
CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

F3 Faculty of Electrical Engineering
Department of Cybernetics

Master’s Thesis

Semantic Sentence Similarity
for Intent Recognition Task

Tomáš Brich
tomas.brich@seznam.cz

May 2018
Supervisor: Ing. Jiří Spilka, Ph.D.

Acknowledgement / Declaration

First, I would like to thank my thesis
supervisor Ing. Jiří Spilka, Ph.D. for
a lot of valuable advice and for all
the time he spent helping me finish
this thesis. Further, I would like to
thank Ing. Jan Šedivý, Ph.D. for a great
leadership during my work at eClub,
where I started working on this thesis.
Other thanks belong to the members of
the Alquist chat bot team, who kindly
provided me with their implementation
of an intent recognition system and a
dataset to compare it with my results.
I would also like to thank the authors
of the embedding algorithms, as they
always helped me when I had a question
about their work. Finally, I would like
to thank my friends and family for all
the support during my studies.

I declare that the presented work
was developed independently and that
I have listed all sources of information
used within it in accordance with the
methodical instructions for observing
the ethical principles in the preparation
of university theses.

Prague, date 25. 5. 2018

. .

iii

Abstrakt / Abstract

Modul pro rozpoznání úmyslu je
základní součástí jakéhokoliv question-
answering bota (např. Amazon Echo).
Tato práce implementuje modul pro
rozpoznání úmyslu, založený na vět-
ných předlohách, který je silně závislý
na efektivitě text embedding algoritmů.
Tato práce proto poskytuje komplexní
přehled nynějších word a sentence
embedding algoritmů. Dále provádí
unikátní porovnání těchto algoritmů,
týkající se jejich trénovacích schopností,
výkonu a hardwarových nároků. Tato
práce dále implementuje dvě metody
komprese embedding modelů (promazá-
vání slovníku a vektorovou kvantizaci)
za účelem jejich použití v mobilních
aplikacích.

Embedding algoritmus StarSpace
dosáhl v experimentech nejlepších vý-
sledků. Zkoumané metody pro kompresi
modelů se ukázaly být velmi výkonné,
přičemž dokázaly zmenšit velikost
modelů 100-1000 krát bez viditel-
ného zhoršení výsledků. Komprimovaný
StarSpace model byl proto využit pro
výsledný modul pro rozpoznání úmyslu,
který byl schopen překonat systém po-
užívaný v Alquist social botovi (druhé
místo v Alexa prize soutěži, 2017),
přičemž byl méně komplexní.

Klíčová slova: zpracování přiro-
zeného jazyka; text embedding; sé-
mantická podobnost textů; rozpoznání
úmyslu; komprese vektorů.

Překlad titulu: Sémantická podob-
nost vět pro úlohu rozpoznání úmyslu

An intent recognition module is a core
component of any question-answering
bot (e.g. Amazon Echo). This thesis
implements a template-based intent
recognition system, which heavily relies
on the performance of text embed-
ding algorithms. The thesis therefore
provides a comprehensive overview of
the state-of-the-art word and sentence
embedding algorithms. Further, it
performs a unique comparison of the
algorithms in terms of their training
properties, performance, and hardware
requirements. This work further im-
plements two model compression tech-
niques (vocabulary pruning and vector
quantization) to make the models more
suitable for mobile applications.

The StarSpace embedding algorithm
performed the best in the experiments.
Further, the compression methods
proved to be very powerful, being able
to reduce the size of the models 100-
1000 times without any notable loss
of performance. Thus, a compressed
StarSpace model was used to create the
resulting intent recognition module that
was able to outperform the currently
used system in the Alquist social bot
(second place in the 2017 Alexa prize
contest) while being less complex.

Keywords: natural language pro-
cessing; text embedding; semantic tex-
tual similarity; intent recognition; vec-
tor compression.

iv

Contents /

1 Introduction .1
1.1 Problem definition1
1.2 State-of-the-art.1
1.3 Outline, goals and contribution . .3

2 Embedding algorithms4
2.1 Word2Vec .4
2.2 FastText .6
2.3 StarSpace. .7
2.4 GloVe .8
2.5 Sent2Vec .9
2.6 InferSent .9
2.7 Softmax approximations 10

2.7.1 Hierarchical softmax 11
2.7.2 Negative sampling 12

3 Model training comparison 13
3.1 Data . 13

3.1.1 STS Benchmark. 13
3.1.2 C4Corpus 14
3.1.3 Data preprocessing 14

3.2 Evaluation . 15
3.3 Pre-trained models. 16
3.4 Training on the STS

Benchmark dataset 17
3.4.1 Results and discussion . . . 18

3.5 Training on the C4Corpus
dataset . 19
3.5.1 Results and discussion . . . 20

3.6 CPU and memory require-
ments . 21
3.6.1 Training complexity 21
3.6.2 Text encoding com-

plexity . 23
4 Model compression 25
4.1 Data and evaluation 25
4.2 Vocabulary pruning 26

4.2.1 Results and discussion . . . 26
4.3 Quantization 28

4.3.1 Results and discussion . . . 30
5 Intent recognition module 34
5.1 Implementation details 34
5.2 Evaluation . 34

6 Conclusion . 38
6.1 Further work 38

References . 40
A Specification . 43
B Contents of the attached CD 45

C Abbreviations and symbols 46
C.1 Abbreviations 46
C.2 Symbols . 47

D Embedding models training re-
sults . 48

E Vector quantization results 51

v

Tables / Figures

3.1. STS Benchmark dataset in-
formation . 13

3.2. C4Corpus dataset informa-
tion . 14

3.3. Pre-trained models parame-
ters . 16

3.4. Performance of the pre-
trained models 16

3.5. Unconstrained training on
the C4Corpus. 21

3.6. Training times comparison. 22
3.7. Sentence encoding times

comparison . 23
4.1. FastText model information . . . 25
4.2. Pruning results 27
4.3. Pruning results on STS-

trained model 28
4.4. Selected model sizes after

quantization . 33
5.1. Alquist dataset information . . . 35
5.2. Alquist dataset examples 36
5.3. Results on the Alquist dataset . 37
D.1. STS-trained models results 49
D.2. C4Corpus-trained models re-

sults . 50
E.3. Basic quantization results 52
E.4. Quantization with normal-

ization results 53
E.5. Quantization with distinct

codebooks results 54

1.1. Word embedding space2
1.2. Amazon Echo and Google

Home .3
2.1. CBOW and Skip-Gram net-

work schemes .5
2.2. FastText training data size7
2.3. NLI training scheme 10
2.4. BiLSTM network with max-

pooling. 10
2.5. Hierarchical softmax 11
2.6. Huffman tree 12
3.1. Pearson and Spearman cor-

relation coefficients 15
3.2. Training on the STS

Benchmark dataset. 18
3.3. Training on the C4Corpus

dataset . 20
4.1. Pruning results 27
4.2. Quantization scheme 29
4.3. Quantization example 29
4.4. Basic quantization 31
4.5. Quantization with normal-

ized embedding vectors 32
4.6. Quantization with distinct

codebooks . 33
5.1. Performance based on tem-

plate counts . 36

vi

Chapter 1
Introduction

1.1 Problem definition
An automatic intent recognition module is one of the fundamental blocks of any con-
versational system. It is required to determine the intent of the user, i.e. what the user
wants the system to do, and how the system can offer help. Intent recognition modules
are used in a wide variety of tasks, one large set of examples being the internet search
engines, where the engine provider first needs to correctly decide on the user’s intent,
before trying to match specific entities in the query. In more complicated conversational
systems, where the machine is supposed to have a complex conversation with the user,
the intent recognition module can be used to direct the system towards the relevant
branches of the code, helping the algorithm to change its behavior based on the user’s
input.

The general approach for creating an intent recognition system is to use algorithms,
that can determine the degree of similarity between different sentences. The given
sentence query can therefore be compared to a predefined set of intent templates (i.e.
manually written sentences for each intent), and the intent of the template with the
highest similarity is considered as the correct one. Uncertainty can also be incorpo-
rated into the decision process by introducing a similarity threshold. A simple way of
comparing two sentences is to convert them into vectors and then to find either the
Euclidean distance between the two vectors or computing their cosine similarity.

The disadvantage of the template-based intent recognition system is that a list of
templates that sufficiently covers the domain in question has to be maintained. The
complexity of the intent recognition process also grows linearly with the number of
templates used. On the other hand, introducing a new intent into the system becomes
as simple as adding a new group of templates.

Another approach to creating an intent recognition module is to use text embeddings
as an input to a classifier, which is trained to output an intent for the query sentence.
This approach is currently used in conversational applications like Google Home and
Amazon Echo. The disadvantage of this approach is that a large labeled dataset is
needed in order to train such a classifier. Another drawback is that when a new intent
is introduced into the system, the whole classifier needs to be retrained in order to
incorporate the changes.

1.2 State-of-the-art
Learning vector space language models has a long history in natural language process-
ing. Converting a body of text to a vector representation can be as simple as using
a Count Vectorizer, which transforms a collection of text documents into a matrix of
word or word n-gram counts. A more sophisticated approach is to use the TF-IDF
algorithm (Jones, 1972 [1]; Ramos, 2003 [2]), which can determine the importance of a

1

1. Introduction .
term inside a document, based on the occurrence counts of the term in other documents
in the training dataset.

However, since these text vectorizers work only with the counts of tokens, the different
texts converted to vectors by these algorithms can be compared only by the amount of
the same words present in the sentences. The text embedding algorithms, on the other
hand, have the ability to capture the semantic meaning of the original text, by learning
each word representation based on its context. Given the information contained within
the embedding vectors, it is possible to compare words or sentences based on their
semantic meaning and perform various analogy tasks. For example the analogy “Paris
is to France as London is to England” can be encoded in the vector space as Paris -
France = London - England (cf. Figure 1.1). Thanks to this property, text embeddings
find usage in applications like text similarity tasks, document classification or ranking,
toxic comments detection and filtering, internet search engines, machine translation
and many others.

The text embedding algorithms have caught a major attention especially after
Mikolov et al., 2013 [3] utilized the idea of using hierarchical softmax (Morin et al.,
2005 [4]) in a shallow neural network in order to effectively learn word embedding
models in an unsupervised manner on very large corpora, creating the Word2Vec
embedding algorithm.

The more recent work in this area includes the FastText algorithm (Bojanowski et al.,
2016 [5]; Joulin et al., 2016 [6]), which enriches the word embeddings with character-
level information. The Sent2Vec algorithm (Pagliardini et al., 2017 [7]) builds upon
FastText in order to expand the word embeddings to a larger sentence context. The
StarSpace algorithm (Wu et al., 2017 [8]) uses a similar architecture as FastText with
the possibility to encode different entities in the same vectorial space, which makes the
comparison between them easier.

Other embedding algorithms discussed in this thesis are the GloVe algorithm
(Pennington et al., 2014 [9]), that instead of a neural network utilizes a co-occurrence
matrix factorization method, and the InferSent algorithm (Conneau et al., 2017 [10]),
which uses a supervised layer trained on natural language inference data, built on top
of pre-trained word embedding models.

king

man

queen

woman

father

boy

son

mother

girl

daughter

cat

cats
dog

dogs
France

Paris

England

London

Italy

Rome

fast

faster

fastest

long

longer

longest

she

herself
he

himself

Figure 1.1. Examples of the relations that word embeddings are able to capture in the
vectorial space.

2

. 1.3 Outline, goals and contribution

1.3 Outline, goals and contribution
This thesis utilizes the ability of text embedding models to determine the semantic sim-
ilarity between sentences in order to build a template-based intent recognition system
(described in Section 1.1) for a question-answering (QA) bot (e.g. Amazon Echo or
Google Home, cf. Figure 1.2). Since this approach is heavily dependent on the perfor-
mance of the used embedding model, a large part of this thesis focuses on the research
of the current state-of-the-art embedding algorithms, discussed in Chapter 2.

The authors of the embedding algorithms usually provide publicly available models,
trained on large corpora. Even though there were attempts at comparing the algo-
rithms, such comparisons are often made using these pre-trained models, which were
trained on different datasets and under different conditions, making the comparison
biased. Therefore, in this thesis, the algorithms are compared in terms of their ability
to train on different types of corpora with matching training hyperparameters. The
results of these experiments, as well as the hardware requirements of the embedding
algorithms, are shown in Chapter 3.

Since the embedding models trained on large corpora are usually several gigabytes
large, Chapter 4 explores the possibility of reducing the size of the models in order to
make them suitable for mobile applications. Finally, Chapter 5 explores the resulting
intent recognition module created for the QA bot.

a) b)
Figure 1.2. Amazon Echo (a) and Google Home (b) devices.

3

Chapter 2
Embedding algorithms

A selection of the current state-of-the-art word and sentence embedding algorithms was
studied. All the used algorithms had their implementations publicly available. Four
word embedding and two sentence embedding algorithms were used.

The word embedding algorithms used are:. Word2Vec. FastText. StarSpace. GloVe
The sentence embedding algorithms used are:. Sent2Vec. InferSent
This chapter explores the theory behind each of the embedding algorithms, giving a

comprehensive summary of their main features. Section 2.7 also explores the softmax
approximations, as they are used in most of the discussed algorithms.

2.1 Word2Vec
There are two main variants of the Word2Vec algorithm (Mikolov et al. [3]). The
Continuous Bag-of-Words (CBOW) variant and the Skip-Gram (SG) variant.

The basic idea behind the CBOW algorithm is to try to predict a probability of
a word given its context. The context can be an arbitrary number of words. The
number of words in the context is given by a context window, which says how large
neighborhood of the given word will be used as its context.

The model is in the form of a shallow neural network, with one input, one output,
and one hidden layer. The representation of a CBOW model can be seen in Figure 2.1.

Both the context words and the output word are represented in the network as one-
hot vectors of size |V| (i.e. size of the vocabulary), indicating the position of the word
in the vocabulary. The context words are fed into the input layer, and the network is
trained using a regular back-propagation algorithm to output the target word. Note
that each word in the vocabulary has two different representations of dimension equal
to the number of neurons in the hidden layer. One representation corresponds to the
rows of the input weight matrix W and the second one corresponds to the columns of
the output weight matrix W ′. For a word w, we therefore receive an input vector vw
and an output vector v′w.

There is a linear activation on the hidden layer neurons. The output layer neurons
use softmax as their activation to model the probability of a word given context. For a
single neuron in the output layer corresponding to the word wO, we obtain

p(wO|wI) = σ(v′wO

T vwI
) =

exp(v′wO

T vwI
)∑

wj∈V exp(v′wj

T vwI
)
, (2.1)

4

. 2.1 Word2Vec

wI1

wI2

wIC

⋮

W|V|×H

W|V|×H

W|V|×H

C×|V|-dim

hI

H-dim
|V|-dim

wOW′H×|V|

Input layer

Hidden layer
Output layer

wO1

wO2

wOC

W′H×|V|

W′H×|V|

W′H×|V|

C×|V|-dim

hI

H-dim
|V|-dim

wI W|V|×H

Output layer

Hidden layer
Input layer

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮ ⋮

⋮

Figure 2.1. The scheme of a general CBOW (left) and Skip-Gram (right) neural networks.
|V| denotes the vocabulary size, C is the context window size, H is the embedding dimen-
sion, W and W ′ are the input and output matrices and wI and wO are the input and

output words.

where wI is an input (context) word. In a multi-word context case, the vector vwI
is

computed as an average over all the context words.
The Word2Vec algorithm uses a negative log loss function as its objective as

L = − log p(wO|wI). (2.2)

To make the computation of the softmax feasible for a large number of training sam-
ples, an approximation needs to be used, like hierarchical softmax or negative sampling.
Those two approaches are described in Section 2.7.

