was initialized as ε̄. From both figures, we can see that larger values of ε

correspond to a larger decrease in the objective function value. These figures also

explain why the convergence with significantly lower ε is slower – because the initial

value is small, it is not possible to make the large steps in the beginning as with the

larger initializations.

Note that in the case of Figure 5.10b, the final value was reached already with

ε ≈ 2 · 106 and the value of ε was then always lowered without changing x. This is

why the plot is trimmed for clarity and we do not see how ε is lowered to zero.
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(a) Result of modified
pi50prec low instance,
the red lines disappear

(b) Result of modified
pi50prec med instance,
the red line disappeared

(c) Result of modified
rect100prec high in-
stance with ω = 1

(d) Result of modified
rect100prec high in-
stance with ω = 10

(e) Result of modified
rect100round high in-
stance with ω = 1

(f) Result of modified
rect100round high in-
stance with ω = 10

Figure 5.8: Results corresponding to modified instances.

95



100 102 104 106 108 1010

Initial value of ǫ

1200

1400

1600

1800

2000

N
um

be
r 

of
 it

er
at

io
ns

(a) Number of iterations for instance
rect100sharp med
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(b) Number of iterations for instance
lines200 med
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(c) Number of iterations for instance
rect100round high
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(d) Number of iterations for instance
lines100 high
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(e) Reached function value for instance
rect100round high
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(f) Reached function value for instance
lines100 high

Figure 5.9: Comparison of results for various initialization values of ε.
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(a) Plot showing the current value of the function with respect to the
current iteration and the initial value of ε. Notice that the horizontal
axis is trimmed and the run corresponding to ε = 106 terminated after
approximately 2.8 · 105 iterations.
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(b) Plot showing the decrease of the function value and the current value
of ε during a single run of the algorithm, initialized with ε̄.

Figure 5.10: Progress of minimization, instance lines200 high.
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(b) Plot showing the decrease of the function value and the current value
of ε during a single run of the algorithm, initialized with ε̄.

Figure 5.11: Progress of minimization, instance rect100sharp med.
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Chapter 6

Conclusion and Future Research

In this final chapter, we summarize the contribution of our thesis and also list

potential areas for future research that we identified.

6.1 Conclusion

In this thesis, we have overviewed the binary max-sum problem and the re-

lated theory, namely Schlesinger’s upper bound and its connection to arc consistency.

Then, we presented a novel algorithm for convex piecewise-affine function minimiza-

tion, which is based on the notion of local consistency and works with functions that

are given as SMAF or MAF. This algorithm is a generalization of the Augmenting

DAG algorithm. We proved the correctness of the algorithm along with the calcula-

tion of its asymptotic space complexity and the asymptotic time complexity of one

iteration. We also presented its finite-precision version that we implemented in C++

and formulated theorems that in some cases allow to determine the optimality of the

given solution.

We tested the algorithm on instances that correspond to Schlesinger’s upper

bound of a binary max-sum problem, where the max-sum problem was based on

two-dimensional grammars and searching the closest image generated by a given

grammar. The relaxation that is used by the algorithm showed to be suitable for

such problems because it often reached the true optimum. Moreover, our algorithm

had significantly shorter runtime on all the instances when compared to an optimal

LP solver. On the generated instances, we also tried re-optimizing the solution after

a small change in the input instance was done, which could become useful in ill-

conditioned or ambiguous problems.

Finally, we also discussed the convergence speed and justified a general param-

eter initialization that experimentally showed to work suitably for all of the tested

instances. It is therefore not necessary for the user of our algorithm to set any pa-

rameters or tune them to optimize the result.
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6.2 Future Research

During the exploration of the field of local consistency and convex piecewise-

affine minimization, we have encountered a number of open questions that might be

resolved in the future.

Decrease of Space Complexity

First of all, it might be possible to decrease the space complexity of the al-

gorithm by removal of some additional structures that we currently use but maybe

only in the sense of actual space complexity, not asymptotic space complexity. For

example, get rid of either the N(xk) or N(fi,j) sets, which take up significant amount

of memory. Then, the algorithm might be even more useful for larger instances.

