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Abstract
The thesis discusses the problematics of
hydronic heating in buildings in which one-
pipe hydronic heating systems are used.
It describes thermal relations in buildings
and relations of heat transfer via heat ex-
changers. It presents current types of hot
water distribution networks and provides
a tool for design and analysis of a one-pipe
network for a given building.

The main motive of this thesis is model
predictive control of such a network. The
development of an appropriate controller
is described gradually. It starts with a
relatively simple problem of calculation
of required heat flow in each room and
ends with a more difficult problem that
takes into consideration structure of the
one-pipe network and parameters of in-
dividual heat exchangers. Problems that
make the controller’s underlying optimiza-
tion problem more difficult or ill-defined
are presented. Their consequences are
that software tools have problems (effi-
ciently) solving the optimization problem.
The controller is developed for different
control scenarios. The functionality of
the introduced controller is verified on a
building model of higher fidelity.

Keywords: Static optimization, steady
state, dynamic model, nonlinear system,
MPC, automatic differentiation, heat
exchanger, one-pipe hydronic heating
networks

Supervisor: Ing. Jiří Dostál

Abstrakt
Tato práce se zabývá problematikou teplo-
vodního vytápění v budovách, ve kterých
jsou využity jednopotrubní otopné sys-
témy. Popisuje tepelné vztahy v budovách
a vztahy týkající se přenosu tepla skrze
teplotní výměníky. Představuje současné
typy teplovodních sítí a přináší nástroj
pro návrh a analýzu jednopotrubní sítě
pro zadanou budovu.

Hlavním motivem práce je centralizo-
vané prediktivní řízení takové sítě. Po-
stupně popisuje vytvoření odpovídajícího
regulátoru. Začíná u poměrně jednodu-
chého problému výpočtu potřebného do-
dodaného tepla v každém pokoji a končí
u složitějsího problému, který počítá se
strukturou jednopotrubní sítě a s para-
metry jednotlivých teplotních výměníku
v ní umístěných. Jsou představeny pro-
blémy, které mají často za důsledek, že
optimalizační problém, na jehož základě
je regulátor postaven, je moc složitý nebo
špatně definováný, a vybrané softwarové
nástroje ho nejsou schopny (efektivně) ře-
šit. Regulátor je navržen pro různé scénáře
řízení. Navržený regulátor je otestován na
přesnějším modelu budovy.

Klíčová slova: Statická optimalizace,
ustálený stav, dynamický model,
nelineární systém, MPC, automatická
diferenciace, teplotní výměník,
jednopotrubní otopná síť

Překlad názvu: Prediktivní řízení
budov s jednopotrubním otopným
systémem
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Chapter 1
Introducton

In the modern world, some kind of heat distribution systems is typically present in
every inhabited building built in the last century or two. While the technology of heat
exchangers that ensures the heat exchange between a heat-transfer fluid and a room
is continuously evolving, the way hot water is distributed has been quite stagnant. In
the vast majority of buildings, we can find themselves similar two-pipe heat distribution
systems.

This thesis originates from a research project developed at the Department of Control
engineering in collaboration with UCEEB1. The project’s aim is to make heating of
buildings more efficient and do so predominantly by utilizing a one-pipe hot water
distribution network. However, doing so has huge impact on control of a building heating.

The goal of this thesis is to research the problematics of mathematical optimization
and the problematics of predictive control of buildings, to create a mathematical model
of a one-pipe hydronic heating network and to develop a static optimizer for various
optimization problems over the network. Then it includes development of a model
predictive controller for a building with the one-pipe hot water distribution system.
The one-pipe structure introduces nonlinear constraints and the thesis’ objective is a
suggestion of a way how to effectively solve such optimal control problem and a validation
of the controller on a high-fidelity building model.

1.1 Thesis outline

In the beginning, an overview of current technological solutions of water distribution
systems and some reasons why the two-pipe variant is so widespread are described and
the obstacles that prevent the one-pipe network from being used much more are identified.
A comparison of the two along with their variants are listed.

In chapter 3 heat exchange is described mathematically, NTU analysis is explained
and some optimization problems regarding the behavior of a one-pipe heat distribution
system are introduced. In the following chapter, the results of these static optimizations
are discussed.

In chapter 5 starts the essential part of this thesis - the model predictive control. A
short description of it is given and necessary mathematical models are created. Then a
first controller is constructed. Its inputs are temperature demands in all rooms over some

1University Centre for Energy Efficient Buildings of Technical University in Prague
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1. Introducton ...........................................
time horizon and its outputs are heat flows that need to be transferred into each room.
The rest of the chapter builds on this controller and gradually makes the problem larger
and closer to reality. Predominantly by switching demanded heat flows with demanded
rooms’ temperatures and by chaining heat exchangers in a row which introduces nonlinear
constraints.

The nonlinear constraints cause the optimization methods used so far to be insufficient
or incapable of solving such problems. Therefore CasADi, a symbolic framework for
algorithmic differentiation, is presented. With it, a fully working controller based on
nonlinear optimization can be designed. Implementation details, conducted experiments
and verification of the controller on a high-fidelity building model are contained in chapter
6.

2



Chapter 2
Hot water distribution systems

Nowadays mainly two-pipe systems are used. They allow good zone temperature control,
and their hydronic balancing1 is quite easy in simple distribution networks. Larger
buildings require more advanced balancing techniques, but it is still pretty standard at
present. Water flows into all radiators at the same temperature, so the temperature
gradient is the same over each radiator and is not affected by other radiators current
power. For two-pipe networks there are several different ways of control. By far the most
widespread is the throttle control where the hydraulic resistance of a secondary circuit is
controlled by a valve. Changing the resistance effectively controls the water flow. The
simplest way is a static valve that can be opened or closed manually. An automated
solution is a thermostatic valve that mechanically controls the opening based on the
room temperature.

A different approach to the network’s control is not to use throttling but directly
control flows through each radiator using a decentralized pump placed into each secondary
circuit. For further needs, let’s call systems using throttle control as passive and those
controlled by pumps as active.

The ideas discussed in this section regarding the classification of hydronic heating
networks and their comparison are taken from the yet not published article by Ing.
Ondřej Zlevor, Bc. Jan Předota and Ing. Jiří Dostál. [1]

2.1 Passive one-pipe

A passive one-pipe hydronic heating network consists of a boiler, a pump, and a single
pipe that brings hot water from a boiler to the heat exchangers connected in series and
also returns cooled water back to the boiler. Water flow through a heat exchanger is
controlled, in possible cases, by a valve. In the fig. 2.1 various types of arrangements
used in one-pipe passive hydronic heating networks are shown. The most basic one (a)
is the flow-through arrangement, which makes it impossible to control individual heat
exchangers gradient and limits the maximum number of radiators in a row. The other
arrangements with the bridging pipe (b) or with the particular mixing valve (c) are not
that restrictive, however, there are still problems with hydronic balancing and difficult
zone control. One-pipe systems were widely introduced in the German Democratic
Republic in the 1970s and 1980s mainly due to low acquisition costs. However, these

1https://en.wikipedia.org/wiki/Hydronic_balancing
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2. Hot water distribution systems ...................................
systems have many disadvantages:. Complex design caused by the cooling of the heating water in the heat exchanger

series.. Difficult extendability.. Difficult thermal and hydronic balancing.

Figure 2.1: Various arrangements of a one-pipe system. [1]

On top of that, passive one-pipe networks in this form are energetically ineffective. For
the last heat exchanger in the row to provide sufficient heat flow the inlet water flowing
into it already cooled from preceding heat exchangers must be sufficiently hot. This can
be achieved by increasing flow. But then, cooled water flowing into the boiler differs only
by few degrees in temperature from the hot water. That decreases the efficiency of the
boiler. By placing a valve, that opens and closes based on water temperature, in front of
the boiler, the hydraulic resistance of the network and so the water flow can be changed.
However, although that solves the problem of low boiler efficiency, the pump still rotates
at maximum revolutions and its power is only taken by the added valve.

2.2 Passive two-pipe networks

Passive two-pipe networks are the most used hydronic heating systems. Compared to
passive single-pipe systems, they have several advantages:. The simplicity of design because of the identical temperature of the water coming

into all radiators.. Easy extendability.. Allow equitherm control. For a given room it’s possible to determine equitherm
curves that describe dependence between the radiator’s input water temperature
and the outside temperature. Based on the desired room temperature the boiler
heats water to the necessary level. It saves energy and gives nice non-oscillating
thermal comfort.. There are no thermal interactions between radiators.

However, there are still some disadvantages:. The need for hydronic balancing.

4



..........................................2.3. Active two-pipe

. Loss of the pump’s power on control actuators.. There are pressure interactions between radiators.

For a valve to have good controllability it is necessary to be of high resistance,
approximately half of the controlled heat exchanger.[2] By using control valves, the
resistance of the system increases which increases demands on the pump. The figure 2.2
shows a scheme of a two-pipe system in direct return mode. It’s disadvantages are the
different lengths of the inlet and outlet pipes (from the pump to the radiators), which
cause different differential pressures in the network and more difficult hydronic balancing.
This problem is usually solved by reverse return (also called Tichelmann’s, fig. 2.3)
connection, where for all radiators the sum of inlet or outlet pipes is the same for all heat
exchangers. That holds also for the different pressure drops, so the system is in balance.
Also usage of hydraulic separators preventing hydraulic influences between boiler and
radiators circuits is increasing.