The disadvantage of CBOW is that since it uses the average of the context of a word
during calculation of the hidden activation, it is unable to capture multiple semantic
meanings of a single word. The Skip-Gram model, while being slower to learn, solves
this problem.

As seen in Figure 2.1, the Skip-Gram architecture is similar to the one of CBOW,
but instead of trying to predict a word given its context, it tries to predict the context
of a word. During the training process, there will be a separate error for each context
word and those error vectors are added element-wise to obtain the resulting error, used
during the back-propagation.

The context window works a bit differently in the Skip-Gram model. Instead of
having a constant window, a maximum window range C is chosen and for each training
word, a context window in the interval [1, C] is randomly selected. Another difference
is that the CBOW model usually uses the output matrix W ′ as the resulting word
embeddings, while the Skip-Gram model uses the input matrix W . This is only a
convention, however, since it should be possible to use any of the matrices for both
CBOW and Skip-Gram as the resulting vector embeddings.

5

2. Embedding algorithms .

2.2 FastText
Most of the state-of-the-art word embedding techniques assign a distinct vector to each
word in the vocabulary. This approach is problematic for morphologically rich languages
(like Czech or German), where each word can have many forms. Some of these forms
can be very rare and can occur only a few times or not at all in the training corpus. In
order to tackle this issue, FastText (Bojanowski et al. [5]) proposes a method for using
character-level information instead.

FastText is essentially an extension of Word2Vec. As opposed to Word2Vec, which
treats each word as an atomic entity, FastText represents each word as a bag of character
n-grams. In addition to the n-grams, the word itself is added to the bag in order to learn
its own representation. Each word is changed to include special characters < and >,
which denote the start and the end of the word, respectively. It is important to note,
that a given word and an n-gram, which represents the same character sequence as
this word (e.g. the word “<her>” and the character 3-gram “her”), will have different
vector representations.

Softmax on the output is modeled by the logistic loss function `(x) = log (1 + e−x).
The objective function for FastText Skip-Gram (already including the negative sam-
pling) for one training sample therefore becomes

L =
∑

wO∈CwI

`(s(wI , wO)) +
∑

wn∈Wneg

`(−s(wI , wn)), (2.3)

where Cw is the set of context words of the word w,Wneg is the set of current negative
samples, and s(·, ·) is a scoring function, which represents the score of similarity between
two word representations as

s(w, c) =
∑
g∈Gw

v′g
T vc, (2.4)

where Gw ⊂ G, G is the character n-gram vocabulary, and v′g is therefore the input
vector representation of the character n-grams present in the word w. This model
allows sharing of the vector representations of the character n-grams across words.
A word embedding is then constructed as the sum of its own representation and the
representation of its character n-grams.

FastText has several advantages over Word2Vec:

. It generates better word embeddings for rare words. Even though some words do not
appear often in the training corpus, its character n-grams can still be shared with
other words, which can result in a reasonable embedding for the rare word. This
phenomenon manifests itself mainly when FastText is used on morphologically rich
languages, as shown in Figure 2.2.. It can generate embeddings for out-of-vocabulary (OOV) words, since it can still
create the embedding as the sum of the character n-grams present in the unknown
word. Bojanowski et al. [5] report surprisingly good performance in tasks of word
similarity for OOV words. The performance improvement after utilizing this ability
of FastText can also be seen in the experiments in Chapter 3.. Thanks to the ability to create embeddings for OOV words, the algorithm is also
more robust towards the size of the training data. This can be used for training the
algorithm for tasks where there are not any large training corpora available. This is
also demonstrated in Chapter 3.

6

. 2.3 StarSpace

. It can be faster to learn than Word2Vec. Even though training a FastText model on
the same corpus size as Word2Vec will be slower, the model can achieve mostly con-
stant performance with much smaller training corpus (or with less training epochs)
than Word2Vec, thanks to the properties discussed in the above points.

0 20 40 60 80 100
percentage of data

30
35
40
45
50
55
60
65
70
75

sp
e
a
rm

a
n

 r
a
n

k

cbow
sisg-

sisg

Figure 2.2. Influence of the size of the training data on the performance on a word sim-
ilarity task (German GUR350 dataset). Here, “sisg” (Subword Information Skip-Gram)
corresponds to the FastText algorithm, where OOV words are computed using character
n-grams and in “sisg-”, the OOV words are replaced with zero vectors. Retrieved from [5]

(p. 7).

2.3 StarSpace

The idea behind the StarSpace algorithm (Wu et al. [8]) is to encode entities of different
types (e.g. words, sentences, documents, document labels or classes, user definitions,
etc.) into a common vectorial space. Each entity is described by a set of features
from the vocabulary (bag-of-features). The embedding of a multi-feature entity is
constructed as a sum of the embeddings of its features. The entities can then be
easily compared by using a predefined similarity function (e.g. cosine similarity) to
solve various tasks, including text classification, ranking, document recommendations,
article search and semantic similarity. Starspace uses the following loss function as its
objective:

L =
∑

(a,b)∈E+
b−∈E−

Lbatch(s(a, b), s(a, b−1), . . . , s(a, b−k)), (2.5)

where E+ is a task-specific generator of positive examples, E− is a generator of
negative examples utilizing negative sampling, Lbatch is a loss function that compares
the positive pair with the negative pairs and s(·, ·) is a similarity function, which is then
used to compare the entities during testing.

The StarSpace algorithm implements two options for the loss function Lbatch. Either
negative log loss of softmax, as used in the previously discussed algorithms, or the mar-
gin ranking loss, i.e. max(0, µ−s(a, b)), where µ is the margin parameter. The similarity
function also has two options, either simple dot product or the cosine similarity as

s(a, b) = vaT vb
‖va‖‖vb‖

. (2.6)

7

2. Embedding algorithms .
In the mode for unsupervised learning of word embeddings, a target word is selected

as the b entity, and the entity a represents the words in the context of the target word.
Therefore, if we select Lbatch to be the negative log loss of softmax and the similarity
function s(·, ·) as a dot product, the resulting objective function will be equal to the
objective of FastText (2.3) without considering the character n-grams.

2.4 GloVe
The current word embedding models are usually trained by either co-occurrence ma-
trix factorization or by a neural network using local context windows (Word2Vec,
FastText, etc.). The matrix factorization models use the statistical data contained
within the corpus, but they tend to fail in capturing the semantics of the words. On
the other hand, the context window methods are good at capturing the meaning, but
they do not utilize the valuable statistical data. The GloVe (Global Vectors) algorithm
(Pennington et al. [9]) tries to show that it is possible to use matrix factorization meth-
ods to keep the statistical co-occurrence data while being able to capture the meanings
of words.

GloVe is able to capture the relationships between words by using the ratios of
their co-occurrences with other words (Pwiwk

/Pwjwk
). The co-occurrence probability is

defined as

Pwiwk
= Xwiwk∑

wk∈V Xwiwk

, (2.7)

where Xwiwk
is the number of times word wk occurs in the context of word wi, drawn

from the co-occurrence matrix X.
For words wk related to the word wi, we can expect a high ratio and for words wk

related to word wj , we can expect the ratio to be small. For words completely unrelated
or related to both wi and wj , the ratio should be close to one.

The algorithm creates two word vector matrices, W and W ′. These two matrices are
equivalent in case that X is symmetric and they differ only because of their random
initialization. Pennington et al. [9] state that training multiple instances of a neural
network and then combining the results can be less prone to overfitting and can improve
the performance for certain types of neural networks. Even though GloVe uses matrix
factorization instead of a neural network model, this approach is adopted here. The
resulting embeddings are therefore constructed by summing the matricesW andW ′ and
the vectors vw and v′w correspond to these two matrices, in contrast to the previously
discussed algorithms.

GloVe proposes a weighted least squares regression model as

J =
∑

wi,wj∈V
r
(
Xwiwj

) (
vwi

T v′wj
+ bwi + b′wj

− logXwiwj

)2
, (2.8)

where bw and b′w are biases for vw and v′w, and r(·) is a weighting function

r(x) =
{

(x/xmax)α if x < xmax;
1 otherwise, (2.9)

where xmax denotes the co-occurrence count, after which the weight will not in-
crease anymore. This is done in order not to overweight frequent co-occurrences.
Pennington et al. [9] empirically found α = 3/4 to perform the best on their mod-
els.

8

. 2.5 Sent2Vec

2.5 Sent2Vec
The Sent2Vec algorithm (Pagliardini et al., 2017 [7]) can be seen as a modification
of Word2Vec CBOW, where the word vectors are optimized in order to subsequently
construct sentence embeddings. The most important differences are:

. Instead of a fixed context window C, the context always covers the whole sentence
of the target (output) word.. CBOW uses frequent word subsampling, deciding to discard each word w with a
probability proportionate to its frequency in the training corpus. As this deprives
the sentence of important syntactical features, Sent2Vec does not use this kind of
subsampling.. Sent2Vec supports the possibility to also encode word n-grams, which can improve
performance on certain tasks.

The sentence embedding is defined as a simple average over all the words in the
sentence as

vS = 1
|R(S)|

∑
w∈R(S)

vw, (2.10)

where R(S) is the set of word n-grams present in the sentence S (i.e. the set of words
in a sentence in case only unigrams are considered).

The objective function uses softmax output approximated by negative sampling. The
unsupervised training objective for one training sentence S is formulated as

L =
∑
wO∈S

`
(

vwO

T v′S\{wO}

)
+

∑
wn∈Wneg

`
(
−vwn

T v′S\{wO}

)
. (2.11)

2.6 InferSent
The InferSent algorithm exploits word embeddings previously trained on large corpora
in an unsupervised manner (e.g. Conneau et al. [10] use the publicly available GloVe
vectors) while building a supervised classifier on top. The classifier is trained on the
SNLI corpus (Bowman et al. [11]), which is a large collection of human-written sentence
pairs (i.e. the premise and the hypothesis pairs), manually labeled for the task of
natural language inference (i.e. recognizing textual entailment — classes “entailment”,
“neutral” and “contradiction”).

The model is trained in a way that separates the encoding of the sentences in the
sentence pairs. A shared sentence encoder is used, which outputs a vector for the
premise u and the hypothesis v. After that, three methods are used to extract relations
between the premise and the hypothesis — concatenation (u, v), element-wise product
u� v and absolute difference |u− v|. The resulting vector (u, v, |u− v|,u� v) is used as
an input to a 3-class classifier with a softmax output layer, which is trained to output
the classes defined in the SNLI dataset (cf. Figure 2.3).

Conneau et al. [10] use a multi-layer perceptron with a single hidden layer of 512
neurons as the classifier while experimenting with different architectures for the shared
sentence encoder. They further conclude that a bi-directional LSTM network with max
pooling outperforms other network architectures. The proposed network scheme can
be seen in Figure 2.4.

9

2. Embedding algorithms .

sentence encoder
with hypothesis input

sentence encoder
with premise input

3-way softmax

u v

fully-connected layers

(u,v, |u−v|,u∗v)

Figure 2.3. Natural Language Inference (NLI) training scheme. The premise and hypoth-
esis sentences are taken from the SNLI Corpus before encoding them to vectors u and v,
respectively. The combinations of these vectors are then fed to a 3-class classifier (e.g.
multi-layer perceptron network) that is trained to output classes “entailment”, “neutral”

and “contradiction”. Retrieved from [10] (p. 3).

The movie was great

�✁

h1
✂✄

h2
☎✆

h3
✝✞

h4

✟✠

h4
✡☛

h3
☞✌

h2
✍✎

h1

w1 w2 w3 w4

x

x

x

x

x x x x

max-pooling

… …u :

Figure 2.4. Bi-directional LSTM network with max-pooling scheme used as a sentence
encoder in InferSent. A sentence is fed as a sequence of T words into a forward and a
backward LSTM, which read the sentences in two opposite directions. For t ∈ [1, . . . , T],
the vector ht is the concatenation of the hidden representations in the t-th layer of the two
networks. The concept of max-pooling (i.e. selecting the maximum value over each dimen-
sion of the hidden units) is used to create a fixed-size vector as a sentence representation.

Retrieved from [10] (p. 3).

2.7 Softmax approximations

Most of the discussed algorithms use softmax function on their output in order to model
the probability of a word given context. All these models need to update both the input
weights W and the output weights W ′ for each training sample. Updating of the input

10

. 2.7 Softmax approximations

weight matrix is cheap as it uses linear activation, but updating the softmax function
for the output weight matrix is very computationally expensive. The complexity of
updating one output word vector v′w for each training sample is O(|V|), when using the
naive implementation of softmax. This makes the training unfeasible for large training
corpora. The following approximations solve this problem by limiting the number of
required operations.

2.7.1 Hierarchical softmax
Hierarchical softmax uses a binary tree, where each word in the vocabulary is repre-
sented as one leaf (cf. Figure 2.5). It can be proven that such a tree will have |V| − 1
inner nodes.

w1 w2 w3 w4
wV-1 wV

n(w2,1)

n(w2,2)

n(w2,3)

Figure 2.5. Hierarchical softmax binary tree example. The white units represent the
leaf nodes (i.e. words in the vocabulary) and the dark units represent the inner nodes.

Retrieved from [12] (p. 10).

In the hierarchical softmax model, the output word vectors v′w are replaced with
vector representations of the |V| − 1 inner nodes v′n(w,d), where n(w, d) represents the
node at depth d on the path from root to the word w. The probability of a word
being the output word can be computed by following a path from the root to the
corresponding leaf as

p(w = wO) =
D(w)−1∏
d=1

σ
(
[[n(w, d+ 1) = l(n(w, d))]] · v′n(w,d)

T vwI

)
, (2.12)

where l(n) is the left child of the node n, and

[[x]] =
{

1 if x is true;
−1 otherwise. (2.13)

The probability of a word being the output word is therefore defined as the probability
of a random walk from the root to the corresponding leaf, where the probability of going
left or right at each inner node is given by σ([[·]] · v′n

T vwI
). The probability of the word

w2 from the example in Figure 2.5 can therefore be computed as

p(w2 = wO) = σ
(

v′n(w2,1)
T vwI

)
· σ
(

v′n(w2,2)
T vwI

)
· σ
(
−v′n(w2,3)

T vwI

)
. (2.14)

Thanks to this approach, the probability of a single outcome p(w = wO) only depends
on the internal nodes that lie on the path from the root to the leaf denoting w, effec-
tively reducing the complexity of computing the softmax from O(|V|) to O(log2 |V|).
Exploring the tree with a depth-first search also allows for discarding the branches with
a small probability.

11

2. Embedding algorithms .

Figure 2.6. Wikipedia example of a Huffman tree constructed from characters in the sen-
tence “this is an example of a huffman tree”.

As for the tree itself, the usual approach in the embedding algorithms is to create a
Huffman tree (cf. Figure 2.6), which minimizes the average path length from the root
to the leaf.

2.7.2 Negative sampling
Negative sampling solves the problem of having a large output weight matrix by choos-
ing only a small subset of weights for the update. There is always a small number of
negative samples (negatives) selected at random for each training sample. By negative
is considered a word, for which the network is supposed to output a zero (i.e. the
training sample and a negative sample do not share a context). Now the network will
be updating the weights only for the positive sample (i.e. the output word) and the
selected negatives.

