
Czech technical university in Prague

Faculty of Electrical Engineering
Department of Computer Science

MASTER’S THESIS

Bc. Ondřej Benedikt

Algorithms for Energy-Aware Production Scheduling
with Power-Saving Modes

Supervisor: doc. Ing. Přemysl Šůcha, Ph.D.

Study program: Open Informatics

Branch of study: Artificial Intelligence

Prague
2018

Prohlášení

Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem uvedl veškeré
použité informační zdroje v souladu s Metodickým pokynem o dodržování etických prin-
cipů při přípravě vysokoškolských závěrečných prací.

V Praze dne Podpis autora

i

Anotace

Efektivní rozvrhování výroby může mít výrazný vliv na celkové náklady podniku. Jelikož celosvě-
tová spotřeba energie stále roste, je také potřeba zabývat se problémy spojenými s optimalizací ener-
getické spotřeby, abychom dosáhli dlouhodobě udržitelné produkce. Cílem této práce je navrhnout
přístupy řešení pro optimalizaci provozních nákladů méně využitých strojů pomocí změny jejich
provozních stavů. Konkrétně se zde jedná o problém paralelních identických strojů, na které jsou
rozvrhovány jednotlivé úlohy. Jsou navrženy dva přístupy pro nalezení optimálního řešení prob-
lému. První přístup modeluje problém jako celek (vzniká tak tzv. globální model), zatímco druhý
problém dekomponuje pomocí Dantzig-Wolfeho techniky. Cílem dekompozice je odstranit syme-
trie, které se objevují v globálním modelu kvůli zaměnitelnosti jednotlivých strojů. Jsou použity
dva možné způsoby formulace modelů, a to MILP a CP. Navíc je implementován referenční MILP
model, který byl vybrán z relevantních zdrojů. Je provedena řada experimentů, které detailně
porovnávají navržené přístupy, a jejich výsledky jsou podrobně popsány.

Klíčová slova

Celočíselné lineární programování, Programování s omezujícími podmínkami, Dantzig-
Wolfeho dekompozice, Branch-and-price, Optimalizace energetické spotřeby, Rozvrhování

Annotation

An efficient production scheduling can have a significant impact on the total production costs.
Moreover, global energy consumption has been steadily rising, and so it is important to tackle
the problem of energy optimization to achieve a sustainable production in the long term. The
aim of this work is to optimize operation costs (energy consumption) of under-utilized machines
by changing their operation modes. Specifically, the problem with parallel identical machines and
jobs characterized by their release times, deadlines and processing times is addressed. Two exact
approaches are developed to solve the problem. At first, a single global model is formulated to
describe the problem as a whole. Afterwards, it is decomposed by Dantzig-Wolfe technique to elim-
inate symmetries arising due to the interchangeability of the parallel machines. Two formulations
frameworks, namely MILP and CP, are tested. Besides, a reference MILP model is adapted from
the literature for comparison. Several experiments are conducted, and the results are discussed in
detail.

Keywords

Mixed Integer Linear Programming, Constraint Programming, Dantzig-Wolfe Decompo-
sition, Branch-and-Price, Energy Optimization, Scheduling

ii

Acknowledgements

Firstly, I would like to express my gratitude to my supervisor doc. Ing. Přemysl Šůcha,
Ph.D. for his support and various insightful discussions.

My sincere thanks also go to Ing. István Módos for his valuable and constructive sugges-
tions, which helped to make this work better.

I am also particularly grateful for stylistic consultations and expert knowledge of CP
optimizer provided by Mgr. Marek Vlk.

Last but not least, I would also like to thank my family for their support and encourage-
ment throughout my study.

iii

iv

Contents

1 Prologue 1
1.1 Introduction . 1

1.1.1 Field of study . 1
1.1.2 Related work . 2
1.1.3 Contribution . 4

1.2 Outline . 4

2 Theoretical background 6
2.1 Problem statement . 6

2.1.1 Resources . 6
2.1.2 Jobs . 7
2.1.3 Solution . 7
2.1.4 Objective . 8
2.1.5 Example . 8

2.2 Complexity . 10
2.3 Brief introduction to LP/MILP solution approaches 11

2.3.1 Overview . 11
2.3.2 Dantzig-Wolfe decomposition . 14
2.3.3 Lagrangian relaxation . 18
2.3.4 Branch and price . 19

2.4 Constraint programming . 22

3 Models 23
3.1 Global models . 23

3.1.1 MILP model . 25
3.1.2 CP model . 31

3.2 Branch-and-price models . 36
3.2.1 Master model . 37
3.2.2 Pricing model . 39

3.3 Reference model . 43

4 Experiments 46
4.1 Branch-and-price settings . 46
4.2 Data generation . 47
4.3 Experiment 1: Comparison of the global model and the reference model . . 48

4.3.1 Setting . 48

v

4.3.2 Results . 49
4.4 Experiment 2: Comparison of the proposed approaches 54

4.4.1 Settings . 54
4.4.2 Results . 55

4.5 Experiment 3: Multiple processing modes 59
4.5.1 Settings . 59
4.5.2 Results . 60

5 Epilogue 66
5.1 Conclusions . 66
5.2 Future work . 67

References 68

Appendix 72
A Instances generated for Experiment 2 . 72
B Aggregated results of Experiment 3 . 76
C List of abbreviations . 79
D Contents of the attached CD . 80

vi

1 Prologue

1.1 Introduction

1.1.1 Field of study

The global energy consumption has been steadily rising, as shown in Figure 1.1. Between
1965 and 2015, the amount of consumed energy more than tripled. According to the En-
ergy Regulatory Office, more than 30% of energy consumed in the Czech Republic were
spent on the industrial sector [1]. In this particular sector, energy is used for various pur-
poses, such as for material processing and product assembly, heating and cooling, lighting,
operating industrial motors and machinery, air conditioning etc. To achieve a sustainable
development, people need to find ways how to save energy. One of the measures, which
could be taken, is the efficient scheduling of energy demanding machines.

1960 1970 1980 1990 2000 2010 2020

0.5

1

1.5 ·104

Year

C
on

su
m
pt
io
n
[m

to
e]

Figure 1.1: The global energy consumption between 1965 and 2016 in millions of tonnes
of oil equivalent (mtoe) [2]

From a different point of view, automated production scheduling is becoming an integral
part of the industry today, bringing many benefits, such as improving the efficiency of pro-
duction either regarding the speed or the cost. The largest economy in Europe, Germany,
initiated movement called ’Industry 4.0’, which is commonly referred to as ’the fourth in-
dustrial revolution’. It addresses problems of connectivity, cloud computing, decentralized
decision making and information transparency and also problems of automation and data
exchange in manufacturing technologies. From this perspective, the automated scheduling
for energy optimization is not only the interesting research topic but also an important
part of the industry today and in the future.

However, scheduling problems are often hard to solve and so specialized algorithmic ap-

1

Prologue Introduction

proaches need to be developed. This work concentrates mainly on the production process,
where machines with a high energy consumption are used. Several sources, such as [3, 4, 5],
mention that substantial energy cost savings, up to tens of percent, can be achieved by
managing the state of the machine in time. For example, a machine can be turned off (or
to some power-saving mode) when nothing is being processed. However, the transitions
between the states might take some time and even consume energy. Therefore the switch-
ing between modes has to be planned carefully. The objective is to find a schedule of the
jobs and a switching between power modes of the identical, parallel machines so that the
total energy consumption is minimized.

The inspiration for this work came from two real production processes with high energy
demands. One of them is a glass tempering in ERTL Glas company, while the other one is a
steel hardening in ŠKODA AUTO company. Both processes have in common that material
is heated in one of several identical furnaces. The temperature inside has to be very high,
up to hundreds of degrees Celsius – depending on the particular technological process.
In consequence, energy consumption is also high. Typically, all the furnaces continuously
operate from the beginning to the end of the scheduling horizon (as this strategy is easy to
deploy and does not need specialized workers/software, who/which would find the energy-
saving schedule). In consequence, the high energy-demanding state is not changed, even
if nothing is being produced, thus wasting energy. The preliminary feasibility study for
ŠKODA AUTO Company [6] has shown that about 6% of the production line consumption
could be saved using the power-saving modes.

1.1.2 Related work

There has been a growing interest in the energy-efficient scheduling in the last few decades.
Authors are interested in the topic mainly for two reasons; the first one is environmental,
whereas the second one is economical. As reported by the International Energy Agency,
the manufacturing industry sector is responsible for about one-third of primary energy
consumption. Furthermore, the CO2 emissions from industry accounted for 36% of to-
tal global CO2 emissions in 2017 [7]. As for the economic aspect, energy-use during the
production can be improved by two measures: technological and organizational [8]. Tech-
nological improvements are usually associated with large-scale investments, because of the
high cost of development and machines. On the other hand, organizational measures can
improve energy efficiency at a low cost; one example of such a measure would be the
poduction scheduling.

In 2016, an extensive review of energy-efficient scheduling in manufacturing companies
was published [3]. In total, authors categorized 87 relevant articles, which were published
between 1990 and 2015. The study shows that (i) the number of published papers on
the energy-efficient scheduling and sustainable manufacturing has been increasing and
(ii) the energy savings up to tens of percents can be achieved. The primary focus of the
researchers is on the flow-shop problems, however, 15 surveyed papers studied the problem

2

Prologue Introduction

with parallel machines.

One of the first works analysing under-utilized resources and considering machine modes
to minimize a total energy consumption was [4]. Authors provided a detailed performance
analysis indicating that large quantities of energy are consumed by non-bottleneck ma-
chines during their idle times. Authors also proposed a multi-objective Integer Linear
Programming model optimizing weighted total completion time and energy consumption.
However, it was assumed, that jobs are processed in the order of their arrival, which makes
the model significantly easier to solve.

Mitra et al. [5] have been studying the minimization of operating expenses under time-
dependent electricity pricing (TOU) for continuous production planning. Their research
was inspired by real-world scheduling for cement plants. Problem studied in this thesis
is a bit different as time-dependent prices and continuous production are not taken into
account. Instead, individual jobs with processing times depending on a machine-mode are
scheduled here.

Shrouf et al. [9] proposed a mathematical model (and a heuristic algorithm) to minimize
energy consumption for a single machine production scheduling. Again, variable prices
were assumed. Contrary to [4], no assumptions about the order of the jobs were given.
Their work was directly extended by [10], who modelled a job shop production system
(parallel machines) minimizing energy with flexible energy prices.

The optimal solutions of both to the previously mentioned works are based on time-indexed
Linear Integer Programming models, which can optimally solve only small instances in a
reasonable time. Furthermore, authors assume only several modes, such as off, standby, on,
ramp-up and ramp-down. Contrary to that, one of the aims of this thesis is to formulate an
efficient and universal model, meaning that multiple modes and transitions between them
can be defined and that the model will work reasonably well even for larger instances.

Gong et al. [11] extensively studied a single-resource scheduling problem. They use a
finite state automaton (FSM) to describe a state of a resource. However, authors propose
only three types of machine operations, namely immediately start next job, stay idle and
turn off.

The problem studied here, i.e., the parallel-machine scheduling with mode-dependent pro-
cessing times, is similar to a dynamic voltage scaling in embedded systems [12]. In their
setting, there are multiple frequencies of the processor and the jobs (tasks to be processed)
have different processing time for each such a frequency. But since the schedules in the
embedded systems are usually event-triggered and transition times between two operat-
ing frequencies are negligible, the research cannot be directly applied to the production
process.

For clarity, selected authors working on the energy optimization scheduling problems are
also listed in Table 1.1. Many more works have been published on energy optimization
for parallel-machine scheduling; however, to the best of my knowledge, none of them

3

Prologue Outline

explicitly models machine-modes and transitions between them using more modes than
just processing and idle.

1.1.3 Contribution

A problem of scheduling jobs on multi-mode, parallel, identical machines while optimizing
energy consumption is described in detail. Furthermore, exact algorithms for the problem-
solving are proposed in this work. Specifically, two approaches are described; the first one
uses the global model, solving the problem as it is, while the second one is based on a
decomposition technique, designed to get rid of the symmetries arising from the inter-
changeability of the machines. Moreover, two model formulations are compared – one
based on the Integer Linear Programming (MILP) and the other one based on the Con-
straint Programming (CP). The algorithms are tested on randomly-generated benchmark
instances and compared with a reference model adopted from the literature.

1.2 Outline

The main text is divided into three parts. The problem is formally defined in a chapter
named Theoretical background. In that chapter, techniques of MILP solving are briefly
introduced too, as well as the principles of Dantzig-Wolfe decomposition. The second
part, named Models, contains descriptions of all used models, specifically the global models
(MILP and CP), the decomposed models and a reference model. Finally, three experiments
are described in the last chapter, and their results are discussed in detail.

4

Prologue Outline

Author(s) Year Modes Parallel Note
Boukas et al. [13] 1991 7 3 a non-optimal approach minimizing

due date of the energy-constrained
production schedule

Mouzon et al. [4] 2007 3 7 analysis and one of the first sys-
tematic attempts to save energy by
scheduling under-utilized resources

Mitra et al. [5] 2012 3 3 an industrial case study and an
optimal solution (MILP) to a
continuous-production problem

Moon et al. [14] 2013 7 3 a genetic algorithm for the non-
optimal solution of a multi-objective
optimization problem with 3 rates of
energy prices

Fang et Lin [12] 2013 3 3 an optimal MILP model and a non-
optimal particle-swarm optimiza-
tion algorithm for weighted tardi-
ness/cost problem; dynamic voltage
scaling for embedded systems with
negligible transition times

Artigues et al. [15] 2013 7 3 a hybrid non-optimal MILP/CP al-
gorithm; processing times of jobs
depend on the power input

Shrouf et al. [9] 2014 3 7 an optimal MILP model for a single
machine problem with TOU pricing

Selmair et al. [10] 2016 3 3 a time-indexed MILP model for a
job-shop problem with several states
of the resources

Gong et al. [11] 2016 3 7 a FSM is used for modes mod-
elling, but possible transitions be-
tween modes are limited to only sev-
eral options

Che et al. [16] 2017 7 3 a MILP model and a two-stage
heuristic for an unrelated-parallel-
machine problem with TOU pricing
scheme

Table 1.1: Selected authors working on the energy optimization scheduling listed in chrono-
logical order; column Modes indicates whether machine modes were modelled, column
Parallel indicates whether parallel resources were used

5

2 Theoretical background

2.1 Problem statement

Being inspired by the two production processes, the problem statement is formulated as
follows: scheduling jobs on identical, parallel machines, where each job is characterized by
its release time, deadline and processing time(s). In some production processes, machines
operating in a power-saving mode can still process material at the cost of longer processing
time. In order to take this into consideration, it is assumed that the processing time of a
job is dependent on the mode in which a machine is operating. The objective is to find a
schedule of the jobs and a schedule of the machines, i.e., switching between their modes,
such that the total energy consumption (cost) is minimized.

This high-level description is formalized in the following paragraphs. Note, that domains
of several parameters, such as processing times, will be integral, not real-valued. That
is because real production scheduling problems are usually discretized (by minutes, 15-
minutes intervals, hours or even days – depending on an application area).

2.1.1 Resources

Let M = {1, 2, . . . ,M} be a set of parallel, identical machines. Each of these machines
operates on a finite, directed transition graph G = (V, E), where V = {1, 2, . . . , V } is a set
of its vertices and E ⊆ V × V is a set of its edges. The vertices correspond to the possible
modes of a machine, while the edges correspond to the transitions between these modes. If
there is no edge between two vertices v, v′, it means that the immediate transition between
modes v and v′ is not possible. There are two special vertices vinit ∈ V and vterm ∈ V
representing the initial mode and the terminal mode of the machines, respectively.

As a transition from mode v to mode v′ may take some time, transition time is defined
as tv,v′ ∈ N0 ∪ {∞}, where tv,v′ = ∞ means, that the transition between v and v′ is
not possible (no edge in the transition graph). A machine is not operational during the
transition, yet it may still consume energy. Therefore transition cost cv,v′ ∈ R+

0 ∪ {∞} is
defined. A machine starts operating in mode v′ immediately after the transition from v

to v′ is completed.

While a machine is operating in mode v ∈ V, it demands constant power wv ∈ R+
0 . If it

is operating in some mode v for total time t, operating cost is computed as wv · t.

6

Theoretical background Problem statement

Sometimes, it is not desirable to spend too much time in a mode, usually because of
the used technology (the machine could overheat or have some other technical issues).
Similarly, spending too little time in a mode could be technologically infeasible or simply
unprofitable. So tmin

v ∈ N0 and tmax
v ∈ N0 are defined to model a minimal and a maximal

time for which mode v can be operating continuously. It means that at most after tmax
v

time units are spent in mode v, a transition to a different mode has to occur (or scheduling
horizon has to be reached) and similarly before tmin

v time units are spent in mode v, no
transition can occur. The maximal number of transitions that can happen on a single
machine during a scheduling horizon is limited by constant (imax − 1) ∈ N, where imax

corresponds to the maximal length of a single scheduling profile, see Section 2.1.3; denoting
I = {1, . . . , imax}. This limitation is introduced because of the technological reasons, as
an extensive switching between the individual modes could damage the machine.

2.1.2 Jobs

Let J = {1, 2, . . . , J} be a set of jobs. Each job has to be processed on some machine
within the scheduling horizon h ∈ N. Once the processing starts, it cannot be preempted.
Each machine can process at most one job at a time and it cannot change its working
mode while processing. Jobs cannot be processed on a machine during the time of its
transition from one mode to another.

A processing time of job j ∈ J depends on the mode v ∈ V, in which the assigned machine
operates while processing the job. It is denoted as pj,v ∈ N0 ∪ {∞}. If pj,v =∞ for some
job j and mode v, it means that job j cannot be processed while the assigned machine is
operating in mode v. Each job j ∈ J also has a release time and a deadline, denoted as
rj ∈ N0 and dj ∈ N0, respectively. These form a time window within which the job has to
be processed.

2.1.3 Solution

A solution consists of a schedule of the jobs and a schedule of the machine modes. For-
mally, it is a tuple (a, s,π1, . . . ,πM , t

mode
1 , . . . , tmode

M), where a : J → M is a function
representing the job assignment to the machines, s : J → {0, 1, . . . ,h} is a function map-
ping jobs onto their start times, πm ∈

⋃
l∈{1,2,...,imax} V

l is a profile of machine m ∈M and
tmode
m ∈ N|πm|

0 are the operating times of machine m.

Profile πm is a finite sequence of the modes which is followed by machinem in the solution;
its length is denoted by |πm|. It represents only the transitions between modes; operating
times of the modes on machine m are captured by tmode

m . Symbol πm,i is used to address
i-th mode on m-th machine. The time spent in this mode is denoted as tmode

m,i .

A feasible solution is a solution, which respects restrictions defined above in sections
2.1.1 and 2.1.2 (such as that jobs do not overlap on a single resource, a machine can not

7

Theoretical background Problem statement

change its mode while processing some job, etc.). Furthermore, schedules of the individual
machines should cover the whole scheduling horizon – the first mode has to start at time
0 while the last one has to end at time h, and the sum of all operating times plus the sum
of all transition times must be equal to h for each resource m, i.e.

|πm|−1∑
i=1

tπm,i,πm,i+1 +
|πm|∑
i=1

tmode
m,i = h ,∀m ∈M. (2.1)

In addition, all the profiles have to start with the initial mode vinit and end with the
terminal mode vterm. Thanks to this, one can have control over the initial and terminal
state of the machines.

2.1.4 Objective

A goal of this scheduling problem is to find a schedule minimizing the total cost (energy
consumption), i.e., the sum of transition costs and operating costs computed over all
machines

∑
m∈M

|πm|−1∑
i=1

cπm,i,πm,i+1 +
|πm|∑
i=1

wπm,i · tmode
m,i

 . (2.2)

An optimal solution to this scheduling problem is such a feasible solution that minimizes
the total cost (2.2).

2.1.5 Example

The problem statement above may seem heavy in notation. However, all of the constraints
and requirements are natural for the production scheduling problems. An example is
described here to illustrate the problem and its solution. Note, that all parameters are
simple, selected specially for illustration purposes.

Let us assume there are 2 parallel, identical machines,M = {1, 2}. Their operating modes
are depicted in Figure 2.1. Let us have 4 jobs to be scheduled, J = {1, 2, 3, 4}. Their
release times, deadlines and processing times are given by Table 2.1.

The initial and terminal mode is mode 1, which has zero power consumption, representing
a state, in which a machine is turned off. Mode 4 represents standby mode. If a machine
is operating in this mode, no job can be processed, but the machine is not turned off,
so it will be faster to resume the production while saving some energy by lowering the
consumed power. Modes 2 and 3 are processing modes, i.e., modes in which the jobs will
be processed. Note that because there are no edges between mode 1 and 4 in the transition
graph, immediate transitions between these two modes are prohibited.

