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Abstract
Characteristics of protein molecules and other biochemical compounds are investigated
via protein tunnels or ligand pathways. To ensure trustworthiness of the results, it is
imperative that both the shape and the flexibility of ligand molecules are taken into
account. A majority of the currently utilized software tools do not allow this. Motion
planning for mobile robots is one of the approaches enabling the use of these character-
istics. This thesis presents a novel algorithm for ligand pathways detection, which takes
into account the shape, flexibility and the intramolecular energy of ligand molecules.
To speed up the algorithm, a precomputed knowledge about free spaces in the protein
molecules is used. The algorithm also enables the computation of potential energy of
the intermolecular receptor–ligand system for the generated pathways. The presented
algorithm was tested on a real dataset of several hundred conformations and tunnels of
three protein receptors and seven ligand molecules. The algorithm’s performance was
compared to the state–of–the–art tool MoMA–LigPath.

Abstrakt
Charakteristiky proteinových molekul a jiných biochemických sloučenin jsou zkoumány
skrze proteinové tunely, případně ligandové cesty. Pro zajištění věrohodnosti výsledků
je nutné při hledáni uvažovat tvar i flexibilitu ligandových molekul, což v současnosti
nejčastěji používané softwarové nástroje neumožňují. Jedním z přístupů, schopných tyto
podmínky zajistit, je plánování pohybů pro mobilní roboty. V této práci je představen
nový algoritmus pro výpočet ligandových cest, který uvažuje tvar, flexibilitu a potenciální
energii ligandu. Pro zrychlení algoritmu je využívána předem dostupná znalost volného
místa v receptorových molekulách. Algoritmus umožňuje výpočet intermolekulární po-
tenciální energie systému receptor–ligand pro vygenerované ligandové cesty. Prezento-
vaný algoritmus byl otestován na reálném datasetu několika set konformací a tunelů
třech proteinových receptorů a sedmi ligandových molekul a porovnán se state–of–the–
art nástrojem MoMA–LigPath.
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1 Introduction

This chapter introduces the field of protein molecules research to the reader, describes
the task of protein tunnel detection and path planning and elucidates the problem at
hand.

1.1 Motivation and Goals of this Thesis

Proteins represent a very large and diverse group of biomolecules. Some proteins pos-
sess the capability to interact with the environment around them to the extent of, e.g.,
catalyzing chemical reactions or self-replicating. Other proteins can serve as structural
elements, signal receptors inside organisms or even as transport molecules. These inter-
actions can be carried out between the receptor protein molecules, and smaller ligand
molecules. Protein tunnel traversability problem consists of determining whether a ligand
molecule can reach a receptor’s active site (explained later). The influencing factors in-
clude not only the molecule’s chemical composition, but also physical structures and the
locations said active sites. Applications span such areas as drug design or biochemical
processes research.

Molecular dynamics simulations1 can be employed to solve this task. They are,
however, very computationally demanding and require extensive resources.

Geometric molecular analysis has been successfully employed in the past to solve
this problem. It focuses on detecting protein tunnels (explained later) and evaluating
their characteristics, to determine whether they can be traversed by a supplied ligand
molecule. One of its main disadvantages is the fact that the a majority of the currently
available tools analyze the receptor molecules using a spherical probe, thus disregarding
the shape and flexibility of the ligand molecule. The resulting solutions are therefore
approximate.

This thesis focuses on tunnel pathways detection. We aim to develop a software tool
which, when supplied with the structures of the receptor molecule, ligand molecule and
the respective protein tunnel containing the active site, predicts whether ligand tunnel
traversability is possible from the geometrical point of view.

1Computer simulations of molecules through a selected time period. Analytical solutions are often
impossible, leading to numerical solutions which diverge from the real scenarios as time progresses.
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We approach the problem using state–of–the–art motion planning algorithms and aim
to enable pathways predictions for flexible ligand molecules while taking into considera-
tion ligand potential energy functions. We expand on our previous work, which explored
the possibilities of protein tunnel2 detection using a specifically tailored modification of
the RRT algorithm.
Chapter 1 gives the reader an insight into the field of protein biochemistry and presents
the problem from the biochemical standpoint. It establishes the terminology necessary
to describe the task at hand.
Chapter 2 presents the problem from the robotic paradigm and discusses possible ap-
proaches of tackling this issue from a theoretical point of view. It presents algorithms
from the field of robotics suitable for tackling this issue and discusses their applicability.
Chapter 3 presents the chosen algorithm in great detail, discusses implementation de-
tails and presents the final solution.
Chapter 4 describes the testing methodology and conducted experiments.
Chapter 5 discusses the results of the presented experiments and their implications.
Finally, Chapter 6 contains the conclusion and Addenda describing some minute details
and technicalities of the final implementation.

1.2 Protein Molecules

Figure 1.1: An example of a protein molecule,
the 2CI2 molecule, located in barley seeds. Pro-
tein subunits (tertiary structures, as explained
later) are denoted in different colors. PDB file
courtesy of [3].

Protein molecules are large biomolecules,
specifically long polymers of amino acids,
which distinguish themselves from other
molecules by a high degree of complexity
and organization. See Figure 1.1 for an
example of a protein molecule.

The structure of protein molecules is
made up of amino acids, which are or-
ganic compounds consisting mainly of car-
bon and hydrogen atoms. They represent
the smallest protein building blocks. Each
protein has its characteristic sequence of
aminoacids, and also a highly unique
and complex structure, which arises from
this sequence [30]. The size of protein
molecules can vary immensely, from 20
amino acids in the smallest protein3 in
the world (Trp-Cage Miniprotein [33]), to
27000 amino acids in the largest protein

2Protein tunnels are voids inside the receptor structure, which originate at a specific location in the
molecule and reach the molecular surface, as explained later.

3Proteins with less than 30 or 40 amino acids are considered to be peptides, rather than proteins,
according to some literature sources

2



Active
site

Ligand Tunnel 4

Tunnel 3

Tunnel 1

Tunnel 2

a) b)

Active
site

Figure 1.2: a) Protein active site illustration inside the 1BL8 protein molecule. The active site,
located inside a molecular cavity, is denoted in red, whereas the computed protein surface is
denoted in gray. A ligand molecule example is denoted in orange. b) An example of protein
tunnels, originating at an active site. Individual tunnels are colored in different shades of blue.
PDB files courtesy of [3].

in the world, Titin [39]. The chemical properties of protein molecules are determined by
the constituent atoms of their amino acids and their relative spatial positions [30].

1.2.1 Protein Active Sites

A very important characteristic of a protein molecule is the presence of its so–called active
sites. These are locations inside the protein structure containing particular arrangements
of atoms, which can repeatedly catalyze chemical reactions with other molecules. The
presence and locations of these active sites can greatly affect the characteristics of
the respective molecule, and are therefore an intensively studied topic in the field of
biochemistry. An example of an active site is given in Figure 1.2.

Active sites are usually located deep inside the protein molecules, near void spaces.

Tunnel bottleneck

Tunnel length

Figure 1.3: Protein tunnel diagram, illustrating
tunnel bottleneck (narrowest part) and tunnel
length.

Void spaces connected to the surface of
the molecule are called protein tunnels.
An example of protein tunnels is presented
in Figure 1.2.b. The characteristics of
these tunnels, mainly the width of the tun-
nel’s bottleneck (the narrowest spot), the
length and curvature of the tunnel and
the surrounding amino acid residues helps
to determine the properties of the pro-
tein molecule from the ligand traversabil-
ity standpoint. See Figure 1.3 for illustra-
tions.

3



Tunnel analysis helps to determine whether the two molecules can react and is there-
fore a very actively studied topic, with numerous software tools being proposed lately
(see Section 3.2). This analysis has applications in protein engineering, consisting of
changing selected properties of a protein molecule. This can be achieved by altering the
amino acids forming its protein tunnels, significantly changing ligand traversability for
the respective tunnels. Other examples are available in a recent survey [24].

1.2.2 Spatial Protein Arrangement

As stated previously, the structure of a protein molecule, as well as its function, is
determined by the sequence of its amino acids. These amino acids form monomer units
in long polymer chains which can be thousands of units long. Although these chains are
in essence monodimensional, they can give rise to intricate and complex spatial molecular
structures in what is called the protein folding process [6].

There are four levels of protein structures, as visualized in Figure 1.4:

• The primary structure describes the sequence of amino acids in the polymer
chain. It originates from inter–atomic bonds which hold together the molecular
chain (Figure 1.4.a).

• The secondary structure refers to regularly occurring structural patterns in the
polymer chains, specifically to α–helices and to β–sheets, which are two of the
main structural types (Figure 1.4.b).

• The tertiary structure describes the spatial formations created by α–helices and
to β–sheets, which are tightly packed to form a compact structure (Figure 1.4.c).

• The quaternary structure refers to the structure created by combining several
tertiary structures. It describes the resulting protein molecule created by combining
the tertiary subunits (Figure 1.4.d).

These structures represent information about the protein molecules which are ap-
plicable for the field of biochemistry, but not very useful for our problem at hand. A
different approach, described in the next section, is therefore used.

1.2.3 Protein Structure Representation

Given the complexity of protein spatial structures, different representations exist to fulfill
individual purposes.

• Space-filling model (Figure 1.5.a) is a three-dimensional molecular representa-
tion where the atoms are portrayed by spheres whose radii are proportional to their
Van-der-Walls radii, and whose center-to-center distances are proportional to the
distances between the atomic nuclei, all in the same scale. Atoms of different
chemical elements are commonly visualized by differently colored spheres [4]. This
model is applicable for protein cavity and tunnel detection, since it gives the most
precise information about the space occupied by the molecule’s atoms. Given the
simplicity of this approach’s implementation and its credibility, this model has been
implemented to represent the molecules in our algorithms.
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Figure 1.5: Different types of spatial representations of the MOAC protein from E. Coli.
Subfigure a) shows the space-filling model, subfigure b) the ribbon model and subfigure c) the
molecular surface model. PDB file courtesy of [3].
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• Ribbon diagram (Figure 1.5.b) is a 3D schematic representation of protein struc-
ture. It is one of today’s most commonly used methods of protein visualization.
The ribbons show the overall spatial position and organization of the polymer chain
and serve as a visual framework on which we can add details of the full spatial
atomic structure. α-helices are shown as coiled ribbons or thick tubes, β-strands
as arrows and lines or thin tubes for non-repetitive coils or loops. The direction of
the polypeptide chain is shown locally by the arrows, and may be indicated overall
by a colour ramp along the length of the ribbon.

Ribbon diagrams are a powerful tool capable of expressing the overall functional
structure of a protein molecule. They are, however, misleading for our purpose,
in their way of portraying large parts of the spatial protein structure as an open
space. While inapplicable for path planning, this model is excellent in providing
insight regarding the protein’s general structure and the overall location of the
found path in the protein molecule [35].

• Molecular surface models (Figure 1.5.c) visualize the outer molecular layer,
which is generated using state-of-the-art computational techniques. They are very
useful because they can facilitate excellent visualizations, as well as numerical
simulations of protein molecules. One example of such surface model is the recent
Ligand Excluded Surface [27], which uses a grid–based algorithm to approximate
not only the molecular surface but also molecular cavities capable of containing the
ligand molecule. The model discretizes a configuration space of a ligand inside and
near a protein molecule and then exhaustively searches for all colliding molecular
locations. After the search completes, a 3D surface model is then created from the
found information. Since this model uses the supplied ligand molecule to find the
molecular surface, it provides the most precise molecular surface approximation
for the given ligand molecule. It is, however, very computationally demanding and
therefore unsuitable for our purposes, other than rendering visualizations.

1.2.4 Protein Conformations

The spatial arrangement of atoms in a molecule is termed molecular conformation [30].
This term is somewhat analogous to the, perhaps more robotics–oriented term, configu-
ration, which will be explained in greater detail in the following Chapter 2. The structure
of a typical protein contains hundreds of individual chemical bonds. Because free ro-
tation is possible around many of these bonds, the protein can assume an unlimited
number of structural configurations (conformations). Whether these bonds rotate and
the axis of their rotation is determined by the atoms which share the bond, the types
of bonds and the neighboring atoms (see Figure 1.6 for illustration). The determination
of the number of degrees of freedom in a protein molecule and their properties is a
widely studied topic, from both the biochemical and the algorithmic perspective (see
e.g. [48]). It is, however, beyond the scope of this thesis, which focuses on this problem
from the more robotics–oriented, path–planning perspective. A number of tools with
this functionality is available, such as the AutoDock Vina [19], which has been utilized
in this thesis. Other sources, discussing this topic include, e.g., [40].
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1.2.5 Intramolecular Potential Energy

bi

θanchor

axis

ai ai+1

ai+2

Figure 1.6: Protein conformation with a
rotating bond. The atoms indexed after
the atom ai rotate by angle θ around
axis ~bi. Original image courtesy of [32].

Two atoms positioned in space can interact with
each other in various ways, with both attrac-
tive and repulsive forces. The intensity of these
forces depends on the distance of the atoms.
When a chemical bond is present, the Van der
Waals forces keep the bonded atoms at a fixed
distance – the equilibrium point. Any variation
from this fixed distance results in a change of
the intramolecular potential energy. As we have
established previously, a ligand molecule can as-
sume different conformations, thanks to rotat-
able bonds. When three atoms are connected
via chemical bonds, these bonds assume a cer-
tain conformation, establishing a fixed angle between the atoms. Again, any variation
of this angle changes the intramolecular potential energy [9]. An example of a potential
energy function is presented in Figure 1.7.