Figure 2.2: Scheme of a two-pipe passive system in the direct return mode. [1]

Figure 2.3: Scheme of a two-pipe system in Tichelmann’s connection. [1]

2.3 Active two-pipe

The adjective active refers to a system in which each radiator has assigned a pump that
can continuously control water flow. Such a system is shown in the fig. 2.4. In order
to prevent counterflow for the situation when the pump is not running, it is necessary

5



2. Hot water distribution systems ...................................
to put a check valve between the pump and the radiator. As opposed to the two-pipe
passive systems, it has the advantages of:. Not having any throttling elements means there is no loss of the pump’s power.. It’s not necessary to perform hydronic balancing.. Easier network design - one type of the pump can be used with a large variety of

radiators of different sizes.

The disadvantages are:. Higher investment costs.. Pressure loss on one-way valves.

Figure 2.4: Scheme of an active two-pipe system. [1]

During the years 2001-2009 there was a couple of joint research projects between Wilo2

and the Technical University in Dresden regarding hydronic heating in two-pipe networks
controlled with decentralized pumps. The results show saving 20% of thermal energy and
up to 70% of electrical energy when compared to a system with thermostatic heads.[3]
However, these values indicate rather the advantages of zone control then specifically
advantages of control with the use of pumps.

A piping design of an active two-pipe system doesn’t differ from the design of its
passive variant. Designed water flows are the same. Therefore the pipe dimensions are
also the same. According to the desired temperature gradient, heat exchangers’ power
and network connection type it is only necessary to choose appropriate heat exchangers.

2.4 Active one-pipe

It is a system comprising a single-pipe primary circuit to which secondary circuits are
connected by a double T-piece. An illustration is shown in the fig. 2.5. Outlet water
from a heat exchanger is returned back to the primary circuit and cools the heating
water coming into another heat exchanger. Water circulation through each secondary
circuit is provided by the circuit-specific pump. Since the input and return pipes of the

2One of the world leaders in pumps manufacturing.
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..........................................2.4. Active one-pipe

secondary circuits are close to each other, there is almost zero pressure drop between
them. As a result, each secondary circuit is hydraulically separated from the primary
circuit (change of water flow in the primary circuit doesn’t affect flow in any secondary
circuit in any way except it limits its maximum to primary flow current value). If a
pump in a secondary circuit is off, there is now water flowing through a heat exchanger
in the circuit. In the network, there are no pressure interactions, only thermal ones.

Figure 2.5: Scheme of an active one-pipe system. [1]

These active one pipe systems started being possible with the invention of wet electrical
BLDC motors. They allow to continuously change the rotational speed in their range
and thus to change the water flow, respectively power.

The advantages of a one-pipe active system are:. The network contains pipes of only two different diameters (primary and secondary),
so there is no need to design individual connectors concerning pressure drops.. Secondary circuits are hydraulically separated from the primary circuit eliminating
problems with hydronic balancing..Material and installation savings (less piping, fittings, valves and work).. The secondary pump allows control of a wide range of heat exchangers.. Compared to the active two-pipe there is no pressure loss on check valves, and the
pump compensates losses only of the secondary circuit, therefore a weaker pump
may be used.. The total pipes’ resistance that the pump must overcome is the smallest of all
introduced network variants.. The least amount of water in the system.

The disadvantages are:.Generally, one-pipe systems have a bad reputation because of its passive variant.. There is little experience with this technology because it was made possible with
the introduction of the pumps with the so-called wet rotor and with technological
progress in BLDC motors.

7



2. Hot water distribution systems ...................................
. Thermal interactions have to be considered during network design, and the system

has to be computed iteratively.
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Chapter 3
Static optimizations

Static optimizations serve as an introduction into control of a one pipe hydronic heating
network. Based on demands on some of the network’s parameters (e.g., transferred
heat or sizes of heat exchangers) they allow calculation of values of other parameters
(e.g., water temperature and water flows in the pipes) that are necessary to satisfy the
demands. That is important so we can simulate what is a one-pipe hydronic heating
network capable of and how one should design it and also how to design a controller for
such network.

Before the steady state optimizations, the general physical principles of heat exchange
are described. In the following section, they are applied to heat exchangers. The
calculation of heat transfer via the exchangers using the NTU method is shown. After
that, static optimizations are presented.

3.1 Physical principals of heat exchange

Thermal conduction is a heat transfer via direct contact based on the temperature
difference between the two points and the conductivity of the material between them.
The Fourier’s law of heat conduction is generally described as:

q = −k∇T (3.1)

where q [W ·m−2] is a local heat flux, k [W ·m−1K−1] is the material’s conductivity, and
∇T [K ·m−1] is the temperature gradient. The law can be rewritten for a homogeneous
material into a 1-D variant:

Q

∆t = −kA∆T
∆x (3.2)

where A [m2] is the cross-sectional surface area that heat goes through, ∆t [s] is the
time change, ∆ T [◦C] is the temperature difference between two ends and ∆x [m] is the
distance between the ends. If we write

U = k

∆x

where U [W ·m−2 ·K−1] is thermal conductance, the Fourier’s law looks as:

Q

∆t = UA(−∆T ) (3.3)

9



3. Static optimizations........................................
The amount of heat Q [J] supplied to an object is computed as:

Q = C∆T (3.4)

where C [J ·K−1] is the object’s heat capacity and ∆T [K] is the temperature change.
We can expand that to:

Q = mc∆T (3.5)

where m [kg] is the object weight and c [J · kg−1 ·K−1] object’s specific heat capacity.
If we differentiate the equation above with respect to time and switch to the domain

of liquids we obtain:
Q̇ = ṁc∆T (3.6)

where Q̇ [W] is a heat flow rate, ṁ [kg · s−1] represents liquid’s mass flow and c [J · kg−1 ·K−1]
is liquid’s specific heat capacity.

3.1.1 NTU Analysis

In the simplest heat exchangers, there are two streams of fluids and heat is exchanged
from the hotter fluid to the colder one. There are two methods used to calculate the
rate of heat transfer. The first is Log-Mean Temperature Difference method that is used
when both the inlet and outlet temperatures are known.

The NTU (abbr. of Number of Transfer Units) method is usually used when the outlet
temperatures of the fluids are not known although it can be used in almost any situations.

The equation 3.6 can be interpreted as how much heat is being transferred given the
liquid’s mass flow and temperature differences. So if there is a room that is heated by
hot water (via heat exchanger) and where a heat loss is happening because of colder
outside temperature, the equation can be used for the computation of water flow and
water temperature necessary to compensate the loss.

However, the heat flow rate Q̇ is the theoretical maximum that can be exchanged. The
heat exchange occurs between water flowing in the pipes and air in the room via a heat
exchanger. The exchange can be divided into two parts: heat is exchanged from water
to the heat exchanger and then from heat exchanger to the air. Because the rate of
heat exchange isn’t the same between water and metal and between metal and air, the
equation 3.6 is extended to:

Q̇ = εṁc∆T (3.7)

where ε [−], ε ∈ (0; 1) is the heat exchanger effectiveness.
Generally, the effectiveness is defined as:

ε = Q̇

Q̇max
(3.8)

where Q̇ [W] is the real heat transfer rate and Q̇max [W] is the maximum heat transfer
rate possible.

The maximum temperature difference possible between the two fluids is:

∆Tmax = Th,i − Tc,i (3.9)

10



.................................3.1. Physical principals of heat exchange
where Th,i [◦C], Tc,i [◦C] are the inlet temperature of the hotter fluid and of the colder
fluid respectively. Let’s also introduce two more temperatures Th,o and Tc,o which are
the outlet temperatures of both streams. If the fluids were stationary and didn’t flow,
final temperatures would be the same, but because of the nature of heat exchangers and
the ongoing flows, we must distinguish between these two.

The theoretical maximum heat flow rate Q̇max can be expressed as:

Q̇max = Ċ(Th,i − Tc,i) (3.10)

where
Ċ = min(Ċh, Ċc)

The term Ċ is referred to as the heat capacity rate. The mass capacity rate is defined
as:

Ċ = cṁ [W ·K−1]
while the volumetric capacity rate can be computed as:

Ċ = cvV̇ [W ·K−1] (3.11)

where V̇ [m3 s−1] is the volumetric flow rate and cv [J ·m−3 ·K−1] is specific heat capacity
at constant volume.

If Ċh, Ċh is defined as the capacity rate of the hot fluid, respectively cold fluid, the
equation 3.8 can be expressed as:

ε = Ċh(Th,i − Th,o)
Ċmin(Th,i − Tc,i)

= Ċc(Tc,i − Tc,o)
Ċmin(Th,i − Tc,i)

(3.12)

but since the outlet temperatures are not known, the effectiveness must be computed in
another way. In general, it is a function of the number of transfer units NTU and heat
capacity ratio Cr:

ε = f(NTU, Ċr) (3.13)
where

Ċr = Ċmin

Ċmax
, Ċmax = max(Ċh, Ċc)

and
NTU = UA

Cmin
(3.14)

where A [m2] is the heat transfer area, i.e., the area of a heat exchanger, and U [W ·m−2 ·
K−1] is the heat transfer coefficient (also known as thermal transmittance or U-value). It
has the same units as the thermal conductance used in 3.3, but that is primarily used for
heat transfers between fluids while thermal transmittance is used to simplify an equation
that has several different forms of thermal resistances. It is the reciprocal of the R-value
known as thermal resistance.