8

Theoretical background Problem statement

v tmin
v tmax

v wv
1 0 ∞ 0
2 0 10 10
3 0 ∞ 8
4 5 ∞ 5

1 2 3 4
1 ∞ 6/8 4/6 ∞
2 15/0 ∞ ∞ 3/0
3 10/0 ∞ ∞ 2/0
4 ∞ 3/6 2/4 ∞

1

2

3

4

6/8

15/0

3/0

3/6

4/6

10/0

2/0

2/4

(a) (b) (c)

Figure 2.1: Description of the example transition graph: (a) modes v ∈ V and their
parameters, (b) transition time / transition cost and (c) graph visualization

j rj dj pj,1 pj,2 pj,3 pj,4

1 6 20 ∞ 5 ∞ ∞
2 8 30 ∞ 7 ∞ ∞
3 18 35 ∞ ∞ 10 ∞
4 30 50 ∞ ∞ 12 ∞

Table 2.1: Jobs j ∈ J and their parameters

The length of the scheduling horizon is h = 65, and the schedule must have at most four
transitions, imax = 5. One example of a feasible solution is shown in Figure 2.2. The total
cost of this solution is

(5 · w2 + 39 · w1)︸ ︷︷ ︸
oper1

+ (c1,2 + c2,1)︸ ︷︷ ︸
trans1

+ (2 · w1 + 7 · w2 + 5 · w4 + 22 · w3 + 8 · w1)︸ ︷︷ ︸
oper2

+ (c1,2 + c2,4 + c4,3 + c3,1)︸ ︷︷ ︸
trans2

,

which is exactly the sum of the total operating cost oper1 and transition cost trans1 of
the first machine plus the operating cost oper2 and transition cost trans2 of the second
machine. Note that this feasible solution is optimal. Jobs 1 and 2 cannot be processed
immediately one after another, because there is a limit tmax

2 = 10.

The solution depicted by Figure 2.2 is characterized by tuple (a, s,π1,π2, t
mode
1 , tmode

2),

1

2 jobs
modes

jobs
modes 2

6 11

1
26

1

1
2

2
8 15

4
18 23

3
25 47

1
57

2 3 4
35

h0

Figure 2.2: Example solution – jobs and modes assignment to the resources

9

Theoretical background Complexity

j a(j) s(j)
1 1 6
2 2 8
3 2 25
4 2 35

Table 2.2: Assignments a(j) and start times s(j) of individual jobs j

where functions a, s are described by Table 2.2 and π1 = (1, 2, 1), π2 = (1, 2, 4, 3, 1),
tmode

1 = (0, 5, 39), tmode
2 = (2, 7, 5, 22, 8).

2.2 Complexity

It is easy to show, that the standard problem 1 | rj , d̃j | Cmax (minimization of the schedule
length for a problem with monoprocessor and jobs characterized by release times, deadlines
and processing times), can be polynomially transformed to the problem defined here. The
trick is to use a transition graph shown in Figure 2.3 and to set vinit = proc, vterm = off,
imax = 2, h = maxj d̃j . Furthermore, jobs are allowed to be processed only in vproc; the
original release times, deadlines and processing times remain the same. The total cost is
minimized, which can be written as (2.3).

minimize
tproc, toff

tproc · wproc︸ ︷︷ ︸
1

+ tproc,off︸ ︷︷ ︸
0

+ toff · woff︸ ︷︷ ︸
0

= minimize tproc (2.3)

So the minimization of the total cost reduces to a minimization of the time spent in the
processing mode. The part of an optimal schedule corresponding to the processing mode
directly represents the solution to 1 | rj , d̃j | Cmax. The processing mode has to start at
time 0, and so minimization of tproc corresponds to minimization of Cmax.

This was for the optimization problems. Of course, it would be very similar for their
decision variants. It was proven, that 1 | rj , d̃j | Cmax is strongly NP-hard (by reduction
from 3-partition problem, which is NP-complete [17]), and so the problem studied here
is also NP-hard.

proc offwproc = 1 woff = 0

tmin
proc = 0 tmin

off = 0

tmax
proc = h tmax

off = h

0/0

Figure 2.3: Transition graph used for the polynomial reduction

10

Theoretical background Brief introduction to LP/MILP solution approaches

2.3 Brief introduction to LP/MILP solution approaches

In this section, basic terminology used in the field of mathematical (specifically linear)
programming is defined. Some classical solution approaches are also briefly described
together with a decomposition principle, which is often used to improve (make faster) the
solving process of structured linear programs.

Inspiration came from several sources: Gerald Gamrath describes a branch-and-price al-
gorithm in detail in his diploma thesis [18], the algorithm and its application are also
described in the tutorial [19]. Some parts of this section are inspired by [20] (mainly
the overview of branch-and-price) and by [21] (branch-and-bound procedure and cutting
planes technique). Details about Dantzig-Wolfe decomposition and its connection to the
column generation approaches can be found in [22, 23], among others.

Note that notation used in this section is unrelated to the notation established in Sec-
tion 2.1. For example, symbol j can be used as a generic index; it does not represent a
job. It is because a general notation in this section is not directly related to the problem
and it would become over-complicated if new symbols were used. Also note, that expres-
sion x ≥ 0 is used with the interpretation all elements of vector x are non-negative.

2.3.1 Overview

Linear Program

A linear program (LP) is an optimization problem that minimizes (or maximizes) a linear
objective function constrained by a set of linear inequalities. Formally, a linear program
can be written in the form

minimize cTx

subject to Ax ≥ b,
x ≥ 0,

(2.4)

where A ∈ R(m×n), b ∈ Rm, c ∈ Rn, x ∈ Rn, n ∈ N, m ∈ N. A set of solutions to a
linear program (2.4) is called a polyhedron, i.e., {x ∈ Rn | Ax ≥ b, x ≥ 0}.

Note that multiple similar formulations of the LP problem can be seen in the literature; for
example maximization problems, problems with equalities or problems with unbounded
vector x. However, all of these formulations are equivalent to (2.4) in the sense that
one can be easily translated to the other one while preserving the objective value of the
optimal solution. For example, max cTx can be transformed to min−cTx, equality ax = b

(a being a row vector of matrix A) can be split into two inequalities ax ≤ b and ax ≥ b

(which is the same as −ax ≤ −b), etc. For further details see, e.g., [24].

11

Theoretical background Brief introduction to LP/MILP solution approaches

There exist multiple methods for solving the linear programming problems. The ellipsoid
method [25] and the interior point method [26] are two examples of methods with a polyno-
mial time-complexity. The simplex method [27], which has an exponential time-complexity
in general, is also often used because it works very well for the practical problems.

Mixed Integer Linear Program

The formulation of a mixed integer linear program (MILP) is very similar to (2.4). Prac-
tically, the only difference to LP is that for MILP there exists a non-empty set of indices
I ⊆ {1, . . . , n}, where n corresponds to a number of variables in the MILP problem, such
that variables associated with those indices are integral, i.e., xi ∈ Z, ∀i ∈ I.

Whereas the formulation is very similar, the complexity is not. Adding integrality con-
straints makes the problem significantly harder to solve; MILP is NP-hard [28].

Two examples of methods used for solving MILP problems are branch-and-bound [29] and
general cutting planes method [30]. A branch-and-bound works as follows: by removing
the integrality restrictions from the original MILP formulation, so-called linear program-
ming relaxation is obtained. If its optimal solution satisfies all of the original integrality
restrictions, then it is also an optimal solution to the original MILP problem. Otherwise,
branching is performed on some variable x, which should be integral in the original MILP
problem, but is fractional in the relaxed solution x∗. Usually, two branches are created,
imposing constraints x ≤ bx∗c and x ≥ dx∗e, respectively. This way, two more-restricted
MILP are created; if both are solved, then the better of the two solutions is also an optimal
solution to the original problem. This branching idea is applied recursively; Figure 2.4
provides an illustration of the procedure. The best-so-far integer solution found during
branching is usually called an incumbent solution. Its objective value can be used to prune
branches whose optimal relaxed objective value is worse.

General cutting planes method is also trying to eliminate fractional solutions, thus im-
proving the relaxation. However, instead of creating new sub-problems (like in the branch-
and-bound), it is done during the solution process itself. The idea is that linear inequality,
called cut, is added to separate the fractional optimum of the relaxed problem from the
convex hull of the true feasible set. An illustration is provided in Figure 2.5.

In practice, a branch-and-bound procedure is often integrated with a cutting planes
method, together forming so-called branch-and-cut method – the cutting planes are used
to tighten the linear relaxations during the branch-and-bound procedure.

12

Theoretical background Brief introduction to LP/MILP solution approaches

Objective
Feasible integer solution
Optimal relaxed solution

y

x0

1

2

3

4

1 2 3 4

objective

x ≤ 1 x ≥ 2
y

x0

1

2

3

4

1 2 3 4

objective

y ≤ 2 y ≥ 3
infeasible

y

x0

1

2

3

4

1 2 3 4

objective

y ≤ 3 y ≥ 4
infeasibley

x0

1

2

3

4

1 2 3 4

objective
y

x0

1

2

3

4

1 2 3 4

objective

...

Figure 2.4: Illustration of a branching procedure for MILP solving

13

Theoretical background Brief introduction to LP/MILP solution approaches

objective
cutting plane
relaxed sol.
integer sol.
convex hull

y

x

objective

Figure 2.5: An example of two possible cutting planes separating the fractional solution
of the relaxed problem from the convex hull of the MILP feasible solutions

2.3.2 Dantzig-Wolfe decomposition

Various decomposition/reformulation approaches are often used on integer programs to
obtain strong(er) relaxation or to reduce symmetries. Dynamic addition of variables (i.e.
columns) or constraints (cutting planes) is usually part of these approaches. Dantzig and
Wolfe [22] studied structured linear problems, which they decomposed into smaller linear
programs, whose solutions were obtained through a generalized simplex method. Their
work was pioneering (core ideas were published in the 1960s) and strongly influenced
the whole field of study. Some of their ideas will be briefly described in the following
paragraphs.

Original problem

Let us assume a linear program (2.5) with a structure illustrated in Figure 2.6. Its matrix
is block-angular and consists of connecting constraints and independent constraints. Con-
necting constraints bind the columns together whereas independent constraints describe
individual sub-problems. In the area of parallel-machine scheduling, independent con-
straints could describe the behaviour of individual machines, while connecting constraints
would, for example, limit the number of machines allowed to operate simultaneously.

minimize
x1,...,xn

n∑
j=1

cTj xj

subject to
n∑
j=1

Ajxj ≥ b,

Bjxj ≥ bj , ∀j ∈ {1, . . . , n}

xj ≥ 0, ∀j ∈ {1, . . . , n},

(2.5)

14

Theoretical background Brief introduction to LP/MILP solution approaches

A1 A2 · · · An

c1 c2 · · · cn

x1 x2 · · · xn

B1

B2

. . .

Bn

b

b1

b2

...
bn

variable vectors

objective vectors

connecting constraints

independent constraints

0

0

Figure 2.6: An illustration of desired matrix structure for the Dantzig-Wolfe decomposition

Dantzig and Wolfe followed the idea, that independent constraints are altogether of sec-
ondary importance and should be studied mainly through the restrictions they impose on
the connecting constraints. For the simplicity, let us assume that polyhedron

Sj = {xj | Bjxj ≥ b, xj ≥ 0} (2.6)

is bounded (i.e. polytope) for each j. The general case is further discussed in [31]. Now,
the original problem (2.5) can be reformulated to a master problem.

Master problem

Let us denote a set of all extreme points of the convex polyhedron Sj by

Wj = {xj,1, . . . ,xj,Kj}. (2.7)

Let us also define substitutions

pj,k = Ajxj,k, (2.8)

cj,k = cTj xj,k, (2.9)

for all j in {1, . . . , n} and k in {1, . . . ,Kj}. Now, the extremal program (also called master
problem) can be formulated as (2.10).

15

Theoretical background Brief introduction to LP/MILP solution approaches

α1,1 · · · α1,K1 α2,1 · · · α2,K2 · · · αn,1 · · · αn,Kn

c1,1 · · · c1,K1 c2,1 · · · c2,K2 · · · cn,1 · · · cn,Kn

p1,1 · · · p1,K1 p2,1 · · · p2,K2 · · · pn,1 · · · pn,Kn

1 · · · 1

1 · · · 1

. . .

1 · · · 1

b

1

1

...

1

πp

π1

π2

...
πn

prices

0

0

Figure 2.7: Structure of the master problem

minimize
α

∑
j,k

cj,k · αj,k

subject to
∑
j,k

pj,k · αj,k ≥ b,

Kj∑
k=1

αj,k = 1, ∀j ∈ {1, . . . , n},

αj,k ≥ 0, ∀j ∈ {1, . . . , n}, ∀k ∈ {1, . . . ,Kj},

(2.10)

where variables (α1,1, . . . , α1,K1 , . . . , αn,1, . . . , αn,Kn) = α are in fact the coefficients of
convex combinations of an individual points of Wj . Structure of the problem can be seen
in Figure 2.7. Dantzig and Wolfe pointed out, that if a solution of (2.10) could be obtained,
it could be simply transformed to a solution of the original problem (2.5). Indeed, any
point xj of Sj (bounded convex polyhedral set) can be written as a convex combination
of its extreme points [32], i.e.,

∑
k
xj,k · αj,k, where

∑
k
αj,k = 1, αj,k ≥ 0 ∀j, k. Expanding

the objective and the first set of constraints of (2.10), we get

∑
j

∑
k

cj,k · αj,k =
∑
j

∑
k

cTj · xj,k · αj,k =
∑
j

cTj
∑
k

(xj,k · αj,k)︸ ︷︷ ︸
some xj∈Sj

, (2.11)

∑
j

∑
k

pj,k · αj,k =
∑
j

∑
k

Ajxj,k · αj,k =
∑
j

Aj

∑
k

(xj,k · αj,k)︸ ︷︷ ︸
some xj∈Sj

. (2.12)

Now, it is easy to see, that problems (2.5) and (2.10) are nearly the same. Finding the opti-
mal vector xj can be done by finding the convex combination coefficients in the respective

16

Theoretical background Brief introduction to LP/MILP solution approaches

polyhedron Sj . The only practical difference is that the numbers of variables/constraints
differ. The connecting constraints are present in both models, but the independent con-
straints of the original formulation (2.5) were replaced by n constraints of type

∑
k
αj,k = 1.

This could lead to a considerable reduction if the number of independent constraints was
large compared to the number of individual sub-problems n. However, the number of
variables increased significantly as the number of extreme points of a polyhedron is, in
general, exponential with respect to the input size of the problem. Therefore, the dis-
cussed decomposition would not help much if it was not possible to reduce the number of
variables of the master problem. Fortunately, the reduction can be achieved by a column
generation technique.

Column generation

To deal with a large number of columns of the master problem, the idea is to include only
their subset R, thus forming a restricted master problem (RMP). Columns are generated
iteratively by solving pricing problems. To decide, whether a column should be included
or not, dual variables π = (πp, π1, . . . , πn) of the current solution are used. Reduced cost
of column (j, k) is defined as

cj,k − πTp pj,k − πj , (2.13)

which is a difference of coefficient cj,k and a scalar product of the price vector and the
(j, k)-th column. Expanding the expression (2.13), we get

cj,k − πTp pj,k − πj = cTj xj,k − πTpAjxj,k − πj

=
(
cTj − πTpAj

)
xj,k − πj ,

(2.14)

therefore, the pricing problem can be stated as follows

min
{(
cTj − πTpAj

)
xj − πj | xj ∈ Sj

}
, j = 1, . . . , n. (2.15)

For a minimization problem, a column has a potential to improve the current solution of
the restricted master problem, if its reduced cost is negative [31]. As there are n individual
sub-problems, pricing problem (2.15) is solved for each of them separately. If the minimum
is negative (and finite), the optimal solution is an extreme point and a new variable with
a column corresponding to this optimal extreme point is added to the restricted master
problem. An optimal solution to the restricted master problem is found when no minimum
in (2.15) is negative.

17

Theoretical background Brief introduction to LP/MILP solution approaches

Note that for simplicity, we assumed that Sj are bounded. For an unbounded case, it may
happen that solution to the pricing problem would be minus infinity. This can be handled,
but the formulation would become slightly (but not much) more complicated; see, e.g.,
[33].

In this section, the decomposition was used on the linear programs, however, in combina-
tion with a branch-and-bound procedure it can be used to solve the integer programs too.
The integration of a column-generation and branch-and-bound is often called branch-and-
price (referencing the pricing problems) and is described in Section 2.3.4.

2.3.3 Lagrangian relaxation

In the last section, Dantzig-Wolfe decomposition technique was used to simplify the orig-
inal model. It keeps connecting constraints in the master problem while exploiting the
structure in the sub-problems. On the other hand, Lagrangian relaxation can be used to
relax connecting constraints

∑
jAjxj ≥ b by penalizing their violation in the objective

function. Let us simplify the notation by rewriting
∑
jAjxj ≥ b simply to Ax ≥ b and

similarly
∑
j
cTj xj to cTx. Now, the Lagrangian sub-problem can be written as

L(λ) = min
x
cTx− λT (Ax− b) , (2.16)

where x = (x1, . . . ,xn), xj ∈ Sj , ∀j ∈ {1, . . . , n} and λ ≥ 0. Vector λ penalizes violations
of relaxed constraints. For fixed λ̄, Lagrangian sub-problem gives a lower bound to the
original problem (2.5), i.e.,

cT x̄ ≥ cT x̄− λ̄T (Ax̄− b) ≥ cT x̂− λ̄T (Ax̂− b), (2.17)

where x̄ is the optimal solution to the original problem and x̂ is the optimal solution to
the Lagrangian relaxation (2.16). The first inequality holds because x̄ is feasible to the
original problem (Ax̄−b ≥ 0) and the second one holds because x̂ is the optimal solution
to the Lagrangian sub-problem.

Seeing that Lagrangian sub-problem provides a lower bound to the original problem, one
step further can be done – the lower bound can be tightened as much as possible by solving
a Lagrangian dual problem

max
λ

L(λ), s.t. λ ≥ 0. (2.18)

It has been proven, that Lagrangian relaxation and Dantzig-Wolfe decomposition are
tightly connected together. In fact, when relaxing exactly the linking constraints of the
original problem, the optimal values to the Lagrangian dual and LP relaxation of the

18

Theoretical background Brief introduction to LP/MILP solution approaches

Dantzig-Wolfe decomposition are the same and one formulation is the dual of the other
one [34]. Moreover, the optimal dual variables π for the linking constraints in the master
problem correspond to the optimal multipliers λ [35]. While in the column generation, the
values of π are obtained by solving the LP relaxation of the RMP, in the Lagrangian relax-
ation, the multipliers are usually updated by sub-gradient methods [36]. Both approaches
have advantages and disadvantages; some of them are mentioned in [36].

Even though the Lagrangian relaxation is not used in this work, it provides a different
perspective and solution approach; therefore it was briefly mentioned to widen the context
and show the connections.

2.3.4 Branch and price

In this section, several comments on main parts of the branch-and-price algorithm are
given. Further details can be found in [19, 23, 33].

Branch-and-price is an algorithm which integrates the branch-and-bound procedure and
column generation techniques to solve large-scale/hard integer programs. At first, the
original problem needs to be decomposed into a master problem and a pricing problem.
At each node of the branch and bound tree, the restricted master problem is repeatedly
solved. Individual columns, identified by the pricing problem, are iteratively added to
RMP to ensure the optimality. If there is no column to add, integrality of the solution is
tested. If the solution is not integral, branching occurs and the process is repeated. The
whole procedure is illustrated in Figure 2.8.

Pricing

One of the important parts of the algorithm is a column generation, i.e., iterative solving
of the pricing problem and addition of the columns.

As described in Section 2.3.2, columns with negative reduced cost are iteratively generated.
The pricing problem, which is repeatedly solved, is problem specific and even though it is
simpler than the original problem (as it is only a single part of the whole decomposition),
it can still be hard to solve. Therefore, there is a reasonable question asking how to speed-
up solving of the pricing problem. One solution is straightforward – as any column with
a negative reduce cost has a potential to improve the current solution, the first one can
be used; meaning that there is no need to solve the pricing problem optimally. Heuristics
can be used to solve the pricing problem in a fast way and only if they do not find any
solution with a negative reduced cost, the optimal solver needs to be called.

To improve the performance even further, one can try to predict next reduced cost by a
prediction model trained on the previous iterations; the prediction provides an assumed
lower bound, which can speed-up the solving process of the pricing problem. Again, if no

19

Theoretical background Brief introduction to LP/MILP solution approaches

solution with a negative reduced cost is found, the optimal solver needs to be called. This
method was developed in [37] and authors claim significant improvements, up to 40% of
total solving time.

Branching

Another crucial part of the branch-and-price design is an integration of the branch-and-
bound procedure and a selection of the branching scheme.