Figure 1.7: Example of an intramolecular potential energy function for a 2 degrees of freedom
molecule 1,2,3-Trichloropropane, depicted in Subfigure a). Molecular potential energy is a
function of internal molecular angles. The probable, low–energy conformations are depicted
in dark blue, and improbable, high–energy conformations are depicted in yellow. The energy
value was log–scaled to better illustrate minute differences between low–energy conformations.
The globally lowest energy conformation is depicted in Subfigure b).

As is usually the case in physics, the most probable molecular state is the confor-
mation with the lowest intramolecular potential energy. When planning a pathway for
a flexible ligand molecule purely from the geometric point of view, we assume that
the molecule can take on any conformation. This, however, is not the case in nature,
since high–energy conformations are much less probable. Thus, what may seem like a
straightforward motion from the path planning point of view can actually be exceedingly
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improbable in the real molecules.
Taking potential energy of the ligand molecule into account enables us to further

judge the feasibility of the found pathway. If the molecule has to assume high–energy
conformations for the majority of the motion to facilitate its passage through the protein
tunnel, we can safely assume that such a motion is improbable and the pathway is
not very feasible. To enable this approach, the Transition–RRT (T–RRT) planner [20]
was implemented. Our solution facilitates planning in continuous cost–spaces and thus
allows us to take ligand intramolecular potential energy into account. See Section 3.4.7
for details.
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2 Configuration–Space Search

This chapter introduces the area of configuration–space searching, defines the necessary
terminology and presents current state of the art methods and algorithms for path
planning in the environment of protein molecules [15].

2.1 Configuration–Space

The problem of finding a path through various environments and for multiple types of
robots has been an intensively studied topic for several past decades. The complexity
and diversity of the some of the possible environments, combined with infinitely many
continuous robot configurations, makes the task of finding an optimal path between two
locations, which the robot is able to traverse without colliding with the environment, a
particularly difficult challenge. There exists a plethora of algorithms, with each usually
suited best for a particular problem. Some of these algorithms, suitable for the topic
of this thesis, will be discussed later. Generally the motion planning problem can be
formulated using the concept of configuration space [28], which is explained in the
following paragraphs.

A workspace of a robot describes the area in which the robot operates, using the
common Euclidean coordinates. It includes all spatial positions reachable by the robot’s
end effector. Workspaces are described in terms of spatial coordinates. This makes them
easy to understand for humans, but, depending on the construction of the robot, it can
also make them difficult to utilize for path planning. Figure 2.1 shows an example of a
robotic workspace.

A configuration c of a robot is a vector of parameters with length equal to the
robot’s number of degrees of freedom (abbreviated as DOF for the rest of this thesis).
A configuration fully describes the current state of the robot. Each of the parameters
represents a particular DOF.

A configuration space C of a robot is a set of all possible configurations. Con-
figuration spaces can include invalid states, in which the robot is colliding with the
environment, or with itself. Depending on a particular robot’s construction, the config-
uration space may form such complex objects as manifolds, which greatly increases the
difficulty of planning a collision-free path for such a robot. Figure 2.1 shows an example
of a configuration space and its mapping onto a Euclidean workspace.
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Figure 2.1: Example of a robot workspace and configuration space. The left subfigure shows
the original workspace, with initial and goal robot configurations and obstacles. The right
subfigure shows how the workspace and the obstacles map onto the robot’s configuration
space (joint space). A collision–free path between the two configurations is shown as a striped
line. Original image courtesy of [34].

A path in a configuration space C is a sequence of configurations, which satisfies
some imposed constraints. Let cinit be the robot’s initial configuration and cgoal the
goal configuration. Let colliding(c) be a predicate, which holds true iff the robot
is colliding with itself or with the environment in the supplied configuration c. Let
interpolate(c1, c2) be a function which interpolates the supplied configurations c1 and
c2, and creates a set of infinitely many configurations between the two. Let there be
a trajectory T of n configurations T = {c1, c2, ..., cn}. Let an interpolated trajectory
Tinter be a set of all configurations created by interpolating the trajectory T in the
following manner:

Tinter = T ∪ {∀i : 0 ≤ i < n, interpolate(ci, ci+1), ci ∈ T }.

We say a path is collision–free iff the following condition holds true

∀c(c ∈ Tinter),¬colliding(c).

A sharp–eyed reader might object, since checking collisions for an infinite amount of
configurations is quite difficult. Analytical solutions for collision detection checking exist
only for a set of geometric primitives and under certain conditions [11]. In reality, the
conditions for collision detection are often relaxed. Collision checking is usually performed
for a set of configurations which have been interpolated with a certain resolution. This
resolution is set in a way which allows us to trust that the found path is collision–free
and still perform the calculations in a finite amount of time.
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2.2 Path Planning Algorithms

We have now established, what the act of “being able to get from configuration a to b“
means. However, as is usually the case in the field of robotics, there is another problem –
knowing how to get from a to b. As stated previously, a particular configuration space
can form such simple objects as a line, or such complex objects as a multidimensional
manifold. Navigating such spaces quickly becomes intractable for human operators, as
the number of DOF of the robot increases. Since even a simple non-constrained 3D
object in a 3D Euclidean space has 6 DOF and its configuration space forms a manifold,
due to the SO(3) rotation group, path planning presents a non–trivial challenge, even
for such simple cases.

A path–planning algorithm searches for a path satisfying specified constraints in the
supplied configuration space. Existing path–planning algorithms can be divided into
several groups:

Deterministic algorithms, which search on a grid or a graph–based configuration
space in a predictable manner. They are usually employed when there exists a finite
number of configurations. They are guaranteed to find the path in a feasible amount of
time. Examples include the Breadth–First–Search algorithm (BFS), Depth-First–Search
algorithm (DFS), A* algorithm and a variety of others. Their counterpart are stochas-
tic algorithms, which incorporate an element of randomness when choosing the next
configuration to explore. They are mainly used when we are planning in an infinite con-
figuration space, such as the Euclidean space. Examples include, e.g., the Probabilistic
RoadMap algorithm (PRM) [14], the Rapidly–Exploring Random Tree Search algorithm
(RRT) [29], the Rapidly–Exploring Dense Trees algorithm (RDT) and many others.

Graph–based algorithms which search for the path on a predetermined graph with
known connections and nodes (BFS, DFS, A*, ...) and sampling algorithms which
randomly create nodes and connections between them in the provided planning domain
(PRM, RRT, RDT, ...). The randomly created graph’s nodes can be interconnected
(PRM) or can be organized into a tree (RRT)1. The benefit of utilizing trees is the fact
that when the goal region is reached, the algorithm does not need to search the built
graph, but can simply traverse the tree to its root, in order to extract the found path.

Offline and online algorithms. When planning a path for a robot in a dynamic
environment, being able to replan the path according to the observed changes and
therefore react quickly is more important that knowing the path in its entirety. Offline
path planners compute and return the entire found path, whereas online path planners
only focus on the immediate portion. This makes them able to quickly react to changes
in the environment, at the expense of possible non–optimal paths.

The topic of this thesis concerns searching a continuous high–dimensional config-
uration space with infinitely many configurations. We will therefore focus on offline,
sampling–based path–planning algorithms and describe them in more detail in the fol-
lowing sections.

1A tree is a connected graph with no cycles
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2.3 Sampling–Based Algorithms

Sampling–based path–planning algorithms work in a continuous configuration space with
infinitely many configurations. Instead of systematically visiting every possible configu-
ration, they randomly sample configurations in the space and try to find possible con-
nections between them. If a connection is found, the new node is added to a graph
of previously found connections. Once this graph reaches the goal location, a path is
reconstructed from the graph. There exist many modifications, each of which is suitable
in a different environment and fulfills a different purpose. The most prominent examples
of such algorithms are presented below.

2.3.1 Probabilistic Roadmap Algorithm

The PRM algorithm [14] consists of two phases. First, the algorithm constructs a graph
by randomly sampling the configuration space and interconnecting all available nodes
(the learning phase). Then the algorithm searches for a path between two supplied
locations (the query phase). See Figure 2.2 for an illustration. While the algorithm does
require some parameter tuning to adjust to a general scenario case, it is a well tested,
robust algorithm which is able to find a solution in general environments. Furthermore,
unlike the following algorithms, if the environment is static, there is no need to repeat
the learning phase when planning between different start and goal configurations. Thus
the following planning queries can be finished in fractions of the time required for the
learning phase to finish, enabling multiple–query planning2. It does, however, struggle
to find a path in a narrow corridor or in a bug trap type situation [14].

a) b) c) d)

Figure 2.2: Functionality of the Probabilistic Roadmap algorithm. Subfigure a) displays the
planning environment (workspace), with the initial and goal locations denoted in red. Subfigure
b) shows the first stage of the learning phase, which consists of sampling collision–free states in
the configuration space. Subfigure c) shows the second phase of the learning phase, which tries
to connect the collision–free nodes, where possible. A generated graph of nodes connected
by collision–free trajectories is shown. Subfigure d) displays the query phase and the found
shortest path.

2Multiple–query planners are particularly useful for multirobot systems, when we’re dealing with the
task of planning paths for a large amount of robots in a static or dynamic environment.
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2.3.2 Rapidly–Exploring Random Trees Algorithm

The RRT algorithm [29] is a single–query incremental algorithm designed specifically to
quickly explore high–dimensional configuration spaces of any shape and size. It works
by building an oriented tree from the initial supplied location. The planner samples the
configuration space and tries to connect the new samples to the previously built tree. If
the samples can be connected by a collision–free trajectory, the new sample is added to
the tree and the process repeats. After every iteration the algorithm checks whether the
newly added sample lies within a preset region of the supplied goal location. If it does,
the algorithm terminates and a path is extracted by following the tree edges to the root
of the tree, i.e., the initial location. The functionality is illustrated in Figure 2.3. The
algorithm is shown to be able to handle high DOF applications with both holonomic
and non–holonomic constraints [29] and is one of the most popular currently used path–
finding algorithms. It spawned a variety of modifications, some of which are described
in the following subsections. Like the PRM algorithm, it can struggle to find a path
through a narrow corridor or a bug trap type situation. Unlike the PRM algorithm, RRT
is a single–query planner, requiring a fresh start for every task.

a) b) c) d)

Figure 2.3: Functionality of the Rapidly–exploring Random Trees algorithm. a) The environ-
ment, with the initial location in red and goal location in green. b) Tree growth, with a new
node being added in yellow. c) A fully grown tree, with a node, which lies in the goal region,
shown as dashed green line. d) The extracted path.

2.3.3 Rapidly–Exploring Dense Trees Algorithm

Rapidly–exploring Dense Trees algorithm [25] is a modification of the RRT algorithm,
which yields good performance out of the box, without a lot of parameter tuning [25]. It
functions similarly to the RRT algorithm, however, when a nearest neighbor of the newly
sampled node is being searched, the points can be connected to the nearest position on
the edge, alongside the previously sampled tree nodes. This results in a dense covering
of the searched space. See Figure 2.4 for an illustration of the functionality.
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a) b) c)

Figure 2.4: Functionality of the Rapidly–exploring Dense Trees algorithm. a) Trajectory seg-
ment with a newly sampled node depicted in blue. A conventional trajectory which would be
used by the RRT algorithm is shown in red, whereas the trajectory found by the RDT algo-
rithm is shown in green. b) When a node is connected to an existing trajectory segment, the
segment is split into two and a new node is created, to which the sampled node is connected.
c) This behavior results in the characteristic RDT graph, which contains a high number of
right angles, when compared to the graph resulting from the RRT algorithm.

2.3.4 Optimal RRT Algorithm (RRT*)

Both the PRM and the RRT (RDT) algorithms are non–optimal methods. When a path
is found, it is nearly always longer than the shortest possible path and requires further
refining. The RRT* algorithm [22], however, is asymptotically–optimal3. It also builds a
tree graph, like the RRT algorithm. Its key defining characteristic is the fact that it can
re–route non–optimal parts of the search tree. When adding a new node to the tree, all
nearby nodes in a certain region are tested for shorter paths. If the cost of reaching the
root of the tree from the nearby nodes is higher through the tree than through the new
added node, the respective edges are rerouted through the new node. See Figure 2.5 for
more details.

As the name suggests, the algorithm is guaranteed to eventually find the optimal
(shortest possible) path. However, given the scenario we’re concerned with, path opti-
mality isn’t as important as finding any path through the complex environment. The
additional steps during the rewiring phases of this algorithm cause a slowdown, which is
unnecessary for our purpose and for this reason we haven’t utilized it in our approach.