The objective function in Word2Vec then changes from (2.2) to

L = − log σ(v′wO

T vwI
)−

∑
wj∈Wneg

log σ(−v′wj

T vwI
), (2.15)

where Wneg denotes the current set of negative samples.
The experiments reported in Mikolov et al. [3] show that for smaller corpora, 5-20

negative samples for each training sample work well. For larger datasets, it can be
even less than five negative samples, which drastically reduces the number of weights
modified.

The probability of a word wi to be selected as a negative is usually related to its
frequency in the corpus as

p(wi) = f(wi)α∑
wj∈V f(wj)α

, (2.16)

where f(w) is the number of occurrences (frequency) of the word w in the training
corpus, and α is a parameter, which can be chosen empirically (e.g. Mikolov et al. [3]
used α = 3/4). It is interesting to note, that this value of α was also used in the GloVe
weighting function in Section 2.4.

In practice, a table is constructed from the corpus, containing words corresponding
to the square root of their frequency. The negatives are then sampled uniformly from
the table.

12

Chapter 3
Model training comparison

The embedding algorithms discussed in the previous chapter are usually provided with
a model pre-trained on a large corpus. These models were however trained on different
datasets, with different training parameters, and under different conditions, making
them incomparable in terms of performance of the original algorithm. In this chapter,
the models are therefore trained on the same datasets and with the same hyperparame-
ters. The resulting models are compared by their performance on the independent STS
Benchmark testing dataset (described in Section 3.1), based on both the training time
needed and the number of data passes (i.e. epochs). The performance evaluation pro-
cess is described in Section 3.2. The goal of the experiments performed in Section 3.4 is
to explore the ability of the embedding algorithms to train on a small, well defined and
well preprocessed dataset, while the experiments in Section 3.5 use a large dataset in
order to compare the training capabilities of the algorithms with an increasing number
of training samples.

The algorithms compared in the following experiments are Word2Vec CBOW and
Skip-Gram, FastText Skip-Gram, StarSpace and the unigram variant of Sent2Vec.
Negative sampling was used for all these algorithms, but the hierarchical softmax (HS)
variant of Word2Vec Skip-Gram was also added to the comparison. The exact training
parameters are described in the following sections.

3.1 Data

3.1.1 STS Benchmark
The studied embedding models were evaluated on the STS Benchmark dataset
(Cer et al., 2017 [13]), which consists of three predefined parts: training, development
and testing sets. Each part includes a given number of sentence pairs (see Figure 3.1
for the exact sentence pair counts). The pairs were manually scored on a scale between
0 and 5. A higher number denotes a higher degree of semantic similarity between the
two sentences.

train dev test total
news 3299 500 500 4299
captions 2000 625 625 3250
forum 150 375 254 1079
total 5749 1500 1379 8628

Table 3.1. Number of sentence pairs in different parts of the STS Benchmark dataset.
“Train”, “dev” and “test” represent the training, development and testing sets, respectively.

The STS training dataset was used for training the embedding models described in
Section 3.4.

13

3. Model training comparison .
3.1.2 C4Corpus

A larger dataset was needed for training the embedding algorithms, in order to compare
them based on the size of the training data, as described in Section 3.5. For this purpose,
an English part of the C4Corpus (Habernal et al., 2016 [14]) dataset was used. The
C4Corpus dataset is a preprocessed version of the Common Crawl1) dataset, which is
an open collection of web crawl data. Details of the part2) of the C4Corpus used in
Section 3.5 and its subsets are presented in Table 3.2.

data percentage samples tokens vocabulary
100% 20.82 456.0 2.23
80% 16.65 364.3 1.95
60% 12.49 273.1 1.65
40% 8.33 181.9 1.30
20% 4.16 90.7 0.86
10% 2.08 45.4 0.56
1% 0.21 4.4 0.14

Table 3.2. Part of the C4Corpus dataset and its subsets used for training in Section 3.5.
“Samples” represent the number of training samples (i.e. number of lines in the training
file — can comprise of single words or sentences) and “tokens” represent the total amount
of tokens (i.e. words, punctuation and other symbols) present in the corpus. All the values

shown are in millions.

3.1.3 Data preprocessing

The training datasets as well as the testing samples were lower-cased and tokenized
using the TweetTokenizer from the NLTK Python package3). This tokenizer utilizes
common tokenization techniques, like splitting word contractions and separating punc-
tuation symbols from words. It also processes the text in order to find patterns, which
are common in online chats, like emojis, phone numbers, etc. Ultimately, the choice of
a tokenizer did not play a large role, as most of the tokenizers available in the NLTK
package performed very similar.

The stochastic gradient descent (SGD) algorithm, that the researched embedding al-
gorithms use for optimization based on their objective functions, also needs the training
dataset to be shuffled in order to mitigate the possibility of getting stuck in local min-
ima. The STS Benchmark dataset is by default unordered and the training samples are
independent, therefore there is no need to shuffle the samples. The C4Corpus dataset,
on the other hand, is an ordered set of textual web data, therefore it was shuffled ran-
domly and each of the embedding algorithms was trained on the same shuffled set. The
embedding algorithms handle any potential further sample shuffling between training
epochs themselves.

The Sent2Vec algorithm required the training dataset to be in the form of one sen-
tence per line. Since the C4Corpus dataset included whole paragraphs of text, the
English Punkt sentence tokenizer from the NLTK package was used to split the sen-
tences.

1) http://commoncrawl.org/
2) Lic by-nc-nd Lang en NoBoilerplate true MinHtml true-r-00017.seg-00000
3) https://www.nltk.org/

14

http://commoncrawl.org/
https://www.nltk.org/

. 3.2 Evaluation

3.2 Evaluation

The models were evaluated based on two criteria: the performance of the embedding
models on a semantic textual similarity (STS) task and the hardware requirements of
the algorithms during sentence encoding.

The performance on an STS task is evaluated using the STS Benchmark dataset de-
scribed in Section 3.1. The sentences from the testing set were transformed to a vector
representation, using different embedding algorithms. In case of the word embedding
algorithms, the sentence embeddings were constructed as the average over the words
present in the sentence (out-of-vocabulary words were skipped). Each sentence pair
was given a score as a cosine similarity of the two encoded sentences. The Pearson and
the Spearman correlation coefficients between the vector of the manual scores provided
in the STS Benchmark dataset and the vector of output cosine similarities are then
considered as resulting scores of the models.

Because the evaluation result in the form of correlation is not as intuitive as clas-
sic accuracy scores, a simple visual comparison of Pearson and Spearman correlation
coefficients is provided in Figure 3.1. The Pearson coefficient evaluates the linear re-
lationship between two continuous variables (how they change together at a constant
rate), while the Spearman coefficient evaluates the monotonic relationship (i.e. the
variables change together, but not necessarily at a constant rate). It is important to
note, that this thesis focuses mostly on the Pearson correlation coefficient, but since
the Spearman coefficient is also widely used in NLP applications, it was included in the
results for future reference.

PR = +1.000, SP = +1.000 PR = -1.000, SP = -1.000 PR = +0.917, SP = +1.000

PR = -0.884, SP = -0.981 PR = +0.000, SP = +0.017 PR = +0.001, SP = +0.033

Figure 3.1. Visual comparison of Pearson (PR) and Spearman (SP) correlation coefficients
between x and y vectors. The green line in some of the plots serves only as a reference to

a linear relationship.

Since the goal of this thesis is to create an intent recognition system, which should be
able to work in a reasonable time, the deciding factor for a suitable embedding algorithm
for this task will also be its hardware requirements (mainly CPU and memory usage),
which are discussed in Section 3.6.

15

3. Model training comparison .

3.3 Pre-trained models
Most of the embedding algorithms discussed in this thesis provide a model trained on
large corpora. Even though these models are mostly incomparable due to different train-
ing conditions, they can serve as a reference to the models trained in sections 3.4 and 3.5.
The information about these models is therefore provided in Table 3.3.

algorithm training corpus dim vocab size [GB]
Sent2Vec unigram Twitter 700 1.0 13.0

Wikipedia 600 0.5 4.8
Toronto Books 700 0.2 1.7

Sent2Vec bigram Twitter 700 1.8 23.0
Wikipedia 700 1.2 16.0
Toronto Books 700 0.8 6.8

InferSent SNLI 4096 - 0.2
GloVe Common Crawl 300 2.2 5.6

Word2Vec SG Google News 300 3.0 3.6
FastText CBOW Wikipedia 300 2.5 8.5
GloVe Wikipedia + Gigaword 300 0.4 1.0

Table 3.3. Parameters of the publicly available pre-trained models for different embedding
algorithms. The InferSent model is trained on the SNLI corpus but uses a GloVe pre-
trained model. “Sent2Vec unigram” and “Sent2Vec bigram” represent the word unigram
and bigram variants of the algorithm. “Dim” represents the dimension of the embedding
vectors and “vocab” is the approximate number of tokens in the vocabulary in millions.

The performance of the pre-trained models on the STS Benchmark testing set is
shown in Table 3.4.

algorithm training corpus Spearman Pearson

Sent2Vec unigram Twitter 0.728 0.755
Wikipedia 0.640 0.638
Toronto Books 0.704 0.726

Sent2Vec bigram Toronto Books 0.690 0.716
InferSent SNLI + GloVe vectors 0.685 0.710
Word2Vec SG Google News 0.579 0.622
FastText CBOW OOV Wikipedia 0.539 0.483
FastText CBOW Wikipedia 0.582 0.584
GloVe Wikipedia + Gigaword 0.438 0.408

Table 3.4. Performance of the publicly available pre-trained models on the STS Benchmark
testing set. “FastText OOV” represents the FastText algorithm, in which the out-of-
vocabulary word embeddings were constructed using the character n-grams. The OOV

words were skipped otherwise.

The models trained using the word bigram variant of the Sent2Vec algorithm for
both the pre-trained models and the models trained in this thesis always achieved
worse results on the STS Benchmark dataset than the unigram models. The bigram
variant was therefore not used in the experiments.

The InferSent model, while achieving better results than any of the word embed-
ding models shown in Table 3.4, was also not used in the following experiments. This

16

. 3.4 Training on the STS Benchmark dataset

was done because the algorithm was specifically designed to be trained in a supervised
manner on the SNLI corpus (see Section 2.6 for more details), making any attempts to
compare its training capabilities with the other studied embedding algorithms impos-
sible.

It is important to note, that the performance of the InferSent algorithm shown in
this thesis is significantly lower than the one reported in the comparison on the STS
Benchmark website1). This was because their experiments with InferSent utilized the
STS Benchmark training dataset in order to train a regression model to output the
similarity scores. This can, of course, be performed for any of the embedding algorithms
to improve their performance on the respective domain, but it would defeat the purpose
of the comparison in this thesis. This again shows, how inconclusive the currently
available comparisons of the embedding algorithms can be.

Both the FastText and the Word2Vec algorithms performed better than reported on
the STS Benchmark website. This might be caused by the fact, that the authors of the
comparison were not very clear on the pre-processing of the dataset for these algorithms.
The significant performance boost of FastText was also possibly caused by the FastText
authors releasing a new set of pre-trained models (Mikolov et al., 2017 [15]), which were
used in this thesis.

As seen from the Table 3.4, the pre-trained GloVe model performed very poorly on
the STS task compared to the other algorithms. Even though multiple public models
are available for the GloVe algorithm, neither of them was able to achieve better results.
It soon became apparent, that GloVe was not suited for this kind of task, and therefore
any other experiments with this algorithm were dropped in this thesis.

3.4 Training on the STS Benchmark dataset
A significant problem in creating a domain-specific intent recognition module is the
lack of training data. The models trained on large corpora can be general enough to
perform well under many different domains, but this does not always hold true and
such models also tend to be unnecessarily large.

When creating an intent recognition module for a QA bot used for a constrained
task (e.g. a bot automating a shopping process), the vocabulary required to cover the
domain in question will be constrained as well. Large training corpora for such tasks
are usually hard or impossible to acquire. This section therefore explores the ability
of the different embedding algorithms to train on a relatively small dataset, containing
roughly thousands of samples (as opposed to millions or billions of samples usually
needed to properly train an embedding model). For this purpose, the STS Benchmark
training dataset was used, containing around 11 500 samples (cf. Table 3.1), comprising
of roughly 130 thousand tokens. The general training hyperparameters for all the
algorithms were set as follows:

. No minimum number of word occurrences. Only for the comparison purposes, the
algorithms should not discard any words with low frequency in the training corpus.. Initial learning rate of 0.1. All the algorithms utilize a stochastic gradient de-
scent (SGD) algorithm with linearly decaying learning rate. The only exception
is StarSpace, which uses the AdaGrad algorithm by default, but it was switched to
the regular SGD for the purpose of the experiments.. Embedding dimension H of 300.

1) http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark

17

http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark

3. Model training comparison .
. Context window of five (i.e. five past and five future words). This does not apply

to the Sent2Vec algorithm, which uses its context window to always cover the whole
sentence.. Negative sampling with five negative samples per training sample. The only exception
being the hierarchical softmax variant of Word2Vec.. The algorithms were trained on eight threads of an Intel Core i7-3632QM 2.2 GHz
CPU.

Other algorithm-specific hyperparameters were left as default. Character n-grams in
FastText were set to n being in the interval [3, 6], since it achieved the best performance
in the experiments reported by Bojanowski et al. [5]. StarSpace was set to use the
margin ranking loss with the margin parameter µ of 0.05, using the cosine similarity as
the similarity function s.

3.4.1 Results and discussion

The results of the trained models are shown in Figure 3.2. The exact results together
with the training times are also presented in Table D.1.

0 20 40 60 80 100
training CPU time [minutes]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pe
ar

so
n

co
ef

fic
ie

nt
 o

n
ST

S
te

st
 [-

]

Sent2Vec unigram
StarSpace
FastText SG OOV
FastText SG
Word2Vec SG HS
Word2Vec SG
Word2Vec CBOW

Figure 3.2. Performance (Pearson correlation coefficient) of the models trained on the STS
Benchmark training set as a function of training CPU time.

As seen from the graph in Figure 3.2, the StarSpace algorithm was able to outperform
all the other compared embedding algorithms, both in terms of data passes and training
time. Intuitively, the StarSpace algorithm was expected to perform roughly on par with
the FastText algorithm. From the experiments, it seems, however, that the margin
ranking loss and the cosine similarity used in StarSpace bring a slight boost over the
softmax and a simple dot product used in FastText. This begs the question, whether
the algorithms tend to overfit in terms of the Euclidean norm of the embedding vectors,
since using a cosine similarity, which is a normalization of the dot product based on
the Euclidean norm, seems to bring better results.

The results also show that the Skip-Gram variant of Word2Vec and FastText achieve
roughly the same performance in the long run when the ability of FastText to construct
the out-of-vocabulary (OOV) word embeddings is not used. FastText is, however, able

18

. 3.5 Training on the C4Corpus dataset

to converge to this performance much faster, which is consistent with the theory dis-
cussed in Section 2.2. FastText achieves a slightly better performance when constructing
the OOV word vectors from the character n-grams. This boost in performance is not
as significant as shown in Figure 2.2, most probably because the n-grams do not bring
so much information into the English language as to the morphologically rich German
language.

The Sent2Vec model trained on the STS Benchmark was not able to get anywhere
near the performance of the publicly available models, possibly because the algorithm
requires much larger training corpus in order to train properly. This is further examined
and discussed in the next section. Because of that, the Sent2Vec algorithm is not
applicable in situations when a large training dataset is not available or when the
publicly available general pre-trained model is too large for the intended purpose.