A naive approach would be to select one of the fractional variables of the RMP and to
create two branches by rounding the solution up and down, respectively.; see Figure 2.4.
This, however, may not be the best choice, as the variables of the RMP have only weak
connections to the variables of the original problem and branching could lead to significant
changes of the pricing problem. Moreover, the branching tree could become unbalanced
sometimes [19]. Therefore other branching strategies, like those described in [18, 19, 38],
are often considered to improve the overall performance of the algorithm. Note, that
similarly to a branch-and-bound, some branches can be pruned out by the best-so-far
integer solution (found at the end of the column generation phase in some node), which
provides an upper bound to the solution.

Initialization

Usually, there are two problematic situations arising during the solution process, when the
RMP does not need to be feasible (even though the master problem is); the first one is
in the beginning, when no columns are generated, and the second one is after branching,
when some columns may be deleted due to the restrictions imposed by the branching
scheme. Heuristics can be used to find the initial set of columns. A good heuristic may
have a significant effect on the total solution time; however, it does not guarantee the
initial feasibility in general. One possible method how to deal with the problem is to
introduce artificial variables (relaxing the constraints of the RMP) with “big M” penalty
costs [39]. There are, of course, other possibilities, such as the Farkas pricing method
[33].

Further reading

The branch-and-price is a popular method to solve large MILP nowadays and so there are
many publications about the method. Authors describe various stabilization techniques
[33, 40, 41] as well as problem-specific improvements, e.g., [19, 42, 43]. A brief introduction
to various topics associated with a branch-and-price is provided, e.g., by [19, 33].

20

Theoretical background Brief introduction to LP/MILP solution approaches

1. Original problem

2. Master problem

3. Restricted master problem

4. Solve Linear Program-
ming relaxation of re-
stricted master problem

5. Get dual solutions and
solve the pricing problem

6. New columns generated?

7. Solution integral?

8. Solution infeasible?

9. Branch

10. Add new columns to the
restricted master problem

11. Return solution

12. Return no-solution

13. Return the best solution
out of all branch-solutions

Yes

No

Yes

No

Yes

No

ne
w

co
ns
tr
ai
nt
s
ar
e
ad

de
d,

ev
er
y
br
an

ch
is

so
lv
ed

Figure 2.8: Diagram of a branch-and-price algorithm

21

Theoretical background Constraint programming

2.4 Constraint programming

Constraint programming (CP) is an optimization technique used to find solutions to com-
binatorial optimization problems, such as scheduling problems, which may have numerous
feasible solutions. It has some similarities to mathematical programming approaches (LP,
MILP), but it utilizes different optimization approaches. Contrary to LP, which has a
strong theoretical ground in algebra, CP originated in a field of artificial intelligence and
strongly relies on graph theory and various search and propagation techniques.

Differences between CP and MILP

A CP model is described declaratively, using decision variables, constraints and an objec-
tive, which is minimized or maximized; that is similar to MILP. However, CP uses only
discrete decision variables (boolean or integral), whereas mathematical programming mod-
els can combine discrete and continuous variables. Constraints of a CP model can have
various forms – there are basically no limitations, as long as the propagation is fast. CP has
native support of non-linear costs and constraints, logical constraints, global constraints
(such as allDifferent constraint) and problem specific constraints. That is a huge difference
to LP and MILP, whose models can be constrained only by linear constraints.

Solution approach

Solution to a CP model is obtained constructively; values are assigned to variables, ex-
panding partial solutions to a complete solution. As soon as some constraint is violated,
it is useless to expand further; a backtracking procedure is employed to try other assign-
ments. This way, it is possible to try all of the assignments; however, that would be highly
inefficient. In order to reduce the search-space, various domain filtering techniques are
used. Once a first solution is found, the search proceeds to find further solutions with
better objective values.

References

Basics of CP and multiple search/propagation techniques can be found in the lectures of
Roman Barták [44]. A reader can find out more about applications, modelling concepts
and examples of state of the art IBM ILOG CP Optimizer in [45].

22

3 Models

In this chapter, individual models for the problem defined in Section 2.1 will be described.
In Section 3.1, the whole problem will be written as a single complex model, here called the
global model. Two formulation approaches (MILP and CP) will be used for comparison.
Afterwards, in Section 3.2, the global MILP model will be decomposed to a master problem
and a pricing problem. Again, MILP and CP models of the pricing problem will be created.
Finally, in Section 3.3, a reference model adapted from the literature will be established
in order to compare approaches proposed in this work with a state of the art model.

Note that the machine profiles can have different lengths – up to imax, but it is not desirable
to optimize over them all – in case of the global model, it would mean to try all possible
combinations of modes over all different lengths up to imax. That is surely not efficient.
To avoid that, a simple transformation of the transition graph can be done such that only
the profiles of length imax will be considered. The trick is to add a dummy mode with
zero power consumption, tmin

dummy = 0, tmax
dummy = h, connected to the terminal mode and

itself. The transitions will have a zero length and cost; therefore the dummy mode will not
affect the objective. As there won’t be any outgoing edge (except for the reflexive edge), a
machine would not be able to change its mode once entering the dummy mode. Thus, the
dummy mode will appear at the end of a profile (if scheduled). Optimal profiles with the
dummy mode would correspond to the profiles, whose length was smaller than imax for
the original transition graph. For illustration, the transformation of the example graph
from Section 2.1 is shown in Figure 3.1. A similar effect would be achieved by adding only
the reflexive edge to the terminal state, however, this way it would be simpler to add the
additional restrictions, such that some mode can appear only x-times in the profile of a
machine etc.

In the following sections, the term transition graph stands for the transition graph after
the transformation if not stated otherwise.

3.1 Global models

Two models, representing two different formulation approaches, will be described in this
section. Both models will capture the whole problem, including all of the restrictions.
The first formulation will be based on MILP while the second one will be written as a
CP problem. Both of the frameworks (MILP, CP) are widely used [3]; mainly because
they can describe many real-life problems as it is usually easy to formulate all kinds of

23

Models Global models

1

2

3

4

6/8

15/0

3/0

3/6

4/6

10/0

2/0

2/4

1

2

3

4dummy

6/8

12/0

3/0

3/6

4/6

8/0

2/0

2/4

0/0

0/0

(a) (b)

Figure 3.1: Example of a transition graph transformation: (a) the original graph, (b) the
transformed graph

constraints. In combination with the state of the art solvers, such as Gurobi, CPLEX or
ILOG CP solver, they are very powerful (and often easy to use) and should be considered
as the first solution approach.

The main idea behind the formulations is to explicitly model intervals i, which represent
the individual modes – together forming a profile of each machine. Each interval will
be characterized by its start time and length, and the individual intervals will be linked
together by a set of constraints so that they form a feasible profile (starting with vinit,
ending with vterm, satisfying restrictions given by the transition graph, . . .). Jobs will be
characterized by their start time and their assignment to a machine. A set of constraints
will link a job with its assigned machine such that the assignment is feasible (satisfying
all of the requirements defined in Section 2.1).

An assignment, together with a machine profile, operating times and start time of the
job, directly influence the processing time of the job – this is the hard part because the
processing time depends on the mode of a machine, which is determined by the profile
and operating times, but those are optimized. In general, the processing time of the job
in the optimal schedule is not known a priory.

24

Models Global models

3.1.1 MILP model

Two basic types of variables (integer and continuous) are used in MILP models. They are
linked together by a set of linear inequalities (constraints). A linear objective is formed to
specify qualities of the solution that are being looked for.

A global MILP model will be described in the following way – firstly, used variables will
be listed, and their meaning will be explained; secondly, individual constraints will be
formed, reflecting the restrictions of the problem; at last, the optimization objective will
be given, concluding the description.

Variables

There are four types of binary variables used in the model: xm,i,v, zm,i,v,v′ , yj,m,i,v and
aj,j′ ; other two types of variables, sj and pm,i,v, are integral. An interpretation of the
individual variables is following:

xm,i,v =

1 if machine m operates in mode v during interval i,

0 otherwise,

zm,i,v,v′ =

1 if machine m changes its mode from v to v′ between

intervals i and (i+ 1),
0 otherwise,

yj,m,i,v =

1 if job j is processed by machine m in mode v during

interval i,
0 otherwise,

aj,j′ =

1 if job j is processed before job j′ (if both are assigned

to the same machine),
0 otherwise,

sj . . . start time of job j,

pm,i,v . . . time, which machine m spent in mode v during interval i.

Variables sj and pm,i,v could also be defined as continuous variables, but it is assumed that
the scheduling horizon is discretized – it allows scheduling by minutes, hours or even days
(depending on the application) and it also prevents some of the numerical issues.

Besides the variables defined above, an alias sm,i is used to represent the start time of i-th
interval on machine m. It can be expressed as

25

Models Global models

∀m : sm,i =

0 if i = 1,

sm,i−1 +
V∑
v=1

pm,i−1,v +
V∑
v=1

V∑
v′=1

zm,i−1,v,v′ · tv,v′ if i > 1.
(3.1)

The recursive definition (3.1) states that the first interval starts at time 0 and the i-th
interval starts just after the transition from the previous one is finished (summing the
start time and processing time of the (i − 1)-th interval together with the correspond-
ing transition time). The constraints (3.4) to (3.6) will ensure that pm,i,v will have at
most one non-zero value over v for all m and i. Similarly, only one transition between
modes will be possible for given i,m, therefore only the appropriate transition time will
be added. The expression sm,i is linear and its unexpanded form will be used to simplify
the notation.

Constraints

At first, let’s describe the machines and their modes. The schedule needs to start with
the initial mode vinit and end with the terminal mode vterm or dummy mode vdummy for
each machine m. These can be written simply as (3.2) and (3.3), respectively. Of course,
exactly one mode at a time has to be active, which leads us to (3.4). Time spent in each
mode v ∈ V is restricted by tmin

v (3.5) and tmax
v (3.6) and the last interval has to end at h

(3.7).

xm,1,vinit = 1, ∀m ∈M, (3.2)

xm,imax,vterm + xm,imax,vdummy = 1, ∀m ∈M, (3.3)∑
v∈V

xm,i,v = 1, ∀m ∈M, ∀i ∈ I, (3.4)

tmin
v · xm,i,v ≤ pm,i,v, ∀m ∈M, ∀i ∈ I, ∀v ∈ V, (3.5)

tmax
v · xm,i,v ≥ pm,i,v, ∀m ∈M, ∀i ∈ I, ∀v ∈ V, (3.6)

sm,imax +
∑
v∈V

pm,imax,v = h, ∀m ∈M. (3.7)

Note, that constraints (3.5) and (3.6) force pm,i,v to zero if xm,i,v = 0, which is for all
but one mode for each m ∈ M, v ∈ V. Therefore,

∑
v pm,i,v gives exactly the time, which

machine m spends on interval i.

Only valid transitions between modes can occur in the schedule, so if machine m operates
in mode v during interval i then it has to operate in mode v′ during interval (i+ 1) such
that v′ ∈ Next(v) = {v′ ∈ V | ∃e ∈ E s.t. e = (v, v′)}. Similarly, it can be written as
v ∈ Prev(v′) = {v ∈ V | ∃e ∈ E s.t. e = (v, v′)}. It means that two modes can follow one
after other only if there is a transition between these modes in the transition graph. In a
form of constraint, it can be expressed as (3.8) or (3.9), respectively.

26

Models Global models

What remains is to link variables xm,i,v with variables zm,i,v,v′ . It can be done by two
types of constraints: one, (3.10), makes zm,i,v,v′ equal to 1 if there are modes v and v′

scheduled on machine m during interval i and (i+ 1), respectively. The other one, (3.11),
makes sure that zm,i,v,v′ is zero otherwise, i.e., only one zm,i,·,· is set to 1 for each machine
m and interval i.

xm,i,v ≤
∑

v′∈Next(v)

xm,i+1,v′ , ∀m ∈M, i ∈ {1, . . . , imax − 1}, (3.8)

xm,i,v′ ≤
∑

v∈Prev(v′)

xm,i−1,v, ∀m ∈M, i ∈ {2, . . . , imax}, (3.9)

xm,i,v + xm,i+1,v′ − 1 ≤ zm,i,v,v′ , ∀m ∈M,∀i ∈ {1, . . . , imax − 1},∀v, v′ ∈ V,
(3.10)∑

v∈V

∑
v′∈V

zm,i,v,v′ ≤ 1, ∀m ∈M,∀i ∈ {1, . . . , imax − 1}. (3.11)

Now, machines were described, and only the integration of the jobs remains. Simple
constraints like that each job has to be scheduled, (3.12), has to start after its release
time, (3.13) and has to end before its deadline, (3.14), are easy to write. Note, that by
capturing both the mode and the interval by variables yj,m,i,v, the processing time of job
j can be expressed by

∑
m∈M

∑
i∈I

∑
v∈V

(yj,m,i,v · pj,v) as the only one of these variables will be

active (equal to one) in a feasible solution.

∑
m∈M

∑
i∈I

∑
v∈V

yj,m,i,v = 1, ∀j ∈ J , (3.12)

sj ≥ rj , ∀j ∈ J , (3.13)

sj +
∑
m∈M

∑
i∈I

∑
v∈V

(yj,m,i,v · pj,v) ≤ dj , ∀j ∈ J . (3.14)

Slightly more difficult is to link the start time of a job with its assigned interval. A large
constant, here denoted by K, needs to be used. If job j is scheduled onto interval i on
machine m, then sj needs to be greater than or equal to sm,i, (3.15); otherwise, the two
start times do not have a connection and the respective constraint has to be inactive,
which is achieved by using constant K. Similarly, a link between a job and a deadline
of the associated interval has to be formed (3.16). In practice, it is not possible to set
K = ∞; it has to be chosen carefully with respect to the constraint in which it is used.
Constant K1 has to be set at least to h in order for the constraints (3.15) to work. Similarly
K2 ≥ 2 · h.

27

Models Global models

sm,i ≤ sj + K1 ·
(

1−
∑
v∈V

yj,m,i,v

)
, ∀m ∈M, i ∈ I, j ∈ J , (3.15)

sj + yj,m,i,v · pj,v ≤ sm,i + pm,i,v + K2 (1− yj,m,i,v) , ∀m ∈M, i ∈ I, j ∈ J , v ∈ V.
(3.16)

The final problem to be solved is the overlapping of the tasks scheduled on the same
machine and interval. Using variables aj,j′ , the constraints saying that one job has to end
before the other one starts can be formulated as (3.17). Again, big constant K3 is used
to deactivate the constraints if the two jobs are not scheduled to the same machine and
interval or if the precedence is not active (aj,j′ = 0). Constraint (3.18) just states that
either job j should be processed before job j′ or the other way around.

There are many constraints of type (3.17); for some of the bigger models, it would not
even be feasible to build them in a reasonable time. However, not all of the constraints
are active in the optimal solution. Therefore, it is possible to generate them lazily during
the solution process (i.e. using them as cuts).

sj +
∑
v∈V

yj,m,i,v · pj,v ≤ sj′ + K3 ·
(

3−
∑
v∈V

yj,m,i,v −
∑
v∈V

yj′,m,i,v − aj,j′

)
, (3.17)

∀m ∈M, i ∈ I,∀j, j′ ∈ J

aj,j′ = 1− aj′,j , ∀j, j′ ∈ J , j 6= j′ (3.18)

Objective

The objective (2.2), reformulated using the variables established in this section, can be
written as (3.19). It is linear and can be optimized by any standard MILP solver, such as
Gurobi or CPLEX Optimizer.

∑
m∈M

∑
i∈I

∑
v∈V

pm,i,v · wv︸ ︷︷ ︸
operating cost

+
∑
m∈M

∑
i∈{1,...,imax−1}

∑
v∈V

∑
v′∈V

zm,i,v,v′ · cv,v′

︸ ︷︷ ︸
transition cost

(3.19)

Additional constraints

In order to help solvers, additional constraints can be added, providing further information
about the variables and their connections, thus potentially improving the solution time

28

Models Global models

of the model. Constraints (3.20) are such an example. They state that for each machine
m the time spent in mode v during interval i has to be longer than or equal to the time
spent on all of the jobs, which were assigned to be processed in mode v during interval i
on this machine. It is very trivial; however, it leads to a significant improvement.

∑
j∈J

(
yj,m,i,v · pj,v

)
≤ pm,i,v, ∀m ∈M, i ∈ I, v ∈ V. (3.20)

As the machines are identical, there are multiple solutions with the same quality, which
differ only in the permutation of the machines. The specific order is not important,
so additional constraints, imposing some kind of ordering, can be used to reduce these
symmetries. For example, machines can be ordered by non-increasing total time spent on
the processing of the jobs, (3.21).

∑
j∈J

∑
i∈I

∑
v∈V

(
yj,m,i,v · pj,v

)
≥

∑
j∈J

∑
i∈I

∑
v∈V

(
yj,m+1,i,v · pj,v

)
, ∀m ∈ {1, . . . ,M − 1}.

(3.21)

Complete model

Finally, the objective and the constraints described above can be joined to form a single
MILP model (3.22).

29

Models Global models

minimize
∑

m∈M

∑
i∈I

∑
v∈V

pm,i,v · wv +
∑

m∈M

∑
i∈{1,...,imax−1}

∑
v∈V

∑
v′∈V

zm,i,v,v′ · cv,v′ s.t.

xm,1,vinit = 1, ∀m ∈M,

xm,imax,vterm + xm,imax,vdummy = 1, ∀m ∈M,∑
v∈V

xm,i,v = 1, ∀m ∈M,∀i ∈ I,

tmin
v · xm,i,v ≤ pm,i,v, ∀m ∈M,∀i ∈ I,∀v ∈ V,

tmax
v · xm,i,v ≥ pm,i,v, ∀m ∈M,∀i ∈ I,∀v ∈ V,

sm,imax +
∑

v∈V
pm,imax,v = h, ∀m ∈M,

xm,i,v ≤
∑

v′∈Next(v)
xm,i+1,v′ ,

∀m ∈M, i ∈ {1, . . . , imax − 1},
xm,i,v′ ≤

∑
v∈Prev(v′)

xm,i−1,v,

∀m ∈M, i ∈ {2, . . . , imax},
xm,i,v + xm,i+1,v′ − 1 ≤ zm,i,v,v′ , ∀m ∈M,∀i ∈ {1, . . . , imax − 1},∀v, v′ ∈ V,∑

v∈V

∑
v′∈V

zm,i,v,v′ ≤ 1, ∀m ∈M,∀i ∈ {1, . . . , imax − 1},∑
m∈M

∑
i∈I

∑
v∈V

yj,m,i,v = 1, ∀j ∈ J ,

rj ≤ sj , ∀j ∈ J ,
dj ≥ sj +

∑
m∈M

∑
i∈I

∑
v∈V

(yj,m,i,v · pj,v),

∀j ∈ J ,

sm,i ≤ sj + K1 ·
(

1−
∑

v∈V
yj,m,i,v

)
,

∀m ∈M, i ∈ I, j ∈ J ,
sj + yj,m,i,v · pj,v ≤ sm,i + pm,i,v + K2 (1− yj,m,i,v) ,

∀m ∈M, i ∈ I, j ∈ J , v ∈ V,

sj +
∑

v∈V
yj,m,i,v · pj,v ≤ sj′ + K3 ·

(
3−

∑
v∈V

yj,m,i,v

−
∑

v∈V
yj′,m,i,v − aj,j′

)
,

∀m ∈M, i ∈ I,∀j, j′ ∈ J ,
aj,j′ = 1− aj′,j , ∀j, j′ ∈ J , j 6= j′,∑

j∈J

(
yj,m,i,v · pj,v

)
≤ pm,i,v, ∀m ∈M, i ∈ I, v ∈ V,∑

j∈J

∑
i∈I

∑
v∈V

(
yj,m,i,v · pj,v

)
≥

∑
j∈J

∑
i∈I

∑
v∈V

(
yj,m+1,i,v · pj,v

)
,

∀m ∈ {1, . . . ,M − 1}.
(3.22)

Variables have following domains:

xm,i,v ∈ {0, 1}, ∀m ∈M, i ∈ I, v ∈ V, pm,i,v ∈ {0, 1, . . . ,h},∀m ∈M, i ∈ I, v ∈ V,
yj,m,i,v ∈ {0, 1}, ∀j ∈ J ,m ∈M, i ∈ I, v ∈ V, sj ∈ {0, 1, . . . ,h}, ∀j ∈ J .
zm,i,v,v′ ∈ {0, 1}, ∀m ∈M, i ∈ {1, . . . , imax − 1}, v ∈ V, v′ ∈ V,
aj,j′ ∈ {0, 1}, ∀j ∈ J , j′ ∈ J ,

30

Models Global models

time

domain(x)

x

length(x)

start(x) end(x)

startmin(x) endmax(x)

Figure 3.2: Interval variable x, which can have values from domain(x), currently repre-
senting integer interval [start(x), end(x)) of length length(x)

3.1.2 CP model

In the previous section, MILP model was described; now, it will be reformulated as a CP
model. Structure of this section is the same as for the MILP model; variables will be
stated, followed by constraints and the objective.