Oracles

Talking about space complexity, in case of the shown instances, it is not nec-

essary to store the whole upper bound function as a SMAF explicitly, but only

implicitly using the structure of the problem and the data (i.e. the input image).

For example, we could have an oracle that would create a numbering of clusters and

a numbering of the subfunctions in them that would not be explicitly stored but

only calculated from the size of the input image. Next, to find out the coefficients

of the vectors a, it could also be calculated on-demand by the oracle and not ex-

plicitly stored. This would be an approach that would reduce the space complexity

significantly.

Generalizing the Notion of ε-active Subfunctions

Similarly as we defined the notion of ε-active subfunctions in Section 3.1.7, we

could go further in the generalization. We might not use a single global value of ε, but

introduce these values for each cluster, i.e. have εi for each i ∈ [l]. The definition of

the active subfunction would then also depend on its cluster’s εi. But, we would also

have to design a way of treating the multiple values. And if there were issues with

non-existence of the locally consistent point with respect to the vector ε, we would

have to design an (at least partial) ordering on the ε vectors that would decide which

are better in the same sense as we searched for the smallest value in Section 3.3.2.

We could go even further and define an εi,j value for each individual subfunction.

This would basically allow us to mark almost1 an arbitrary set of subfunctions as

active. It might help us to deal with the issue of zero step size, where we could alter

1Under the assumption that εi,j ≥ 0, the actual maxima in each cluster would be always active.
On the other hand, if we allowed εi,j ∈ R, then the sets could be completely arbitrary.
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the set of active subfunctions and obtain another decreasing direction, in which a

non-zero step size would be possible. We could e.g. increase the εi,j of the subfunction

that caused the step size to be zero, so it would become active. However, we would

still need to design a complete strategy of treating the ε values.

General Convex Subfunctions

In this thesis, we dealt only with the convex piecewise-affine functions, but we

could consider a generalized setting with the minimized function in the form

f(x) =
l∑

i=1

mi
max
j=1

fi,j(x), (6.1)

where the subfunctions fi,j are any convex differentiable functions. Then, we believe

that we could almost completely re-use the ideas of both the local consistency algo-

rithm and the algorithm that calculates the decreasing direction and minimize the

function f . But, we would have to replace the values ai,j with the gradient of fi,j at

the point x and also design an efficient method of line search.

Two-label Problems

It was shown in Kolmogorov (2005) and reviewed in Werner (2005) that for

binary max-sum problems with 2 labels, it holds that a non-empty AC closure is

equivalent to having minimum upper bound. Therefore, it may also be generalized in

some sense to the convex piecewise-affine minimization that would provide a guar-

antee on optimality for a subclass of convex piecewise-affine functions.

Branch and Bound

Nguyen et al. (2014) showed that a type of local consistency can be used to

maintain a weighted CSP arc consistent during the search of its state space. Similarly,

our algorithm could also be used in such setting, for example in a branch and bound

algorithm to provide an upper bound on the quality of the solution. Alternatively, it

could also be used in branch and cut methods.

Persistency

Shekhovtsov et al. (2017) claims that in the case of a binary max-sum problem,

it is possible to find a part of an optimal solution even in polynomial time and also

determine which labels will never be in any optimal solution. It remains as an open

question for future research whether this notion could be generalized for SMAF

minimization.
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Other Problems

Last but not least, it is important to test the developed algorithm on other

instances than the ones arising from max-sum problems. However, due to the large

extent of the thesis, we consider this out of its scope and leave it for future work.

Viewing the minimization of the upper bound as a minimization of a convex

piecewise-affine function is beneficial because it is a more general problem that could

also be applied in other cases, where such function arises. Additionally, we can also

view the transformation from the upper bound minimization to the function as an

intermediate layer, which provides a simpler interface when compared to accessing

all the values of the binary max-sum problem.
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Appendix A

Attached Files

Attached files contain the generated instances, source codes of the algorithm,
source files of this file and the master thesis in PDF format. The structure of the
directories is described in the following table.

Directory/File Description/Content
/instances generated instances of SMAF
/latex LATEX source files of this text
/src source codes of the implementation in C++
thesis.pdf master thesis
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