The CBOW variant of the Word2Vec algorithm was falling far behind the Skip-Gram
variant. The algorithm also showed a minor boost in performance after utilizing the
hierarchical softmax instead of the negative sampling approach. This was expected,
since the hierarchical softmax is able to update all weights in the neural network for
each training step, while negative sampling updates only a small subset. However, even
though computing the hierarchical softmax for each training sample is slower than using
the negative sampling, it can be seen from the graph, that even when compared based
on the training time, the hierarchical softmax is still superior in terms of performance
on the STS task.

3.5 Training on the C4Corpus dataset

In Section 3.4, the embedding algorithms were examined based on their ability to train
on a small (but fixed size) dataset, where each algorithm was trained until its perfor-
mance converged. On the other hand, the algorithms can be compared in terms of their
ability to train on datasets of varying sizes, while fixing the number of data passes (i.e.
epochs), effectively creating learning curves of the embedding algorithms.

In this section, the algorithms are trained on the C4Corpus dataset and its subsets.
The algorithms were set to perform only two epochs for each subset of the data. This
was done in order to rule out possible optimization differences in the used implemen-
tations of the embedding algorithms. Even though a proper performance comparison
should be done based on the training times of the algorithms, this comparison was
already done in Section 3.4 and such comparison is not the goal of the experiments
performed in this section. Constraining the algorithms by the training time could also
force some of the algorithms not to finish a full data pass, rendering the learning curves
incorrect. This section therefore assumes that the size of the training corpus affects only
the best performance of the embedding algorithms and not their convergence abilities.

The training hyperparameters of the embedding algorithms were set the same as for
the experiments in Section 3.4, with a few exceptions:

. 10 negative samples per training sample were used for the negative sampling. Even
though it is counter-intuitive to increase the number of negative samples for a larger
training corpus, this was done to match the hyperparameters of the pre-trained
FastText model.. The algorithms were trained on 10 threads of an Intel Xeon E5-2690 v4 2.6 GHz
CPU.

19

3. Model training comparison .
3.5.1 Results and discussion

The performance of the trained models on the STS task is shown in the graph in
Figure 3.3. The exact results together with the training times are also presented in
Table D.2.

The graph in Figure 3.3 shows that the performance of the Sent2Vec algorithm
grows significantly with the amount of data used. Starting on par with Word2Vec
CBOW with only 1% of the dataset (4.4 million training tokens), the performance of
Sent2Vec gradually surpasses all of the word embedding algorithms, with the exception
of StarSpace, which still achieved better performance than all of the other algorithms.

10080604020101
percentage of data [%]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pe
ar

so
n

co
ef

fic
ie

nt
 o

n
ST

S
te

st
 [-

]

Sent2Vec unigram
StarSpace
FastText SG OOV
FastText SG
Word2Vec SG HS
Word2Vec SG
Word2Vec CBOW

Figure 3.3. Learning curves for the models trained on different percentages of the C4Corpus
dataset.

The results of the word embedding algorithms are consistent with the experiments
in Section 3.4. All the word embedding algorithms were able to achieve their best
performance on the STS task with a relatively small amount of data compared to
the Sent2Vec algorithm, with FastText and StarSpace needing only 10% (45 million
training tokens) to converge. The performance of the FastText algorithm with and
without constructing the out-of-vocabulary word embeddings became almost identical,
which suggests that the vocabulary of the C4Corpus dataset sufficiently covered the
tokens contained in the STS Benchmark testing set.

The results clearly show that two epochs are not enough for the embedding algorithms
to achieve their best possible performance (with the current hyperparameters). The
algorithms were therefore also trained on the full dataset with an increasing number of
epochs until their performance on the STS Benchmark testing set stopped improving.

The results presented in Table 3.5 show that the performance of StarSpace and the
CBOW variant of Word2Vec improved by roughly 10% over the models trained on the
STS Benchmark training dataset. Other than that, using a significantly larger dataset
than in Section 3.4 did not improve the performance of the word embedding models on
the STS task. In case of the hierarchical softmax variant of the Word2Vec algorithm,
the performance actually dropped slightly. However, this was probably caused by the
fact, that the training and testing sets of the STS Benchmark dataset have for the

20

. 3.6 CPU and memory requirements

algorithm epochs CPU time Spearman Pearson
[minutes] (PR 2 epochs)

Sent2Vec unigram 10 7304 0.691 0.709 (0.653)
StarSpace 1 7051 0.673 0.708 (0.704)
FastText SG OOV 10 2777 0.582 0.582 (0.518)
FastText SG 10 2777 0.581 0.581 (0.517)
Word2Vec SG HS 4 1283 0.590 0.597 (0.594)
Word2Vec SG 20 3865 0.572 0.569 (0.495)
Word2Vec CBOW 17 751 0.311 0.309 (0.275)

Table 3.5. Performance of the models trained on the C4Corpus after reaching convergence.
The models were trained repeatedly with an increasing number of epochs until their per-
formance on the STS Benchmark testing set stopped improving. The Pearson correlation

coefficients for 2 training epochs are also shown for comparison.

most part very similar vocabularies, not leaving much space for improvement on larger
datasets.

On the other hand, the performance of the Sent2Vec algorithm significantly increased,
slightly surpassing even the StarSpace algorithm. This shows that Sent2Vec requires
much larger dataset than the word embedding algorithms in order to train properly.
It still achieved worse performance than the public models trained on Toronto Books
and Twitter corpora (0.726 and 0.755 Pearson coef. respectively), as seen in Table 3.4,
showing that the Sent2Vec algorithm still has room for improvement on even larger
datasets. The performance of the word embedding models trained on the C4Corpus
was satisfactory and roughly on par with the pre-trained models.

3.6 CPU and memory requirements
In this section, the memory and CPU requirements of the embedding algorithms dur-
ing both training and testing (i.e. sentence encoding) are discussed. The resource
requirements during the training of the models are not as important for the purpose
of this work, nevertheless, they are shown to provide the full overview of the selected
algorithms.

Since the intent recognition module developed in this thesis will be used in a question-
answering system, the module needs to be able to transform the sentences it receives
in a reasonable time. The CPU requirements during the computation of the sentence
embeddings are therefore an important factor in deciding which of the algorithms will be
used in the resulting system. The memory requirements of the uncompressed models
are also discussed, since the resulting module can be used on mobile devices with a
limited RAM.

3.6.1 Training complexity

Taking the Word2Vec algorithm as a baseline for most of the other embedding algo-
rithms, first, the training complexity of Word2Vec will be discussed, before comparing
it to the CPU requirements of the other used algorithms.

As stated in Mikolov et al. [3], the training complexity O for Word2Vec can be
expressed as

O = E × |T | ×Q, (3.1)

21

3. Model training comparison .
where E denotes the number of training epochs, |T | denotes the number of tokens

(words) in the training dataset, and Q differs by the algorithm used. For CBOW it is

Q = H × (C + log2 |V|), (3.2)
where H is the embedding dimension, C is the context window size, and |V| denotes

the size of the vocabulary. For Skip-Gram,

Q = H × (C + C × log2 |V|), (3.3)
where C now denotes the maximum context window size.
Bojanowski et al. [5] state, that the FastText algorithm is roughly 30% slower to

train than Word2Vec on the same amount of training data for character n-grams with
n ranging between 3 and 6. This is due to the extra time needed to train the embeddings
for the character n-grams. The training times on the C4Corpus dataset presented in
Table 3.6 show that the proportional training time difference between Word2Vec and
FastText decreases with increasing amount of training data. This is to be expected,
since the number of distinct character n-grams stops increasing at some point, while
the vocabulary still grows.

Sent2Vec in the word unigram variant can be seen as an extension of Word2Vec
CBOW. The only difference that should affect the CPU usage is the dynamic context
window in Sent2Vec, which stretches over the whole sentence. Mikolov et al. [3] states,
that they managed to get the best performance from Word2Vec on a word similarity
task for the context window of four (i.e. four history and four future words are taken as
the context for each word). This context window size was also used in the experiments
in sections 3.4 and 3.5. As an average sentence length in written English ranges roughly
between 15 and 25 words, depending on the text source1), which translates to a context
window in the interval [7, 12], we can say that the training time of Sent2Vec compared
to Word2Vec CBOW should increase by approximately 75-200%. The experiments on
the C4Corpus show roughly 160% CPU time increase over the Word2Vec algorithm
for the full dataset, which is consistent with this theory. Again, the time difference
decreases with an increasing amount of data used for training.

The StarSpace algorithm, while achieving the best results of the word embedding
algorithms, required by far the largest amount of time to complete each training epoch.
Even when the algorithm was set to use the dot product and the softmax function
instead of the margin ranking loss, the training time improved only by approximately
10%. This could be caused by the fact, that StarSpace was not optimized to learn word
embeddings in an unsupervised manner. Otherwise, the training times of StarSpace
should be in theory on par with the other word embedding algorithms.

algorithm 100% data 80% data 20% data
Sent2Vec unigram 1310 1067 319
StarSpace 14074 11425 3074
FastText SG 592 519 140
Word2Vec SG 507 389 75
Word2Vec CBOW 87 76 22

Table 3.6. Training times of the embedding models trained on the C4Corpus dataset in
minutes. The times were recorded for two data passes (i.e. epochs). The full results are

presented in Table D.2.
1) https://top.quora.com/How-long-is-the-average-sentence

22

https://top.quora.com/How-long-is-the-average-sentence

. 3.6 CPU and memory requirements

The memory requirements during the training of the embedding algorithms mostly
consist of loading the training corpus and storing the weight matrices. The memory
needed for the training corpus can be significantly reduced by loading the dataset in
batches, instead of keeping it loaded as a whole. The RAM requirements are there-
fore dominated by the need to store the weight matrices, which are constantly getting
updated. For most of the algorithms, this consists of storing two matrices of |V| ×H
double precision numbers, with the FastText algorithm needing additional space for
storing embeddings of the character n-grams. During the training of the algorithms on
the C4Corpus dataset, FastText usually required roughly 50% more memory than the
other embedding algorithms.

3.6.2 Text encoding complexity

The models of all the word embedding algorithms come as a text file (or binary for
reduced size and faster loading), where each row contains a token (word) and its vector
representation. The tokens are usually sorted by the frequency in the training corpus,
with the most frequent tokens being on top of the file. The memory requirements during
the encoding phase are dominated by the need to load these files into RAM to have a
fast access to the word embeddings. The same applies to the two sentence embedding
algorithms, but InferSent requires to additionally load the parameters of the BiLSTM
network.

During a sentence encoding, all of the algorithms except for InferSent first need
to access the word vector entries for each word in the given sentence. The sentence
embedding is then computed as an average over the word vectors, requiring

(|S| − 1)×H +H = |S| ×H (3.4)

floating point operations, where |S| is the number of words in the encoded sentence,
and H is the embedding dimension.

As seen in Table 3.7, all of the word embedding algorithms together with Sent2Vec
take roughly the same amount of time to encode the sentences present in the STS
Benchmark dataset, which is consistent with the theory. The FastText algorithm in
the example required roughly twice the amount of time when constructing the out-of-
vocabulary word embeddings, compared to the case when the OOV words were skipped.
This should, however, be heavily dependent on the amount of OOV words in the encoded
dataset.

algorithm time [s]
InferSent 316.81
Sent2Vec unigram 1.59
StarSpace 1.88
FastText OOV 4.58
FastText 2.20
Word2Vec 2.40

Table 3.7. Comparison of the embedding algorithms based on the time needed to encode
the whole STS Benchmark dataset, consisting of over 17 thousand sentences (cf. Table 3.1).
The times recorded are for the models trained on the STS Benchmark training set, except
for InferSent, which uses the pre-trained model. The individual variants of Word2Vec
and FastText are not distinguished here, as they should have no effect on the encoding

complexity.

23

3. Model training comparison .
Table 3.7 clearly shows that the InferSent algorithm requires significantly more time

to encode the sentences than the other embedding algorithms. This is caused by the
fact, that while the other algorithms construct the embeddings by simply looking up
the word vectors in the trained model, InferSent additionally needs to use the sen-
tence embeddings (constructed for example from the GloVe model) as an input to the
bi-directional LSTM network encoder and compute the resulting sentence embeddings
in the network. The LSTM network also outputs embedding vectors of much higher
dimension (e.g. Conneau et al. [10] used 4096-dimension vectors) than the other em-
bedding algorithms, requiring more floating point operations for any further task. This
makes the InferSent algorithm unsuitable for the intent recognition module developed
in this thesis.

24

Chapter 4
Model compression

The general embedding models trained on large corpora tend to have several gigabytes
in size (min. 1 GB, max. 23 GB, cf. Table 3.3 for details), making them unsuitable for
mobile applications, where both the storage memory and RAM are limited. The larger
the model is, the longer it also takes to load into RAM before it can be used for creating
the sentence embeddings. This is not a problem for a server-based service, since the
model is only loaded once and is used as long as the server is running. However, when
used on the client side, this would result in tedious waiting times for every launch of the
application. Even the smaller models designed for tasks on a constrained domain are
usually several hundred megabytes large, which is still notable size for a mobile device.
It is therefore important to reduce the size of the models as much as possible.

This chapter explores two embedding model compression methods, namely vocab-
ulary pruning and vector quantization. These compression methods were inspired by
Joulin et al. [16].

4.1 Data and evaluation

The experiments described in the following sections were all performed on a publicly
available English Wikipedia FastText model, which was stripped of the character n-
gram embeddings for simplicity. The experiments were performed using FastText only,
since it is a core component of Sent2Vec and StarSpace. Further, as all the embedding
algorithms are very similar in nature, it is reasonable to assume that the compression
process will perform the same for any other embedding model.

The compressed models were evaluated on the STS Benchmark testing dataset in
the same way as in the previous chapter (see Section 3.2 for details). Because the
vocabulary of the STS Benchmark testing set contains approximately only 12 500 words,
the FastText model used for experiments was further stripped to only 200 thousand
most frequent words (i.e. top 200 thousand entries in the embedding model file) for
time purposes. This reduced the Pearson correlation coefficient on the testing dataset
by only 0.002 (cf. Table 4.1), suggesting that the dataset did not contain most of the
discarded words.

model dim vocab size Pearson
FastText without n-grams 300 2.5 mil. 6.6 GB 0.584
+ only first 200k words 300 0.2 mil. 523 MB 0.582

Table 4.1. Information about the pre-trained FastText model used for the compression
experiments. The model was stripped of its character n-gram embeddings and further
reduced to only 200 thousand most frequent words. The reported performance (Pearson

correlation coefficient) was computed on the STS Benchmark testing set.

25

4. Model compression .

4.2 Vocabulary pruning
The size of an embedding model grows linearly with the size of the vocabulary, each new
word adding H double precision numbers to the model. For most of the constrained-
domain tasks, it is pointless to keep all of the millions of words that the public pre-
trained models contain. It is therefore useful to prune the vocabulary based on the
specific task. This section explores two methods of vocabulary pruning — either based
on the frequency of the words in the training corpus or based on the norm of the
embedding vectors.

Pruning based on the frequency of the words in the original training corpus of the
embedding model is probably the most intuitive approach to vocabulary pruning. It
is also by far the simplest approach to perform, since the words in the embedding
model files are by convention sorted by their occurrence count in the training dataset.
Creating a new model with only K most frequent words therefore becomes as simple
as selecting K top words from the model file. This was actually already performed in
Section 4.1, where the first 200 thousand words were taken from the FastText model,
effectively reducing the size of the model by over 90% without any notable performance
drop on the given STS task (cf. Table 4.1).