The function f(NTU, Ċr) differs for different flow arrangements in heat exchangers
and can be looked up at appropriate tables. For example for a parallel-flow concentric
tubes heat exchanger (fig. 3.1) the formula is[5]:

ε =

[
1− exp

(
−NTU(1 + Ċr)

)]
1 + Ċr

(3.15)
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3. Static optimizations........................................

Figure 3.1: Scheme of fluids flows in a par-
allel heat exchanger. [4]

Figure 3.2: Scheme of fluids flows in a coun-
terflow heat exchanger.[4]

or for a counter-current flow concentric tubes heat exchanger (fig. 3.2)[6]:

ε =
1− exp

[
−NTU

(
1− Ċr

)]
1− Ċr exp

[
−NTU

(
1− Ċr

)] (3.16)

In this thesis a crossflow liquid-to-air heat exchanger (pic. 3.3) is used. Its efficiency
formula is[7]:

ε = 1− exp(−NTU). (3.17)

which is the same as 3.15 or 3.16 for Ċr = 0.

Figure 3.3: Scheme of a crossflow heat exchanger.[8]

The heat transfer coefficient U of a heat exchanger (used in the equation 3.14) depends
on both the air volumetric flow V̇ [m3s−1] and water mass flow ṁ [kg · s−1]. The heat
exchange is described by two steps. Firstly heat is transferred from water to the heat
exchanger and then from the heat exchanger to the ambient air. Therefore, let’s introduce
thermal transmittance (U-value) for both these cases:..1. Water to body heat exchange. The U-value is approximated by the equation:

Uwb(ṁs)=̇a · ṁb
s (3.18)

12



..................................... 3.2. Steady state optimization

where ṁs [kg s−1] is the hot water flowing through the exchanger and a, b are heat
exchanger dependent mapping coefficients...2. Body to air heat exchange. The U-value is approximated by the equation:

Uba(V̇a)=̇rV̇ 2
a − sV̇a + t (3.19)

where V̇a [m3 h−1] is the cold air flowing across the exchanger and r, s, t are heat
exchanger dependent mapping coefficients.

The coefficients in the two mapping equations were obtained by a series of measurements
that were conducted by Ing. Jiri Dostal.

Because the meaning of U is thermal conductance their connection in a series is
computed as:

1
U

= 1
Uwb

+ 1
Uba

⇒ U(ṁs, V̇a) = Uwb(ṁs)Uba(V̇a)
Uwb(ṁs) + Uba(V̇a)

. (3.20)

3.1.2 Heat transfers in one zone

Let’s show all heat transfers that are happening inside a zone (a room) with a heat
exchanger (fig. 3.4). The heat rate being transferred from the water to the zone, in terms
of using all the previously mentioned relations including the NTU analysis, is:

Q̇HX(ṁ, Tw, Tz, V̇air, A) = ε · Ċmin · (Tw − Tz) = f(NTU, Ċr) · Ċmin · (Tw − Tz) =(
1− e−

UA
Ċmin

)
· Ċmin · (Tw − Tz) =[

1− exp
(
− U(ṁ, V̇air) ·A

min(ṁ · cw, V̇air · cair)

)]
·min(ṁ · cw, V̇air · cair) · (Tw − Tz)

(3.21)

3.2 Steady state optimization

Variables affecting transferred heat rate Q̇HX can be altered in different combinations and
still provide a same result. As an example let’s put a zone that needs a constant supply
of heat to keep itself at a specific temperature or to raise its temperature. Considering
fans of the HX to be rotating at the same speed, therefore V̇air being constant, A being
constant by nature and Tz being given, there is still the mathematically infinite amount
of combinations of inlet water temperature Tw and water flow ṁ to deliver desired heat.
To compute the combination that is most efficient (in a specified way) methods from the
field of mathematical optimization are used.

3.2.1 Mathematical optimization

Mathematical optimization “is the selection of the best element (concerning some criterion)
from some set of available alternatives”[9]. Usually, the goal is to find such combination

13



3. Static optimizations........................................

Figure 3.4: Scheme of a zone with a heat exchanger. The left pipe carries hot water with a
temperature Tw and flow ṁ. The zone has temperature Tz. The heat exchanger has a heat
transfer surface A and the air flows through it at the rate Vair. Q̇HX is the total heat rate
being transferred from water to the room.

of inputs to the objective function that the objective function’s value is minimized while
satisfying all present constraints. Mathematically expressed:

minimize
x

f0(x), x ∈ Rn

subject to g(x) ≤ bi, i = 1, . . . ,m.
(3.22)

There are many types of optimization problems that are characterized by different
objective and constraint functions (linear, quadratic, combinatorial, non-linear, etc.) and
each one is typically solved with a different method and having different computational
complexity. Some methods use only function values, and some also use gradients or
Hessians, which improves the rate of convergence. Mathematical optimization is a very
complex topic, and its problematics isn’t the main focus of this thesis. There are many
great solvers for various problems already implemented, and the task is to choose the
suitable one and properly formulate our optimization problem.

3.2.2 Chaining heat exchangers

The one-pipe hot water distribution systems consist of a single distribution pipe. It
carries hot water to all radiators which are connected in series, one after another. The
hottest water from a boiler is always at the input of the first heat exchanger connected
to the main pipe (in the direction from the boiler). Water at the input of another heat
exchanger is always colder because it already passed some of its heat in the previous heat
exchanger. For this reason, either size of the heat exchanger or water flow through it
should be increased to provide the same heat output. There is a bridging pipe around
each heat exchanger to make different water flows possible. A scheme of such a system
is shown in the figure 3.5. Kirchhoff’s circuit laws analogy can be used for theoretical

14



..................................... 3.2. Steady state optimization

analysis of the system. In any junction sum of all the input flows must equal the output
flows (water flows or heat flow rates). Therefore:

Q̇n+1
p = Q̇n

b + Q̇n
s,o (3.23)

Q̇n
s,o = Q̇n

s,i − Q̇n
HX (3.24)

Q̇n+1
p = Q̇n

p − Q̇n
HX (3.25)

where: upper indeces of the variables are connected to specific heat exchanger; bottom
index p means primary, representing variables connected to the primary pipe, s means
secondary, representing variables connected to the secondary circuits, b is connected to
the bridging part of the main pipe and i, o mean input, respectively output, with respect
to the heat exchanger. See fig. 3.5.

Figure 3.5: Scheme of a one pipe-network with three secondary circuits with heat exchangers.
Each heat HX is in a different room with different temperature. There is a boiler heating
water up and a main pump applying pressure in the main pipe. Every secondary circuit has
also its own independent pump.

3.2.3 Water temperature in the primary pipe

In the following subsections, there are described three optimization problems. In all of
them, temperature of water in the primary pipe (between any two heat exchangers) must
be known. Whether because it is directly a part of an objective function or because it
is needed for the computation of heat supplied by the following heat exchanger. The
temperature can be expressed as:

Tn+1
p = Tn

p −
Q̇n

HX

(
ṁn

s , T
n
p , T

n
z , V̇

n
air, A

n
)

ṁp · cw
(3.26)

From this equation, it’s clear that for computation of the water temperature somewhere
farther in the primary pipe, the heat transfer rate of all previous heat exchangers also
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3. Static optimizations........................................
has to be calculated, and because Q̇HX contains an exponential term (see 3.21), that
leads to a sum of exponential functions. Moreover, each exponential term depends on all
the exponentials terms corresponding to the preceding HXs. As a result, calculation of
water temperature after n-th heat exchanger means n iterations of the equation 3.26.

3.2.4 Constraints

During the optimization problems discussed later, several constraints related mainly to
the physical restrictions of the system will be applied.

Maximal flow through the primary pipe

Maximal flow through the circular primary pipe is determined according to the used
pipe’s specifications. One should look for the inner diameter d[m] of a tube. That is
specified by the ISO 7 norm[10] for all commonly used pipes and screw threads. Each
pipe also has a recommended maximum flow rate for different fluids that should not be
exceeded to minimize pipe’s erosion wear and noise. Maximum flow is defined as:

ṁp = π
d2

2 ρv
2
max (3.27)

where ρ [kg ·m−3] is the liquid’s density and vmax [m · s−1] is the recommended maximum
water flow rate. A good rule of thumb is to use vmax = 1 m · s−1.