Multiple different formulations of the CP model are possible, it could even look the same
as the MILP model because CP supports binary and integer variables together with linear
constraints. However, such a model would be quite inefficient (as I actually tested). The
CP solvers (especially the ILOG CP Optimizer) are optimized to work with the interval
variables as they were developed with the scheduling problems in mind. So the formulation
of the CP model is different compared to the MILP model, but a lot of effort was actually
made to make it efficient.

Variables

A basic building block of the CP model is an interval variable. It is used to model an
interval of time during which a particular property holds (job is processed, a machine
is idle/processing/off, . . .) [46]. Its value is an integer interval [start, end), which is
compactly represented inside the optimizer. An interval can be optional, which allows
modelling of optional activities, alternative execution modes, etc. If an optional variable
is not present in the solution, its length is set to 0 by the solver. Individual constraints
can restrict starting/ending time of an interval, its length and relations between multiple
intervals. A single interval variable is illustrated in Figure 3.2.

A composition of variables stays the same as for the MILP model, but the situation sim-
plifies as start times and durations are implicitly represented by the interval variables. To
emphasise the similarity (and not to complicate the notation), variables are again denoted
by x̂ and ŷ, subscripted by corresponding symbols for machines/intervals/modes/jobs; to
distinguish them from the MILP variables, symbol ˆ was added. The meaning of the

31

Models Global models

variables is following:

x̂m,i,v . . . an optional interval representing machine m working
in mode v during interval i,

ŷj,m,i,v . . . an optional interval representing job j processed by
machine m in mode v during interval i.

Constraints

Starting by the description of machine schedules, each machine has to start operating in
mode vinit and end its operation in mode vterm or vdummy. This can be achieved by setting
presence of corresponding interval variables to 1, making them present; see (3.23) and
(3.24), respectively. Each machine must have one active mode per interval, (3.25). Time
spent on interval corresponding to mode v is restricted by tmin

v , (3.26), and tmax
v , (3.27).

Finally, the first interval has to start at time 0, (3.28), and the last one has to end at time
h, (3.29).

presence(x̂m,1,vinit) = 1, ∀m ∈M, (3.23)

presence(x̂m,imax,vdummy)

+ presence(x̂m,imax,vterm) = 1, ∀m ∈M, (3.24)∑
v∈V

presence(x̂m,i,v) = 1, ∀m ∈M,∀i ∈ I, (3.25)

sizemin(x̂m,i,v) = tmin
v , ∀m ∈M,∀i ∈ I,∀v ∈ V, (3.26)

sizemax(x̂m,i,v) = tmax
v , ∀m ∈M,∀i ∈ I,∀v ∈ V, (3.27)

start(x̂m,1,v) = 0, ∀m ∈M,∀v ∈ V, (3.28)

end(x̂m,imax,v) = h, ∀m ∈M,∀v ∈ V. (3.29)

It is easy to see that constraints (3.23)–(3.29) are very similar to (3.2)–(3.7). The difference
is that decision variables x of MILP model were replaced by the presence(·) function of
the CP solver and variables s and p changed to start(·) and length(·), respectively.

The next step is to add transitions. ILOG CP Optimizer offers functions that can be
used for this purpose, one of them is endAtStart(var1, var2,∆t), which forces interval
variable var2 to start exactly ∆t time units after end(var1). Because the transition time
tv,v′ is defined to be ∞ if there is no edge between modes v and v′ (for implementation
purposes, it could be (h + 1)), the transition constraints can be written simply as (3.30),
(3.31) and (3.32), where Next(v) = {v′ ∈ V | ∃e ∈ E s.t. e = (v, v′)} and Prev(v′) = {v ∈
V | ∃e ∈ E s.t. e = (v, v′)}. One of (3.30) and (3.31) is, in fact, redundant; however, it can
tighten the model. Constraints (3.30) and (3.31) ensure that only the feasible transitions

32

Models Global models

are made (if there is some mode scheduled, that mode and the next/previous mode in
the schedule have to be directly connected in the transition graph). Constraints (3.32)
incorporate the transition times. Note that if at least one of the two modes constrained
by endAtStart(·, ·, ·) function is not present, the constraint is trivially satisfied.

presence(x̂m,i,v) ≤
∑

v′∈Next(v)
presence(x̂m,i+1,v′), ∀m ∈M, i ∈ {1, . . . , imax − 1},

(3.30)

presence(x̂m,i,v′) ≤
∑

v∈Prev(v′)
presence(x̂m,i−1,v), ∀m ∈M, i ∈ {2, . . . , imax},

(3.31)

endAtStart(x̂m,i−1,v, x̂m,i,v′ , tv,v′), ∀m ∈M,∀i ∈ {2, . . . , imax},∀v, v′ ∈ V. (3.32)

What remains now is the description of jobs. The startmin(·) and endmax(·) can be set to
release time (3.33) and deadline (3.34), respectively, for each interval variable ŷ. Moreover,
its length can be set to the processing time of the respective job in the associated mode
(3.35). Still, each job has to be scheduled exactly once (3.36).

startmin(ŷj,m,i,v) = rj , ∀j ∈ J , ∀m ∈M,∀i ∈ I,∀v ∈ V, (3.33)

endmax(ŷj,m,i,v) = dj , ∀j ∈ J , ∀m ∈M,∀i ∈ I,∀v ∈ V, (3.34)

length(ŷj,m,i,v) = pj,v, ∀j ∈ J , ∀m ∈M,∀i ∈ I,∀v ∈ V, (3.35)∑
m∈M

∑
i∈I

∑
v∈V

presence(ŷj,m,i,v) = 1, ∀j ∈ J . (3.36)

Note that contrary to the MILP model, where there was only a single start time variable
associated with each job and the processing time of a job changed according to the associ-
ated mode, each interval variable in the CP model has its start time, end time and length
and so expression (3.34) is simpler to write than (3.14).

Restricting the jobs inside the corresponding interval is also effortless, because func-
tions startBeforeStart(var1, var2,∆t), interpreted as start(var1) + ∆t ≤ start(var2),
and endBeforeEnd(var1, var2,∆t), interpreted as end(var1) + ∆t ≤ end(var2), can be
used. Hence, constraints (3.37) link start time of a job and interval and similarly (3.38)
link their end times. Again, if at least one of the interval variables was not present, the
constraint would be satisfied trivially – in consequence, one other constraint has to be
added to ensure that if interval variable ŷj,m,i,v is present, then the corresponding x̂m,i,v
will be present too. The constraint is written as implication (3.39); this form is natively
supported by ILOG CP Optimizer.

33

Models Global models

startBeforeStart(x̂m,i,v, ŷj,m,i,v, 0) ∀j ∈ J ,m ∈M, i ∈ I, v ∈ V, (3.37)

endBeforeEnd(ŷj,m,i,v, x̂m,i,v, 0) ∀j ∈ J ,m ∈M, i ∈ I, v ∈ V, (3.38)

ifThen(presence(ŷj,m,i,v), presence(x̂m,i,v)) ∀j ∈ J ,m ∈M, i ∈ I, v ∈ V. (3.39)

Finally, the last set of constraints has to forbid the overlaps of individual jobs. This was
probably the most complicated part of the MILP model, but inside of a CP model it
can be expressed easily, using noOverlap(·) function (3.40), which is applied to a set of
interval variables forbidding them from overlapping. It could be applied only to individual
intervals too, but in order to minimize the number of those constraints, it was applied to
the whole machines.

noOverlap({ŷj,m,i,v | j ∈ J , i ∈ I, v ∈ V}), ∀m ∈M. (3.40)

Objective

An objective of the CP model can be written as (3.41). Note that contrary to the MILP
model, the objective is not linear as presence(·) is not set for the individual variables. Any-
way, it is not such a problem because CP optimizer can handle non-linear objectives.

∑
m∈M

∑
i∈I

∑
v∈V

length(x̂m,i,v) · wv

+
∑
m∈M

∑
i∈{1,...,imax−1}

∑
v∈V

∑
v′∈V

presence(x̂m,i,v) · presence(x̂m,i+1,v′) · cv,v′
(3.41)

Additional constraints

Similarly to the MILP model, additional constraints linking jobs and machine modes (3.42)
and symmetry breaking constraints (3.43) are formulated.

∑
j∈J

length(ŷj,m,i,v) ≤ length(x̂m,i,v), ∀m ∈M, ∀i ∈ I, ∀v ∈ V, (3.42)

∑
j∈J

∑
i∈I

∑
v∈V

length(ŷj,m,i,v) ≥
∑
j∈J

∑
i∈I

∑
v∈V

length(ŷj,m+1,i,v), ∀m ∈ {1, . . . ,M − 1}.

(3.43)

34

Models Global models

Complete model

Now, all of the constraints will be joined with the objective to form a single CP model.
Since ILOG CP Optimizer is designed to model scheduling problems, the model is much
more compact compared to the MILP model. It is also easier to understand as there are
no special “tricks” such as ordering variables aj,j′ or big-M constraints.

minimize
∑

m∈M

∑
i∈I

∑
v∈V

length(x̂m,i,v) · wv

+
∑

m∈M

∑
i∈{1,...,imax−1}

∑
v∈V

∑
v′∈V

presence(x̂m,i,v) · presence(x̂m,i+1,v′) · cv,v′

subject to:
presence(x̂m,1,vinit) = 1, ∀m ∈M,

presence(x̂m,imax,vdummy)
+ presence(x̂m,imax,vterm) = 1, ∀m ∈M,∑

v∈V
presence(x̂m,i,v) = 1, ∀m ∈M,∀i ∈ I,

sizemin(x̂m,i,v) = tmin
v , ∀m ∈M,∀i ∈ I,∀v ∈ V,

sizemax(x̂m,i,v) = tmax
v , ∀m ∈M,∀i ∈ I,∀v ∈ V,

start(x̂m,1,v) = 0, ∀m ∈M,∀v ∈ V,
end(x̂m,imax,v) = h, ∀m ∈M,∀v ∈ V,

presence(x̂m,i,v) ≤
∑

v′∈Next(v)
presence(x̂m,i+1,v′),

∀m ∈M, i ∈ {1, . . . , imax − 1},
presence(x̂m,i,v′) ≤

∑
v∈Prev(v′)

presence(x̂m,i−1,v),

∀m ∈M, i ∈ {2, . . . , imax},
endAtStart(x̂m,i−1,v, x̂m,i,v′ , tv,v′), ∀m ∈M,∀i ∈ {2, . . . , imax},∀v, v′ ∈ V,

startmin(ŷj,m,i,v) = rj , ∀j ∈ J ,∀m ∈M,∀i ∈ I,∀v ∈ V,
endmax(ŷj,m,i,v) = dj , ∀j ∈ J ,∀m ∈M,∀i ∈ I,∀v ∈ V,
length(ŷj,m,i,v) = pj,v, ∀j ∈ J ,∀m ∈M,∀i ∈ I,∀v ∈ V,∑

m∈M

∑
i∈I

∑
v∈V

presence(ŷj,m,i,v) = 1, ∀j ∈ J ,

startBeforeStart(x̂m,i,v, ŷj,m,i,v, 0) ∀j ∈ J ,m ∈M, i ∈ I, v ∈ V,
endBeforeEnd(ŷj,m,i,v, x̂m,i,v, 0) ∀j ∈ J ,m ∈M, i ∈ I, v ∈ V,

ifThen(presence(ŷj,m,i,v), presence(x̂m,i,v)) ∀j ∈ J ,m ∈M, i ∈ I, v ∈ V,
noOverlap({ŷj,m,i,v | j ∈ J , i ∈ I, v ∈ V}), ∀m ∈M,∑

j∈J
length(ŷj,m,i,v) ≤ length(x̂m,i,v),

∀m ∈M,∀i ∈ I,∀v ∈ V,∑
j∈J

∑
i∈I

∑
v∈V

length(ŷj,m,i,v) ≥
∑

j∈J

∑
i∈I

∑
v∈V

length(ŷj,m+1,i,v),

∀m ∈ {1, . . . ,M − 1}.
(3.44)

All of the variables represent optional integer intervals. Variables ŷ are constrained by the
release time and the deadline of the associated job, while variables x̂ are constrained only
by the scheduling horizon: startmin(x̂m,i,v) = 0, ∀m ∈ M, i ∈ I, v ∈ V, endmax(x̂m,i,v) =
h,∀m ∈M, i ∈ I, v ∈ V.

35

Models Branch-and-price models

∑
m∈M

∑
i∈I

∑
v∈V

yj,m,i,v

B

B

. . .

B

1

b

b

...

b

monoprocessor sub-problems

linking
constraints

∀j ∈ J

independent
constraints

0

0

Figure 3.3: A structure of the original model before the decomposition

3.2 Branch-and-price models

In order to use a branch-and-price procedure, the original MILP model (3.22) needs to
be decomposed to a master model and a pricing model. Most of the constraints of the
original model hold for all machines m ∈M individually, describing a behaviour of each of
them. Even the restrictions on release times and deadlines of the jobs, which are defined
globally, could be understood as individual constraints for each machine separately; if
variables sj,m,i,v were used instead of sj together with indicator variables forcing only one
of them to be active (≥ 0) and linking them with yj,m,i,v, then sj would be equal to the
sum of sj,m,i,v over all m, i, v. Similarly for aj,j′ ; even though they are defined globally,
only those precedences which are associated with the jobs assigned to the same machine
and interval are important.

Hence, it can be seen that the only interesting connecting constraints of the original model
are (3.12), forcing each job to be executed exactly once. Assuming the model where
transformations sj → sj,m,i,v and aj,j′ → aj,j′,m,i were done (in order to integrate sj and
aj,j′ into the sub-problems), decomposition can be done. Master model will ensure that
each job is scheduled, whereas the decomposed sub-problems will represent single-resource
scheduling problems.

Note that the original model has integer variables (linear relaxation will be used during
the column generation). Its structure is illustrated in Figure 3.3. It is a special case of
a more general structure described in Section 2.3.2, because the constraints (matrices)
of all the sub-problems are identical. If the decomposition was used exactly as stated in
Section 2.3.2, all of the polyhedrons associated with the sub-problems would be the same
– in order to force integrality of the points chosen in each polyhedron (as variables of
the original problem are integral) multiple variables of the same extreme point would be
needed (one for each polyhedron), which might not be efficient. Also note, that requiring
the integrality of the coefficients α does not need to guarantee the optimal solution of the
original integer problem, because its optimal solution may be inside the convex hull (not
on the boundary).

36

Models Branch-and-price models

(a) (b)

Figure 3.4: Representative points (in red) for two decomposition approaches: (a) convex-
ification, (b) discretization

An alternative approach, developed by Vanderbeck [47], can be used to solve the problems
arising due to integrality. Instead of relying on the Minkowski-Weyl representation of
polyhedron [32] (leading to decomposition by convexification described in Section 2.3.2),
individual integer points can be represented alternatively [48]; that leads to so-called
decomposition by discretization. An illustration for a bounded polyhedron is provided
in Figure 3.4. The resulting model will be nearly the same as for the decomposition by
convexification (of course with different representative points, as illustrated above), see
[49], but convex combination coefficients α will be integral – choosing exactly one point
at a time. Of course, representing the integer points directly instead of using extremal
points means a potential increase of the number of variables used in the master problem;
but again, the restricted master problem will operate only over their subset.

3.2.1 Master model

An aggregated decomposed master model can be formulated as (3.45)–(3.48). It is, in fact,
a simple set-covering model; variables αk are selecting individual patterns pk from a set of
all possible patterns R?. Each pattern pk can be understood as a column of zeros and ones
with J elements aj,k indicating whether job j is covered by pattern k or not. Objective
(3.45) minimizes the sum of costs ck of patterns which are selected. Constraint (3.46)
ensures that each job is selected exactly once. Constraint (3.47) represents aggregated
convexity constraints.

37

Models Branch-and-price models

minimize:
α

∑
pk∈R?

ck · αk (3.45)

subject to:
∑

pk∈R?

aj,k · αk = 1, ∀j ∈ J , (3.46)

∑
pk∈R?

αk = J, (3.47)

αk ∈ {0, 1}, ∀pk ∈ R?. (3.48)

Cost ck of pattern pk corresponds to an optimal cost of a single-resource schedule in which
exactly these jobs covered by pk are scheduled.

Note that there could be an inequality (≤) instead of an equality in constraint (3.47)
because some machines might not be used; if the equality is used, there must be several
empty patterns (aj,· = 0 ∀j ∈ J) with a zero cost contained in R?. Also note that
restrictions αk ∈ {0, 1} could be relaxed to αk ∈ N as selecting one pattern multiple times
would not be optimal (if patterns with zero cost were not used).

Model (3.45)–(3.48) is practically identical to a master model for the vehicle routing
problem with time windows described in [19]. Although the problems are clearly different,
nature of linking constraints is the same. Whereas here, patterns represent set of jobs
assigned to a single machine, for a vehicle routing problem, patterns represent routes
taken by individual vehicles. The difference would show in the pricing problem, which is
more specific (single-resource scheduling versus vehicle route finding).

Of course, using a set of all patterns R? is not feasible due to the fact that there are O(2J)
different patterns in total; scheduling 25 jobs implies approximately 33 · 106 patterns, for
30 jobs it is already 109, etc. Therefore, subset R ⊆ R? is used, transforming the master
problem to the restricted master problem, which can be written as (3.49)–(3.52).

minimize:
α

∑
pk∈R

ck · αk (3.49)

subject to:
∑
pk∈R

aj,k · αk ≥ 1, ∀j ∈ J , (3.50)

∑
pk∈R

αk ≤ J, (3.51)

αk ∈ N, ∀pk ∈ R. (3.52)

Linear relaxation of the RMP will be used inside the column generation procedure, but one
final problem needs to be solved. At the beginning of the procedure, there are no patterns
inside R (if some heuristic was not used to generate them); similarly, after branching
occurs, some of the patterns violating new constraints imposed by the branching rule
might have been deleted. In consequence, the RMP might be infeasible. To solve this

38

Models Branch-and-price models

problem, additional variables will be added to the RMP in order to relax its constraints if
necessary. Linear relaxation of the RMP with additional variables is formulated as (3.53)–
(3.57). Two variables γ1 and γ2 are added, relaxing the corresponding constraint(s).
Criterion is changed to integrate the new variables; K is chosen as some large number
(possibly M · h ·maxv wv + c, c > 0). If γ1 or γ2 is active (> 0) in the optimal solution
of the RMP at the end of the column generation phase, the branch is closed as infeasible.
The proposed formulation is not the only one possible, just one variable could be used
to relax all of the constraints simultaneously or all of the constraints could have different
variables; different formulations imply different dual constraints, therefore, influencing the
optimal dual solutions (pricing vectors), see [19].

minimize:
α,γ1,γ2

∑
pk∈R

ck · αk + K · (γ1 + γ2) (3.53)

subject to:
∑
pk∈R

aj,k · αk + γ1 ≥ 1, ∀j ∈ J , (3.54)

∑
pk∈R

αk − γ2 ≤ J, (3.55)

αk ≥ 0, ∀pk ∈ R, (3.56)

γ1 ≥ 0, γ2 ≥ 0 (3.57)

3.2.2 Pricing model

Now that the master model was formulated, only the formulation of the pricing problem
remains. Because all of the sub-problems are identical, the pricing problem will be solved
only once per each iteration. The constraints forcing the jobs to be scheduled were inte-
grated to the master model, the remaining constraints of the MILP model (3.22) will be
integrated to the pricing model; some of them will simplify. Both models (MILP and CP)
will be stated here, and the differences to the original model will be discussed.

The pricing problem will be a single-resource scheduling problem (optimizing reduced cost)
where the individual jobs might or might not be scheduled; its optimization criterion will
consist of two parts – one reflecting the energy consumption, and the other one integrating
preferences. The preferences of the jobs will be given by the RMP in each iteration. When
the pricing problem is solved with the optimal objective being negative, a column will be
added to the RMP. The jobs, which were scheduled in the optimal solution of the pricing
problem will form the pattern of the master model; its cost will be equal to the part of
the objective function which reflects the energy consumption.

39

Models Branch-and-price models

MILP model

The original problem with parallel machines was decomposed – only a single machine is
modelled in the sub-problem; thanks to that, variables are simplified in the following way:
xm,i,v → xi,v, yj,m,i,v → yj,i,v, zm,i,v,v′ → zi,v,v′ . The alias sm,i changes to si; variables sj
and aj,j′ stay the same. Interpretation of the individual variables is the same as for the
global model (except for the fact that there is only a single machine).

The pricing model can be written as (3.58)–(3.79). The main difference to the original
model lies in the criterion (3.58), which now consists of two parts – the first one corresponds
to the cost of the pattern which will be added (it is a cost of the single-resource schedule).
The second part reflects preferences given by a vector of dual prices π = (π0, π1, . . . , πJ),
where π0 corresponds to (3.55), and πj corresponds to (3.54) ∀j ∈ {1, . . . , J}.