On the other hand, Joulin et al. [16] propose a different approach of pruning the
vocabulary, which is based on the Euclidean norm of the embedding vectors. While the
frequency pruning will probably keep a lot of insignificant words like “the” or “is” (i.e.
stop words), keeping K words with the highest embedding norms should preserve the
most discriminative words (i.e. the words with the highest importance in the training
dataset). This can, however, pose a problem in the case that the training dataset
includes samples that would not contain any of the K highest-norm embeddings. An
additional constraint is therefore needed, which forces the algorithm to keep at least
one word from each of the training samples. The problem can be therefore formally
defined as

max
VP⊆V

∑
w∈VP

‖vw‖2 s.t. |VP | ≤ K, P1VP
≥ 1T , (4.1)

where VP represents the pruned vocabulary as a subset of the original vocabulary V,
vw is the embedding vector of the word w, and P is a matrix such that Pjk = 1 if k-th
feature is in the j-th training sample.

For this purpose, Joulin et al. [16] utilize a simple greedy strategy. For each sample
in the training dataset (i.e. sentence or document), if VP does not contain any of the
tokens in the training sample, the token with the highest norm is added to VP . After
traversing all training samples, if |VP | < K, more tokens with the highest embedding
norm are added independently of the training dataset.

4.2.1 Results and discussion
The STS Benchmark training set was used for the pruning based on vector norms
to perform the pruning on the respective domain, since its testing set was used for
the performance evaluation of the compressed models. The constraint for keeping the
highest norm vectors was therefore to cover the whole STS Benchmark training set, i.e.
at least one token had to be kept for each sentence from the set. This translated into
the smallest number of tokens kept to exactly K = 3413 for the used training set.

The performance comparison of the two pruning methods can be seen in Figure 4.1.
The exact results together with the sizes of the compressed models are presented in
Table 4.2.

26

. 4.2 Vocabulary pruning

0 20000 40000 60000 80000 100000 120000 140000 160000
K [-]

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Pe
ar

so
n

co
ef

fic
ie

nt
 o

n
ST

S
te

st
 [-

]

pruning by vector norm
pruning by word frequency

Figure 4.1. Performance of the models with pruned vocabulary on the STS Benchmark
testing set. The black line in the graph represents the performance of the original model

(PR = 0.582).

K size Spearman Spearman Pearson Pearson
[MB] (norm) (freq) (norm) (freq)

3 413 9 0.419 0.395 0.282 0.342
5 000 13 0.460 0.452 0.437 0.410
10 000 26 0.475 0.502 0.448 0.482
20 000 53 0.490 0.550 0.472 0.547
50 000 132 0.534 0.572 0.533 0.577
100 000 263 0.549 0.576 0.550 0.580
150 000 393 0.557 0.578 0.561 0.582

Table 4.2. Results of the vocabulary pruning experiments. “Norm” and “freq” represent
the vector norm and the word frequency pruning variants, respectively. The reported
performance (Pearson correlation coefficient) was computed on the STS Benchmark testing

set. The size of the original model was 523 MB with a Pearson coefficient of 0.582.

Figure 4.1 clearly shows that pruning based on the word frequency achieves much
better performance on the STS task than pruning based on the vector norm. Even
though the full original model was already stripped to only the first 200 thousand
words before the experiments, further discarding another 150 thousand least frequent
words from the model did not noticeably reduce the performance on the STS Benchmark
dataset.

Further, to strictly follow Joulin et al. [16], the model should be trained and pruned
on the same domain. The FastText model, on which the experiments presented in
Figure 4.1 were performed, was trained on English Wikipedia, while the pruning is
performed based on the STS Benchmark training set. These two datasets might put
emphasis on different words in the sentences and because of that, the embedding vector
norms from one dataset might not match the importance of words from the other.
A FastText model trained on the STS Benchmark training set, previously trained in
Section 3.4, was therefore used to verify the results.

27

4. Model compression .
K size Spearman Spearman Pearson Pearson

[MB] (norm) (freq) (norm) (freq)
1 513 4 0.416 0.410 0.319 0.356
5 000 13 0.414 0.492 0.342 0.461

Table 4.3. Results of the vocabulary pruning experiments on a FastText model trained on
the STS Benchmark training dataset. The model used was previously trained in Section 3.4,
specifically the one trained for 64 epochs. The size of the original model was 33 MB with
a vocabulary of roughly 12 500 tokens and a Pearson coefficient on the STS Benchmark

dataset of 0.511.

Table 4.3 reveals that thanks to unifying the domain of the training sets, the vo-
cabulary pruning based on vector norms did require fewer words for covering all the
sentences in STS Benchmark training dataset (1 513 compared to the 3 413 tokens
needed in the previous experiment). However, the simpler approach of pruning based
on the word frequency still brought better results on the STS task. It is important
to note, that Joulin et al. [16] tested the compression methods on a FastText model
trained for a document classification task (cf. Joulin et al. [6]). Therefore, the reason
for the poor performance of the norm-based pruning might be that while it is suitable
for the document classification task, where a single word can be descriptive enough for
the document to be correctly classified, it fails on the semantic similarity task, where
it throws out the important syntactic features of the compared sentences.

4.3 Quantization
Vector quantization is a common technique in the domain of signal processing, which
can also be used for lossy data compression. The basic idea behind vector quantization
is to use a clustering algorithm to find groups of close datapoints (vectors) in the original
dataset and approximate those groups (clusters) by their centroids. The set of centroids
is referred to as the codebook and it is typically significantly smaller than the original
dataset. The vectors are then replaced by the index of their closest centroid in the
codebook, which greatly reduces the size of the model.

However, if used in the basic form on a high-dimensional embedding model, vector
quantization would replace each embedding vector with a single centroid, effectively
grouping the words in the vocabulary by their semantics and replacing them with an
“average” word. This would greatly reduce the performance on the STS task, unless
a large number of centroids was used, which would render the compression useless.
Instead, the embedding vectors are first split into sub-vectors of dimension DSV � H,
which are then used as an input to a clustering algorithm in order to fit DCB centroids
to the sub-vectors. The original embeddings are therefore replaced not by one index,
but by a sequence of centroid indices based on the sub-vectors the embedding vector
contains. The compressed vector can then be decoded by simply traversing the sequence
of indices and concatenating the respective codebook entries. A visualization of the
vector quantization process is shown in Figure 4.2, with a specific example shown in
Figure 4.3.

Both the size of the sub-vectors DSV and the amount of the centroids to fit (i.e. the
size of the codebook) DCB are hyperparameters that influence the compression rate
and the quality of the compressed embeddings. Intuitively, the performance of the
compressed models should be better with larger DCB and smaller DSV, since it will
increase the approximation precision. At the same time, however, the compression rate

28

. 4.3 Quantization

Original word
vectors

Clustering algorithm
(K-means / LBG / ...)

|V| x H
doubles

Sub-vectors

|V| x H
doubles

(Normalize) +
Split to sub-vectors

Vector encoder

DCB x DSV
doubles

Codebook
(centroids)

Sub-vectors

|V| x H / DSV
integers

Compressed word
vectors

Figure 4.2. Scheme of the vector quantization process. |V| is the number of words in the
vocabulary, H is the embedding dimension, DSV is the size of the sub-vectors and DCB is

the codebook size (i.e. the number of centroids).

0.31 0.03 0.15 0.26 0.17 0.14 0.30 0.05

0.14 0.28 0.19 0.15 0.15 0.25 0.27 0.16

0.33 0.01 0.29 0.18 0.30 0.16 0.19 0.14

w1

w2

w3

ORIGINAL WORD VECTORS (H = 8)

SUB-VECTORS (DSV = 2)

w1

w2

w3

0.1 0.2 0.3

0.1

0.2

0.3

0 1 2 0

1 2 1 3

0 3 3 2

w1

w2

w3

COMPRESSED WORD VECTORS

CLUSTERING

0.147 0.263

0.183 0.143

0.287 0.167

0.313 0.030

CODEBOOK (DCB = 4)

0

1

2

3

0

2 3

1

0.31 0.03 0.30 0.050.17 0.140.15 0.26

0.14 0.28 0.27 0.160.15 0.250.19 0.15

0.33 0.01 0.19 0.140.30 0.160.29 0.18

Figure 4.3. Example of a vector quantization process for an embedding model with only
three words. The blue circles in the graph denote the sub-vectors, the red circles denote
the cluster centroids. The output of the algorithm is the set of compressed word vectors

together with the codebook.

will decrease, because the sequence of indices that describes the embedding vectors
will get longer. The size of the codebook should always be negligible compared to the
compressed embedding model.

29

4. Model compression .
The choice of the clustering algorithm used for creating the codebook is also essential

for the quality of the compressed model. Joulin et al. [16] utilize the k-means algorithm,
which is one of the most common clustering algorithms. However, in this work, the more
complex Linde-Buzo-Gray (LBG, Linde et al., 1980 [17]) algorithm was used instead, as
it should improve the quality of the fitted centroids. The centroid splitting property of
the LBG algorithm also suits the purpose of fitting the codebook indices into different-
size integers (e.g. into an 8-bit integer if DCB ≤ 256). A simplified pseudo-code of the
LBG algorithm can be written as follows:

LBG(data, CB_size)
1 INIT: CB = [MEAN(data)]
2 while length(CB) < CB_size:
3 CB_new = []
4 for each centroid c in CB:
5 CB_new += [c * (1 + eps), c * (1 - eps)]
6 CB = K-MEANS(data, CB_new)
7 return CB

Another important difference to the quantization approach used by Joulin et al. [16] is
that they incorporate the algorithm into the training process of the FastText algorithm,
which lets the neural network adapt to the quantized networks, bringing a minor boost
in performance of the compressed model. The quantization experiments in this thesis
are however performed on already trained models.

There are several extensions to the quantization algorithm that can further improve
its performance. In this thesis, two approaches are explored: normalizing the embedding
vectors before the clustering and using a distinct codebook for each sub-vector position
in the embedding vectors.

Since the norms of the embedding vectors tend to vary by a large margin (e.g. the
norms in the used FastText model range between 1 and 66), they can bring a severe bias
to the clustering algorithm. Normalizing the embeddings to unit length before splitting
them to sub-vectors can solve this problem. The original norms of the vectors are then
stored in the compressed model, and the vectors are then simply multiplied by them
during the decoding process. Joulin et al. [16] suggest to further compress the stored
norms by a separate quantizer. However, as the size increase of the compressed model
by adding one double precision number to each word is negligible, the norms were not
quantized in the following experiments.

The second extension of the quantization algorithm is to create a separate codebook
for each sub-vector position. This should improve the accuracy of the approximation
in case that the embedding vectors are not homogeneous across their dimensions, which
would result in highly distinct sub-vectors.

4.3.1 Results and discussion

A new quantization module was implemented from scratch in the Python programming
language. The LBG algorithm was also implemented, inspired by a Python imple-
mentation available on GitHub1), while optimizing the algorithm using the NumPy
package. Thanks to the changes, the optimized LBG algorithm achieved a speedup of
over 50 times compared to the available implementation. However, even with the signif-
icant speedup, the LBG algorithm was unable to fit the centroids in a reasonable time,
when all of the 200 thousand embedding vectors (i.e. up to 30 million sub-vectors for

1) https://github.com/internaut/py-lbg

30

https://github.com/internaut/py-lbg

. 4.3 Quantization

DSV = 2) were used as an input. A random sample of 10 thousand vectors was therefore
selected from the embedding model, from which the centroids were computed. This set
of vectors was fixed for the purpose of the experiments.

First, the basic vector quantization algorithm without normalizing the embedding
vectors was examined based on the sub-vector and codebook sizes. The results of the
experiment can be seen in Figure 4.4. The exact results together with the sizes of the
compressed models are also presented in Table E.3.

21 22 23 24 25 26 27 28 29

DCB [-]

0.40

0.45

0.50

0.55

0.60

Pe
ar

so
n

co
ef

fic
ie

nt
 o

n
ST

S
te

st
 [-

]

DSV = 2
DSV = 3
DSV = 4
DSV = 5
DSV = 6
DSV = 10

Figure 4.4. Performance of the basic vector quantization (i.e. without normalizing the
embedding vectors or creating distinct codebooks for each sub-vector position) on the STS
Benchmark testing set. The black line in the graph represents the performance of the

uncompressed model (PR = 0.582).

Figure 4.4 shows that each sub-vector size required a certain amount of codebook
entries, for which the performance of the resulting compressed model significantly in-
crease. After this point, the performance of the models did not further improve with
larger codebooks. As expected, the required number of centroids increases with the size
of the sub-vectors, with the DSV = 2 model requiring only 8 (23) codevectors, while
the DSV = 10 model requiring 128 (27) codevectors. However, since the size of the
codebook is negligible compared to the compressed embedding model, the model with
sub-vectors of size 10 achieves its best performance with a better compression rate than
the other models. The resulting model for DSV = 10 and DCB = 27 is only 21 MB large
(cf. Table 4.4), which translates to a size reduction of almost 96% of the original 523
MB model.

It is important to note, that any codebooks of the size smaller than 8 (23) will not
further reduce the size of the resulting models, since a model with DCB = 8 already uses
only one-digit indices. Such models were however included in the comparison, since it
brings an interesting insight into how the compressed models will perform under such
circumstances. The codebook with less than 256 (28) centroids will also not reduce the
RAM requirements of the resulting models, since the CPUs cannot address anything
smaller than a byte, which makes storing the centroid indices in anything smaller than
an 8-bit integer impossible.

31

4. Model compression .
Next, the same experiment was performed, but with the embedding vectors being

normalized to unit length, before passing them to the LBG algorithm. The results
of this experiment can be seen in Figure 4.5. The exact results with the sizes of the
compressed models are also presented in Table E.4.

21 22 23 24 25 26 27 28 29

DCB [-]

0.40

0.45

0.50

0.55

0.60

Pe
ar

so
n

co
ef

fic
ie

nt
 o

n
ST

S
te

st
 [-

]

DSV = 2
DSV = 3
DSV = 4
DSV = 5
DSV = 6
DSV = 10

Figure 4.5. Performance of the vector quantization with normalized embedding vectors on
the STS Benchmark testing set. The black line in the graph represents the performance of

the uncompressed model (PR = 0.582).

Figure 4.5 shows that normalizing the embedding vectors to unit length greatly im-
proved the performance of the resulting compressed models. The performance boost
is most significant for smaller codebook sizes and longer sub-vectors, with most of the
models reaching roughly constant performance when only eight (23) centroids were used.

Another important thing to note is that the low-performance regions for too small
codebooks, which were present in the previous experiment, were almost completely
eliminated by the normalization. However, each sub-vector size still shows a small per-
formance peak around the codebook size after which its performance stopped improving
in the previous experiment. These centroid numbers can therefore be considered to be
the optimal settings for the respective sub-vector dimension on this particular FastText
model.

The results of the models with a sub-vector size of DSV = 2 were, however, the most
interesting, since these models were able to achieve their best performance with only
two centroids. Even though the compression rate of such a model is not as significant as
for other models (e.g. the DSV = 10, DCB = 27 model still achieved better performance
while being over 60% smaller, cf. Table 4.4), it is interesting that the embedding vectors
can be replaced by a sequence of alternating only two different codevectors without any
noticeable loss of performance.