Maximum flow through a secondary pipe

As a fluid flows through a tube, a pressure drop occurs due to friction (resistance of
the pipes). Of course, that also happens in the main pipe. However, there is a more
powerful pump that gives the maximum recommended water flow without problems and
that won’t be exceeded. For a pipe of diameter D [m] the pressure loss ∆pd [Pa ·m−1]
is characterized by Darcy-Weisbach equation [11]:

∆pd

L
= fd ·

ρ

2 ·
v2

d
(3.28)

where L [m] is the pipe’s length, ρ [kg ·m−3] water density, v [m · s−1] means flow
velocity and fd [−] the Darcy friction factor. The Darcy friction factor differs for
different flow regimes. We will consider the two most used, for laminar flow:

fd = 64
Re

(3.29)

and for turbulent flow (Colebrook equation) [12]:

1√
fd

= −2 log
(
ε/D

3.7 + 2.51
Re
√
fd

)
(3.30)

where Re is Reynolds number, and ε[−] is pipe relative roughness.
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..................................... 3.2. Steady state optimization

Because of the difficulty of the last equation and the fact that the real system is usually
in the turbulent flow mode (higher flows), an approximation to these equations by a
second-order monomial (fig. 3.6) was used:

∆pd

L
= klṁ

2 (3.31)

with the coefficient kl [kg−1 ·m−2].

Figure 3.6: Experimental approximation of secondary pipe pressure drop per meter depending
on water flow. [13]

Another resistance in the secondary circuit that must be taken into account is the
resistance of a heat exchanger. That is also water flow dependent and is also approximated
by a second-order monomial. Therefore the final approximation of the resistance in a
secondary circuit becomes:

∆pd

L
= klṁ

2 + kHXṁ
2 (3.32)

In order to achieve desired water flow the pump must match the pressure loss of the
circuit. For constant RPMs, the dependence of the pump pressure in the fluid on the
resistance of the circuit is approximated by the following equation:

∆pp = p0 − bṁ− aṁ2 (3.33)

where p0 is the theoretical maximum pressure the pump is able to apply when there is
infinite resistance in the circuit (no water flow). With decreasing resistance the pressure
also decreases and water flow ṁs increases. With higher flows, the effect of flow friction
will not be neglectable. Flow friction occurs in all the hydraulic components which the
fluid flows and grows quadratically with the flow velocity and is represented by the −aṁ2

term. General pump losses are illustrated in picture 3.7.
To use the equation 3.33 for variable flows (shaft RPMs respectively), it has to be

extended. That is done by using the affinity laws [14], which allow prediction of the
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3. Static optimizations........................................
pressure change characteristic of a pump from known characteristic measured at different
speed. According to them, the pressure is proportional to the square of the shaft speed,
mathematically p1

p2
=
(

s1
s2

)2
. Therefore the equation 3.33 can be modified to [15]:

∆pp = aṁ2
s + bṁss+ p0s

2 (3.34)

where s [rpm] is the pump speed. The sign of the two terms was changed so it can be
manipulated better later on.

The bridging pipe across every heat exchanger is short and the pressure loss on that
pipe is neglectable. Therefore, flow in the primary pipe doesn’t influence flow in any
secondary circuit. Because of this hydraulic separation, the algebraic sum of pressures in
any circuit must be zero. This is illustrated in fig. 3.8. If the pump speed s is set to the
maximal possible and the pump pressure equation 3.34 is put equal with pressure drop pd

from the equation 3.32, the maximal water flow in a secondary circuit can be expressed:

∆pp = ∆pd

aṁ2
s + bṁss+ p0s

2 = Lṁ2
s(kl + kHX)

ṁs_max = ±
√
s2(−4ap0 + b2 + 4Lp0 (kl + kHX))∓ bs

2a− 2 (kl + kHX) (3.35)

Only the physically possible positive solution will be used.

Figure 3.7: Illustration of various possi-
ble pressure losses in centrifugal pumps [16].
H [m] is the Euler head which says how
high the pump is able to pump water and
is converted into pressure with the rela-
tion p = gρH where g [m · s−2] is gravita-
tional constant and ρ [kg ·m−3] water den-
sity. Q̇ [m3 · s−1] is water flow. In this thesis
only the Euler head loss and loss due to flow
friction are considered because other losses
are neglectable in the pump used.

Figure 3.8: An illustration of pressures
present in a secondary circuit. Pressure ∆pp

applied by the pump must be equal to the
sum of the pressure loss on the pipes ∆pL

and the pressure loss on the heat exchanger
∆pHX .

18



..................................... 3.2. Steady state optimization

No reverse flow

In this thesis the possibility of reverse water flow through the secondary circuits is not
considered. Therefore, it must be specified in the optimization problem as a constraint.
Water flow through a secondary circuit must not be less then zero and also not larger
than flow in the primary pipe:

0 ≤ ṁi
s ≤ ṁp, i = 1, . . . , n

where n is the number of secondary circuits.

3.2.5 Optimization case: Heat source design

The first optimization task is to find the minimal possible temperature of the water coming
out of the boiler while demanding specific fixed temperature at the end of the net (at
boiler input). Individual heat exchangers have to satisfy the demand of transferred heat
into the respective zones. Flows in pipes are constrained as described in the subsection
3.2.4. Mathematically:

minimize
ṁp, ṁi

s, T 1
p

T 1
p

subject to 0 ≤ ṁp ≤ mp|max,

0 ≤ ṁj
s ≤ ms|max, j = 1, . . . , n.

ṁj
s ≤ ṁp

Q̇j
HX = Q̇j

demanded

Tn
p = Tn

p|demanded

(3.36)

This optimization problem is crucial because it allows the design of the boiler and
helps to decide to choose an appropriate one. However, one of its results is that the water
flow through the primary pipe is always at its maximum ṁp_max because the bigger the
difference versus water flows though secondary circuits the smaller the temperature drops
across heat exchangers.

Having the main pump operating around its maximum and the boiler heating water
only by couple of degrees would be inefficient, therefore it is advised to constrain the
primary flow ṁp more, e.g. to its fourth of what was described in 3.2.4. Doing so will
increase the sought temperature of the boiler outlet water and the designed water flow
will be smaller.

3.2.6 Optimization case: Heat exchanger design

Another task worth examining is adding the possibility of having different HXs. That
can be done by adding the variable A, which is the surface of an HX, to the optimization
variables. The goal now is to find a compromise between minimizing the temperature at
the end of the chain and the sum of the heat exchangers’ surfaces while having input
temperature fixed and satisfying the heat demands at each HX and other constraints
already described above. Also the coefficient A must stay within some predefined values,
e.g., 〈 1

10 , 10〉. Mathematically expressed:
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3. Static optimizations........................................

minimize
ṁp, ṁi

s, Ai
Tn

p + w
n∑
i

Ai i = 1, . . . , n

subject to 0 ≤ ṁp ≤ mp|max,

0 ≤ ṁj
s ≤ ms|max, j = 1, . . . , n.

ṁj
s ≤ ṁp

Q̇j
HX = Q̇j

demanded

T 1
p = T 1

p|demanded

Aj
min < Aj < Aj

max

(3.37)

where w is a weight that controls how much the surfaces’ sum is penalized with respect
to the output temperature.

This optimization case can find its use allowing one to design a one-pipe network in a
building assuming at least rough estimates of typical heat flow rates demanded during
operation are known.

3.2.7 Optimization case: Network operation

In the last optimization task, the goal is to minimize the temperature at the end of the
net (between the last HX and the boiler) while having the temperature of the water
coming out of the boiler fixed. How to calculate that temperature was shown in the
eq. 3.26. Individual fan coil units have to satisfy the demand of transferred heat into
the respective zones. That is implemented as an equality constraint. Flows in pipes are
constrained similarly as in the previous subsections. Mathematically expressed:

minimize
ṁp, ṁi

s

Tn
p

subject to 0 ≤ ṁp ≤ mp|max,

0 ≤ ṁj
s ≤ ms|max, j = 1, . . . , n.

ṁj
s ≤ ṁp

Q̇j
HX = Q̇j

demanded

T 1
p = T 1

p|demanded

(3.38)

This optimization task is useful for analysis of how given network and boiler will
perform. The efficiency of a boiler (e.g., a condensing one) is the higher, the bigger the
temperature difference. This objective function leads to the behavior that when there
are reasonable heat rate demands the flow through the last secondary circuit is equal to
the flow of the primary pipe and flows through all preceding HXs are smaller.

20



Chapter 4
Static optimization study for an example network

For all problems the optimization was performed over water flows ṁp, ṁ
i
s and in 4.3 also

over surfaces of the heat exchangers Ai. Air flow of fans V̇ i
air and zone temperatures

T i
z were kept constant. Two outcomes of each problem are discussed in the following

paragraphs, however, there are certainly many more possible scenarios.

4.1 Implementation

All three optimization tasks mentioned in 3.2 were implemented and performed in
Matlab R©. For solving optimization problems fmincon function from Optimization
toolbox was used. The problem, if feasible, was solved within few seconds for up to 30
secondary circuits. For simpler system behavior representation we set the number of
zones with a heat exchanger to four.

All solving algorithms currently implemented in fmincon were tried and the interior-
point method was found to perform the best by far. Description of this method can
be found in [17]. Very shortly: Inequality constraints are added into objective function
(usually via logarithmic barrier function) and have near-zero value when far from a
respective boundary and analogically very high value when close to a boundary. Then
the search towards the minimum of the objective function at each iteration tries to use
direct step also called Newton’s, which satisfies the KKT conditions1. If the approximate
problem is not locally convex near the current iterate, it takes the step based on the
conjugate gradient, using trust region [18].