2.3.5 RRT-Path Algorithm

The RRT-Path algorithm [43] combines the best of the PRM and the RRT algorithm. It
employs the concept of a so–called auxiliary path, which represents additional knowledge
about the configuration space. The path is precomputed and represents void regions of
the configuration space, which have higher probability of collision–free configurations.
The algorithm works by growing a tree graph from the initial location, while employ-
ing the auxiliary path as a guide for biased sampling. When creating a new sample, a

3Asymptotic optimality means that the limit of the probability of finding an optimal path converges
to 1 as runtime approaches infinity. Given enough time, the algorithm will always find the shortest path.
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a) b) c)

Figure 2.5: Functionality of the RRT* algorithm. a) When a new node (blue) is added to the
search tree, instead of simply choosing its nearest neighbor as its parent (red dashed line) like
the RRT algorithm would, RRT* considers routes to all its neighbors in the region Xnear (blue
dashed circle). A trajectory (green dashed line) is clearly more optimal. b) The new node
is added and all existing search tree nodes in the region Xnear are considered for rerouting.
Purple dashed lines represent possible alternatives for the current non-optimal (red) lines. The
alternatives are clearly more optimal. Note how the green line is not rerouted, since it doesn’t
lie in the region Xnear. c) A more optimal tree is constructed with the new node being a parent
of some already existing nodes.

a) b) c)

Figure 2.6: Functionality of the extended RRT-Path algorithm. a) In the first phase, a roadmap
is created (gray), and an auxiliary path for a scaled–down robot is found (black). b) A tree
graph (black) is then grown, using the auxiliary path (gray) as a guide. A newly sampled node
near in the auxiliary path region is depicted in yellow. c) A fully grown tree, with the final
found path in yellow. Note how the final tree graph exhibits much smaller branching, and is
able to reach the goal location with fewer nodes, than the original RRT implementation.
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configuration in the auxiliary path region is picked with a non–zero probability. This
region moves as parts of the auxiliary path are being reached by the tree graph. The
functionality is illustrated in Figure 2.6. This ensures rapid progress through empty envi-
ronments, while providing flexibility when navigating around and through more complex
obstacles. This algorithm has been shown to exhibit good performance when planning
through narrow passages, to the point of surpassing other planners [42], [43].

An extension of the algorithm is presented [44]. The modified algorithm first finds
a path for a scaled–down version of the mobile robot. The found path is then used
by the RRT-Path algorithm, when finding a path for the robot with its original size.
The features and characteristics of this algorithm (described in greater detail in the next
chapter) make it a very suitable choice for the problem at hand.

2.4 Conclusion

The concept of configuration spaces can greatly aid us in pathways detection problem
solving. We have presented some of the most prominent modern sampling–based path–
planning algorithms. There exists a large amount of other path-planning algorithms,
however, as the results of [41] have shown, tree-based planners such as the RRT or RRT-
Path algorithms offer good results when planning in complex and narrow environments,
while being relatively easy to implement.

This thesis does not focus on the quality of the found path, but rather on its existence.
It is therefore pointless to require an optimal path, or to refine the path once it has been
found. Furthermore, the nature of the task offers an excellent opportunity of utilizing the
abilities of the RRT–Path algorithm, since there exist tools designed for protein cavity
analysis. These tools can be used to precompute guiding paths, which are then utilized
by the RRT–Path algorithm to speed up the search.

We have therefore decided to employ the RRT–Path algorithm as a basis for our
implementation in this work, and extend it using ligand flexibility, atom scaling, potential
energy planning and a number of other modifications, for the purpose of solving the
ligand pathways detection problem.
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3 Pathways Computation Algorithm

This chapter presents our solution to the problem introduced in Chapter 1, using the
terminology presented in Chapter 2. We describe the selected state–of–the–art algo-
rithm for configuration space searching, the modifications required to enable its use for
molecular pathways computation and the motivation behind them, and the resulting
implementation.

3.1 RRT-Path

As stated previously in Section 2.3.5, the RRT-Path algorithm is a modification of the
single–query incremental sampling–based RRT algorithm. Like the RRT algorithm, it
is able to quickly traverse high–dimensional configuration spaces and find a solution
to a path–planning problem. Unlike the RRT algorithm, thanks to the introduction of
auxiliary guiding paths, it is able to quickly traverse even narrow passages, assuming a
good guiding path is supplied [43].

Auxiliary paths represent additional knowledge about the supplied configuration space,
being a rough estimation of the possible final path. When creating these guiding paths,
a simplified robot1 is used. As a result, the found paths can be infeasible2, due to
constraints imposed by the robot, thus being invalid as the final solution. A variety of
methods for computing these auxiliary paths is available, such as visibility graphs [21],
Voronoi diagrams [8] (employed by CAVER) or even the PRM algorithm with a simplified
mobile robot model.

Finally, during the searching phase, the algorithm exhibits the so–called temporary
goal bias for selecting nodes from the auxiliary path when sampling new states. The
auxiliary path is parameterized and a beginning node is selected as a temporary goal.

1The term simplified robot denotes using simplified geometry, such as a primitive shape, to represent
the robot. CAVER 3.0 uses a spherical probe with a set radius to represent the ligand molecule.

2Examples of infeasibility include such cases as collisions between the robot and the environment,
or not satisfying differential constraints. Differential constraints can arise when we planning a motion
for nearly any mechanical system. They encompass such cases of problems as non–holonomic planning,
kinodynamic planning, and trajectory planning, all of which are intensively studied topics in the field of
robotics [5]. Differential constraints restrict the DOF of the robot, based on its state. An often cited
example on non–holonomic planning is that of a car, which can move forward or backwards, but has to
change the angle of its front wheels in order to move left or right.
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Once this, or any other node positioned further down the path is reached, the temporary
goal node is moved to accommodate this, thus ensuring the tree graph grows along
all portions of the supplied auxiliary path. Pseudocode of the algorithm is listed in
Algorithm 1.

1 Function BuildRRTPath
input : Initial configuration qinit, configuration space C, goal region G, auxiliary

path P
output: RRT graph T

2 T.addNode(qinit);
3 tempGoal ← initializeTemporaryGoal(P);
4 while ¬goalReached() do
5 qrand ← createRandomSample(tempGoal);
6 qnear ← nearestVertex(qrand);
7 if collisionFree(qnear, qrand) then
8 T.addNode(qrand);
9 T.addEdge(qnear, qrand);

10 moveTemporaryGoalNode(T, tempGoal, P);
11 end

12 end
13 return T;

Algorithm 1: RRT-Path algorithm. The member function addNode inserts a vertex
into the tree, similarly the function addEdge inserts an edge. Function initializeTem-
poraryGoal selects the first auxiliary guiding path node to create samples. Function
goalReached checks whether a vertex of the search tree lies within the goal region G.
A goal region is a defined area in the Euclidean or configuration space, usually a sphere,
used for stopping the search, after the planner reaches it. Function createRandom-
Sample chooses a sample from the temporary goal node or the entire configuration
space, depending on the goal bias parameter gb. Function nearestVertex returns a
nearest neighbor of the supplied vertex, located in the search tree. Function collision-
Free checks whether a path, formed by interpolating between the two supplied vertices,
representing configurations, is collision–free. Finally, function moveTemporaryGoalN-
ode checks whether the search tree has reached the current temporary goal node and
if it did, selects a different one further down the guiding path (see Algorithm 2). Since
the search graph is a tree, the final path can be extracted from the resulting graph
by iterating over the parents of the respective vertices, against the direction of the
directed edges.

3.2 Guiding Paths Computation

The utilized RRT–Path algorithm requires a pre–supplied guiding path in order to prop-
erly utilize its full potential. In our case, the guiding paths consist of protein tunnels,
represented as spheres with varying radii. These tunnels can either be created manually
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1 Function moveTemporaryGoalNode
input : Search tree T, current temporary goal node (tempGoal), initial path

P = (P1, . . . , PN)
output: New temporary goal node

2 for p = PN : −1 : tempGoal do
3 nearVertex ← nearestNeighbor(V, p);
4 if ||p− nearVertex|| < p.radius then
5 return p
6 end

7 end
8 return tempGoal;

Algorithm 2: Temporary goal node moving function. The auxiliary path nodes contain
radius of the tunnel in the spot they represent, which can be utilized to aid detection.
Function nearestNeighbor find a tree vertex nearest to the supplied auxiliary path
node. The notation || · || represents the L2 vector norm. The auxiliary path nodes
are checked from the end of the path, to prevent unnecessary slowdowns, when a path
node following after the current temporary goal node is reached first.

by the user (which would be extremely tedious and time consuming) or automatically
generated. There currently exists a variety of specialized tools for protein cavity detec-
tion. Examples include FPocket [26], PocketPicker [45], or CAVER 3.0 [12], which was
utilized in this thesis for guiding paths computation.

CAVER 3.0 is a software tool which enables protein cavity identification and charac-
terization, for the purpose of docking problem solution estimation and virtual molecular
screening [12]. It can automatically analyze supplied protein molecules with a given
probe size in static as well as dynamic protein molecule snapshots.

The pathways are identified in the supplied protein structure using user–specified
starting points (protein active sites). The protein structure’s void space is then divided
using Voronoi diagrams. Voronoi edges in the free space are clustered into individual
tunnels, which are separated using a dissimilarity function. An example of CAVER output
is given in Figure 3.1.

The detection of pathways allows us to determine the main transport tunnels for the
supplied molecule, which in turn enables us to characterize them and to judge whether
intermolecular ligand–receptor interaction could occur in the respective real, physical
counterparts.

CAVER is a widely used tool that can identify even complex protein cavities and
provides robust results, which can be flexibly tailored to fit the needs of the user using a
number of parameters. It was therefore employed to compute the auxiliary guiding paths
used by our algorithm. The output of CAVER consists of a multitude of tunnels, rep-
resented as spheres with corresponding radii. These tunnels originate inside the protein
active site as one tunnel and then split inside the molecule into multiple tunnels, which
ends of separate locations on the protein surface.
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Figure 3.1: An example of tunnel structures found by CAVER 3.0. a) shows the surface of
a protein molecule with tunnel ends visible. b) shows the tunnel structures inside the protein
molecule. Different tunnels are labeled with different colors. There are 25 found tunnels for
this (1MXTa) protein molecule. These tunnels are used by the final version of our algorithm
as auxiliary guiding paths.

3.3 Ligand Conformation Computation

Section 1.2.4 established the terminology regarding protein conformation and explained
the core concepts. To reiterate, molecules may exhibit flexibility in certain chemical
bonds. Whether this occurs depends on constituent atoms of the chemical bond and the
atoms surrounding them. These bonds rotate around an axis, the direction of which also
depends on the constituent and surrounding atoms. The conformation (configuration)
of a protein molecule may be fully described by a set of parameters denoting the degrees
of rotation in the rotating bonds.

The determination of the number of DOFs requires expert knowledge of physical
chemistry, and is out of the scope of this thesis. Since a variety of suitable software
solutions exists, we have utilized an existing program AutoDock Vina.

AutoDock Vina [19] is a program developed to search for solutions to molecular dock-
ing and virtual screening problems (prediction of molecular characteristics). It utilizes
custom scoring functions to find rotatable bonds and binding energy of the molecules. It
also employs sophisticated optimization methods to speed up the computation process
of discretizing the search space to find suitable binding conformations and location of
ligand molecules.

Given the fact that the tool is written in the C++ programming language and its
source code is available, we have employed it to model ligand molecule conformations.
A wrapper library was created which, when supplied with the molecule file and the
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configuration of its angles, returns relative locations of individual ligand atoms. These
locations are then used by our implementation to construct the spatial ligand structure.

3.4 Novel Modifications of the RRT–Path Algorithm

The original RRT–Path algorithm uses a single guiding path and is suitable for a rigid
mobile robot, with the extension [44] applicable for 6 DOF. We need to plan for flexible
bodies (and consequently many DOF) and take intramolecular potential into account,
for the algorithm to be applicable in our scenario. The following sections describe our
modifications.

The resulting implementation is illustrated in Figure 3.2. The receptor molecule and
the locations of its active sites are inputted into CAVER 3.0, in order to generate receptor
tunnels. These tunnels are then, along with the receptor and ligand molecules, used as
an input for our algorithm. The final algorithm has been termed Protein–RRT–Path
(P–RRT–Path in short).

Figure 3.2: Workflow diagram of the final implementation. The left block displays the workflow
required to prepare input data for our algorithm. The right block illustrates the synergy of
the individual components, required in order to complete the planning task, and the resulting
output.

The basis of our implementation is the RRT–Path algorithm, which guides the sam-
pling alongside one the supplied receptor tunnels. It decides on the position and orienta-
tion of the ligand molecule, decoupled from the ligand’s conformation. The Transition–
RRT algorithm selects a feasible conformation of the ligand molecule, in order to maintain
the lowest possible intramolecular potential energy. After the ligand molecule configu-
ration3 is chosen, the algorithm uses the AutoDock Vina wrapper in order to compute
ligand atom positions from ligand intramolecular angles. These positions are then passed
to OZCollide, along with the chosen configuration, in order to find out whether the con-
figuration is collision–free or not. If it is, these steps repeat in order to check the validity
of the possible trajectory, up to a selected resolution threshold. If the resulting trajectory
is collision–free, the configuration is added to the search tree. Once a newly added tree
node lies within the goal region (the last temporary goal node) the algorithm finishes,
otherwise the process repeats itself. After the planner stops, a path can be easily ex-

3Position, orientation and conformation
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tracted by moving up the tree to the root, and keeping track of the visited nodes. See
Algorithm 3 for pseudocode of the final implementation.

The following sections describe in greater detail the novel modifications of the RRT–
Path algorithm and the motivation behind them.

3.4.1 Tree Growth Stagnation Detection

As stated previously, the algorithm utilizes the concept of auxiliary guiding paths to speed
up the tree growth. While this offers the ability to sample in a free configuration space,
the resulting trajectories might still collide with the environment if the guiding path is
curved and the new sampled node is sufficiently far. To mitigate this issue, we’ve devised
the concept of temporary goal nodes, which limit the sampling area of the guiding path.
When a new sample is created from the auxiliary guiding path, it may only be sampled
in a sphere denoted by the temporary goal node. This leads to better tree growth while
limiting the amount of samples which would in invalid new trajectories.

a) b) c) d)

Figure 3.3: Illustration of a temporary goal node. a) A tree is grown from the initial node
(green) towards the temporary goal node (blue) located on the auxiliary guiding path (gray).
New samples can either be created in this temporary goal node with a non–zero probability, or
in the entire configuration space. b) The first temporary goal node has been reached so a new
temporary goal node is created further down the path. c) If any of the nodes on the path after
the current temporary goal node is reached. A new temporary goal node (orange) is created
to reflect this, keeping the tree growth as fast as possible. d) Once the last temporary goal
node is reached, the planner stops and the final path is extracted.