Two other new types of constraints, (3.78) and (3.79), appeared in the formulation because
of branching. If a branching strategy was selecting a pair of jobs (j, j′) forcing them to be
scheduled on the same machine in one branch and on different machines in the other one,
then the pricing model of an internal node of the branching tree would have to integrate
the decisions taken above (on the path from the node to the root). Defining Bsame and Bdiff
as sets of pairs of jobs which have to be scheduled on the same machine and on different
machines, respectively, constraints (3.78) and (3.79) force the model to satisfy all of the
branching decisions recorded by those sets. For the root node, both sets are empty and
the respective constraints are trivially satisfied.

CP model

The process of the CP pricing model creation is analogous to the MILP model creation.
Most of the constraints simplify by removing the part indexing the machines (∀m ∈ M)
as the pricing problem schedules only over a single machine. The objective is changed to
include the preferences given by dual vector π of the master model. Constraints (3.101)
and (3.102) are added to integrate the branching decisions into the model. The whole
pricing model is written as (3.80)–(3.102).

40

Models Branch-and-price models

minimize
∑
i∈I

∑
v∈V

pi,v · wv +
∑

i∈{1,...,imax−1}

∑
v∈V

∑
v′∈V

zi,v,v′ · cv,v′

︸ ︷︷ ︸
cost of the schedule

−π0 −
∑
j∈J

πj

∑
i∈I

∑
v∈V

yj,i,v︸ ︷︷ ︸
pricing cost

subject to

(3.58)

x1,vinit = 1, (3.59)

ximax,vterm + ximax,vdummy = 1, (3.60)∑
v∈V

xi,v = 1, ∀i ∈ I, (3.61)

tmin
v · xi,v ≤ pi,v, ∀i ∈ I,∀v ∈ V, (3.62)

tmax
v · xi,v ≥ pi,v, ∀i ∈ I,∀v ∈ V, (3.63)

simax +
∑
v∈V

pimax,v = h, (3.64)

xi,v ≤
∑

v′∈Next(v)

xi+1,v′ , ∀i ∈ {1, . . . , imax − 1}, (3.65)

xi,v′ ≤
∑

v∈Prev(v′)

xi−1,v, ∀i ∈ {2, . . . , imax}, (3.66)

xi,v + xi+1,v′ − 1 ≤ zi,v,v′ , ∀i ∈ {1, . . . , imax − 1},∀v, v′ ∈ V,
(3.67)∑

v∈V

∑
v′∈V

zi,v,v′ ≤ 1, ∀i ∈ {1, . . . , imax − 1}, (3.68)∑
i∈I

∑
v∈V

yj,i,v ≤ 1, ∀j ∈ J , (3.69)∑
j∈J

∑
i∈I

∑
v∈V

yj,i,v ≥ 1, (3.70)

sj ≥ rj , ∀j ∈ J , (3.71)

sj +
∑
i∈I

∑
v∈V

(yj,i,v · pj,v) ≤ dj , ∀j ∈ J , (3.72)

si ≤ sj + K1 ·

(
1−

∑
v∈V

yj,i,v

)
, ∀i ∈ I,∀j ∈ J , (3.73)

sj + yj,i,v · pj,v ≤ si + pi,v + K2 (1− yj,m,i,v) , ∀j ∈ J ,∀i ∈ I,∀v ∈ V, (3.74)

sj +
∑
v∈V

yj,i,v · pj,v ≤ sj′ + K3 ·

(
3−

∑
v∈V

yj,i,v

−
∑
v∈V

yj′,i,v − aj,j′

)
, ∀i ∈ I,∀j, j′ ∈ J , (3.75)

aj,j′ = 1− aj′,j , ∀j, j′ ∈ J , j 6= j′, (3.76)∑
j∈J

(
yj,i,v · pj,v

)
≤ pi,v, ∀i ∈ I,∀v ∈ V, (3.77)

∑
i∈I

∑
v∈V

yj,i,v =
∑
i∈I

∑
v∈V

yj′,i,v, ∀(j, j′) ∈ Bsame, (3.78)∑
i∈I

∑
v∈V

(yj,i,v + yj′,i,v) ≤ 1, ∀(j, j′) ∈ Bdiff. (3.79)

41

Models Branch-and-price models

minimize
∑
i∈I

∑
v∈V

length(x̂i,v) · wv

+
∑

i∈{1,...,imax−1}

∑
v∈V

∑
v′∈V

presence(x̂i,v) · presence(x̂i+1,v′) · cv,v′

−π0 −
∑
j∈J

πj
∑
i∈I

∑
v∈V

presence(ŷj,i,v)

subject to

(3.80)

presence(x̂1,vinit) = 1, (3.81)

presence(x̂imax,vdummy)

+ presence(x̂imax,vterm) = 1, (3.82)∑
v∈V

presence(x̂i,v) = 1, ∀i ∈ I, (3.83)

sizemin(x̂i,v) = tmin
v , ∀i ∈ I,∀v ∈ V, (3.84)

sizemax(x̂i,v) = tmax
v , ∀i ∈ I,∀v ∈ V, (3.85)

start(x̂1,v) = 0, ∀v ∈ V, (3.86)

end(x̂imax,v) = h, ∀v ∈ V, (3.87)∑
v′∈Next(v)

presence(x̂i+1,v′) ≥ presence(x̂i,v) ∀i ∈ {1, . . . , imax − 1}, (3.88)

∑
v∈Prev(v′)

presence(x̂m,i−1,v) ≥ presence(x̂i,v′) ∀i ∈ {2, . . . , imax}, (3.89)

endAtStart(x̂i−1,v, x̂i,v′ , tv,v′), ∀i ∈ {2, . . . , imax},∀v, v′ ∈ V,
(3.90)

startmin(ŷj,i,v) = rj , ∀j ∈ J ,∀i ∈ I,∀v ∈ V, (3.91)

endmax(ŷj,i,v) = dj , ∀j ∈ J ,∀i ∈ I,∀v ∈ V, (3.92)

length(ŷj,i,v) = pj,v, ∀j ∈ J ,∀i ∈ I,∀v ∈ V, (3.93)∑
i∈I

∑
v∈V

presence(ŷj,i,v), ≤ 1, ∀j ∈ J , (3.94)∑
j∈J

∑
i∈I

∑
v∈V

presence(ŷj,i,v) ≥ 1, (3.95)

startBeforeStart(x̂i,v, ŷj,i,v, 0) ∀j ∈ J ,∀i ∈ I,∀v ∈ V, (3.96)

endBeforeEnd(ŷj,i,v, x̂i,v, 0), ∀j ∈ J ,∀i ∈ I,∀v ∈ V, (3.97)

ifThen(presence(ŷj,i,v), presence(x̂i,v)), ∀j ∈ J ,∀i ∈ I,∀v ∈ V, (3.98)

noOverlap({ŷj,i,v | j ∈ J , i ∈ I, v ∈ V}), (3.99)∑
j∈J

length(ŷj,i,v) ≤ length(x̂i,v), ∀i ∈ I,∀v ∈ V, (3.100)

∑
i∈I

∑
v∈V

presence(ŷj,i,v) =
∑
i∈I

∑
v∈V

presence(ŷj′,i,v), ∀(j, j′) ∈ Bsame, (3.101)∑
i∈I

∑
v∈V

presence(ŷj,i,v) +
∑
i∈I

∑
v∈V

presence(ŷj′,i,v) ≤ 1, ∀(j, j′) ∈ Bdiff. (3.102)

42

Models Reference model

3.3 Reference model

Solution approaches studied in this work are designed to find an optimal solution to the
problem. In order to compare them to existing works, a representative reference MILP
model was chosen and adapted to fit the problem statement. Several authors addressed
similar problems – explicitly modelling the states of the machines. Mitra et al. [5] schedule
discrete operating modes of plant components; however, continuous production is assumed,
which does not fit the settings discussed here. Selmair et al. [10] formulate a model for a
job shop production system and finally Shrouf et al. [9] develop a model for single machine
production scheduling. None of the models fits the problem discussed here perfectly, but
all of them share the property of being based on a time-indexed formulation. Model
described by Shrouf et al. was selected for comparison because it can be adapted easily,
extending their single-machine formulation to a parallel-resource formulation.

Several simplifications of the problem statement are made in accordance with the original
formulation described in [9]. It is assumed, that there is only one processing mode (i.e.
mode in which jobs can be processed). Furthermore, it is assumed that tmin

v = 0 and
tmax
v = h for all v ∈ V.

On the other hand, the original model worked under the assumption that jobs are scheduled
in the fixed order; that is relaxed there, allowing arbitrary order of the jobs to be scheduled.
That increases the difficulty of the problem because the original formulation covered only
a subset of all possible orderings.

One of the differences between the selected model and the global model proposed here is
the fixed number of intervals assumed by the global model. As the original time-indexed
model does not have these restrictions, its optimal objective could be better than the one
found by the global model described here. However, having arbitrary number of switches
is not usually technologically feasible, and the global model described here could not be
build while not having the maximal number of the switches defined (which is one of its
disadvantages). Therefore, for the sake of comparison between the two models, restrictions
on the maximal number of switches between modes on a single machine are added to the
reference model. Technically, that simplifies the problem, because it eliminates some of
the possible solutions, reducing the size of the search space.

To be consistent with the formulations of the global models, variables with analogous
meaning will be denoted by the same letters, adding a symbol ˜ above the variables of
the reference model. As the model is time-indexed, the scheduling horizon is discretized
into h periods p ∈ P, P = {1, . . . ,h}; a machine mode or a transition is defined for each
of them.

43

Models Reference model

Variables

Five types of binary variables are used in the model. They are:

x̃m,p,v =

1 if machine m operates in mode v during period p,

0 otherwise,

z̃m,p,v,v′ =

1 if machine m changes its mode from v to v′ during

period p,
0 otherwise,

w̃m,p,v =

1 if mode v starts on machine m during period p

0 otherwise,

ỹj,m,p =

1 if job j is processed by machine m during period p,

0 otherwise,

s̃j,m,p =

1 if job j starts to be processed by machine m during

period p
0 otherwise.

In fact, binary variables w̃m,p,v have similar interpretation to sm,i,v, but not to confuse
them with s̃j,m,p, different symbol was used.

Model

Note that for the reference model, the transition graph is not transformed (dummy vertex
is not used) and is it assumed that the transition graph does not contain any reflexive
edge. Denoting the only processing mode by vproc, the adapted reference model can be
written as (3.103)–(3.122).

The objective function (3.103) integrates the cost of modes and the cost of transitions.
Constraint (3.104) requires that each machine must either be in on of the modes or in a
transition between them in each period. Inequalities (3.105) and (3.106) limit mode or
transition in which a machine can operate, if it was operating in a given mode/transi-
tion in the previous period. Constraints (3.107) and (3.108) establish lower and upper
bound on the number of transition periods, such that the number of periods spent on the
transition is exactly equal to the transition length. Constraints (3.109)–(3.111) link the
mode x̃m,p,v and its start time w̃m,p,v. Expression (3.112) restricts the maximal number
of intervals (switches between modes). Equalities (3.113)–(3.115) set an initial mode for
the first period (also setting start variable w̃ to 1) and a terminal mode for the last pe-
riod. The remaining constraints relate to the jobs: forcing the processing mode when a
job is processed (3.116), allowing processing of at most one job per period (3.117) and at
most one start per job (3.118), integrating release times, deadlines and processing times
(3.119)–(3.121) and forcing job to be processed without preemption (3.122).

44

Models Reference model

minimize
∑

m∈M

∑
p∈P

∑
v∈V

x̃m,p,v · wv +
∑

m∈M

∑
p∈P

∑
v∈V

∑
v′∈V

z̃m,p,v,v′ · cv,v′ (3.103)

subject to

∑
v∈V

x̃m,p,v +
∑
v∈V

∑
v′∈V

z̃m,p,v,v′ = 1, ∀m ∈M,∀p ∈ P, (3.104)

x̃m,p,v ≤

x̃m,p+1,v +
∑

v′∈Next(v)
tv,v′ =0

x̃m,p+1,v′ +
∑

v′∈Next(v)
tv,v′ >0

z̃m,p+1,v,v′

 ,

∀m ∈M,∀p ∈ {1, . . . ,h− 1},∀v ∈ V, (3.105)

z̃m,p,v,v′ ,≤ x̃m,p+1,v′ + z̃m,p+1,v,v′ ∀m ∈M,∀p ∈ {1, . . . ,h− 1},∀v, v′ ∈ V, (3.106)

(x̃m,p,v + z̃m,p+1,v,v′ − 1) · tv,v′ ≤
min{p+tv,v′ ,h}∑

p′=p+1
z̃m,p′,v,v′ ,

∀m ∈M,∀p ∈ {1, . . . ,h− 1},∀v, v′ ∈ V,

v′ ∈ Next(v), tv,v′ > 0, (3.107)

z̃m,p,v,v′ + z̃m,p+tv,v′ ,v,v′ ≤ 1, ∀m ∈M,∀p ∈ P,∀v, v′ ∈ V,

0 < p+ tv,v′ ≤ h, (3.108)

x̃m,p,v +
∑
v′∈V
v′ 6=v

x̃m,p−1,v′ +
∑
v′∈V

∑
v′′∈V

z̃m,p−1,v′,v′′ ≤ w̃m,p,v + 1,

∀m ∈M,∀p ∈ {2, . . . ,h},∀v ∈ V, (3.109)

x̃m,p−1,v + x̃m,p,v ≤ (1− w̃m,p,v) + 1, ∀m ∈M,∀p ∈ {2, . . . ,h},∀v ∈ V, (3.110)

w̃m,p,v ≤ x̃m,p,v, ∀m ∈M,∀p ∈ P,∀v ∈ V, (3.111)∑
p∈P

∑
v∈V

w̃m,p,v ≤ imax, ∀m ∈M, (3.112)

x̃m,1,vinit = 1, ∀m ∈M, (3.113)

w̃m,1,vinit = 1, ∀m ∈M, (3.114)

x̃m,h,vterm = 1, ∀m ∈M, (3.115)∑
j∈J

ỹj,m,p ≤ x̃m,p,vproc , ∀m ∈M,∀p ∈ P, (3.116)

∑
j∈J

ỹj,m,p ≤ 1, ∀m ∈M,∀p ∈ P, (3.117)

∑
m∈M

∑
p∈P

s̃j,m,p = 1, ∀j ∈ J , (3.118)

∑
m∈M

∑
p∈P

ỹj,m,p = pj,vproc , ∀j ∈ J , (3.119)

s̃j,m,p = 0, ∀j ∈ J ,∀m ∈M,∀p ∈ P, p < rj , (3.120)

s̃j,m,p = 0, ∀j ∈ J ,∀m ∈M,∀p ∈ P, p > dj − pj,vproc , (3.121)
min{p+pj,vproc−1,h}∑

p′=p

ỹj,m,p′ ≥ pj,vproc · s̃j,m,p, ∀j ∈ J ,∀m ∈M,∀p ∈ P. (3.122)

45

4 Experiments

For the comparison of the individual models/solution techniques, various experiments
were performed. Some of them are described in this chapter – showing the performance
of the respective approaches. A structure of the chapter is following: firstly, branch-and-
price settings and a data generation procedure are described; secondly, the global MILP
model is compared to the reference MILP model; and finally, comparison of the proposed
approaches is given.

All experiments were done on a personal PC with Intel Core i5 having 2 physical (4 virtual)
cores and 8 GB RAM. As for the solvers – Gurobi 8.0 solver was used for LP/MILP models,
while IBM ILOG CP Optimizer (12.8) was used for CP models.

4.1 Branch-and-price settings

For the initialization of a branch-and-price procedure, a simple two-stage heuristic is used.
The first stage is based on a CP model, which creates optional interval variables for each
job (for each machine), setting their minimal starts to the release time, maximal ends to
the deadline and lengths to the minimal processing time across all modes. The model
is looking for an assignment of jobs to the individual machines. If none is found – the
instance is infeasible (as the release times and the deadlines do not permit any assignment
even for the fastest processing times). If some assignment is found, then MILP model
similar to the pricing model (except for the criterion, which does not include preferences,
and for the fact, that each given job has to be scheduled) is called to find an optimal
monoprocessor solution to each found assignment (for each machine); that is the second
stage. The found assignments are, in fact, patterns, and their optimal solutions correspond
to the patterns costs. It might happen, that the heuristic does not find any solution in
the second stage. For that reason, simple patterns corresponding to the individual jobs
(one pattern per one job) are added to the initial set too.

The branching rule selects two different jobs which occurred in the patterns whose op-
timal coefficients in the master model were fractional. The pair with maximal overlap
(considering their release times and deadlines), which was not selected by decisions taken
on the path from the root node to the current node, is selected. Two branches are created
afterwards – forcing the selected jobs to be scheduled (i) on the same machine and (ii)
on different machines (while maintaining all of the previous decisions, taken on the path
from the root node to the current node, too).

46

Experiments Data generation

4.2 Data generation

Problems of energy optimization in scheduling have been studied only recently and even
though multiple works exists is the field, they often concentrate on a specific problem.
As there is no unifying frame, there are none benchmark instances (at least to the best
of my knowledge). For the purpose of testing, random instances of the problem will be
generated.

For given transition graph G (with a single processing mode) and maximal number of
intervals imax, J jobs will be scheduled on M machines. Parameters of job j (release time,
deadline and processing time) will be generated randomly. One of the possible generating
schemes is the following one:

pj ∼ U(ap, bp), (4.1)

rj ∼ U(ar, br), (4.2)

dj ∼ U(ad, bd), (4.3)

where expression U(a, b) denotes the uniform integer distribution over the closed interval
[a, b]. Of course the parameters a· and b· do not need to be independent nor constant (they
can represent values generated from some probability distribution, for example). Specific
settings/generation scheme will be described for each experiment individually.

47

Experiments Experiment 1: Comparison of the global model and the reference model

standby

proc

off

0/0

0/0

2/10 080

1/2040

wproc = 4020

wstandby = 2040 woff = 0

Figure 4.1: The transition graph used for Experiment 1; edges are labelled by transition
time/transition cost

4.3 Experiment 1: Comparison of the global model and the
reference model

This experiment aims to compare the global MILP model proposed in this work with a
time-indexed MILP model proposed in [9], which was adapted to fit the problem statement
discussed here (see Section 3.3).

4.3.1 Setting

A transition graph used for this experiment was originally published in [9], together with
the time-indexed model, and can be seen in Figure 4.1. Costs were slightly changed to be
divisible by 60 (for the purposes of scaling – see details below).

For the experiment, instances with J ∈ {5, 10, 15} jobs were generated. The jobs were
scheduled on M ∈ {1, 2, 4} machines. Three different settings of imax were tested, imax ∈
{3, 5, 7}. Scheduling horizon h was set to 32 time units (same as in the original work),
h = 32. To test the efficiency of the time-indexed model, generated instances were scaled by
factor scale ∈ {1, 4, 60} – transition costs/times were scaled together with the horizon and
parameters of the jobs. The scaling could be interpreted as a change of the granularity of
discretization, e.g., scale = 1 could mean discretization by hours, scale = 4 by 15-minutes
intervals and scale = 60 by minutes. Scaled instances have the same optimal objective
value (for fixed imax andM), but the scaling might influence the size of the models as well
as the solution times.

For each setting of J ∈ {5, 10, 15}, five different instances were generated in a following
way (for scale = 1):

48

Experiments Experiment 1: Comparison of the global model and the reference model

pj ∼ U(1, 5), (4.4)

rj ∼ U(0, h− pj − 1), (4.5)

dj ∼ U(rj + pj ,h− 1), (4.6)

for all j ∈ {1, . . . , J}. Constant (−1) is in the generation formula for rj and dj because of
the time tproc,off. These instances were scaled and solved for all combinations of imax and
M . A time limit was set to 120 seconds (per one instance).

4.3.2 Results

Solving times (in seconds) are shown in Table 4.1 and Table 4.2, respectively. Results
for scale = 60 are not listed, because the time-indexed model failed to give reasonable
results even for scale = 4; for the global model, results were similar to scale = 4 listed in
Table 4.1.

For the tested instances, the global model performs similarly for all of the discretization
granularities. It is because the size of the model depends only on the number of machi-
nes/jobs/intervals/modes; the length of an interval has an impact only on the objective
value – longer intervals does not imply larger model. The largest tested global models had
about 1000 constraints and 500 variables.

On the other hand, the size of the time-indexed model depends on the number of periods
(not intervals), hence by increasing the precision of the discretization, the size of the
model will increase too. From Table 4.2, it is evident that after scaling by a relatively small
factor (4), the model becomes too large to be solved in a reasonable time. The largest time-
indexed models for scale = 4 had about 23 000 variables and 28 000 constraints; even worse
– for scale = 60, the models had about 340 000 variables and 420 000 constraints.