After substitution for the values specific to this example, the two approximation
equations regarding thermal transmittance in a heat exchanger 3.18 and 3.19 were:

Uwb(ṁs)=̇43.13 · ṁ0.29
s (4.1)

Uba(V̇a)=̇21896
36002 V̇

2
a −

3132
3600 V̇a + 261. (4.2)

The coefficients present in the formula for the computation of the maximum secondary
flow (subsubsec. 3.2.4):

ṁs_max = ±
√
s2(−4ap+ b2 + 4kLp)∓ bs

2a− 2kL
1https://en.wikipedia.org/wiki/Karush%E2%80%93Kuhn%E2%80%93Tucker_conditions
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4. Static optimization study for an example network ...........................
had the following values:

a = −0.048279, b = −0.014058, p0 = 1.195428, kl = 0.8, kHX = 0.2, L = 1

The maximum RPM of the used pump was s = 160.

4.1.1 Optimization variable scaling

Optimizing over variables with different orders of magnitude can cause numerical dif-
ficulties. Contributions of small magnitude variables to the objective function can get
swamped by the large magnitude ones, leading to loss of information, especially in
gradient estimation when finding the optimal step size. The best way to prevent this is
to scale optimization variables to a similar order of magnitude before passing them to an
optimizer and to scale them back when solved. For example if boiler outlet temperature
T 1

p were somewhere around 50 ◦C while a reasonable value of flows in secondary pipe is
about 0.02 kg/s that would be a 3 orders of magnitude difference and should be scaled.

4.2 Heat source design

The optimizer’s goal was to find the lowest possible water temperature at the boiler
outlet while demanding temperature of 40 ◦C in the primary pipe after the last heat
exchanger. In the first case, each heat exchanger should maintain the constant supply of
1200 W. Temperature of each zone was set to 20 ◦C. Water flow in the primary pipe was
constrained by its recommended maximum and the optimization outcome hit this value.
Temperature drops along primary pipe were small because the flow carrying hot water
was by an order of magnitude larger than flows with cooled water in secondary pipes.
The result is shown in fig. 4.1. The minimal temperature was found to be 42.23 ◦C.
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Figure 4.1: Result of the first optimization problem. Minimal boiler outlet water temperature
found: 42.23 ◦C in order to maintain 40 ◦C at the boiler input. Demanded heat flow rates:
1200 W per heat exchanger. Water flow through the primary pipe is at its allowed maximum
of 0.49 kg/s.

In the second case, the problem was made more real. Firstly, primary pipe water flow
was constrained to the one fourth because when in operation it might not be efficient to
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.......................................4.3. Heat exchanger design
have low-temperature difference at the boiler and large water flow thus having the main
pump consume a lot of power. Demanded heat flows of each heat exchangers were (in
order): 1600, 900, 800, 1200 W. Also temperature of the rooms were set to different
values (in order): 20, 21, 23, 21 ◦C. The result is shown in fig. 4.2. The minimal
temperature was found to be 48.96 ◦C.
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Figure 4.2: Result of the advanced first optimization problem. Minimal boiler outlet water
temperature found: 48.96 ◦C in order to maintain 40 ◦C at the boiler input. Corresponding
flows through secondary circuit needed for constant supply of demanded heat rates are shown.
The water flow through primary pipe is at its allowed maximum of 0.12 kg/s. Legend in the
figure 4.1.

4.3 Heat exchanger design

As opposed to the previous case, the problem was to finding minimal water temperature
at the boiler input - extended with finding the optimal heat exchangers’ sizes (heat
transfer surfaces). Boiler output temperature was fixed to 60 ◦C, the temperature of each
room to 20 ◦C and demanded heat flow rate to 1200 W per heat exchanger. Because
it is a continuous optimization, the optimizer supposes any heat exchanger surface size
within constraints is possible.

The result is shown in the fig. 4.3. Sizes of heat exchangers were designed such that
water flowed only through the secondary circuits and nothing flowed through bridging
pipes. Increasing weighting coefficient of the sum of surfaces in the optimization function
(eq. 3.37) caused getting smaller HXs and increasing temperatures along the main tube,
but otherwise, it didn’t change the behavior (fig. 4.4).

4.4 Network operation

The boiler was able to heat water even under maximum primary flow to 60 ◦C. The
goal was to find the lowest water temperature possible at the boiler inlet because that
means maximum boiler effectiveness. Temperature of each room was set to 20 ◦C and
demanded heat flow rate to 1200 W per heat exchanger.
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Figure 4.3: Result of the second optimization problem. Weight w = 1. Minimal boiler inlet
water temperature found: 27.43 ◦C. HXs’ surfaces: 0.16, 0.24, 0.43, 2.12 [m2]. Legend in
the figure 4.1.
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Figure 4.4: Result of the second optimization problem with more weighted heat exchanger
surfaces. Weight w = 10. Minimal boiler inlet water temperature found: 30.96 ◦C. HXs’
surfaces: 0.16, 0.22, 0.32, 0.63 [m2]. Legend in the figure 4.1.

Primary water flow was found to be considerably smaller than in the previous opti-
mization problem, which caused temperature drops along the main pipe to be much
larger (units of degrees). Water flow through each secondary circuit rose to maintain
constant heat flow rate. Because all water present in the primary tube flowed through
the last heat exchanger and none went through the bridging pipe, the temperature at
the last HX output was the same as in the primary pipe (fig. 4.5).

In the second case, each zone had different temperature and heat rate demand. Specifi-
cally, temperatures: 20, 21, 23, 20 ◦C and heat flow rates: 2200, 1100, 800, 1100 W.
Because of the nature of one-pipe system networks, water flow through the last heat
exchanger was double the flow through the first one even though the temperatures of the
two rooms were the same and the demanded heat flow rate of the first HX was double
the demanded rate of the fourth one (fig. 4.6).

24



........................................ 4.4. Network operation

1 2 3 4

n-th secondary circuit

0

0.01

0.02

0.03

0.04

W
a
te

r 
fl
o
w

 [
k
g
/s

]

0

10

20

30

40

50

60

W
a
te

r 
te

m
p
e
ra

tu
re

 [
°

C
]
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Figure 4.5: Result of the last optimization problem. Minimal boiler inlet water temperature
found: 28.04 ◦C. Water flows through the heat exchangers rise with lower input temperature.
All water from the primary pipe flows through the last HX. Legend in the figure 4.1.
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Operation mode. Primary flow: 0.038154 kg/s

Figure 4.6: Result of the advanced last optimization problem. Minimal boiler inlet water
temperature found: 27.43 ◦C. Water flow through the last heat exchanger is double the flow
through the first one and it matches the flow in the primary pipe again. Legend in the figure
4.1.
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Chapter 5
Model predictive control

In the chapter Static Optimizations the system of a one-pipe hydronic heating network
was described, and its behavior was analyzed through series of experiments. In this
chapter, how to control such system using the technique called Model predictive control
is discussed. MPC is typically used to minimize the error between real and reference
state trajectories.

An MPC controller predicts future system states using the current inputs and states
and future controller actions.A necessary part of the controller is a system model, which
describes system dynamics. Another important part is an objective function (also referred
to as cost function) that contains the terms representing various control requirements
and can be linear or nonlinear. Fig. 5.1 shows a scheme of an MPC controller.

Figure 5.1: Scheme of an MPC controller.

The state at time t is known (measured or estimated) and based on that the sequence
of control inputs over some time horizon N is computed such that the state evolution
will be in some sense optimal. If the definition were left like this, it would be an open
loop control. To make it closed loop control, the first control input is applied (sent to an
actuator) and the rest is discarded. In the time t+ 1 we the procedure is repeated, now
over time horizon from t+ 1 to N + 1. This window shifting is called receding horizon.
So in every step, the same problem is computed again mostly over the same variables as
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5. Model predictive control ......................................
in the previous step. Only the variables at time t are removed since they are now in the
past, and new variables for time N + 1 are added.

Mathematically described:

minimize
x(t+1),...,x(t+N)
u(t),...,u(t+N−1)

J = 1
2 (x(t+N)− xref(t+N))T QN (x(t+N)− xref(t+N))

+1
2

N−1∑
k=0

(
(x(t+ k)− xref(t+ k))T Q (x(t+ k)− xref(t+ k)) + uT (t+ k)Ru(t+ k)

)
subject to x(k + 1) = Ax(k) +Bu(k) k = t, t+ 1, . . . , t+N

x(k0) = given
xmin ≤ x(k) ≤ xmax

umin ≤ u(k) ≤ umax

(5.1)

5.1 Building thermal model

In chapter 3 about static optimization, how to calculate optimal water flows through
the system to achieve demanded heat flow rates was discussed. In this section, how to
compute those heat flows required to achieve, in steady state, demanded temperatures of
the rooms, will be shown. To do that, a thermal building model will be needed. How
to construct and identify such models was extensively described in [19] from which the
models used here are derived. The simpler variant R1C0 of a room model is used.