When the planner is started, the guiding path is analyzed and split into separate
spherical nodes. The first node of the path is then set as the temporary goal node. If
the search tree reaches the temporary goal node or any of the following nodes of the
guiding paths, the temporary goal node is moved further down the guiding path to better
stimulate the search tree growth (see Algorithm 2). Once the last node of the path is
reached, the planning is complete and the algorithm may halt.

We have utilized the concept of temporary goal nodes to track the progress of the
planner. As stated previously, the planner can occupy two states, a normal state and a
stagnation state. The detection of this stagnation state is performed by monitoring the
amount of iterations since the temporary goal node was last moved. If the iterations
count crosses a certain threshold, denoted by parameter Is, we assume that the planner
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1 Function Protein-RRT-Path
input : Initial configuration qinit, configuration space C, goal region G, auxiliary

path P
output: Ligand Pathway LP

2 T.addNode(qinit);
3 tempGoal ← initializeTemporaryGoal(P);
4 while ¬goalReached() do
5 qrand ← createRandomSample(tempGoal);
6 qnear ← nearestVertex(qrand);
7 updateAtomScale();
8 qrand ← limitNodeDistance(qrand, qnear);
9 qrand ← limitLigandAngles(qrand, qnear);

10 if ¬checkNodeTunnelDistance(qrand) ∨
¬checkTransitionTRRT(qnear, qrand) then

11 continue ;
12 end
13 if collisionFree(qnear, qrand) then
14 T.addNode(qrand);
15 T.addEdge(qnear, qrand);
16 moveTemporaryGoalNode(T, tempGoal, P);
17 end

18 end
19 return extractPath(T);

Algorithm 3: Pseudocode of the P–RRT–Path algorithm. The member function
addNode inserts a vertex into the tree, similarly the function addEdge inserts an edge.
Function initializeTemporaryGoal selects the proper region of the supplied guiding
path as a temporary goal node. Function goalReached checks whether the planner
has reached the goal region. Function createRandomSample returns a new configu-
ration, depending on the current planner state, according to the later described func-
tionality. Function nearestVertex picks a nearest neighbor from the tree. Function
updateAtomScale changes the multiplier of atomic radii (also explained later). Func-
tion limitNodeDistance checks whether the distance of the supplied two nodes does
not cross the set threshold and if it does, moves the newly sampled node. Func-
tion limitLigandAngles clamps the difference in the intramolecular angles to a preset
value. Function checkNodeTunnelDistance checks if the distance of the sample from
the guiding path does not cross a preset threshold. Function checkTransitionTRRT
calls the T–RRT algorithm, to determine, whether the transition is admissible, with
regards to intramolecular potential energies. Function collisionFree checks whether a
trajectory formed between the two supplied configurations is collision–free. Function
moveTemporaryGoalNode updates the current temporary goal node, if is has been
reacehd by the tree and finally, function extractPath extracts the final path from the
tree by iterating through it over parent nodes.
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is stuck, the tree growth has stopped progressing and we take corresponding corrective
actions to enable further growth, as described in the previous and the following sections.

The planner remains in the stagnation state and the corrective actions remain in
place until the current temporary goal node is reached. The planner then switches back
to the normal state and the corrective actions are disabled until the planner reaches the
stagnation state again.

3.4.2 Atom Scaling

Figure 3.4: An example of a
valid tunnel (green) following the
supplied auxiliary guiding path
(blue) and an invalid tunnel (red)
reaching the free space outside
the protein molecule (gray).

When interacting with each other, both ligands and
proteins are not rigid, but adapt to, and affect each
other. Molecular dynamics simulations of protein and
ligand molecules have revealed the dynamic nature of
tunnels, which can move, merge and adapt themselves
to the shape of the passing ligand. The ligand can in
turn adapt its shape to facilitate its passage through
the tunnel.

To emulate this behavior, we have employed the
technique of scaling down the Van der Waals atomic
radii. This technique is widespread in the protein plan-
ning field and has been successfully utilized, e.g., in the
MoMA–LigPath planner [13].

The shrinking is performed in complex parts of the
environment, when the planner is in the stagnation
phase (see Figure 3.7). If the planning proceeds well,
the radii are not scaled at all. If the planner gets stuck, the radii are slowly scaled down,
according to the number of iterations, which have failed to reach the goal node. This
continues, until the temporary goal node is reached, or until a certain scaling factor is
reached (in our case 0.5). Once a goal node is reached, the scaling factor is reset to the
initial value (in our case 0.8) and planning continues.

3.4.3 Auxiliary Guiding Path Distance Limiting

When finding a path using the RRT-Path algorithm, the goal bias parameter gb ∈ [0, 1]
determines the probability of creating a new sample inside the auxiliary guiding path. A
sample can be created anywhere in the available configuration space with the probability
of (1− gb). This ensures that the algorithm can select a better path when stuck in a
local minimum (a bug trap scenario). This however, leads to the possibility of finding a
path completely different from the guiding path, when the task is particularly difficult.
See Figure 3.4 for an example of this behavior.

To ensure this scenario doesn’t occur, a condition was devised, which checks every
newly created sample. If the surface of a ligand atom nearest to the auxiliary guiding path
is farther than a preset parameter δtunnel (in our case 1,5 Å), the sample is discarded.
This eliminates paths which don’t follow the auxiliary guide, while giving the algorithm
some wiggle room to escape from local bug trap type minima.
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3.4.4 Receptor Atoms Culling

The auxiliary guiding path effectively restricts the configuration space of the ligand
molecule. Since any samples, which are farther than a certain distance from the CAVER
tunnel are discarded, receptor atoms located in this these "disabled" regions cannot
possibly collide with the ligand molecule. This motivates us to reduce the complexity
of collision detection by decreasing the number of atoms participating in it. When the
planner is being initialized, distances of all the atoms are checked. Those which are
farther than twice the parameter δtunnel from a CAVER tunnel’s surface, are discarded.
Figure 3.5.a,b shows the process. In the illustrated example, the amount of atoms has
been reduced more than 10 times.

a) b) c)

x

y

z

Figure 3.5: An example of a culled receptor protein molecule. Subfigure a) shows the original
protein molecule (gray), consisting of 8300 atoms, with a guiding tunnel denoted in red. As is
apparent, the path does not span the entirety of the molecule. A majority of receptor atoms
are therefore irrelevant for planning a path inside the tunnel. Subfigure b) shows the culled
protein molecule, consisting of 750 atoms, with only the atoms relevant to the tunnel denoted
red. Subfigure c) displays the final axis–aligned bounding box, used for sampling.

After this, an axis aligned bounding box is created around the protein molecule. This
serves as a sampling boundary, since ll samples created outside the guiding path must
lie in this bounding box. See Figure 3.5.c

The combination of these two approaches speeds up the implementation of collision
detection roughly 1.25 times, both due to the speedup in collision detection4 and the
limiting of the amount of invalid samples created.

3.4.5 Precomputed Ligand Conformations

Flexible ligand molecules can more easily navigate much smaller and more complex
environments, when compared to rigid molecules. However, flexibility comes with the
cost of a significantly expanded configuration space. Each degree of freedom of the
ligand molecule presents an additional dimension which we need to sample, thereby
slowing down the search. To mitigate this issue a compromise has been conceived. The
planner has two states, a normal state, for when the search is progressing normally, and

4Although the computing time saved in one collision detection might seem negligible, this function
can be called millions of times for one planning task and therefore presents a significant speedup
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a stagnation state, when a tree growth stagnation has been detected and the search
tree has stopped growing (see Section 3.4.1 for details regarding growth stagnation
detection).

When the planner is initialized, several molecular conformations are precomputed:

• The lowest energy conformation (Figure 3.6.a), which is found in the potential
energy function space by random sampling. This conformation is used during the
normal planner phase in order to avoid slowdowns caused by waiting for results
from the AutoDock Vina library wrapper.

• The narrowest conformation (Figure 3.6.b), also created by sampling ligand angle
values, but chosen by selecting a conformation with the smallest distance between
two most distant atoms and an atom most distant to a line created by the two
most distant atoms. This conformation was chosen to fit the potential narrow
corridors, which the most compact configuration might be too wide to fit in.

• The most compact conformation (Figure 3.6.c), created by sampling ligand angle
values and picking the most compact ligand spatial arrangement.

Figure 3.8 shows the a ligand molecule depicted in the previous three conformations.

a) b) c)

Figure 3.6: Illustration of different types of conformations of a ligand molecule. a) The lowest
potential energy conformation, used during the normal planner phase. b) The narrowest
conformation, used during tree stagnation. The illustrated cylinder represents the utilized
metric. Two most distant atoms are found and a line is created between them. A conformation,
which has the shortest distance from that line to any atom, is then picked. c) The most
compact conformation, with the shortest maximum distance, between any two atoms, also
used during tree stagnation

Upon initialization, the planner starts in the normal state and only utilizes the lowest
energy conformation to avoid unnecessary slowdowns. When a particularly difficult part
of the environment is encountered and search tree growth stagnation is detected (see
Section 3.4.1), the planner switches to the stagnation state. During this state, the
configuration space is expanded by the degrees of freedom of the ligand molecule. A
parameter paltCon f denotes the probability of choosing one of the two precomputed

ligand conformations (compact and narrowest, each with probability
paltCon f

2
). If neither

of the two is randomly chosen, new conformation is generated, using the Transition–RRT
algorithm (see Section 3.4.7) with regard to the potential energy function. A workflow
of the entire process is illustrated in Figure 3.7.
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Figure 3.7: Workflow diagram of the conformation sampling procedure. The planner consists
of two states, the normal state, which utilizes the default precomputed ligand conformation,
and the stagnation state, which occurs when the search tree growth has stopped. During the
stagnation state the planner can use one of the two precomputed conformations, or sample an
entirely new conformation, depending on the parameter paltCon f ∈ [0, 1]

This significantly improves the planner progress rate while also maintaining the ben-
efits of flexible ligand planning and avoiding unnecessary overhead processing costs.

a) b) c)

Figure 3.8: Conformations of the m040 ligand molecule. a) depicts the lowest potential energy
conformation, b) the most compact conformation and c) the narrowest conformation.

3.4.6 Ligand Flexibility Limiting

The degrees of freedom present in the form of rotatable bonds are decoupled from the
rigid six degrees of freedom of the ligand. To prevent large sudden conformation changes
of the ligand, we have implemented a limiting function. When a new sample is created,
its molecular angles are compared to that of its nearest neighbor. If they differ by
more than a preset parameter ∆α (0.25 rad in our case), they are clamped so that the
difference is equal to the value of the parameter.

This process ensures smoother transitions between conformations and allows for
faster planning since the number of rejected trajectories is significantly reduced.
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3.4.7 Ligand Potential Energy Limiting

Intramolecular ligand energy is a function of the ligand’s internal angles, i. e., its confor-
mation. When planning with a flexible ligand, we assume that the molecule can take on
any conformation, regardless of its potential energy. Thus, the found trajectory might
actually not be feasible in a real scenario. Taking potential energy of the ligand molecule
into account enables us to further judge the feasibility of the found pathway.

The Transition–RRT algorithm [20] combines the rapid exploration ability of the RRT
algorithm with stochastic optimization methods through transition tests (explained in the
section below) to accept or reject sampled conformations. The planner utilizes the notion
of a minimal work path, which enables a way of comparing path costs. It also implements
a self tuning parameter, which controls its exploratory behavior, of preferring low cost
valleys and saddle points of the cost space, and thus avoiding high–cost configurations.
An example of the resulting tree graph is available in Figure 3.9. Pseudocode of the
algorithm is available in Algorithm 4.

Transition Test

Figure 3.9: An example of a solu-
tion originating from the T-RRT algo-
rithm. Note how the resulting graph
avoids high–cost slopes, while still be-
ing able to climb out of local minima.
Image courtesy of [20]

The transition test function is presented in Algo-
rithm 4. The function filters transitions which
would result in the tree searching a high cost region,
that might otherwise be avoided. The function first
computes a probability of transition (referred to as
the Boltzmann probability) as follows:

pi,j =







exp

(

−
∆c∗i,j
K·T

)

if ∆c∗i,jn ≥ 0

1 otherwise.

where ∆c∗i,j =
cj−ci

di,j
, is the slope of the cost (the

cost difference divided by the node distance). This
ensures that downhill transitions are automatically
accepted, and the steepest uphill transitions have
the lowest chance of acceptance. K is a normaliza-
tion constant, in our case K = 2. Finally, T is an
adaptive parameter representing current tempera-
ture (and consequently transition probabilities).

The temperature parameter changes during the planning to reflect the current state
of tree growth. Low temperature limits the expansion to low cost regions of the cost
space, while high temperatures allow the planner to reach high cost slopes, when stuck
in a local minimum. The adaptive tuning algorithm is presented in Algorithm 5.