The last experiment was performed for the variant of quantization algorithm in which
a distinct codebook was created for each sub-vector position. Since normalizing the
embedding vectors to unit length proved to bring a significant performance boost, the
normalization was also performed for this experiment. The results can be seen in

32

. 4.3 Quantization

21 22 23 24 25 26 27 28 29

DCB [-]

0.40

0.45

0.50

0.55

0.60

Pe
ar

so
n

co
ef

fic
ie

nt
 o

n
ST

S
te

st
 [-

]

DSV = 2
DSV = 3
DSV = 4
DSV = 5
DSV = 6
DSV = 10

Figure 4.6. Performance of the vector quantization with distinct codebooks for each sub-
vector position (and normalized embedding vectors) on the STS Benchmark testing set.
The black line in the graph represents the performance of the uncompressed model (PR =

0.582).

Figure 4.6. The exact results with the sizes of the compressed models are also presented
in Table E.5.

Introducing distinct codebooks for each sub-vector position into the algorithm seems
to suppress the minor fluctuations in the performance of the resulting models, which
can be seen in Figure 4.5. It did, however, reduce the performance of the models with
smaller codebooks, while the performance of the models with larger codebooks stayed
roughly equal.

Using multiple codebooks introduces higher complexity into the system, increasing
both the loading times of the models and the times needed to transform text to the vec-
tor representation. Since this approach did not bring any performance improvements,
it was not further used in this thesis.

quantization size [MB] Spearman Pearson

basic 62 / 21 0.557 / 0.543 0.557 / 0.561
norm 66 / 24 0.558 / 0.570 0.560 / 0.564
norm + distinct CBs 65 / 24 0.561 / 0.568 0.563 / 0.565

Table 4.4. Comparison of selected quantized models, specifically (DSV = 2, DCB = 8 /
DSV = 10, DCB = 128). The results for all quantized models are presented in the tables

in Appendix E.

33

Chapter 5
Intent recognition module

This chapter introduces the resulting intent recognition system. Section 5.1 describes
the important modules and implementation details of the system. Section 5.2 then
discusses the embedding model chosen for the system and the process of evaluating its
performance on an intent recognition task.

5.1 Implementation details
The whole project was developed in the Python programming language. In order to
make it as easy as possible to switch between different embedding algorithms, a module
of embedding wrappers was implemented. The wrappers handle the loading of the
models and any preprocessing of the input sentences needed before transforming them
to the vector representation. A special class was created for working with the quantized
models.

Both the module with embedding wrappers and the module for model compression,
described in Chapter 4, were the most crucial parts of the resulting system. Creating a
template-based intent recognition module was then quite straightforward. The module
loads the predefined template sentences from a JSON-format file, encoding them using
the currently used embedding model and storing only the resulting vectors, as the
original text is not needed. The intent detection process is then as simple as comparing
the encoded sentences with the templates, e.g. using a cosine similarity, and selecting
the intent associated with the most similar template. The system therefore utilizes the
1-NN classification strategy.

The complexity of the intent recognition process grows linearly with the number of
templates used, with the algorithm requiring to compute the cosine similarity between
the query sentence and each of the templates. For a large number of templates (or
intent classes), it is possible to reduce this complexity by quantizing the templates.
Instead of computing the cosine similarity individually for each template, the cosine
similarity can be pre-computed between the sub-vectors of the query sentence and the
centroids present in the codebook of the quantized templates. This creates a matrix
M of dimension DCB × (H/DSV), where each column denotes the similarities between
one sub-vector of the query sentence and all the centroids. The cosine similarity for a
template is then computed by traversing its centroid indices and simply summing the
corresponding entries in the matrix M .

The resulting intent recognition module together with embedding wrappers and the
model compression module are also available on GitHub1).

5.2 Evaluation
Based on the experiments performed in this work, the StarSpace algorithm was chosen
for the resulting intent recognition module, specifically the one trained on the C4Corpus
1) https://github.com/Tiriar/intent-reco

34

https://github.com/Tiriar/intent-reco

. 5.2 Evaluation

in Section 3.5. The model was compressed by selecting only first 50 thousand word
vectors and quantizing it using a quantizer with DSV = 10 and DCB = 128. This
reduced the model from the original 7.2 GB to only 6.1 MB.

In order to test the model on real intent recognition data, instead of the sentence
similarity task, a new dataset (cf. Table 5.1) was kindly provided by the Aquist social
bot team (Pichl et al., 2018 [18]), which achieved the second place in the 2017 Alexa
prize social bot contest1). The dataset was created by collecting and manually labeling
conversations of real users with the chatbot (see Table 5.2 for examples). The Alquist
team also provided their implementation of an intent recognition system for comparison
purposes. Their system uses a supervised convolutional network built on top of GloVe
embedding vectors, which directly classifies the intent based on the input sentence
embedding vector.

intent training set testing set total
Change subject 205 98 303
Deep conversation 952 398 1350
Greeting 192 99 291
News 2473 1200 3673
Repeat 206 90 296
Sports 355 152 507
total 4383 2037 6420

Table 5.1. Unique sample counts per intent present in the Alquist dataset. While the full
dataset contained more intents, their counts were largely unbalanced, with some intents
having less than 10 samples. All intents with less than 200 samples were therefore stripped

from the dataset.

Firstly, an experiment on the full Alquist dataset was carried out in order to see how
the template-based system performs on the dataset with different amounts of templates.
An increasing number of samples was randomly chosen from the dataset while observing
the accuracy and the F1 score on the rest of the samples.

As seen from the graph in Figure 5.1, the performance on each of the intents reaches
convergence when roughly 30 samples are chosen as templates. The Greeting intent is
the only one that causes problems for the intent recognition system. This is possibly
caused by the large variety of sentences present in this intent set, since apart from
regular greetings, it also contains any user replies to an opening line from the Amazon
Echo device (e.g. even sentences like “Who are you?”, “I am going to find you.”, etc.).

For the comparison of the system developed in this work and the system used by the
Alquist chatbot, the dataset was split into training and testing parts (cf. Table 5.1).
While the convolutional network was trained using the full training set, the template-
based system only used a certain number of samples from the set as templates. The
performance of the systems is presented in Table 5.3.

As seen from Table 5.3, when using more than 20 templates per intent, the template-
based recognition system outperforms the convolutional network used in the Alquist
social bot, while being less complex. Thanks to the embedding model compression, the
resulting models are also very similar in size (6.1 MB for the StarSpace model, 9.9 MB
for the convolutional network model).

1) https://developer.amazon.com/alexaprize/2017-alexa-prize

35

https://developer.amazon.com/alexaprize/2017-alexa-prize

5. Intent recognition module .
intent examples
Change subject Let’s switch the subject.

I don’t want to talk about this anymore.
I want to change to a different topic.
Can we talk about anything else?

Deep conversation Tell me something about the meaning of life.
Let’s chat about the human nature.
Can I talk to you about death?
Let’s talk about love.

Greeting Hello. / Hi. / Hey. / Greetings.
Good morning, how are you?
What a lovely day.
How’s it going?

News Tell me about that UBER story.
Give me latest news from CNN.
Read me the top headlines.
I want to talk about the current events.

Repeat Repeat. / Once again.
Say it again please.
Alquist, can you repeat that?

Sports Boston Celtics. / NHL. / NBA.
Tell me something interesting about sports.
Can we talk about football?
Who won the basketball league playoffs?

Table 5.2. Examples of sentences present in the Alquist dataset.

20 40 60 80 100 120 140
Training set size (samples per intent) [-]

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 [-
]

Change subject
Deep conversation
Greeting
News
Repeat
Sports

Figure 5.1. Performance of the template-based intent recognition system on the Alquist
dataset with an increasing amount of samples randomly taken as the templates. The
colored area around the lines denotes the standard deviation of multiple measurements.

36

. 5.2 Evaluation

model accuracy F1 score
Convolutional network 0.912 0.752
5 templates per intent 0.842 0.712
10 templates per intent 0.890 0.798
20 templates per intent 0.917 0.846
30 templates per intent 0.924 0.858
40 templates per intent 0.931 0.869
50 templates per intent 0.933 0.873

Table 5.3. Comparison of the convolutional network trained on the Alquist training set
and the template-based system, which uses different amounts of templates per intent from
the training set. Since a random set of templates was chosen for each run, the values in

the table are averages over 10 measurements.

The biggest advantage of the template-based system is however that while the em-
bedding algorithm requires a large amount of plain text in order train, the resulting
system does not need nearly as much labeled data as the convolutional network. The
only labeled samples the system requires are the ones that are then used as templates.
These templates can therefore be manually written based on the specific task, making
the system more transparent, with an option to easily add new intents by writing a
new set of templates. The system can therefore be easily updated with new intents
during runtime, while the convolutional network would need to be retrained in order to
incorporate the new intents.

37

Chapter 6
Conclusion

This work provides a comprehensive summary of the current state-of-the-art word and
sentence embedding algorithms, together with the most important techniques used to
make their training on large corpora possible, in a way that makes the algorithms easier
to understand and compare to one another.

The performance and the hardware requirements were examined on large datasets.
The results clearly show that the StarSpace algorithm provides the best performance
on the sentence similarity task, while it also takes the longest time to train, both on
smaller and larger datasets. However, the sentence embedding algorithm Sent2Vec
achieved performance on par with StarSpace, when trained on larger corpora. It also
shows promise for improving even further with an increasing amount of training data.
The experiment also verified that FastText is able to achieve its best performance with
the least amount of training data compared to the other algorithms.

Further, the vocabulary pruning and vector quantization techniques were imple-
mented in order to explore the possibility of compressing the embedding models. The
experiments show that simple pruning using word frequency in the training corpus
outperforms more complex pruning techniques on the semantic textual similarity task.
The vocabulary pruning is able to significantly reduce the size of a general model for a
more specific task (in extreme cases over 50 times). The vector quantization technique
also provides significant benefits, being able to further reduce the size of the models by
another 5-20 times, without any noticeable loss of performance.

Finally, the template-based intent recognition system was designed and implemented.
The system uses a StarSpace model trained on a large corpus, compressed from 7 GB
to only 6 MB using the developed compression module. The performance of the system
was then compared to another intent recognition module, used by the Alquist social
bot team (second place in the 2017 Alexa prize competition). The module developed
in this thesis outperformed the convolutional network on a manually labeled set of
human conversations with the Alquist social bot while being less complex and needing
a significantly smaller amount of labeled data.

6.1 Further work
The experiments with the embedding algorithms performed in this thesis brought a
lot of new insights, that are beyond the scope of the current work. The algorithms
were compared out-of-box with the same hyperparameters. However, in the further
work, one can go even deeper in this direction and truly examine the possibilities of
the algorithms. It would be interesting to combine the basic features of the algorithms
(e.g. using a StarSpace algorithm enriched by the character n-gram embeddings from
FastText) and see the results.

The results of the experiments in Chapter 3 also showed that using the cosine sim-
ilarity instead of the dot product during the training process of StarSpace improves
the performance of the resulting model. The cosine similarity could therefore be also

38

. 6.1 Further work

introduced into the other algorithms. However, it requires changes in a core implemen-
tation of the embedding algorithms in order to have a full control over the underlying
processes.

39

References

[1] K. S. Jones. A Statistical Interpretation of Term Specificity and its Application in
Retrieval, Journal of Documentation (vol. 28, pp. 11–21), 1972.

[2] J. Ramos. Using TF-IDF to Determine Word Relevance in Document Queries,
Proceedings of the 1st Instructional Conference on Machine Learning, 2003.

[3] T. Mikolov, K. Chen, G. Corrado, J. Dean. Efficient Estimation of Word
Representations in Vector Space, arXiv preprint, 2013.
https://arxiv.org/abs/1301.3781.

[4] F. Morin, Y. Bengio. Hierarchical Probabilistic Neural Network Language Model,
Proceedings of the 10th International Workshop on Artificial Intelligence and
Statistics (AISTATS) (pp. 246–252), 2005.

[5] P. Bojanowski, E. Grave, A. Joulin, T. Mikolov. Enriching Word Vectors with
Subword Information, arXiv preprint, 2016.
https://arxiv.org/abs/1607.04606.

[6] A. Joulin, E. Grave, P. Bojanowski, T. Mikolov. Bag of Tricks for Efficient Text
Classification, arXiv preprint, 2016.
https://arxiv.org/abs/1607.01759.

[7] M. Pagliardini, P. Gupta, M. Jaggi. Unsupervised Learning of Sentence
Embeddings using Compositional n-Gram Features, arXiv preprint, 2017.
https://arxiv.org/abs/1703.02507.

[8] L. Wu, A. Fisch, S. Chopra, K. Adams, A. Bordes, J. Weston. StarSpace: Embed
All The Things!, arXiv preprint, 2017.
https://arxiv.org/abs/1709.03856.

[9] J. Pennington, R. Socher, C. D. Manning. Global Vectors for Word Representation,
Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP) (pp. 1532–1543), 2014.

[10] A. Conneau, D. Kiela, H. Schwenk, L. Barrault, A. Bordes. Supervised Learning of
Universal Sentence Representations from Natural Language Inference Data, arXiv
preprint, 2017.
https://arxiv.org/abs/1705.02364.

[11] S. R. Bowman, G. Angeli, C. Potts, C. D. Manning. A Large Annotated Corpus
for Learning Natural Language Inference, Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing (EMNLP) (pp. 632–642),
2015.

[12] X. Rong. Word2Vec Parameter Learning Explained, arXiv preprint, 2014.
https://arxiv.org/abs/1411.2738.

[13] D. Cer, M. Diab, E. Agirre, I. Lopez-Gazpio, L. Specia. SemEval-2017 Task 1:
Semantic Textual Similarity Multilingual and Cross-lingual Focused Evaluation,
Proceedings of the 11th International Workshop on Semantic Evaluation (pp. 1–

40

https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1607.04606
https://arxiv.org/abs/1607.01759
https://arxiv.org/abs/1703.02507
https://arxiv.org/abs/1709.03856
https://arxiv.org/abs/1705.02364
https://arxiv.org/abs/1411.2738

. .
14), 2017.
http://ixa2.si.ehu.eus/stswiki.

[14] I. Habernal, O. Zayed, I. Gurevych. C4Corpus: Multilingual Web-size corpus
with free license, Proceedings of the 10th International Conference on Language
Resources and Evaluation (LREC) (pp. 914–922), 2016.

[15] T. Mikolov, E. Grave, P. Bojanowski, C. Puhrsch, A. Joulin. Advances in Pre-
Training Distributed Word Representations, arXiv preprint, 2017.
https://arxiv.org/abs/1712.09405.

[16] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, T. Mikolov. FastText.zip:
Compressing text classification models, arXiv preprint, 2016.
https://arxiv.org/abs/1612.03651.

[17] Y. Linde, A. Buzo, R. Gray. An Algorithm for Vector Quantizer Design, IEEE
Transactions on Communications (vol. 28, pp. 84–95), 1980.

[18] J. Pichl, P. Marek, J. Konrád, M. Matulík, H. L. Nguyen, J. Šedivý. Alquist: The
Alexa Prize Socialbot, arXiv preprint, 2018.
https://arxiv.org/abs/1804.06705.