Certainly, both models have their advantages and disadvantages. For example, it is easy
to integrate time-dependent costs into a time-indexed model, whereas it would be diffi-
cult for the global model as start times and lengths of individual intervals are not fixed.
Furthermore, the time-indexed model can perform better on small instances – it can be
seen on instances 15-3 and 15-5. Even though the global model found their optimal so-
lutions, it failed to complete the optimality proofs. Another disadvantage of the global
model is that it depends on the number of intervals imax – with imax increasing, more
intervals need to be modelled, increasing the size of the model. Contrary to that, imax

appears in a form of a single constraint (per machine) in a time-indexed model. If there
was no requirement on the maximal number of intervals, the reference model would work
as well, becoming even simpler – because variables w̃m,p,v could be removed. However, a
time-indexed model can be efficient only for trivially small instances. If there were many
periods, even an initialization of the model would become infeasible.

49

Experiments Experiment 1: Comparison of the global model and the reference model

Global MILP model

imax

3 5 7
M M M

id 1 2 4 1 2 4 1 2 4

scale = 1
1 0.02 0.02 0.00 0.03 0.08 0.06 0.06 0.09 0.09
2 0.02 0.03 0.02 0.03 0.08 0.09 0.05 0.14 0.42

5 3 0.00 0.02 0.03 0.02 0.06 0.18 0.03 0.14 0.91
4 0.02 0.00 0.02 0.02 0.09 0.06 0.03 0.09 0.12
5 0.00 0.02 0.00 0.02 0.04 0.06 0.03 0.09 0.12

1 0.02 0.08 0.09 0.03 0.28 0.14 0.05 0.89 0.92
2 0.00 0.02 0.03 0.00 0.14 0.16 0.02 0.59 0.22

J 10 3 0.00 0.03 0.09 0.02 0.14 0.58 0.00 0.42 0.92
4 0.00 0.06 0.06 0.00 0.23 0.62 0.00 1.19 2.43
5 0.00 0.03 0.09 0.03 0.13 0.95 0.03 0.44 4.76

1 0.00 0.14 0.41 0.00 0.41 1.04 0.02 1.58 8.13
2 0.00 0.15 0.19 0.00 0.14 0.28 0.00 0.22 0.52

15 3 0.00 0.37 > 120 0.00 13.49 > 120 0.02 > 120 > 120
4 0.02 0.14 0.25 0.00 0.20 0.50 0.00 1.19 0.36
5 0.02 0.02 3.98 0.00 0.31 > 120 0.02 0.66 > 120

scale = 4
1 0.02 0.00 0.02 0.06 0.05 0.06 0.06 0.09 0.13
2 0.00 0.02 0.02 0.02 0.05 0.06 0.03 0.08 0.13

5 3 0.02 0.02 0.03 0.00 0.05 0.14 0.03 0.13 0.42
4 0.00 0.00 0.02 0.02 0.05 0.03 0.03 0.08 0.14
5 0.00 0.02 0.02 0.00 0.03 0.03 0.03 0.11 0.09

1 0.02 0.11 0.13 0.02 0.14 0.30 0.05 0.76 0.91
2 0.00 0.10 0.06 0.00 0.17 0.17 0.02 0.76 0.34

J 10 3 0.00 0.02 0.05 0.00 0.16 0.59 0.00 0.39 0.92
4 0.02 0.05 0.06 0.00 0.30 0.82 0.00 1.58 2.32
5 0.02 0.02 0.06 0.03 0.11 0.48 0.05 0.39 3.59

1 0.02 0.16 0.16 0.02 1.20 1.72 0.02 2.82 3.32
2 0.00 0.03 0.20 0.00 0.17 0.13 0.02 1.05 0.62

15 3 0.00 0.03 > 120 0.00 37.83 > 120 0.00 > 120 > 120
4 0.00 0.16 0.28 0.02 0.17 0.50 0.00 0.53 0.25
5 0.00 0.03 3.54 0.00 0.23 > 120 0.02 1.01 > 120

Table 4.1: Solving times (in seconds) for different settings of the maximal number of
intervals imax, number of jobs J , number of machines M and scale for the global model;
infeasible instances are shown in gray

50

Experiments Experiment 1: Comparison of the global model and the reference model

Reference model

imax

3 5 7
M M M

id 1 2 4 1 2 4 1 2 4

scale = 1
1 0.04 0.35 1.09 0.08 0.17 0.50 0.05 0.20 0.52
2 0.03 1.07 10.90 0.24 1.01 5.37 0.22 0.80 8.11

5 3 0.00 0.02 0.41 0.00 0.03 0.44 0.00 0.02 0.44
4 0.00 0.12 1.07 0.00 0.19 3.46 0.00 0.14 4.06
5 0.00 0.11 0.73 0.00 0.66 0.69 0.00 0.43 0.74

1 0.00 0.45 10.17 0.00 0.35 13.06 0.00 0.80 26.83
2 0.02 3.60 23.00 0.03 6.08 54.28 0.02 4.26 60.03

J 10 3 0.02 0.03 0.86 0.00 0.03 1.03 0.02 0.03 0.95
4 0.02 0.22 1.31 0.02 0.30 1.38 0.00 0.35 1.02
5 0.00 0.02 1.46 0.00 0.02 1.58 0.00 0.02 1.82

1 0.02 0.23 1.54 0.00 0.37 1.61 0.02 0.41 1.91
2 0.00 0.31 3.43 0.02 1.22 7.16 0.02 0.86 4.34

15 3 0.00 0.11 40.39 0.00 0.13 58.41 0.00 0.11 60.57
4 0.00 0.14 2.26 0.00 0.19 2.47 0.02 0.45 2.43
5 0.00 0.03 19.61 0.02 0.03 1.66 0.00 0.03 2.03

scale = 4
1 1.54 109.56 > 120 4.48 82.72 > 120 13.28 76.98 > 120
2 0.36 > 120 > 120 28.13 > 120 > 120 33.83 > 120 > 120

5 3 0.03 0.12 > 120 0.02 0.11 > 120 0.02 0.11 > 120
4 0.03 50.00 > 120 0.00 > 120 > 120 0.02 65.60 > 120
5 0.02 22.66 > 120 0.02 > 120 > 120 0.00 > 120 > 120

1 0.03 42.18 > 120 0.02 > 120 > 120 0.02 > 120 > 120
2 0.35 > 120 > 120 0.34 > 120 > 120 0.34 > 120 > 120

J 10 3 0.02 0.14 > 120 0.02 0.13 > 120 0.02 0.14 > 120
4 0.02 84.60 > 120 0.02 105.97 > 120 0.02 79.97 > 120
5 0.02 0.14 > 120 0.00 0.13 > 120 0.02 0.13 > 120

1 0.03 49.11 > 120 0.02 41.03 > 120 0.03 52.43 > 120
2 0.02 > 120 > 120 0.02 > 120 > 120 0.02 > 120 > 120

15 3 0.02 0.66 > 120 0.02 0.64 > 120 0.02 0.64 > 120
4 0.02 85.07 > 120 0.03 91.43 > 120 0.02 > 120 > 120
5 0.02 0.16 > 120 0.03 0.14 > 120 0.02 0.16 > 120

Table 4.2: Solving times (in seconds) for different settings of the maximal number of
intervals imax, number of jobs J , number of machines M and scale for the reference time-
indexed model; infeasible instances are shown in gray

51

Experiments Experiment 1: Comparison of the global model and the reference model

j
0 h

5 71
4 72

17 203
17 224

14 235
16 236
17 247

14 258
2 269

15 2710
14 2711

22 2812
24 2813

14 3014
27 3015

j
0 h

3 81
2 122

6 123
9 154

15 205
14 216

2 227
17 248

3 259
2 2710

19 2711
22 2812

24 2813
26 2914

24 3015

(a) (b)
15–3 15–4

Figure 4.2: Release times and deadlines of the jobs: (a) instance 15-3, (b) instance 15-4;
red lines illustrate the minimal processing times

As instance 15-3 seems to be harder to solve than the rest of the instances, its structure
is shown in Figure 4.2 (a). Jobs are listed in non-decreasing order of their deadlines. It
can be seen, that the difficulties probably arise because jobs 3-11 and 14 have similar
time-windows implied by their release times and deadlines and thus they “compete” for
the machines. Contrary to that, Figure 4.2 (b) shows the structure of instance 15-4, which
was solved quickly.

Even though both instances may look similar, the difference can be noticed after comparing
their optimal solutions, see Figure 4.3. Whereas all of the machines were forced to operate
for instance 15-3, it was possible to schedule tasks of instance 15-4 “nicely” one after
another using only 2 machines. In this case, solver was able to find an optimal solution
quickly, thus pruning many other feasible solutions. On the other hand, the structure of
instance 15-3 allows many possible assignments – it is not clear, which tasks should be
grouped to form the optimal solution.

Notice that there is a space between the end of task 1 and the start of task 9 in the optimal
solution of 15-3. Tasks 1 and 2 cannot be processed on the same machine and so task 1
needed to be assigned to a different one. This empty space could be spent in the standby
mode, however, that would require more than 3 intervals (imax = 3). Indeed, the optimal
objective value improved from 241 380 (imax = 3) to 235 440 (imax = 5) saving additional
2% of the costs.

52

Experiments Experiment 1: Comparison of the global model and the reference model

(a)
15-3

(b)
15-4

Figure 4.3: Illustration of the optimal schedules for imax = 3: (a) instance 15-3, (b)
instance 15-4

53

Experiments Experiment 2: Comparison of the proposed approaches

standby

proc

off

5/0

5/5

10/1000

15/0

wproc = 50

wstandby = 10 woff = 0

Figure 4.4: Transition graph used for the experiment 2; edges are labelled by transition
times/transition costs

4.4 Experiment 2: Comparison of the proposed approaches

While working on the models and the algorithm, the individual approaches were tested on
several randomly generated instances. Settings of the experiments and their results will
be described in this section.

4.4.1 Settings

The transition graph used for the experiment is shown in Figure 4.4. Its structure is simple
– it has one mode in which the machine is turned off (having zero power consumption),
one processing mode and one standby mode. It is assumed, that tmin

v and tmax
v are 0 and h,

respectively, for all v ∈ V. The reason for using this topology is that in reality, machines
whose internal state can be modelled in such a way really exist. For example, in SKODA
Auto company, there are several identical furnaces, which can be either turned off, heated
to a high temperature (processing mode used for steal hardening) or heated to a slightly
lower temperature (standby mode used for energy savings) [6]. Of course the costs of the
graph would be different, but the behaviour of machines would be similar as it usually
takes a long time to turn a machine on (heating to a high temperature) and off (cooling to
a normal temperature), while transitions between the standby mode and the processing
mode are faster.

Scheduling horizon h was set to 1000 units and maximally 7 intervals were allowed, imax =
7. Tests were performed for J ∈ {5, 10, 15} and M ∈ {1, 2, 3, 4}. For each combination
of J and M , 5 testing instances were generated. Maximal solving time was set to 300
seconds per instance. It is assumed, that the machines need to start and end in the “off”
mode.

Parameters of the jobs were obtained by iteratively creating a feasible solution – assigning
jobs to machines. Processing times were generated uniformly from U(1, 100) and the jobs

54

Experiments Experiment 2: Comparison of the proposed approaches

were iteratively added to the partial feasible schedule (random unoccupied part of the
scheduling horizon was selected and the generated job/processing time was assigned to it;
it was possibly trimmed, if it did not fit the selected space). Afterwards, a release time
and a deadline of the job were established by growing the previously generated interval
(corresponding to the processing time) by U(0,25) units to the left and U(0,25) to the
right. Generated tasks for J = 5 and J = 10 are shown in Appendix A.

4.4.2 Results

The average solving times over the generated instances for each combination of M and J
are shown in Table 4.3. For tested instances, both global models perform relatively well
when number of machinesM is small (1 or 2). However, their performance becomes worse
if M is larger (3 or 4). The global CP model did not even manage to solve any instance
in a given time for J = 15, M ∈ {3, 4}.

Considering results of the branch-and-price approaches, their solving times are compa-
rable for fixed J , when M is changing. The constraints on the number of machines are
integrated to the master model, while the sub-problem solves only monoprocessor prob-
lems, thus removing potential symmetries, which have an impact on the performance of
the global models. Thanks to this decomposition, branch-and-price algorithm with MILP
sub-problems outperformed the global models on the given dataset for M ∈ {3, 4} and

M -J BP MILP BP CP Global MILP Global CP
avg #solved avg #solved avg #solved avg #solved

1-5 0.54 5 1.67 5 0.04 5 0.14 5
2-5 0.57 5 1.85 5 0.13 5 1.16 5
3-5 0.79 5 2.20 5 0.34 5 8.66 5
4-5 0.64 5 2.06 5 0.31 5 10.91 5

1-10 4.40 5 37.30 5 0.09 5 0.24 5
2-10 8.04 5 42.63 5 0.84 5 4.87 5
3-10 9.20 5 49.80 5 15.03 5 124.43 4
4-10 5.31 5 22.84 5 23.33 5 288.80 1

1-15 34.52 5 157.79 5 0.11 5 0.23 5
2-15 76.36 5 294.88 1 5.37 5 26.72 5
3-15 67.92 5 268.61 3 105.00 4 300.00 0
4-15 66.98 5 244.42 4 232.62 4 300.00 0

Table 4.3: Average time avg over the 5 generated instances and the number of instances
solved in a given time (300 s) for each combination of the number of machines M and
number of jobs J

55

Experiments Experiment 2: Comparison of the proposed approaches

J ∈ {10, 15} being on average nearly 3 times faster than the global MILP model for
J = 15, M ∈ {3, 4}.

As for the approaches which are using CP models – the branch-and-price is also faster
when the number of machines is high (3 or 4), while the global model wins when the
number of machines is low (1 or 2). However, compared to the respective approaches
based on MILP models, CP seems to be a lot worse. Specifically, the branch-and-price
based on CP is on average approximately 4.67 times slower than BP MILP (averaged over
all instances). As for the global models, the number is even higher – the global CP model
is on average 12.39 times slower than the global MILP model.

It is hard to say why CP models do not perform well. It may be caused by the complicated
objective function or by the structure of the problem itself; maybe, some of the constraints
were not formulated in the most efficient way. Anyway, data recorded during the solution
procedure indicated that for some of the larger instances, the optimal solution was found
relatively quickly by the global CP model, but the solver failed to prove its optimality. So
it may be that the Gurobi solver is just a way faster in optimality proving for this type of
problem.

One of the important statistics of a branch-and-price procedure are the number of visited
nodes of the branching tree and the number of generated patterns. These are listed in
Table 4.5. Notice that the number of generated patterns increases with the increasing
J , but is comparable when J is fixed and M increases. Also note that many of the
smaller instances were solved in the root note. That is very desirable behaviour because
branching implies more patterns to be generated (as both of the branches need to be solved
or pruned). Remember that to get a single pattern – a pricing problem needs to be solved;
even though it is a problem with a single machine only, it is still NP-hard.

Sometimes, however, branching is inevitable. To show its influence, the solving times of
instances 3-15 are listed in Table 4.4. It is somehow straightforward that more generated
patterns will usually imply longer solving times (but not necessarily, it depends on the
used prices too; usually, patterns with more jobs need longer time to be solved).

BP MILP BP CP
M -J id #n #p time #n #p time

3-15 1 4 89 37.47 1 64 191.81
2 10 161 137.86 12 111 300.00
3 7 151 86.14 5 113 272.95
4 1 67 33.36 1 68 300.00
5 6 108 62.74 6 95 278.27

Table 4.4: Numbers of generated patterns #p and nodes #n in contrast with the solution
times time

56

Experiments Experiment 2: Comparison of the proposed approaches

Figure 4.5: The optimal solution to instance M = 3, J = 15, id = 4

Note that for several instances, the numbers of patterns/nodes generated by a branch-and-
price algorithm are different for MILP and CP. That is caused by the possible existence
of multiple optimal solutions to the pricing problem, which generate different patterns
(branching trees). What is important is that both approaches generate a similar number of
patterns. Worse results of CP are caused by longer solving time per a single pattern.

The optimal solution to the instance 3-15, id = 4 is shown in Figure 4.5, illustrating the
utilization of the energy saving mode (standby).

57

Experiments Experiment 2: Comparison of the proposed approaches

M -J id BP MILP BP CP M -J id BP MILP BP CP
#n #p #n #p #n #p #n #p

1-5 1 1 9 1 9 3-10 1 1 29 1 32
2 1 9 1 9 2 1 30 1 29
3 1 11 1 11 3 5 53 15 91
4 1 9 1 9 4 4 43 4 43
5 1 11 1 11 5 7 73 7 67

2-5 1 1 10 1 10 4-10 1 1 29 1 29
2 1 11 1 10 2 1 28 1 22
3 1 8 1 8 3 6 43 3 32
4 1 9 1 9 4 1 31 1 32
5 1 13 1 13 5 1 30 1 27

3-5 1 1 9 1 9 1-15 1 1 68 1 68
2 1 10 1 11 2 1 90 1 97
3 1 11 1 11 3 1 74 1 70
4 3 16 3 15 4 1 96 1 74
5 1 10 1 10 5 1 97 1 67

4-5 1 1 10 1 9 2-15 1 17 219 1 46
2 1 10 1 10 2 5 151 7 120
3 1 10 1 9 3 1 86 1 60
4 1 13 1 13 4 1 101 1 86
5 1 12 1 12 5 1 76 1 76

1-10 1 1 41 1 38 3-15 1 4 89 1 64
2 1 27 1 29 2 10 161 12 111
3 1 26 1 28 3 7 151 5 113
4 1 34 1 40 4 1 67 1 68
5 1 38 1 46 5 6 108 6 95

2-10 1 1 43 1 45 4-15 1 1 75 1 80
2 1 31 1 33 2 23 249 1 53
3 1 43 1 39 3 6 108 3 76
4 1 43 1 42 4 1 67 1 66
5 4 54 1 45 5 1 64 1 56

Table 4.5: Numbers of nodes #n and patterns #p for individual instances; gray cells
correspond to the instances, which were not solved optimally in the time limit

58

Experiments Experiment 3: Multiple processing modes

4.5 Experiment 3: Multiple processing modes

For this experiment, the transition graph was changed to have two processing modes. Fur-
thermore, data were generated in a more systematic way as described in Section 4.5.1.

4.5.1 Settings

The transition graph selected for this experiment is shown in Figure 4.6. It has four
vertices – one representing an initial state, in which the machines are turned off and
have zero power consumption, one representing a standby mode and two for processing
modes. The first processing mode is labelled as “fast”, while the second one is “slow”. It is
assumed, that individual jobs can be processed in both of these modes; however, processing
in the slow mode will take 2 times more time (but half of the power) than processing in
the fast mode. The transition times/costs were inspired by real furnaces – transition to a
processing mode is relatively fast, but consumes a lot of energy (as the machine is heating);
on the other hand, transition from a processing state to the standby/off mode does not
consume much energy (as the machine is cooling down), but it takes more time. Note,
that “fast” represents a high-temperature state of the machine, hence it consumes more
power than “slow”, for which the temperature is lower. Real resources, which may be
described similarly, are, for example, cement kilns or chemical processing plants, where
chemical substances need to dry. The minimal time spent in slow/fast and standby mode
were set 20 and 10 time units, respectively, to simulate technological restrictions.

As for the parameters of the jobs, the generation scheme used for this experiment was
inspired by [50], where authors review multiple data-generation approaches for scheduling
applications and propose a universal generation scheme.

Parameters of the jobs were generated in the following way:

pj,fast ∼ U(1, 100), ∀j ∈ J , (4.7)

r1 = toff,slow, (4.8)

rj ∼ rj−1 + Exp

β1 ·
1
|J |

∑
j′∈J

pj′,fast

 , ∀j ∈ {2, . . . , J}, (4.9)

dj = rj + β2 · pj,fast, ∀j ∈ J . (4.10)

Processing times of the individual jobs are generated independently from uniform integer
distribution. Release time of the first job is set to toff,slow, which is the shortest possible
time needed to turn a machine from the “off” state to a processing state. Release times
of the other jobs are generated as a release time of the previous job plus random value
generated from the exponential distribution Exp(λ), where λ denotes a scale parameter
(which is reciprocal of the rate parameter). Parameter λ in fact represents an expected

59

Experiments Experiment 3: Multiple processing modes

off

fast

slow

standby

50/3250

200/0

60/350

20/1300

35/1575

150/0

40/200

10/500

35/1715 65/390

wfast = 20

wslow = 10

wstandby = 5woff = 0

tmin
fast = 20

tmin
slow = 20

tmin
standby = 10

Figure 4.6: The transition graph used for Experiment 3; edges are labelled by the transition
times/transition costs

value of the exponential distribution. It is set to β1 · 1
|J |
∑
j′∈J pj′,fast, so the release times

are generated in such a way, that the expected length of an interval between release times
of jobs j and (j+ 1) is β1 times the average processing time, where β1 > 0 is a parameter.
Deadlines are set simply to β2 multiples of the “fast” processing times, where β2 ≥ 1 is
also a parameter. Allowing β1 and β2 to vary creates a wide variety of instances.