Analysis of the results of the algorithm shows that although the planner is not math-
ematically guaranteed to find the optimal solution, a great amount of performed exper-
iments has shown, that T–RRT provides significantly more optimal solutions from the
potential energy standpoint.
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1 Function BuildTRRT
input : Initial configuration qinit, configuration space C, goal region G and the

cost function fc

output: TRRT tree graph (V,E)

2 V ← qinit;
3 E← ∅;
4 while ¬goalReached() do
5 qrand ← createRandomSample(C);
6 qnear ← nearestVertex(qrand, V);
7 if not Extend(V, qrand, qnear, qnew) then
8 Continue;
9 end

10 if TransitionTest( fc(qnear), c(qnew), dnear−new) and

MinExpandControl(V, qnear, qrand) then
11 V ← V ∪ qrand;
12 E← E ∪ (qnear, qrand);
13 end

14 end
15 return (V, E);

Algorithm 4: Pseudocode of the T-RRT algorithm. Function goalReached checks
whether a vertex of the search tree lies within the goal region G. Function createRan-
domSample samples the configuration space for a new state. Function nearestVertex
returns a nearest neighbor of the supplied vertex, located in the search tree. Func-
tion Extend checks whether the newly sampled state lies within a preset δ parameter
away from the nearest tree node and returns a new parameter qnew which satisfies this
condition. The Function TransitionTest filters parameters which do not satisfy the
cost limits imposed by the planner (this is further explained in Section 3.4.7). Finally,
function MinExpandControl forces to planner to maintain a minimal exploration rate.
Similarly to the RRT algorithm, the search graph is a tree, so the final path can easily
be extracted by iterating over parent nodes of the node in the goal region, once it is
reached.

3.5 Unsuccessful Modifications

During our attempts to improve the performance of our planner, we have devised several
improvements which, although seemingly promising ideas, did not convey any significant
advantages. This section briefly describes the ideas and problems faced when imple-
menting them.

When a tree is successfully expanded, the newly added sample can be used to in-
crease the growth of the tree, by creating similar samples which only differ in cer-
tain preset steps. In our implementation, the node was moved forward and back-
ward along each axis by the largest possible growth step. The new samples were then
tested for collisions and, if eligible, inserted into the tree. See Figure 3.10 for details.
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1 Function Adaptive Tuning
input : Initial cost ci, final cost cj, node distance di,j

output: Boolean transition feasibility

2 if cj ≤ ci then
3 return False;
4 end

5 p← exp
(

−cj−ci)/dij

K·T

)

;

6 if Rand(0, 1) ≤ p then
7 T ← T/α;
8 nFail ← 0;
9 return True;

10 end
11 else
12 if nFail ≥ nFailmax then
13 T ← T · α;
14 nFail ← 0;
15 end
16 else
17 nFail ← nFail + 1;
18 end
19 return False;
20 end

Algorithm 5: Parameter T adaptive tuning algorithm. The algorithm alters the pa-
rameter throughout the search process. When the planner is initialized, T is set to a
low value. This filters out all states except for those with the lowest costs. During
the search, the variable nFail keeps track of failed attempts at creating a transition.
When this value crosses a preset threshold nFailmax (in our case nFailmax = 100), the
temperature is multiplied by α. Correspondingly, after a new transition is successfully
added to the tree, temperature is divided by the same factor α. This ensures that the
temperature automatically adapts to the current state of the planner.

x
y

z

Figure 3.10: An illus-
tration of forced node
expansion. The origi-
nal node (red) is used
to create new samples
(blue) by moving along
each axis.

During performance testing, it was revealed that although the
forced expansions stimulated tree growth, the resulting perfor-
mance was significantly slower, when compared to the original
implementation. This was partly due to the increased frequency
of collision checking and partly due to a much larger amount
of nodes in the search tree. This resulted in increased collision
detection times and consequently about 1,5 times worse perfor-
mance overall than without forced node expansions.

In the original implementation, when a ligand molecule is
loaded by the Vina AutoDock wrapper, it is automatically cen-
tered in its coordinate system. When planning in tight spaces,
this might cause problems, since even a slight rotation can place
the molecule in a colliding configuration. We have devised a way
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of eliminating this, by placing the molecular coordinate system origin on the "front" end
of the molecule, i.e. the end closer to the exit. See Figure 3.11 for illustration. The
theory was that this gives the molecule a higher chance of a collision–free configuration.

In reality this caused a significant slowdown. The planner struggled to find collision–
free configurations, despite our attempts to slow down rotation of the molecule during
planning steps. The overall search time was nearly two times worse than without this
modification.

3.6 Final Implementation

a) b)

y

x

z y
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z

Figure 3.11: An illustration of lig-
and endpoint coordinate system ori-
gin. a) shows the standard implemen-
tation and b) the proposed change.

The planner was implemented in C++11. The
Boost library [10] was utilized for runtime param-
eter parsing and other miscellaneous tasks. The
final implementation employed a number of other
libraries, described in the following sections. The
GLM library [16] was utilized in order to speed up
vector, matrix and quaternion computations.

Two variants of the algorithm have been devel-
oped. The first variant with single auxiliary guiding
path support, for performance demanding tasks,
and a second variant, with multiple guiding paths
support, for special case scenarios (see Section 3.7
for details).

3.6.1 Nearest Neighbor Search

During a single run of a path planning algorithm a nearest neighbor search is performed
at every iteration of the planner. This makes the task of searching the closest node
and the speed of its implementation crucial to the overall performance of the resulting
implementation. To ensure the best possible performance, we have utilized the excellent
MPNN library [7], which utilizes kD-trees and supports n-dimensional manifolds5. The
library offers low memory footprint while being easy to integrate and use.

Because ligand flexibility is adaptively toggled during path searching and ligand an-
gle changes do not significantly alter the geometry of the molecule, when combined
with ligand angle change limiting, the cost of considering ligand angles in the distance
metric would unnecessarily slow the planner down with little to no benefits to overall
performance. The distance metric is as follows:

d(ni, nj) =
√

||vi − vj||+ 10||qi − qj||+ ∑
k

(|ai,k − aj,k|)

where || · || is an L2 vector norm, ni, nj are tree nodes, vi, vj are the respective coor-
dinate vectors of the vertices, qi, qj are quaternions representing spatial orientations of

5Cartesian products of Euclidean one-space, circle, and three-dimensional rotation group SO(3)
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the two corresponding graph nodes and ai, j is the k–th intramolecular angle of the i–th
ligand. The number 10 was chosen experimentally and represents the weight of rotat-
ing the molecule, to limit excessive rotations when exploring the complex and narrow
environments of protein cavities.

3.6.2 OZCollide Library

Protein molecules can reach significant complexity, with atom counts ranging in the
orders of tens of thousands of atoms. Each of these atoms presents a geometric primitive,
which has to be virtually represented to facilitate the possibility of detecting collisions.
There exist several approaches of representing the molecules ranging from creating a
3D model to representing each of the atoms as a sphere and manually checking the
molecules for collisions, each of which are employed by existing solutions ([1], [2], more
details available in [18]). The results of our previous work [41] have shown that the most
effective approach consists of utilizing the OZCollide [23] external library and representing
the atoms as geometric primitives inside the library.
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Figure 3.12: Illustration of the AABB trees structure. AABB trees function by checking
collisions using several layers of geometric primitives. When the tree is being constructed,
the structure is iteratively split into smaller and smaller segments. These segments are then
hierarchically organized so that two smaller segments cover the same area as the parent larger
segment. The tree on the left illustrates the hierarchy of the structure. When checking
collisions first the root bounding box is checked, if it is not colliding, no part of the more
complex object contained inside it can possibly be colliding either and the query is resolved in
a significantly swifter manner. If it is colliding, its children are checked for collisions too. If any
of the children are colliding their children are recursively checked until we reach a leaf node,
at which point we check for collision with the contained object itself. The structure offers
a significant speedup in non–colliding scenarios at the cost of a small overhead in colliding
scenarios.

The OZCollide offers speed improvements for collision checking consisting of e.g.
automatic axis–aligned bounding box trees building (see Figure 3.12 for an illustration of
the structure). Our previous work has shown that it performs nearly orders of magnitude
better than some of the existing alternatives in the protein path planning scenario.
Although the original website for its distribution is no longer active, it has been archived
in a github repository6 and is still available for use today. One feature which we were
unable to implement was collision checking between two AABB trees. We have therefore
resorted to iterating over all ligand atoms and checking whether each of them is colliding
with the receptor molecule. Since the complexity of checking collisions in AABB trees

6https://github.com/jslee02/OZCollide (accessed 28-04-2018).
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is log(n), the resulting complexity is m · log(n), where m is the number of ligand
atoms and n is the number of receptor atoms. By using receptor atom culling from
Section 3.4.4, n can be further decreased.

3.7 Multiple Auxiliary Paths Algorithm

CAVER 3.0 is capable of exporting multiple tunnels, originating from a given active
site, when analyzing the supplied receptor molecule. To utilize this fact, a modification
of the RRT–Path algorithm, capable of searching using multiple guiding paths, was
devised. The algorithm performs analogously to the single guiding path variant, but
employs multiple temporary goal nodes, which are chosen at random when sampling
new nodes. This allows the algorithm to consider all possible tunnels when finding a
path. When the algorithm starts, multiple guiding paths are loaded. When creating a
new sample from a temporary goal node, all paths are considered using a roulette wheel
algorithm, according to their weights (see Section 3.7.1 for details). This approach
ensures that most suitable tunnel is considered with a high probability, at the cost of a
slight slowdown. The algorithm is similar to the original RRT–Path algorithm, except for
the function createRandomSample, which is modified to accommodate the possibility of
multiple auxiliary paths (see Algorithm 6 for details).

1 Function createRandomSampleMultiple
input : Set of temporary goal nodes Gt, set of path weights Wp

output: New temporary goal node

2 p← Rand(0, 1);
3 index ← getPathIndex(p);
4 return Gt[index];

Algorithm 6: Multiple auxiliary paths sampling function. First, a random number
p ∈ [0, 1] is generated. Then, a guiding path is chosen according using the roulette
wheel function getPathIndex, which selects one of the paths using their weights as a
distribution function. Then, the temporary goal node, belonging to the respective path
is returned.

After this algorithm is run multiple times, a statistical analysis of the results is
performed. The probabilities of finding a trajectory using a certain tunnel are computed
and the tunnels are ordered. We can then use the tunnels with the highest probabilities
in the single auxiliary guiding path algorithm, thus avoiding planning with unsuitable
tunnels.
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3.7.1 Dynamic Auxiliary Path Weighting

When the tunnels are loaded during the algorithm’s initial phase, they are assigned
weights according to the following formula:

wi =

(

1

n
+

2

||tgni − initi||+ 1
+ minWidthi

)

· ν

where n is the number of tunnels, tgni is the location of the i-th temporary goal node,
initi is the location of the tunnel’s initial node, minWidth is the size of the tunnel’s
bottleneck and ν is the normalization constant, satisfying ∑i wi = 1.

This solution ensures that all tunnels are sampled with a non–zero probability, while
the more suitable wider tunnels are sampled more often. Once any of the temporary
goal nodes is moved, the weights are recomputed, to better reflect the situation. The
second fraction ensures that tunnels with slow progress are sampled more often.

During experiments, the dynamic weighting proved to speed up the planner progress.
Despite this, the planner is still slower than the original single auxiliary path implemen-
tation. This variant should therefore only be used for the initial assessment, to aid the
decision of which tunnels should be utilized for sampling.

3.8 List of Symbols

The resulting implementation uses a number of parameters, affecting its performance. A
list of the most important parameters, with their units and meanings, has been provided
in Table 3.1.

Symbol Meaning [Units] Name in the program Chosen value

paltCon f Probability of choosing one of the
precomputed ligand conformations

[−]

PROBABILITY_OF_
ALTERNATIVE_CONF_

WHEN_STUCK

0,15

dα Maximum difference of
intramolecular angles between two

ligand conformations [radians]

MAXIMUM_DOF_CHANGE 0,25

gb Temporary goal node sampling bias
[−]

RRT_PATH_FOCUS_
PROBABILITY

0,9

δtunnel Maximum distance of tree nodes
from the auxiliary guiding path [Å]

RRT_PATH_MAX_DISTANCE_
CAVER_TRAJECTORY

1,5

Is Number of iterations without
progress for the planner to become

stuck [iterations]

ITERATIONS_UNTIL_STUCK 1000

Table 3.1: A list of symbols used throughout this thesis

34



4 Experiments

The final implementation was tested on three supplied protein receptor molecules, 4L2L,
DHA and DHA–AWT. The state–of–the–art algorithm MoMA–LigPath was used as a
reference for comparison of the algorithm’s performance. Default parameter values were
used for running MoMA–LigPath.

Each of the algorithms was tested on 100 conformations of the receptor molecules.
For each of the receptor conformations, up to three most suitable tunnels (found by
CAVER 3.0, with a probe size of 0,9 Å) were used for planning. The supplied lig-
and molecules were 1-Chloropropane (11 atoms, 2 DOF, m003), 1,2-Dichloroethane (8
atoms, 1 DOF, m037t), 1,3-Dichloropropane (11 atoms, 2 DOF, m038t), 1,5-Dichloro-
pentane (17 atoms, 4 DOF, m040), 2-Chloropropane (14 atoms, 3 DOF, m056), 1,2,3-
Trichloropropane (11 atoms, 2 DOF, m080) and Propionyl–chloride (10 atoms, 1 DOF,
m113r). See Figure 4.1 for illustrations.

Figure 4.1: Tested ligand molecules. From left to right, 1-Chloropropane, 1,2-Dichloroethane,
1,3-Dichloropropane, 1,5-Dichloropentane, 2-Chloropropane, 1,2,3-Trichloropropane and
Propionyl–chloride.