The R1C0 is a model of a room that consists of air described by its temperature and
capacitance, four walls characterized by their resistances, and ambient environment with
its temperature which can be either outside open air or another room. Each zone also
has its source of heat. Example of this model is in the fig. 5.2.

Its state space representation can be written as

Ṫz(t) = ATz(t) + Bu(t)
y = CT + Du

(5.2)

where A ∈ R, B ∈ R1×5, C ∈ R, D ∈ R1×5 and

A = − 1
Cz

4∑
i=1

U i ·Ai
w, i meaning wall index, not power

B =
[

1
Cz

U1·A1
w

Cz

U2·A2
w

Cz

U3·A3
w

Cz

U4·A4
w

Cz

]
, u(t) =


Q̇HX(t)
Tn1(t)
Tn2(t)
Tn3(t)
Tn4(t)


Cz [J ·K−1] is the air thermal capacity, U [W ·m−2 ·K−1] is the wall thermal conduc-

tance and Aw [m2] is the wall’s surface. The termal capacity is calculated as:

Cz = ρa · V · ca (5.3)
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...................................... 5.1. Building thermal model

Figure 5.2: Scheme of an R1C0 room model.[19]

where ρa [kg ·m−3] is air density, V [m3] is volume of air in the zone, ca [J ·Kg−1 ·K−1]
is air specific heat. The thermal conductance of a wall is:

U = k/l (5.4)

where k [W ·m−1 ·K−1] is the wall’s material thermal conductivity and l [m] is the
wall’s width.

When writing this thesis I had no centralized model of a building. However I had tools
tools to create one from a distributed model. An algorithm for fast generation of the zone
models for a whole building or at least of a floor was developed by Tomáš Bäumelt and
is described in [19]. It takes an adjacency matrix representing the zones arrangement in
a building and returns appropriate one-zone models with general variables representing
zone characteristics (e.g., zone’s size, wall’s width & conductivity). Variables that are
common to two or more zones (typically a wall between two rooms) are treated as one.
The adjacency matrix for a building with n rooms is:

Ai,j =
{

1 if i-th room shares a wall withj-th room
0 otherwise

i, j = 1, . . . , n
(5.5)

An algorithm that connects these zones into one centralized system was one of the
outcomes of the thesis developed by Jan Hauser and is described in [20]. Zones from the
algorithm developed by Bäumelt must be passed as an input along with an extended
adjacency matrix. That has a similar structure as the adjacency matrix defined in (5.5),
but instead of 1 when two zones share a wall, there is an index of the common wall in
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5. Model predictive control ......................................
the zone’s object’s array. More formally:

Aext_i,j =
{
k if i-th room shares a wall withj-th room
0 otherwise

i, j = 1, . . . , n
k = index of the wall in the i-th zone’s array

(5.6)

Result of this algorithm is a centralized state space model represented by its A ∈
Rn×n, B ∈ Rn×5,C ∈ Rn×n, D ∈ Rn×5 matrices. The state vector and the input vector
are:

T =


Tz1
Tz2
...
Tzn

 , u =


QHX1
QHX2

...
QHXn

Tamb

 (5.7)

For an example of creation of a building thermal model see chapter 6.

5.2 Linear MPC

The centralized system model of a building must be discretized because MPC is a discrete
control technique. Then the controller can be designed. Firstly, a simple MPC controller
already implemented by Hauser in [20] will be discussed. It has a quadratic objective
function with linear constraints. Inputs to the controller are desired temperatures in
every room over a specified period. Outputs of the controller are heat flow rates that
have to be supplied to each room (to achieve the desired temperatures or more precisely:
to minimize the objective function).

The objective function for one step is:

J(k) = (Cx(k)− xs(k))T Q (Cx(k)− xs(k)) + u(k)TRu(k)

+
(
1T · u(k)− 1T · us(k)

)T
q
(
1T · u(k)− 1T · us(k)

) (5.8)

the equality constraints are:

x(k + 1) = Ax(k) + Bu(k) (5.9)

and the inequality constraints are:

x(k0) = given
rmin(k) ≤ xs(k) ≤ rmax(k)
umin ≤ us(k)
1 · us(k) ≤ utotMax

umin ≤ u(k)

(5.10)

Heat source power that must be optimally distributed into individual rooms is limited.
This limit is represented by the soft constraint utotMax. To give the optimizer more
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..........................................5.3. Nonlinear MPC

freedom, the desired temperatures are not represented by lines but by a band. This
band is represented in each time step by constraints rmin(k) and rmax(k). To increase
feasibility so called slack variables xs, us are added(subsec. 5.2.1). Q is the penalty
coefficient that is applied when the predicted temperature is not in the desired band, R
is the penalty coefficient that tries to minimize input usage, and q is the coefficient that
penalizes input even more in case it exceeds the soft constraint utotMax.

5.2.1 Slack variables

Variables representing the behavior of the system, in the case mentioned above x or u,
are unbounded. To apply some kind of restrictions on them, so called slack variables xs,
us are introduced. The slack variables are bounded and their boundaries are specified by
given band. When x is in the band, it has the same value as the slack variable xs. Their
difference is zero, therefore the penalty Q (eq. 5.8) has no effect. When it’s outside of
the band, the penalty Q is multiplied by the distance from the border. Analogically it is
also implemented with the total heat rate limit. For an illustration see figure 5.3.

Figure 5.3: The slack variable can move only in the pink band unlike the real variable that
can move freely. However, since their difference is penalized, it’s best for the real variable to
stay in the band where the difference is zero. The solid line (the real variable) represents the
state with the orange parts representing the penalized trajectory. The dashed line is just the
middle of the band.

5.3 Nonlinear MPC

The linear MPC controller described in 5.2 could be connected with the static optimizer
(3). Necessary heat flow rates computed by the MPC controller would be passed into the
optimizer that would produce final mass flows. However, instantiating a static optimizer
for every time step would be computationally inefficient. Moreover, the MPC controller
doesn’t take into account the connection of heat exchangers and could demand heat flow
rates that would be impossible to achieve. Therefore, an MPC controller that combines
both into one entity is designed. The inputs are the requested temperature bands, and
the outputs are necessary water flows through the one-pipe network.

In the following subsection, the underlying optimization problem is presented in the
form of the objective function and constraints. Referring to multiple variables of the
same kind is done via vectors (bold font); for example, T p means water temperatures
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5. Model predictive control ......................................
flowing into all heat exchangers while T i

p(k) means just the water temperature flowing
into i-th one. For better understanding, a table of variables used in this section is shown
in table 5.1.

symbol dimension description

N control horizon
n number of zones
k 1, . . . , N step
x n× (N + 1) (predicted) zone temperatures
xs n× (N + 1) slack variable of (predicted) zone temperatures
u n×N heat flow rates being transferred into rooms

ṁs n×N water flows in secondary pipes
ṁp 1×N water flow in primary pipe
T p n×N temperatures in the primary tube

rmin n×N lower bound of desired temperatures
rmax n×N upper bound of desired temperatures

Table 5.1: NMPC variables.

5.3.1 Objective function

The objective function is the most fundamental part of the controller. It defines how
the system should be controlled. There are more possible objectives that can be applied
to control. Those that were applied during the development of this thesis are listed
below, however, note that not all of them have to be used. They are combined simply
by summing them. If two objectives are contradictory, then one with bigger weight will
have more influence..Reaching desired states. This is a function that penalizes if the state is not in

the desired band. It will be active every time.

Jr(k) = (Cx(k)− xs(k))T Q (Cx(k)− xs(k)) (5.11)

.Total input cost. This objective function minimizes the total inputs usage (water
flows). If active, it will generally tend to minimize flows, therefore, the temperatures
will tend to their lower bounds. It is advised to have R much smaller then Q.

Jc(k) = u(k)TRu(k) (5.12)

. Secondary water flows smoothness. It might be inefficient or even impossible
for the pumps to provide sharp, fast changes of the demanded water flows in the
secondary circuits. This objective function penalizes this behavior.

Jss(k) = (ms(k)−ms(k − 1))T P s (ms(k)−ms(k − 1)) (5.13)

.Primary water flows smoothness. Same as the above for the primary flow.

Jps(k) = (mp(k)−mp(k − 1))T P p (mp(k)−mp(k − 1)) (5.14)
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..........................................5.3. Nonlinear MPC

5.3.2 Constraints

Unlike the objective functions that can be combined, all the constraints are in use all the
time.. The dynamical model of the building. Linear equality constraint.

C1 : x(k + 1) = Ax(k) + Bu(k) (5.15). Conversion of heat flows into water flows and temperatures. Nonlinear equality
constraint.

C2 : u(k) = Q̇HX =[
1− exp

(
− U(ṁs(k), V̇air) ·A

min(ṁs(k) · cw, V̇air · cair)

)]
·min(ṁs(k) · cw, V̇air · cair) · (T p(k)− x(k))

(5.16).Water temperature dependence on preceding HX. Nonlinear equality constraint.

C3 : T i
p(k) = T i−1

p (k)− Q̇i−1
HX(k)

cw · ṁp(k)
(5.17)

. State(zone temperatures) slack variables linear inequality constraints.