For this experiment, a number of transitions was fixed to 6 (imax = 7), five to fifteen jobs
were generated, J ∈ {5, 10, 15}, to be scheduled onM machines,M ∈ {1, 2, 4}. Parameters
were set to β1 ∈ {0.7, 1.0, 1.5} and β2 ∈ {1.5, 2.0, 2.5}. Note that for β2 = 1.5, jobs can be
processed only in the “fast” mode, for β2 = 2.0, the “slow” mode can be used, but then
a job has to start exactly at its release time and finally for β2 = 2.5, the “slow” mode
allows multiple possible start times. Scheduling horizon h was set to maxj dj + tfast,off.
Five random instances (parameters of the jobs) were generated for each combination of
J , β1 and β2. The same instances were used for different numbers of M to to illustrate
its influence on the behaviour of the proposed approaches. The initial and the terminal
mode are set to off -mode. A timeout was set to 300 seconds.

4.5.2 Results

The average processing times and the number of solved instances for each combination
of parameters β1 and β2 are listed in Table 4.6. A more detailed view can be seen in
Appendix B.

For the instances with β2 = 1.5, for which the “slow” mode cannot be used, the branch-and-
price approaches performed well, solving all (β1 = 1.5) or nearly all (β1 ∈ {0.7, 1.0}) of the

60

Experiments Experiment 3: Multiple processing modes

BP MILP BP CP Global MILP Global CP
#feas β1-β2 avg #solved avg #solved avg #solved avg #solved

14 0.7-1.5 15.63 44 24.52 43 24.47 42 63.33 37
28 0.7-2.0 64.29 38 84.56 36 74.11 37 103.96 32
31 0.7-2.5 90.71 35 124.55 30 55.62 38 94.74 34

20 1.0-1.5 32.54 43 38.77 43 28.07 42 73.08 35
29 1.0-2.0 70.09 36 95.19 36 66.03 38 99.75 33
34 1.0-2.5 87.50 35 130.04 27 73.06 35 105.88 33

17 1.5-1.5 20.13 45 25.21 43 27.88 42 52.46 38
35 1.5-2.0 76.30 35 99.51 35 74.77 37 98.02 33
36 1.5-2.5 92.27 34 128.20 30 84.96 34 110.53 31

Table 4.6: The average solution times avg and the numbers of solved instances for fixed
combinations of parameters β1 and β2 for all of the tested approaches; #feas denotes a
number of feasible instances (maximally 45)

instances in a given time (300 s). The global model using MILP formulation managed to
solve slightly fewer instances than both of the branch-and-price approaches, while the CP
global model solved the least number of instances having the highest average time.

For instances with β2 ∈ {2, 2.5}, the situation is not that simple. The performance of the
branch-and-price with MILP pricing model is comparable to the global MILP model, but
the global model has slightly better average times. Closer inspection (see Appendix B)
shows, that the global model beats the branch-and-price when the number of machines is
low (M ∈ {1, 2}), while the branch-and-price performs better when the number machines
(and jobs) is higher (M = 4, J = 15). Similar behaviour can be noticed, when comparing
a branch-and-price using CP pricing model to the global CP model. The global model sys-
tematically outperforms the branch-and-price when M ∈ {1, 2}, while being significantly
worse when M = 4; compare 33.04 seconds (BP CP) with 240.74 seconds (global CP) for
β1 = 1.0, β2 = 1.5, M = 4, J = 10. This behaviour was expected, as the main purpose of
using branch-and-price is to reduce symmetries arising due to multiple machines.

Comparison of objective values

Most of the instances with β2 ≥ 2.0 were not solved optimally in a given time for high
numbers of jobs and resources. In order to compare the quality of generated solutions, ratio
of the found objective value to the best objective value across all of the approaches can
be computed for each generated instance. Table 4.7 shows the ratios averaged over all the
instances for fixed combinations of β1 and β2. Results are positive numbers greater than
or equal to one, where 1 would mean, that the solution method provided the best objective
values out of all tested methods. Number 1.030 would mean, that the objective values of
the method were on average 3 % worse than the values found by other methods.

61

Experiments Experiment 3: Multiple processing modes

β1-β2 BP MILP BP CP Global MILP Global CP

0.7-1.5 1.0030 1.0085 1.0002 1.0194
0.7-2.0 1.0174 1.0191 1.0052 1.0202
0.7-2.5 1.0100 1.0256 1.0068 1.0007

1.0-1.5 1.0048 1.0050 1.0000 1.0041
1.0-2.0 1.0282 1.0429 1.0004 1.0039
1.0-2.5 1.0324 1.0289 1.0050 1.0097

1.5-1.5 1.0000 1.0026 1.0011 1.0043
1.5-2.0 1.0301 1.0316 1.0016 1.0036
1.5-2.5 1.0348 1.0427 1.0030 1.0112

Table 4.7: An average ratios (over all instances, for fixed parameters β1 and β2) of the
objective value found by a tested approach to the best objective value across all of the
approaches

It shows, that the global models, especially the global MILP model, provide solutions of
better quality compared to the branch-and-price approaches. That is not unexpected as
the global models solve the problem as a whole, which allows them to improve the solution
iteratively while using the global knowledge about all of the constraints/variables. On the
other hand, the decomposed problem is solved by repeatedly adding new patterns, which
may (or may not) improve the solution. A new integer solution might appear when a
node is completely solved, but if it does not appear, new branches occur and the process
is repeated (possibly without providing any good integer solution for some time).

Branch-and-price: possible improvement

Thanks to the decomposition, the problem can be solved iteratively, by solving the pricing
problems, which are simpler than the whole global model. However, it would still take a
lot of time, if the number of patterns (pricing problems to be solved) was high. Luckily,
solving the pricing problems till optima is not really necessary, as any solution (pattern)
with a negative reduced cost has a potential to improve the objective value of the master
problem. So, instead of solving the pricing problems till optima, it is sufficient to find the
first negative-cost solution. Unfortunately, that could lead to repetitive improvements of
a single pattern, converging to the optimal schedule for the pattern slowly. To avoid this,
the set of jobs given by the pattern corresponding to the first negative-cost solution to
the pricing problem can be optimized (looking for the optimal monoprocessor schedule for
these jobs). Note, that this problem is easier (compared to the whole pricing problem)
as the jobs are fixed by the pattern (while for the original pricing problem, only the
preferences are given and the optimization procedure selects jobs from the whole J).

It seems, that the proposed idea (i.e., finding the first negative-cost solution and its asso-

62

Experiments Experiment 3: Multiple processing modes

BP MILP (first negative reduced-cost)
β1-β2 avg #solved ratio

0.7-1.5 9.98 45 0.9995
0.7-2.0 59.42 39 0.9995
0.7-2.5 86.18 35 1.0075

1.0-1.5 19.92 43 1.0001
1.0-2.0 71.52 36 1.0019
1.0-2.5 85.79 35 1.0082

1.5-1.5 5.85 45 1.0000
1.5-2.0 73.44 36 1.0024
1.5-2.5 88.82 34 1.0078

Table 4.8: Results for the modified branch-and-price MILP procedure finding the first
solution with a negative reduced-cost and re-optimizing it; the average time avg, the
number of solved instances and the average ratio of the objective value to the best objective
value across all other approaches are shown

ciated pattern and re-optimizing the pattern) could lead to better results (faster solving
times). In order to verify it, it was integrated to the branch-and-price algorithm and used
to solve all of the testing instances. Only the MILP model was tested in this way, as it per-
formed better in all of the previous experiments. The results are shown in Table 4.8. The
modified method completely outperformed the original BP MILP approach. Moreover, it
overcame (or was equal to) all of the other approaches on multiple occasions (these are
written in bold in Table 4.8). Note, that the ratio is compared to all others approaches
(not itself) and so can be lower than 1 if the modified approach found solution of better
quality (compared to all other approaches).

Branch-and-price: patterns and nodes

Some of the important statistics of the branch-and-price algorithm are the number of
generated patterns and nodes. These are shown in Table 4.9. Note, that most of the
instances with 15 jobs and 1 or 2 machines were infeasible, while instances with 15 jobs
and 4 machines were not solved in a given time, therefore rows with J = 15 do not reflect
the number of nodes/patterns needed to solve the problem, but they show how many
patterns were generated by the respective approach in a given time. It is apparent, that
even though the improved MILP approach might need more patterns than BP approaches
which solve the pricing problem till optima, it is able to generate many more patterns in
a given time. Standard MILP and CP can be compared too – MILP was able to generate
more patterns for J = 15, while results are similar for J ∈ {5, 10}. So it seems, that CP
might need more time to generate one pattern.

63

Experiments Experiment 3: Multiple processing modes

BP MILP BP CP BP MILP first neg.

β1-β2 J #nodes #patterns #nodes #patterns #nodes #patterns

0.7-1.5 5 1.00 10.33 1.00 10.11 1.00 10.50
10 1.93 21.60 2.00 20.40 1.47 15.00
15 1.13 63.80 1.40 60.20 1.40 76.00

0.7-2.0 5 1.00 10.91 1.00 10.82 1.00 12.18
10 4.20 59.40 5.07 62.80 4.27 80.50
15 1.00 46.42 1.00 42.00 1.80 158.86

0.7-2.5 5 2.46 13.50 2.60 13.57 2.33 13.42
10 10.40 88.80 8.80 79.50 5.00 102.60
15 1.27 54.60 1.00 41.70 1.67 149.70

1.0-1.5 5 1.27 11.45 1.27 11.45 1.27 12.55
10 1.00 27.88 1.00 27.63 1.00 36.75
15 3.00 82.57 1.93 59.57 3.33 130.29

1.0-2.0 5 2.47 14.00 2.47 14.00 2.33 16.45
10 2.33 43.18 2.33 42.54 2.33 67.54
15 2.73 61.33 1.00 41.44 5.33 171.67

1.0-2.5 5 1.00 10.60 1.00 10.87 1.00 13.00
10 6.40 82.10 4.80 63.40 5.33 110.00
15 1.00 35.00 1.00 38.30 1.00 134.10

1.5-1.5 5 1.00 8.40 1.00 8.10 1.00 9.20
10 1.00 29.67 1.00 26.89 1.00 36.56
15 1.00 45.50 1.00 36.33 1.00 41.50

1.5-2.0 5 1.00 12.47 1.00 12.47 1.00 14.40
10 1.60 40.00 1.67 38.55 1.67 54.54
15 1.00 44.30 1.00 41.40 1.13 138.1

1.5-2.5 5 1.53 12.07 1.53 12.07 1.53 12.85
10 3.47 56.67 2.87 46.41 3.47 71.33
15 1.00 30.91 1.00 28.36 1.00 110.45

Table 4.9: The average numbers of nodes and patterns for different branch-and-price
formulations; BP MILP first neg. represents the improved branch-and-price which uses
the re-optimized first negative-cost solution of the pricing problem

64

Experiments Experiment 3: Multiple processing modes

M

1 2 4

5 25.46% 46.56% 73.31%
J 10 22.56% 43.90% 69.11%

15 20.87% 40.33% 66.97%

Table 4.10: Average objective cost savings compared to the worst-case scenario for J jobs
and M machines

Energy savings

Without the real industrial data, it is hard to tell, how big cost savings could be achieved
in a real life. In order to show some comparison, the best objective values found in this
experiment were compared with the worst-case scenario, where all the machines are turned
to the fast mode at the beginning of the scheduling horizon and are all turned off at the
end. The worst-case scenario is not totally unrealistic as in some of the production facilities
the machines are scheduled in such a way. It is not really efficient, but is it comfortable
for the factory workers and the machines are not strained by switching between different
modes (as the repeated heating and cooling could burden the machines if overused).

The results are shown in Table 4.10. The best solution over all approaches was compared to
the worst case scenario for each generated instance. Afterwards, the results were averaged
over all combinations of β1, β2. Only the feasible instances (for which some solution was
found) were used. The results show a simple dependency – the more machines there are,
the more costs can be saved by scheduling of machine modes.

Of course, in real life production, the savings might not be as large as shown here. The
final numbers would depend on the specific transition graph and on how “underutilized”
the machines would actually be.

65

5 Epilogue

5.1 Conclusions

The production scheduling problem with multiple parallel identical machines was ad-
dressed in this work. The goal was to save costs by changing modes (internal states)
of the machines. The problem was formulated in such a way, that the modes are explic-
itly modelled, so the resulting schedules provide the assignment of the jobs to machines
together with the specific working profiles of the machines.

To solve the problem exactly, several approaches were proposed. At first, a global model
was developed. It integrates all of the restriction in a single formulation, which can be
solved by standard solvers. However, due to the structure of the problem, it might be
inefficient if there are many machines to be scheduled. To improve the performance and
to eliminate the symmetries arising due to the parallel machines, the global model was
decomposed by a Dantzig-Wolfe decomposition technique. The decomposed approach
used a branch-and-price procedure to find an optimal solution. The global model and
the pricing model used in the branch-and-price were both formulated as MILP and CP
problems to compare two different formulation/solution frameworks. In order to compare
the proposed approaches to the state of the art methods, a reference MILP model was
adapted from the literature.

Several experiments were conducted to assess the performance of the proposed models.
Experiment 1 demonstrated that time-indexed models cannot be used when the scheduling
horizon is too long and its discretization is too dense because in such a case, the models
became too large (having many constraints and variables) to be efficiently solved even by
the currently best solvers (such as Gurobi or IBM CP Optimizer).

In Experiment 2, global models were compared to the branch-and-price approach. The
global models were better when the number of machines was low, whereas the branch-
and-price was more effective when the number of machines was higher. This type of result
was expected, as the used decomposition aims to reduce exactly these symmetries caused
by the multi-machine characteristics of the problem, which might slow down the solution
process of the global models. The surprising result was that MILP models outperformed
CP models by a wide margin. That might be caused by the complicated objective function
used in the CP models or by the solution process of the CP itself, which may be slower
than the solution process of MILP for this particular problem.

66

Epilogue Future work

Finally, Experiment 3 illustrated the generality of the proposed models, as multiple pro-
cessing modes were assumed. Various benchmark instances were generated to test the
efficiency of the global models and the branch-and-price procedure. The branch-and-price
algorithm was slightly modified, to find and re-optimize only the first negative-solution to
the pricing problem in each iteration. This modification proved to be significantly better
than the original one, as the time spent on the full optimization of each pricing problem
is not negligible and can be used to generate more patterns instead.

5.2 Future work

It would be naive to think, that the problem is now solved. The exact approaches allow us
to investigate the structure of the problem and provide us with the optimal solutions to
small instances. However, for the real production scheduling problems, tenths, hundredths
or even more jobs need to be scheduled over the scheduling horizon. For now, it would
be impossible to employ the proposed approaches to solve such problems. Therefore, the
next necessary step is to develop an efficient heuristic, which would be able to solve large
problems in a reasonable time.

As mentioned, the used decomposition has a relation to a Lagrangian relaxation, and so
it may be possible to utilize it to get better lower bounds, which could be compared to
the heuristic solutions, for example.

Another matter to be addressed relates to the input data. Even though the benchmark
problems used in this work were inspired by real production processes, the transition
graphs were created artificially, and the parameters of the jobs were generated randomly. It
would be really helpful to obtain a real data from the production as the practical problems
do not have a random structure and so it might be possible to adapt the algorithms to
solve the real problems (instead of the general ones) fast.

Dantzig-Wolfe decomposition was successfully used to simplify the structure of the prob-
lem. It would be interesting to investigate if the decomposition could be even used for
a monoprocessor problem. The proposed models schedule the individual intervals, so
it might be possible to generate the intervals by the pricing problem, while the master
problem would arrange them together to form the complete schedule.

All in all, only the first step in optimizing of the underutilized machines schedules was
done; a long road lies ahead of the researchers, but it is worth the effort as the energy
savings can be achieved with minimal investments afterwards.

67

References

[1] E. R. Office, “Yearly report on the operation of the czech electric-
ity grid 2016.” https://www.eru.cz/en/elektrina/statistika-a-sledovani-
kvality/rocni-zpravy-o-provozu, 2017. [Online; accessed 10-April-2018].

[2] BP, “Statistical review of world energy 2017.” https://www.bp.com/en/global/
corporate/energy-economics/statistical-review-of-world-energy.html, 6
2017. [Online; accessed 9-April-2018].

[3] C. Gahm, F. Denz, M. Dirr, and A. Tuma, “Energy-efficient scheduling in manufactur-
ing companies: A review and research framework,” European Journal of Operational
Research, vol. 248, pp. 744–757, 2 2016.

[4] G. Mouzon, M. B. Yildirim, and J. Twomey, “Operational methods for minimiza-
tion of energy consumption of manufacturing equipment,” International Journal of
Production Research, vol. 45, pp. 4247–4271, 5 2007.

[5] S. Mitra, I. E. Grossmann, J. M. Pinto, and N. Arora, “Optimal production plan-
ning under time-sensitive electricity prices for continuous power-intensive processes,”
Computers & Chemical Engineering, vol. 38, pp. 171–184, 3 2012.

[6] J. Dušek, “Návrh úpravy řízení výrobní linky s ohledem na snížení její spotřeby,”
Master’s thesis, Czech Technical University in Prague, the Czech republic, 6 2016.

[7] I. E. Agency, “Co2 emissions from fuel combustion; statistics 2017; high-
lights.” https://www.iea.org/publications/freepublications/publication/
CO2EmissionsfromFuelCombustionHighlights2017.pdf, 10 2017. [Online; accessed
15-April-2018].

[8] M. Rager, C. Gahm, and F. Denz, “Energy-oriented scheduling based on evolutionary
algorithms,” Computers & Operations Research, vol. 54, pp. 218–231, 2 2015.

[9] F. Shrouf, J. Ordieres-Meré, A. García-Sánchez, and M. Ortega-Mier, “Optimizing
the production scheduling of a single machine to minimize total energy consumption
costs,” Journal of Cleaner Production, vol. 67, pp. 197–207, 5 2014.

[10] M. Selmair, T. Claus, F. Herrmann, A. Bley, and M. Trost, “Job shop scheduling with
flexible energy prices,” 6 2016. European Conference on Modelling and Simulation.

[11] X. Gong, T. D. Pessemier, W. Joseph, and L. Martens, “A generic method for energy-

68

https://www.eru.cz/en/elektrina/statistika-a-sledovani-kvality/rocni-zpravy-o-provozu
https://www.eru.cz/en/elektrina/statistika-a-sledovani-kvality/rocni-zpravy-o-provozu
https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html
https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html
https://www.iea.org/publications/freepublications/publication/CO2EmissionsfromFuelCombustionHighlights2017.pdf
https://www.iea.org/publications/freepublications/publication/CO2EmissionsfromFuelCombustionHighlights2017.pdf

References References

efficient and energy-cost-effective production at the unit process level,” Journal of
Cleaner Production, vol. 113, pp. 508–522, 2 2016.

[12] K.-T. Fang and B. M. T. Lin, “Parallel-machine scheduling to minimize tardiness
penalty and power cost,” Computers & Industrial Engineering, vol. 64, pp. 224–234,
1 2013.

[13] E. K. Boukas, A. Haurie, and F. Soumis, “Hierarchical approach to steel production
scheduling under a global energy constraint,” Annals of Operations Research, vol. 26,
pp. 289–311, 1 1991.

[14] J.-Y. Moon, K. Shin, and J. Park, “Optimization of production scheduling with time-
dependent and machine-dependent electricity cost for industrial energy efficiency,”
The International Journal of Advanced Manufacturing Technology, vol. 68, pp. 523–
535, 9 2013.

[15] C. Artigues, P. Lopez, and A. Haït, “The energy scheduling problem: Industrial case-
study and constraint propagation techniques,” International Journal of Production
Economics, vol. 143, pp. 13–23, 5 2013.

[16] A. Che, S. Zhang, and X. Wu, “Energy-conscious unrelated parallel machine schedul-
ing under time-of-use electricity tariffs,” Journal of Cleaner Production, vol. 156,
pp. 688–697, 7 2017.

[17] Z. Hanzálek and P. Šůcha, “Scheduling.” https://rtime.felk.cvut.cz/~hanzalek/
KO/sched_e.pdf, 2018. [Online; accessed 17-May-2018].

[18] G. Gamrath, Generic Branch-Cut-and-Price. PhD thesis, Technischen Universität
Berlin, Germany, 2010.

[19] D. Feillet, “A tutorial on column generation and branch-and-price for vehicle routing
problems,” 4OR, vol. 8, pp. 407–424, 12 2010.

[20] M. Akella, S. Gupta, and A. Sarkar, “Branch and price, column generation for solv-
ing huge integer programs.” https://www.acsu.buffalo.edu/~nagi/courses/684/
price.pdf, 2004. [Online; accessed 15-April-2018].

[21] G. Optimization, “Mixed-integer programming (mip) - a primer on the basics.”
http://www.gurobi.com/resources/getting-started/mip-basics, 2018. [On-
line; accessed 17-April-2018].

[22] G. B. Dantzig and P. Wolfe, “Decomposition principle for linear programs,” Opera-
tions Research, vol. 8, pp. 101–111, 2 1960.

[23] J. Desrosiers and M. E. Lübbecke, A Primer in Column Generation, pp. 1–32. Boston,
MA: Springer, Boston, MA, 2005.