Our P–RRT–Path algorithm can in principle detect pathways both from inside and
from outside of the protein molecule.However, to offer a fair comparison to MoMA–
LigPath, only pathways from inside the molecules were used, since that is the only type
supported by MoMA–LigPath. Our implementation was allowed to scale the atoms of
both the ligand and protein from 0, 8 to 0, 5 times the original atomic radius. The tests
were rated according to their success rates, i.e., the percentages of successfully finding
a path over all the receptor conformations and the repeated runs for each conformation.
Each of the ligand molecules was used for planning in each of the supplied tunnels
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for each of the conformations of the three protein molecules 10 times. Therefore, for
each receptor, up to 100(con f ormations) · 7(ligands) · 10(runs) · 3(tunnels) = 21000 runs were
required. The tests were performed on the MetaCentrum1 computing cluster, using 8
CPU cores and 4 GB of RAM. Maximum runtime was limited to 10 minutes.

4.1 Planner Parameter Space Exploration

The proposed P–RRT–Path planner uses several parameters, affecting its performance
(available in Table 3.1. We have tested our implementation to determine the optimal
parameter values, providing the best overall performance. The planner was run 10 times
for each parameter value using the DHA receptor and the m080 ligand.

4.1.1 Goal Bias

The goal bias determines the probability of choosing the temporary goal node (and
subsequently the guiding path) to create new samples. Higher values mean the temporary
goal node will be chosen with a higher probability.

Figure 4.2: Planning times with respect to different goal bias gb values. The mean values
slowly decrease, as we gb increases from 0 to 0, 9. This is expected, since the auxiliary paths
represent additional knowledge about the void spaces. When goal bias = 0, the RRT-Path
algorithm degenerates into a simple RRT, since it doesn’t utilize any knowledge about the
environment. When goal bias = 1, all samples are generated inside the current temporary goal
node. This causes the algorithm to slow down, since it is unable to overcome bug–trap–type
local minima as easily.

The results in Figure 4.2 show that the optimal value lies in the region of 0, 9, which
is the value selected in the original RRT–Path implementation [43] and the value selected
in our experiments.

1https://www.metacentrum.cz/en/ (accessed 28-04-2018).
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4.1.2 Precomputed Conformations Probability

The parameter paltCon f denotes the probability of selecting a precomputed conformation
(the most compact or the narrowest) instead of sampling an entirely new random one.
The higher the probability, the less likely the algorithm is to sample a new conformation.

Figure 4.3: Planning times with respect to different probabilities of choosing alternative pre–
computed configurations. The mean values of planning times slowly increase as we increase
the probability.

Figure 4.3 shows that the planning times increase as the probability increases. This
might be attributed to the narrow spaces in the protein tunnels, which results in in-
creased collision rates for the precomputed conformations. We have therefore selected
the probability paltCon f value of 0, 15.

4.1.3 Planner Stuck Detection Threshold

Our implementation detects when the search tree has stopped progressing, and is able
to mitigate this by countermeasures, which include decreasing the scale of atomic radii.
The threshold Is denotes how many iterations without progress are necessary for the tree
to be considered stuck.

The results in Figures 4.4.a and 4.4.b show the magnitude with which this parameter
can affect the planner performance. Low values significantly speed up the performance,
while decreasing the scale with which the planner operates. This decreases the accuracy
and feasibility of the found trajectories. Higher values on the other hand significantly
improve the accuracy of the found trajectories, with the cost of severely reduced perfor-
mance by nearly 100 times. We have selected a value of 1000 iterations, which balances
these two characteristics, offering accurate planning scale with good performance.

4.2 4L2L

The A4 hydrolase (PDB ID 4L2L) receptor consists of 9666 atoms. Its structure is
depicted in Figure 4.5. The tCONCOORD tool [38] was used to generate 100 conforma-
tions of the protein. The initial PDB structure was minimized by GROMACS 4.0.7 [17],
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(a) Planning times with different
thresholds of iterations.

(b) Planning scales with different
thresholds of iterations.

Figure 4.4: Planning times with different thresholds of iterations. Although lower thresholds
bring significantly faster planning times, they also denote much lower atomic scales and thus
less accuracy and trustworthiness of the found trajectories.

using the input parameters recommended on the example page of tCONCOORD [37].
The protein conformations were generated using the default settings for tCONCOORD
in the PERT mode which only perturbs the starting configuration of atoms instead of
complete randomization. The tunnels leading to the active site defined by residues 134
(Alanine) and 311 (Phenylalanine) were computed by CAVER 3.0 in each conformation,
using the probe 0.9 Å. Unlike in the other two receptor molecules, three tunnels are
present in each of the conformations.

The characteristics of the tunnels are shown in Figure 4.6. According to bottleneck
sizes, there is a substantial amount of tunnels which are too narrow to pass the molecule,
and will either be considered packed or require substantial atom downscaling. There is
also a substantial amount of tunnels surpassing the length of 20 Å, which require long
planning times to find the pathway.

The results for our P-RRT-Path algorithm are presented in Table 4.1, the results for
MoMA–LigPath in Table 4.2 and Figures 4.7 and 4.8.

As we can see, our P-RRT-Path algorithm surpassed MoMA–LigPath in nearly all
aspects and scenarios. The reported amount of pathways is fairly substantial, with
one ligand surpassing 70% of tunnels reported as feasible for planning. Furthermore,
the numbers are quite consistent over the three tunnels, which implies that the rest of
the receptor conformations were unsuitable for planning. The number of found paths
overall is quite high, considering the fact that the tunnels were not tested for ligand
traversability, and a majority of them may in fact be packed.

Our results contrast with the results of the MoMA–LigPath algorithm, which failed
to find any pathways at all for 5 of the 7 ligands. It succeeded to find a path for the
m003 ligand, but the reported amount of pathways is lower than in our algorithm. One
contrasting scenario is the m113r ligand molecule, for which our algorithm failed to find
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a) b) c)

Figure 4.5: Illustration of the 4L2L protein molecule. Subfigure a) shows the surface and
ribbon model. Subfigure b) shows the spherical space–filling model and Subfigure c) shows an
example of the tunnels in relation to the protein surface.

Figure 4.6: Tunnel characteristics for the 4L2L receptor molecule. We can see a large amount
of secondary and tertiary tunnels reaching tunnels lengths over 20 Å and also a bottleneck
radius smaller than 1,5 Å. These tunnels will require long planning times and significant atom
downscaling, in order to be used to find a pathway.
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P-RRT-Path success rates in the 4L2L receptor [%]

Ligands

Tunnels m003 m037t m038t m040 m056 m080 m113r

1st tunnels 42,80 72,70 36,70 16,30 29,40 27,20 0,00

2nd tunnels 38,40 65,80 33,30 16,30 28,40 27,20 0,00

3rd tunnels 42,20 72,00 39,30 21,80 33,10 32,70 0,00

Table 4.1: Overall percentages of successfully found pathways for P-RRT-Path in the 4L2L
receptor. Our algorithm exhibits a fairly consistent performance over the three most feasible
tunnels. With the m037t ligand reaching 72,7% of successfully found paths. This is contrasting
to the performance for the m113r ligand, for which our algorithm failed in all cases. This may
be attributed to the fact that the m113r molecule is more spherical than others and thus may
require wider tunnels to successfully find a path.

MoMA–Ligpath success rates in the 4L2L receptor [%]

Ligands

Tunnels m003 m037t m038t m040 m056 m080 m113r

1st tunnels 3,80 0,00 0,00 0,00 0,00 0,00 5,90

2nd tunnels 3,60 0,00 0,00 0,00 0,00 0,00 7,30

3rd tunnels 3,40 0,00 0,00 0,00 0,00 0,00 5,40

Table 4.2: Overall percentages of successfully found pathways for MoMA–LigPath in the
4L2L receptor. As we can see MoMA–LigPath exhibits a surprisingly poor performance, when
compared to our algorithm. It successfully found a path for only 2 ligands out of the 7, m003
and m113r. For the m003 ligand, the rates are substantially lower than for our algorithm. For
the m113r MoMA–LigPath has succeeded, where our algorithm has failed. This might be the
result of the different nature of MoMA–LigPath, which is able to alter the positions of the
receptor atoms to facilitate the passage of the ligand.
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Path finding probabilities (4L2L receptor, 1st tunnels)
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Figure 4.7: Path finding probabilities for 4L2L receptor tunnels. As we can see, our algorithm
surpasses MoMA–LigPath in almost all scenarios, the exception being ligand m113r. The
possible reason is explained in Section 4.2. The results are consistent over all tunnel types,
which suggests a high percentage of the tunnels, for which the pathways were not found, might
be packed.
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Found paths (4L2L receptor, 1st tunnels)
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Figure 4.8: Number of found paths for 4L2L receptor tunnels over all receptor conformations.
The results confirm the previous conclusions, with our algorithm surpassing MoMA–LigPath
in all cases, except for the m113r ligand. The numbers are fairly consistent over all tunnel
types.
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Pathfinding times (4L2L receptor, 1st tunnels)
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Figure 4.9: Path planning times in the 4L2L receptor over all possible tunnel types. Our
algorithm clearly surpasses MoMA–LigPath, with a majority of P-RRT-Path planning times
not exceeding 300 seconds, with the average planning time being around 100 seconds. MoMA–
LigPath planning times lie mostly above 300 seconds, with none being below 100 seconds.
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any pathways at all. This may be caused by the spherical nature of the molecule, which
exhibits greater width than others and can require wider tunnels. MoMA–LigPath is
able to alter the positions of receptor atoms. This may have been a contributing factor,
which is something our algorithm emulates using atom downscaling.

The planning times are depicted in Figure 4.9. For our P-RRT-Path algorithm, the
planning times rarely surpass 300 seconds, with the average path planning time being
about 100 seconds in all of the cases. MoMA–LigPath, however, required nearly the
entire available time amount in all of the found paths, and its pathfinding times were
never lower than 100 seconds.

4.3 DHA

The DHA receptor consists of 4650 atoms. Its structure is depicted in Figure 4.10. The
conformations were acquired using molecular dynamics simulations. The characteristics
of the tunnels are shown in Figure 4.11. Compared to the 4L2L receptor, the amount of
tunnels with lengths surpassing 20 Å is much lower. However, a majority of the tunnels
is much narrower than in the 4L2L receptor. This might result in a reduced amount of
successfully found pathways mainly for the secondary and the tertiary tunnels.

The results for our P-RRT-Path algorithm are presented in Table 4.3, the results for
MoMA–LigPath in Table 4.4 and Figures 4.12 and 4.13.

a) b) c)

Figure 4.10: Illustration of the DHA protein molecule. Subfigure a) shows the surface and
ribbon model. Subfigure b) shows the spherical space–filling model and Subfigure c) shows
the tunnels in relation to the protein surface.

Our P-RRT-Path algorithm surpassed MoMA–LigPath in all cases when planning
in primary tunnels, with one ligand surpassing 92% of tunnels reported as feasible for
planning. It however, lacked in performance for the secondary and tertiary tunnels,
where MoMA–LigPath managed to find more pathways for some of the tunnels (see
Figure 4.14). MoMA–LigPath, however, once again failed to find any pathways for 5 of
the 7 ligand molecules.
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Figure 4.11: DHA receptor tunnel characteristics. We can see fewer tunnels with length
surpassing 20 Å, when compared to the 4L2L receptor. However, the amount of narrow
tunnels is much larger, which might result in a higher number of tunnels being reported as
packed.

P–RRT–Path success rates for the DHA receptor

Ligands

Tunnels m003 m037t m038t m040 m056 m080 m113r

1st tunnels 68,25 92,37 62,58 26,60 53,00 54,95 89,48

2nd tunnels 6,86 22,43 4,57 1,43 3,00 3,29 31,57

3rd tunnels 0,50 11,50 1,50 0,00 0,00 0,00 9,50

Table 4.3: Overall percentages of successfully found pathways for P–RRT–Path in the DHA
receptor. The success rates are fairly high for primary tunnels, though much less consistent
than in the 4L2L receptor. Our algorithm exhibits a high degree of robustness, by being able
to find tunnels in nearly all cases. There were no paths found for tertiary tunnels using ligands
m040, m056 and m080. This might be caused by the increasing complexity of tunnels, with
the tertiary tunnels being the least suitable for ligand traversability. However, it might also
suggest that a high amount of tunnels was incorrectly labeled as packed.
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MoMA–LigPath success rates for the DHA receptor

Ligands

Tunnels m003 m037t m038t m040 m056 m080 m113r

1st tunnels 16,29 0,00 0,00 0,00 0,00 0,00 32,16

2nd tunnels 17,29 0,00 0,00 0,00 0,00 0,00 31,14

3rd tunnels 10,00 0,00 0,00 0,00 0,00 0,00 25,00

Table 4.4: Overall percentages of successfully found pathways for MoMA–LigPath in the DHA
receptor. Just like in the 4L2L receptor, MoMA exhibits great specificity, by being able to find
pathways for primary tunnels using ligands m003 and m113r. However, it completely failed to
find any paths for all other ligands. Furthermore, the found tunnel rates diminish fairly quickly,
which suggests a large amount of tunnels might have been incorrectly reported as packed.
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Figure 4.12: Path finding probabilities for DHA receptor tunnels over all receptor conforma-
tions. Our algorithm surpassed MoMA–LigPath in all primary tunnels scenarios. MoMA–
LigPath, however, showed a greater degree of robustness for 2 of the 7 ligands in secondary
and tertiary tunnels, where our algorithm found a significantly lower amount of pathways.
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Figure 4.13: Number of found paths for DHA receptor tunnels over all receptor conformations.
The results are consistent with previous figures, where our algorithm surpassed MoMA–LigPath
in primary tunnels, but lacked in performance in secondary and tertiary tunnels.
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Figure 4.14: Path planning times in the DHA receptor over all receptor conformations. MoMA–
LigPath exhibits a slightly worse performance in primary tunnels, with the average planning
time being around 200 seconds. Our algorithm’s average once again lies around 100 seconds.
In secondary and tertiary tunnels however, the performances are much more similar, in cases
where both algorithms managed to find pathways.
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Our P–RRT–Path algorithm exhibited greater performance, with significantly shorter
planning times for the primary tunnels, and slightly shorter planning times for secondary
and tertiary tunnels.