C4 : rmin(k) ≤ xs(k) ≤ rmax(k) (5.18).Water flow in any secondary pipe is less or equal to the one in the primary pipe to
avoid reverse flow.

C5 : ṁi
s(k) ≤ ṁp(k) (5.19). Heat flow rate provided by an HX is always positive. Active cooling is not considered,

although an extension would be fairly straightforward.

C6 : 0 < u(k) (5.20).Water in any pipe can’t flow in the opposite direction and is capped at a maximum.

C7 : 0 ≤ ṁi
s(k) ≤ ṁs_max, i = 1, . . . ,# HXs

C8 : 0 ≤ ṁp(k) ≤ ṁp_max
(5.21)

.Water temperature at the boiler outlet is fixed.

C9 : T 1
p (k) = T 1

p_designed(k) (5.22). The temperature of water between HXs in the primary pipe must be less than boiler
temperature. Lower boundary is introduced because the water temperature is not
supposed to go under e.g. 10 ◦C (in fact, under the minimal temperature of all
zones). By doing this, the optimizer search space is more limited which might speed
up the optimization. In general, it’s advised to limit as many optimization variables
as possible.

C10 : T 2,...,n
p_min(k) ≤ T 2,...,n

p (k) ≤ T 2,...,n
p_designed(k) (5.23)
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5. Model predictive control ......................................
5.3.3 Min function smoothening

Optimization problem solvers often use first derivatives (gradients) or even second
derivatives (Hessians). Therefore, not differentiable functions such as the min function in
5.16 have to be approximated with differentiable variants. For two dimensions it holds
that min(x, y) = 1

2 (x+ y − |x− y|). Therefore, an approximation to z → |z| needs to
be found. A suitable one can be |z| .=

√
z2 + α, where α is a positive real number. An

example of this approximation is shown in the fig. 5.4. The approximation of the original
function:

min(x, y) = 1
2

(
x+ y −

√
(x− y)2 + α

)
(5.24)
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Figure 5.4: Approximation of an absolute function for different α.

34



Chapter 6
MPC Experiments and Implementation

The following experiments were implemented in Matlab R©. A three-zone building model
(fig. 6.1) was chosen as a minimal representative problem, which could be used to
show all interesting behaviors while not having the model too complicated for a paper
presentation.

Figure 6.1: Three-zone building model with the one-pipe network. The model of the
hypothetical building which was used for the experiments. The model has two zones of the
same size and one zone of double the size of the smaller. Outer walls are also twice as wide
as than the walls between rooms.

The adjacency matrix of this model is:

A =

0 1 1
1 0 1
1 1 0

 (6.1)

The single zones obtained as the output of the algorithm by Bäumelt[19] have the
following general properties (table 6.1):
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6. MPC Experiments and Implementation ...............................
zone capacitance wall 1 wall 2 wall 3

1 Cz1 UA11 UA12 UA12
2 Cz2 UA11 UA22 UA23
3 Cz3 UA12 UA22 UA33

Table 6.1: Single zones’ parameters in the building model.

these variables are later on substituted with real values. The extended adjacency
matrix is:

Aext =

0 1 2
1 0 2
1 2 0

 (6.2)

6.1 Linear MPC: Supplied heat flow rate

The linear MPC controller described in 5.2 was used. The goal was to find heat flow
rates for all rooms necessary to achieve desired temperatures in the rooms. The one-pipe
network was not considered. The limit of possible heat flow rates that could be transferred
altogether was set to 5000 [W]. The resulting (optimal) distribution of heat flow rates
into individual rooms is shown in the fig. 6.3. The system was discretized with the
discretization period 10 min, and the prediction of the evolution of the zone temperatures
is made for 50 time steps, that means over 8 hours. The underlying optimization problem
was solved in 0.21 seconds. The results of the prediction from the first step of the zone
temperatures are shown in fig. 6.2.

6.1.1 Implementation

The problem falls under the category of quadratic programming which modern solvers
usually have no problem of solving. However, comparing this problem which has 461
optimization variables to the Static Optimizations that had between 5 to 10 depending
on the chosen scenario, it’s clear that this is much more complex. Even in the linear case,
the fmincon function is incapable of solving it. Therefore the Gurobi[21] solver is used.
For efficient problem description, the code is written with Yalmip toolbox1 for Matlab
[22]. Yalmip is a "mediator" that makes defining a control oriented optimization problem
easier, preprocesses it and passes it to solvers.

6.2 Nonlinear MPC: Computing water flows

As opposed to the linear MPC controller, in the nonlinear MPC the one-pipe network
with heat exchangers is considered (fig. 6.1). The goal is to compute water flows
through the network that would provide demanded temperatures in the rooms. However,
computing water flows and heat exchangers efficiencies introduces nonlinear constraints.
The optimization problem behind this example was described in section 5.3. Switching

1https://yalmip.github.io/
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............................... 6.2. Nonlinear MPC: Computing water flows

Figure 6.2: Temperature evolution of the room temperatures. Prediction from the first step
of the linear MPC controller. The presence of the system model in the controller is visible
around time 400min, when the controller pre-heats zone 1&2 and then heats only the third
zone for some time.

Figure 6.3: Total heat flow rate distribution among rooms. Prediction from the first step
of the linear MPC controller. The presence of the system model in the controller is visible
around time 400min, when the controller pre-heats zone 1&2 and then at Time = 400min it
assigns the whole heat power resource to the third zone for some time.
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6. MPC Experiments and Implementation ...............................
to water flows introduced another optimization variables (table 5.1), and there is now
906 of them in total, which is double when compared to the linear MPC.

6.2.1 Implementation

Gurobi R© is undoubtedly one of the best optimizer on the market for linear, quadratic and
mixed integer programming [23]. However this is a highly nonlinear problem, optimization
variables regarding secondary circuits farther in the net depend on all the previous ones
and conducted experiments showed that no out-of-the-box nonlinear solver can solve it.
Therefore a new approach had to be taken.

CasADi

Typically solvers call the objective function (or the modified objective function with
barriers from constraints) and numerically (using finite differences) try to estimate
gradients and Hessians. Joel Andersson Ph.D. presented in his dissertation thesis
[24] software framework compatible with Matlab called CasADi (a tool for algorithmic
differentiation using a syntax borrowed from computer algebra systems), that allows
evaluating the first and second order derivatives efficiently and without errors. It exploits
the fact that in the end, every expression executes as a sequence of elementary arithmetic
operations and elementary functions. It decomposes the expression into these basic terms
and constructs a computational graph (fig. 6.4). Then by applying the chain rule (eq.
6.3) for derivatives, derivatives of arbitrary order can be computed. CasADi can handle
even not smooth functions such as min(x, y) so implementation of the smoothening
approximation described in 5.3.3 is no longer required.

(f ◦ g)′ = (f ′ ◦ g) · g′ (6.3)

Similarly to Yalmip, it preprocesses the optimization problem before passing it to solvers,
which may speed up the optimization. Notably, by using graph coloring techniques, it
discovers sparsity of matrices (fig. 6.5) representing optimization variables and reformu-
lates the problem into a simpler one. The comparison with other optimization toolboxes
is shown in figure 6.6. We managed to solve the optimization problem using CasADi with
the ipopt2 solver. A nice feature of ipopt is that it automatically scales optimization
variables therefore manual scaling is no longer required.

6.2.2 Experiments

The experiments regarding the nonlinear MPC were conducted at the same hypothetical
building model as the linear MPC. (fig. 6.1). To allow multiple heat exchangers in one
zone, the optimization problem described in 5.3 had to be slightly modified. A structure
that maps heat exchangers onto zones was added, and in the constraint equation 5.16 the
term u(k) = Q̇HX was replaced with u(k)i =

∑
j=M(i)

Q̇j
HX , where M() is the mapping

function and i means the i-th room.
2https://en.wikipedia.org/wiki/IPOPT
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............................... 6.2. Nonlinear MPC: Computing water flows

Figure 6.4: An example of a computational
graph. [25]. The original expression is clearly:
5
(√

P 2
0 + P 2

1 − 1
)2

+ P1 · 9.81.

Figure 6.5: An example of a matrix spar-
sity. [25]. This is a typical look of a matrix,
that represents a problem where variables
are chained and depend on previous ones.

Figure 6.6: Various optimization toolboxes comparison. [25] It shows how time scales with
the number of optimization variables when constructing the gradient. Results for an optimal
control problem with one state, solved with the single shooting method. Prediction horizon
is on the horizontal axis.
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6. MPC Experiments and Implementation ...............................
Zones pre-heating and boiler performance planning

This example is similar to the linear variant (sec. 6.1). It illustrates the presence of the
model of the system in the controller. Because it "knows" that at time 400 min in the
third zone there will be high demand for heat flow to raise temperature from 19◦C to
25◦C it pre-heats the first and second room to upper temperature boundaries and then
(at time approx. 370 min) reduces water flows to the first and second heat exchanger
while increasing water flow to the third and fourth HXs. This is shown in figures 6.7 and
6.8. The penalization for rapid changes in both primary and secondary pipes was active.
By looking at the fig. 6.8 we can see that also the boiler power is (indirectly) planned by
the controller by changing the flow in the primary pipe.