41

http://ixa2.si.ehu.eus/stswiki
https://arxiv.org/abs/1712.09405
https://arxiv.org/abs/1612.03651
https://arxiv.org/abs/1804.06705

Appendix A
Specification

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

420406Personal ID number:Brich TomášStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Cybernetics and RoboticsStudy program:

RoboticsBranch of study:

II. Master’s thesis details

Master’s thesis title in English:

Semantic Sentence Similarity for Intent Recognition Task

Master’s thesis title in Czech:

Sémantická podobnost vět pro úlohu rozpoznání úmyslu

Guidelines:
A semantic sentence similarity (STS) is a fundamental building block in natural language understanding and finds use in
many NLP applications, such as user intent recognition, fake news identification, toxic comments detection, or question
answering. STS is classically solved by unsupervised learning (mainly using word embeddings) with sometimes an additional
supervised learning layer that enhances performance for a specific application.
The thesis goal is to implement intent recognition module for a conversational bot and research state-of-the-art sentence
embedding algorithms. The following tasks are defined:
1. Research the state-of-the-art sentence embedding algorithms used for sentence semantic similarity.
2. Implement selected algorithms (justify selection).
3. Analyse performance (accuracy, speed, HW requirements) on semantic textual similarity task.
4. Use or improve the best performing algorithm and implement intent recognition module for a conversational bot (Alexa
Echo or Google Home).

Bibliography / sources:
[1] T. Mikolov, K. Chen, G. Corrado, J. Dean: Efficient estimation of word representations in vector space, arXiv preprint
arXiv:1301.3781, 2013.
[2] P. Bojanowski, E. Grave, A. Joulin, T. Mikolov: Enriching Word Vectors with Subword Information, arXiv preprint
arXiv:1607.01759, 2016.
[3] J. Pennington, R. Socher, C. D. Manning: GloVe: Global Vectors for Word Representation, EMNLP, 2014.
[4] M. Pagliardini, P. Gupta, M. Jaggi: Unsupervised Learning of Sentence Embeddings using Compositional n-Gram
Features, arXiv preprint arXiv:1703.02507, 2017.
[5] A. Conneau, D. Kiela, H. Schwenk, L. Barrault, A. Bordes: Supervised Learning of Universal Sentence Representations
from Natural Language Inference Data, arXiv preprint arXiv:1705.02364, 2017.

Name and workplace of master’s thesis supervisor:

Ing. Jiří Spilka, Ph.D., Department of Biomedical Engineering and Assistive Technology, CIIRC

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 25.05.2018Date of master’s thesis assignment: 10.01.2018

Assignment valid until: 30.09.2019

prof. Ing. Pavel Ripka, CSc.

Dean’s signature
doc. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. Jiří Spilka, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

43

A Specification .

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

44

Appendix B
Contents of the attached CD

- code/ Directory containing the Python codes.
- data/ Needed data files.

- starspace C4C 50k.txt StarSpace model used in the resulting in-
tent recognition system.

- starspace C4C 50k cb.txt Codebook of the quantized StarSpace
model.

- templates.json Example template JSON file.
- utils/ Utility modules.

- embedding wrappers.py Embedding algorithm wrappers.
- lbg.py LBG algorithm.
- utils.py Various utility functions.
- utils data.py Functions for data loading and prepro-

cessing.
- utils plotting.py Functions for plotting the results.
- utils sent2vec.py Special functions used by the Sent2Vec

wrapper.
- alquist convnet.py Convolutional network training from the

Alquist team.
- alquist data stats.py Module for getting Alquist dataset statis-

tics.
- alquist templates.py Module for plotting the template learning

curve on the Alquist dataset.
- compare intent supervised.py Module for comparing performance of su-

pervised intent recognition systems.
- compare intent unsupervised.py Module for comparing performance of

unsupervised intent recognition systems.
- compare sts.py Module for comparing embedding algo-

rithms on the STS Benchmark dataset.
- compare sts infersent.py Module for training a regression model

for InferSent on the STS Benchmark
dataset.

- intent query.py Interactive intent recognition module.
- model compression.py Module for compressing embedding mod-

els.
- results.txt File containing unprocessed experiment

results.
- thesis/ Directory containing the Plain TEX the-

sis project.
- Brich DP 2018.pdf This thesis in PDF.

45

Appendix C
Abbreviations and symbols

C.1 Abbreviations

CBOW Continuous Bag-of-Words model.
CPU Central Processing Unit.
CTU Czech Technical University in Prague.

HS Hierarchical Softmax.
LBG Linde-Buzo-Gray clustering algorithm.

LSTM Long Short-Term Memory network.
NLP Natural Language Processing.

NLTK Natural Language Toolkit Python package.
OOV Out-of-Vocabulary word — a word that was not present in the training

corpus during the training of the embedding model.
PR Pearson correlation coefficient.

RAM Random-Access Memory.
SG Skip-Gram model.

SGD Stochastic Gradient Descent.
SNLI Stanford Natural Language Inference.

SP Spearman correlation coefficient.
STS Semantic Textual Similarity.
QA Question-Answering task.

46

. C.2 Symbols

C.2 Symbols

T Training dataset (corpus).
V Vocabulary.
w Word in a vocabulary.

wI/wO Input / output words in the neural network.
W/W ′ Input / output weight matrix of the neural network.
vw/v′w Vector representation of the word w in input / output weight matrix.
Cw Context of the word w.
C (Maximum) context window size.
H Embedding dimension.
E Number of training epochs.
G Character n-gram vocabulary used in FastText.
Gw Character n-grams present in the word w. Gw ⊂ G.

E+/E− Generators of positive and negative examples used in StarSpace.
µ Margin parameter used in the margin ranking loss in StarSpace.
X Co-occurrence matrix used in GloVe.

Xwiwk
Number of times word wk occurs in the context of word wi in the co-
occurrence matrix X.

Pwiwk
Co-occurrence probability of words wi and wk, defined in Section 2.4.

S Sentence from a training corpus — used in Sent2Vec.
R(S) Set of word n-grams present in the sentence S.

u, v Embeddings of a premise and a hypothesis from the SNLI corpus used
in InferSent.

ht Concatenation of the hidden representations in the t-th layer of the
BiLSTM network used in InferSent.

s(·, ·) Function denoting similarity between two words in FastText or two en-
tities in StarSpace, defined in the respective sections.

r(·) Weighting function used in the objective of GloVe, defined in Section 2.4.
σ(·) Softmax function, defined in Section 2.1.
`(·) Logistic loss function, defined in Section 2.2.
L Loss function (used as an objective by the embedding algorithms).

n(w, d) Inner node at depth d on the path from root to the word w in a tree used
for hierarchical softmax.

D(w) Depth of a word w in a tree used for hierarchical softmax.
[[·]] Function used in hierarchical softmax, defined in Section 2.7.

Wneg Set of negative samples used during negative sampling.
f(w) Number of occurrences (frequency) of a word w in a training corpus.

O Time complexity function.
K Number of words that are kept after vocabulary pruning.
VP Pruned vocabulary, subset of V.
P Matrix such that Pjk = 1 if k-th word in the vocabulary is in the j-th

training sample in the training dataset.
DSV Sub-vector size used for vector quantization.
DCB Codebook size (i.e. number of centroids) used for vector quantization.
M Matrix of pre-computed cosine similarities between a query sentence vec-

tor and template codebook centroids.

47

Appendix D
Embedding models training results

48

. .

ep
oc

hs
Se

nt
2V

ec
W

2V
SG

H
S

W
2V

SG
W

2V
C

B
O

W
Fa

st
Te

xt
O

O
V

Fa
st

Te
xt

St
ar

Sp
ac

e
1

—
—

—
—

—
—

0.
50

6
/

0.
53

4
2

—
—

—
—

—
—

0.
54

6
/

0.
58

4
8

—
—

—
—

—
—

0.
58

0
/

0.
61

2
16

0.
10

0
/

0.
09

4
0.

36
4

/
0.

34
3

0.
20

5
/

0.
16

3
0.

08
6

/
0.

06
2

0.
33

9
/

0.
32

0
0.

32
3

/
0.

29
8

0.
59

2
/

0.
62

3
32

—
—

—
—

—
—

0.
60

4
/

0.
63

2
64

0.
23

5
/

0.
23

8
0.

50
8

/
0.

50
9

0.
41

2
/

0.
38

5
0.

19
9

/
0.

17
4

0.
55

2
/

0.
54

3
0.

52
9

/
0.

51
1

0.
60

2
/

0.
63

2
12

8
0.

30
1

/
0.

30
3

0.
54

0
/

0.
54

8
0.

47
5

/
0.

45
0

0.
24

8
/

0.
22

7
0.

58
0

/
0.

57
6

0.
55

8
/

0.
54

8
—

51
2

0.
39

8
/

0.
40

1
0.

57
9

/
0.

59
4

0.
53

3
/

0.
51

8
0.

25
7

/
0.

24
8

0.
59

7
/

0.
59

4
0.

57
6

/
0.

56
8

—
10

24
0.

43
1

/
0.

44
8

0.
58

7
/

0.
60

5
0.

55
2

/
0.

54
2

0.
27

3
/

0.
26

5
0.

60
1

/
0.

59
9

0.
58

0
/

0.
57

2
—

20
48

0.
45

2
/

0.
47

0
0.

58
9

/
0.

61
0

0.
56

6
/

0.
56

0
0.

28
3

/
0.

27
2

—
—

—
40

96
0.

47
3

/
0.

47
8

—
0.

57
1

/
0.

56
9

0.
28

5
/

0.
28

1
—

—
—

1
—

—
—

—
—

—
1.

80
2

—
—

—
—

—
—

3.
33

8
—

—
—

—
—

—
12

.5
0

16
0.

58
0.

70
0.

65
0.

25
2.

03
2.

03
24

.6
9

32
—

—
—

—
—

—
46

.9
7

64
1.

37
2.

67
2.

40
0.

73
6.

78
6.

78
95

.6
8

12
8

2.
40

5.
28

4.
38

1.
40

12
.8

2
12

.8
2

—
51

2
8.

67
21

.0
2

15
.7

7
5.

62
50

.0
2

50
.0

2
—

10
24

17
.6

0
42

.6
8

30
.6

2
10

.8
0

99
.3

2
99

.3
2

—
20

48
33

.5
5

82
.6

3
58

.9
0

20
.3

7
—

—
—

40
96

70
.9

0
—

11
2.

20
39

.9
5

—
—

—

Ta
bl

e
D

.1
.

R
es

ul
ts

of
th

e
m

od
el

s
tr

ai
ne

d
on

th
e

ST
S

B
en

ch
m

ar
k

tr
ai

ni
ng

se
t.

T
he

fir
st

pa
rt

of
th

e
ta

bl
e

sh
ow

s
th

e
pe

rf
or

m
an

ce
of

th
e

m
od

el
s

on
th

e
ST

S
B

en
ch

m
ar

k
te

st
in

g
se

ti
n

th
e

fo
rm

of
Sp

ea
rm

an
/

Pe
ar

so
n

co
rr

el
at

io
n

co
effi

ci
en

ts
.

T
he

se
co

nd
pa

rt
th

en
sh

ow
st

he
re

sp
ec

tiv
e

tr
ai

ni
ng

C
PU

tim
es

in
m

in
ut

es
(t

ra
in

ed
on

ei
gh

tt
hr

ea
ds

of
an

In
te

lC
or

e
i7

-3
63

2Q
M

2.
2

G
H

zC
PU

).
“W

2V
”

st
an

ds
fo

rt
he

W
or

d2
Ve

c
al

go
rit

hm
,“

SG
”

an
d

“C
B

O
W

”
th

en
re

pr
es

en
t

th
e

Sk
ip

-G
ra

m
an

d
th

e
C

on
tin

uo
us

B
ag

-o
f-W

or
ds

va
ria

nt
s,

“H
S”

st
an

ds
fo

r
hi

er
ar

ch
ic

al
so

ft
m

ax
.

“F
as

tT
ex

t
O

O
V

”
re

pr
es

en
t

th
e

Fa
st

Te
xt

m
od

el
fo

r
w

hi
ch

th
e

ou
t-

of
-v

oc
ab

ul
ar

y
w

or
ds

w
er

e
co

ns
tr

uc
te

d
us

in
g

th
e

ch
ar

ac
te

r
n
-g

ra
m

em
be

dd
in

gs
.

T
he

O
O

V
w

or
ds

w
er

e
sk

ip
pe

d
ot

he
rw

ise
.

O
nl

y
th

e
Sk

ip
-G

ra
m

va
ria

nt
of

Fa
st

Te
xt

w
as

us
ed

in
th

e
ex

pe
rim

en
ts

,r
ef

er
to

Se
ct

io
n

3.
4

fo
r

de
ta

ils
.

49

D Embedding models training results .

da
ta

%
Se

nt
2V

ec
W

2V
SG

H
S

W
2V

SG
W

2V
C

B
O

W
Fa

st
Te

xt
O

O
V

Fa
st

Te
xt

St
ar

Sp
ac

e
10

0
0.

63
9

/
0.

65
3

0.
58

5
/

0.
59

4
0.

51
8

/
0.

49
5

0.
29

6
/

0.
27

5
0.

53
6

/
0.

51
8

0.
53

4
/

0.
51

7
0.

67
4

/
0.

70
4

80
0.

62
6

/
0.

63
8

0.
58

3
/

0.
59

4
0.

51
5

/
0.

49
2

0.
29

4
/

0.
27

1
0.

53
7

/
0.

51
9

0.
53

5
/

0.
51

7
0.

67
4

/
0.

70
7

60
0.

61
2

/
0.

62
1

0.
58

2
/

0.
59

2
0.

51
2

/
0.

49
1

0.
29

7
/

0.
27

3
0.

53
5

/
0.

51
3

0.
53

3
/

0.
51

2
0.

67
7

/
0.

71
3

40
0.

58
6

/
0.

59
1

0.
58

1
/

0.
59

0
0.

50
5

/
0.

48
2

0.
29

6
/

0.
26

7
0.

53
3

/
0.

51
5

0.
53

1
/

0.
51

3
0.

67
9

/
0.

71
3

20
0.

51
4

/
0.

50
6

0.
56

8
/

0.
57

9
0.

49
4

/
0.

47
1

0.
27

4
/

0.
24

4
0.

53
2

/
0.

51
2

0.
53

0
/

0.
51

0
0.

68
3

/
0.

71
5

10
0.

42
3

/
0.

40
2

0.
55

5
/

0.
56

1
0.

47
3

/
0.

44
9

0.
23

7
/

0.
20

4
0.

53
2

/
0.

50
9

0.
52

9
/

0.
50

7
0.

68
6

/
0.

71
6

1
0.

10
8

/
0.

09
7

0.
42

3
/

0.
40

9
0.

27
5

/
0.

23
6

0.
08

4
/

0.
07

0
0.

43
0

/
0.

40
6

0.
42

2
/

0.
39

4
0.

66
4

/
0.

68
9

10
0

13
09

.5
3

65
8.

50
50

6.
85

86
.9

8
59

1.
92

59
1.

92
14

07
4.

33
80

10
66

.7
3

44
6.

73
38

8.
52

75
.9

2
51

9.
38

51
9.

38
11

42
4.

97
60

83
7.

43
33

7.
38

24
0.

03
66

.0
2

37
3.

87
37

3.
87

85
59

.0
2

40
58

8.
85

19
3.

32
15

5.
52

45
.6

3
25

8.
33

25
8.

33
56

16
.1

7
20

31
9.

22
10

0.
47

75
.2

3
22

.4
8

14
0.

02
14

0.
02

30
74

.9
5

10
17

7.
02

77
.3

5
44

.5
3

13
.0

7
73

.2
5

73
.2

5
15

50
.2

0
1

14
.8

3
5.

92
4.

63
1.

08
8.

22
8.