4.4 DHA–AWT

The DHA–AWT (PDB ID 4E46) receptor consists of 4650 atoms. Its structure is depicted
in Figure 4.10. The molecular dynamics simulations was computed using AMBER 12
(details are described in [31]). It is a modification of the DHA receptor, with tunnels
slightly more suitable for planning.

The characteristics of the tunnels are shown in Figure 4.16. Similar to the DHA
receptor, the amount of tunnels with lengths surpassing 20 Å is much lower. Again a
majority of the tunnels is much narrower than in the 4L2L receptor. This might result
in a reduced amount of successfully found pathways mainly for secondary and tertiary
tunnels.

The results for our P-RRT-Path algorithm are presented in Table 4.5, the results for
MoMA–LigPath in Table 4.6 and Figures 4.12 and 4.13.

a) b) c)

Figure 4.15: Illustration of the DHA–AWT protein molecule. Subfigure a) shows the surface
and ribbon model. Subfigure b) shows the spherical space–filling model and Subfigure c) shows
the tunnels in relation to the protein surface.

MoMA–LigPath surpassed our algorithm in some of the scenarios which used ligands
m003 and m113r. The performances of the algorithms were similar in primary tunnels,
with MoMA–LigPath exhibiting shorter planning times (see Figure 4.19) in secondary
and tertiary tunnels. Our algorithm exhibited robustness, in the form of the ability to
find tunnels in all of the scenarios. MoMA–LigPath again failed to find any pathways
for 5 of the 7 ligand molecules.
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Figure 4.16: DHA–AWT receptor tunnel characteristics. The tunnels are fairly similar to those
in the DHA receptor. The primary tunnels exhibit the biggest feasibility, with the shortest
lengths and widest bottlenecks, which diminishes with secondary and tertiary tunnels.

P–RRT–Path success rates for the DHA–AWT receptor

Ligands

Tunnels m003 m037t m038t m040 m056 m080 m113r

1st tunnels 67,9 74,7 64,8 56,2 64,0 63,5 74,7

2nd tunnels 11,02 12,96 9,39 7,04 8,78 8,88 12,04

3rd tunnels 10,00 17,65 10,00 4,12 5,29 8,24 16,47

Table 4.5: Overall percentages of successfully found pathways for P-RRT-Path. Similarly to
the DHA receptor, the success rates are fairly high for the primary tunnels and quickly diminish
for the secondary and tertiary tunnels. This may be attributed to the decreasing bottleneck
radii, as seen in Figure 4.16. Our algorithm again exhibits a high degree of robustness, with
the lowest number of found tunnels in all of the scenarios being 4,12%.
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Figure 4.17: Path finding probabilities for DHA–AWT receptor tunnels over all receptor con-
formations. Our algorithm exhibits high success rates for all of the primary tunnel scenarios,
which quickly diminish for secondary and tertiary tunnels. MoMA–LigPath surpassed our P–
RRT–Path algorithm in all scenarios using ligands m003 and m113r, with probabilities of
finding a path nearly always reaching 100%. It however completely failed to find any pathways
for all other ligands.
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MoMA–LigPath success rates for the DHA–AWT receptor

Ligands

Tunnels m003 m037t m038t m040 m056 m080 m113r

1st tunnels 88,3 0,0 0,0 0,0 0,0 0,0 88,9

2nd tunnels 87,14 0,0 0,0 0,0 0,0 0,0 88,57

3rd tunnels 96,47 0,0 0,0 0,0 0,0 0,0 95,29

Table 4.6: Overall percentages of successfully found pathways for MoMA–LigPath in the DHA–
AWT receptor. MoMA–LigPath was able to find nearly all pathways for primary tunnels using
ligands m003 and m113r. Furthermore, it exhibited a paradoxical behavior, with the success
rates increasing as tunnel feasibility decreased. However, once again it completely failed to
find any paths for all other ligands.
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Figure 4.18: Number of found paths for DHA–AWT receptor tunnels over all receptor confor-
mations. The results are consistent with previous figures, where our algorithm’s performance
is on par with MoMA–LigPath in primary tunnels in terms of specificity, surpassing MoMA–
LigPath in robustness, but lacked in performance in secondary and tertiary tunnels.
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Figure 4.19: Path planning times in the DHA–AWT receptor over all receptor conformations.
Our algorithm’s performance is slighly better in the primary tunnel scenarios, but, for the first
time, its performance was surpassed by MoMA–LigPath in secondary and tertiary tunnels.
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4.5 Multiple Guiding Paths

CAVER orders the exported protein tunnels according to their length, bottleneck size,
and a number of other factors. This ordering reflects the possibilities of passing a ligand
molecule through the tunnel. During the testing of our implementation, we have found
that this ordering does not always coincide with the actual scenario. This is caused by
the fact that CAVER doesn’t take the shape of the ligand molecule into account and
rates the tunnels using a spherical probe. Due to the nature of the RRT-Path algorithm,
when we select an improper tunnel for path planning, the algorithm may run excessively
long, or may not find a pathway at all, despite the fact that there may exist a better
suited tunnel inside the molecule, which could facilitate ligand passage.

To mitigate this issue, we have devised a version of our algorithm which utilizes
multiple auxiliary paths at once. A statistical analysis of its output results can be
performed and the tunnels ordered according to the probabilities of being found with the
actual ligand molecule used for planning.

The algorithm was tested on the 1MXTa receptor molecule with the m003 ligand.
The planning was performed 100 times.

a) b)

Figure 4.20: Multiple auxiliary paths in 1MXTa receptor. Subfigure a) shows all of the tunnels
found by CAVER, with unused tunnels colored in blue, and tunnels, which were used to find
pathways colored in red. Subfigure b) shows Tunnel 1 (orange), which is the most important
tunnel according to CAVER, and tunnels 3 (red) and 5 (green), which are actually the most
suitable for planning with the m003 ligand molecule.

As we can see in Figure 4.20, the feasibility of tunnels reported by CAVER does not
actually reflect the real situation. A pathway was never found using the first two most
suitable tunnels. The tunnels number 3 and 5 were actually utilized to find all of the
100 pathways.

After performing the statistical analysis and selecting the best suited protein tunnel
we now have the ability to run the single auxiliary path implementation without any
unnecessary slowdowns, which results in an improved performance.
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4.6 Improved MoMA–LigPath Conditions

The results of our tests show that the MoMA–LigPath algorithm performs exceedingly
poorly for 5 of the 7 provided ligands. To try and mitigate this issue, we have performed
further test runs of the algorithm, with computing resources consisting of 8 CPU cores,
16 GB of RAM and a 1 hour time limit. The tests were run on the first 10 conformations
of the DHA–AWT receptor, on primary tunnels only.

MoMA–LigPath success rates with improved conditions

Ligands

Tunnels m003 m037t m038t m040 m056 m080 m113r

1st frame 30 0,0 0,0 0,0 0,0 0,0 60

2nd frame 30 0,0 0,0 0,0 0,0 0,0 80

3rd frame 0 0,0 0,0 0,0 0,0 0,0 70

4th frame 0 0,0 0,0 0,0 0,0 0,0 30

5th frame 90 0,0 0,0 0,0 0,0 0,0 90

6th frame 0 0,0 0,0 0,0 0,0 0,0 30

7th frame 0 0,0 0,0 0,0 0,0 0,0 10

8th frame 40 0,0 0,0 0,0 0,0 0,0 80

9th frame 10 0,0 0,0 0,0 0,0 0,0 40

10th frame 0 0,0 0,0 0,0 0,0 0,0 10

Average 20 0 0 0 0 0 50

Table 4.7: Success rates for MoMA–LigPath in improved conditions in the DHA–AWT receptor.
MoMA–LigPath successfully found pathways for ligands m003 and m113r. However, once
again it completely failed to find any paths for all other ligands, despite the increased time
limit and computing resources.

As is apparent from Table 4.7, MoMA–LigPath once again failed to find any pathways
for ligands other than m003 and m113r, despite the additional computing resources and
the increased time limit. A majority of the runs using ligands m003 and m113r failed
due to timeouts. Other runs either failed due to timeouts as well, or MoMA–LigPath
reported unrepairable collisions in the initial conformations and exited, desbite the fact
that both our implementation and the Pymol visualization tool reported no collisions.

4.7 Intramolecular Potential Energy

The implementation of the Transition–RRT algorithm (see Section 3.4.7) allows our im-
plementation to rapidly explore the configuration space, while maintaining a low potential
energy ligand state throughout the entire trajectory.
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Figure 4.21: Trajectory intramolecular potential energy for the 1MXTa receptor and m080
ligand with the T–RRT algorithm disabled. As we can see in the middle part of the plot, the
energy function exhibits a significant amount of peaks.

Figure 4.22: Trajectory intramolecular potential energy for the 1MXTa receptor and m080
ligand with the T–RRT algorithm enabled. The function peaks, which are present in Figure 4.21
have been eliminated. However, the T–RRT algorithm is still flexible enough to facilitate high–
energy ligand conformations when necessary.

To verify this ability, the algorithm was tested on the 1MXTa receptor molecule,
using the m080 ligand. The tests were performed 20 times with T–RRT enabled and 20
times with T–RRT disabled. The resulting energy costs of the trajectories are presented
in Figures 4.21 and 4.22. The energy units are kcal·mol−1. As we can see, the algorithm
successfully eliminated the peaks present in trajectories found without using the T–RRT
algorithm. Furthermore, the algorithm was still able to quickly adjust the transition
test to allows higher energy states, when a bottleneck in the tunnel required a less
compact ligand conformation in order to facilitate ligand passage through the tunnel.
The algorithm has also been tested on selected conformations of all the receptors, namely
those with the widest bottlenecks and those with small bottleneck, which still allowed
the passage of ligand molecules. The algorithm was run 10 times for each receptor
conformation, with the T–RRT algorithm enabled. See Figure 4.23 for results. Our
implementation managed to eliminate a vast majority of the energy fluctuations, keeping
the ligand molecule at a steady low–energy state, only reaching higher energy states when
required.
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Tunnel width

Potential 
energies

(a) Trajectory potential energy for the
4L2L receptor (wide bottleneck).

(b) Trajectory potential energy for the
4L2L receptor (narrow bottleneck).

(c) Trajectory potential energy for the
DHA receptor (wide bottleneck).

(d) Trajectory potential energy for the
DHA receptor (narrow bottleneck).

(e) Trajectory potential energy for
the DHA–AWT receptor (wide bottle-
neck).

(f) Trajectory potential energy for the
DHA–AWT receptor (narrow bottle-
neck).

Figure 4.23: Intramolecular potential energies for receptor molecules with varying bottleneck
sizes. As we can see, the T–RRT algorithm has successfully managed to eliminate fluctuations
of potential energies of the ligand molecule, while still maintaining enough flexibility to reach
the surface of the receptor. The ligand stays at a low energy state throughout a majority of
the trajectories and only reaches higher energy states when required.
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4.8 Intermolecular Potential Energy

The AutoDock Vina library offers the possibility of computing intermolecular potential
energy of a ligand–receptor system. Similarly to the atoms in the ligand molecule, the
two molecules can react with repulsive forces. The forces affect the potential energy of
the current molecular configuration, which in turn changes the feasibility of traversing
the selected pathway.

Figure 4.24: Computed intermolecular potential energy for a single pathway generated in the
DHA receptor using the m113r ligand. The purple striped line represents the width of the
tunnel. Note how the potential energy function peaks in the tunnel’s bottleneck.

Tunnel width

Figure 4.25: Computed intermolecular potential energy for 10 pathways generated in the DHA
receptor using the m113r ligand. The purple striped line represents the width of the tunnel.
The thick red line represents the average value over all potential energies. Note the slight peak
in the tunnel’s bottleneck. This is consistent with the expectations, since the potential energy
in a narrow space should be higher than in a wide space.

Figure 4.24 depicts a single potential energy function though the generated pathway.
The function exhibits a noticeable peak in the tunnel’s bottleneck, which is consistent
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with the expectations, since the narrowest point of the protein tunnel should have higher
potential energy than other locations in the tunnel.

However, Figure 4.25 shows that the data is not always this consistent. Some of
the functions do not peak in the bottleneck at all. Therefore, to correctly interpret the
results and avoid invalid results, statistical analysis of multiple runs is needed. Although
the potential energy does not reach its highest value in the tunnel’s bottleneck, it still
exhibits a noticeable peak even after averaging over all 10 runs.
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5 Discussion of the Results

The experimental data have shown that the P–RRT–Path algorithm outperformed the
MoMA–LigPath algorithm in a majority of the testing cases.

5.1 4L2L

In the 4L2L receptor (Section 4.2), our algorithm managed to find pathways with a
higher probability than the MoMA–LigPath algorithm in 18 of the 21 tested cases. Our
algorithm failed to find any paths for the m113r ligand. This may be attributed to its
shape, which is more spherical than other ligands. MoMA–LigPath failed to find any
pathways for five of the seven ligands. Our algorithm also exhibited a high amount of
consistency, with the pathways numbers staying similar for all of the three tunnel types.