Effectiveness and bottom boundaries attraction

In the next experiment, the penalization of changes in both primary and secondary pipes
was removed. As an expectable consequence, the evolution in time of water flows in both
types of tubes was not that smooth. But also another phenomenon is visible - in the
room with two exchangers, they both supplied the same amount of heat flow, instead of
heating the room with only one with larger water flow. That is compliant with that how
conductivity U scales with mass flow, which is shown in the fig. 6.9. This phenomenon
only holds when the penalization of flows changes is not active.

Another behavior pattern is visible at the end of the prediction horizon in all zones.
The temperature references are constant, and the real temperatures tend to fall to the
bottom boundaries. That is because the controller’s objective function contains the term
that minimizes the heat flows usage. The outcomes of this experiment are presented in
fig. 6.10 and 6.11.

40



............................... 6.2. Nonlinear MPC: Computing water flows

(a) : Zone 1

(b) : Zone 2

Figure 6.7: The "zones pre-heating" experiment part 1
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(a) : Zone 3
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(b) : Primary pipe

Figure 6.8: The "zones pre-heating" experiment part 2
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Figure 6.9: Scaling of conductance with mass flow.
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(a) : Zone 1

(b) : Zone 2

Figure 6.10: The "Effectiveness and bottom boundaries attraction" experiment part 1
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(a) : Zone 3

0 50 100 150 200 250 300 350 400 450 500

Time [min]

0

200

400

600

800

1000

1200

1400

1600

1800

W
a

te
r 

fl
o

w
 [

k
g

/h
]

Water flow in primary pipe

(b) : Primary pipe

Figure 6.11: The "Effectiveness and bottom boundaries attraction" experiment part 2
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6.3 Control mode

Both the linear and non linear MPC experiments were in fact implemented in Matlab
as "predictors". Only the prediction of the states from the first step is shown in the
presented figures. The prediction horizon was N = 50 steps. Therefore, Simulink was
used to fully simulate the control mode. The MPC controller was connected in a closed
loop to a state space model of the controlled building (as shown in fig. 5.1).

6.3.1 Implementation

For simulation in Simulink, Matlab system block that can be imported into Simulink
was used. The block is then associated with Matlab System object. That is a class
“designed specifically for implementing and simulating dynamic systems with inputs that
change over time”[26]. Implementation of the System object is described in Appendix A.

There are also Matlab callbacks that can be implemented. Those are Matlab scripts that
are called before, during or after the simulation. They are not required like the functions
described above but can be useful for things that might be confusing or impossible to do
in Simulink, e.g., preparing the desired temperatures or advanced plotting of simulation
results.

The Simulink model of the controller is presented in the figure 6.12. Prediction from
the first step of the controller is shown in the figure 6.13. The result of control mode
after 50 steps are shown in figure 6.14. The results of control mode after 50 steps with
added white noise to the output of the building model is captured in the figure 6.15.
Standard deviation of the noise was

δ =
√
P

Ts

.= 0.4 (6.4)

where P = 100 is the noise power specified in the Band-Limited White Noise Simulink
block, and Ts = 600 is the simulation sample time.
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Figure 6.12: Simulink model of the nonlinear MPC controller.

Figure 6.13: Prediction from the first step of the Simulink controller.
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Figure 6.14: Result of control mode after 50 steps.

Figure 6.15: Result of control mode experiment after 50 steps with noise added to the
measurement of the building model output.
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6.4 Verification on a high fidelity building model

The controller was tested on a building model that was mathematically by several orders
of magnitude more difficult.

Its walls were modeled by 3 capacities and 4 resistances as opposed to one resistance in
the simple model. The heat capacity of furniture was added to the capacity of the air in
the room. Another difference was in heat exchangers. Their U-Values were constant (not
dependent on water and air flows), but during the simulation they had own dynamics.
Therefore, there was a delay between the controller’s issued command and its action. A
scheme of a zone of such a model is presented in the fig. 6.16.

Figure 6.16: Scheme of a zone with several capacities. Cair stands for the capacity of
air, Cfur for the capacity of furniture. Us1, Us1 represent conductance of the wall surfaces,
Cs1, Cs1 represent their capacities. Cw is the capacity of the majority of the (inner) wall and
Uhw1, Uhw2 are conductances of the wall halves.

The model consisted of four rooms of different sizes and capacities. Parameters of the
walls also varied. Each radiator was different in size and in thermal transmittance.

Simulink scheme of the thermal building is shown in the figure 6.17. In the left half,
the thermal part representing the arrangement of zones and walls is shown. In the right
half, the connection of heat exchanger captured. The interconnection between these two
parts is done via Simulink Go-To blocks with corresponding colors.

6.4.1 Scenario

The scenario of this experiment was following. The rooms initial temperatures were 15
◦C. The ambient temperature was kept constant at 14 ◦C. The goal was to immediately
heat the temperatures to 20 ◦C and then heat the kids room to 22 ◦C.

A necessary precondition for a model predictive controller is to have a control model
of the controlled object. Simple state space model of the high fidelity building model was
identified with the Matlab Identification Toolbox as a system of second order. Suitable
fit of a first order was not found. Therefore, the MPC controller was extended to allow
thermal state space model of second order in the equality constraints. The additional
states (temperature derivatives) were estimated by using default Matlab Kalman filter.
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Figure 6.17: Scheme of the 4-zone high fidelity building thermal model. Originally from
[27]. Edited. The one pipe hydronic heating network goes from the living room, through the
sleeping room, kids room and to the kitchen.

6.4.2 Results

The temperatures of the zones stay in the allowed band most of the time. In fact, they
tend to fall to the bottom boundary of the allowed interval because of the controller’s
objective to minimize power. However, the control has oscillatory characteristic. That’s
because the model is not properly identified. The evolution of zones temperatures is
captured in figure 6.18. The thermal building model used for control has no oscillations.
Prediction from the first step is shown in picture 6.19.

Still, the presence of the controller is clearly seen. It preheats all the zones in advance
and when the kids room temperature is supposed to rise by two degrees, it supplies
majority of hot water to the kids room while the other zones can cool down a bit and still
be in the allowed band. Predicted heat flows during the additional kids room heating are
captured in the figure 6.20
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Figure 6.18: Temperatures evolution in the high fidelity thermal building model.

Figure 6.19: Prediction of the zone temperatures from the start of the simulation.
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Figure 6.20: Prediction of the heat flows during kids room heating.
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Chapter 7
Conclusion

This thesis dealt with problems of control of buildings with a one-pipe water heat delivery
systems. Firstly, existing hot water distribution technologies and currently used control
approaches were reviewed. Then, the steady-state static optimization tool, that was used
as a tool for the network analysis, was successfully designed. A model of a building was
constructed and an MPC controller whose results were similar to the optimization tool
was implemented. But by using the building model as a constraint representing system’s
dynamic behavior, the results (inputs and outputs to the model) were computed for the
whole prediction horizon and instead of just one step.

The two tools served as a basis for the implementation of the essential model predictive
controller whose aim was to compute necessary water flows through the one-pipe network
to achieve required temperature levels in the rooms of the building model while minimizing
energy consumption and other objectives. That introduced some nonlinearities which
made the underlying optimization problem harder to solve and to counter it CasADi
framework was presented.

Firstly a predictor that, based on a given state, made a prediction of the states
and control actions for future steps was implemented in Matlab. Then, the controller
connected to a building state space model in a closed loop was implemented in Simulink.
Several experiments were conducted and the results showed some interesting phenomena
and advantages of a model-based controller.

In the end, the controller was tested on a high fidelity thermal building model.

7.1 Future work

It’s planned that the invented algorithms will run on an embedded device such as
Raspberry Pi, which is already used in control testing circuits with heat exchangers.
Because of that, it would be useful to explore the possibilities of both Matlab and CasADi
code generation, and, if possible, generate code in the C language and integrate the
algorithms into the Raspberry Pi. Another thing related to the embedded devices is to
research and decide if it’s better to make a centralized controller to which all the devices
will be connected or develop a distributed controller, that would run (semi-)independently
on a device in each secondary circuit.

Concerning the control algorithms, two significant alterations are now in consideration.
A minor one is to extend the control (respectively optimization) to the flow of air (which
was kept constant in this thesis). A major one is to control directly pumps’ and fans’
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revolutions instead of water and air flows.
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Appendix A
System object

Implementation of the System object is similar to implementing a standard Matlab
class. However, some additional rules and system-oriented requirements have to be met,
namely:. Empty constructor. It has to be possible to create an instance of the class by

calling the default constructor (without arguments).. setupImpl. The function is called once at the start of the simulation. It’s worth it
to compute constant and other one-time computations.. stepImpl. This is the core function, it is called every step and during this function
the output is computed based on the input.. getOutputSizeImpl. Specifies output size for each output port.. getOutputDataTypeImpl. Specifies type for each output port.. isOutputComplexImpl. For each output port specifies if there are real or complex
numbers at the output.. isOutputFixedSizeImpl. Specifies if size of each output port stays fixed or changes
during simulation.
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Appendix B
Content of attached CD

The CD attached to this thesis contains a pdf version of the thesis.
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