22
15

1.
17

Ta
bl

e
D

.2
.

R
es

ul
ts

of
th

e
m

od
el

s
tr

ai
ne

d
on

th
e

C
4C

or
pu

s
da

ta
se

t.
T

he
fir

st
pa

rt
of

th
e

ta
bl

e
sh

ow
s

th
e

pe
rf

or
m

an
ce

of
th

e
m

od
el

s
on

th
e

ST
S

B
en

ch
m

ar
k

te
st

in
g

se
t

in
th

e
fo

rm
of

Sp
ea

rm
an

/
Pe

ar
so

n
co

rr
el

at
io

n
co

effi
ci

en
ts

.
T

he
se

co
nd

pa
rt

th
en

sh
ow

s
th

e
re

sp
ec

tiv
e

tr
ai

ni
ng

C
PU

tim
es

in
m

in
ut

es
(t

ra
in

ed
on

10
th

re
ad

s
of

an
In

te
lX

eo
n

E5
-2

69
0

v4
2.

6
G

H
z

C
PU

).
“W

2V
”

st
an

ds
fo

r
th

e
W

or
d2

Ve
c

al
go

rit
hm

,“
SG

”
an

d
“C

B
O

W
”

th
en

re
pr

es
en

t
th

e
Sk

ip
-G

ra
m

an
d

th
e

C
on

tin
uo

us
B

ag
-o

f-W
or

ds
va

ria
nt

s,
“H

S”
st

an
ds

fo
r

hi
er

ar
ch

ic
al

so
ft

m
ax

.
“F

as
tT

ex
t

O
O

V
”

re
pr

es
en

t
th

e
Fa

st
Te

xt
m

od
el

fo
r

w
hi

ch
th

e
ou

t-
of

-v
oc

ab
ul

ar
y

w
or

ds
w

er
e

co
ns

tr
uc

te
d

us
in

g
th

e
ch

ar
ac

te
r
n
-g

ra
m

em
be

dd
in

gs
.

T
he

O
O

V
w

or
ds

w
er

e
sk

ip
pe

d
ot

he
rw

ise
.

O
nl

y
th

e
Sk

ip
-G

ra
m

va
ria

nt
of

Fa
st

Te
xt

w
as

us
ed

in
th

e
ex

pe
rim

en
ts

,r
ef

er
to

Se
ct

io
n

3.
5

fo
r

de
ta

ils
.

50

Appendix E
Vector quantization results

51

E Vector quantization results .

D
C

B
/
D

SV
2

3
4

5
6

10
51

2
0.

55
4

/
0.

55
6

0.
55

3
/

0.
55

3
0.

55
4

/
0.

55
4

0.
55

2
/

0.
55

4
0.

55
8

/
0.

56
4

0.
53

9
/

0.
54

0
25

6
0.

55
4

/
0.

55
6

0.
55

2
/

0.
55

6
0.

55
6

/
0.

56
1

0.
55

3
/

0.
55

4
0.

55
2

/
0.

55
2

0.
54

4
/

0.
55

3
12

8
0.

55
4

/
0.

55
5

0.
55

1
/

0.
54

9
0.

54
8

/
0.

54
9

0.
54

8
/

0.
54

3
0.

53
7

/
0.

53
4

0.
54

3
/

0.
56

1
64

0.
55

0
/

0.
55

0
0.

54
8

/
0.

54
7

0.
55

1
/

0.
55

6
0.

53
7

/
0.

53
4

0.
53

6
/

0.
53

7
0.

45
8

/
0.

43
6

32
0.

55
5

/
0.

55
6

0.
54

1
/

0.
54

0
0.

55
3

/
0.

55
7

0.
54

4
/

0.
54

8
0.

54
6

/
0.

55
9

0.
45

5
/

0.
43

2
16

0.
55

1
/

0.
55

7
0.

55
5

/
0.

54
7

0.
56

1
/

0.
57

2
0.

45
1

/
0.

42
9

0.
44

3
/

0.
41

8
0.

44
7

/
0.

42
0

8
0.

55
7

/
0.

55
7

0.
46

7
/

0.
45

2
0.

45
0

/
0.

42
5

0.
45

5
/

0.
53

0
0.

54
8

/
0.

42
2

0.
46

0
/

0.
43

5
4

0.
45

0
/

0.
43

1
0.

43
3

/
0.

41
4

0.
43

7
/

0.
41

2
0.

43
4

/
0.

40
8

0.
41

7
/

0.
40

1
0.

43
2

/
0.

41
8

2
0.

44
3

/
0.

41
7

0.
41

4
/

0.
39

1
0.

44
6

/
0.

41
2

0.
45

1
/

0.
41

8
0.

40
9

/
0.

37
6

0.
42

3
/

0.
40

6
51

2
11

8
78

59
48

40
25

25
6

11
0

73
56

45
38

23
12

8
98

65
49

39
33

21
64

89
59

45
37

30
19

32
83

53
42

34
28

18
16

72
45

37
30

26
16

8
62

42
32

26
22

14
4

62
42

32
26

22
14

2
62

42
32

26
22

14

Ta
bl

e
E.

3.
R

es
ul

ts
of

th
e

m
od

el
s

cr
ea

te
d

by
co

m
pr

es
sin

g
th

e
fir

st
20

0
th

ou
sa

nd
ve

ct
or

s
in

th
e

pr
e-

tr
ai

ne
d

Fa
st

Te
xt

m
od

el
us

in
g

th
e

ba
sic

ve
ct

or
qu

an
tiz

at
io

n.
T

he
fir

st
pa

rt
of

th
e

ta
bl

e
sh

ow
s

th
e

pe
rf

or
m

an
ce

of
th

e
m

od
el

s
on

th
e

ST
S

B
en

ch
m

ar
k

te
st

in
g

se
t

in
th

e
fo

rm
of

Sp
ea

rm
an

/
Pe

ar
so

n
co

rr
el

at
io

n
co

effi
ci

en
ts

.
T

he
se

co
nd

pa
rt

th
en

sh
ow

s
th

e
siz

es
of

th
e

re
sp

ec
tiv

e
m

od
el

s
in

m
eg

ab
yt

es
.

T
he

siz
e

of
th

e
un

co
m

pr
es

se
d

m
od

el
w

as
52

3
M

B
w

ith
th

e
pe

rf
or

m
an

ce
of

0.
57

8
Sp

ea
rm

an
/

0.
58

2
Pe

ar
so

n.

52

. .

D
C

B
/
D

SV
2

3
4

5
6

10
51

2
0.

55
3

/
0.

55
6

0.
55

5
/

0.
55

8
0.

55
5

/
0.

55
8

0.
55

9
/

0.
56

6
0.

56
3

/
0.

56
5

0.
56

5
/

0.
57

3
25

6
0.

55
5

/
0.

55
8

0.
55

7
/

0.
56

1
0.

56
0

/
0.

56
3

0.
56

0
/

0.
56

3
0.

56
3

/
0.

56
9

0.
56

1
/

0.
56

8
12

8
0.

55
5

/
0.

55
9

0.
55

5
/

0.
55

7
0.

56
3

/
0.

56
8

0.
56

0
/

0.
56

4
0.

56
0

/
0.

56
6

0.
57

0
/

0.
57

4
64

0.
55

2
/

0.
55

4
0.

55
8

/
0.

56
2

0.
55

7
/

0.
55

8
0.

56
1

/
0.

56
5

0.
56

9
/

0.
57

4
0.

55
8

/
0.

56
0

32
0.

55
7

/
0.

56
1

0.
55

9
/

0.
56

4
0.

56
2

/
0.

56
7

0.
57

0
/

0.
57

6
0.

56
2

/
0.

56
8

0.
55

2
/

0.
55

8
16

0.
55

8
/

0.
56

1
0.

55
7

/
0.

56
7

0.
57

0
/

0.
57

2
0.

56
2

/
0.

56
9

0.
55

8
/

0.
56

4
0.

55
4

/
0.

56
0

8
0.

55
8

/
0.

56
0

0.
56

9
/

0.
58

0
0.

58
0

/
0.

58
2

0.
56

5
/

0.
56

4
0.

56
6

/
0.

56
5

0.
54

6
/

0.
55

4
4

0.
56

0
/

0.
57

0
0.

55
6

/
0.

56
6

0.
55

9
/

0.
56

2
0.

55
6

/
0.

55
4

0.
54

9
/

0.
56

0
0.

54
1

/
0.

54
7

2
0.

56
7

/
0.

57
3

0.
53

7
/

0.
54

5
0.

55
1

/
0.

55
0

0.
55

3
/

0.
54

7
0.

52
9

/
0.

52
7

0.
52

5
/

0.
52

4
51

2
12

1
81

62
51

43
28

25
6

11
5

77
59

48
41

27
12

8
10

2
68

52
43

37
24

64
92

62
48

40
34

22
32

88
59

46
38

32
21

16
76

54
41

34
29

20
8

65
45

35
29

25
17

4
65

45
35

29
25

17
2

65
45

35
29

25
17

Ta
bl

e
E.

4.
R

es
ul

ts
of

th
e

m
od

el
sc

re
at

ed
by

co
m

pr
es

sin
g

th
e

fir
st

20
0

th
ou

sa
nd

ve
ct

or
si

n
th

e
pr

e-
tr

ai
ne

d
Fa

st
Te

xt
m

od
el

us
in

g
th

e
ve

ct
or

qu
an

tiz
at

io
n

w
ith

no
rm

al
iz

ed
em

be
dd

in
g

ve
ct

or
s.

T
he

fir
st

pa
rt

of
th

e
ta

bl
e

sh
ow

s
th

e
pe

rf
or

m
an

ce
of

th
e

m
od

el
s

on
th

e
ST

S
B

en
ch

m
ar

k
te

st
in

g
se

t
in

th
e

fo
rm

of
Sp

ea
rm

an
/

Pe
ar

so
n

co
rr

el
at

io
n

co
effi

ci
en

ts
.

T
he

se
co

nd
pa

rt
th

en
sh

ow
st

he
siz

es
of

th
e

re
sp

ec
tiv

e
m

od
el

si
n

m
eg

ab
yt

es
.

T
he

siz
e

of
th

e
un

co
m

pr
es

se
d

m
od

el
w

as
52

3
M

B
w

ith
th

e
pe

rf
or

m
an

ce
of

0.
57

8
Sp

ea
rm

an
/

0.
58

2
Pe

ar
so

n.

53

E Vector quantization results .

D
C

B
/
D

SV
2

3
4

5
6

10
51

2
0.

55
4

/
0.

55
7

0.
55

5
/

0.
55

9
0.

55
9

/
0.

56
3

0.
55

9
/

0.
56

4
0.

55
8

/
0.

56
2

0.
56

2
/

0.
57

0
25

6
0.

55
3

/
0.

55
6

0.
55

6
/

0.
55

8
0.

56
2

/
0.

56
3

0.
56

2
/

0.
56

6
0.

56
2

/
0.

56
5

0.
56

3
/

0.
56

9
12

8
0.

55
3

/
0.

55
7

0.
55

5
/

0.
55

9
0.

56
5

/
0.

57
0

0.
56

3
/

0.
56

4
0.

55
9

/
0.

56
3

0.
55

8
/

0.
56

5
64

0.
55

6
/

0.
56

0
0.

56
5

/
0.

57
0

0.
56

6
/

0.
56

7
0.

56
1

/
0.

56
6

0.
56

1
/

0.
56

3
0.

55
2

/
0.

55
5

32
0.

55
8

/
0.

56
1

0.
56

1
/

0.
56

4
0.

57
1

/
0.

57
6

0.
56

8
/

0.
57

0
0.

56
4

/
0.

56
7

0.
55

7
/

0.
55

3
16

0.
55

8
/

0.
56

1
0.

55
8

/
0.

56
2

0.
56

8
/

0.
57

1
0.

56
6

/
0.

56
6

0.
56

3
/

0.
56

5
0.

54
9

/
0.

54
8

8
0.

56
1

/
0.

56
3

0.
55

6
/

0.
56

3
0.

57
0

/
0.

57
0

0.
55

9
/

0.
55

9
0.

55
7

/
0.

55
3

0.
54

7
/

0.
55

1
4

0.
56

2
/

0.
56

2
0.

56
0

/
0.

56
3

0.
56

7
/

0.
56

5
0.

55
2

/
0.

55
7

0.
55

1
/

0.
54

4
0.

53
7

/
0.

53
1

2
0.

55
2

/
0.

54
5

0.
53

9
/

0.
52

8
0.

53
5

/
0.

52
1

0.
53

2
/

0.
52

9
0.

52
1

/
0.

51
6

0.
50

5
/

0.
49

4
51

2
12

0
81

63
51

44
28

25
6

11
3

77
59

48
41

27
12

8
10

0
68

52
43

37
24

64
92

63
48

40
34

23
32

86
59

46
38

33
22

16
76

52
41

34
29

20
8

65
45

35
29

25
17

4
65

45
35

29
25

17
2

65
45

35
29

25
17

Ta
bl

e
E.

5.
R

es
ul

ts
of

th
e

m
od

el
sc

re
at

ed
by

co
m

pr
es

sin
g

th
e

fir
st

20
0

th
ou

sa
nd

ve
ct

or
si

n
th

e
pr

e-
tr

ai
ne

d
Fa

st
Te

xt
m

od
el

us
in

g
th

e
ve

ct
or

qu
an

tiz
at

io
n

w
ith

no
rm

al
iz

ed
em

be
dd

in
g

ve
ct

or
sa

nd
di

st
in

ct
co

de
bo

ok
fo

re
ac

h
su

b-
ve

ct
or

po
sit

io
n.

T
he

fir
st

pa
rt

of
th

e
ta

bl
e

sh
ow

st
he

pe
rf

or
m

an
ce

of
th

e
m

od
el

s
on

th
e

ST
S

B
en

ch
m

ar
k

te
st

in
g

se
t

in
th

e
fo

rm
of

Sp
ea

rm
an

/
Pe

ar
so

n
co

rr
el

at
io

n
co

effi
ci

en
ts

.
T

he
se

co
nd

pa
rt

th
en

sh
ow

s
th

e
siz

es
of

th
e

re
sp

ec
tiv

e
m

od
el

s
in

m
eg

ab
yt

es
.

T
he

siz
e

of
th

e
un

co
m

pr
es

se
d

m
od

el
w

as
52

3
M

B
w

ith
th

e
pe

rf
or

m
an

ce
of

0.
57

8
Sp

ea
rm

an
/

0.
58

2
Pe

ar
so

n.

54

	TITLE
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	Tables/Figures
	Introduction
	Problem definition
	State-of-the-art
	Outline, goals and contribution

	Embedding algorithms
	Word2Vec
	FastText
	StarSpace
	GloVe
	Sent2Vec
	InferSent
	Softmax approximations
	Hierarchical softmax
	Negative sampling

	Model training comparison
	Data
	STS Benchmark
	C4Corpus
	Data preprocessing

	Evaluation
	Pre-trained models
	Training on the STS Benchmark dataset
	Results and discussion

	Training on the C4Corpus dataset
	Results and discussion

	CPU and memory requirements
	Training complexity
	Text encoding complexity

	Model compression
	Data and evaluation
	Vocabulary pruning
	Results and discussion

	Quantization
	Results and discussion

	Intent recognition module
	Implementation details
	Evaluation

	Conclusion
	Further work

	References
	Specification
	Contents of the attached CD
	Abbreviations and symbols
	Abbreviations
	Symbols

	Embedding models training results
	Vector quantization results