In the scenarios, where MoMA–LigPath managed to detect a pathway, our algorithm
also performed better in terms of planning speed, with the median value of planning
duration being up to 6 times lower than that of MoMA–LigPath.

5.2 DHA

In the DHA receptor (Section 4.3) the P–RRT-Path algorithm found pathways with a
greater probability than MoMA–LigPath in 15 of the 21 tested cases. Our algorithm
struggled with finding pathways for the tertiary tunnels, where we can see a significantly
decreasing percentages. MoMA–LigPath, however, once again failed to find any tunnels
for five of the seven ligands.

Overall planning times were again better with our algorithm.

5.3 DHA–AWT

When planning in the DHA–AWT receptor (Section 4.4), our algorithm outperformed
MoMA–LigPath in 15 of the 21 tested cases. P–RRT–Path managed to detect some
pathways in all of the receptor conformations and tunnels. MoMA–LigPath however
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once again failed for five of the seven ligands. It has however exhibited significantly high
percentages of success in the other two ligands.

In the cases where MoMA–LigPath succeeded in detecting pathways, the planning
times were comparable to those of our algorithm.

As we can see, MoMA–LigPath has consistently failed to detect any pathways for
five of the seven supplied ligands. To try and mitigate this issue, we have tried running
MoMA–Ligpath with improved conditions, i.e., more CPU cores, more RAM and more
computing time. Even then, it has still failed to produce any paths for the same 5
ligands. All of the failed ligands have more than 1 DOF, which might be the cause of
the problem. This expands the configurations space the algorithm has to search through
and possibly breaks MoMA–LigPath.

5.4 Multiple Paths

We have devised a modification of our algorithm, which enables us to utilize all of
the provided CAVER tunnels at once, to try and determine which ones are the most
feasible for pathways detection. We have successfully demonstrated the functionality in
Section 4.5, where the rating system of CAVER did not accurately reflect the actual
situation. The first and second tunnels were unsuitable for planning and instead, the
third and fifth tunnels were used.

5.5 Ligand Potential Energy

The inclusion of AutoDock Vina and the T–RRT algorithm allowed us to implement
a feature previously unavailable in any of the current state-of–the–art tools, which is
sampling ligand conformations, while taking ligand intramolecular potential energy into
account. Section 4.7 demonstrates the effectiveness of this method, and the final results
of planning in individual receptor molecules.

We have demonstrated the ability to compute intermolecular potential energies for
a receptor–ligand system. The results are consistent with expectations.

5.6 Future work

A publication of a technical paper with the presented results is planned in the near
future. Results have been published in the international POSTER 2018 conference,
under the title Pathways searching for flexible ligands in proteins. Future work could
further explore the possibilities of pathways detection while taking intermolecular (ligand–
receptor) potential energy into account. Further optimizations and parameter space
exploration could also yield more optimal settings for pathways detection.
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6 Conclusion

This thesis has explored the possibilities of applying state–of–the–art algorithms from the
field of robotics to the receptor tunnel traversability problem (finding whether a ligand
molecule can pass through a protein tunnel), originating in the field of biochemical
engineering. The first chapter established the problem and the terminology necessary to
describe it. The second chapter outlined several possible methods of approaching this
issue and selected the most suitable one. The third chapter described our implementation
of a novel algorithm Protein–RRT–Path, the modifications required to achieve it and
the improvements, coined by us. The algorithm is able to detect pathways both from
inside and outside of a protein receptor molecule. The fourth chapter presented results of
experiments and compared our algorithm to the current state–of–the–art tool, MoMA–
LigPath. The fifth chapter summarized the achieved results.

The performance of our P–RRT–Path algorithm has surpassed that of the MoMA–
LigPath tool in all of the tested receptor molecules, while also presenting a feature
previously unavailable in any of the currently used tools, which allows us to take in-
tramolecular ligand potential energy into account when planning with flexible ligands, as
well as computing intermolecular potential energy of the receptor–ligand system for the
generated pathway.
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7 Addenda

7.1 Contents of the Attached Disc

The attached disc contains:

• Input_Data folder - Contains all the input data used to generate the presented
results. The file names should be self–explanatory.

• Protein-RRT-Path folder - Contains source codes to the provided final imple-
mentations.

• Results_Example folder - Contains a small part of the final results. Sadly, due
to the immense size of the generated data (>500 GB). We have not been able
to provide the data alongside this thesis. The rest of the data is available on the
Metacentrum server upon request.

• Thesis folder - Contains a pdf file with this thesis.

7.2 Usage Instructions

7.2.1 Installation Guide

The program was compiled using CMake 3.5.1, Make 4.1 and g++ 5.4.0 for Ubuntu
16.04. The compilation requires a number of external libraries to be installed. While we
have tested the program with these specific versions, other versions may work as well:

• Boost C++ library version 1.58.0

• GLM library version 0.9.7.2-1

• Eigen library version 3.0

• PThread library version 0.3.4

Other libraries are provided alongside the programs and require no further steps.
The programs are located in the Protein-RRT-Path folder. Follow these steps to

compile the program using terminal in the extracted folder on a Linux operating system:
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Parameter Meaning

-h (--help) Writes out program description and a list of possible parameters

-r (--receptor) Path to the PBD receptor file

-p (--pdbqtReceptor) Path to the PBDQT receptor file (optional, single guiding path planner only)

-l (--ligand) Path to the PBDQT ligand file

-t (--tunnel) Path to the PBD tunnel file

Table 7.1: Runtime parameters

cd Protein-RRT-Path

mkdir build

cd build

cmake ..

make all -j 4

Figure 7.1: Compilation commands

7.2.2 Running the program

The compiled programs can be run via the Linux terminal. The list of required and
available runtime parameters can be found in Table 7.1.
Upon completion, the program generates a number of PDB files, as well as an XML file:

• <receptor name>_<ligand name>_<tunnel name>.goal.pdb – PDB file
with ligand in the initial position.

• <receptor name>_<ligand name>_<tunnel name>.init.pdb – PDB file
with ligand in the initial position.

• <receptor name>_<ligand name>_<tunnel name>.protein.pdb – PDB
file with just the receptor.

• <receptor name>_<ligand name>_<tunnel name>.traj.xml – XML file
containing all information about the trajectory, including the internal ligand angles,
planning scale and intramolecular and intermolecular energies.

• <receptor name>_<ligand name>_<tunnel name>.traj<number>.pdb
– PDB files with interpolated ligand positions throughout the pathway.

• <receptor name>_<ligand name>_<tunnel name>.iterations.txt – Text
file with the number of iteration necessary to complete the planning task.

• <receptor name>_<ligand name>_<tunnel name>_time_ms.txt – Text
file with planning time duration.
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Since MoMA–LigPath requires a specifically tailored PDB files, alongside the two
presented programs (protein_planning_flexible_ligand and
protein_planning_flexible_ligand_multiple_pathways) is also provided a helper program
moma_exporter, used for generating MoMA–LigPath compatible PDB files.

An XML file with task definitions has to be passed to the program using the "-t"
parameter, alongside the necessary pdb files. An example of such XML file is found in
Figure 7.2

<?xml version="1.0" encoding="UTF-8"?>

<moma>

<task>

<molecule name="1BL8.pdb"/>

<ligand name="m001.pdbqt"/>

<tunnel>

<location x="82.561" y="26.438" z="46.280"/>

</tunnel>

</task>

<task>

<molecule name="4L2L.pdb"/>

<ligand name="m113r.pdb"/>

<tunnel>

<location x="72.850" y="27.137" z="22.147"/>

<location x="68.224" y="25.813" z="24.235"/>

</tunnel>

</task>

</moma>

Figure 7.2: An example program utilizing the AutoDock Vina library wrapper.

7.2.3 AutoDock Vina Wrapper Usage

The wrapper was created for the AutoDock Vina library version 1.2.1. It however does
not rely on a specific version and, in theory, should work with if the necessary functions
are present. We have found several bugs in the implementation regarding the usage of
quaternions. We therefore recommend the usage of the provided version, in order to
prevent any further bugs from occuring.

An example program, which utilizes the wrapper, is found below in Figure 7.3.
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#include <iostream>

#include <vector>

#include <stdio.h>

#include "parse_pdbqt.h"

#include "MoleculeWrapper.h"

using namespace std;

int main(int argc, char *argv[]) {

string name = "m111.pdbqt"; // Name of the ligand PDBQT file

MoleculeWrapper a(name); // Initialize the wrapper

printf("Loaded the model\n");

printf("DOF: %zu\n", a.get_DOF());

// Fill the angles vector according to the number of DOF

vector<double> angles;

for(int i=0;i<a.get_DOF(); i++){

angles.push_back(0);

}

// Get coordinates of the individual atoms in the provided conformation

vector<vector<double> > coords = a.get_coordinates(angles);

// Print the coordinates

printf("Coordinates:\n");

for(size_t i=0; i<coords.size(); i++) {

printf(" %1.3f, %1.3f, %1.3f\n", coords[i][0], coords[i][1], coords[i][2]);

}

// Get intramolecular energy of the provided conformation

printf("Energy:\n %.9f J\n", a.calculate_ligand_energy(angles));

// Print energies for multiple angles

for(int i=1;i<6;i++) {

for (int j = 0; j < a.get_DOF(); j++) {

angles[j] = 3.141592 * ((double) i/2.0);

}

coords = a.get_coordinates(angles);

std::printf("Energy:\n %.9f J\n", a.calculate_ligand_energy(angles));

}

// Export to PDBQT file

a.export_to_pdbqt(angles, "NewFile.pdbqt");

string receptor = "m111_rigid.pdbqt"; // Name of the ligand PDBQT file

string ligand = "m111.pdbqt"; // Name of the receptor PDBQT file

// Initialize the wrapper with both the ligand and receptor

MoleculeWrapper b(ligand,receptor);

// Calculate intra + intermolecular energy of both the ligand and the receptor molecules

for(int i=0;i<6;i++) {

for (int j = 0; j < a.get_DOF(); j++) {

angles[j] = 3.141592 * ((double) i/2.0);

}

qt quat = qt(0, i, i, 1);

quaternion_normalize(quat);

printf("Energy:\n %.9f J\n",

b.calculate_intermolecular_energy(angles, Vec3D(i,0,0), quat));

}

}

Figure 7.3: An example program utilizing the AutoDock Vina library wrapper.

iv



7.3 Further Implementation Details

7.3.1 PDB File Parsing

All of the information regarding ligand and receptor molecules from the x–ray crystal-
lography data is provided in the PDB file format (pdb.org). This file contains specified
amount of fixed-width columns and can easily be parsed, using a manual provided for
the file format [46]. One section particularly interesting for our purposes is the de-
tailed description of "ATOM" records, which provides all the required details for parsing
molecular geometric data, available in Figure 7.4.

COLUMNS DATA TYPE FIELD DEFINITION

-------------------------------------------------------------------------------------

1 - 6 Record name "ATOM "

7 - 11 Integer serial Atom serial number.

13 - 16 Atom name Atom name.

17 Character altLoc Alternate location indicator.

18 - 20 Residue name resName Residue name.

22 Character chainID Chain identifier.

23 - 26 Integer resSeq Residue sequence number.

27 AChar iCode Code for insertion of residues.

31 - 38 Real(8.3) x Orthogonal coordinates for X in Angstroms.

39 - 46 Real(8.3) y Orthogonal coordinates for Y in Angstroms.

47 - 54 Real(8.3) z Orthogonal coordinates for Z in Angstroms.

55 - 60 Real(6.2) occupancy Occupancy.

61 - 66 Real(6.2) tempFactor Temperature factor.

77 - 78 LString(2) element Element symbol, right-justified.

79 - 80 LString(2) charge Charge on the atom.

Figure 7.4: Details of the "ATOM" record format. Courtesy of Worldwide Protein Data
Bank [47]

Functionality for PDB file parsing is provided in class "PDBParser", located in file
"pdb_parser.cpp". Functionality for PDBQT file parsing is provided in the form of
AutoDock Vina library.

7.3.2 Pymol Exporting

We have extensively utilized the program Pymol (a tool for biochemical visualizations,
mainly focused on protein molecules), mainly for the purposes of image rendering and
data processing. Pymol is capable of visualizing both static and dynamic molecules,
with a wide array of options for data visualization.

Functionality for exporting into a Pymol compatible format is provided in the class
"TrajectoryExporter" in the file "protein_trajectory_export.cpp".
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7.4 Utilized Pymol Commands

Below is attached a list of commands utilized during data visualization and processing:
show spheres — turns on spherical atom representation
frame — switches to frame n
mview store — saves the camera position to the current animation sequence
mview reinterpolate — interpolates saved camera positions in the current animation
sequence
cmd.get_object_matrix(object, state) — return transformation matrix of the cam-
era
setView() — set the transformation matrix of the camera
util.color_objs(”all”) -color each object with a different color
fetch — downloads the protein file and builds a biological unit from a protein fragment
png — saves an image file
set sphere_transparency, 0.5, < name > — alters sphere transparency
fetch 2ci2, type = pdb1, multiplex = 1, async = 0 — downloads and displays
the selected protein
set orthoscopic, off — disables orthoscopic rendering

Change atomic radii according to the temperature factor:
load tunnel.pdb, tun
alter tun, vdw = b
rebuild

Color atoms according to their temperature factors and render an image:
spectrum b, rainbow, minimum = 0, maximum = 1
set transparency, 0.5, < name >

ray 2400, 2400
png file, dpi = 300
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