[24] T. Werner, “Optimization.” "https://cw.fel.cvut.cz/old/_media/courses/

69

https://rtime.felk.cvut.cz/~hanzalek/KO/sched_e.pdf
https://rtime.felk.cvut.cz/~hanzalek/KO/sched_e.pdf
https://www.acsu.buffalo.edu/~nagi/courses/684/price.pdf
https://www.acsu.buffalo.edu/~nagi/courses/684/price.pdf
http://www.gurobi.com/resources/getting-started/mip-basics
"https://cw.fel.cvut.cz/old/_media/courses/a4b33opt/opt.pdf"
"https://cw.fel.cvut.cz/old/_media/courses/a4b33opt/opt.pdf"
"https://cw.fel.cvut.cz/old/_media/courses/a4b33opt/opt.pdf"

References References

a4b33opt/opt.pdf", 2018. [Online; accessed 19-April-2018].

[25] L. G. Khachiyan, “Polynomial algorithms in linear programming,” USSR Computa-
tional Mathematics and Mathematical Physics, vol. 20, no. 1, pp. 51–68, 1980.

[26] N. Karmarkar, “A new polynomial-time algorithm for linear programming,” Combi-
natorica, vol. 4, pp. 373–395, 12 1984.

[27] G. B. Dantzig, A. Orden, and P. Wolfe, “The generalized simplex method for minimiz-
ing a linear form under linear inequality restraints,” Pacific Journal of Mathematics,
vol. 5, pp. 183–195, 6 1955.

[28] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, vol. B of 24.
Springer-Verlag Berlin Heidelberg, 1 ed., 1 2003.

[29] A. H. Land and A. G. Doig, “An automatic method of solving discrete programming
problems,” Econometrica, vol. 28, pp. 497–520, 7 1960.

[30] R. C E Gilmore and R. Gomory, “A linear programming approach to the cutting
stock problem i,” Operations Research, vol. 9, pp. 849–859, 12 1961.

[31] G. B. Dantzig and P. Wolfe, “The decomposition algorithm for linear programs,”
Econometrica, vol. 29, pp. 767–778, 10 1961.

[32] A. Schrijver, Theory of Linear and Integer Programming. New York, NY, USA: John
Wiley & Sons, Inc., 1986.

[33] M. E. Lübbecke, Column Generation. American Cancer Society, 2011.

[34] C. Lemaréchal, “The omnipresence of lagrange,” Quarterly Journal of the Belgian,
French and Italian Operations Research Societies, vol. 1, pp. 7–25, 3 2003.

[35] T. L. Magnanti, J. F. Shapiro, and M. H. Wagner, “Generalized linear programming
solves the dual,” Management Science, vol. 22, pp. 1195–1203, 7 1976.

[36] D. Huisman, R. Jans, M. Peeters, and A. P. Wagelmans, Combining Column Gener-
ation and Lagrangian Relaxation, pp. 247–270. Boston, MA: Springer US, 2005.

[37] R. Václavík, A. Novák, P. Šůcha, and Z. Hanzálek, “Accelerating the branch-and-
price algorithm using machine learning,” European Journal of Operational Research,
2017. under review.

[38] F. Vanderbeck, “Branching in branch-and-price: a generic scheme,” Mathematical
Programming, vol. 130, pp. 249–294, 12 2011.

[39] V. Chvátal, Linear Programming. Series of books in the mathematical sciences, W.H.
Freeman, 1983.

[40] O. du Merle, D. Villeneuve, J. Desrosiers, and P. Hansen, “Stabilized column gener-

70

"https://cw.fel.cvut.cz/old/_media/courses/a4b33opt/opt.pdf"
"https://cw.fel.cvut.cz/old/_media/courses/a4b33opt/opt.pdf"
"https://cw.fel.cvut.cz/old/_media/courses/a4b33opt/opt.pdf"

References References

ation,” Discrete Mathematics, vol. 194, pp. 229–237, 1 1999.

[41] O. Briant, C. Lemaréchal, P. Meurdesoif, S. Michel, N. Perrot, and F. Vanderbeck,
“Comparison of bundle and classical column generation,” Mathematical Programming,
vol. 113, pp. 299–344, 6 2008.

[42] A. Bettinelli, A. Ceselli, and G. Righini, “A branch-and-cut-and-price algorithm for
the multi-depot heterogeneous vehicle routing problem with time windows,” Trans-
portation Research Part C: Emerging Technologies, vol. 19, no. 5, pp. 723–740, 2011.

[43] C. Archetti, N. Bianchessi, and A. Hertz, “A branch-and-price algorithm for the
robust graph coloring problem,” Discrete Applied Mathematics, vol. 165, pp. 49–59,
2014. 10th Cologne/Twente Workshop on Graphs and Combinatorial Optimization
(CTW 2011).

[44] R. Barták, “Constraint programming.” http://kti.ms.mff.cuni.cz/~bartak/
podminky/index.html#kontakt, 2018. [Online; accessed 6-May-2018].

[45] P. Laborie, J. Rogerie, P. Shaw, and P. Vilím, “Ibm ilog cp optimizer for scheduling,”
Constraints, vol. 23, pp. 210–250, 4 2018.

[46] P. Laborie, “Introduction to cp optimizer for scheduling.” http://icaps17.
icaps-conference.org/tutorials/T3-Introduction-to-CP-Optimizer-for-
Scheduling.pdf, 2017. [Online; accessed 6-May-2018].

[47] F. Vanderbeck, “On dantzig-wolfe decomposition in integer programming and ways
to perform branching in a branch-and-price algorithm,” Operations Research, vol. 48,
pp. 111–128, 1 2000.

[48] G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial Optimization. New
York, NY, USA: Wiley-Interscience, 1988.

[49] M. E. Lübbecke and J. Desrosiers, “Selected topics in column generation,” Operations
Research, vol. 53, pp. 1007–1023, 11 2005.

[50] N. G. Hall and M. E. Posner, “Generating experimental data for computational testing
with machine scheduling applications,” Operations Research, vol. 49, no. 6, pp. 854–
865, 2001.

71

http://kti.ms.mff.cuni.cz/~bartak/podminky/index.html#kontakt
http://kti.ms.mff.cuni.cz/~bartak/podminky/index.html#kontakt
http://icaps17.icaps-conference.org/tutorials/T3-Introduction-to-CP-Optimizer-for-Scheduling.pdf
http://icaps17.icaps-conference.org/tutorials/T3-Introduction-to-CP-Optimizer-for-Scheduling.pdf
http://icaps17.icaps-conference.org/tutorials/T3-Introduction-to-CP-Optimizer-for-Scheduling.pdf

Appendix

A Instances generated for Experiment 2

jpj
0 h

519 607154
722 791223

790 81334
769 819424

941 985521

jpj
0 h

345 440170
543 55522

495 566353
551 56841
530 648572

M = 1, J = 5, id = 0 M = 1, J = 5, id = 1

jpj
0 h

10 50121
37 99235

369 468375
695 733415

757 874574

jpj
0 h

289 333143
330 353213
314 35436
328 419460

800 904563

M = 1, J = 5, id = 2 M = 1, J = 5, id = 3

jpj
0 h

115 144110
173 251254

534 609340
841 903451

913 985569

jpj
0 h

45 171193
232 327269

345 411343
377 455462

704 793553

M = 1, J = 5, id = 4 M = 2, J = 5, id = 0

jpj
0 h

440 518146
626 683241

939 96532
951 975419
971 985510

jpj
0 h

44 117142
89 199267

345 458397
648 69648

926 985550

M = 2, J = 5, id = 1 M = 2, J = 5, id = 2

jpj
0 h

90 145142
136 214253

69 214397
194 279469

716 747516

jpj
0 h

378 417117
440 525257

538 641376
698 782454

800 920592

M = 2, J = 5, id = 3 M = 2, J = 5, id = 4

72

Instances generated for Experiment 2

jpj
0 h

257 290122
553 636242

744 799332
821 934496

943 984516

jpj
0 h

10 43118
26 130270

96 233397
553 675487

937 985532

M = 3, J = 5, id = 0 M = 3, J = 5, id = 1

jpj
0 h

62 148159
612 677234

771 813325
745 824457

888 983563

jpj
0 h

82 9915
481 527213

753 78034
881 953440

977 98552

M = 3, J = 5, id = 2 M = 3, J = 5, id = 3

jpj
0 h

555 658179
837 935273
871 964358
908 976439
948 985513

jpj
0 h

44 7216
39 146292

562 58033
739 802438

797 829513

M = 3, J = 5, id = 4 M = 4, J = 5, id = 0

jpj
0 h

190 22918
311 415278

402 437326
413 472420

602 666517

jpj
0 h

10 3414
14 57234

443 522347
580 692472

892 911515

M = 4, J = 5, id = 1 M = 4, J = 5, id = 2

jpj
0 h

485 505112
621 695260

671 776390
727 802457

876 958558

jpj
0 h

219 294165
746 822253

803 858312
810 873435

869 940546

M = 4, J = 5, id = 3 M = 4, J = 5, id = 4

jpj
0 h

113 176136
158 205218

400 489384
557 628443

779 867563
840 914640
867 92178
892 92583
899 92993
886 9451022

jpj
0 h

217 25415
259 351265

330 4463100
470 51441
480 554564

544 591623
560 677776

647 713858
700 795958

890 9491037

M = 1, J = 10, id = 0 M = 1, J = 10, id = 1

73

Instances generated for Experiment 2

jpj
0 h

281 381175
343 396221
386 452355

502 612479
617 672548

880 950626
939 97871

911 984833
955 985910
945 9851013

jpj
0 h

18 5015
89 116213
85 198387

170 301488
413 477550

631 66468
632 726769

705 748819
730 771917
745 7921012

M = 1, J = 10, id = 2 M = 1, J = 10, id = 3

jpj
0 h

36 84111
47 9528
67 117323
99 174447
150 184515
159 243642

581 678773
819 854811

927 94993
921 9851054

jpj
0 h

10 28111
10 2923
43 5432
18 56424
30 88522

266 354683
372 409736

460 512843
590 632912

932 9851048

M = 1, J = 10, id = 4 M = 2, J = 10, id = 0

jpj
0 h

566 653170
647 699221
643 748396

699 810493
785 828521

873 904615
884 967753

953 985810
949 985911

887 9851063

jpj
0 h

46 9018
129 193229

226 301349
224 302453

333 356511
365 417622

552 622736
630 720868

878 985979
974 985104

M = 2, J = 10, id = 1 M = 2, J = 10, id = 2

jpj
0 h

99 205186
476 507210

584 692385
757 796415
740 832585

792 840637
826 877731
849 910830

936 969920
953 9851026

jpj
0 h

36 1751100
411 442222
431 478334
470 532427

602 716582
707 777635
703 785769

897 943829
945 985924
954 9851015

M = 2, J = 10, id = 3 M = 2, J = 10, id = 4

jpj
0 h

136 250187
228 26027
247 270320
267 299414

210 326583
421 539675

528 648787
588 700876

783 82796
780 9001093

jpj
0 h

106 204153
202 249229
216 268313

401 452411
494 576574

681 71765
670 762750

873 914820
931 97492
937 9851036

M = 3, J = 10, id = 0 M = 3, J = 10, id = 1

74

Instances generated for Experiment 2

jpj
0 h

17 98167
166 259248

319 422385
532 585432

809 861524
854 88061
863 904730
872 90782

972 98592
887 9851093

jpj
0 h

11 51112
11 75243

229 327366
642 721467

699 742514
751 863685
741 863786

815 881866
895 938935

973 985109

M = 3, J = 10, id = 2 M = 3, J = 10, id = 3

jpj
0 h

10 87173
78 112221
94 202387
159 259458
189 307587

470 530637
496 562726
508 606875

808 877960
946 9841021

jpj
0 h

143 198114
227 26324

291 30937
230 315459

391 491586
473 531620

580 626716
587 643830

725 747913
713 748103

M = 3, J = 10, id = 4 M = 4, J = 10, id = 0

jpj
0 h

10 59124
67 173296

149 19234
175 229433

289 342512
324 413657

380 419724
365 4938100

722 845995
900 9501032

jpj
0 h

77 159147
143 246260

206 267339
251 306430
278 399574

529 57968
543 624749

861 927834
921 985946
922 9851048

M = 4, J = 10, id = 1 M = 4, J = 10, id = 2

jpj
0 h

45 9417
99 120211
102 218386

247 314436
273 358561

449 511636
544 596716

696 762834
756 77491
764 8241052

jpj
0 h

23 146188
83 195287

244 27135
271 31147
257 333569
239 335675

901 963732
913 964816
963 985914
952 9851028

M = 4, J = 10, id = 3 M = 4, J = 10, id = 4

75

Aggregated results of Experiment 3

B Aggregated results of Experiment 3

Results of the Experiment 3 aggregated over the 5 randomly generated instances for each
combination of parameters M , J , β1, β2; the number of feasible instances #feas, the av-
erage solving time avg and the number of solved instances #solved are listed for each
approach separately.

BP MILP BP CP Global MILP Global CP
avg #solved avg #solved avg #solved avg #solved

β1 = 0.7. β2 = 1.5
#feas M -J
0 1-5 0.03 5 0.03 5 0.00 5 0.08 5
4 2-5 0.74 5 0.76 5 0.20 5 1.89 5
4 4-5 1.03 5 1.02 5 0.56 5 64.18 4

0 1-10 0.02 5 0.03 5 0.02 5 0.08 5
0 2-10 0.03 5 0.03 5 0.20 5 5.68 5
2 4-10 7.85 5 10.20 5 3.70 5 50.86 5

0 1-15 0.02 5 0.02 5 0.07 5 0.25 5
0 2-15 0.04 5 0.04 5 13.93 5 206.15 2
4 4-15 130.92 4 208.54 3 201.54 2 240.80 1

β1 = 0.7. β2 = 2.0
#feas M -J
1 1-5 0.18 5 0.62 5 0.06 5 0.24 5
5 2-5 1.74 5 3.27 5 0.49 5 3.45 5
5 4-5 1.45 5 2.81 5 1.45 5 15.79 5

0 1-10 0.03 5 0.03 5 0.03 5 0.58 5
5 2-10 89.18 5 177.72 4 25.52 5 45.83 5
5 4-10 66.02 5 156.56 4 122.12 4 286.43 1

0 1-15 0.03 5 0.03 5 0.10 5 0.21 5
2 2-15 120.02 3 120.02 3 217.24 3 283.14 1
5 4-15 300.00 0 300.00 0 300.00 0 300.00 0

β1 = 0.7. β2 = 2.5
#feas M -J
3 1-5 0.96 5 3.54 5 0.08 5 0.39 5
5 2-5 3.09 5 7.53 5 0.88 5 3.30 5
5 4-5 3.71 5 7.85 5 2.08 5 18.23 5

0 1-10 0.03 5 0.03 5 0.24 5 1.22 5
5 2-10 90.86 5 227.50 3 8.29 5 47.65 5
5 4-10 117.69 5 274.47 2 97.50 4 300.00 0

0 1-15 0.03 5 0.02 5 0.10 5 2.10 5

76

Aggregated results of Experiment 3

4 2-15 300.00 0 300.00 0 91.43 4 179.72 4
4 4-15 300.00 0 300.00 0 300.00 0 300.00 0

β1 = 1.0. β2 = 1.5
#feas M -J
0 1-5 0.27 5 0.46 5 0.02 5 0.11 5
4 2-5 1.67 5 2.03 5 0.24 5 3.72 5
4 4-5 1.62 5 2.09 5 0.71 5 15.65 5

0 1-10 0.02 5 0.03 5 0.02 5 0.15 5
2 2-10 8.56 5 22.45 5 3.14 5 26.55 5
4 4-10 11.14 5 32.72 5 59.15 5 240.55 1

0 1-15 0.03 5 0.03 5 0.02 5 0.18 5
2 2-15 26.38 5 79.08 5 6.64 5 129.36 3
4 4-15 162.17 3 210.02 3 182.67 2 241.49 1

β1 = 1.0. β2 = 2.0
#feas M -J
1 1-5 0.27 5 0.96 5 0.11 5 0.28 5
5 2-5 3.29 5 6.88 5 0.73 5 5.86 5
5 4-5 3.82 5 7.84 5 2.21 5 22.18 5

0 1-10 7.80 5 33.68 5 0.15 5 0.93 5
5 2-10 38.27 5 135.59 5 19.93 5 49.25 5
5 4-10 37.34 5 131.76 5 104.23 5 300.00 0

0 1-15 0.03 5 0.03 5 0.37 5 5.09 5
3 2-15 240.01 1 240.01 1 189.55 2 214.19 3
5 4-15 300.00 0 300.00 0 276.99 1 300.00 0

β1 = 1.0. β2 = 2.5
#feas M -J
5 1-5 1.39 5 5.42 5 0.18 5 0.41 5
5 2-5 1.68 5 6.42 5 0.67 5 2.57 5
5 4-5 1.63 5 5.39 5 1.45 5 7.87 5

0 1-10 0.03 5 0.03 5 0.32 5 1.64 5
5 2-10 82.24 5 289.99 1 12.67 5 82.73 5
5 4-10 100.46 5 263.07 1 41.91 5 300.00 0

0 1-15 0.03 5 0.02 5 0.32 5 5.53 5
4 2-15 300.00 0 300.00 0 300.00 0 252.21 3
5 4-15 300.00 0 300.00 0 300.00 0 300.00 0

β1 = 1.5. β2 = 1.5
#feas M -J
0 1-5 0.08 5 0.09 5 0.03 5 0.11 5
3 2-5 1.03 5 2.02 5 0.28 5 1.99 5
3 4-5 1.21 5 2.15 5 0.83 5 15.87 5

0 1-10 0.03 5 0.02 5 0.13 5 0.23 5

77

Aggregated results of Experiment 3

4 2-10 13.26 5 34.77 5 5.33 5 16.91 5
4 4-10 12.45 5 33.04 5 116.21 4 240.76 1

0 1-15 0.03 5 0.02 5 0.09 5 0.38 5
1 2-15 53.29 5 60.03 4 8.01 5 71.92 4
2 4-15 99.79 5 94.76 4 120.03 3 123.94 3

β1 = 1.5. β2 = 2.0
#feas M -J
5 1-5 1.54 5 4.67 5 0.15 5 0.33 5
5 2-5 2.48 5 7.83 5 0.56 5 3.00 5
5 4-5 2.62 5 7.97 5 1.49 5 10.22 5

0 1-10 2.25 5 16.21 5 0.16 5 2.53 5
5 2-10 39.47 5 130.21 5 13.15 5 47.59 5
5 4-10 38.35 5 128.63 5 132.84 5 300.00 0

0 1-15 0.02 5 0.03 5 0.15 5 3.12 5
5 2-15 300.00 0 300.00 0 224.44 2 215.36 3
5 4-15 300.00 0 300.00 0 300.00 0 300.00 0

β1 = 1.5. β2 = 2.5
#feas M -J
3 1-5 1.27 5 3.84 5 0.16 5 0.42 5
5 2-5 2.36 5 6.34 5 0.68 5 3.91 5
5 4-5 2.83 5 6.49 5 1.69 5 13.51 5

2 1-10 10.35 5 46.10 5 0.58 5 3.02 5
5 2-10 78.11 5 217.63 3 25.77 5 84.21 5
5 4-10 75.51 5 213.41 3 134.38 4 277.44 1

1 1-15 60.02 4 60.02 4 1.39 5 12.24 5
5 2-15 300.00 0 300.00 0 300.00 0 300.00 0
5 4-15 300.00 0 300.00 0 300.00 0 300.00 0

78

List of abbreviations

C List of abbreviations

BP Branch-and-price
CP Constraint Programming
FSM Finite state machine
LP Linear Programming
MILP Mixed Integer Linear Programming
MP Master Problem
RMP Restricted Master Problem

79

Contents of the attached CD

D Contents of the attached CD

root
Energy_aware_production_scheduling

README.txtinformation about the content
DP_Benedikt_2018.pdftext of the thesis
source_text.zip LATEX source files
source_code.zipPython source codes

80

	Prologue
	Introduction
	Field of study
	Related work
	Contribution

	Outline

	Theoretical background
	Problem statement
	Resources
	Jobs
	Solution
	Objective
	Example

	Complexity
	Brief introduction to LP/MILP solution approaches
	Overview
	Dantzig-Wolfe decomposition
	Lagrangian relaxation
	Branch and price

	Constraint programming

	Models
	Global models
	MILP model
	CP model

	Branch-and-price models
	Master model
	Pricing model

	Reference model

	Experiments
	Branch-and-price settings
	Data generation
	Experiment 1: Comparison of the global model and the reference model
	Setting
	Results

	Experiment 2: Comparison of the proposed approaches
	Settings
	Results

	Experiment 3: Multiple processing modes
	Settings
	Results

	Epilogue
	Conclusions
	Future work

	References
	Appendix
	Instances generated for Experiment 2
	Aggregated results of Experiment 3
	List of abbreviations
	Contents of the attached CD

